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• The decisive role of non-financial factors in the design and management of construction 

assets is highlighted and existing techniques used to include these factors in the decision-

making process are critically reviewed. 

• An effective algorithm has been developed to include non-monetary benefits of competing 

design alternatives in whole-life costing studies.  

• The unique feature of the algorithm, amongst others, is that it proceeds through logical 

steps that can be followed and assessed by decision-makers.  

• Details of the computer implementation of the algorithm are presented.  

• The solution of a selected example problem is also included to illustrate the theory of the 

algorithm.  

 

Keywords: Intangibles, Life Cycle Cost(ing), MCDM, Whole life cost(ing). 

 
 

 

INTRODUCTION 

A major barrier to the implementation of whole-life costing (WLC) is the way decisions are 

made within the construction industry. The design or component selection decisions can often 

be taken based on multiple factors in addition to cost criteria, e.g. aesthetics, strength of 

materials, fire-protection, safeguarding of use, durability and utilisation (Bogenstatter, 2000).  

Ferry and Flanagan (1991) highlighted the role of non-financial attributes in the screening of 

technically acceptable options before conducting a WLC exercise. Kirk and Dell’Isola (1995) 

pointed out two other situations where non-financial attributes have a decisive role to play. 

First, when whole-life costs of two alternatives are found to be essentially equal. In this case, 

these alternatives are assumed to be tied and some means of breaking the tie is needed. 

Secondly, when the effect of uncertainties in the estimated life cycle costs of various options 

are so significant that no alternative clearly represents the least cost course of action. One way 

of breaking the tie in both cases is by considering non-financial attributes. 

 

To achieve an optimum design, professionals, therefore, need to assess the performance of 

their ideas with respect to multiple criteria reflecting their clients’ aspects of need. Some of 

these factors may be reduced to a monetary scale, i.e. monetary benefits, and thus can easily 

be incorporated into WLC calculations in the usual way, i.e. by considering it as negative 

costs. For example, an earlier availability of the building for its intended use by selecting a 
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particular alternative may be considered as a monetary benefit because of the resulting 

additional rental income and reduced inspections, and administrative costs (Lopes and Flavell, 

1998). Other aspects, however, are basically non-financial and can only be assessed 

qualitatively, such as spatial arrangement, and aesthetic appeal.  

 
There exist a number of methods that can be used to extend the WLC framework to consider 

non-financial factors. Cost effectiveness (Fabrycky and Blanchard, 1991) is an approach that 

was derived from cost-benefit analysis. In this approach, various criteria are determined, and 

the performance of each alternative in relation to each of them is quantified and compared to 

minimum system requirements (or thresholds) and decision taken. Although the method is 

systematic, it has three limitations. First, it forces the user to specify a precise quantitative 

measure for all criteria even for ‘intangibles’. Secondly, it does not take into consideration the 

relative importance of various criteria. Thirdly, there is no definitive method for making the 

decision especially when both costs and effectiveness measures differ considerably.  

 

Another illuminating perspective comes from multi-criteria decision theory in which 

intangibles can be treated in a non-monetary context while retaining costs within its natural 

monetary context. For example, the weighted evaluation (WE) method has been used in WLC 

studies by many researchers including Flanagan et al. (1989), Ferry and Flanagan, 1991, Kirk 

and Dell’Isola (1995), among others. The weighted evaluation method consists of two 

processes. First, criteria are identified and the weights of their relative importance are 

established. In doing so, each pair of criteria is compared, and the stronger of the two is 

scored according to the ‘how important 1 to 5’ scale (Fig. 1). The final weights are 

determined such that the maximum weight is assigned a value of 10. The second process is a 

rating and ordering process. A criterion score is found for each alternative-criterion pair by 

multiplying the alternative rating, ijs , by the criterion weight, jW . The total score of each 

alternative is the sum of its individual criteria scores. The recommended alternative, A*, is the 

one with the highest total score, i.e. 
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where iS  is total score of alternative i  and n and m  are the number of competing alternatives 

and decision criteria, respectively.   
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Figure (1): An example application of the WE technique  (Kirk and Dell’Isola, 1995).

 

Although the WE method introduces some objectivity into the decision-making process, it 

still has two limitations. First, decision-makers are forced to fix input parameters at single-

value levels. This restricts any vagueness the decision-maker may have regarding the levels of 

those input variables (Lavelle et al., 1997). Other researchers (e.g. Lopes and Flavell, 1998) 

even described such rigid scale as mechanistic and unsatisfactory. A similar note can be said 

about the use of a crisp scoring scale in the rating process. Secondly, the calculation of the 

final weights such that the maximum value is 10 seems arbitrary. The resulting set of weights 

is not normalised which is contrary to the usual practice and may have an effect on the final 

rating (Baas and Kwakernaak, 1977). 

 

 In this paper, an effective methodology to include non-financial attributes in the whole life 

costing decision-making process is outlined. In the development of this methodology, all 

arguments are discussed in the context of building projects. It should be noted, however, that 

almost all these arguments apply to other types of projects as well. In the next section, various 

MCDM techniques are critically reviewed with emphasis on their suitability to be employed 

in WLC-based decision-making. Then, the algorithm is briefly outlined and explained in the 

context of an example application.  
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MCDM METHODS 

According to Ekel et al. (1999), the application of MCDM techniques is associated with the 

need to solve problems in which solution consequences cannot be estimated with a single 

criterion or problems which can be solved on the basis of a single criterion, however their 

unique solutions are not achieved because the uncertainty of information produces decision 

uncertainty regions. It is interesting to note that all the situations that require the consideration 

of non-monetary factors in WLC studies fit in the scope of application of MCDM methods. 

Thus, other published MCDM methods have been reviewed to identify solutions for the 

limitations identified in the previous section. These approaches can be broadly categorized 

into classic, probabilistic and fuzzy methods. 

 

Classical MCDM Techniques 

Classical MCDM methods require the determination of alternative ratings and criteria weights 

by eliciting the decision-maker (DM)’s judgements/preferences. In doing so, crisp values are 

commonly used to represent these ratings and weights, which are implicitly or explicitly 

aggregated by a utility function. The overall utility of an alternative represents how well the 

alternative satisfies the DM’s objectives. The simplest and most employed function is the 

weighted average formula (equation 1). 

 

The weighted evaluation (WE) technique is an example of classical MCDM methods. In 

general, classical MCDM methods suffer from the same main disadvantage of the WE 

method, i.e. all input parameters are restricted to point estimates. However, alternative ratings 

and criteria weights cannot always be assessed and subjectivity and vagueness are often 

involved (Zadeh, 1975a, 1975b). These may come from various sources such as un-

quantifiable information and incomplete information (e.g. by describing the performance of 

an alternative regarding an attribute as ‘not clear’ (Baas and Kwakernaak, 1977).  

 

Probabilistic Techniques 

Some researchers (e.g. Kahne, 1975a, 1975b; Kelly and Thorne, 2001) approached the 

MCDM problem probabilistically using simulation techniques. In two consecutive papers 

(Kahne, 1975a; 1975b), Kahne proposed a method based on the Monte Carlo simulation to 

represent uncertainties by allowing each variable (rating or weight) to be a random variable, 

usually but not necessarily uniformly distributed. In this probabilistic framework, the final 
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ratings also become random variables. In the last phase of evaluation, various alternatives are 

ranked in order of descending magnitude and the best alternative is selected such that it has 

the highest probability of being first. Baas and Kwakernaak (1977) criticised Kahne’s method 

because it used non-normalised weighted final rating, where the weights do not necessarily 

add up to unity, contrary to the usual practice. The method proposed by Kelly and Thorne 

(2001) is basically similar to Kahne’s approach with two slight exceptions. First, it employs 

normalised weights. Secondly, the final output of their procedure is distributions of rankings 

for various alternatives. These distributions are used directly to aid decision-making, or 

indirectly, by considering additional measures derived from them. 

 

One limitation of the above methods is that they followed a simulation approach. Simulation 

techniques have been criticised for their complexity and their expense in terms of computation 

time and expertise required to extract the knowledge (Byrne, 1997). Other researchers who 

approached the MCDM problem probabilistically did not utilise simulation techniques. For 

example, Lavelle et al. (1997) developed a probabilistic version of the WE model. In this 

approach, weights and ratings are represented by independent uniform, triangular or beta 

random variables; and an iterative multivariate integration scheme is used to approximate 

probabilistic weighted evaluations of various alternatives. Obviously, this method tackles the 

main drawback of simulation techniques. However, it still has the main disadvantage of the 

probabilistic approach, i.e. it can only model random uncertainties. 

 

Fuzzy Techniques 

Bellman and Zadeh (1970) proposed to incorporate fuzziness in human decision-making. 

Since then, an immense literature has been developed in the area of fuzzy MCDM techniques. 

In general, these techniques are extensions of various deterministic methods such as the WE 

and the analytical hierarchy process (AHP) (Saaty, 1980). In the following, some of these 

methods are discussed in the context of three desirable features reflecting how weights of 

importance are elicited and handled and how extended fuzzy operations are implemented. 

Obviously, these desirable features have been chosen to identify appropriate methods for 

overcoming various limitations of methods currently used within the WLC framework. 

 

Eliciting of Weights 

Although establishing weights of importance of decision criteria is a crucial issue, most 

MCDM techniques do not address it. In almost all methods of establishing attribute weights, 
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the decision-maker is asked to specify a rating for each alternative from ‘most’ to ‘least’ 

important. In doing so, a direct scoring approach or a pair-wise approach is utilised. In the 

first approach, weights are directly assigned to various criteria using a normalised fuzzy 

linguistic scale defined by a number of subsets representing various grades of importance.  

 

In the pair-wise approach, however, each attribute is compared individually against all other 

attributes. Generally, methods of pair-wise comparisons may be divided into two classes 

(Takeda and Yu, 1995). In the first class, 1−m comparisons are required to identify weights 

for m  criteria. The second class requires all 2/)1( −mm  possible comparisons. Saaty’s 

analytical hierarchy process (AHP) (Saaty, 1980) is an example of methods within this class. 

The use of pair-wise comparisons is more objective because it allows a fairer and less biased 

comparison (Ross, 1995). Because the favourable feature of pair-wise comparisons, many 

researchers (e.g. Boender et al., 1989; McCahon and Lee, 1990; Mon et al., 1994; Cheng and 

Mon, 1994; Carnahan et al., 1994; Weck et al. 1997; Cheng, 1999; Deng, 1999) have 

developed fuzzy versions of the AHP method where fuzzy numbers (FNs) are used with pair-

wise comparisons to compute the weights of importance. The idea is to transform the pair-

wise ratings, given by the decision-maker, into values such as ‘about three’ instead of 3. 

However, some researchers, e.g. Ribeiro (1996), criticised the fuzzy AHP approach in that it 

does not seem to add much to the original AHP approach as Saaty proposed to use the 

intermediate weights 2, 4, 6 and 8 as compromise values. 

 
In addition to the fuzzy AHP, Triantaphyllou and Lin (1996) developed fuzzy versions of four 

more classical MCDM methods. They tested the five methods and their analysis revealed that 

approaches that employ pair-wise comparisons are more capable of capturing a human’s 

appraisal of ambiguity in complex decision-making situations. They attributed this to the 

flexibility and realism of pair-wise comparisons in accommodating real-life data.  

 

However, almost all the methods that utilise pair-wise comparisons suffer from the 

disadvantage of employing an approximate method of performing extended fuzzy operations 

(Kishk, 2001). In addition, fuzzy numbers representing pair-wise comparisons need to be 

defuzzified at an early stage of the process. In the fuzzy AHP method, this defuzzification 

process has to be done very early so that the eigenvalues and eigenvectors of the reciprocal 

matrices can be calculated. This early defuzzification cancels out the main advantage of using 

the FST in dealing with imprecise and uncertain information. Besides, a lot of information is 
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lost in the defuzzification process. For example, all FNs with the same centroid are treated as 

identical regardless of their shape if the centroid defuzzification method is employed. It is 

interesting to note that although the WE method utilises pair-wise comparisons, no attempt to 

develop a fuzzy version of this method has been found in the literature.  

 

Normalisation of Weights 

Baas and Kwakernaak (1977) were the first to extend the classical weighted average formula 

to fuzzy numbers. Their contention was that the sort of uncertainty that comes into play here 

is better represented by the notion of fuzziness than that of chance. The most unique feature of 

their algorithm is that they employed the following normalised formula  
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This formula has the desirable property that if the scores are equal, the final weighted score is 

independent of the weights and equals the common score value. However, their methodology 

employed a non-linear programming algorithm that is too difficult to implement in practice. 

 

Handling Fuzzy Numbers 

The use of fuzzy numbers to represent weights and ratings in fuzzy MCDM methods entails 

two requirements. First, the need to implement the extension principle (Zadeh, 1975) to derive 

the overall ratings. Secondly, the necessity of ranking the resulting fuzzy numbers 

representing overall ratings. Baas and Kwakernaak (1977) and Kwakernaak (1979) developed 

two algorithms to implement the extension principle. These algorithms are accurate but are 

too difficult to apply in practice. Later, various algorithms that utilise the α-cut concept, e.g. 

the modified DSW (Givens and Tahani, 1987) and vertex algorithms (Dong and Shah, 1987) 

have been developed to be used in MCDM problems. Other researchers (e.g. Yeh and Deng, 

1997; Cheng et al. 1999; Hsu and Jiang, 1999) proposed a simplification to the problem by 

defuzzifying fuzzy numbers at some stage during calculations. This approach is favoured by 

some researchers, e.g. Ribeiro (1996), because it simplifies the ranking process. However, the 

problem of ‘early defuzzification’ discussed above arise. 

 

On the other hand, there exist a number of effective fuzzy ranking methods. Two effective 

ranking techniques have been outlined by Kishk and Al-Hajj (2000) and have been 
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successfully used in Fuzzy WLC modelling. These methods can be employed in the MCDM 

extension of the WLC framework with only one exception: the best alternative, *A , is 

determined as the one with highest final fuzzy score. Besides, the confidence measures 

defined in Kishk and Al-Hajj (2000) need to be redefined accordingly. 

 
 

HANDLING FINANCIAL ATTRIBUTES 

Another issue had to be addressed: how to handle financial attributes, e.g. whole life costs. As 

previously discussed, a non-financial attribute is a benefit for which it is desired to have 

maximum value. For a cost criterion, however, it is desired to have a minimum value. To 

include a cost criterion in the decision making process, a cost analysis is first conducted and 

alternatives are ranked accordingly. Then, they are rated such that the lowest cost alternative 

is assigned ‘excellent’ on the performance scale. The final ranking is attained following the 

usual MCDM methodology. The best alternative, *A , is determined as 
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where C

iS  is the total combined score of alternative i  considering both benefit and cost 

attributes, cm  is the number of cost criteria and kW  and iks are the weighing coefficients and 

ratings of cost criteria. For the special case of one cost criterion, e.g. WLC, equation (3) 

becomes 
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In the framework of the construction industry, this approach was followed by Norton (1992).  

 

Another approach has been proposed by Kirk and Dell’Isola (1995) where the final ranking of 

alternatives is based on benefit to cost (BTC) ratios. A BTC ratio of an alternative i  is 

calculated as 

 

i

i
i WLC

SBTC =                                                       (5) 
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where iWLC  is the WLC measure of alternative i  which can be a net present value (NPV) or 

the equivalent annual cost (EAC) as appropriate (Kishk, 2001). Because a BTC ratio is a cost 

effectiveness measure, the best alternative, *A , should have the maximum BTC ratio, i.e. 

  

i

i

niii WLC
SBTCAA

,1
*

=
∨==                                           (6) 

 
Kishk (2001) has shown that the use of BTC ratio is recommended in the case of uncertainty-

tied alternatives. However, it can only be used if there is a single cost criterion to be 

considered. Besides, it does not reflect the relative importance of financial and non-financial 

attributes. Furthermore, the treatment of non-financial benefits is different from what is 

usually done in WLC regarding monetary benefits, i.e. by considering them as negative costs. 

The use of the total combined score is also crucial when no detailed cost results are available 

or when the relative importance of cost and non-financial criteria should be considered.  

 

 

DESIGN OF THE ALGORITHM  

In this section, a novel algorithm is proposed. First, a MCDM approach is selected. Then, all 

necessary equations are defined and implemented in the form of a computational algorithm. 

 
The Approach 

The above discussion reveals that a fuzzy MCDM approach based on pair-wise comparisons 

and the normalised weighted average formula (equation 2) is most desirable. Because of the 

limitations of the fuzzy AHP approach, a fuzzy version of the WE technique would be more 

desirable. It employs pair-wise comparisons and derives weights of importance through a 

simple summation process. This would enable the α-cut concept to be used and thus the ‘early 

defuzzification’ limitation can be avoided. Another merit of the WE is that it is not restricted 

to the use of fuzzy numbers 1 to 9 to represent pair-wise comparisons. Furthermore, the WE 

method is the most commonly used method within the WLC framework. These additional 

simplicity and intuitiveness properties of the WE technique are two properties that are seen as 

extremely important for the fuzzy MCDM algorithm to be realised by practitioners. 

 

The Fuzzy WE Formula 

Because of its advantages, the normalised formula proposed by Baas and Kwakernaak 

(equation 2) is employed. For Fuzzy input, this formula becomes 
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Similarly, the total combined score (equation 4) and the BTC (equation 5) can be normalised 

as follows 
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The Algorithm 

Based on the above arguments, the following algorithm may be proposed (Fig. 2). 

1. Identify non-financial decision attributes. 

2. Construct suitable fuzzy importance and performance scales, e.g. to use the fuzzy numbers 

1~  to 5~  instead of the traditional 1 to 5 scale in the WE method (Fig. 3). It should be 

noted, however, that the algorithm is not restricted to these subsets and any normal convex 

subset can be used. For example, these subsets can be used to define performance ratings 

such as ‘fair to good’, ‘very good to excellent’ (Fig. 4), ‘poor to fair’ and ‘good to very 

good’ (Fig. 5). In the limit, the interval [1, 5] may be used to model the rating of the 

performance of an alternative regarding a certain criterion as ‘not clear’ (Fig. 6). 

3. Initialize weights for attributes to zero. 

4. For each pair of attributes, add the fuzzy subset of importance, sI~ , to the weight of the 

more important attribute using the restricted DSW algorithm. 

5. Repeat steps 3 and 4 for all possible pair-wise comparisons to obtain the weight sets, jW~ .  

6. Rate alternative i  on the degree to which it performs with respect to criterion j . Then, 

assign the fuzzy subset associated with the identified degree of performance to the fuzzy 

alternative-criterion score, ijs~ . 

7. Repeat step 6 for all non-financial criteria. 

8. Calculate the total score iS~  (equation 7) using the vertex method. 
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9. The appropriate WLC algorithm is identified to manipulate various costs and values. 

10. Calculate a WLC measure for alternative i . This measure could be in the form of an NPV 

measure or an EAC measure depending on the case at hand. 

11. Calculate the BTC ratio from equation (9) using the restricted DSW algorithm. 

12. Rate the performance of alternative i  such that the lowest cost one is rated ‘excellent’. 
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Figure (2): Flow chart of the fuzzy WE algorithm. 
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13. Calculate the total combined score, C
iS~  (equation 8) using the vertex method. 

14. Repeat steps 6 to 13 for all alternatives. 

15. Alternatives are ranked according to the removals of the total combined scores or BTC 

ratios, and confidence measures in this ranking are calculated. 

 

The proposed algorithm has been implemented into a computer routine using the MATLAB 

programming environment (The MathWorks, 2000) 

 

1 2 3 4 5

1.00

µ
No preference Minor  preference Medium  preference Major preference

Poor Fair Good Very good Excellent.

 
Figure (3): Triangular fuzzy subsets 5~  to1~ . 

 

1 2 3 4 5

1.00

µ
Fair to Good Very good to excellent

 
Figure (4): Fuzzy numbers ‘fair to good’ and ‘very good to excellent’. 
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1 2 3 4 5

1.00

µ
Poor to Fair Good to Very good

 
Figure (5): Fuzzy numbers ‘poor to fair’ and ‘good to very good’. 

 

1 5

1.00

µ
Not clear

Figure (6): Fuzzy number ‘not clear’. 

 

 

AN EXAMPLE APPLICATION 

A clinic facility layout is to be selected from three competing schemes. These schemes are to 

be evaluated in relation to four attributes: space flexibility, space relationships, aesthetic 

image, and environmental comfort. The solution to this example using the weighted 

evaluation technique is given in Kirk and Dell’Isola (1995) and is summarised in Fig. (1). 
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The proposed algorithm has been also used to solve this example. The triangular fuzzy 

subsets in Fig. (3) were employed to represent various preference and performance levels. 

Because only non-financial attributes are involved, the three schemes were ranked according 

to their total normalised scores, iS (equation 7) which are depicted in Fig. (7). The 

recommended ranking is schemes 2, 1 and 3, with corresponding removals of the total score, 

iS , of 4.52, 3.59 and 3.49, respectively. This ranking is the same as that obtained by the WE 

method (Fig. 1). The measures of confidence in this ranking were also calculated and are 

summarised in Table (1). 
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i  
Figure (7): Total scores of various design schemes. 

 

Table (1): Measures of confidence in ranking. 

Scheme #2 Scheme #1 Scheme #3 
Rank Alternatives 

CI1 CI2 CI1 CI2 CI1 CI2 

1 Scheme #2 --- --- 0.208 0.604 0.232 0.616 

2 Scheme #1 0.000 0.396 --- --- 0.026 0.513 

3 Scheme #3 0.000 0.384 0.000 0.487 --- --- 
 

To illustrate the efficacy of the algorithm, the same example is considered but assuming that 

the designer used a conservative rating for the space relationships of scheme 2, e.g. ‘good to 
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very good’ (Fig. 5) instead of ‘very good’. Figure (8) shows the resulting normalised scores. 

Although scheme 2 remains the recommended option, the MF of its total score has wider 

intervals as a result of the conservative rating. In addition, the removal of its score becomes 

4.35 instead of 4.52 for the more specific case. Furthermore, the measures of confidence in 

ranking decreased as shown in Table (2).  
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Figure (8): Total scores of various schemes for the ‘conservative’ case. 

 
Table (2): Measures of confidence in ranking for the ‘conservative’ case. 

Scheme #2 Scheme #1 Scheme #3 
Rank Alternatives 

CI1 CI2 CI1 CI2 CI1 CI2 

1 Scheme #2 --- --- 0.171 0.585 0.194 0.597 

2 Scheme #1 0.000 0.415 --- --- 0.026 0.513 

3 Scheme #3 0.000 0.403 0.000 0.487 --- --- 
 

The example is solved once more assuming a ‘not clear’ (Fig. 6) rating for the space 

relationships of scheme 2. Figure (9) shows the resulting total normalised scores. Again, 

scheme 2 remains the recommended option but the removal of its score becomes 4.25. As 

expected, the corresponding measures of confidence in ranking are more conservative than the 

previous two cases summarised in Table (3). As expected, the new measures of confidence in 

ranking are more conservative than the previous two cases. 
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Figure (9): Total scores of various schemes for the ‘not clear’ case. 

 

Table (3): Measures of confidence in ranking for the ‘not clear’ case. 

Scheme #2 Scheme #1 Scheme #3 
Rank Alternatives 

CI1 CI2 CI1 CI2 CI1 CI2 

1 Scheme #2 --- --- 0.170 0.569 0.187 0.580 

2 Scheme #1 0.033 0.431 --- --- 0.026 0.513 

3 Scheme #3 0.008 0.420 0.000 0.487 --- --- 
 

For a clearer comparison, the membership functions for the total score of scheme 2 for the 

three cases are depicted in Fig. (10). These results show the efficacy of the algorithm in 

modelling various degrees of fuzziness. 

 

 

CONCLUSIONS 

Non-financial attributes of projects have a decisive role to play in many situations. Most of 

these factors, however, cannot be assessed in a strict WLC framework because they are 

mostly ‘non-financial’ or even intangible such as aesthetics. Existing methods used to extend 

the WLC framework to consider non-financial factors fall short from considering inherent 

uncertainties of the processes of eliciting weights of importance and ratings of alternatives.  
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Figure (10): The total score of scheme #2 for various cases. 

 

Other published methods for MCDM under uncertainty including probabilistic and techniques 

have been reviewed to identify solutions to the limitations of existing methods. Based on this 

review, a fuzzy version of the WE method has been developed and implemented into a 

computational algorithm.  

 

The proposed algorithm has three unique merits. First, the elicitation of importance weights is 

done through pair-wise comparisons without transforming imprecise information to crisp 

values early in the process. Secondly, the final scores are calculated using a normalized 

formula instead of the arbitrary method of adjustment of weights in the traditional WE 

method. Thirdly, and more importantly, alternatives are automatically ranked and confidence 

measures in this ranking are provided. These unique features provide the decision-maker with 

the flexibility and robustness required for making informed decisions. 
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