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Abstract

Some upstream open reading frames (uORFs) regulate gene expression (i.e.,
they are functional) and can play key roles in keeping organisms healthy. How-
ever, how uORFs are involved in gene regulation is not yet fully understood.
In order to get a complete view of how uORFs are involved in gene regulation,
it is expected that a large number of functional uORFs are needed. Unfor-
tunately, lab experiments to verify that uORFs are functional are expensive.
In this thesis, for the first time, the use of inductive logic programming (ILP)
is explored for the task of learning which uORFs regulate gene expression in
the yeast Saccharomyces cerevisiae. This work is directed to help select sets of
candidate functional uORF's for experimental studies.

With limited background knowledge, ILP can generate hypotheses which
make the search for novel functional uORFs 17 times more efficient than ran-
dom sampling. Adding mRNA secondary structure to the background knowl-
edge results in hypotheses with significantly increased performance. This work
is the first machine learning work to study both uORFs and mRNA secondary
structures in the context of gene regulation. Using a novel combination of
knowledge about biological conservation, gene ontology annotations and genes’
response to different conditions results in hypotheses that are simple, informa-
tive, have an estimated sensitivity of 81% and provide provisional insights into
biological characteristics of functional uORFs. The hypotheses predict 299 fur-
ther genes to have 450 novel functional uORFs. A comparison with a related
study suggests that 8 of these predicted functional uORFs (from 8 genes) are

strong candidates for experimental studies.
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Chapter 1

Introduction

In the post-genomics era, research across engineering and science in the life
science interface has grown wider than ever before. Among life sciences, biology
is the one which has currently gained the most interest from many computing
scientists, mathematicians and statisticians. Many existing and new techniques
from computing science, mathematics and statistics have been applied to try
to solve, or at least to take steps towards solving, complex biological problems.
This area of research is known as bioinformatics; this is where the application
domain of this thesis lies.

The central information in bioinformatics is deoxyribonucleic acid (DNA)
sequences. DNA carries a complete set of instructions for making all the pro-
teins a living cell will ever need (see Figure 1.1). A segment of DNA which
contains the information for the synthesis of specific ribonucleic acid (RNA)
and protein is called a gene. One of the greatest challenges ever since genes
were discovered is to understand the process of gene expression, that is to un-
derstand how information from the DNA are converted into RNA and protein.

The expression of gene involves two major processes, as shown in Figure 1.1.
The first is transcription, where information from DNA are copied into RNA.
Several kinds of RNA molecules are transcribed, but the ones which carry

the specific instructions from DNA for making proteins are called messenger



RNA (mRNA). The second process is translation, where the information in the

mRNA are converted into protein.

transcription translation

DNA —> RNA — Protein
in nucleus in cytoplasm

Figure 1.1: From DNA to protein.

Different genes are expressed differently in different places, at different
times and in different amounts. The mechanisms that control gene expres-
sion are known as gene requlation. Misregulation of gene expression can cause
an abnormality, leading to disease(s) or even cancer (Mata, Marguerat and
Béhler, 2005). Therefore, a complete understanding of gene regulation is im-
portant; however, this is still far beyond the current knowledge in biology.

This research explores the use of a machine learning technique, called in-
ductive logic programming (ILP), for a bioinformatics problem in the area of
gene regulation, specifically for learning which upstream open reading frames

(uORFs) regulate gene expression in the yeast Saccharomyces cerevisiae.

1.1 Inductive Logic Programming

Inductive logic programming (ILP) is a machine learning technique which deals
with the induction of hypothesised predicate definitions of a concept. Machine
learning deals with how to construct computer programs which can automat-
ically improve (learn) from experience (Mitchell, 1997). Unlike most machine
learning techniques which only learn from examples of the concept, ILP is able
to bias inference by taking into account background knowledge. Background
knowledge in ILP is knowledge about the application domain known to the
learner before the learning starts. This knowledge is usually extracted from

domain experts and/or the literature. Thus, ILP algorithms take examples of



the concept, together with potentially pertinent background knowledge about
the concept, and construct a hypothesis which explains the examples in terms
of the background knowledge.

The examples, background knowledge and the induced hypotheses in ILLP
are represented in a declarative manner and so can be easily translated into
English. Consequently domain experts can help with the selection and inte-
gration of appropriate background knowledge and the final dissemination of
discoveries to the wider scientific community.

ILP has been successfully applied to a diverse range of real-world problems.
These include problems involving algebra, music, natural language processing,

mechanical engineering, as well as biology and chemistry.

1.2 Upstream Open Reading Frame

Upstream open reading frame (uORF) is one of the regulatory elements (i.e.,
elements which can regulate gene expression) that may be present in the
5" untranslated region (UTR) of mRNA (see Figure 4.5 on page 52). Research
has revealed that some transcribed uORFs regulate the translation process
(i.e., the uORFs are functional) (Vilela and McCarthy, 2003; Vilela, Ramirez,
Linz, Rodrigues-Pousada and McCarthy, 1999; Hinnebusch, 1997; Fiaschi, Mar-
zocchini, Raugei, Veggi, Chiarugi and Ramponi, 1997; Tacono, Mignone and
Pesole, 2005), while a few others do not (i.e., the uORF's are non-functional)
(Morris and Geballe, 2000; Krummeck, Gottendf and Rodel, 1991).
Functional uORFs have been shown to play important roles in keeping
organisms healthy, usually by controlling the synthesis of certain proteins which
are harmful if over synthesised (Kozak, 1991; Willis, 1999). One example of this
is thrombocythaemia. Thrombocythaemia is a condition where blood contains
too many platelets, a type of blood cell involved in blood clotting. People

with this condition have a higher risk of developing a blood clot, a stroke or



heart attack. The production of platelets in the blood cells is controlled by
the hormone expressed from the gene thrombopoietin. According to Kozak’s
(1999) review, based on Wiestner, Schlemper, van der Maas and Skoda (1998),
under normal conditions, the uORFs of thrombopoietin mRNA act to limit
the translation of the thrombopoietin gene and thus limit the production of
the platelets in the blood cells. When uORFs are somehow eliminated from
the thrombopoietin mRNA, the translation of thrombopoietin gene is increased

and thus the amount of the platelets, causing thrombocythaemia.

1.3 Motivation

To date, transcribed uORFs have only been verified in a small number of genes
in several organisms. From this data, a partial understanding of how uORFs
can regulate protein expression has been achieved. However, as more and more
uORFs have been found in the mRNA of genes with critical roles, it has become
important to get a complete understanding of how uORFs are involved in the
regulatory mechanism of gene expression.

To be able to draw a complete understanding of the mechanism, we would
expect that a large number of functional uORFs would be needed. Unfortu-
nately, lab-based experiments to identify functional uORFs are extremely ex-
pensive and time-consuming. Therefore, an in silico prediction method which
can help in selecting sets of candidate functional uORF's for experimental stud-
ies is essential.

This PhD project sets out to develop such a method using ILP as the
learning technique and the yeast Saccharomyces cerevisiae (famously known
as baker’s and brewer’s yeast) as the model organism. Given some data, the
method should automatically generate hypotheses which can then be used to
predict novel functional uORFs.

Since we want to develop an automated learning method and will deal with



genome data, machine learning is a suitable approach to use. Among many ma-
chine learning techniques, we chose ILP for the following reasons. First, ILP
provides a richer representation than other machine learning techniques based
on attribute-value representation. The latter representation cannot concisely
represent the relationships between attributes in the uORF domain. For exam-
ple, the attribute-value representation cannot concisely represent relationships
between uORFs and UTRs because of the arbitrary number of uORFs a UTR
may have (see Section 4.2 on page 53). Second, unlike other machine learn-
ing techniques, ILP is able to utilise existing knowledge from domain experts
and/or the literature; this special feature of ILP is beneficial and will be used in
Chapters 5-7. Finally, all ILP’s input (examples and background knowledge)
and output (hypotheses) can be easily translated into English and thus easily
understood by human scientists; this is demonstrated, for example, in Table 5.8
on page 76.

The yeast S. cerevisiae was chosen as a model organism for several reasons.
First is because it is one of the most and best studied biological models. Second,
yeast is simpler than other eukaryotes (organisms whose cells have nuclei), but
it has the characteristics of complex eukaryotes. Third, the size of its genome is
relatively small compared to other eukaryotes; this makes yeast more appealing.
Last, yeast can be grown very fast making lab experimental studies, to verify

whether particular uORFs do indeed regulate translation, feasible.

1.4 Objectives

This goal of this PhD project is to develop an automated learning method,
using inductive logic programming (ILP) as the learning method and the yeast
Saccharomyces cerevisiae as the model organism, to help select sets of candidate
functional uORF's for experimental studies. In achieving this goal, the following

objectives were set:



1. to investigate whether ILP could automatically generate a model that
identifies functional uORFs and whether this model, when used as a

filter, could be more efficient than random sampling;;

2. to investigate whether adding mRNA secondary structure to ILP back-
ground knowledge could increase the performance of the ILP system in

recognising known functional uORF's in the yeast S. cerevisiae;

3. to investigate whether a combination of knowledge derived from biolog-
ical sequences of several yeast species, an analysis of several expression
data sets and gene ontology annotations could generate hypotheses that

identify functional uORF's with good performance;

4. to investigate whether the performance of the hypotheses generated by
an ILP system, CProgol4.4, depends on the ordering of input positive

training examples.

1.5 Contributions to Knowledge

Unless stated otherwise, the work described in this thesis is solely the author’s
work. Some ideas used and developed in this thesis may have arisen from
discussion with the author’s PhD supervisors and collaborators.

The collaborators include several senior researchers: Dr Graham J.L. Kemp!,

3. as well as several fel-

Professor Per Sunnerhagen? and Professor Olle Nerman
low PhD students: Marija Cvijovic, Erik Kristiansson®, Alexandra Jauhiainen®
and Janeli Sarv?.

This thesis makes original contributions to knowledge in the field of machine

!Department of Computer Science and Engineering, Chalmers University of Technology,

Sweden.
2Department of Cell and Molecular Biology, Géteborg University, Sweden.
3Department. of Mathematical Statistics, Chalmers University of Technology, Sweden.
4Max Planck Institute for Molecular Genetics, Berlin, Germany.



learning, particularly ILP, and bioinformatics. The main contribution to ILP

1s:

e The first empirical study to show that there is a dependency between
the performances of the hypotheses constructed by CProgol4.4, an ILP
system which uses the covering approach, and the orderings of positive

training examples.
The main contributions to bioinformatics are:

e An automated learning method for the task of learning which uORFs
regulate gene expression in the yeast S. cerevisiae. The method can help
with the selection of sets of candidate functional uORFs for experimental

studies;

e Putative novel functional uORFs and a set of strong candidate functional

uORFs for lab experimental studies;

e Provisional insights into the biological characteristics of functional uORFs

in the yeast S. cerevisiae.

Part of the work described in this thesis (Chapter 5) has been published in:

Selpi, Bryant, C.H., Kemp, G.J.L. and Cvijovic, M. (2006). A First
Step towards Learning which uORFs Regulate Gene Expression.
Journal of Integrative Bioinformatics 3(2):31.

The data and other supplementary materials for this paper are available at

http://www.comp.rgu.ac.uk/staff/chb/research/data_sets/jib2006/u0RF/.

1.6 Thesis Structure

This thesis is written from a bioinformatics point of view, with the following
readers in mind: computing scientists with interest in biology and bioinfor-

maticians. The thesis is structured as follows.



Foundation chapters:

e Chapter 2 provides an overview of inductive logic programming (ILP), the
chosen machine learning technique. Basic ILP terminology is introduced.
Why ILP was chosen and how it can address the challenging task in
bioinformatics are explained. This chapter also describes the ILP systems

which will be used in this research;

e Chapter 3 briefly introduces the field of bioinformatics and reviews some

of machine learning (particularly TLLP) work on bioinformatics;

e Chapter 4 introduces a new bioinformatics problem for ILP and machine
learning generally, namely learning which uORFs regulate gene expres-
sion. The roles of uORFs in gene regulation and in keeping organisms
healthy are explained. A challenge facing biologists working in the uORF
domain is identified which provides the motivation for the research de-

scribed in the experimental chapters described next.

Experimental chapters:

e Chapter 5 describes our first exploration of using an ILP system to learn
which uORFs regulate gene expression in the yeast Saccharomyces cere-
visiae. This chapter shows that ILP has the potential to help in selecting

sets of candidate functional uORFs for wet-experimental studies;

e Chapter 6 investigates whether adding mRNA secondary structure to
background knowledge could increase the performance of an ILP sys-
tem, CProgol4.4, in recognising known functional uORFs in the yeast
S. cerevisiae. This is the first machine learning work to study mRNA sec-
ondary structures and uORFs together in the context of gene regulation.
This chapter also investigates whether the performance of the hypothe-
ses generated by CProgol4.4 depends on the ordering of positive training

examples;



e Chapter 7 presents a new and finer approach to learning yeast functional
uORFs. The shortcomings from the previous two chapters are addressed

in this chapter.

Final chapter:

e Chapter 8 draws conclusions. Original contributions to knowledge and

ideas for future research are also presented.



Chapter 2

An Overview of Inductive Logic

Programming

This chapter gives an overview of inductive logic programming (ILP), the cho-
sen machine learning technique used in this research. The aims of this chapter
are to introduce the basic ILP terminology and framework which will be used
throughout this thesis and to show why ILP was chosen and how it can address
the challenging tasks in bioinformatics, which is the application domain of this
research. Thus, this chapter only covers a small part of ILP, mainly the part

needed to carry out this research.

2.1 Basic ILP

Inductive logic programming (ILP), as a scientific discipline, has grown fast
since it emerged in the early 1990s. As a research area, ILP lies at the inter-
section of machine learning and logic programming (Muggleton, 1991).

Machine learning (ML) deals with how to construct computer programs
which can automatically improve (learn) from experience (Mitchell, 1997). The
learning process may involve deductive, inductive and abductive reasoning (in-

ference). The difference between these three types of reasoning is described

10
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briefly in the following (‘—’ denotes implication from left to right).

Deductive
X — Y Example : All vertebrates have backbones;
X Dogs are vertebrates;
Y Therefore dogs have backbones.

If the premises are true then the conclusion must be correct. A deductive ar-

gument is a valid argument.

Inductive

X, — Y where : X, is an instance of X and

Xy — Y, Y; is an instance of Y.

X3 — Y3

X, — Y, Example : All cats that we have seen are black;

X =Y then we may infer that all cats are black.
Abductive

Example : If a patient is affected by a beta thalassemia,
X —- Y his/her level of hemoglobin A2 is increased;
Y Ann’s level of hemoglobin A2 is increased;
X We can infer that Ann is affected by a beta
thalassemia.

Although induction and abduction are not sound, both are useful in the process
of learning.

Logic programming is a declarative, relational style of programming based
on first-order logic (Kowalski, 1999). In logic programming, logic is used to
represent programs and deduction is used to execute the programs.

Some of these characteristics of both machine learning and logic program-
ming are inherited by ILP, and both deductive and inductive inference are

used. As its name suggests, ILP generally uses inductive inference to generate
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hypotheses from observations (also called ezamples). Its engine uses deductive
inference to compute logical consequence, and is often implemented in Pro-
log (Clocksin and Mellish, 1981), which is a standard language used in logic
programming.

In order to understand basic ILP terminology, one needs to know the al-
phabet of first-order logic. The alphabet consists of variables, functors and
predicate symbols (Lavra¢ and Dzeroski, 1994). Each functor and predicate
symbol has an arity (number of arguments) > 0. A functor with arity = 0
is called a constant. A term is either a variable, a constant, or an expression
f(t1,....tn), where ti,...,t, are terms and f is an n-ary functor. An atomic
formula (or simply atom) is expressed as p(ty,...,t,), with t1,...,t, are terms
and p is an n-ary predicate symbol. An atom or a term with no variable is
called ground. The alphabet also consists of logical connectives and quantifiers.

Logical connectives are ‘A’ (conjunction), ‘V’ (disjunction), ‘=’

(negation), ‘«’
(implication from right to left) and ‘<’ (logical equivalence). Quantifiers are
V" (universal) and ‘3" (existential).

Here, the basic terminology used in logic programming is described briefly.

A clause is a formula

V(Ly V...V L,)

where each L; is either a positive literal (i.e., an atom) or a negative literal (i.e.,

a negation of an atom). Thus, a clause can also be written as
V(A V...VA,V AL V...V 2ALa,)
or equivalently
V(A1 V... VA, — (A1 Ao AN Angn))

where each A; is an atom, m > 0 and n > 0. Horn clauses are clauses where
0<m < 1andn > 0. A Horn clause with m = 1 is called a definite clause

and a Horn clause with m = 0 is called a goal.
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ILP systems mostly deal with Horn clauses. From here, Prolog syntax is
used for describing ILP terminology. A definite clause is written in Prolog in

the form of

AZ—Bl,...,Bn.

where n > 0. The “: =’ sign is pronounced if and means implication from right
to left. A is called the head of the clause. Altogether, the B; form the body of
the clause. When n > 0, the clause is called a rule, and when the body of the
clause is empty (n = 0), the clause is called a fact or a unit clause (in this case,
the “: = sign is omitted). A finite set of definite clauses makes up a definite
logic program.

ILP uses inductive inference to generate a predicate definition of a target
concept (namely the hypotheses). A predicate definition is a set of clauses with
the same predicate symbol and arity in their heads. ILP commonly learns
from classified examples of a target concept. These examples are also called
training examples. The instances which belong to the concept are called positive
examples, while instances which do not belong to the concept are called negative
examples.

Unlike most ML techniques which learn hypotheses from examples only,
ILP also takes into account background knowledge (Lavrac¢ and Dzeroski, 1994).
Background knowledge in ILP is knowledge about the application domain known
to the learner before the learning starts. This knowledge is usually extracted
from domain experts and/or the literature (Srinivasan, 2001). Represented
as a set of predicates, background knowledge can be described in an inten-
sional and/or extensional manner (Lavra¢ and Dzeroski, 1994). Knowledge
is described extensionally by listing all the facts (or the unit clauses) of the
background predicates. However, when the number of unit clauses are large,
an extensional definition can be unsuitable. In that case, an intensional defi-
nition, represented as rules, is preferred as it is more compact and concise. In

most ILP systems, the input (examples and background knowledge) and the
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output (hypotheses, in a form of rules set) are all represented as definite logic
programs.

As in general ML, a learning task in ILP can be formulated as a search
problem in a predefined space of potential hypotheses for the best hypothesis
that fits the training examples (Mitchell, 1997). The way the hypotheses space
is defined and searched is controlled by giving declarative bias (Lavra¢ and
Dzeroski, 1994). There are two different kinds of bias known in ILP; they are
syntactic bias (also called language bias) and semantic bias (Muggleton and
Raedt, 1994).

Syntactic bias restricts the syntax (the form) of clauses allowed in the hy-
potheses. Often this is done by giving a set of parameters, such as the maximum
number of variables allowed in a clause and the maximum number of literals al-
lowed in a clause. Semantic bias defines the form of the hypotheses themselves
and usually given by declaring types and modes (Muggleton and Raedt, 1994).
Some practical information about bias will be discussed in more detail later on.
However, the underlying theory of bias will not be covered in this thesis, but

is available from Muggleton and Raedt (1994).

2.2 Issues and Developments in ILP

This section briefly describes issues and developments in ILP to provide basic
information of what ILP can and cannot do, as part of consideration when
choosing this technique. The evaluation of these issues and developments in
terms of application to biology and chemistry related problems is detailed in

Chapter 3.

2.2.1 Positive-only Learning

ILP was originally designed to deal with binary classification tasks. This in-

ductive learner generalises observed training examples by identifying features
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that empirically distinguish positive from negative training examples. Hence,
ILP generally requires a number of positive and negative training examples.
However, there are some application domains where negative examples do not
exist, or are scarce. For example, grammar learning in natural language pro-
cessing is not concerned with distinguishing positive examples from negative
ones (Dzeroski, Cussens and Manandhar, 2000). It is only concerned with the
positive examples (in this case, the sentences). This kind of situation has driven
the development of positive-only learning (Muggleton, 1996).

While there have been many applications of the positive-only setting of
ILP to natural language processing (see a workshop series Learning Language
in Logic (LLL) in 1999, 2000, 2001 and 2005), applications of this setting
to real-world biological problems are still rare. In Chapters 5-7, the use of
positive-only setting of ILP on a bioinformatics problem, namely identifying

functional upstream open reading frames (uORF's), is explored.

2.2.2 Multi-class Problems

ILP was designed to deal with genuine binary problems and problems which
concerned with discriminating one class from the rest of the classes. However,
some real-world problems can involve more than two classes (they are called
multi-class problems) with each of the classes are equally important. The fact
that ILP was designed to induce binary classifiers makes applying ILP to a
multi-class problem is not a straightforward task.

A popular MLL approach in dealing with multi-class (n-class, n > 2) is by
reducing the n-class problem into multiple binary problems. At least there are
two ways to do this. First is by treating one class as positive and the rest as
negative and repeating this process for each class and thus creating n binary
problems (Allwein, Schapire and Singer, 2000). Second is by considering a

distinct pair of classes each time and ignoring the rest of the classes; this

n

way an n-class problem is broken down into (2

) binary problems (Hastie and
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Tibshirani, 1998; Firnkranz, 2001; Allwein et al., 2000). Other approaches
can be read from Dietterich and Bakiri (1995) and Allwein et al. (2000). An
example of ILP application which uses the class-reduction method is Quiniou,

Cordier, Carrault and Wang (2001).

2.2.3 Incorporating Abduction

The accuracy of inductive learning depends on availability of data (background
knowledge and training examples). Due to this fact, different lines of research
have been carried out among the ILP community to learn from incomplete
data. Among those, some use an abductive approach, which then leads to a
new research area called Abductive Logic Programming (ALP; details can be
read from Kakas, Kowalski and Toni (1998)), and others combine abduction
and induction for extended ILP systems (Kakas and Riguzzi, 1997; Mooney,
1997; Tamaddoni-Nezhad, Chaleil, Kakas and Muggleton, 2006).

When combined with induction, abduction is used to supplement incom-
plete background knowledge by making assumptions about missing facts in
the background knowledge (Riguzzi, 1998) and/or to modify the existing back-
ground knowledge (in the sense of theory refinement (Mooney, 1997)). Abduc-
tive assumptions or explanations can then be generalised by induction. In such
a way, induction and abduction strengthen each other to learn from incomplete

data.

2.3 Why Choose ILP

Like other techniques, ILP has plus and minus points. However, for the pur-
pose of our research (i.e., to develop an automated learning method which can
help in selecting sets of candidate functional uORFSs), we believe ILP, with its
characteristics, has potential.

ILP provides a richer representation than other machine learning techniques
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based on attribute-value representation. Attribute-value learners cannot con-
cisely represent the relationships between attributes in the uORF domain, the
specific application domain of this research. For example, the attribute-value
learners cannot concisely represent relationships between uORFs and UTRs be-
cause of an arbitrary number of uUORFs a UTR may have. uORFs, UTRs and
their relationships will be discussed in more detail in Section 4.2 on page 53.

This research builds on previous (biological) research. Therefore, ILP’s
ability to utilise existing knowledge from domain experts and/or the litera-
ture is beneficial. The positive-only learning of ILP is certainly an advantage,
especially for domain where negatives are difficult to get. As demonstrated,
for example, in Table 5.8 on page 76, the declarative representations of ILP’s
input and output can be easily translated into English and thus can be easily
understood by human scientists.

Moreover, ILP has been successfully applied to a diverse range of real-
world problems, including those involving algebra, music, natural language
processing, mechanical engineering, as well as biology and chemistry. The
applications of ILP to biology and chemistry related problems will be reviewed
in Chapter 3, as they are more related to bioinformatics, the application domain
of this research. Other applications of ILP will not be reviewed here, but are
available from Bratko and Muggleton (1995), Muggleton (1999) and Dzeroski
(2001).

2.4 ILP Systems

Since the early 1990s, many ILP systems have been built. Two of them, which
are used in this research, are discussed in this section. A review of the early ILP
systems FOIL, GOLEM, and MOBAL is available from Lavra¢ and Dzeroski
(1994, Chapter 4) and Muggleton and Raedt (1994). mFOIL, which uses FOIL

approach with heuristics search and stopping criteria to provide a better noise-
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handling, is described in Lavra¢ and Dzeroski (1994, Chapter 9). Other ILP
systems, especially those related with knowledge discovery in databases, are

reviewed in the chapters of Dzeroski and Lavra¢ (2001).

2.4.1 CProgol

The main reasons why CProgol (Muggleton, 1995) was chosen are because it is
an established ILP system and it has been successfully applied to many different
problems, including those in bioinformatics. Although it was written in C
(Kernighan and Ritchie, 1988) programming language, CProgol uses Prolog
(Clocksin and Mellish, 1981) to represent its input (examples and background
knowledge) and output (hypotheses in a form of rules set).

Several versions of CProgol! are available; they are CProgol4.1 (Muggleton,
1995), CProgol4.2 (Roberts, 1997), CProgold.4 (Muggleton and Firth, 2001),
CProgol4.5 and CProgol5.0 (Muggleton and Bryant, 2000). The positive-only
setting is implemented in version 4.2 and 4.4. Abductive capability is incorpo-
rated in version 5.0.

Related with CProgol, there are also other ILP systems using Progol-like
algorithm, such as PProgol?, Indlog (Camacho, 1994) and Aleph (Srinivasan,
1999). Aleph is a further development of PProgol. These three systems were
written in Prolog. Experiments described in Chapters 5 and 6 use CProgol4.4,
and those in Chapter 7 use Aleph. The rest of this section describes CProgol.

An overview of Aleph is given in Section 2.4.2.

Representing Input and Defining Hypotheses Space

Like other ILP systems, CProgol learns from examples and background knowl-

edge. The positive examples are represented as definite clauses, but usually

Versions of CProgol are available from http://www.doc.ic.ac.uk/~shm/Software/
’http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/PProgol/ppman.

html
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as ground unit clauses. And the negative examples are represented as head-
less clauses. Unlike background knowledge in FOIL and GOLEM which can
only consist of ground facts (Lavra¢ and Dzeroski, 1994), background knowl-
edge in CProgol may consist of background facts, which describe the examples
(also called extensional definitions), and/or general rules, which are common
to examples within the domain (also called intensional definitions).

To let CProgol know where to search for the hypotheses, the hypotheses
space has to be defined. This is done by declaring types and modes. Types
specify the categories of objects under consideration, and usually are declared

by listing unary predicates of the form
type(object) .

where type is a type name and object is an object name. Types are enforced
in CProgol. As a result, only part of the hypotheses space is considered by
CProgol, that is the part which is type-conform.

Modes specify the relation between objects of given types and the forms
that atoms can take place in a hypothesis clause. There are two different kinds
of modes declarations, i.e., modeh (to be used in the head of a hypothesis) and
modeb (to be used in the body of a hypothesis). The two modes are usually

declared in the form of

:— modeh (RecallNumber,HeadTemplate) ?

:— modeb(RecallNumber,BodyTemplate)?

where RecallNumber is either a number > 0 which specifies how many times
the HeadTemplate or BodyTemplate can be called successfully, or a “«’ which
specifies that the HeadTemplate or BodyTemplate can be called successfully
up to 100 times; HeadTemplate and BodyTemplate are n-ary predicates, with
n > 1 and each of the arguments is a wvariable type preceded by either a
‘+’ (indicates that the argument should be an input), -’ (indicates that the

argument should be an output), or ‘#’ (indicates that the argument should be
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a constant). A wvariable type can be a type defined normally by a list of unary
predicates or a Prolog built-in function.

The hypotheses search in CProgol can be controlled through a set of pa-
rameters, integrity constraints, and prune statements. By reducing the amount
of search, the amount of resources (time and memory) spent during searching
will also be reduced. The default parameter settings of CProgol can sometime
be enough to solve simple problems. However, complex problems may need dif-
ferent settings. How these parameters have to be set depends on the problem’s
needs. Some of these parameters, which are used for experiments in this re-
search, are shown in Table 2.1. The next subsection (Hypotheses Construction)

may help to understand this table better.

Table 2.1: CProgol parameter settings. The default values shown are those for

CProgol4.4.

Name Default | Meaning

posonly | off If on, then CProgol turns on the positive-only

learning mechanism.

inflate | 400 This gives a weighing to the examples.

i 3 The maximum depth of variables which may occur

in the most specific clause.

C 4 The maximum number of atoms in the body of the

rules constructed.

nodes 200 The maximum number of nodes explored during

clause searching.

h 30 The maximum depth of the stack used when proving

before starting backtracking.

r 400 The maximum depth of resolutions allowed when

proving. If exceeded, the proof is failed.
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The parameters which may only take the values ‘On’ and ‘Off’; such as

posonly, are set to ‘On’ using set/1 command
:— set(Parameter)?

and set to ‘Off” using unset/1 command
:— unset (Parameter)?

while those parameters which values are of type integers, are set using set/2

command as follows.
:— set(Parameter,Value)?

Integrity constraints are represented as headless clauses, but are stored as
clauses with head false. They are used to check the consistency of every hypoth-
esis, and thus work only after the hypothesis is constructed. On the contrary,
prune statements can disallow certain clauses to be considered during hypoth-
esis construction, and thus can be more efficient. Prune statements often take

the form
prune (Head,Body) :- Conditions.

where Conditions is a set of literals describing the condition(s) that have to
be fulfilled by the clauses being considered to be pruned (i.e., the clauses with
head Head and body Body).

Hypotheses Construction

Given examples, background knowledge, a hypotheses space and parameter
settings (all incorporated into one ‘.pl’ file), CProgol tries to construct a general
rule which can explain the given examples. It first checks if the input was
consistent, and then constructs the most specific (also called bottom) clause,

denoted by ‘L7, of the first input positive example. The bottom clause is usually
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a definite clause with many atoms in its body. The process of generating the
most specific clause before the search starts is called saturation.

CProgol then uses an A*-like (best-first) search strategy to search for hy-
potheses H, starting from the empty clause, denoted by ‘O’, using general-
to-specific approach through the sub-lattice such that the empty clause is at
least as general as H and H is at least as general as the most specific clause

(0 < H < 1) (see Figure 2.1 for an illustration).

/D(Th<ostgeneral clause)

H (Hypotheses)

L (The most specific clause)

Figure 2.1: A lattice. The most general clause and the most specific clause are

used as bounds for the hypotheses search.

General-to-specific hypotheses construction is done through a refinement
operator which adds one literal at a time. This process can be considered as
searching a tree structure, with the empty clause O as its root node and the
children of a node are the possible refinements at that node. At each node, a
compression value is calculated to measure how well the clause (the path from
root to that particular node) explains the examples. The compression function
is

Je=pc—nc— 1y

where p. and n. are the number of positive and negative examples deducible
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from clause ¢, and [,, is the number of atoms in the body of clause c.

The clause (the path) which has the maximum compression value will be
added to CProgol’s knowledge base. The examples which are explained by
that clause are retracted from CProgol’s knowledge base. If there were still
more positive examples unexplained, CProgol repeats the whole process again,
starting from the first of the remaining unexplained positive examples. This
whole process uses a covering approach as the aim is to cover/explain all the

positive examples.

2.4.2 Aleph

This section briefly introduces Aleph, another ILP system used in this research
(see Chapter 7). More details on Aleph can be consulted from the Aleph online
manual (Srinivasan, 1999).

Aleph stands for A Learning Engine for Proposing Hypotheses. Although
Aleph has the same root with CProgol, it has evolved differently. Its devel-
opment is influenced by many researchers, but Ashwin Srinivasan, the main
author, is still the person in-charge of its maintenance. Unlike CProgol, Aleph
is written in Prolog and is best use with Yap® Prolog compiler. The current

Aleph is Aleph Version 5.

Representing Input and Defining Hypotheses Space

Generally Aleph needs positive examples, negative examples and background
knowledge to construct hypotheses. They are kept in three different files with
the same filestem but with different extensions (i.e., ‘.f’, ‘.n’, and ‘.b’, respec-
tively). The positives and negatives are represented in the same way, usually
as ground unit clauses. Besides domain knowledge, the ‘.b’ file also contains
description of the hypotheses space as well as the search restrictions for Aleph

(including integrity constraints and prune statements, if any).

Shttp://www.ncc.up.pt/ vsc/Yap/
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As with CProgol, types and modes are also used in Aleph. Types are
declared in the same way as in CProgol. modeh and modeb are not necessarily

declared differently as in CProgol; both modes can take the form
:— mode (RecallNumber,Predicate).

where RecallNumber is either a number > 0 specifying how many times the
Predicate can be called successfully, or a ‘*’ which specifies that the Predicate
can be called successfully many times; and Predicate is an n-ary predicate,
with n > 1, and each of the arguments of the Predicate is either a simple or
a structured (Srinivasan, 1999). A simple is a variable type preceded by either
a ‘+’ (indicates that the argument should be an input), - (indicates that the
argument should be an output), or ‘#’ (indicates that the argument should be
a constant). While a structured is an m-ary functor, with m > 1 and each of
the arguments is either a simple or a structured. A variable type can be a type
defined in the background knowledge or a Prolog built-in function.

Modes are less important in Aleph than in CProgol. This is because of

determination statements. Determination statements are declared in the form

of
determination(TPredicate/TArity, BPredicate/BArity).

where TPredicate/TArity is the name and arity of the target predicate (the
predicate that is being learned) and BPredicate/BArity is the name and ar-
ity of a predicate that can be used in the body of TPredicate. Since each of
the predicates that can be used to construct a hypothesis should be declared
in determination statements, there are usually many determination statements
declared for one target predicate (note that Aleph can only learn one target
predicate at a time). The existence of determination reduces the learning com-
plexity. The determination statements together with background knowledge
can be used to automatically extract modes information when they are not

given (by using induce_modes feature).
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Just like CProgol, Aleph uses parameter settings, integrity constraints and
prune statements to control the hypotheses search. Several of the Aleph’s
parameters are shown in Table 2.2. The next subsection (Hypotheses Con-

struction) may help to understand this table better.

Table 2.2: Aleph parameter settings.

Name Default Meaning
i 2 The maximum depth of new variables.
clauselength 4 The maximum number of atoms in an

acceptable clause (hypothesis).

nodes 5000 The maximum number of nodes

explored during clause searching.

depth 10 The maximum depth of the stack used
when proving before starting

backtracking.

samplesize 0 When set > 0, Aleph uses random

selection for saturation.

construct_bottom | saturation | When set to reduction, the bottom
clause is constructed during the search;
when set to false, no bottom clause is

constructed.

evalfn coverage When set to posonly, Aleph uses

positive-only learning.

The parameters are set using set/2 command, the same as in CProgol (note
that CProgol’s commands end with ‘?’, but Aleph’s commands end with <),

and un-set using noset/1 command
:— noset(Parameter) .

Integrity constraints in Aleph are represented as rules of the form:
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false :- Body.

where Body is a set of literals that describe the condition(s) that should not be
violated by the clause being considered. Besides internal pruning, Aleph also

accepts user-defined prune statements, which take the form
prune((Head:-Body)) :- Conditions.

where Conditions is a set of literals describing the condition(s) that have to
be fulfilled by the clauses being considered to be pruned (i.e., the clauses with
head Head and body Body).

Hypotheses Construction

When compared to CProgol, Aleph gives more choices to the way hypotheses
are constructed. In this section, some of these choices as well as the basic
one are discussed briefly. The basic algorithm (issued by induce command)
that Aleph uses for hypotheses construction is similar to the one employed by
CProgol. Rather than just choosing the first positive example to be saturated,
in Aleph there is an option to randomly selecting n examples to be saturated;
this is done by setting samplesize (see Table 2.2). Unlike in CProgol, where
the bottom clause is always constructed before the search starts, Aleph allows
the bottom clause to be constructed lazily (during the search) or not to be
constructed at all (by setting construct_bottom).

Like CProgol, Aleph’s basic algorithm removes the examples covered by
the clause added to the knowledge base. This removal reduces the number of
examples in the knowledge base and thus affects clause scoring (compression
measure in CProgol). This problem can be alleviated by using induce_cover,
which keeps the examples but prevents them from being chosen for the next

saturation. Aleph’s default clause scoring function is

coverage = p. — N,
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where p. and n. are the number of positive and negative examples covered by
clause c. Different scoring function can be used by setting evalfn.

Both CProgol’s and Aleph’s basic algorithms select the first positive ex-
ample to be saturated and therefore the rules constructed may depend on the
ordering of the input positive examples. Aleph provides a way to remove this
dependency through induce_max. However, it comes with a trade off in com-
putation time. Furthermore, the resulting rules may overlap with each other.
Aleph’s feature induce_max is explored further in Chapter 7.

Both, CProgol and Aleph, offer the positive-only learning.

2.5 Evaluating and Measuring Performances

of ILP Systems

In principle, there are three phases involved in applying ILP for scientific knowl-
edge discovery. First is the training phase, where the ILP system generates
hypotheses (a set of rules) from a set of training examples with known classes
and background knowledge. Second is the testing phase, where the set of rules
generated during training phase is evaluated on a test set with known classes.
The last phase is when the set of rules generated during training phase is ap-
plied to unseen examples, whose classes are not known, in order to classify
novel examples. Fxamples with known classes are sometime called labelled ex-
amples while those whose classes are not known are sometime called unlabelled

examples.

2.5.1 Evaluation using an Independent Test Set

The hypothesis generated in the training phase needs to be evaluated in the
testing phase. The overall aim of using ILP is to generate the best hypothesis
which can classify future unseen examples. Therefore, the most common eval-

uation method used is to evaluate the hypothesis against an independent test
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set (a set of labelled examples which is not used in the training phase). Mea-
suring the performance on the data used for training would give an optimistic
estimate of the predictive ability of the hypothesis (Witten and Frank, 2000,
Chapter 5). When using this evaluation method, the full data set with known
classes is usually divided into two parts, e.g. % is used for training and the
other % for testing. Hence, this method is also known as holdout. Holdout is
especially best when data are large.

A shortcoming of holdout is that the training set and/or test set may not
be representative. To overcome this, stratification can be applied. Here, both
the training and test set are randomly sampled in such a way that all classes
are properly represented. To get a better estimation, holdout can be repeated
several times with each iteration using different training set and test set. An
estimate of the predictive performance is calculated by taking the average of

the performances from each iteration.

2.5.2 Evaluation using Cross-validation

Repeated holdout becomes the basis for an evaluation method called cross-
validation. Tt is a method where data is divided into a fixed (V) equal partitions
(called folds), and each of these folds are in turn used as test set while the
remainder is used as training set. When N = 10, the method is called tenfold
cross-validation, and if stratification is applied, it is then called stratified tenfold
cross-validation. Although N = 10 is standard, N = 3 is also common. To get
a more reliable performance estimation, the tenfold cross-validation is usually
repeated ten times. The final estimation from the ten tenfold cross-validation
is the average of each tenfold cross-validation.

When data are scarce, leave-one-out cross-validation can be used for eval-
uation. In this case, each instance in the data set is in turn used as a test set,
while all the remaining instances are used as a training set. An estimate of the

performance is the average of the performances from each iteration.
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2.5.3 Performance Measures

To assess the performance of a classifier, performance measures are used. For
binary classification problems, the classifications are grouped as true positive,
true negative, false positive and false negative. Table 2.3 shows the meaning
of each group; this table is usually called a confusion matriz (also known as a

contingency table).

Table 2.3: Group of classification for binary problems. Each of the cells contains

the number of examples fall into each group.

Predicted Class

Positive Negative

Positive | True positive (TP) | False negative (FN)

Actual Class
Negative | False positive (FP) | True negative (TN)

Predictive Accuracy

The most widely used performance measure in machine learning is predictive
accuracy, which describes the proportion of the test set which are correctly

classified.

(TP+TN)
(TP+TN+FP+FN)

Predictive accuracy = 100 X

It is usually expressed as a percentage. When using predictive accuracy, the
cost of the two types of misclassification are assumed to be equal.

Although predictive accuracy has been widely used and often works well, it
is not suitable for domains in which imbalanced data (a big difference in pro-
portion between the number of positives and negatives) is observed. Predictive

accuracy gives a poor estimate when used in domains where the positives are
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rare but the negatives are abundant or the other way around while the weight

of both positives and negatives are equal.

Lift Factor

One of performance measures which works when positives are rare and negatives
are abundant is [ift factor. 1t is mainly used in direct marketing as a measure
of increase in response rate using a model over random sampling (Ling and
Li, 1998).

To be able to work out a lift factor, a classifier has to give some confidence
measure (probability) along with the classifications made. The confidence val-
ues are used to sort, in decreasing order, the examples in the test set. The
lift factor is defined as the ratio of success proportion on a chosen sample set

divided by success proportion on the whole test set.

TPSample/NSample

Lift factor =
TPTestset/NTestset

Precision, Recall, F; Score, Sensitivity and Specificity

Besides those performance measures that have been discussed in this section,
there are also precision and recall which are popular in information retrieval.
Precision measures the fraction of predicted positives which are true positives,
and recall measures the fraction of positives which are predicted as positives.

Both measures are used together in [ score.

TP TP

Precision = TPLFP Recall or Sensitivity = TPLFN

2 x Precision X Recall

F =
1 seore Precision + Recall
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Related with recall are sensitivity and specificity. Sensitivity is identical to
recall. While specificity is recall for negative cases, i.e., it measures the fraction

of negatives which are predicted as negatives.

TN
FP+TN

Specificity =
A plot of sensitivity (on the Y-axis) against 1 — specificity (on the X-axis) is
called ROC' diagram. This diagram is often related with cost/benefit analysis.
Deeper review of standard performance measures can be read from Provost and
Fawcett (1997), Lavrac, Flach and Zupan (1999), Provost and Fawcett (2001)
and Flach and Lavrac¢ (2003).

Relative Advantage

Muggleton, Bryant, Srinivasan, Whittaker, Topp and Rawlings (2001) defined a
performance measure called relative advantage (RA), which they claimed can be
used to measure the performance of a recognition model (a set of rules) for any
domain where the proportion of positives in the example set is very small, while
the proportion of positive examples in the population is not known, acquiring
negatives is difficult and a benchmark recognition method does not exist.

In Chapters 5 and 6, RA is used as a performance measure. This is because
the uORF domain has the characteristics for which RA is claimed to be useful.
These include the fact that the proportion of positives (functional uORFs) in
the example set is very small, while the proportion of positive examples in the
population (the whole S. cerevisiae genome) is not known, acquiring negatives
is difficult (since these have to be verified by laboratory experiments) and a
benchmark recognition method does not exist.

The idea of using RA is to predict cost reduction in finding functional



32

uORF's using a recognition model compared to using random sampling. Here,

we adopted the RA definition from Muggleton et al. (2001, Appendix A).

A
RA= 2 (2.1)

where

e A = the expected cost of finding one functional uORF by repeated inde-
pendent random sampling from the set of possible uORF's and performing

a lab analysis of each uORF;

e B = the expected cost of finding one functional uORF by repeated inde-
pendent random sampling from the set of possible uUORFs and analysing

only those uORF's which are predicted by the learned model as functional
uORFs.

Up to this point, RA may sound similar to lift, but they are different. RA
is suitable for domains where positives are rare and negatives are difficult or
expensive to get, while lift works well for domains where positives are rare and
negatives are abundant. Although the lift factor gives a measure of increase in
response rate using a model over random sampling, it does not give information
(prediction) about the size of the reduction in cost or the gain in profit in
using the model compared to using random sampling. Furthermore, to be able
to work out the lift factor, a classifier has to give some confidence measure
along with the classifications made. Although getting a confidence measure
for each classification is not impossible in ILP, it is not usually provided by
classical ILP systems. A branch of ILP, known as probabilistic ILP, emerged
to answer probabilistic challenges within ILP systems (see e.g. Raedt and
Kersting (2004)).

The rest of this section describes how RA is defined in terms of probability
and how RA is estimated. This description is adapted from Muggleton et al.
(2001, Appendix A), to suit the uORF problem addressed in this thesis. Within
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Table 2.4: 2 x 2 Contingency table for the test set®.

Functional uORFs Random examples
H ny ng
H n3 Ny

@ H (hypothesis predictions) and H (complement of H).

n1 + ng + ng + ng = n, where n is the number of instances in the test set.

this description, a set of random examples refers to a set of unlabelled examples
which would mainly contain negatives and maybe a small number of positives.

In terms of probability, RA can be defined as follows.

RA— C/Pr(FuORF)  Pr(FuORF|Rec)
- O/Pr(FuORF|Rec)  Pr(FuORF)

(2.2)
where

e (' = the cost of verifying whether a uORF is functional or not via labo-

ratory experiments;
e F'uORF = uORF is functional;
e Rec = the model recognises (predicts) the uORF as a functional uORF.

Suppose Table 2.4 shows the result of testing the model on a test set of size
n and therefore ni + ny + ng + ny = n. The set of random examples referred to
in the right-hand column may include some positives (i.e., functional uORFs).
If the proportion of functional uORFs in the test set was known to be the
same as the proportion of functional uORF's in the set of all possible uORFs in
S. cerevisiae genome, then one could estimate Pr(FuORF') to be (ny + ns)/n
and Pr(FuORF|Rec) to be ni/(n1 + ne). However, since the proportion of
functional uORFs in the test set cannot be assumed to be the same as the
proportion of functional uORFs in the set of possible uORF's, these estimates

cannot be used. Therefore, given both a set of positives and a set of randoms,
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Table 2.5: 2 x 2 Contingency table for the set of all possible uORFs in the

yeast S. cerevisiae genome®.

Functional uORF's Negative examples
0o ()M (7m) (5 = 20)
H (g™ (i) (S = M)

@ H (Hypothesis predictions) and H (complement of H). The total of the counts
or frequencies in the four cells = S, where S is the total number of all possible uORFs

in the yeast S. cerevisiae genome.

Pr(FuORF) and Pr(FuORF|Rec) are estimated as follows. Let S be the total
number of possible uORFs in §. cerevisiae genome, of which M are functional
uORFs.

no. of functional uORF's in the set of possible uORF's
no. of possible uUORF's
= M/S (2.3)

Pr(FuORF) =

P’I"(F’LLORF| RGC) o NFuORF_recognised_by_model (2 4)
NuORFs_predicted_as_functional

where NryoRrF_recognised_by_moder 18 the number of functional uORFs in the set of
possible uORFs which are recognised by model and Nyorps_predicted_as_ functional
is the number of possible uORFs which the model predicts to be functional.
Now, the expected result of using the learned recognition model on the set
of all possible uORFs in the yeast S. cerevisiae genome is shown in Table 2.5.

From Equation 2.4 and Table 2.5 it follows that:

Pr(FuORF|Rec) ~ () x M
(n:’}%) M+ (nzrfm) (S - M)
= (Mp1)/(Mpy + (S — M)ps) (2.5)

where p; = ny/(n1 + n3) and py = ny/(ne + ny). Substituting Equations 2.3
and 2.5 into Equation 2.2 gives

(Mp1)/(Mpy + (S — M)py)

A p—
R M/S
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T Spy M(p1 — p2) (26)

Since the value of M (the total number of functional uORFSs in the popula-
tion) is not known, the relative advantage over the entire population (Z%:;j RA)
is estimated by integrating Equation 2.6 with respect to M. The lower limit of
M (M) is equal to the number of known functional uORFs in S. cerevisiae
genome. The upper limit of M (M,,4,) is the most probable number of func-
tional uORFs in the yeast S. cerevisiae genome i.e., a total of the known func-
tional uORFs and those uORFs which have yet to be scientifically recognised

as functional uORF's.

MMaz RA S Mpmaz+1 1 8M
~ X
M:%mm P /M—Mmm (p1 —p2)M + Sp»
Spl Mmam+1

= |——In((p1 —p2)M + Sp2) + k
ol - M + S

_ Spl ln (Mma:r + 1)(]71 _p2) + Sp2 (27)
(pl - p2) Mmm(pl — p2) + Spo

%’;‘}(}mm RA is estimated by summing an estimate of the Z%’ga]@mm RA for

each instance in the test set as follows, where n is the number of instances
in the test set and ra in lower case represents the relative advantage over a

sample.
n Mmaz

o> ra (2.8)

k=1 M=Mmin

From Equation 2.8 and the contingency table it follows that:

Mmaz 1 4 Mmazx
oora==> | > ra (2.9)

M=Mpin iz M=Mpin

Each Z%’;‘}(j{mm ra; is estimated by substituting p; = a%c and py = b%d into

Equation 2.7. The values of a, b, ¢ and d are determined by three steps.

1. a, b, ¢ and d are initially given the values of the corresponding counts in

the contingency table for the test set (see Table 2.4).
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2. Each one of a, b, ¢ and d, is decremented providing that the value before

subtraction is greater than 1.

3. The value of either a, b, ¢ or d is incremented to reflect the classification

of an instance in the cell n;.

For instance, if i = 2 and all the counts in the contingency table are greater
than one then a =ny — 1,b=ns,c=n3 —1,d =ny — 1.

Finally, RA is estimated by taking the mean of the summed values.

Mma:c

Mean RA = —ZM=Mnu T4 2.1
can K Mma:c — (Mmzn - 1) ( 0)

2.6 Summary

This chapter gave an overview of ILP and ILP Systems, CProgol and Aleph,
and showed why ILP was selected to be used in this research. The next chapter
will briefly present the field of bioinformatics, which is the application domain

of this research, as well as a review of some ILP /ML work on bioinformatics.



Chapter 3

An Overview of ILP /ML Work

on Bioinformatics

The previous chapter presented the framework of ILP, the ML technique used
in this research. In this chapter, we give an overview of some types of problems
in bioinformatics and review some of ML (particularly ILP) work on bioinfor-
matics.

As mentioned in Chapter 1, the central information in bioinformatics is de-
oxyribonucleic acid (DNA) sequences. It is from the DNA sequences that the
protein sequences are determined (see Figure 4.3 on page 51). The protein se-
quence dictates the protein structure and the structure of a protein determines
its function in life processes. Thus from its early development, bioinformatics
has dealt primarily with biological sequence analysis, such as in sequence simi-
larity and sequence alignment, and structural biology, such as for determining
protein structure and understanding the relationship between structure and
function.

Here, for the purpose of clarity, we will first outline protein related problems,
then problems in functional genomics, which involves gene (the segment of DNA
which contains the information for protein synthesis), ribonucleic acid (RNA)

and protein, and finally messenger RNA (mRNA) related problems.

37
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Table 3.1: The 20 standard amino acids.

Amino acid Symbol Amino acid Symbol
3-letter | 1-letter 3-letter | 1-letter
Alanine Ala A Leucine Leu L
Arginine Arg R Lysine Lys K
Asparagine Asn N Methionine Met M
Aspartic acid | Asp D Phenylalanine | Phe F
Cysteine Cys C Proline Pro P
Glutamine Gln Q Serine Ser S
Glutamic acid | Glu E Threonine Thr T
Glycine Gly G Tryptophan Trp W
Histidine His H Tyrosine Tyr Y
Isoleucine Ile I Valine Val \Y%

3.1 Protein Structure

A protein is a molecule composed of amino acids. The amino acids are linked to
each other by peptide bonds. When many amino acids are linked together, they
formed a polypeptide. A protein is usually made of one or more polypeptide
chains. There are twenty standard amino acids (Table 3.1). Each of these
amino acids is identified by a different side chain (the R-group in Figure 3.1).
The unit in the grey box of Figure 3.1 is the same for all amino acids. Therefore,
a polypeptide chain contains a repeat of these units, which form the main chain
(also called the backbone), and variable side chains.

The structures of proteins are classified into four levels. The amino acid

sequence of a protein, such as
his ser gln gly thr phe thr ...

is the primary structure of the protein. Due to the flexibility of the chain,
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i
H,N — C, COOH
\

R

Figure 3.1: The general structure of an amino acid.

different subregions of a polypeptide can form different local substructures.
These substructures are called secondary structures. Two types of secondary
structures are very common to many proteins; they are a-heliz and [-sheet.
Interactions between the helices and sheets in one polypeptide create differ-
ent folding patterns. An overall three-dimensional shape of one polypeptide
is the tertiary structure of a protein. If a protein has two or more polypep-
tide chains then the interactions between these polypeptide chains create a
three-dimensional shape called quarternary structure.

The function of a protein can be determined by its three-dimensional shape.
However, predicting the three-dimensional shapes of proteins from their amino
acid sequence has proved to be one of the hardest challenges and remains

unsolved.

3.1.1 Experimental Approaches

For a long period, X-ray crystallography was the main experimental technique
used for determining three-dimensional protein structure. This technique suf-
fers from a long preparation time for purification and crystallisation of the
protein, especially for complex protein molecules.

In the 1980s, a technique called nuclear magnetic resonance (NMR)) spec-
troscopy started to be used for protein structure determination. Unlike X-ray
crystallography which requires protein crystals, protein samples for NMR, can

be in a solution or in a solid state. Although NMR usually takes a very short
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preparation time, it can take a long time to interpret NMR spectra. Another
limitation of NMR is that it can only be efficiently used for proteins with less
than 350 amino acids (Pevsner, 2003, Chapter 9).

Another technique that is used in protein structure determination is the
low-temperature electron microscopy (cryoEM). Tts main advantage over X-ray
crystallography and NMR is the ability to process large protein complexes.
Nevertheless, throughput from cryoEM is still low.

While experimental approaches are still the best way for determining protein
structure (Lesk, 2002), these approaches tend to be time-consuming. There-
fore, it is difficult to get the structure of every protein of interest by relying
only on these approaches. This situation has boosted the development of pure
computational methods for protein structure prediction. A recent review on

protein structure determination is given by Liu and Hsu (2005).

3.1.2 Contemporary Bioinformatics Approaches

In principle, predicting protein structures computationally can be done in two
different approaches (Lesk, 2004). The first approach is to learn from the
natural protein folding process, and then simulate the folding process in a
computer. This way is usually implemented as finding the global minimum of
the conformational energy function. Nonetheless, it is not a successful approach
due to the difficulty in accurately calculating the energy of a large number of
different conformations.

The second approach is to ignore the natural protein folding process and
to consider the sequence information. Included in this approach are homology
modelling and fold recognition. In homology modelling, the sequence of a target
protein is aligned with one or more related (homologous) proteins, whose three-
dimensional structures are known. The homologous protein which gives the
optimal alignment is then used as a template. The three-dimensional structure

of the target protein is predicted based on the alignment and the template
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structure. Therefore, the quality of the prediction using homology modelling
depends on the sequence similarity between the target protein and the template
protein. When the sequence similarity is low or when a related protein cannot
be identified, fold recognition is more appropriate. The latter tries to fit a target
sequence to the backbone structures of a library of known protein structures (or
folds); the backbone structures were used as anonymous placeholders (Jones,
Taylor and Thornton, 1992). The fold which gives the best fit will be chosen
as the predicted three-dimensional structure of the target protein. More detail
review about homology modelling and fold recognition can be read from Forster
(2002).

Beside these bioinformatics approaches, there are also other computational
approaches in trying to predict protein structures such as those described in

the following subsection.

3.1.3 Machine Learning Work on Protein Structure
Protein Secondary Structure Prediction

As it is very difficult to determine the three-dimensional shape of a protein
directly from its primary sequence, scientists have tackled this problem in two
stages: first, by predicting the secondary structures (a-helices and [-sheets)
and second, assembling them.

Machine learning has been applied to protein secondary structure predic-
tion. An example of such work is Muggleton, King and Stenberg’s (1992) work.
They used an ILP system, GOLEM (Muggleton and Feng, 1990), to learn a set
of rules for predicting secondary structure of a/a domain type proteins and
were able to achieve better performance when compared with previous work on

identical data, such as King and Sternberg (1990).
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Protein Fold Signature

Turcotte, Muggleton and Sternberg (2001) compared attribute-valued and re-
lational background knowledge on learning protein three-dimensional fold sig-
natures (structural features of a fold), using CProgol4.4. Although they were
able to show that the augmentation of relational background knowledge in-
creased the learner’s performance and improved the explanatory insight, they
realised the need to incorporate structural superpositions (multiple structure
alignment) in the background knowledge. This was realised in Cootes, Mug-
gleton and Sternberg (2003) and has increased the effectiveness in capturing

the global fold features.

3.2 Functional Genomics

The ultimate goal of functional genomics is to identify the function(s) of all
genes. Experimental work in this area has benefited from high-throughput tech-
nologies, as will be shown briefly in Section 3.2.1. Such technologies produce a
lot of data, which in turn increases the need for computational approaches to
process and analyse such data effectively. In Section 3.2.2, we review some of

the functional genomics research where machine learning has been used.

3.2.1 Experimental Approaches

Experimentally, determination of gene function can be done in several ways.
The most direct way is by knocking out (deleting) a gene in question and
thus creating a deletion mutant and then observing the phenotype differences
between this mutant and its wild (normal) type (Delneri, 2004; Oliver, Winson,
Kell and Baganz, 1998).

A more effective way of determining novel gene function at a genome-
wide scale is the quantitative analysis of mRNA level under various condi-

tions. This can be done through hybridisation-array technologies such as
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complementary DNA and oligonucleotide microarrays (Duggan, Bittner, Chen,
Meltzer and Trent, 1999) or serial analysis of gene expression (SAGE) technol-
ogy (Velculescu, Zhang, Vogelstein and Kinzler, 1995).

Elucidation of gene function can also be reached by measuring the level of
protein present in a given set of conditions. This usually involves using two-
dimensional gel electrophoresis and/or mass spectrometry (Ong and Mann,

2005).

3.2.2 Machine Learning Work on Functional Genomics

Just as experimental approaches are the best for protein structure determina-
tion, wet experimentation is the only way to determine the real function(s)
of a gene. However, this type of experiment is very costly, time consuming
and highly dependent on human scientists. Consequently, scientists have been

trying to develop computational methods for functional genomics.

Sequence-Function Relationships

Functional genomics has become an interesting application domain to work on
for many machine learning researchers over the years. For example, a group of
researchers at Aberystwyth, UK, have been working on trying to predict protein
function from sequence (King, 2004). Realising that it is highly difficult to get
a general model of sequence-function relationships, their aim was set to get
good rules which can explain some of the relationships.

Throughout their works (Clare and King, 2003; King, Karwath, Clare and
Dehaspe, 2001; King, Karwath, Clare and Dehaspe, 2000a; King, Karwath,
Clare and Dehaspe, 2000b), they used a combination of several data types
and system softwares to achieve their aim. Among the systems they used are
WARMR (Dehaspe and Toivonen, 1999)-an ILP-relational learner and C5.0'-a

propositional decision tree learner. Their experiments using the propositional

http://www.rulequest.com/see5-unix.html
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learner with and without ILP showed that ILP increased the predictive accu-
racy. Although their rules cannot predict the specific function of the proteins,
the rules can predict the functional class. Moreover, their rules can predict the
functional class of proteins even without information of sequence homology.
In different ways, the approach of using different types of data and system

softwares is also used in this thesis (Chapters 5- 7).

Automated Phenotypic Analysis

While the Aberystwyth group was working on predicting function from se-
quence, Bryant and Muggleton (2000) simulated phenotypic analysis of a highly
simplified cell model using ASE-Progol, a machine learning system which uses
CProgol, to actively selecting experiments. Furthermore, Bryant, Muggleton,
Oliver, Kell, Reiser and King (2001) applied an updated version of ASE-Progol
to simulate the phenotypic analysis of the aromatic amino acid pathway of the
yeast Saccharomyces cerevisiae; here, the system designs which experiments
to do automatically. Both of these works aimed to create a system which
can design and perform the experiments of phenotypic analysis automatically.
This aim was realised by ‘The Robot Scientist’ (King, Whelan, Jones, Reiser,
Bryant, Muggleton, Kell and Oliver, 2004; Whelan and King, 2004), the testing
of which demonstrated that it is able to perform phenotypic analysis automat-
ically to determine the function of genes participating in aromatic amino acid

pathway of yeast.

Protein Interaction

Proteins carry out their roles in life processes by interacting with other proteins
or other biological molecules. Hence, mapping protein interactions can increase
understanding of protein function. Information about protein interactions can
be obtained from data on protein-microarray (for protein-protein interaction)

and/or DNA microarray (for protein-DNA interaction) (Sauer, Lange, Gobom,
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Nyarsik, Seitz and Lehrach, 2005).

Because large volumes of data are generated from these microarray tech-
nologies, computational tools are needed to analyse the data. Furthermore, in
silico prediction of protein interaction data can help to reduce the number of
proteins to be screened in-vitro. However, there are not so many ML work on
this problem yet. Recently, Tran, Satou and Ho (2005) reported their work
using Aleph (Srinivasan, 1999) for predicting protein-protein interactions from
several protein databases. Although the biological impact of their work is not
clear, they have shown that the results are promising in terms of getting high
sensitivity and specificity. Beside that, Thierry-Mieg and Trilling (2000) have
tried to use CProgol to generate rules which could explain protein-protein in-
teractions data in InterDB?. However, their trial was not successful. This was
because CProgol was instructed to learn rules where the bodies are conjunction
of many binary predicates from a large volume of data in InterDB, which of

course creates a huge search Space.

3.3 mRNA Related Problems

In Sections 3.1.3 and 3.2.2, we have reviewed some of ML work on protein
structure and functional genomics. In this section, we will review some of ML
work on mRNA related problems.

One of the current mRNA related open problems is the identification of
transcription start sites (TSSs). An example of ML work in this area is the work
by Gordon et al. (Gordon, Towsey, Hogan, Mathews and Timms, 2006; Towsey,
Gordon and Hogan, 2006). By experimenting with different types of support
vector machines (SVMs), they made their attempts to predict the transcription
start sites of a bacterial genome (Escherichia coli). Beside trying to predict the

exact location of the TSSs, they did some experiments to predict the segment

2InterDB is a protein interaction database for Caenorhabditis elegans.
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where T'SSs may lie. When compared to the segment approach, they found
that attempting to predict the exact location gives a higher false positive rate.

Like Gordon et al. (2006), Bockhorst, Qiu, Glasner, Liu, Blattner and
Craven (2003) also used ML for their study on predicting three types of regu-
latory elements (operons, promoters and terminators) in F. coli genome. The
model used for making predictions was learned from two different sources of
observations, namely DNA sequences and an analysis of array experiments.
Generally, they found that using both sources together gives better predictions
than using each of the sources independently.

Another example of ML, work on an mRNA related problem is the work by
Horvath, Wrobel and Bohnebeck (2001). The authors compared three different
representations, i.e., relational representation with lists, relational representa-
tions with terms and propositional (flat) representation, on the problem of clas-
sifying regulatory elements® of mRNA. Four classes of regulatory elements, i.e.,
iron responsive element (IRE), trans activating region (TAR), selenocysteine
insertion sequence (SECIS) and histone stemloops, were studied. Horvéth et al.
(2001) found that representing mRNA structure in the background knowledge
became much easier using relational representations. They measured the accu-
racies and the running times of their experiments when background knowledge
was represented using each of the three representations. Their results showed
that the relational representations, especially with terms, have improved the
accuracies, but at a cost in increased running times. In Chapter 6, we will
describe how we make use of mRNA structural features for our study.

Although ML techniques have been applied to the mRNA related studies,
such as those which were reviewed in this section, we are not aware of any
previous ML work on learning particular regulatory elements called upstream
open reading frames. The latter is the main theme of this thesis and will be

discussed in Chapters 4-7.

3Horvath et al. (2001) called the regulatory elements as signal structures.
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3.4 Summary

This chapter gave an overview on bioinformatics as a suitable application do-
main and a promising field for the theme of my research. From the work that
are reviewed here, several lessons can be learned.

In general, ILP is an expressive technique for bioinformatics. The relational
representation was found particularly useful for some bioinformatics problems,
as shown by Horvath et al. (2001). If ILP is to show its power, it is impor-
tant to carefully choose both a way of representing the problem and relevant
background knowledge. Combining knowledge from different sources may be
necessary and useful for some problems, as demonstrated by Bockhorst et al.
(2003). As a machine learning technique, ILP can be suited to work at different
stages of the knowledge discovery process. For example, ILP can be used for
working with raw data (biological sequences) or even designing which experi-
ments to do. However, like other ML techniques, ILP may need to be combined
with other systems to solve a very complex problem, as in functional genomics.

Up to this point, the main computational technique which will be used
to carry out our experiments (Chapter 2) and the general application domain
where this thesis lies (this chapter) have been presented. The next chapter will

present, the biological foundation of this thesis.



Chapter 4

A New Bioinformatics Problem

for ILP

In the previous chapter, we have shown the contribution of machine learning,
particularly ILP, to solve or at least to take steps towards solving a range of
bioinformatics problems. In this chapter, we introduce a new bioinformatics
problem for ILP and machine learning in general. This problem is related with
regulation of gene expression.

We begin by giving an overview of messenger RNA (mRNA) and its involve-
ment in gene expression. We then introduce one type of regulatory element in
the mRNA called the upstream open reading frame (uORF). We briefly illus-
trate how several uORF's regulate gene expression and describe the implication
of this regulation on health-related cases. Finally, we identify a challenge facing
biologists working in the uORF domain, and by doing so justify the need for

the research described later in this thesis.

4.1 mRNA and Gene Expression

Messenger RNA (mRNA) is an RNA molecule which carries the instructions

from DNA for protein synthesis (see Figure 4.3 on page 51). In this section,
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the biological background of mRNA is explained in terms of its relation with
RNA and DNA.

DNA (deoxyribonucleic acid), as illustrated in Figure 4.1, belongs to a group
of organic compounds called nucleic acids, which are polymers of nucleotides.
A nucleotide consists of a pentose (five-carbon) sugar, one or more phosphate
groups, and a nitrogenous base (a compound that contain nitrogen). The pen-
tose sugar for DNA is deoxyribose. Nitrogenous bases of DNA are adenine (A),

guanine (G), cytosine (C) and thymine (T).

3 5

i - hydrogen bond
# — base

3
7 sugar-phosphate

backbone

3| y 5|

Figure 4.1: DNA structure. (Source: Adapted from Watson et al. (2004), Molecular
Biology of the Gene, 5" ed., fig 6-1a, p.98. Copyright ©2004. Reprinted by permission of

Pearson Education, Inc.).

Each DNA molecule consists of two polynucleotide chains (or strands) which
run antiparallel (i.e., run in opposite direction: 5’ to 3" and the other 3’ to 5').
The two strands form a double helix. The outside of the helix (also called the

backbone) consists of alternating sugar and phosphate groups. The bases of



50

the two chains are paired along the inside of the helix. The pairings hold the
two strands together. Adenine is always paired with thymine, and guanine with
cytosine. Due to this arrangement, the two chains are said to be complementary

to each other. If the sequence in one strand of DNA is
?’-ATGAAAGTAACACCCCAT. . .-3’

then the other strand (the complementary strand) will have the following se-

quence
3’-TACTTTCATTGTGGGGTA. . .-5’

An implication of this is that each strand of DNA can be used as a template
to synthesise the other strand.

Like DNA, RNA (ribonucleic acid) is also a polymer of nucleic acids. How-
ever, RNA is different than DNA. Its sugar is ribose instead of deoxyribose.
The base thymine is replaced with uracil (U) in RNA. This uracil is usually
paired with adenine, but sometime can also be paired with guanine. Unlike
DNA which is double stranded, RNA is usually single stranded. Being single
stranded, RNA sometimes folds back on itself, creates base pairings between
parts of the sequence which are complementary to each other and then forms

various stem-loop structures (see Figure 4.2).

gad

Figure 4.2: RNA secondary structure: a) hairpin, b) bulge, ¢) loop. (Source:

Adapted from Watson et al. (2004), Molecular Biology of the Gene, 5! ed., fig 6-30, p. 123.
Copyright (©2004. Reprinted by permission of Pearson Education, Inc.).

Information from DNA for protein synthesis is copied into mRNA during

transcription (see Figure 4.3). The mRNA is transcribed from one of the DNA



ol

strands. In organisms whose cells have nuclei, namely eukaryotes, after the
transcription is finished, the mRNA has to be transported from nucleus into
cytoplasm before protein synthesis can take place (see Figure 4.4). The process
of synthesising proteins by making use of the information in the mRNAs is

known as translation.

DNA 5-ATGAAAGTAACACCCCAT...-3
3-TACTTTCATTGTGGGGTA...-5'

i transcription

mRNA 5-AUGAAAGUAACACCCCAU...-3'

i translation

Protein met lys val thr pro his ...

Figure 4.3: Outline of gene expression.

In order for an mRNA sequence to be translated into protein, every three
consecutive bases in the mRNA are grouped together into a codon. Since there
are four bases in mRNA, therefore there are 64 possible codons. 61 of these
specify amino acids (see Table 3.1 on page 38 for a list of standard amino acids).
Three codons that do not specify amino acids (i.e., UAA, UAG, and UGA) are
used to give signals to terminate protein synthesis and thus are known as stop
codons. Codon AUG, which codes for the amino acid methionine, is used to give
a signal to start protein synthesis and thus is known as start codon. A series
of non-overlapping codons creates a reading frame. A reading frame which
starts with a start codon and ends with a stop codon creates an open reading
frame (ORF). A subsequence of mRNA that codes for a protein (i.e., the coding
sequence in Figure 4.5) is actually an ORF. A protein coding sequence is usually
the longest ORF in an mRNA. Throughout this thesis, we may refer to this

protein coding sequence by “main ORF”, “main gene”, or “coding sequence”.
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mRNA Transcnptlon)
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Transport o cytoplasm for
protein synthesis (franslation}
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Figure 4.4: mRNA in a cell. (Source: freely available image from National Human

Genome Research Institute www.genome.gov).

[ 5'UTR [Coding sequence| 3'UTR j

UC.. AUNAUQUGGCCAITAACGAA...AUCARUQCG. . AAAAUAUUAGGAAUAU... AAAAA
uORF

Figure 4.5: Simplification of mRNA primary structure. A, U, G, and C are
RNA’s bases. A codon is a triplet of bases. AUG is the start codon. A stop
codon can be UAA, UAG, or UGA. A 5 UTR may have zero or more uORFs.

Note: figure is not drawn to scale.

Beside containing the protein coding sequence, an mRNA also contains

untranslated regions (UTRs) at its 5" and 3’ ends (see Figure 4.5). These UTRs,
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specifically the 5 UTR, are known to play several key roles in regulating the
expression of the coding sequence (Vilela et al., 1999; Mignone, Gissi, Liuni and
Pesole, 2002; Ringnér and Krogh, 2005; Fiaschi et al., 1997; Wilkie, Dickson and
Gray, 2003; Pickering and Willis, 2005). However, it is not yet clear through
what mechanism the UTRs regulate the translation process. One of the reasons
for this is that very little is known about regulatory elements in the UTRs.

There are several elements at the 5 UTR that can regulate gene expression.
These include 7-methyl-guanosine (m’G) cap, stem-loop structure, upstream
ORF (uORF), interacting protein, and internal ribosome entry site (IRES)
(Mignone et al., 2002; Wilkie et al., 2003). In this thesis, only uORFs and
stem-loop structures (Pesole, Mignone, Gissi, Grillo, Licciulli and Liuni, 2001)
will be discussed further. Reviews on the other regulatory elements of mRNA
include Pesole, Grillo, Larizza and Liuni (2000), Mignone et al. (2002) and
Wilkie et al. (2003).

4.2 Upstream Open Reading Frame (uORF)

In this section, we describe the importance of upstrearn ORF's (WORFs) in the
regulation of gene expression. The uORFs are the main focus of this thesis. The
stem-loop structures will be discussed in relation with uORFs in Chapter 6.

A uORF is identified by the presence of both a start codon before (i.e.,
upstream of ) the start codon of the coding sequence and a stop codon in the
same reading frame. Zero or more uORFs may present at a 5 UTR of an
mRNA. Research has revealed that several transcribed uORFs regulate the
translation process (i.e., the uORF's are functional) (Vilela and McCarthy, 2003;
Vilela et al., 1999; Hinnebusch, 1997; Fiaschi et al., 1997; Tacono et al., 2005),
while a few others do not (i.e., the uORFs are non-functional) (Morris and
Geballe, 2000; Krummeck et al., 1991).

Higher frequency of transcribed uORFs were found in genes with criti-
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cal roles, such as homeobox (development-controlling) genes, proto-oncogenes
(whose mutation or overexpression can lead to cancer), growth factors, and
transcription factors (Kwon, Lee, Lee, Edenberg, ho Ahn and Hur, 2001). This
suggests that uUORFs are important to living organisms and has attracted re-
searchers’ interest, as evidenced by recent uORF-related publications, such as
Zhang and Dietrich (2005a), Crowe, Wang and Rothnagel (2006), Neafsey and
Galagan (2007), and Cvijovic, Dalevi, Bilsland, Kemp and Sunnerhagen (2007);

these publications will be discussed both in this chapter and in the next three.

4.2.1 uORFs and Post-transcriptional Regulation

It is now widely accepted that the translation follows the scanning model
(Kozak, 1999; Kozak, 2002). According to this model, the translation machin-
ery (the ribosome) scans along the mRNA from 5 UTR to 3’ UTR to translate
the coding sequence of mRNA. The simplest case of this model would be if
there is nothing to interrupt the ribosome at the 5 UTR and that the first
AUG that the ribosome meets is the AUG of the coding sequence. However, in
some cases translation was found to be more complex than the simplest case.
By following the scanning hypothesis, we briefly discuss several proposed
mechanisms of how uORFs regulate the translation of the coding sequence.
The material discussed in this section is the basis for some of the background

knowledge used in our ILP experiments described in later chapters.

Leaky Scanning and Reinitiation

It has been observed that in some eukaryotic genes, the first AUG in the mRNA
is not the AUG of the coding sequence. In several cases, the ribosome skips
over one or more AUGs before finally starting the translation; this situation
is known as leaky scanning. This can happen due to several things, such as

if the sequences surrounding (the context of ) AUG codons are not optimum.

Research on mammals, done by Kozak (Kozak, 1981; Kozak, 2005), has shown
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that AUG context has influence on the recognition of AUG by the ribosome.
The optimum AUG context was found to be A or G in position -3 and G in
position +4, where the A of AUG is position +1t. In their paper, Baim and
Sherman (1988) gave evidence that A or G in position -3 are also favourable
context for yeast. Earlier research, such as Morris and Geballe (2000) and Mei-
jer and Thomas (2002), that studied upstream AUGs also revealed that when
the ribosome recognises an upstream AUG, the ribosome may start translation

and then:
e terminate and reinitiate;

e terminate and leave the mRNA, resulting a reduced translation of the

coding sequence.

This can be illustrated by the uORF's of yeast gene GCNJ.

In relation with uORFs, GCNJ is one of the most studied genes in yeast,
and is an interesting example. It has four uORFs (see Figure 4.6). uORF2
has length 3 codons (including start and stop codons). Each of the others has
length 4 codons.

uORF1 uOREF2 uORF3 uORF4 Coding sequence
[ ] [ ] —

v v v oy

-361 -293 -176  -151

Figure 4.6: GCN/ and its uORFs.

uORF1 of GCNJ has optimum AUG context (A on position -3 and G in
position +4) and thus efficiently recognised by the ribosome. As an implica-
tion, the ribosome translates this uORF. However, the impact of uORF1 by
itself to the translation of the coding sequence is much smaller when com-

pared to uORF4 by itself. This difference was found to be partly due to their

!There is no position 0; position -1 and +1 are next to each other.
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distances to the coding sequence but mainly due to the context of their stop
codons (Abastado, Miller, Jackson and Hinnebusch, 1991; Grant and Hinneb-
usch, 1994). Interestingly, when the two uORFs are both present, the impact
of uORF4 on translation becomes less (Gaba, Wang, Krishnamoorthy, Hin-
nebusch and Sachs, 2001). This interesting phenomenon can be explained in
relation with the function of GCN/ protein.

The protein products of GCN/ are involved in activating amino acid pro-
duction in the cells. Therefore, the coding sequence of GCN/ is only translated
efficiently when the cells are short of amino acids (Abastado et al., 1991; Grant
and Hinnebusch, 1994; Hinnebusch, 1997). The uORFs of GCN/ act as regu-
lator for the translation of the coding sequence. When amino acids are in high
supply (which also means high energy for ribosome), the ribosome reinitiates
soon after translating uORF1. Depending on how soon the reinitiation takes
place, the ribosome will translate one of the other uORFs and then leave the
mRNA. When amino acids are scarce (which also means less energy for ribo-
some), it will take a while before the ribosome will be ready to translate again.
Thus the ribosome just passes through uORF2-4 (i.e., leaky scanning happens)
and only reinitiates translation when it arrives at the coding sequence; this will

then trigger production of amino acid.

Encoding Bioactive Peptides

Unlike GCN/ which has four short uORFs, the yeast gene C'PA1 only has one
uORF with length 26 codons (including start and stop codons). As a regulatory
element, the uORF of CPA1 works differently than those of GOCN4 (Delbecq,
Werner, Feller, Filipkowski, Messenguy and Piérard, 1994; Gaba et al., 2001).
Neither the distance between uORF and the coding sequence nor the sequence
context of the uUORF were found to be that essential in regulating translation in
CPA1 mRNA (Delbecq et al., 1994). Instead, the peptide encoded by the CPA 1

uORF was suggested to be the important element for reducing the translation
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of CPA1 coding sequence (Delbecq et al., 1994).
uORFs which may encode bioactive peptides (like that of CPAI) have also
been identified in other organisms, such as human and mouse (Crowe et al.,

2006).

Stimulating mRNA Decay

Some uORFs have been observed to reduce the expression of the coding se-
quence by stimulating mRNA decay. An example of this is the uORFs of
yeast gene YAP2 (Vilela, Linz, Rodrigues-Pousada and McCarthy, 1998; Vilela
et al., 1999; Meijer and Thomas, 2002).

Stress-Mediated Regulation

As previously explained, the mechanism that GCN4 uORFs take to regulate
the expression of GCN/ coding sequence depends on the supply of amino acids.
Beside GCN/, there are also other genes whose response to stress conditions
are regulated by uORFs. In Vilela et al. (1998), it was shown that uORFs

regulate YA P2 stress response to Cadmium (a heavy metal).

4.2.2 uORFs and Staying Healthy

In Section 4.2.1, we briefly described how uORFs may control the efficiency
of translation of the coding sequence. In living organisms, this mechanism is
important as certain proteins are not needed to be synthesised at high rates
and maybe harmful if they were (Kozak, 1991; Meijer and Thomas, 2002). In
this section, we present a few examples where uORFs play important roles in
keeping organisms healthy. More examples of similar cases can also be read
from Willis (1999) and Xu, Rabadan-Diehl, Nikodemova, Wynn, Spiess and
Aguilera (2001).
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Proinsulin

Proinsulin is a precursor of hormone insulin. The latter is produced and se-
creted in adult pancreas. However, proinsulin is also expressed in embryonic
cells (before the pancreas is developed); in this case, proinsulin is essential to
promote cell survival. The amount of proinsulin needed in embryonic cells
is much smaller when compared to what is needed in adult pancreas. To
know what regulates the production of proinsulin, Hernandez-Sanchez, Man-
silla, de la Rosa, Pollerberg, Martinez-Salaz and de Pablo (2003) studied the
proinsulin mRNAs in embryos and pancreas of chicken. They observed that
the embryonic proinsulin mRNA contains an extended region at 5’ end when
compared to the pancreatic one. The extended region contains two upstream
AUGs which give two uORFs to an embryonic proinsulin mRNA. Their find-
ings also showed that too much proinsulin in an embryo generated abnormal
development and, more importantly, it is the presence of uUORFs that keeps the

production of proinsulin at low level in a chick embryo.

MDM?2 Oncogene?

The level of MDM?2 proteins were found to be high in various human tumor
cells. This overexpression was due to an increased translation of MDM2 coding
sequence (Landers, Cassel and George, 1997). In their study, Landers et al.
(1997) compared MDM2 mRNAs in normal human cells and in human tumor
cells. They found that the MDM2 mRNAs of the tumor cells are shorter than
those of normal cells.

Extending Landers et al.’s (1997) work, Brown, Mize, Pineda, George and
Morris (1999) investigated what keeps the production of MDM2 proteins in
normal human cells low. They observed that an MDM2 mRNA of normal hu-

man cells contains two uORFs. Furthermore, their experiments demonstrated

2An oncogene is a gene whose product can contribute to the transformation of cells to a

malignant phenotype (Weaver, 2005).
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that each of these uORF's by itself has a medium impact in reducing the trans-
lation of MDM?2 coding sequence. But, the two uORFs together reduce the

translation of MDM2 coding sequence by more than 95%.

Thrombocythaemia

Thrombocythaemia®

is a condition where blood contains too many platelets,
a type of blood cell involved in blood clotting. People with this condition
have a higher risk of developing a blood clot, a stroke or heart attack. The
production of platelets in the blood cells is controlled by the hormone expressed
from the gene thrombopoietin. According to Kozak’s (1999) review, based on
the studies of Wiestner et al. (1998), under normal conditions, the uORFs
of thrombopoietin mRNA act to limit the translation of the thrombopoietin
coding sequence and thus limit the production of the platelets in the blood
cells. When uORF's are somehow eliminated from the thrombopoietin mRNA,

the translation of thrombopoietin coding sequence is increased and thus the

amount of the platelets, causing thrombocythaemia.

4.3 A Need to Identify Functional uORFs

Although uORFs have been estimated to occur in up to 25% of eukaryotic
5 UTRs (Neafsey and Galagan, 2007), transcribed uORFs have only been ver-
ified in a small number of genes in several organisms. From this data, a partial
understanding of how uORFs regulate protein expression has been achieved.
As more and more uORFs have been found in the mRNA of genes with critical
roles, it has become important to get a complete understanding of how uORFs
are involved in the regulatory mechanism of gene expression. To be able to

draw a complete understanding of the mechanism, we would expect that a

3Definition is from http://www.cancerhelp.org.uk/help/default.asp?page=6412,
accessed on 12 September 2007.
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large number of functional uORF's would be needed.

4.3.1 Experimental Work

Until recently studies on uORFs have been largely limited to lab-based experi-
ments. The most direct test to verify that uORF's are transcribed and whether
they are functional is by comparing the amount of mRNA and the amount
of protein produced from the main gene in its proper chromosomal context
with and without site-specific mutation(s) on the uORF(s) of interest*. Over-
all, these experiments, to verify that uORFs are transcribed and whether they
are functional, are costly and time-consuming (~ 4 man-months per gene, Sun-
nerhagen, P., personal communication. 4 October 2005). As a result, the
simplest approach to searching for functional uORFSs, i.e., by sampling genes
at random and testing their uORF's in the laboratory, is simply not effective,
even for the simplest eukaryotic (the yeast Saccharomyces cerevisiae) genome.
S. cerevisiae genome has =~ 6000 genes. It was suggested that no more than
10% of yeast genes will have one or more functional uUORFs and each of these
genes will on average have two functional uORFs (Sunnerhagen, P., personal
communication. 26 August 2005). Thus, if one searched for functional uORF's
by selecting genes at random and testing them in the lab, then on average
it would take ~20 man-months to find a single functional uORF. Therefore,
an in silico prediction method which can help in selecting sets of candidate

functional uORFs for experimental studies is essential.

4.3.2 Computational Work

Although a large number of genomic (DNA) sequences are now available, the
task of computationally identifying functional uORFs is still very challenging.

The reason is as follows. As explained in Section 4.2 on page 53, a functional

4The site-specific mutation is usually done on one of the bases of a uORF’s start codon

to remove the uORF.
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uORF is a transcribed uORF which can regulate the translation of a coding
sequence. A uORF can be transcribed if it lies at the 5 UTR of an mRNA.
However, as mentioned in Section 3.3 on page 45, the transcription start sites
(the locations where the transcription starts) are often not known. Determining
the start of 5 UTRs computationally becomes even more difficult due to the
fact that some genes have multiple transcription start sites (Miura, Kawaguchi,
Sese, Toyoda, Hattori and Morishita, 2006). This situation makes the task of
determining which genes contain uORF(s) at their 5 UTRs very challenging,

not to mention identifying which of these uORFs are functional.

This PhD Project

In an attempt to select sets of candidate functional uORFs for experimental
studies, we decided to use inductive logic programming (ILP), a machine learn-
ing technique, to automatically generate a set of rules (a model) which can be
used to identify functional uORFs (i.e., uORFs which can regulate gene expres-
sion) and then to use the resulting model to predict novel functional uORFs.
For this task, we chose to work on the yeast Saccharomyces cerevisiae genome.
This yeast is famously known as baker’s and brewer’s yeast.

Although ILP has been successfully applied to a diverse range of real-world
problems, we are not aware of any previous work which explored using ILP
(or even machine learning in general) to identify which uORFs regulate gene
expression. Unlike other machine learning techniques, ILP is able to utilise
existing knowledge from domain experts and/or the literature. Moreover, all
ILP’s input and output can be easily translated into English. Consequently
domain experts can help with the selection and integration of potential helpful
knowledge and the final dissemination of discoveries to the wider scientific
community.

The yeast Saccharomyces cerevisiae is one of the most and best studied

biological models. Although yeast is simpler than other eukaryotes, it has the
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characteristics of complex eukaryotes. The fact that the size of its genome is
relatively small compared to other eukaryotes makes it more appealing. More-
over, yeast can be grown very fast making lab experimental studies, to verify

whether particular uORFs do indeed regulate translation, feasible.

Other Work

Beside ours, there are very few computational studies on uORFs. The closest
study to ours is a study on yeast uORFs published in August 2007 by Cvijovic
et al. (2007). Another study on yeast uORFs was published in October 2005
by Zhang and Dietrich (2005a). We will discuss the differences between our
work and that of Zhang and Dietrich and that of Cvijovic et al. in Chapters 5
and 7.

Neafsey and Galagan (2007) published their studies on uORFs in the genome
of fungal pathogen Cryptococcus neoformans in May 2007. Their work was
really intended to find the proportion of uORFs conserved in four strains of
C. neoformans. Similar to the work of Neafsey and Galagan, Crowe et al. (2006)

looked for conserved uORFs between human and mouse genomes.

4.4 Summary

With more and more evidence, it is clear that some uORFs play important roles
in gene regulation. However, a complete understanding of the mechanism of
how uORFs regulate gene expression is still unclear. The main reason for this is
because lab-based experiments to identify functional uORFs are extremely ex-
pensive and time-consuming. Therefore, an in silico prediction method which
can help in selecting sets of candidate functional uORFs for experimental stud-
ies is essential. This PhD project sets out to develop such a method using ILP
as the learning method and the yeast S. cerevisiae as the model organism. 1LP

has never been explored for this task previously.
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In the next chapter, we will present the first approach that we took towards

achieving this task.



Chapter 5

A First Step towards Learning
which uORFs Regulate Gene

Expression

The background to this thesis has been laid out in Chapters 2-4. This chapter
and the next two will describe our in silico experiments to learning which
upstream open reading frames (WORFs) regulate gene expression in the yeast
Saccharomyces cerevisiae. To the best of our knowledge, this is the first time
that the use of ILP has been explored for this learning task.

We begin this chapter by explaining how we represented the uORFs prob-
lem as an ILP learning task and how we transformed the biological sequence
data into examples and background knowledge (Section 5.1). We present our
training method in Section 5.2 and the result of training stage in Section 5.3.
We describe our first attempt to predict novel functional uORFs in Section 5.4
and analyse the result in Section 5.5. Some related work are discussed in Sec-
tion 5.6. Conclusions are in Section 5.7.

The results from the experiments in this chapter were published in the

Journal of Integrative Bioinformatics (Selpi, Bryant, Kemp and Cvijovic, 2006).

64
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5.1 Transforming Sequence Data into
Examples and Background Knowledge

As explained in Chapter 4, a 5 UTR may have zero or more uORFs. A uORF
is identified by the presence of both a start codon before (i.e., upstream of)
the start codon of the coding sequence and a stop codon in the same reading
frame, as illustrated in Figure 4.5 on page 52. Thus ideally, in order to find
functional uORF(s), one should look for uORF(s) in the 5 UTR sequences.
However, at the time we started this study, the lengths of 5 UTRs in the yeast
S. cerevisiae were only known for a small number of genes. Only 248 genes
could be assigned unambiguously from European Molecular Biology Laboratory
(EMBL) database!. Therefore, for the experiments in this chapter we used
ORF Finder (Stothard, 2000) to search for open reading frames (ORFs) in
the intergenic (between two genes) sequences of the yeast S. cerevisiae. An
ORF is defined as a series of non-overlapping codons which starts with a start
codon and ends with a stop codon. The lengths of intergenic sequences were
taken from the supplementary material of Philippakis, He and Bulyk (2005).
This step gives a collection of 51,904 crude uORFs from 5,602 S. cerevisiae
genes. We described this set as crude because it consists of uORFs which
can be transcribed within mRNAs and those which cannot; uORF's which can
regulate gene expression will only be found among the transcribed ones. The
task of collecting uORF's by making use of ORF Finder and Philippakis et al.’s
(2005) data was done by our collaborator (Cvijovic, 2005).

17 of these 5,602 genes have been well-studied and are documented to have
uORFs transcribed within their mRNAs, as summarised by Vilela and Mc-
Carthy (2003) and Cvijovic (2005). The detailed composition of the data used
for experiments in this chapter is summarised in Table 5.1. In October 2005,

Zhang and Dietrich (2005a) reported 15 additional genes which contain uORFs

lftp://ftp.ebi.ac.uk/pub/databases/UTR/data/5UTR.Fun_nr.dat.gz
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Table 5.1: Detailed composition of uORFs obtained using ORF Finder.

Number of Genes Transcribed uORFs Other uORF's (Not
Functional | Non-functional | Unknown | known if transcribed)

8 20 - - 269

17 studied genes | 2 - 2 - 8
7 - - 8 103

5,585 other genes - - - 51,494
5,602 genes 20 2 8 51,874

transcribed within their mRNAs. However, we did not include the uORFs from
these 15 genes for our training, rather we used them for the purpose of analysing
the results of our ILP experiments (see Section 5.4).

Since our goal is to learn how to recognise which uORFs regulate gene
expression, we can consider this learning task to be a classification problem.
Ideally, a typical classification system in ILP (or machine learning in general)
learns from a mixture of positive and negative examples. In this domain,
positive examples would be uORFs that are transcribed and regulate gene
expression (i.e., functional) and negative examples would be uORFs that are
transcribed but do not regulate gene expression (i.e., non-functional). The
uORF data from 5,585 genes (see Table 5.1) are all unlabelled. Hence, for the
training stage in this study, only the uORF data of the 17 studied genes were
used.

As summarised in Table 5.1, among the uORF data of the 17 studied genes,
20 uORFs have been verified experimentally as functional. These were used
as positive examples. Cvijovic (2005, p.32) pointed out that there are only
2 uORFs from 2 genes which have been verified to be non-functional. There-
fore, there were only 2 negative examples in our data set. The rest of the
transcribed uORFs (8 uORFs) and all other uORFs (which are not known to
be transcribed) for those 17 genes (269 + 8 + 103 = 380 uORFs) were used
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as randoms. Here randoms are data that are likely to be negative, although
there is still a small probability that the data are positive. The detailed uORF
composition from 17 studied genes within the collection obtained using ORF

Finder is shown in Table 5.2.

Table 5.2: Detailed uORF composition from 17 studied genes within the col-

lection obtained using ORF Finder.

Gene Systematic | Transcribed Other Positive | Negative | Random
Name® Name® uORFs | uORFs | Examples | Examples | Examples
CLN3 YAL0O40C 1 7 1 - 7
GCN/4 YELO09C 4 15 4 - 15
HAP/ YKL109W 2 26 2 - 26
TIF4651 | YGR162W 5 202 5 - 202
YAP1 YMLOO7TW 1 3 1 - 3
YAP2 YDR423C 2 - 2 - -
HOL1 YNRO055C 1 15 1 - 15
PETI111 | YMR257C 4 1 4 - 1
SCOo1 YBRO037C 1 4 - 1 4
CBS1 YDL069C 1 4 - 1 4
INO2 YDR123C 1 9 - - 10
PPR1 YLR014C 1 2 - - 3
URA1 YKL216W 1 13 - - 14
LEUY YNL104C 1 12 - - 13
RCK1 YGL158W 2 49 - - 51
DCD1 YHR144C 1 17 - - 18
SCHY YHR205W 1 1 - - 2
17 Genes 30 380 20 2 388

“Names are taken from SGD (http://www.yeastgenome.org).

Given the characteristics of the data (i.e., the number of negative exam-
ples is too few compared to the positive examples and there is an abundance
of random examples), we explore the positive-only setting (Muggleton, 1996)

of CProgol (Muggleton, 1995) version 4.4 (Muggleton and Firth, 2001). CPro-
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gol4.4 is an ILP system which has been applied in another domain with similar
characteristics as uORF domain (Muggleton et al., 2001). The positive-only
setting of CProgol allows learning from positive and random examples.

CProgol 4.4 was instructed to learn a predicate has_functional_role/1
from a set of training examples. Positive examples were represented as ground
unit clauses of the predicate has_functional_role(X), where X is a uORF ID.
A uORF ID is a composite of the systematic name of the gene to which the
uORF is associated with (e.g., those listed in second column of Table 5.2) and
a uORF identifier (e.g., uORF1, uORF2, etc.). The set of positive examples
was divided into two parts, with two thirds (14 uORFs) of the data set used
for training and the remaining one third (6 uORFs) used for testing. The 388
random examples were also partitioned, with two thirds used for training and
the remainder used for testing.

In addition to positive and random examples, the ILP system was provided
with extensional and intensional background knowledge.
Extensional Background Knowledge. Vilela and McCarthy (2003) and
Cvijovic (2005) suggested several important features that can determine the
impact of a uUORF on post-transcriptional gene expression, such as: the distance
of the uORF to the start of the coding sequence in bases; the sequence context
(the frequency of AU and GC base-pairs) upstream of (before) the uORF’s start
codon and downstream of (after) the uORF’s stop codon; and the length? of
the uORF in codons. 5 UTR related properties, such as the number of uORFs
predicted by ORF Finder in the intergenic sequence, the length of intergenic
sequence, and the relationship between UTR and uORF were also included (see
Table 5.3).
Intensional Background Knowledge. The declarative rules shown in Ta-

ble 5.4 capture concepts that are potentially useful for helping to identify

2When a uORF is overlapped with the coding sequence, the length of the uORF is only

measured up to the start of the coding sequence.
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Table 5.3: Predicates representing background knowledge of uUORFs and UTRs.

A set of ground unit clauses was generated for each predicate.

uORF (X,Y,Z) represents UORF X which starts Y nucleotides upstream of the
coding sequence, with length Z codons.

utr(X,Y,Z) represents UTR X which has Y uORF(s) within Z nucleotides
upstream of gene X (Z is the length of intergenic region).

has_uORF(X,Y) represents relation between UTR X and uORF Y.

belongs_to(X,Y) represents relation between uORF X and UTR Y.

context (X,Y,Z) states that within the 20 nucleotides downstream of X’s stop
codon, the frequency of AU is Y and the frequency of GC is Z.

up_context (X,Y,Z) states that within the 20 nucleotides upstream of X’s start codon,

the frequency of AU is Y and frequency of GC is Z.

Table 5.4: Intensional background knowledge.®

has_shortest_dist_in_UTR(UORF) : -
uORF (UORF,ShortestDist,_), belongs_to(UORF,UTR),
setof (Dist, (has_uORF (UTR,UORFX) ,uORF (UORFX,Dist,_)),List),
List = [ShortestDistl|_].
has_shortest_len_in_UTR(UORF):-
uORF (UORF, _,ShortestLen), belongs_to(UORF,UTR),
setof (Len, (has_uORF (UTR,UORFX) ,uORF (UORFX,_,Len)), List),

List = [ShortestLen|_].

gcrich_down_up(UORF) : - aurich_down_up (UORF) : -
context (UORF,Au,Gc), Gc > Au, context (UORF,Au,Gc), Gc < Au,
up_context (UORF,A,G), G > A. up_context (UORF,A,G), G < A.
gcrich_down_aurich_up(UORF) : - gcrich_up_aurich_down(UORF) : -
context (UORF,Au,Gc), Gc > Au, context (UORF,Au,Gc), Gc < Au,
up_context (UORF,A,G), G < A. up_context (UORF,A,G), G > A.

2CProgol’s built-in predicate setof(X,P,L) produces a list L of objects X that satisfy P. L is

ordered ascending and duplicate items are eliminated.
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functional uORFs and therefore might be included in the hypotheses induced
by the ILP system. We matched the verified functional uORFs from Vilela
and McCarthy (2003) and Cvijovic (2005) to the uORF data obtained us-
ing ORF Finder. From this, we observed that the majority of the functional
uORFs are the ones closest to the coding sequences. Therefore, we defined
has_shortest_dist_in_UTR/1 that identifies whether a uORF is closer to
the coding sequence than all others within the same UTR. Verified functional
uORFs are often very short, so one might be interested to identify the shortest
uORF of each gene. Hence, we defined has_shortest_len_in_UTR/1. Vilela
et al. (1998) and Grant, Miller and Hinnebusch (1995) suggest that the se-
quence context of a uORF’s start and stop codons have an impact on transla-
tion. Therefore, we defined the rules gcrich_down_up/1, aurich_down_up/1,
gcrich_down_aurich_up/1 and gcrich_up_aurich_down/1 that examine the
abundance of AU and GC base pairs immediately upstream and downstream

of each uORF.

5.2 Generating a Model that Identifies
Functional uORFs

In this experiment, we investigate whether ILP could automatically generate
a model that identifies functional uORFs and whether this model, when used
as a filter, could be more efficient than random sampling. The training set
consists of 14 positives and 259 randoms and the test set consists of 6 positives
and 129 randoms (Figure 5.1).

CProgol’s parameters were set as follows: posonly is set to ‘on’ so that
CProgol learns from positives and randoms only; inflate (gives a weighing to
the examples) is set to 4,200%; ¢ (the maximum number of atoms in the body
of the rules constructed) is set to 6; nodes (the maximum number of nodes

explored during clause searching) is set to 7,000; and r (the maximum depth
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Figure 5.1: A summary of our experimental method.

of resolutions allowed when proving) is set to 700. More details on CProgol’s
parameters can be found in Section 2.4.1 on page 18.

4,200% was chosen as an inflate parameter following some preliminary ex-
periments (not shown in this thesis), where several experiments were run with
the same training set, test set, and the same CProgol settings except for the
value of inflate parameter (70%, 101%, 200%, 300%, 400%, 500%, 1,000%,
1,200%, 4,200%, 10,000%, and 15,000%). In these preliminary experiments,
the performance reached its best at 4,200% and stayed the same above 4,200%.

We defined the hypothesis space for CProgol4.4 so that it can construct a
definition for the target predicate has_functional_role/1. This was done by
giving mode declarations (see Table 5.5). The types uORF and utr were declared
by defining a set of ground unit clauses of the predicate uORF (X), where X is a
uORF ID; and a set of ground unit clauses of the predicate utr (X), where X is a
UTR ID. The types of uORFlength, distancefromstart, intergeniclength
and numberofuORF were all defined as integer. Table 5.6 shows the resulting

model.
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Table 5.5: Mode declarations for generating a model that identifies functional

uORFs.@

:— modeh(1,has_functional_role(+uORF))?
:~ modeb(1,u0RF (+uORF,-distancefromstart,-uORFlength))?
:~ modeb(1,belongs_to(+ulRF,-utr))?

:— modeb(1,utr(+utr,-numberofulRF,-intergeniclength))?

:- modeb(1l,+distancefromstart=< #int)? :- modeb(1l,+uORFlength=< #int)?
:- modeb(1l,+distancefromstart>= #int)? :- modeb(1l,+uORFlength>= #int)?
:— modeb(1l,+distancefromstart= #int)? :— modeb(1,+uORFlength= #int)?
:- modeb(1l,+intergeniclength=< #int)? :- modeb(l,+numberofu0RF=< #int)?
;- modeb(1l,+intergeniclength>= #int)? :— modeb(1,+numberofulRF>= #int)?
1~ modeb(1l,+intergeniclength= #int)? :— modeb(1,+numberofulORF= #int)?

:— modeb(1,has_shortest_dist_in_UTR(+uORF))?
:— modeb(1,has_shortest_len_in_UTR(+uORF))?
:— modeb(1,gcrich_down_up(+uORF))?

:— modeb(1l,aurich_down_up(+uORF))?

:- modeb(1,gcrich_down_aurich_up(+uORF))?

:- modeb(1,gcrich_up_aurich_down(+uORF))?

modeh describes the clauses to be used in the head of a hypothesis, and modeb describes
the clauses to be used in the body of a hypothesis. The type uORFlength was printed as

codonlength in the paper by Selpi et al. (2006).

Table 5.6: The model which predicts functional uORFs.

has_functional_role(A) :- uORF(A,B,C), B=<204.
has_functional _role(A) :- uORF(A,B,C), belongs_to(A,D), B=<409,
C=<6, utr(D,E,F), F>=589.

English translation: A uORF has functional role if it satisfies at least one of the following

rules.
e if its distance from the start of coding sequence is less than or equal to 204;

e if its distance from the start of coding sequence is less than or equal to 409, its length

is less than or equal to 6, and the intergenic length is greater than or equal to 589.
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5.3 Measuring Model Performance using
Relative Advantage

The default performance measure in CProgol 4.4 is predictive accuracy. How-
ever, this measure gives a poor estimate when used in a domain where positives
are rare, which is the case in this uORF domain. Therefore, we do not use this
performance measure.

Instead we adapted Relative Advantage (RA) (Muggleton et al., 2001, Ap-
pendix A). This uORF domain has the characteristics for which RA is claimed
be useful. These include the fact that the proportion of positives (functional
uORFs) in the example set is very small, while the proportion of positive ex-
amples in the population (the whole S. cerevisiae yeast genome) is not known,
acquiring negatives is difficult (as this has to be verified via lab experiments)
and a benchmark recognition method does not exist.

The idea behind using RA is to predict cost reduction in finding functional
uORFs using the model compared to using random sampling. In this applica-

tion domain, RA is defined as

RA = %; where

e A = the expected cost of finding a functional uORF by repeated inde-

pendent random sampling from a set of 51,904 crude uORFs and testing
each uORF in the lab.

e B = the expected cost of finding a functional uORF by repeated indepen-
dent random sampling from a set of 51,904 crude uORFs and analysing

only those which are predicted by the model to be functional.

In order to use RA, the following parameters were used. The total number
of uORFs considered was set to 51,904. The minimum number of functional
uORFs was set to 20 as there are at least 20 known functional uORFs. The

most probable number of functional uORFs in S. cerevisiae genome was set to
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Table 5.7: A summary of classification and performance measurement of ex-

periment generating a model which predicts functional uORFs (in Section 5.2).

Positives correctly classified as positives 3
Randoms falsely classified as positives 4
Positives falsely classified as randoms 3

Randoms correctly classified as randoms | 125

mean RA 17.3

1,200. This assumption was made based on a prediction that no more than
10% of yeast genes will have functional uORFs and each of these genes will on
average have two functional uORFs (10% x 6000 x 2 = 1,200) (Sunnerhagen,
P., personal communication. 26 August 2005).

A summary of the classifications made and the performance measurement
from the experiment in Section 5.2 is presented in Table 5.7. Using our model as
a predictor makes the search for novel functional uORFs 17 times more efficient
than random sampling. Reducing the number of randoms that are falsely
classified as positives is very important in this domain because verification via

lab analysis is costly.

5.4 Predicting Novel Functional uORFs

Although our model (Table 5.6) looks simple, its mean RA value shows that
the model makes the search for novel functional uORFs more efficient than
using random sampling. Thus, it is expected that the positive-only setting of
CProgol4.4 can help in predicting novel functional uORFs. To support this
argument, an experiment was conducted to predict novel functional uORFs.
The method used (Figure 5.2) was the same as that described in Section 5.2

except that the positive and random examples from the 17 studied genes were
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Figure 5.2: A summary of our first attempt to predict novel functional uORFs.

all used for training. Thus, the training set consists of 20 positives and 388
randoms from the 17 studied genes. The resulting model was then used to
predict novel functional uORFs from 51,494 unlabelled uORFs (from 5,585
genes, see Table 5.1 on page 66). Table 5.8 shows the model generated from
the experiment to predict novel functional uORFs. 5,595 out of 51,494 uORF's

are predicted as functional uORFs by this model.

5.5 Discussion

5,595 out of 51,494 uORFs were predicted as functional uORFs by the model
shown in Table 5.8. This result shows that our method was able to filter out
almost 90% of the unlabelled uORFs used for prediction, of which majority
would be negatives. However, 5,595 is still much larger than the predicted
maximum number of functional uORFs in the yeast genome i.e., 1,200 (details
in Section 5.3). This suggests that our rules were too general. This was because
of the limited number of positive examples, the high degree of noise in the data
due to using intergenic sequences and also because of the limited background
knowledge. Nevertheless, some promising indications that our method has

potential to help in selecting sets of candidate functional uORFs are given by
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Table 5.8: The model generated from the experiment to predict novel functional

uORFs.

has_functional_role(A) :- uORF(A,B,C), belongs_to(A,D), B=<204,
utr(D,E,F), E>=207.

has_functional_role(A) :- uORF(A,B,C), belongs_to(A,D), B=<409,
C=<6, utr(D,E,F), E>=5.

has_functional_role(A) :- belongs_to(A,B), utr(B,C,589).

has_functional_role(A) uORF(A,B,C), has_shortest_dist_in_UTR(A),

C=<8, B>=23.
has_functional_role(A) :- uORF(A,57,B).
has_functional_role(A) :- uORF(A,250,B).

English translation: A uORF has functional role if it satisfies at least one of the following

rules.

1. if its distance from the start of coding sequence is less than or equal to 204 and the

UTR to which it belongs has at least 207 uORF's;

2. if its distance from the start of coding sequence is less than or equal to 409, its

maximum length is 6 codons, and the UTR to which it belongs has at least 5 uORFs;
3. if intergenic length of its UTR to which it belongs is 589;

4. if it is the closest uORF to the coding sequence within its UTR, its length is less than
or equal to 8 codons, and its distance from the start of coding sequence is greater or

equal to 23;
5. if its distance from the start of coding sequence is 57;

6. if its distance from the start of coding sequence is 250.

comparing our predictions with experimental lab results from a study by Zhang
and Dietrich (2005a).

Further to the 17 genes and 30 verified transcribed uORF's mentioned in Ta-
ble 5.1, Zhang and Dietrich (2005a) have reported an additional 15 genes which
contain 19 verified transcribed uORFs in the yeast S. cerevisiae. Their focus

was to find additional genes which contain transcribed uORF(s). Therefore,
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for many of these 19 newly verified transcribed uORFs, they did not study
whether they are functional or not. However, as uORFs which can regulate
gene expression are among the transcribed ones, we used their findings for the
purpose of analysing the results of our ILP experiments.

Zhang and Dietrich (2005a) provide some evidence that our rules may be
biologically meaningful. In their paper, they wrote “We observed that uORFs
are present in over 95% of 250 bp 5 upstream regions of S. cerevisiae”. But for
their analysis, a 210bp (base pair) 5 upstream region was used as the upper
boundary to eliminate “spurious potential uORFs”. Zhang and Dietrich’s ob-
servation suggested that functional uORF's are likely to be found within 250 bp
upstream of the start of coding sequence (because the functional uORFs have
to be transcribed). Our rules (i.e., rules 1, 5, and 6 in Table 5.8) reflect that
condition.

Rules 2 and 4 in Table 5.8 suggested that functional uORFs are short, with
a maximum length of 8 codons. Of course, this is true for many of the currently
known functional uORFs that were used in our data. However, it is interesting
to note that many of the newly verified transcribed uORFs that were reported
by Zhang and Dietrich (2005a) are shorter than 8 codons (14 of 19 uORF's are
shorter than 8 codons).

The feature “being closest to the coding sequence” is present in rule 4 in
Table 5.8. In our experiments, this feature has helped to filter out many of the
unlabelled uORFs which probably would not even be transcribed in reality. We
think that this feature may not be that important when the training data are
extracted from the 5 UTR sequences. This is because the majority of genes,
which have uORF's in their UTRs, will probably only have one uORF each. 13
of the 15 genes that were reported by Zhang and Dietrich (2005a) only have
one uORF each.

Overall, given the limited data and background knowledge, we think that

our rules are very reasonable. Of the 15 genes reported by Zhang and Dietrich
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(2005a), our model predicts that 12 will have functional uORFs, and that 13
of the 19 transcribed uORF's will be functional (Table 5.9).

Table 5.9: Predictions made using the model in Table 5.8 for the 15 genes
reported by Zhang and Dietrich (2005a).

Gene Systematic | uORF’s | uORF’s uORF Identifier Predicted as
Name Name Position | Length | Z&D¢ This study? | Functional
-125 12 | uORF1 | uORF5 No
ARV1 YLR242C -108 3 | uORF2 | uORF4 Yes
-40 7 | uORF3 | uORF6 Yes
ECM7* | YLR443W -15 5 | uORF | - -
HEMS3 YDL205C -129 9 | uORF | uORFS No
RPC11 | YDRO45C -60 4 | uORF | uORF5 Yes
AVT2 YEL064C -11 4 | uORF | uORF7 Yes
TPK1 YJL164C -42 5 | uORF | uORF4 Yes
MBR1 YKL093W -70 7 | uORF | uORF5 Yes
APC2 YLR127C -27 5 | uORF | uORF3 Yes
SPE/ YLR146C -41 6 | uORF | uORF5 Yes
SPH1 YLR313C -25 4 | uORF | uORF3 Yes
IMD4 %" | YMLO056C -99 14 | uORF | - -
-110 24 | uORF1 | uORF11 No
SLM?2 YNLO047C -84 6 | uORF2 | uORF9 Yes
-70 4 | uORF3 | uORF10 Yes
FOL1 YNL256W -65 4 | uORF | uORF4 Yes
WSCs YOL105C -50 7 | uORF | uORF4 Yes
MKK1 YOR231W -71 10 | uORF | uORF5 No

No uORF with the same position and length in our data set.

®Our model predicts uORF3 (in our data set) of IMD/ as functional.
“uORF identifiers used in Zhang and Dietrich (2005a).

4uORF identifiers used in the supplementary material of Selpi et al. (2006).
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5.6 Related Work

The work presented here uses a machine learning approach to learn functional
uORFs in the yeast S.cerevisiae. We are not aware of any previous work
of this kind. However, there is other work where machine learning methods
have been used to investigate other aspects of post-transcriptional regulation.
There is also work using other methods to investigate the regulatory role of
uORFs in mammalian species, and work using other computational approaches
to investigate the regulatory role of other UTR features in yeast.

Machine learning methods have been used for predicting translation initia-
tion sites. Zeng, Yap and Wong (2002) and Tzanis and Vlahavas (2006) used
feature generation and feature selection with standard classifiers such as deci-
sion trees, artificial neural networks, naive Bayes, and support vector machines,
while Li and Jiang (2005) have used edit kernels for support vector machines.
However, we are not aware of any previous work applying machine learning to
the problem of identifying functional uORFs.

Crowe et al. (2006) have identified uORFs of over 20 codons in length that
are conserved in human and mouse genomes. Those uORFs that are conserved
between human and mouse are predicted to code for bioactive peptides. They
cite studies that suggest that some of these peptides play a role in regulation.
In this work we do not place a lower limit on the lengths of uORFs that are
considered, and the prediction model does not depend on sequence conservation
across species.

Kwon et al. (2001) have carried out experimental work to investigate the
regulatory role of uORFs and secondary structures in 5’ UTRs. They carried
out site-directed mutagenesis studies of human ADH5/FDH and Myf6 genes,
measuring the RNA transcripts, investigating the interactions between mRNA
and proteins involved in translation, and analysing the RNA secondary struc-
tures of the 5 UTRs. Their results suggest that uORFs and stem-loops in the

5 UTR can reduce translation of the coding sequence.
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While the related work mentioned above has examined the regulatory role
of 5 UTRs in mammalian species, Ringnér and Krogh (2005) have carried out
computational studies to investigate the regulatory role of secondary structure
in yeast 5 UTRs. They have computed the folding free energies of the 50 nu-
cleotides immediately upstream of the coding sequence for all verified genes in
S. cerevisiae and have found that “weakly folded 5’ UTRs have higher transla-
tion rates, higher abundances of the corresponding proteins, longer half-lives,
higher numbers of transcripts, and are upregulated after heat shock”.

The work of Kwon et al. (2001) and Ringnér and Krogh (2005) gave us an
idea to extend our study, that is to consider additionally the locations of uUORFs

with respect to predicted secondary structure in the 5 UTRs (see Chapter 6).

5.7 Conclusions

In this chapter, for the first time ILP was used for learning which uORFs regu-
late gene expression in the yeast Saccharomyces cerevisiae. The characteristics
of uORF data (i.e., the number of negative examples are too few compared to
the positive examples, and there is an abundance of random examples) makes
the uORF domain very challenging. It is shown here that the positive-only
setting of an ILP system, CProgol4.4, can be used to automatically generate
rules that when used as a predictor can make the search for novel functional
uORFs 17 times more efficient than using random sampling.

The rules are simple and easy to understand. Moreover, some of the rules
are supported by the literature. However, the rules appear to be too general.
This, we believe, is because of the limited number of positive examples, the high
degree of noise in the data due to using intergenic sequences and also because
of the limited background knowledge. As an implication, we suspect that some
of the predictions made here are false positives, that is to say that some of the

uORFs predicted as functional by our hypotheses here may actually be non-
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functional. In the next chapter, we will investigate whether making background
knowledge of mRNA secondary structures available to the ILP learner leads to
a better performance.

From an evaluation point of view, this work has some shortcomings. First,
we only used one ordering of positive examples. However, the ILP system that
we used, CProgol4.4, uses a covering approach. This means that CProgol4.4
repeatedly generalises the positive examples in the order in which they are
input to generate its rules. Thus, CProgol4.4 may generate different rules when
given different orderings of positive examples. Second, the performance was
measured after one execution of stratified holdout method. While one holdout
execution is a valid and a common evaluation method, repeating holdout several
times will reduce sampling bias and thus will give a better estimation of the
predictive capability of the hypotheses. These shortcomings will be addressed
in Chapter 6.



Chapter 6

Incorporating mRNA Secondary

Structure in Learning

Functional uORFs

In the previous chapter, we have shown that ILP was able to automatically
generate a model (a set of rules) which makes searching for novel functional
uORFs in the yeast S. cerevisiae more efficient than random sampling. The
rules were simple and easy to understand, but appeared to be too general.
This is due not only to the limited number of positive examples and the high
degree of noise in the data, two problems of which cannot be easily rectified
(see Section 5.1 on page 65), but also due to the limited background knowledge.
Relevant background knowledge has been shown to be effective in helping ILP
to produce good models (Srinivasan, King and Bain, 2003). In this chapter, we
investigate whether incorporating mRNA secondary structure as background
knowledge will increase the performance of the resulting rules in recognising
functional uORF's in the yeast S. cerevisiae.

We describe why we consider mRNA secondary structure in Section 6.1.
The experimental method, including how we incorporate mRNA secondary

structure as background knowledge, is detailed in Section 6.2. We present our

82
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results and analysis in Section 6.3 and conclude in Section 6.4.

6.1 Secondary Structure of mRNA

mRNA secondary structure is a stem-loop structure that is formed when the
transcribed sequence contains an inverted repeat sequence. Some basic forms
of the stem-loop structures are shown in Figure 4.2 on page 50.

In the context of gene regulation, mRNA secondary structure has been
studied over a number of years. Kozak (1986), Kozak (2005), Baim and Sher-
man (1988), Laso, Zhu, Sagliocco, Brown, Tuite and McCarthy (1993), Pesole
et al. (2000), and Meijer and Thomas (2002) are all in agreement that a stable
secondary structure at 5 UTR region can regulate the expression of the coding
sequence. These studies were done on genes from different organisms, such as
rat, rabbit, and yeast. The scanning model (see also Section 4.2.1 on page 54)
suggests that the secondary structure at the 5 UTR region must be unwound,
by special proteins called helicases, before the translation machinery can trans-
late the coding sequence (Marsden, Nardelli, Linder and McCarthy, 2006). The
more stable a secondary structure, the more energy is needed to unwind it and
the more it can inhibit translation. The influence of mRNA secondary struc-
ture on translation in S. cerevisiae has been suggested to be greater than on
translation in higher eukaryotes (Baim and Sherman, 1988).

Beside the work which only studied mRNA secondary structures, there is
also other work which studied both mRNA secondary structures and uORFs in
the context of gene regulation. Wang and Wessler (2001), based on their study
on a maize gene, concluded that uORF and mRNA secondary structure are reg-
ulating the translation of the coding sequence independently. However, Kwon
et al.’s (2001) results, based on studies on human genes, are somehow rather
different; the present of secondary structure seems to increase the recognition of

uORF’s start codon and this affects the translation of the coding sequence. The



84

difference between the conclusions of Wang and Wessler’s (2001) and those of
Kwon et al.’s (2001) leave open the question whether mRNA secondary struc-
ture influences uUORF’s ability to regulate translation. This motivates us to do
this study; to test whether mRNA secondary structure could help in recognising

known functional uORFSs in the yeast S. cerevisiae.

6.2 Experimental Method

In this experiment, we want to test whether incorporating mRNA secondary
structure as background knowledge could help when learning which uORF's in
yeast are functional. Thus, we design experiments with and without mRNA
secondary structure as part of the background knowledge. In Section 6.2.1,
we describe the common method that is used in all experiments with and
without mRNA secondary structure. The details of how we incorporate mRNA

secondary structure as background knowledge is described in Section 6.2.2.

6.2.1 Common Method Used in Experiments With and
Without mRNA Secondary Structure

The learning method that we used is the positive-only (Muggleton, 1996) set-
ting of CProgol (Muggleton, 1995) version 4.4 (Muggleton and Firth, 2001).
The data set consists of positive and random examples from 17 well-studied
genes used in Chapter 5 (Table 5.2 on page 67). The ILP learner was instructed
to learn a predicate has_functional_role/1 from a set of training examples.
Positive examples were represented as ground unit clauses of the predicate
has_functional_role(X), where X is a uORF ID. A uORF ID is a composite
of the systematic name of the gene to which the uORF belongs (for example,
YDR423C is the systematic name of gene YAP2) and a uORF identifier (e.g.,
uORF1, uORF2, etc.).

For the purpose of testing whether mRNA secondary structure could help
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in learning yeast functional uORFs, we run experiments with and without
incorporating mRNA secondary structure as background knowledge. Stratified
10-fold cross-validation was used to evaluate our method. This means that the
set of positive examples is divided into ten roughly equal partitions and the
same is done to the set of random examples. Each of these positive and random
partitions are in turn used as a test set while the rest of the partitions are used
as training set.

CProgol4.4 uses a covering approach (Muggleton and Firth, 2001) to gen-
erate a hypothesis. CProgol4.4 repeatedly generalises the positive examples in
the order in which they are input (Muggleton and Firth, 2001). Thus, CPro-
gold.4 may generate different rules when given different orderings of positive
examples. We want to test whether the performances of the rules generated us-
ing different orderings of positive examples are also different. Therefore, we run
the stratified 10-fold cross-validation with and without incorporating mRNA
secondary structure for 100 times. In each of the 100, we randomly permute
the order of positive training examples.

The common extensional and intensional background knowledge used in
the experiments with and without mRNA secondary structure are the same as
those used in Chapter 5 (Table 5.3 on page 69 and Table 5.4 on page 69). Some
common mode declarations were defined, to be used in experiments with and
without mRNA secondary structure (Table 6.1). The types uORF and utr were
declared by defining a set of ground unit clauses of the predicate uORF (X), where
X is auORF ID; and a set of ground unit clauses of the predicate utr (X), where
Xis a UTR ID. The types of uORFlength, dist2gene, intergeniclength, and
numberofuORF were all defined as integer.

Some adjustments were made to the parameter settings used in Chapter 5 to
allow CProgol to consider a larger hypotheses space (Table 6.2). The parameter
¢ was increased from 6 to 10; nodes was increased from 7,000 to 50,000; and

h was increased from 30 (default value) to 100.
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Table 6.1: The common mode declarations for experiments with and without

mRNA secondary structure.®

:— modeh(1,has_functional_role(+uORF))?

:~ modeb(1,u0RF (+u0RF,-dist2gene, -uORFlength))?

:— modeb(1,+dist2gene=< #int)? :— modeb(1,+u0RFlength=< #int)?
:— modeb(1,+dist2gene>= #int)? :— modeb(1,+u0RFlength>= #int)?
:— modeb(1,+dist2gene= #int)? :— modeb(1,+uORFlength= #int)?

:— modeb(1,has_shortest_dist_in_UTR(+uORF))?
:— modeb(1,has_shortest_len_in_UTR(+uORF))?
:— modeb(1,gcrich_down_up(+uORF))?

:~ modeb(1,aurich_down_up(+uORF))?

:- modeb(1l,gcrich_down_aurich_up(+uORF))?

:- modeb(1l,gcrich_up_aurich_down(+uORF))?

:- modeb(1,belongs_to(+ulRF,-utr))?

1= modeb(1,utr(+utr, numberofulRF,-intergeniclength))?

:— modeb(1,+numberofulRF=< #int)? :- modeb(1l,+intergeniclength=< #int)?
:- modeb(1,+numberofulRF>= #int)? :- modeb(1,+intergeniclength>= #int)?
:— modeb(1,+numberofulRF= #int)? :- modeb(1l,+intergeniclength= #int)?

%In essense, these mode declarations are the same as those in Table 5.5 on page 72. The type
dist2gene was printed as distancefromstart in Table 5.5. modeh describes the clauses to
be used in the head of a hypothesis, and modeb describes the clauses to be used in the body
of a hypothesis.



87

Table 6.2: CProgol parameter settings used in experiments with and without

mRNA secondary structure.

Name Value | Meaning

posonly | on CProgol turns on the positive-only learning mechanism.

inflate | 4,200 | This gives a weighing to the examples.

C 10 The maximum number of atoms in the body of the

rules constructed.

nodes 50,000 | The maximum number of nodes explored during

clause searching.

h 100 The maximum depth of the stack used when proving

before starting backtracking.

r 700 The maximum depth of resolutions allowed when

proving. If exceeded, the proof is failed.

6.2.2 Method for Incorporating mRNA Secondary

Structure
Getting mRINA Secondary Structure from Sequence Data

There are several pieces of software for predicting RNA secondary structure.
Among these, two are widely used; they are RNAfold, which is part of the
Vienna RNA Package (Hofacker, Fontana, Stadler, Bonhoeffer, Tacker and
Schuster, 1994), and Mfold (Zuker, Mathews and Turner, 1999). In this work,
we used RNAfold! because of its simplicity, easy installation on our school’s
server, and it has recently been used by Ringnér and Krogh (2005) to study the
effect of mRNA folding free energies on post-transcriptional gene regulation.
Given a sequence, RNAfold will output a predicted secondary structure,

in a dot-bracket format, as well as the predicted minimum free energy of that

1ViennaRNA-1.6.1 was downloaded from http://www.tbi.univie.ac.at/~ivo/RNA/
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Figure 6.1: A predicted secondary structure of the 5 UTR sequence and ten
nucleotides of gene YAP2 (YDR423C), made by RNAfold. The blue boxes

were added to show how we view the structure as three stem-loop structures.

structure. In a dot-bracket format, matching brackets represent paired bases
and dots represent unpaired bases (Hofacker et al., 1994, Appendix B).

For each of the 17 well-studied genes, the 5 UTR sequence and the first
ten nucleotides of the coding sequence was used as an input for RNAfold.
The length of 5 UTRs were taken from European Molecular Biology Labora-
tory (EMBL) database?, where available, or, failing that, Vilela and McCarthy
(2003). To get the predicted secondary structures, we used the default settings
of RNAfold. The predicted secondary structures were then transformed into
Prolog (Clocksin and Mellish, 1981) predicates ready to be used as background
facts for the ILP system CProgol4.4. An example of secondary structure pre-
diction, made by RNAfold, for the 5’ UTR sequence and ten nucleotides of a

coding sequence is shown in Figure 6.1.

2ftp://ftp.ebi.ac.uk/pub/databases/UTR/data/5UTR.Fun_nr.dat.gz version 16
June 2006
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Transforming mRNA Secondary Structure into Background

Knowledge

Perl® and Prolog scripts were used to transform RNAfold’s outputs into Prolog
predicates. Table 6.3 shows the predicates used to represent mRNA secondary
structure as extensional background knowledge. In this work, we view the
mRNA secondary structure from the highest level. This means that we do
not consider a nested stem-loop as an independent stem-loop. For example, we
only consider YAP2 to have the three stem-loop structures shown in Figure 6.1

and Table 6.4.

Table 6.3: Background predicates representing mRNA secondary structure.

stemloop(W,X,Y,Z) states that stem-loop W has its opening and closing positions in X
and Y bases to the coding sequence; and there are, in total,
Z base-pairing within W.

has_stemloop(X,Y) represents relation between UTR X and stem-loop Y.

Table 6.4: Representation of a predicted structure shown in Figure 6.1.

has_stemloop(YDR423C, YDR423C_s13).
stemloop(YDR423C_s13, 98, 71, 10).
has_stemloop(YDR423C, YDR423C_s12).
stemloop(YDR423C_sl12, 66, 17, 13).
has_stemloop(YDR423C, YDR423C_sl1).
stemloop(YDR423C_sl1, 13, -3, 3).

Baim and Sherman (1988) and Laso et al. (1993) suggested that the stabil-
ity of a secondary structure and the distance of a secondary structure to the

coding sequence influence the strength of a secondary structure to inhibit the

3Perl is a programming language. Its source codes and documentation can be found at

http://www.perl.org/
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Figure 6.2: Illustration of a uORF intersects with an mRNA secondary struc-

ture on the uORF’s left (upstream) part.

translation of the coding sequence. Therefore, the predicate stemloop/4 was
designed to capture both the distance (the opening and the closing positions in
Figure 6.2) of a stem-loop structure to the coding sequence and the stability.
Here, the stability was represented by the number of base pairing (the length
of the stem); the longer the stem the more stable the secondary structure and
the more energy is needed to unwind it. We do not use the predicted mini-
mum free energy because of the way we view the mRNA secondary structure.
For example, we consider three stem-loop structures while there was only one
predicted minimum free energy for the overall structure shown in Figure 6.1.

With the biological knowledge gained from literature, we defined several
declarative rules relating mRNA secondary structures to uORFs (Table 6.5).
Therule intersectleft_with_stemloop/1 identifies if a uORF intersects with
any secondary structure on the uORF’s left (upstream) part (see an illustra-
tion in Figure 6.2). The rule intersectright_with_stemloop/1 identifies if
a uORF intersects with any secondary structure on the uORF’s right (down-
stream) part, and the rule is_inside_stemloop/1 identifies if a uORF is inside
any secondary structure.

To instruct CProgol to include mRNA secondary structure in its hypoth-
esis space, we defined additional mode declarations (Table 6.6). The type

stemloop was declared by defining a set of ground unit clauses of the predicate
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Table 6.5: Background rules relating mRNA secondary structure to uORFs.

% The units of ‘‘Len’’ are codons and the units of ‘‘Dist’’ are nucleotides.

% Thus Len must be multiplied by 3 to convert its units to nucleotides.

% uORF intersects with a secondary structure on the uORF’s left part
intersectleft_with_stemloop(UORF) :-
uORF (UORF ,Dist,Len), belongs_to(UORF,UTR), has_stemloop(UTR,SL),
stemloop(SL, OpenPos, ClosePos, NoOfPair),
EndUORF is Dist-(Lenx*3), Dist =< OpenPos, ClosePos > EndUORF.

% uORF intersects with a secondary structure on the uORF’s right part
intersectright_with_stemloop(UORF) : -
uORF (UORF ,Dist,Len), belongs_to(UORF,UTR), has_stemloop(UTR,SL),
stemloop(SL, OpenPos, ClosePos, NoOfPair),
EndUORF is Dist-(Lenx*3), Dist > OpenPos, ClosePos =< EndUORF.

% uORF is within a secondary structure

is_inside_stemloop(UORF) : -
uORF (UORF ,Dist,Len), belongs_to(UORF,UTR), has_stemloop(UTR,SL),
stemloop(SL, OpenPos, ClosePos, NoOfPair),
Dist =< OpenPos, EndUORF is Dist-(Len*3), ClosePos =< EndUORF.
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Table 6.6: Additional mode declarations used in experiments with mRNA sec-

ondary structure.

:- modeb(1,is_inside_stemloop(+uORF))?

:- modeb(1l,intersectleft_with_stemloop(+uORF))?

:- modeb(1,intersectright_with_stemloop(+uORF))?

:— modeb(*,has_stemloop(+uORF,-stemloop))?

1~ modeb(1,stemloop(+stemloop,-pospairl,-pospair2,-numberofpairs))?
1~ modeb(1,+numberofpairs=< #int)?

:- modeb(1,+numberofpairs>= #int)?

:— modeb(1,+numberofpairs= #int)?

:— modeb(1,+pospairl=< #int)? :— modeb(1,+pospair2=< #int)?
:— modeb(1,+pospairl>= #int)? :— modeb(1,+pospair2>= #int)?
:- modeb(1,+pospairl= #int)? :— modeb(1,+pospair2= #int)?

stemloop(X), where X is a stem-loop ID. The types of pospairl, pospair2,

and numberofpairs were all defined as integer.

6.3 Results and Analysis

To statistically evaluate the impact of incorporating mRNA secondary struc-
ture as part of the background knowledge on the task of recognising yeast
functional uORFs, we compared the relative advantage (RA) values (Muggleton
et al., 2001, Appendix A) from 100 experiments with and without mRNA sec-
ondary structure. In 87 experiments out of 100, the mean RA values from the
experiments with mRNA secondary structure are better than the mean RA val-
ues from the corresponding experiments without mRNA secondary structure
(see Figure 6.3). The result from a Wilcozon Signed Rank test shows that there
was a statistically significant increase from the mean RA values from the ex-
periments without mRNA secondary structure to those from the corresponding

experiments with mRNA secondary structure (mean RA values: mean with-
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Comparison of mean RA values from experiments with and without mRNA
secondary structure

Mean RA value

Mt

1 10 19 28 T 45 55 54 73 82 81 100
—+— without (sorted)

Experiment )
—B— with

Figure 6.3: Comparison of mean RA values from 100 experiments with and
without mRNA secondary structure. In 87 experiments, the mean RA values

with mRNA secondary structure are better than without.

out=34.05, mean with=61.53, Z = —7.159, p < 0.0005). The summary of our
experimental results regarding the mean RA values from the 100 experiments
with and without mRNA secondary structure is shown in Table 6.7.

The range of mean RA values from 100 experiments with mRNA secondary
structure is from 18.73 to 117.51, while from the experiments without mRNA
secondary structure is from 9.38 to 81.64. The spread of sorted mean RA values

in 100 experiments with and without mRNA secondary structure are shown in

Table 6.7: Summary of mean RA values from experiments with and without

mRNA secondary structure.

Mean RA values with | without

Minimum 18.73 9.38
Maximum 117.51 81.64
Average 61.53 34.05

Std. Deviation 21.45 17.53
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The spread of mean RA values from experiments The spread of mean RA values from experiments
with mRNA secondary structures without mRNA secondary structures
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Figure 6.4: The spread of sorted mean RA values in 100 experiments with and

without mRNA secondary structure. Note: different scale on Y axes.

Figure 6.4. The two graphs in Figure 6.4 show that for both experiments,
with and without mRNA secondary structure, some variation in the mean
RA values can be observed as a result of using random orderings of positive
examples. The highest mean RA value for the experiments without mRNA
secondary structure is almost 9 times of the minimum value in the same set of
experiments. And the highest mean RA value for the experiments with mRNA
secondary structure is more than 6 times of the minimum value in the same
set of experiments. These results indicate that there is a dependency between
performances of the hypotheses constructed by CProgol and the orderings of
positive training examples.

The analysis made so far is based on the mean RA values from our experi-
ments. However, RA is less well known than other performance measures such
as precision, recall (also known as sensitivity), specificity, and F; score. There-
fore, to support our analysis, we also measured the precision, recall, specificity,
and F; score (Table 6.8)*. We found that there were statistically significant
increase in the values of precision, recall, specificity, and F; score from the ex-
periments without mRNA secondary structure to those from the corresponding

experiments with mRNA secondary structure (precision: mean without=0.45,

4For this purpose, the random examples were considered as negatives.
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Table 6.8: Summary of precision, recall, specificity, and F; score from the

experiments with and without mRNA secondary structure.

Precision Recall Specificity F; score
Statistics
with | without | with | without | with | without | with | without
Minimum 0.45 0.25 | 0.70 0.50 | 0.93 0.89 | 0.55 0.33
Maximum 0.78 0.65 | 0.95 0.95 | 0.98 0.97 | 0.81 0.71
Mean 0.63 0.45 | 0.87 0.77 | 0.96 0.94 | 0.70 0.54
Std. Deviation | 0.07 0.08 | 0.05 0.09 | 0.01 0.02 | 0.05 0.07

mean with=0.63, Z = —8.516; recall: mean without=0.77, mean with=0.87,
7 = —7.427; specificity: mean without=0.94, mean with=0.96, 7 = —8.278;
Fy score: mean without=0.54, mean with=0.70, 7 = —8.553; all were based
on Wilcoxon Signed Ranks test with p < 0.0005).

Spearman’s rank correlation was used to find out whether there are rela-
tionships between RA and the other measures (Table 6.9). We conclude that
mean RA has a strong positive correlation with precision and specificity. This
is as we expected. Reducing the number of randoms that are falsely classi-
fied as positives is very important in this domain, because verification via lab
analysis is costly, and thus higher precision and higher specificity are desirable.
Spearman’s correlation also shows that there was a strong positive correlation
between mean RA and F; score. This is due to the strong positive correlation
between mean RA and precision, as there was no significant correlation be-
tween mean RA and recall; precision and recall are the two components used
for calculating F'; score. The plot of mean RA against other performance mea-
sures from the experiments with and without mRNA secondary structure are
presented in Figure 6.5.

The hypotheses from 10 experiments that give 10 highest average cross-
validation performance (mean RA) suggest that mRNA secondary structure in-

fluences uORF’s ability to regulate translation in the yeast S. cerevisiae. Some
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Table 6.9: Spearman’s rank correlation between mean RA and other perfor-

mance measures from 100 experiments with and without mRNA secondary

structure.
Experiment Precision | Recall | Specificity | F; score
with Mean RA 0.94 | -0.02 0.73 0.74
without Mean RA 0.91 | -0.05 0.72 0.70

Precision

Specificity

Note: There is no significant correlation between mean RA and recall. All other

correlations are significant with p < 0.0005.
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Figure 6.5: Plot of mean RA against precision, recall, specificity and F; score

from 100 experiments with random order of positive training examples with

and without mRNA secondary structure.
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Table 6.10: Some typical hypotheses which give high mean RA values.

The rules that give the highest mean RA.

has_functional_role(A) :- is_inside_stemloop(A).
has_functional_role(A) :- intersectleft_with_stemloop(A).

has_functional_role(A) :- uORF(A,249,B).

The rules that give the 2% highest mean RA.

has_functional_role(A) :- is_inside_stemloop(A).
has_functional_role(A) :- has_shortest_dist_in_UTR(A).

has_functional_role(A) :- uORF(A,249,B).

The rules that give the 3"¢ highest mean RA.

has_functional_role(A) :- uORF(A,B,C), is_inside_stemloop(A), B=<361.
has_functional_role(A) :- belongs_to(A,B), utr(B,C,589).
has_functional_role(A) :- uORF(A,B,C), B=<249, C=<10.

typical hypotheses which give high mean RA values are shown in Table 6.10.
This table shows how simple our rules are. These rules also suggest that a
functional uORF is likely to lie inside a stem-loop structure, or to intersect
with a stem-loop structure on the uORF’s left part. In our data, 17 of the 20
functional uORF's (positive examples) lie inside stem-loop structures predicted
on the associated UTRs. For 3 of the 20 uORFSs, their left part intersect with
stem-loop structures predicted on the associated UTRs; 2 of these 3 uORF's do

not lie inside stem-loop structures predicted on the associated UTRs.

6.4 Conclusions

This work is the first machine learning work to study uORFs and mRNA
secondary structures together in the context of gene regulation. Although

there have been many pieces of work that have studied either uORFs or mRNA
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secondary structures in the context of gene regulation, we are only aware of
two previous studies investigating both together; both of these studies involved
wet-lab experiments.

In this chapter, we tested whether mRNA secondary structure could help in
recognising known functional uORF's in the yeast S. cerevisiae. Our empirical
results show that the performance of an ILP system, CProgol 4.4, in recognising
known functional uORFs in the yeast S. cerevisiae significantly increases when
mRNA secondary structure is added to the background knowledge (mean RA
values: mean without=34.05, mean with=61.53, Z = —7.159,p < 0.0005).
This conclusion still holds when performance is measured using precision, recall,
specificity, and F; score, which are very well known in both machine learning
and bioinformatics domains.

Spearman’s correlation shows that mean RA has a strong positive corre-
lation with precision, specificity and F; score. The correlation between mean
RA and F; score was due to the correlation between mean RA and precision,
as there was no significant correlation between mean RA and recall. Here, be-
cause of a much smaller number of positives compared to randoms, getting a
higher recall is less important than getting a higher precision and specificity.
Chapter 7 will show a situation where recall (also called sensitivity) is the most
suitable performance measure.

From the hypotheses, it seems that mRNA secondary structure influences
uORFs’ ability to regulate translation. The hypotheses also suggest that a
functional uORF is likely to lie inside a stem-loop structure, or intersect with
a stem-loop structure on the uORF’s left part.

This study also shows that there is a dependency between the performance
of the hypotheses generated by CProgol and the ordering of positive training
examples. While it may be obvious from the description of the covering ap-
proach, to the best of our knowledge there was no published work investigating

the dependency between performances of the hypotheses constructed by CPro-
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gol4.4, which uses the covering approach, and the orderings of positive training
examples.

After learning from our experiments in this chapter and the previous one,
we will present a new and finer approach of learning functional uORFs in the

next chapter.



Chapter 7

Learning Functional uORFs: A
Finer Approach

The experiments described in Chapter 5 have shown that ILP has the potential
to help in selecting sets of candidate functional uORF's for wet-experimental
studies. In Chapter 6, it was shown that the background knowledge used in
Chapter 5 was very limited; by adding more relevant background knowledge,
ILP’s performance in recognising known functional uORFs can be improved.
In this chapter, a new approach to learning functional uORF's is researched.
There are three main differences between this approach and the previous ones.
First, we employ a different ILP system, Aleph (Srinivasan, 1999). Why we
do this is explained in Section 7.1. Second, instead of intergenic sequences, we
use 5" UTR sequences. Third, in addition to the knowledge from S. cerevisiae’s
sequences, knowledge derived from sequences of other yeast species, an analysis
of expression data sets, and gene ontology annotations are also used to form
the background knowledge for ILP'. Why we think these heterogeneous data,

could be useful for this study and how we transform them into ILP format are

'While we believe mRNA secondary structure can be relevant background knowledge, we
do not include this as background knowledge here; this is mainly because the analysis of the

work in Chapter 6 was not finished when we started the study described in this chapter.

100
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discussed in Sections 7.2-7.5. We describe how we evaluate our new approach
in Section 7.6 and use this new approach to predict novel functional uORFs in

Section 7.7. We discuss our analysis in Section 7.8 and conclude in Section 7.9.

7.1 Removing Dependency on the Ordering of
Positive Examples

The work described in the previous two chapters uses CProgol version 4.4. As
explained in Chapter 2 and shown in Chapter 6, the hypotheses constructed
by CProgol may depend on the ordering of the input positive examples. Here,
rather than trying to find the best or near optimal ordering which can give
the best or near optimal performance, we use a different ILP system, Aleph
(Srinivasan, 1999). The latter system provides a way of inducing hypothe-
ses without dependency on the ordering of positive examples, which is done
through induce_max command.

Unlike CProgol which each time only saturates the first positive example,
Aleph’s induce_max saturates every example and hence does not depend on
the ordering of input positive examples. In recent work by Specia, Srinivasan,
Ramakrishnan and das Gracas Volpe Nunes (2007), induce_max was shown to
give better performance when compared to Aleph’s basic algorithm for con-
structing hypotheses, through induce command, for the task of identifying the

correct sense of words.

7.2 Deriving Knowledge from 5 UTR Sequences

When the work in Chapter 5 was done, the length of 5" UTR was only known in
a small number of genes, and therefore the intergenic sequences of S. cerevisiae
were used as our main source of knowledge. In between that study and this

study, we noticed that Zhang and Dietrich (2005b), David, Huber, Granovskala,
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Toedling, Palm, Bofkin, Jones, Davis and Steinmetz (2006) and Miura et al.
(2006) published their work on genome-scale mapping of the transcription start
sites (the start of 5 UTRs) of the yeast S. cerevisiae. Both the technologies
they used and the results they produced vary. Zhang and Dietrich (2005b)
used serial analysis of gene expression (SAGE), David et al. (2006) used tiling
array, while Miura et al. (2006) used complementary DNA (cDNA) clones. As
it is difficult to assess which mapping is better in quality, we made an arbitrary
decision to use the results of David et al.’s (2006) experiments.

From the supplementary material (Table 3) of David et al.’s (2006) pa-
per, we extracted coordinates of the start of 5 UTRs?. From the ENSEMBL

database at the Biomart Central Server?

, we downloaded coordinates of the
protein coding genes and 1000 bases upstream sequences of the protein cod-
ing genes of S. cerevisiae. 1000 bases was chosen because 5 UTR lengths in
S. cerevisiae are mainly distributed below 500 bases, with a small percentage
between 500 and 1000 bases, and only very rarely are they above 1000 bases
(David et al., 2006; Miura et al., 2006). Having the coordinates of the 5 UTRs
and the coordinates of the protein coding genes, we calculated the lengths of
5 UTRs, which were then used to extract 5 UTR sequences from the upstream
sequences. This gives a total of 4,938 5" UTR sequences. By using getorf of the
EMBOSS package (Rice, Longden and Bleasby, 2000), uORFs with minimum
length 3 codons (including start codon and stop codon) were extracted from

these 4,938 5’ UTR sequences. The result is 3,647 (21+2+3,624) uORFs from
1,493 S. cerevisiae’s protein coding genes (Tables 7.1 and 7.2).

2The first base coordinate of the first probe of each segment in that table was used as the
coordinate of the 5’ UTR. If there are more than one segment associated to a same gene, the
segment which gives the longest length was chosen. For a few of the 18 studied genes, we
use the lengths from EMBL database (ftp://ftp.ebi.ac.uk/pub/databases/UTR/data/
BUTR.Fun_nr.dat.gz version 16 June 2006) because those calculated from David et al.’s

(2006) experiments are far too short.
3http://www.biomart.org/biomart/martview/, accessed 15 March 2007.
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Table 7.1: Detailed composition of uORFs obtained using getorf of the EM-
BOSS package.

Number of Genes uORFs
Functional | Non-functional | Unlabelled
9 21 - -
18 studied genes | 2 - 2 -
7 - - 8
1,475 other genes - - 3,616
1,493 genes 21 2 3,624

@This cell is 9 rather than 8 because CPA1 has been included. CPA1 was
not part of our data in Chapter 5, as its intergenic’s length was not listed

in Philippakis et al. (2005).

Aleph is instructed to learn a predicate has_functional_role/1 from a set
of positive examples and a set of background facts and rules. Positive examples
were represented as ground unit clauses of the predicate has_functional_role(X),
where X is a uORF ID. A uORF ID is a composite of the systematic name of
the gene to which the uORF is associated with (e.g., those listed in second
column of Table 7.2) and a uORF identifier (e.g., utORF1, uORF2, etc.).

In addition to the uORF’s properties used in Chapter 5 (i.e., distance of
the uORF to the start of the coding sequence in bases, frequency of AU and
GC base pairs immediately upstream and downstream of each uORF, and the
length of the uORF in codons), we also extracted the bases in positions -3
and +4. In Kozak’s experiments (Kozak, 1981; Kozak, 2005) with mammalian
sequences, these positions were found to give an optimum context for an AUG
to be recognised by ribosome (see Section 4.2.1 on page 54 for details). In
Chapter 5, the UTR properties were actually representing the properties of

intergenic regions. Here, the UTR properties represent the properties of the
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Table 7.2: Detailed uORF composition from 18 studied genes within the col-

lection obtained using getorf of the EMBOSS package.

Gene Systematic Positive | Negative | Unlabelled
Name” Name® Examples | Examples | Examples
CLN3 YAL040C 1 - -
GCN/ YELO09C 4 - -
HAP YKL109W 2 - -
TIF}631 | YGR162W 5 - -
YAP1 YMLOO7TW 1 - -
YAP2 YDRA423C 2 - -
HOLI YNRO055C 1 - -
PET111 | YMR257C 4 - -
CPA1 YOR303W 1 - -
SCO1 YBRO037C - 1 -
CBS1 YDL069C - 1 -
INO? YDR123C - - 1
PPR1 YLR014C - - 1
URA1 YKL216W - - 1
LEU YNL104C - - 1
RCK1 YGL158W - - 2
DCD1 YHR144C - - 1
SCHY YHR205W - - 1
18 Genes 21 2 8

%Names are taken from SGD (http://www.yeastgenome.org).
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Table 7.3: Background predicates representing knowledge derived from 5'UTR

sequences.®

uORF (X,Y,Z) represents UORF X which starts Y nucleotides upstream of the
coding sequence, with length Z codons.
utr(X,Y,Z) represents UTR X which has Y uORF(s) within Z nucleotides

upstream of gene X (Z is the length of 5’ UTR region).

has_uORF(X,Y) represents relation between UTR X and uORF Y.
belongs_to(X,Y) represents relation between uORF X and UTR Y.
context(W,X,Y,Z) states that within the 20 nucleotides downstream of W’s stop

codon, the frequency of AU is X and the frequency of GC is Y;
and the base in position +4 is Z.

up_context(W,X,Y,Z) states that within the 20 nucleotides upstream of W’s start
codon, the frequency of AU is X and frequency of GC is Y;

and the base in position -3 is Z.

@A set of ground unit clauses was generated for each predicate.

5" UTRs, which include the number of uORFs found in the region, and the
length of the region. All of this information was represented as extensional
background knowledge for Aleph (Table 7.3).

The rules in Chapter 5 that examine the abundance of AU and GC base
pairs immediately upstream and downstream of each uORF are still relevant
and thus are kept. However, the rules has_shortest_dist_in_UTR/1 and
has_shortest_len_in_UTR/1 are removed. The reason for this is that they
are now not necessary, as we add rules regarding conservation (see Section 7.3).

Several new rules were also defined (Table 7.4). The rule has_G_in_Plus4/1
examines whether the base in position +4 relative to the uORF’s start codon
is G, while the rule has_A_or_G_in_Min3/1 examines whether the base A or
G can be found in position -3 relative to the uORF’s start codon. The rules
1teq/2 and gteq/2 check binary comparison less than or equal, and greater

than or equal.
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Table 7.4: Background rules regarding knowledge derived from 5'UTR se-

quences.

lteq(X,Y):-

not(var(X)), not(var(Y)),

number (X), number(Y), X =< Y, !.
lteq(X,X):-

not (var (X)), number(X).

gerich_down_up (UORF) : -
context (UORF,Au,Gc,_), Gc > Au,
up_context (UORF,A,G,_), G > A.
gcrich_down_aurich_up(UORF) : -
context (UORF,Au,Gec,_), Gc > Au,

up_context (UORF,A,G,_), G < A.

has_A_or_G_in_Min3(UORF) : -
up_context (UORF,_,_,’A’), !.

has_A_or_G_in_Min3(UORF) : -
up_context (UORF,_,_,’G’).

gteq(X,Y) : -
not (var(X)), not(var(Y)),
number (X), number(Y), X >=Y, !.
gteq(X,X):-

not (var(X)), number(X).

aurich_down_up (UORF) : -
context (UORF,Au,Gc,_), Gc < Au,
up_context (UORF,A,G,_), G < A.
gcrich_up_aurich_down(UORF) : -
context (UORF,Au,Gc,_), Gc < Au,
up_context (UORF,A,G,_), G > A.

has_G_in_Plus4 (UORF) : -

context (UORF,_,_,’G’).
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7.3 Deriving Knowledge from Other Yeast
Species

The availability of many types of genome-scale data for different eukaryotes
have made possible genome-scale comparisons. These comparisons revealed
that there are a large number of genes which take part in core biological pro-
cess(es) and/or carry out core biological function(s) shared by all eukaryotes
(Ashburner, Ball, Blake, Botstein, Butler, Cherry, Davis, Dolinski, Dwight,
Eppig, Harris, Hill, Issel-Tarver, Kasarskis, Lewis, Matese, Richardson, Ring-
wald, Rubin and Sherlock, 2000). This finding suggests that functional genes
are likely to be conserved in at least several closely related species. This insight
may also applied to functional uORFs, that is to say, uORFs which are func-
tional are likely to be conserved in closely related species. Therefore, informa-
tion about uORFs in closely related species to S. cerevisiae could be beneficial
for this study.

5" UTR sequences of several other species in the genus (family) Saccha-
romyces (see Figure 7.1) would be ideal sources to get the information about
uORFs in closely related species to 5. cerevisiae, but these are not available.
However, upstream sequences of six other Saccharomyces species i.e., S. bayanus,
S. castellii, S. kluyveri, S. kudriavzevii, S. mikatae and S. paradozus are avail-
able. Two of these six (5. castellii and S. kluyveri) are considered quite far
from S. cerevisiae (Cliften, Hillier, Fulton, Graves, Miner, Gish, Waterston
and Johnston, 2001), and thus would have lesser degree of conservation to
S. cerevisiae. Of the four closer to S. cerevisiae, three (S. paradozus, S. mikatae
and S. bayanus) were studied recently by Kellis, Patterson, Endrizzi, Birren and
Lander (2003). They found that the order of genes among these three genomes
and S. cerevisiae are well conserved. In their analysis, they also suggested that
the three genomes and S. cerevisiae have diverged enough to allow functional

elements to be recognised. Therefore, we chose to use these three species.
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S. cerevisiae

~10Myr S. cariocanus sensu
S. paradoxus stricto
S. mikatae

~20Myr S. kudriavzevii
S. bayanus

S. pastorianus —

S. servazzii ]
— S. unisporus sensu
S. exiguus lato

S. diarenensis
S. castellii

S. kiuyveri petite
negative
~150Myr // Kluyveromyces lactis
>330 Myr /1 < Schizosaccharomyces pombe

Figure 7.1: Saccharomyces phylogeny. The figure shows a rough estima-
tion, in million years (Myr), of when evolutionary separation of species took
place.  (Source: Adapted, with permission, from supplementary materials of Cliften
et al. (2003) shown at http://www.genetics.wustl.edu/saccharomycesgenomes/yeast_

phylogeny.html).

We downloaded upstream sequences of S. cerevisiae’s ortholog genes in
S. paradozus, S. mikatae and S. bayanus from Saccharomyces Genome Database
(SGD)* (Hong, Balakrishnan, Christie, Costanzo, Dwight, Engel, Fisk, Hirschman,
Livstone, Nash, Oughtred, Park, Skrzypek, Starr, Andrada, Binkley, Dong,
Hitz, Miyasato, Schroeder, Weng, Wong, Zhu, Dolinski, Botstein and Cherry,
2007). We used upstream sequences of length 500 bases. 500 was chosen be-

4ftp://genome-ftp.stanford.edu/pub/yeast/sequence/fungal_genomes/S_
bayanus/MIT/orf_dna/utr5_500.fasta.gz was downloaded on 2 May 2007.
ftp://genome-ftp.stanford.edu/pub/yeast/sequence/fungal_genomes/S_paradoxus/
MIT/orf_dna/utr5_500.fasta.gz was downloaded on 3 May 2007. And ftp:
//genome-ftp.stanford.edu/pub/yeast/sequence/fungal_genomes/S_mikatae/MIT/
orf_dna/utr5_500.fasta.gz was downloaded on 3 May 2007
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cause the degree of conservation among yeast species could be expected much
lower beyond this region. This expectation was based on Mahony, Corcoran,
Feingold and Benos’s (2007) studies on mammalian species; they found that
the degree of conservation of the upstream sequences of protein coding genes
decreased beyond 500 bases. Furthermore, according to Cliften et al. (2003),
the average of intergenic regions in the Saccharomyces family is around 500
bases.

Getorf of the EMBOSS package (Rice et al., 2000) was then used to find
uORFs with minimum length 3 codons (including start codon and stop codon)
in the upstream sequences. The results were then transformed into a set of

ground facts of the following Prolog predicates:
spar_uORF (X,Y,Z).

to represent uORF X of S. paradoxus which starts Y nucleotides upstream of

the ortholog coding sequence, with length Z codons,
spar_utr(X,Y,Z).

to represent UTR X of S. paradozus which has Y uORF(s) within Z nucleotides

upstream of the ortholog coding sequence X,

spar_belongs_to(X,Y).
spar_has_uORF(Y,X) .

to represent relationships between uORF X and UTR Y of S. paradozus. The
predicates used to represent uORFs information in S. mikatae and S. bayanus
are similar to those for S. paradozus, with spar is changed into smik or sbay
respectively.

In contemporary bioinformatics, conservation testing is usually done using
sequence alignment, where sequence refers to the sequence of RNA bases in
the case of mRNA. In this work, we define several Prolog rules for checking

whether a uORF is conserved in 0, 1, 2, or 3 other species (Tables 7.5 and 7.6).
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Table 7.5: Prolog rules for checking conservation of a uORF (part 1).

conserved_in_x_species(UORF,3):-

conserved_in_spar (UORF), conserved_in_smik (UORF),

conserved_in_sbay(UORF), !.
conserved_in_x_species(UORF,2) : -

conserved_in_spar (UORF), conserved_in_smik (UORF), !.
conserved_in_x_species(UORF,2) :-

conserved_in_spar (UORF), conserved_in_sbay(UORF), !.
conserved_in_x_species(UORF,2):-

conserved_in_smik (UORF), conserved_in_sbay(UORF), !.
conserved_in_x_species(UORF,1):-

conserved_in_spar (UORF), !.
conserved_in_x_species(UORF,1):-

conserved_in_sbay(UORF), !.
conserved_in_x_species(UORF,1):-

conserved_in_smik (UORF), !.

conserved_in_x_species(UORF,0) .

% Ascii codes: 95=_ ; 117=u ; 79=0 ; 82=R ; 70=F .
conserved_in_spar (UORF) : -
uORF (UORF, _,Len1), name(UORF,AsciiuORF),
get_index(AsciiuORF,Index1), belongs_to(UORF,UTR),
utr (UTR,Totall,_), spar_utr(UTR,Total2,_),
Index2 is (Total2-Totall)+Index1,
name (Index2,AsciiIndex2), name(UTR,AsciiUTR),
append (AsciiUTR, [95,117,79,82,70] ,A),
append (A,AsciiIndex2,AsciiUORF2),
name (UORF2,AsciiUORF2), spar_uORF(UORF2,_,Len2),
diff(Lenl,Len2,X), X =< 3.

...continues to Table 7.6. conserved_in_smik/1 and conserved_in_sbay/1 are defined

similarly to conserved_in_spar/1.
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Table 7.6: Prolog rules for checking conservation of a uORF (part 2).

get_index(AsciiuORF,Index) :- append([],L,L).
get_after_underscore(AsciiuORF,AsciiEnd), append([H|L1],L2, [H|IL3]) :—
remove_uORF_word(AsciiEnd,AsciiIndex), append(L1,L2,L3).

name (Index,AsciiIndex) .

get_after_underscore([95|T],T). diff (Lenl,Len2,X):-
get_after_underscore([_|T],T1):- Lenl > Len2,
get_after_underscore(T,T1). X is Lenl - Len2, !.

diff (Lenl,Len2,X):-

remove_uORF_word([70|T],T). Lenl < Len2,
remove_uORF_word([_|T],T1) :- X is Len2 - Leni, !.
remove_uORF_word(T,T1) . diff(_,_,0).

The definition of conserved used in this work is when uORFs from different
species share similar length (i.e., if the difference is not more than 3 codons)
and same position in the sequence of uORFs relative to the coding sequence.
Thus, the closest uORF to a S. cerevisiae’s gene would be compared with the
closest uORF to that ortholog gene in other species, and the second closest
uORF to a S. cerevisiae’s gene would be compared with the second closest

uORF to the ortholog gene in other species (Figure 7.2).

Predicted start g . .
of 5' UTR uORF1 uORF2 _o.cerevisiae
| | Coding sequence
matched matched
500 uORE UORE2 uORF3 _Other species

\ ‘ Coding sequence

Figure 7.2: An illustration of conservation checking.
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7.4 Deriving Knowledge from Gene Ontology
Annotations

The analysis of Ashburner et al. (2000), that stated a large number of “impor-
tant” genes are shared by eukaryotes, provides more support for scientists to
make inferences about genes under investigation by applying knowledge about
similar genes from other organisms. To make transferring knowledge from one
organism to another more effective, there has been a community effort to create
common vocabularies, such as Gene Ontology (GO) (Ashburner et al., 2000),
for describing gene and gene product attributes in any organisms.

GO uses a hierarchical concept. That means that specific terms are con-
sidered as children of broader terms. The relationships between terms in GO
are many-to-many, and thus a term may have many children and many par-
ents. The GO was especially built to accommodate the need to have common
annotations (vocabularies) for describing three main aspects of gene products:
molecular function, biological process, and cellular component. These aspects
represent the three GO categories.

The idea of using GO here is to allow ILP to examine uORFs associated
with genes which share the same or related annotations(s). The basis for this
is that one may wonder whether uORFs tend to be functional in the UTRs
of genes whose products are involved in a specific function(s), or in a specific
process(es), or expressed in a specific cellular component(s).

GO contains a large number of terms. As of 12 April 2007, there are a total
of 22,968 terms. 13,464 of these terms are associated with biological process,
7,657 terms are associated with molecular function and the rest of 1,937 are
associated with cellular component. The terms in each of the GO categories can

be arranged in a tree structure according to GO hierarchy, i.e., process.ontology,



Table 7.7: Number of nodes in the first five levels of GO trees.
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GO category
Level

Molecular Function | Biological Process | Cellular Component
1 1 1 1
2 20 20 17
3 730 677 279
4 737 1892 902
5 1531 6149 2125

function.ontology and component.ontology®. The tree for category molecular
function consists of 15 levels, for biological process 18 levels and for cellular
component 16 levels. The number of nodes in the first five levels in each tree
are shown in Table 7.7.

In this work, we use the GO annotations for yeast genes® provided by SGD
(Dwight, Harris, Dolinski, Ball, Binkley, Christie, Fisk, Issel-Tarver, Schroeder,
Sherlock, Sethuraman, Weng, Botstein and Cherry, 2002). Although not all of
the GO terms are used for annotating yeast genes, the GO annotations for
yeast can be very specific. There are some annotations which only cover one
gene. For the purpose of our study, terms as specific as this are not useful. We
want more general annotations for yeast genes, so that each used annotation
covers more genes. GO slim” provides such mapping. However, this mapping
is too general for our study. Therefore, we mapped the GO annotations for
yeast into their third level terms.

The results were represented as background facts of the following predicates:

°The three ontologies, version 26:03:2007, were downloaded from http://www.

geneontology.org/G0.downloads.ontology.shtml
6gene_association.sgd.gz, version 24 March 2007, downloaded from ftp://genome-ftp.

stanford.edu/pub/yeast/data_download/literature_curation/
Thttp://www.yeastgenome.org/help/goslimhelp.html, accessed 11 April 2007.
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function(Gene,GOID).
process(Gene,GOID) .

component (Gene, GOID) .

to represent gene product of Gene is involved in a molecular function coded by
GOID, gene product of Gene is involved in a biological process coded by GOID,
and Gene is expressed in a cellular component coded by GOID, respectively.
An example of GOID is ‘GO:0050789’, which codes for GO term ‘regulation of
biological process’.

To relate these background facts with uORFs and UTRs, several back-
ground rules were defined (Table 7.8). mainORF_is_in/2 relates a uORF
with the component-annotations of the main gene associated to that uORF.
mainORF_involved_in_process/2 and mainORF_involved_in_function/2 re-
late a uORF with the process-annotations, and function-annotations, respec-

tively, of the main gene associated to that uORF.

7.5 Deriving Knowledge from Expression Data

In Section 3.2, we mentioned that array technologies and serial analysis of gene
expression (SAGE) can provide an effective way for elucidating the function of
genes. Then, in Section 7.2, we briefly mentioned that these technologies have
recently been used for mapping the transcription start sites of S. cerevisiae. In
this work, we use an analysis of microarray experiments to investigate whether
functional uORF's could be explained in terms of how genes respond to different
stress conditions.

Microarray data can be stored as a gene expression matrix where each row
represents a gene and each column represents a condition, and the value of each
position in the matrix represents the expression of a certain gene in a certain
condition. Such data allows us not only to study the expression of individual

genes under different conditions in a genome-wide scale, but also allows us to



Table 7.8: Background rules regarding yeast association to GO.
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% The main gene associated to that uORF is localised or expressed in...

mainORF_is_in (UORF,Comp) : -
uORF (UORF,_,_),
belongs_to(UORF,UTR),
component (UTR, Comp) .
% The product of the main gene associated to that uORF is involved in
% process...
mainORF_involved_in_process(UORF,Process) :—
uORF (UORF, _,_),
belongs_to(UORF,UTR),
process (UTR,Process) .
% The product of the main gene associated to that uORF is involved in
% function...
mainORF_involved_in_function(UORF,Function):-
uORF (UORF,_,_),
belongs_to(UORF,UTR),

function(UTR,Function).
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group genes which respond similarly to a set of conditions.

Here, derived knowledge from an analysis of four publicly available mi-
croarray data sets measuring translational activity under four different stress
conditions (i.e., rapamycin stress, oxidative (HyOg) stress, butanol stress and
amino acid starvation) are used as part of background knowledge. The four
data sets were used previously for studying stress impact on translation. The
rapamycin data set was used in Preiss, Baron-Benhamou, Ansorge and Hentze
(2003), the oxidative data set was used in Shenton, Smirnova, Selley, Carroll,
Hubbard, Pavitt, Ashe and Grant (2006), butanol and amino acid data sets
were used in Smirnova, Selley, Sanchez-Cabo, Carroll, Eddy, McCarthy, Hub-
bard, Pavitt, Grant and Ashe (2005). Adding this knowledge to the hypotheses
space will allow the ILP system to consider hypotheses that explain functional
uORFs in terms of how their main genes respond to different stress conditions.

The polysome-to-monosome® log-fold change (the log value of the difference
of polysome-to-monosome ratio) between stressed and normal condition was
used to determine whether the expression of a gene is increased (up-regulated),
decreased (down-regulated), or similar (not-regulated) under each stress. This
analysis was done by Erik Kristiansson, Alexandra Jauhiainen and Janeli Sarv
from the Department of Mathematical Statistics, Chalmers University of Tech-
nology, Sweden.

Whether a gene is up-regulated, down-regulated or not-regulated under each

stress was represented in predicate logic as ground facts of the predicate:
regulated(X,Y,Z).

which states that under stress Y (1 for amino acid starvation, 2 for butanol, 3
for low concentration of HyOq, and 5 for rapamycin), gene product of X is either

up-regulated (if Z is 1), down-regulated (if Z is -1), or not-regulated (if Z is 0).

8Polysome (short form of polyribosome) is used to describe a group of many ribosomes
attached to an mRNA, while monosome is used to describe a single ribosome attached to an

mRNA.
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To relate a uORF with information on whether the main gene associated to
that uORF is regulated (up and/or down) or not regulated under certain stress,

we define rules regulated_under/2 and not_regulated_under/2 (Table 7.9).

Table 7.9: Background rules regarding expression data.

% The main gene associated to this uORF is regulated under...
regulated_under (UORF,Cond) : -

uORF (UORF, _, ),

belongs_to(UORF,UTR),

regulated(UTR,Cond,Val),

Val \= 0.
% The main gene associated to this uORF is not regulated under...
not_regulated_under (UORF,Cond) : -

uORF (UCRF, _,_),

belongs_to(UORF,UTR),

regulated(UTR,Cond,0) .

7.6 Leave-one-out Cross-validation

In this experiment, we investigate whether our new approach could generate
hypotheses with good performance. For this, Aleph’s parameters were set as
follows: evalfn is set to ‘posonly’ so that Aleph learns from positive examples
only; i (the maximum depth of new variables) is set to 5; clauselength (the
maximum number of atoms in an acceptable clause) is set to 15; nodes (the
maximum number of nodes explored during clause searching) is set to 100,000;
and depth (the maximum depth of the stack used when proving before back-
tracking) is set to 1,000. More details on Aleph’s parameters can be found in
Section 2.4.2 on page 23.

To tell Aleph which predicates can be used for constructing hypotheses

about the target predicate has_functional_role/1 and in what mode the
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predicates should be called, we declare determination and mode statements

(see Tables 7.10 and 7.11).

Table 7.10: Mode and determination statements regarding uORFs and UTRs

properties.

:— modeh(1,has_functional_role(+uORF)).

:— modeb(1,u0RF (+u0ORF,-distancefromstart,-uORFlength)).
:- modeb(1,belongs_to(+ulRF,-utr)).

1= modeb(1,utr(+utr,-numberofulRF,-utrlength)).

:- modeb(1,lteq(+distancefromstart,#int)). :- modeb(l,lteq(+ulRFlength,#int)).
:— modeb(1,+distancefromstart= #int). :- modeb(1,+uORFlength= #int).

:- modeb(1,gteq(+distancefromstart,#int)). :- modeb(l,gteq(+ulORFlength,#int)).
:- modeb(1,1lteq(+numberofulRF,#int)). :- modeb(1,1teq(+utrlength,#int)).
:— modeb(1,+numberofulRF= #int). :— modeb(1l,+utrlength= #int).

:~ modeb(1,gteq(+numberofulRF,#int)) . :~ modeb(1,gteq(+utrlength,#int)).
:— modeb(1,has_G_in_Plus4(+uORF)) . :— modeb(1,has_A_or_G_in_Min3(+uORF)).

:— modeb(1,gcrich_down_up(+ulRF)). :— modeb(1,gcrich_down_aurich_up(+ulRF)) .
:- modeb(1,aurich_down_up(+uORF)). :— modeb(1,gcrich_up_aurich_down(+ulRF)) .

1~ determination(has_functional_role/1,u0RF/3).

:— determination(has_functional_role/1,1lteq/2).

:— determination(has_functional_role/1,’=’/2).

1~ determination(has_functional_role/1,gteq/2).

:- determination(has_functional_role/1,gcrich_down_up/1).

:— determination(has_functional_role/1,aurich_down_up/1).

:— determination(has_functional_role/1,gcrich_down_aurich_up/1).
:— determination(has_functional_role/1,gcrich_up_aurich_down/1).
:— determination(has_functional_role/1,has_G_in_Plus4/1).

:— determination(has_functional_role/1,has_A_or_G_in_Min3/1).

1~ determination(has_functional_role/1,belongs_to/2).

:— determination(has_functional_role/1,utr/3).
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Table 7.11: Mode and determination statements regarding conservation, yeast

association to GO, and expression data.

:- modeb(1,conserved_in_x_species (+uORF,#int)) .

% Recall number * is used as each gene may be associated with many GO IDs
:- modeb (*,mainORF_is_in(+uORF,#goid)) .

:— modeb (*,main0ORF_involved_in_function(+uORF,#goid)).

1~ modeb (*,mainORF_involved_in_process (+uORF,#goid)).

% Recall number 4 is used as there are only 4 different stress conditions
:- modeb(4,regulated_under (+uORF, #stressid)) .

:— modeb(4,not_regulated_under (+uORF,#stressid)).

:— determination(has_functional_role/1,conserved_in_x_species/2).

:— determination(has_functional_role/1,mainORF_is_in/2).

:— determination(has_functional_role/1,mainORF_involved_in_function/2).
:- determination(has_functional_role/1,main0ORF_involved_in_process/2).
:— determination(has_functional_role/1,regulated_under/2).

:— determination(has_functional_role/1,not_regulated_under/2).

The types uORF, utr, and goid were declared by defining a set of ground unit
clauses of the predicate uORF (X), where X is a uORF ID; utr(X), where X is a
UTR ID; and goid(X), where X is a GO ID. The types of distancefromstart,
uORFlength, numberofuORF, utrlength, and stressid were all defined as in-
teger.

Unlike the standard positive-only setting of CProgol which allows users to
give their own random examples, the standard positive-only setting of Aleph
will automatically generate random examples, and therefore, users are only
expected to give positive examples. Using automatically generated randoms
reduces the kinds of information that users have to provide and is suitable
for domains where random examples are not available or are scarce. However,

automatically generated random examples are less informative than the users’
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own random examples and they may not represent true examples; this may
affect the learning process.

Here, due to the change from using intergenic sequences to using 5 UTR
sequences, randoms are no longer abundant. Thus, the standard positive-only
setting of Aleph is suitable. Due to using this setting, only the positive exam-
ples of the 18 studied genes are used for training and testing in this experi-
ment. Since there are only 21 positive examples in our data set, we evaluate
our method using leave-one-out cross-validation (see Figure 7.3). This means
that each example in turn is used as a test set, while the other 20 examples
are used as a training set. Thus in total, we do 21 executions to evaluate our

method.

e Background knowledge

0
20+ Training |

This procedure is .. 4
repeated 21 times, | 21 positives Hypotheses

each time with <
different test data.

- Testing
]

Classification

Performance
\ measurement

Figure 7.3: Leave-one-out cross-validation. The final estimate of performance

is an average over 21 measurements.

Since we only use positive examples for training and testing, the perfor-
mance of the hypotheses is measured using sensitivity (also known as recall),
which measures the fraction of positives which are recognised by the hypotheses
as positives. In 17 experiments, from a total of 21, the hypotheses can correctly

recognise the test set. Thus, the estimate sensitivity of our method is 81%.
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7.7 Predicting Novel Functional uORF's

Having achieved a reasonably high sensitivity, we were encouraged to do an-
other experiment. The same background knowledge, parameter settings, type
and mode declarations, as well as determination statements were used again
but this time all of the 21 positive examples were used to generate a set of
hypotheses. The resulting hypotheses are shown in Table 7.12. We then use
this set of hypotheses to classify the negative (2) and unlabelled (8) examples
within the 18 studied genes (see Table 7.1 on page 103). Only 2 of 10 examples
were classified as positives by the hypotheses; one from the negative set and
one from the unlabelled set. Thus, we believe that the high sensitivity is not
because the hypotheses tend to classify any example as positive. Rather, we
think that this is because the hypotheses are quite specific.

When the same set of hypotheses (Table 7.12) was used to classify 3,616
unlabelled examples from 1,475 genes (see Table 7.1 on page 103), they predict
450 uORFs from 299 genes as functional. Clearly, extensive lab work would
be required to verify whether these 450 uORFs from 299 genes are indeed
functional. When compared to the results described in Chapter 5, the size
of this set is much smaller and thus it is more possible to use this set for
lab experimental studies. Due to some constraints on funding, facilities, time
and expertise, the author could not do these biological experiments during her
doctoral project. However, some promising indications and strong supports for

our method and predictions are discussed in Section 7.8.

7.8 Discussion

Our new approach to predicting functional uORFs in the yeast S. cerevisiae
makes use of knowledge about biological conservation, gene ontology annota-
tions, and genes’ response to different stress conditions. Although the ideas of

using some of these types of knowledge are not new in machine learning re-
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Table 7.12: The hypotheses generated from total positive examples (part 1).

has_functional role(A) :- regulated_under(A,2),
mainORF_involved_in_function(A,’G0:0003676°) .

has_functional_role(A) :- conserved_in_x_species(A,2), aurich_down_up(4),
mainORF_is_in(A,’G0:00056227) .

has_functional_role(A) :- conserved_in_x_species(A,3), regulated_under(4,2),
belongs_to(A,B), utr(B,C,D), gteq(D,326).

has_functional_role(A) :- mainORF_involved_in_function(A,’G0:0003676°),
belongs_to(A,B), utr(B,C,D), gteq(D,163).

has_functional_role(A) :- uORF(A,B,C), 1teq(C,23), aurich_down_up(4),
mainORF_involved_in_process(A,’G0:00507897) .

has_functional role(A) :- uORF(A,B,C), 1lteq(C,6),
mainORF_involved_in_process(A,’G0:00507897) .

has_functional_role(A) :- conserved_in_x_species(A,2), aurich_down_up(4),
mainORF_is_in(A,’G0:0005622°), mainORF_involved_in_process(A,’G0:0044237°).

has_functional_role(A) :- regulated_under(A,2), belongs_to(A,B), utr(B,C,D),
C=4, gteq(D,472).

...English translation in Table 7.13.
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Table 7.13: The hypotheses generated from total positive examples (part 2).

English translation: A uORF has functional role if it satisfies at least one of the following

rules.

1. if the main gene associated to this uORF is regulated under butanol stress and the

product of the main gene is involved in nucleic acid binding;

2. if the uORF is conserved in two other yeast species, the sequence context immediately
upstream and downstream of the uORF is AU rich, and the main gene associated to

that uORF is localised in intracellular (or protoplasm);

3. if the uORF is conserved in three other yeast species, the main gene associated to
this uORF is regulated under butanol, and the length of the UTR to which the uORF

belongs is greater than or equal to 326;

4. if the product of the main gene associated to this uORF is involved in nucleic acid
binding and the length of the UTR to which the uORF belongs is greater than or

equal to 163;

5. if its length is less than or equal to 23 codons, the sequence context immediately
upstream and downstream of the uORF is AU rich, and the product of the main gene

associated to this uORF is involved in regulation of biological process;

6. if its length is less than or equal to 6 codons and the product of the main gene

associated to this uORF is involved in regulation of biological process;

7. if the uORF is conserved in two other yeast species, the sequence context immediately
upstream and downstream of the uORF is AU rich, the main gene associated to that
uORF is localised in intracellular (or protoplasm), and the product of the main gene

associated to this uORF is involved in cellular metabolic process;

8. if the main gene associated to this uORF is regulated under butanol stress, the UTR
to which the uORF belongs has 4 uORF's and the UTR length is greater than or equal
to 472.
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search, such a combination of knowledge has never been explored for learning
yeast functional uORFs.

Other machine learning work which make use of expression data and/or gene
ontology include Tran et al. (2005) which uses Aleph for predicting protein-
protein interaction data, Badea (2003) in which CProgol was used for differ-
entiating two subtypes of adenocarcinoma of the lung?, Clare and King (2003)
for predicting gene function in S. cerevisiae, and Trajkovski, Zelezny, Lavrac
and Tolar (2007) where Relational Subgroup Discovery (Lavraé, Zelezny and
Flach, 2000) was used for explaining the differentially expressed genes in some
diseases.

The idea of using conservation for learning functional uORFs was inspired
from Zhang and Dietrich’s (2005a) work. The overall goal of their study was the
same as ours, that is to find additional genes potentially post-transcriptionally
regulated by uORF(s). However, our way of using conservation test is rather
different to theirs. They took a conventional bioinformatics approach, involving
a series of multiple alignments of nucleotide sequences. In contrast, we aligned
uORF sequences.

Of the 5 genes that Zhang and Dietrich (2005a) hypothesised may have
functional uORFs (RPC11, TPK1, FOL1, WSC3, and MKK1), 3 genes which
have one uORF each are predicted by our hypotheses here to have functional
uORFs (RPC11, TPK1, and FOL1); see Table 7.14. WSC3 is not included
in our data because experimental results suggested its UTR length exceeded
1000 bases (David et al., 2006). It is also important to note here, 4 of the 5
genes that Zhang and Dietrich hypothesised may have functional uORF's were
predicted to be functional by our hypotheses in Chapter 5. Our hypotheses,
both in Chapter 5 and here, predict the uORF of MKK1 to be non-functional.

The uORFs of ECM?7 and IMD/, which were found by Zhang and Dietrich

(2005a) to have little effect on translation, are not predicted as functional by

9 Adenocarcinoma of the lung is a type of lung cancer.
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Table 7.14: Comparison between predictions made using the model in Ta-
ble 7.12, in Chapter 5, and by Zhang and Dietrich for the 15 genes reported by
Zhang and Dietrich (2005a).

Gene Systematic | uORF’s | uORF’s Predicted as functional in
Name Name Position | Length | Zhang & Dietrich | This study | Chapter 5
RPC11 | YDR045C -60 4 Yes Yes Yes
TPK1 YJL164C -42 5 Yes Yes Yes
FOL1 YNL256W -65 4 Yes Yes Yes
WSC3* | YOL105C -50 7 Yes No data Yes
MKK1 | YOR231W -71 10 Yes No No
ECM7 | YLR443W -15 5 No*¢ No No data
IMD/ YML056C -99 14 No* No No data
-110 24 No prediction No data No
SLM2% | YNL047C -84 6 No prediction No data Yes
-70 4 No prediction No data Yes
-125 12 No prediction No data No
ARV1Y | YLR242C -108 3 No prediction No data Yes
-40 7 No prediction No Yes
HEM3 | YDL205C -129 9 No prediction No No
AVT2 YEL064C -11 4 No prediction No Yes
MBR1 YKL093W -70 7 No prediction No Yes
APC2 YLR127C -27 5 No prediction Yes Yes
SPE) YLR146C -41 6 No prediction No Yes
SPH1 YLR313C -25 4 No prediction Yes Yes

25’ UTR length was predicted well over 1000 bases.
5" UTR length was predicted as 92.
¢Zhang and Dietrich found these uORFs have little effect on translation; we consider them

as non-functional.

our hypotheses in this chapter. These two genes were not included in our data
in Chapter 5.

By comparing the predictions for the first 7 genes in Table 7.14, it seems



126

that our hypotheses in Chapter 5 and in this chapter are making consistent
predictions (where data are available). However, the predictions for the other
8 genes in Table 7.14 suggest that the hypotheses in this chapter are more
specific than those in Chapter 5. For these 8 genes, which contain a total of 12
uORFs, Zhang and Dietrich (2005a) were only able to verify that these uORF's
are real but were not able to get enough evidence to make any hypotheses
whether or not these uUORFs are functional. This could be an indication that
many of these uUORFs may be non-functional. It has to be noted that verifying
a uORF as a non-functional uORF is even more difficult than verifying a uORF
as a functional uORF. Surprisingly, from this set of uORF's, only 2 are predicted
to be functional by our hypotheses here, but 9 were predicted to be functional
by our hypotheses in Chapter 5.

In August 2007, Cvijovic et al. (2007) published their work on identifying
putative regulatory uORFs in yeast. There, conservation was also used as
one of the criterias for assessing whether a uORF is potentially functional or
not. While we used alignments of uORF sequences, they used alignments of
nucleotide sequences. Furthermore, the conservation checking in our work was
done automatically, while in theirs, they manually examined the alignments to
assess whether a uORF is conserved or not in other yeast species.

Beside conservation, there are also other fundamental differences between
our work and Cvijovic et al.’s (2007). The computational system they used was
an expert system shell DESS (Kemp, 1997) which uses a certainty factor model
for representing uncertainty in both the data and the rules (i.e., the hypotheses)
(Shortliffe, 1976). Unlike in our work, where the hypotheses are generated
automatically, Cvijovic et al. (2007) manually constructed a rule base, and then
followed a cycle of running the expert system with the input data, analysing the
results, and manually modifying the rule base for better classification. Thus,
when thinking of applying the method for learning functional uORFs in other

organisms, applying ours will be more practical than that of Cvijovic et al.
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(2007).

From the hypotheses point of view, it is interesting to notice the similarity
and the differences between ours and that of Cvijovic et al. (2007). uORF
length of 4 to 6 codons was considered as optimal in Cvijovic et al. (2007).
In our hypotheses here, one of the rules reflects that (Rule 6 of Table 7.13 on
page 123). However, in the other rule (Rule 5 of Table 7.13), “uORF length
less than or equal to 23 codons” appeared; this will allow our hypotheses to
cover functional uORFs which are longer than 6 codons. Some of this type of
uORF's may encode bioactive peptides (Delbecq et al., 1994). Over 200 uORFs
of this type have been identified and were found strongly conserved in human
and mouse (Crowe et al., 2006). The rule base in Cvijovic et al. (2007) was
constructed and modified mainly based on the properties of GCN/’s uORFs,
such as uORFs are short, and thus will likely fail to identify potential functional
uORFs which are quite long.

Cvijovic et al. (2007) considered 50 to 250 nucleotides as the optimal dis-
tance between uORF and the main coding sequence. While this feature ap-
peared in the hypotheses presented in Chapter 5 (Table 5.8 on page 76), this
does not appeared in our hypotheses here (Table 7.12). This indicates that
Aleph considers this feature as less important. This is due to the change from
using intergenic sequences to 5 UTR sequences. More than 88% of the 4,938
5" UTR sequences used in this chapter have length less than or equal to 250 nu-
cleotides. While the intergenic regions are generally much longer than 5 UTRs.

Having discussed the similarity and differences between our work and that
of Cvijovic et al. (2007), we compared our predictions and theirs. Cvijovic
et al. (2007) predicted 245 additional genes to have 367 new functional uORFs.
Among these predictions, 34 uORFs from 32 genes were strongly predicted to
be functional. Among the strongly predicted ones, only 24 uORFs from 23
genes lie within the 5’UTRs based on David et al.’s (2006) experiments. When

we checked how many of these 24 uORFs from 23 genes are also predicted as
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functional by our hypotheses in this chapter, we only found 8 uORFs from 8
genes (i.e., LDB17, CINS, BCK2, PMC1, FAS1, NDE1, CKA2, and ATHI).
This suggests that these 8 genes are strong candidates for lab experimental
studies.

Cvijovic et al. (2007) suggested that an efficient way to experimentally verify
the predictions of functional uORFs is by studying the polysomal association
of microarray experiments tested under several different conditions. To us, this

provides strong support for our method and our predictions.

7.9 Conclusions

We have taken a new approach to learning functional uORFs in the yeast
S. cerevisiae. The method uses the positive-only setting of Aleph and makes
use of knowledge derived from biological sequences of several different yeast
species, an analysis of several publicly available expression data sets, and gene
ontology annotations; this is the first time such a combination of knowledge
has been explored for learning yeast functional uORFs. With only a little
adjustment and provided the relevant data are available, our method can be
applied to the task of learning functional uORFs in other organisms. The
heterogeneous knowledge used here allows Aleph to generate a set of hypotheses
with reasonably high sensitivity (81%). While the idea of using conservation
for learning functional uORFs is not new, this has led us to introduce a new
type of alignment, i.e., alignment of uORF sequences. This alignment allows us
to check whether two uORFs from two different species share the same position
in the sequence of uORFs relative to the associated coding sequence.
Furthermore, our hypotheses are simple, yet general enough to cover dif-
ferent types of functional uORFs. The hypotheses suggest that features like
conservation in at least two other yeast species and involvement of the main

gene’s product in regulation of biological process, cellular metabolic process and
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nucleic acid binding are important in recognising functional uORFs. When the
hypotheses were used to predict novel functional uORFs from a set of unla-
belled uORFs within the genome of S. cerevisiae, they predict 299 further genes
to have 450 novel functional uORFs.

Finally, a comparison of our predictions and those of Cvijovic et al. (2007)
suggests that a set of 8 predicted functional uORFs from genes LDB17, CINS,
BCK2, PMC'1, FAS1, NDE1, CKA2, and ATH1 are strong candidates for lab

experimental studies.



Chapter 8

Conclusions and Future Work

As described in Section 1.4, the goal of this PhD project was to develop an
automated learning method, using inductive logic programming (ILP) as the
learning method and the yeast Saccharomyces cerevisiae as the model organ-
ism, to help select sets of candidate functional uORFs for experimental studies.
Although the predicted functional uORFs have not been verified by lab experi-
ments, the goal of the project has been achieved. Several approaches to learning
which uORFs regulate gene expression in the yeast S. cerevisiae using a ma-
chine learning technique, called ILP, have been presented in this thesis. This
is the first time that ILP has been explored for such task. In this chapter,
we conclude the thesis by summarising the main results, discussing original

contributions and suggesting some future research directions.

8.1 Summary

The characteristics of uORF data (i.e., negatives are too few, positives are not
many, unlabelled are abundant) make the uORF domain very challenging. Dif-
ferent ILP systems, different performance measures, different evaluation meth-
ods and different types of data for deriving the background knowledge for ILP

have been used during the course of this PhD project.

130
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The main results from Chapter 5:

e The positive-only setting of an ILP system, CProgol4.4, can be used to
automatically generate rules that, when used as a filter, make the search
for novel functional uORFs 17 times more efficient than using random

sampling;

e The properties of distance to the coding sequence was found to be par-
ticularly useful in the absence of the lengths of 5" UTRs. ILP used the
former as part of its hypotheses to filter out uORFs which are likely to
be outside of the 5 UTR region and was able to filter out almost 90%
of the random examples used for prediction, of which majority would be

negatives;

e In general, the rules were simple and easy to understand. However, the
rules appeared to be too general. This was partly due to the limited
background knowledge. All the background knowledge used in Chapter 5

was derived from intergenic sequences of the yeast S. cerevisiae.

The main results from Chapter 6:

e The performance of CProgol4.4 in recognising known functional uORFs
in the yeast S. cerevisiae is significantly increased when mRNA secondary
structure is added to the background knowledge (mean RA values: mean
without=34.05, mean with=61.53; based on 100 times stratified 10-fold
cross-validation). This conclusion still holds when performance was mea-

sured using precision, recall, specificity and F; score;

e The relationships between RA and other performance measures were in-
vestigated using Spearman’s correlation. RA was found to have a strong
positive correlation with precision, specificity and F; score. But, there

was no significant correlation observed between mean RA and recall;
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e The work described in Chapter 6 is the first machine learning work to
study uORF's and mRNA secondary structures together in the context of
gene regulation. Although there have been many pieces of work that have
studied either uORFs or mRNA secondary structures in the context of
gene regulation, we are only aware of two previous studies investigating

both together; both of these studies involved wet-lab experiments;

e The rules suggest that mRNA secondary structure influences uORF’s
ability to regulate translation; a functional uORF may lie inside a stem-
loop structure, or intersect with a stem-loop structure on the uORF’s left

part;

e While it may be obvious from the description of the covering approach,
to the best of our knowledge there was no published work investigating
the dependency between performances of the hypotheses constructed by
CProgol4.4, which uses the covering approach, and the orderings of posi-
tive training examples. Experiments in Chapter 6 showed that such a de-
pendency exists. Therefore, to ensure a fair comparison, we recommend
that whenever one makes a comparison of performances from different
experiments that use the covering approach, one should also check the

parameter settings used and the orderings of positive training examples.

The main results from Chapter 7:

e The positive-only setting of another ILP system, Aleph, can also be used
to automatically generate rules that can be used to identify functional
uORFs. Aleph was used here because it provides a way of inducing
hypotheses without dependency on the ordering of the input positive

examples;

e For the first time, a combination of knowledge derived from biological se-

quences of several different yeast species, an analysis of several expression
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data sets and gene ontology annotations was explored for learning yeast

functional uORFs;

e In conventional bioinformatics, conservation testing is usually done us-
ing sequence alignment, where sequence refers the sequence of bases. In
Chapter 7, a new type of alignment, i.e., alignment of uUORF sequences,
is introduced. This new type of alignment allows us to check whether two
uORFs from two different species share the same position in the sequence

of uORF's relative to the associated protein coding sequence;

e Based on leave-one-out cross-validation, the estimate of how well our hy-
potheses can correctly identify uORFs which can regulate gene expression

(i.e., the sensitivity or recall of our hypotheses) is 81%;

e The resulting hypotheses are simple and informative. They are quite
specific yet general enough to cover different types of functional uORFs.
The hypotheses provide provisional insights into biological characteris-
tics of functional uORFs. The biological characteristics of functional
uORFs may include conservation in at least two other yeast species and
involvement of the main gene’s product in regulation of biological process,

cellular metabolic process and nucleic acid binding;

e The hypotheses predict 299 further genes to have 450 novel functional
uORFs. A comparison of our predictions and those of Cvijovic et al.
(2007) suggest that 8 predicted functional uORFs from 8 genes (i.e.,
LDB17, CINS, BCK2, PMC1, FAS1, NDE1, CKA2, and ATHI) are

strong candidates for lab experimental studies.

8.2 Original Contributions to Knowledge

Original contributions to knowledge from this thesis are as follows.
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Contributions to machine learning, particularly ILP:

1. We have introduced a novel application domain for ILP and machine

learning in general, namely the uORF domain;

2. We have provided more case-studies on the application of the positive-
only setting of ILP. While there have been many applications of positive-
only setting of ILP to natural language processing, applications of this

setting to real-world biological problems are still rare;

3. We have done the first empirical study to show that there is a dependency
between the performances of the hypotheses constructed by CProgol4.4,
an ILP system which uses the covering approach, and the orderings of
positive training examples. While it may be obvious from the description
of covering approach, to the best of our knowledge there was no published

work investigating this issue and its implication empirically;

4. We have provided another case-study on the use of RA as a performance
measure and an investigation of the relationship between RA and other
more well known performance measures (i.e., precision, recall, specificity,

and F; score).

Contributions to bioinformatics:

1. We have developed an automated learning method for the task of learning
which uORFs regulate gene expression in the yeast S. cerevisiae. The
method can help with the selection of sets of candidate functional uORF's

for lab experimental studies;

2. We have predicted 299 further genes to have 450 novel functional uORFs.
A comparison with a related study suggests that 8 of these predicted novel
functional uORFs (from 8 genes) are strong candidate functional uORFs

for lab experimental studies;
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3. Through our ILP-rules, we have provided provisional insights into biolog-

ical characteristics of functional uORFs in the yeast S. cerevisiae;

4. We have introduced a new type of alignment (i.e., alignment of uORF
sequences rather than alignment of nucleotide sequences) which allows us
to check whether uORF's from different species share the same position in

the sequence of uUORF's relative to the associated protein coding sequence;

5. We have done the first machine learning work to study uORFs and mRNA
secondary structures together in the context of gene regulation. Although
there have been many pieces of work that have studied either uORFs or
mRNA secondary structures in the context of gene regulation, we are
only aware of two previous studies investigating both together; both of

these involved wet-lab experiments;

6. We have investigated the use of combined knowledge derived from biolog-
ical sequences of several yeast species, an analysis of several expression
data sets and gene ontology annotations for learning yeast functional
uORFs. Such a combination of knowledge has never been explored for

learning yeast functional uORFs.

8.3 Future Work

In this section, potential new areas of research that have been identified during
the course of the PhD project are presented. Some of these potential new areas
of research have arisen due to limitations in our work, while others are purely

possible extensions or future work.
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8.3.1 Future Work: Bioinformatics
Applying Our Method to Other Organisms

The learning task considered in this research was mainly focused on the uORF's
of Saccharomyces cerevisiae. However, we believe with only a little adjustment
and provided the relevant data are available, our method can be applied for

learning functional uORFs in other organisms, such as human and mouse.

Using Predicted Conserved mRNA Secondary Structure

In Chapter 6, the background knowledge regarding mRNA secondary structure
was derived from predictions made by RNAfold on the given S. cerevisiae se-
quences. However, the reliability of predictions made by RNAfold, and other
similar softwares based on thermodynamic energy minimisation, is often ques-
tioned because each prediction is made based on a single sequence. Therefore,
for future work, one could consider deriving the background knowledge from
predicted secondary structures which are conserved among yeast species. This
can be done by first aligning sequences of several yeast species and then using

the alignment to get the predicted conserved secondary structures.

Viewing mRINA Secondary Structures from a Deeper Level

In Chapter 6, we viewed the predicted mRNA secondary structure from the
highest level. This means that we did not consider a nested stem-loop as
an independent stem-loop. By doing so, we limited the type of background
knowledge that was derived from mRNA secondary structure. Therefore, it
would be interesting to investigate the effect of including more detailed back-
ground knowledge of the mRNA secondary structure on the ILP’s performance

in recognising functional uORFs.
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Adding mRNA Secondary Structure as Background Knowledge to
Chapter 7

It was shown in Chapter 6 that adding mRNA secondary structure to the lim-
ited background knowledge used in Chapter 5 significantly increased the ILP’s
performance in recognising known functional uORFSs in the yeast S. cerevisiae.
Therefore, in the future, it would be worth investigating the effect of incorpo-
rating mRNA secondary structure as part of the background knowledge for the

work described in Chapter 7.

8.3.2 Future Work: ILP

Investigating When the Orderings of Input Positive Examples Af-
fect the Hypotheses Generated by an ILP System Which Uses the

Covering Approach

In Chapter 6, the performances of the hypotheses generated by CProgol4.4,
which uses a covering approach, were found to be affected by (dependent on)
the orderings of the input positive examples. However, it has to be noted that
such dependency was observed under the conditions described in Chapter 6 (i.e.,
the parameter settings used and that the complete searches of the hypotheses
space might not always be performed). Therefore, a further investigation is
needed to clarify when exactly and under what conditions the orderings of
input positive examples affect the hypotheses generated by an ILP system

which uses a covering approach, such as CProgol.

Choosing the Near Optimal Ordering of Positive Examples

Where the output of an ILP system is found to be dependent on the orderings
of the input positive examples, finding the best ordering of positive training
examples which can give the best performance is desirable. However, this task

is often intractable; the number of possible orderings is n!, where n is the
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number of positive training examples. Thus, one possible direction for future
research could be to develop a new algorithm or utilise an existing one, such
as a genetic algorithm (Mitchell, 1998), to choose a near optimal ordering.
Considering that CProgol has been used in many applications, a possible
further extension to this new research area could be to revisit previous applica-
tions of CProgol, where such a dependency can be observed, and see whether
the algorithm of choosing the near optimal ordering of positive examples could

be applied generically to other domains.

Learning from Weighted Examples

Identifying definite positives or definite negatives can be very difficult and
expensive in some domains, such as the uORF domain. However, some partial
knowledge (i.e., biological knowledge from domain experts, in the case of uORF
domain) could be used to give an insight into how likely individual unlabelled
examples are to be positive or negative. Thus, one ILP direction that could
be explored is to enable ILP to learn from weighted examples, instead of just
definite positives and definite negatives; this work relates to probabilistic ILP

(Raedt and Kersting, 2004).

8.3.3 Beyond Computation

Similar to most computational studies in bioinformatics, we would like our
predictions to be tested and hopefully confirmed by wet-laboratory experi-
ments. Such experiments might involve comparing the amount of mRNA and
the amount of protein produced from the main gene, with and without the
candidate functional uORF(s) under investigation. Since these experiments
are expensive, we would suggest biologists to start with the uORFs from 8
genes (LDB17, CINS, BCK2, PMC1, FAS1, NDE1, CKA2, and ATHI1) that
were predicted as functional by our hypotheses (Chapter 7) and by Cvijovic
et al. (2007).
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8.4 Conclusions

This thesis has presented an ILP approach to learning which uORFs regulate
gene expression. The method that has been developed can help select sets of
candidate functional uORFs for experimental studies. The predictions made
have yet to be tested biologically. Positive results are certainly hoped for.
However, whatever the results would be, we believe these could be used to
improve the computational research as well as to advance the current knowledge
in biology.

Through the work in this thesis, we have provided more case-studies on the
application of the positive-only setting of ILP. While the idea of positive-only
learning has long been introduced in machine learning, the use of this type of
learning has been limited. In this thesis, the positive-only learning has, once
again, shown its potential. We hope that this could lead to more exploration
of this type of learning on a wider range of problems.

The results presented in this thesis suggest that a dependency exists be-
tween the performances of the hypotheses generated by CProgold4.4 and the
orderings of input positive training examples. Beside being of interest to the
ILP community, this could also be of interest to the theorists in general machine
learning area. This could lead to further improvement and new developments

in machine learning generally.
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