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Abstract 

Maintenance optimisation is a crucial issue for industries that utilise physical assets due 

to its impact on costs, risks and performance. Current quantitative maintenance 

optimisation techniques include Modelling System Failures MSF (using monte-carlo 

simulation) and Delay-Time Maintenance Model (DTMM). The MSF investigates 

equipment failure patterns by using failure distribution, resource availability and spare-

holdings to determine optimum maintenance requirements. The DTMM approach 

examines equipment failure patterns by considering failure consequences, inspection 

costs and the period to determine optimum inspection intervals. This paper discusses the 

concept, relevance and applicability of the MSF and DTMM techniques to the wind 

energy industry. Institutional consideration as well as the benefits of practical 

implementation of the techniques are highlighted and discussed. 
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1 Introduction 

Wind is becoming an increasingly important source of energy in order to reduce the 

emission of greenhouse gases and mitigate the effects of global warming. Improvements 

in the design of wind turbines [1] and the ready availability of wind resources in most 

parts of the world are contributing to the rapid development of the industry. In recent 

years, the industry has experienced a significant shift in the development of wind farms 

from onshore to offshore locations [2] due to more favourable wind resources and the 

possibility of installing higher power turbines.  

 

Wind turbines are usually purchased with a 2-5 years all-in-service contract, which 

includes warranties, and corrective and preventative maintenance strategies [3]. These 

maintenance strategies (corrective and preventative) are often adopted by wind farm 

operators at the expiration of the contract period to continue the maintenance of wind 

turbines [4]. However, Andrawus et al [5] explained the inadequacy of these strategies to 

meet the current maintenance demands of the wind industry. A hybrid of Reliability 

Centred Maintenance (RCM) and Asset life-cycle analysis (ALCA) technique [6] was 

used to determine suitable maintenance strategies for wind turbines. Arthur [7] explains 

that RCM is a qualitative approach to maintenance optimisation which can be clouded 

with subjective opinion and experience. Thus, Scarf [8] recommends the incorporation of 

simple mathematical models which are quantitative in nature into the maintenance 

optimisation processes of physical assets. Given these limitations of RCM, this paper 

discusses the concept and relevance of two quantitative maintenance optimisation 

techniques to the wind industry. It proposes practical applications of the approaches to 

assess the failure characteristics of wind turbines and to optimise the maintenance 
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activities on wind farms. Finally, the benefits of maintenance optimisation are presented 

with the necessary conclusions and suggestions for future work. 

 

2 Maintenance Optimisation 

Maintenance can be defined as “…the combination of all technical and associated 

administrative actions intended to retain an item or system in, or restore it to, a state in 

which it can perform its required function” [9].  Maintenance optimisation is “…a 

process that attempts to balance the maintenance requirements (legislative, economic, 

technical, etc.) and the resources used to carry out the maintenance program (people, 

spares, consumables, equipment, facilities, etc.)”[10]. Basically, the main purpose of 

maintenance optimisation is to determine the most cost-effective maintenance strategy. 

This strategy should provide the best possible balance between direct maintenance costs 

(labour, materials, administration) and the consequences or penalty of not performing 

maintenance as required (i.e. labour, materials, administration, loss of production and 

anticipated profit etc) without prejudice to Health, Safety and Environmental (HSE) 

factors. The concept of maintenance optimisation is illustrated conceptually in Figure 1.  

 

 

 

 

 

 

 
Figure 1 Maintenance Optimisation Concept 
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Evidently, carrying out maintenance activities such as inspection, preventative 

maintenance, and replacement of components more frequently, increases the direct cost 

of maintenance. Thus, the risk exposure or the consequences of not performing 

maintenance activities as required, reduces. However, the less frequent the maintenance 

activities, the lower the maintenance cost, and the higher the risk exposure. Optimisation 

deals with the interaction between these factors and aims to determine the optimum level. 

This is usually obtained at the lowest point on the total combination of the key variables, 

where maintenance activities are carried out at the lowest total impact (optimal cost and 

interval) as shown in Figure 1. 

 

The optimisation of wind turbine maintenance is a promising way to maximise the return 

on investment in wind farms over a defined period, given that, “the net revenue from a 

wind farm is the revenue generated from sale of electricity less operation and 

maintenance (O&M) expenditure” [11]. Therefore, the wind industry has a clear 

opportunity to consider the strategic importance of maintenance optimisation and to 

proactively realise the benefits that are available through practical implementation of 

optimal maintenance strategies over the life-cycle of wind farms. Essentially, there are 

two approaches to maintenance optimisation; qualitative and quantitative. The latter is the 

focal point of this paper while bearing in mind that optimisation process is not a one-off 

procedure but a continuous process which requires periodic evaluation of performance 

and improving on the successes of the past. 
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3 Quantitative Maintenance Optimisation 

Quantitative maintenance optimisation (QMO) techniques employ a mathematical model 

in which both costs and benefits of maintenance are quantified and an optimum balance 

between both is obtained [12]. There are a number of QMO techniques in the field of 

Applied Mathematics and Operational Research, for example, Markov Chains and 

Analytical hierarchy processes [13]; Genetic Algorithms [14] etc. However, most of the 

approaches are criticised for being developed for mathematical purposes only and are 

seldom used in practical asset management to solve real-life maintenance problems [12]. 

Furthermore, Arthur [7] observed that, “…quantitative maintenance optimisation can be 

clouded through the rigorous data demands of mathematical modelling and these same 

models require data that is often unavailable”.  

 

Modelling System Failures (MSF) has been recommended as the best approach to assess 

the reliability and optimise the maintenance of mechanical systems [15]. Delay-Time 

Maintenance Model (DTMM) [8] is well-known for its simplistic mathematical 

modelling and has been applied practically to optimise the inspection intervals of some 

physical assets with considerable success. Arthur [7] has employed it to optimise 

inspection intervals for and Oil and Gas water injection pumping system. The approaches 

of the two QMO are now discussed in more detail.  

 

4 Modelling System Failures and Monte Carlo Simulation 

This technique investigates the operations and failure patterns of equipment by taking 

into account failure distribution, repair delays, spare-holding, and resource availability to 
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determine optimum maintenance requirements [15]. The first step in the approach is to 

identify a suitable statistical distribution that will best fit the assessed failure 

characteristics of the physical asset. Secondly, a suitable parameter estimation method is 

selected to calculate the parameters of the identified statistical distribution. Then, the 

calculated parameters are used to build a Reliability Block Diagram (RBD) which 

permits the use of Monte Carlo simulations to determine the optimal levels of key 

maintenance variables such as costs, spare holdings, the level of reliability and 

availability required  etc. 

 

4.1 Statistical Distributions 

Fundamentally, there are three failure patterns that describe failure characteristics of 

mechanical systems [15]. These include reducing, constant and increasing failures as 

illustrated in Figure 2. The figure displays a curve usually referred to as a hazard rate or 

most commonly a bath-tub curve. The reducing failure pattern usually known as the 

infant mortality denotes failures that occur at the early-life of equipment and the 

likelihood of occurrence reduces as the age of the equipment increases. The constant 

failure pattern represents failures that are independent of equipment age, that is, the 

likelihood of occurrence is invariable through out the life-cycle of the equipment. Lastly, 

the increasing failure pattern commonly referred to as wear-out symbolises failures that 

occur at the later life of equipment, that is, the likelihood of occurrence increases with the 

age of the equipment. It is worth noting, that the bath-tub curves differ for different 

pieces of equipment in the wind turbine. The reader is referred to [16] for a more detailed 

study on types of failure pattern. 
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Figure 2 a ‘Bath-Tub’ curve showing failure patterns 

A number of statistical distributions exist to fit the failure patterns afore described. 

Exponential distribution describes a constant hazard rate [15] while Normal and 

Lognormal describe the increasing hazard rate [15]. However, the most commonly used 

distribution is the Weibull named after a Swedish engineer Waloddi Weibull (1887-1979) 

who formulated and popularised the use of the distribution for reliability analysis. The 

distribution is very versatile as it fits all the three basic patterns of failure. Note that the 

Weibull distribution is also employed in the analysis of wind speed distribution but this is 

outside the scope of this paper. 

 

4.2 The Weibull Distribution  

This distribution can be represented in 3 different forms; 3-parameter, 2-parameter and 1-

parameter. The 2-parameter Weibull distribution denoted by a probability density 

function (pdf) and cumulative distribution function (cdf) given in Equations 1 and 2 

respectively is considered exclusively.  
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Where β  and η  represent the shape and scale parameter respectively. The value of β  

describes the failure pattern of the equipment. As a general rule, ( β < 1) means a 

reducing failure pattern, ( β =1) signifies a constant failure pattern and ( β >1) indicates 

an increasing failure pattern, as depicted in Figure 2. Conversely, the scale parameter 

denotes the characteristic life of the equipment; the time at which there is an 

approximately 0.632 probability that the equipment will have failed [15]. Estimating the 

parameters requires a suitable method that will best fit the characteristics of the collated 

data.  

 

4.2 Parameter Estimation Methods 

Common parameter estimation methods include probability plot, regression analysis and 

Maximum Likelihood Estimation (MLE). The characteristics of data collated influence 

the estimation method to be used.  Field or life failure data are seldom complete as they 

are often subjected to suspensions or censorings. An item could have been temporarily 

removed from the test during the test interval or the test interval could elapse before an 

item fails. The probability plot and the regression analysis are limited in dealing with data 

sets containing a relatively large number of suspensions or censorings [17]. The MLE 

takes into account the times-to-suspension or censoring in the estimation process which 

makes it a more robust and rigorous estimation method. The process of using the 

maximum likelihood to estimate the parameters of the weibull distribution when data are 

censored is discussed in the next subsection. 
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4.3 Maximum Likelihood Estimation in the Weibull Distribution 

Consider a random failure sample consisting of multiple censoring or suspension. 

Suppose that censoring occurs progressively in k  stages at times iT  where 1−> ii TT , 

ki ......2,1=  and that at the ith  stage of censoring ir  sample specimens selected randomly 

from the survivors at time iT  are removed from further observation. If N  designates the 

total sample size and n  the number of specimens which fail at times jT  and therefore 

provide completely determined life spans [17], it follows that 
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Where C  is a constant, ( )Tf  is the pdf, and  ( )TF  is the cdf. 

Note: Harris and Stocker [18] defined a likelihood function L (α) as “the probability or 

probability density for the occurrence of a sample configuration x1, …,  xn given that the 

probability density f(x; α) with parameter α is unknown i.e. L (α) = f(x1; α)… f(xn; α)” 

Substituting equations 1 and 2 in 4  
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Then taking the natural logarithm  

               
ββ

ηηηη
βηβ 








−





















−








−








+−= ∑ ∑

= =

i
n

j

k

i
i

jjj T
r

TTT
L

1 1
lnlnlnlnln                    (6) 



 10

Taking the partial derivatives of Equation 6 with respect to β  and η  will result in 

Equations 7 and 8. These can be used to estimate the values of  β  and η  respectively. 

Note that Equation 7 is obtained by equating the partial derivative of β  to zero. This 

allows the maximum likelihood of β  to be estimated by using an iterative procedure or 

trial and error approach. Alternatively, the equation can be programmed in Excel and the 

estimate obtained easily by using a Micro Soft solver.   
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The estimated values of  β  and η   of each component within a subsystem are used to 

design Reliability Block Diagrams (RBD) to model the failures of the subsystem. 

Similarly, the β  and η  values for each subsystem within a system are estimated to 

model the failures of the system. For example, consider a wind turbine as a system and 

the gearbox of the turbine as a subsystem with the following components; shafts, 

intermediary speed shaft (IMS) bearings, high speed shaft (HSS) bearings, key ways, 

gear-teeth etc. The β and η of each of the components are estimated to the model the 

failure behaviour of the gearbox. Similarly, the β and η of each subsystem of the turbine 

such as the generator, yaw, hub etc are estimated to model the failures of the wind 
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turbine. In the modelling, Reliability Block Diagrams (RBD) are designed for the 

subsystems to incorporate the failure characteristics of the components. Then, the RBD of 

the subsystems are used to model the failures of the wind turbine as illustrated 

conceptually in figure 3. Thus, the failure behaviour of the wind turbine can be used in 

modelling the failure characteristics of a selected wind farm. It is worth noting however, 

that the modelling processes depend on the availability of failure data to estimate the β 

and η values for the components and subsystems of the wind turbine. The models are 

simulated using Monte Carlo simulation software to assess the reliability, availability and 

maintainability of the wind turbine as well as the wind farm. The effects of different 

maintenance strategies such as the Failure-Based, Time-Based and Condition-Based on 

the wind farm model can be assessed to determine the most cost effective strategy by 

taking into account the costs and availability of maintenance crew and spare holdings. 

 

 

 

 

 

 

 

 

 

Figure 3 Modelling wind turbine failures 
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5 The Delay-time Maintenance Mathematical Model 

This technique examines equipment failure patterns by taking into account failure 

consequences, inspection costs and intervals to determine an optimal inspection interval. 

In [6], suitable Condition Based Maintenance (CBM) actions were selected for wind 

turbines. The selection was based upon identifiable warning signs that can be measured to 

assess the actual condition of incipient failures. The availability of reasonable time that 

permits proactive action to avoid catastrophic events was also taken into account. 

Therefore, the time taken by an incipient failure to deteriorate from inception to 

catastrophic event is fundamental to determining maintenance intervals. This is illustrated 

in Figure 4. 

 

 

 

 

 

 
 
 

Figure 4 Potential-to-Functional failure intervals 

In an RCM approach, P-F intervals are determined subjectively on the basis of 

engineering judgement and experience [19]. The P-F interval determines the frequency of 

CBM activities and is usually carried out at a time 2IntervalFP−≤ . Moubray [16] 

suggested five ways to determine P-F intervals for equipment but concludes: “it is either 

S

P

F

S = Point where defect initiates 

P = Point where defect can be      
identified (Potential failure)

F = Point where component fails
(Functional failure)

Time P-F 
Interval

C
on

di
tio

n

S

P

F

S = Point where defect initiates 

P = Point where defect can be      
identified (Potential failure)

F = Point where component fails
(Functional failure)

Time P-F 
Interval

C
on

di
tio

n



 13

impossible, impracticable or too expensive to try to determine P-F intervals on an 

empirical basis”.  

 

A simple quantitative mathematical model known as the delay-time maintenance model 

[8] allows the determination of the optimal inspection interval by taking into account 

costs, risks and performance. The delay-time is the time between a defect becoming 

apparent and functional failure actually occurring. This is synonymous to the P-F 

interval. The concept of the delay-time model is discussed in the next subsection. 

 

5.1 Concept of the Delay-time Maintenance Mathematical Model 

This maintenance mathematical model proposes a Poisson process of defects rate of 

arrival (α ); exponentially distributed delay-times with mean ( γ1 ), and perfect 

inspection. Perfect inspection permits the detection of all expected failure modes. Note 

the defects rate of arrival connote complete failure of an item or defects found during 

inspection. Suppose all the gearboxes of wind turbines in a particular wind farm are 

subjected to regularly spaced inspections (such as vibration analysis) with inspections 

occurring every ∆ in the interval [0, T]; where T is a multiple of ∆ as shown conceptually 

in figure 5. Two defect arrival scenarios (F1 and F2) underpinning the principles of the 

delay-time mathematical model are shown in the figure. Incipient failure F1 occurs 

between inspection intervals, is detected at the next inspection 2∆ which is then followed 

by a repair or F2 occurs, fails catastrophically at ti before the next inspection 3∆. 
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Figure 5 Delay-time concept 
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6 Data Requirement and Collation 

Historical failure data pertinent to the components and subsystems of wind turbines will 

be extracted from the Supervisory Control and Data Acquisition (SCADA) system. The 

SCADA system records failures and the date and time of occurrence; this will be used in 

conjunction with maintenance Work Orders (WOs) of the same period to ascertain the 

specific type of failure and the components involved.  In the compilation, information 

will be sourced from wind farms (comprising of turbines of different designs and 

capacity ratings) located within the same geographical region. The collated data will first 

be organised in accordance with the type, design and capacity of the wind turbines. For 

example, failure data of all 600 kW horizontal axis turbines will be extracted and 

collated. This will further re-grouped according to the subsystems and components of the 

wind turbine and then re-arranged in order of failure modes and dates.  

 

7 Benefits and Institutional consideration of Maintenance Optimisation 

Effective implementation of maintenance optimisation will improve the reliability and 

availability of wind turbines as well as address the Health, Safety and Environmental 

issues. In addition, it will reduce the overall cost of operation and maintenance by 

revealing and focusing attention on problem areas. These will facilitate elimination of 

root causes of failures and also maximise the overall return on investment in wind farms. 

Improving the reliability, availability and maintainability of wind turbines and the 

associated grid connection facilities require useful infield failure and maintenance data. 

The significance of collating and storing the correct type of data has been emphasised in 

[23]. It is imperative to have comprehensive inventories (including specific location) of 
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all wind turbines of each type in an integrated asset register and data management 

system. The system should be robust to accommodate sequential recording of 

maintenance and failure data for each component in an RCM format. This will keep 

maintenance track record of each asset in a meaningful format that can be used for 

optimisation process and for an informed decision making process.  

 

8 Conclusion and Future Work 

This paper has discussed the concept of two quantitative maintenance optimisation 

techniques; modelling system failures using monte-carlo simulation and the delay-time 

maintenance mathematical model. It has also discussed the relevance and applicability of 

the techniques to optimise the maintenance of wind turbines. The benefits as well as the 

institutional barriers have been presented. Further research work is being undertaken to 

collate field failure and maintenance data from collaborating wind farm operators. The 

collated data will be analysed using the two quantitative maintenance optimisation 

techniques presented in this paper. The results of the analyses will be compared and the 

overall out come is to be used in developing an optimised maintenance strategy for wind 

turbines. 
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