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Abstract 
 

This thesis investigates the functionality of the units used in connectionist Artificial 

Intelligence systems.  Artificial Neural Networks form the foundation of the research and 

their units, Artificial Neurons, are first compared with alternative models.  This initial 

work is mainly in the spatial-domain and introduces a new neural model, termed a Taylor 

Series neuron.  This is designed to be flexible enough to assume most mathematical 

functions.  The unit is based on Power Series theory and a specifically implemented Taylor 

Series neuron is demonstrated.  These neurons are of particularly usefulness in 

evolutionary networks as they allow the complexity to increase without adding units.  

Training is achieved via various traditional and derived methods based on the Delta Rule, 

Backpropagation, Genetic Algorithms and associated evolutionary techniques.  This new 

neural unit has been presented as a controllable and more highly functional alternative to 

previous models. 

 

The work on the Taylor Series neuron moved into time-domain behaviour and through the 

investigation of neural oscillators led to an examination of single-celled intelligence from 

which the later work developed. 

 

Connectionist approaches to Artificial Intelligence are almost always based on Artificial 

Neural Networks.  However, another route towards Parallel Distributed Processing was 

introduced.  This was inspired by the intelligence displayed by single-celled creatures 

called Protoctists (Protists).  A new system based on networks of interacting proteins was 

introduced.  These networks were tested in pattern-recognition and control tasks in the 

time-domain and proved more flexible than most neuron models.  They were trained using 

a Genetic Algorithm and a derived Backpropagation Algorithm. Termed “Artificial 

BioChemical Networks” (ABN) they have been presented as an alternative approach to 

connectionist systems. 
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Chapter 1 

Introduction to the Thesis 
 

1.1 Introduction to the Chapter 

 

This chapter sets out the problems addressed by the project and explains their presentation 

in this thesis.  Firstly, the aim and objectives of the research are outlined and discussed, 

next the original ideas that were discovered using the project are detailed.  Finally, the 

remaining chapters are listed and summarised. 

 

1.2 The Nature of the Problem 

 

This project contributes research into the building blocks of Artificial Neural Networks 

(ANNs) - the Artificial Neurons (ANs) or Logic Units (LUs). 

 

Currently, most research into the applications of Artificial Neural Networks falls into three 

areas; pattern recognition, control and signal analysis.  As most development of neural 

networks is therefore focused on improvements in these abilities, it has resulted in the use 

of one of several types of standard models.   

 

The three main standard models are the McCulloch-Pitts (MP) used in Multi-Layer 

Perceptrons (MLPs), the Radial Basis unit in networks of the same name and the Spiking 

neurons of computational neuroscience.  There are several lesser known models such as 

Sigma-PI and Adeline units. 

 

However such a focused, application led, approach is not suitable for all neural networks.  

Consider, for example, evolutionary networks being used in robot control.  In this case, the 

networks need to be able to evolve to deal with different functions – for example, visual 

processing or actuator control. 

 

If a single type of unit is to perform these tasks, it must be flexible enough to evolve into a 

form suitable for all of them.  This is what is meant by the term “Universal Unit” in the 
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context of this project.  The object of the research presented here is to investigate the 

functionality necessary to achieve this. 

 

In other words, the project aims to investigate a neural model suitable for use in artificial 

neural systems, where information may come from many data domains (both inputs and 

outputs).  Such systems include (but are not limited to) evolutionary networks and 

applications such as robotics. 

 

1.3 Universality and Generalisation of Artificial Neuron Function 

 

The starting point for this research was a survey of artificial biological nervous systems.  

When considering this, it should be noted that the nervous systems of animals are modular 

– that is they are made up of several smaller networks, operating together as an ensemble.  

Therefore, any investigation of functionality must bear this in mind. 

 

Biological neurons exist in a variety of shapes, sizes and functions.  They have also 

evolved specialisation, on an operation level, depending on their role in the part of the 

nervous system in which they reside.  Disentangling such complexity is difficult and 

therefore a more systematic, theoretical and mathematical approach was adopted in the 

project.  To this end, the research was split up into two sections. 

 

The first investigation was into units that were designed to operate in a static abstract data 

space.  This visualisation approach was pioneered by Minsky and Papert [1969] who 

represented the output from a McCulloch-Pitts based “Perceptron” type unit as a straight 

line (sometimes known as a “Linear Separator”) in such a data space.  In the research 

presented here, this and subsequent work is contrasted and extended. 

 

The second investigation was into units that code information in the time domain (that is, 

by means of a varying waveform).  An example of this is the biological neuron itself, 

which encodes its level of stimulation as the period of a pulsing waveform.  Such units are 

important because system outputs (for example, the actuators of a legged robot) often need 

a time varying waveform to drive them (because the sequence of events in the system is 

important). 
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A new theoretical framework was constructed around such Time Domain Units in order to 

establish their limitations in a similar way to the static abstract data space of the non-time 

varying neurons.  Additionally, this investigation led to a new connectionist model, based 

on the dynamics of biochemistry rather than neurons. 

 

Finally, once these investigation were over, the units developed were integrated into a 

simple evolutionary modular system (based on a legged robot) in order to test their 

effectiveness. 

 

1.4 Aims and Objectives 

 

The overall aim of the research in this thesis is to investigate new “Integrated Neural 

Models” that fulfils the evolvable functionality requirements discovered through previous 

research in Artificial Neural Networks. 

 

The primary aim is to investigate the School’s ideas of a “generalised neuron” based on the 

Taylor Series (TS) [MacLeod et al., 2001] and to use this model to build a more 

controllable neuron using Evolutionary Techniques.  The system will be tested against 

standard models to find how its generalisation abilities compared.  Then, the unit 

functionality will be expanded to incorporate time domain data.  The goal of these stages is 

to produce a neuron that can act as a building block for the next stage of the project. 

 

The neural model investigated in the previous stages is to be integrated into routing and 

learning algorithms to produce a working system.  However, as explained below, this aim 

altered during the course of the research and lead to the development of a new approach to 

connectionism termed Artificial BioChemical Networks (ABNs). 

 

To accomplish these aims, the following objectives were set out at the beginning of the 

project. 
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To review the literature on the subject of generalised Artificial Neural Networks. 

A literature search into generalised Artificial Neural Networks will be undertaken.  This 

constitutes a portion of the background research of the project.  Initially concentration is 

placed on alternative neuron models and architectures.  The field will then broaden to 

include methods from associated fields in Artificial Intelligence.  Both mathematical and 

biological approaches are examined.  The literature search will continue for the duration of 

the project, and is included in each chapter as appropriate. 

 

To review the biological relationship of the work, paying particular attention to the 

cellular, embryological and evolutionary aspects. 

Textbooks, documentaries, papers and web sites on cell biology, genetics, zoology, 

nervous systems and evolution will be examined as directed.  These will placed in context 

with the appropriate research material obtained from the literature search.  Such material 

will concentrate on biologically inspired Artificial Intelligence implementations.  This 

background material is covered in Chapters 2, 3 and 6. 

 

To develop an appropriate generalised neural model, based on the above, which can 

assume any function (in combination with a genetic algorithm).  It is anticipated that this 

will rely on the polynomial models in which background research has been completed. 

The purpose of this section is to produce an Artificial Neuron that will be flexible enough 

to solve problems in the static mapped space that a single MP neuron cannot solve.  This 

will be accomplished by the problem being examined from a mathematical viewpoint and 

implementing a solution based on the Taylor Polynomial.  The neuron is reported as a 

“Universal Neuron” in this thesis, with the requirements for it being identified in Chapter 2 

and its capabilities being discussed in Chapter 3.  Research into such a neuron is presented 

in Chapters 4 and 5. 

 

To extend the function of the above to time-domain behaviour. 

The Artificial Neuron produced will be extended to the time domain so that it can produce 

time varying behaviour such as waveforms.  In previous projects, McMinn [2002] and 

Muthuraman [2005], have shown that such behaviour was essential for controlling systems 

like robot actuators.  This also has a biological basis as such oscillators are known to exist 

in all nervous systems.  These investigation and results are presented in Chapters 5,6,7 and 

8.
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To compare these results with published and standard data. 

The results will be compared with standard ANN and data.  A review is included in 

Chapter 5. 

 

To integrate these models into a complete neural system. 

The neuron models and the placement algorithms will be integrated into a single neural 

system, as described in Chapter 8.  This system developed under investigation to become 

of a biochemical rather than neural basis. 

 

To apply this system to a standard problem such as the evolutionary walking robots which 

exist within the School. 

The integrated system will be used to recognise artificial visual stimuli, produce control 

signals as a response to these and convert the control signals into a walking gait based on 

the simulated robot models used by the other research projects in the group.  This work is 

described in Chapter 8. 

 

To compare these results with previously published material. 

These results were compared with other published results from within the group and the 

approaches of external researchers, as described in the relevant sections. 

 

1.4.1  Alteration to Objectives During the Project 

 

As with all PhD projects, results from the early periods informed the direction of the later 

research.  In this case, the unexpected richness of the neuron models investigated inspired 

the author to concentrate on these aspects of the project and to scale down the planned 

research into learning algorithms.  It was also decided that the routing and placement 

algorithms was sufficiently complex to merit their own project and this was completed by 

Muthuraman [2005]. 

 

To develop an adaptable learning algorithm, possibly based on the “neuron in a box” 

concept, which can add a learning influence to the above. 

As mentioned above, a review of the research of the project’s first eighteen months 

suggested that more effort should be expended on research into neural functionality.  To 
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this end it was decided to undertake only preliminary work on learning.  This research is 

outlined in Chapter 9. 

 

To develop a placement and routing algorithm for use with the system described above. 

Again, as a result of early findings, as noted above, it was decided to make the initial 

research into routing and placement a PhD project in its own right.  Muthuraman [2005] 

undertook this.  The current author used the appropriate results of this work, developed it 

and incorporated it into the current thesis.  This is contributes to the work of Chapter 8. 

 

1.5 Novel Aspects of this Research 

 

These are some of the aspects of this research that contribute to the originality of the thesis. 

 

• A highly functional advance to the neuron model based on the Taylor Series approach, 

Chapters 4 and 5. 

• A comprehensive theoretical and experimental consideration of the mapping abilities of 

neurons in the spatial-domain, Chapter 5. 

• A new approach to connectionism based on the biochemistry of single celled 

organisms.  This approach yielded insights into new time varying units and network 

paradigms.  This work is presented in Chapters 6, 7 and 8. 

• The integration of the models produced into modular connectionist networks.  This is 

described in Chapter 8. 

• A consideration and investigation of neural functionality in the context of robotic 

systems, presented in Chapters 7 and 8. 

• A basis for further research into learning, modular networks and time-domain 

connectionism presented as part of the further work section in Chapter 9. 

 



 7 

1.6 Thesis Structure 

 

An overview of the remaining chapters is given below. 

 

Chapter 2 - Review of Previous Work 

The work undertaken by previous researchers within the group is described and the 

development and context of the current work is explained. 

 

Chapter 3 - Universality and Generalisation in the Spatial Domain 

In this chapter, the concept of universality is explained at the unit and network level. 

 

Chapter 4 - Power Series 

The mathematical basis of a new neural model is presented and compared to historically 

similar and alternative approaches. 

 

Chapter 5 - Power Series Neuron 

This chapter demonstrates the implementation of the models developed in the previous 

chapter. 

 

Chapter 6 - Artificial BioChemical Networks 

The chapter examines the environmental intelligence as expressed in single celled 

organisms. 

 

Chapter 7 - Artificial BioChemical Networks - Design and Function 

The chapter extends the research to time varying systems and suggests a new model based 

on biochemical pathways.  This Connectionist model is implemented, compared with other 

models and its limitations explored.  The new unit is integrated into a modular network. 

 

Chapter 8 - Artificial BioChemical Networks - Experiments and Results 

Both new approaches are combined to produce an artificial node that is universal in both 

the spatial and time domain, as defined in the previous chapters. 
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Chapter 9 - Further Work 

Suggestions are made for further work.  These include improvements and extensions to the 

work described in this thesis, as well as its combination with the other work from the 

research group. 

 

Chapter 10 - Conclusions 

The main objectives of this research are revisited and critically appraised and the original 

contribution of the work is discussed. 

 

Published papers, extra results and reports produced during this research are included in 

the appendices. 
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Chapter 2 

Review of Previous Work 
 

2.1 Introduction to the Chapter 

 

The Artificial Neural Networks group is based in the School of Engineering at the Robert 

Gordon University.  It was formed by MacLeod and Maxwell in 1994.  At the time of 

writing (October 2005), in the main research area alone, the group had published 16 papers 

externally, 15 MSc, 1 MPhil and 3 PhD theses as well as contributing towards BSc and 

BEng honours projects, and various press and magazine articles. 

 

Since its establishment, the group’s main interests have been in Evolutionary Artificial 

Neural Networks (EANNs).  The ultimate purpose of the research is to achieve a viable 

process by which real artificial intelligence can be instigated.  Advancement occurs in 

steps, not leaps and the group is working towards significantly improving Artificial Neural 

Networks’ real world functionality as a means toward the greater purpose.  Possibly due to 

the strong engineering element in the group, the research has mainly used legged robots as 

test beds. 

 

Membership of the group has varied with staff and student progression.  A core 

composition of four full-time members of staff with a full academic workload and three 

research students is indicative of the general size.  The early work of the group was 

broadly supported by Eident Ltd who contributed towards the first two PhDs, those of 

MacLeod and McMinn.  The later research has operated without external support. 

 

This chapter shows the logical development of research from MacLeod [1999] through 

McMinn [2002] and Reddipogu [2002] to Muthuraman [2005], in conjunction with this 

thesis. 
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2.2 Single String Evolutionary Techniques 

 

The first thesis from the group by MacLeod [1999] sets out the initial concepts that have 

been explored through later projects.  These concepts focus on fundamental problems in 

ANNs that have restricted their abilities.  One of these restrictions is that artificial 

networks are frequently highly designed.  This limits their functionality and they are often 

highly or fully-connected, small and highly task specific.  The discoveries of subsequent 

researchers support the observations in the paper “Evolution and Devolved Action” 

[MacLeod et al., 2002] and this author’s basic assertion that: 

 

“The greater the dependence on outside design, the more specific, inflexible or 

restricted the network functionality will be.” 

 

MacLeod’s major contribution was his Single String Evolutionary Technique, termed 

“Incremental Evolution”.  This concentrated on the optimisation of ANN topologies 

through their synthesis by Embryological and Evolutionary Algorithms (EAs). 

 

The importance of modularity was also discussed and a proposal for an artificial nervous 

system for an animal-like robot called an Animat [Wilson, 1991] was made in the thesis as 

a test bed for the development of modular networks.  The significance of the failure of 

current ANNs to address time series modelling was also observed. 

 

Macleod’s second contribution was a clear list of problems or limitations of current ANNs.  

The investigation of these problems, their solutions and that of subsequently uncovered 

challenges, is the basis for all other research in the group. 

 

2.2.1  Embryological Algorithm and Incremental Evolution 

 

The terms “Embryological Algorithm” and “Incremental Evolution” are to an extent 

interchangeable.  The latter term is that which Macleod used and was also referred to as 

“Incremental Growth”.  However, different researchers use alternative terminology and a 

proposal on this is given later in this chapter. 
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As the author’s research group applies it, Incremental Evolution operates by increasing the 

functionality of an individual through the addition of component parts.  Layers or modules 

of components are added onto a simpler but functional model and evolve together with its 

ability to sense and respond to its environment.  It is akin to foetal development, where the 

embryo increases in complexity through a recognisable series of stages which mimic those 

of its evolutionary ancestry. 

 

The embryological development of a fish, chick, pig, rabbit and human at different stages 

is shown in figure 2.1.  Note the stage by stage similarities between different animals that 

grow into very different individuals.  The similarity goes deeper than physical 

resemblances.  The biochemistry and physiology of the organism may also have 

similarities. 

 

 

Figure 2.1 - After diagram in: ‘The penguin book of the Natural World”, edited Martin et 

al., [1976], 

 

The parity between embryology and evolutionary development is the inspiration behind 

Incremental Growth.  Existing EAs do not add new components to the structure of 

previous individuals in an incremental manner.  Instead, they create a new population of 

more complex but completely re-wired individuals.  This is a major difference between this 

and previous methods and has important ramifications with respect to cost and 

functionality.  The exact nature of these are discussed later. 



 12 

 

The implication of embryological development is that a newly evolved individual is not 

completely re-wired after the previous stage, rather that the new additions are layered 

around the older ones.  This is particularly apparent in the nervous system as shown by 

MacLean’s [1990] Model of the Brain, figure 2.2. 

 

 

Figure 2.2 – MacLean’s theory of brain organisation 

 

In summary, MacLeod’s Incremental Evolution allows an ANN to grow from a simple to a 

complex form, until it is able to perform its intended function. 

 

2.2.2  Growth Strategies 

 

Macleod presented six ways in which an Artificial Neural Network could increase in 

functionality, to become capable of achieving a solution to a set problem.  These “Growth 

Strategies” are: 

 

1. Change the number of neurons. 

Increase or decrease the number of neurons in a layer. 

2. Change the connectivity. 

The number of active weights of the network may be altered. 

3. Asymmetry. 

More connectivity may be provided in parts of the network. 

reptilian brain 

mammal brain 

rational brain 
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4. Horizontal connections. 

Synchronous networks may introduce connections between neurons in the same 

layer. 

5. Skipping layers. 

A connection may omit the immediate subsequent layer and connect to one 

deeper into the network. 

6. Feedback. 

Feedback may be allowed to any previous layer. 

 

MacLeod applied these growth strategies successfully to demonstrate solutions to pattern 

recognition problems.  In doing this, four limitations were observed. 

 

1. The whole network is retrained after each alteration to its topology. 

MacLeod discusses this – and its significance is presented later in this chapter. 

2. The network architecture is highly structured and simple.  

3. The algorithm was only applied to simple tasks and would be more useful if applied 

to other applications as well as pattern recognition. 

MacLeod proposed further development with “A framework for evolution of an 

Animat Nervous System” [MacLeod et al., 1998]. 

4. Only McCulloch-Pitts neurons were implemented. 

 

The research that followed on from MacLeod’s work strove to overcome these limitations.  

McMinn and Reddipogu developed the training with respect to topology alterations and 

expanded the complexity and flexibility of the architecture in significantly different ways.  

McMinn went on to advance the complexity of the algorithm and develop new neuron 

models.  Muthuraman presented a complete solution to retraining after topology alterations 

and to the limitation of structure, both of which can be combined with work by this author.  

McMinn’s advances on applications were superseded by modular implementation by 

Muthuraman and this author.  Finally, Muthuraman produced more flexible, elegant 

models and showed the importance of this. 
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2.2.3  Incremental Training 

 

There is a quandary with the training of many ANNs which is applicable to several 

standard types of network and those based on them, including Multi Layer Perceptrons and 

their associated feed-forward networks as well as recurrent networks.  Once such an ANN 

has been trained, it cannot alter its abilities, e.g. recognise additional patterns, without 

undergoing retraining with the new data set.  This erases all the previous knowledge.  

Additionally, if the network is to be retrained after it has increased in complexity, then 

there is an increase in training cost.  Such was the difficulty with the retraining 

requirements that Grossberg [1976] introduced Adaptive Resonance Theory (ART) as an 

alternative method.  ART is a useful approach but is very limited in how it operates, 

mainly by increasing network size when a new memory is required.  Just how expensive 

these retraining requirements actually are was observed by Muthuraman and is presented 

later in this chapter. 

 

The solution proposed by MacLeod is to train the initial ANN, then to allow it to undergo 

Incremental Growth.  Further training is only applied to the newly added parts of the 

network.  Proving the viability of this became the major objective of Muthuraman’s 

research. 

 

2.2.3.1  A Proposal on Terminology 

 

Terminology is introduced as research uncovers innovations.  Often these are shared across 

different fields, occur in different contexts or are applied to concurrent discoveries, so that 

to the reader they may have different meanings.  As it is applied in the context of this 

thesis, Macleod’s “Incremental Growth” refers to the addition of modules to an ANN or 

comparative units to the sensory, control or output structures of a robot.  Macleod’s 

“Incremental Training” refers to the training of the newly added modules while leaving 

previously trained modules unaltered.  If both these Incremental Strategies are applied as 

parts of the same algorithm then that algorithm is called “Incremental Evolution”. 
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2.2.4  A Framework for Evolution of an Animat Nervous System 

 

In his thesis, MacLeod explored the importance of the unconstrained environment, non-

specific problems and previous work on modular networks.  He proposed work on the 

animal-like robots called Animats, from MacLeod [1999] as a test-bed for Modular 

Artificial Neural Networks (MANNs) which could be exposed to an unconstrained 

environment.  This proposal formed the basis for the research of McMinn and Reddipogu. 

MacLeod’s discussions on MANN synthesis and functionality was the foundation of the 

subsequent modular work of McMinn, Reddipogu and Muthuraman. 

 

2.2.5  The Plasticity – Stability Dilemma 

 

It should be mentioned that with the limited understanding of the operation of memory at a 

cellular and sub-cellular level, in Biological Neural Networks (BNNs), any training 

algorithm must overcome a lack of biological inspiration.  These solutions rely on 

increasing the number of units that compose the system and BNNs do not seem to operate 

in this way. 

 

The previously mentioned difficulties of standard Artificial Neural Network models to  

retain their capabilities during the acquisition of new ones presents a dilemma.  Most 

ANNs initialise in an untrained state.  They are considered trained when they have reached 

a level of usefulness expressed by an arbitrarily low value of an error function.  To achieve 

this stability (the ability of a network to retain trained patterns) they sacrifice their 

plasticity (the ability of a network to learn new patterns).  This is expressed as the 

Plasticity-Stability dilemma [Wasserman et al., 1989]. 

 

Muthuraman’s work on modularity may present methods by which this dilemma may be 

overcome without specifically designing a training algorithm to counter it. 

 

2.2.5.1  A Note on Modularity 

 

The development in the previous sections relies on modular networks.  These are not a new 

concept in Artificial Neural Networks.  Their importance is widely understood and they are 

a popular research subject, this is well reported by Azam [2000].  However, just like fully 



 16 

connected global neural networks, modular networks are often application specific and on 

examination their synthesis is designed and they are inflexible , as shown by McMinn 

[2002]. 

 

From his work on modularity and functionality, MacLeod identifies the three growth 

strategies of size, shape and configuration.  These are investigated by Muthuraman [2005] 

who adapts and develops these into his “Principles of Modularity”. 

 

2.2.6  Time Series Modelling 

 

The inability of many current ANNs to operate with time varying data is observed by 

MacLeod.  He examines attempts to solve the time-series modelling problem and suggests 

how this may be investigated.  Further, when the unconstrained environment expands to 

include time-dependent data as well as spatial data then the magnitude of the non-specific 

problem is greatly increased.  There have been many previous attempts to address this 

problem but they generally rely on complex models such as spiking neurons [Maas and 

Bishop, 1999]. 

 

Biological Neural Networks have evolved in a time-dependent environment and so the 

inclusion of time-series data in their processing ability has been natural.  Most current 

Artificial Neural Networks regard data as fixed and spatially observable.  Even time series 

data is often sampled or mapped into a spatial domain before it is presented to the network 

[Bishop 1995]. 

 

An investigation into the time domain response of neurons became a major component of 

this thesis to allow the possibility of real time autonomous robotics. 
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2.3 Animat Nervous Systems 

 

The Animat Nervous System (ANS) model suggested by MacLeod was proposed as an 

initial concept.  It is hierarchical and modular.  It is therefore an incomplete solution to 

non-specific problems as it does not operate in an unconstrained environment.  It is, 

however, a significant step towards this.  A fully evolvable modular system was not the 

initial intention of the project but was proposed and developed during work on the Animat. 

 

The Animat model separates out component modules into hierarchical parts which each 

have their own systems to control.  The interaction of these modules combines the 

solutions to separate problems and allows the Animat to function. 

 

McMinn performed the work on the lower layers of this model.  These produced the 

reflexes and cyclic patterns the Animat required for mobility.  Reddipogu worked on the 

upper layers.  These represent the sensory input and processing, which corresponded, in 

this case, to visual stimulation.  
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2.4 Using Evolutionary Artificial Neural Networks to Design 

Hierarchal Animat Nervous System - Lower Layers 

 

McMinn’s model is shown in figure 2.3.  Multiple modules can exist in certain layers; 

these are marked with an asterisk.  The hierarchical structure is evident. 

 

 

Figure 2.3 - McMinn’s Artificial Nervous System 

Reproduced by permission of McMinn [2002] 
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A detailed account of the operation of this structure will not be given here, as it is not 

directly relevant to the current work and was superseded by the modular work of 

Muthuraman.  It is sufficient to report that McMinn used the model successfully.  He 

implemented EANNs which incorporated Central Pattern Generators (CPGs) as the action 

layer and artificial reflexes in the reflex layer [McMinn, 2002].  The CPGs effected 

appropriate walking gaits for the Animat.  McMinn successfully evolved both biped and 

quadruped gaits.  The reflexes controlled the position of an actuator in a simulation of a 

DC electric motor. 

 

To develop the reflexes, the neuron model used was the McCulloch-Pitts with a sigmoid 

(logistic) transfer function.  Three main classical Evolutionary Algorithms: Evolutionary 

Programming, Evolutionary Strategy and Genetic Algorithms (GAs) were applied to the 

synthesis of simple feed-forward and recurrent ANNs.  These provided good solutions. 

 

McMinn constructed a new neural model to generate the specific timings required for 

CPGs.  The McCulloch-Pitts neurons initially used did not have time-domain behaviour 

and so McMinn built in rigid time parameters.  The intra-modular topology for the CPGs 

was evolved; the topology of the inter-module connections was designed. 

 

The conclusion of McMinn’s work was the combination of the reflexes with the CPGs.  

The reflexes require a continuous input (from their McCulloch-Pitts heritage) while the 

CPGs produce a pulsed time-domain output.  McMinn therefore added a Leaky Integrator 

(LI) as an interface between the modules. 

 

McMinn also included an alternative investigation using the CPGs, operating as oscillators.  

Biological neural oscillators [Lansner et al., 1998] are known to exist, so this was an 

appropriate investigation.  The oscillating output was produced in response to a specific 

input.  Pattern generators received this oscillating signal and produced the appropriate 

quadruped gaits of gallop, trot, pronk, and walk.  McMinn concluded that by making the 

CPGs structures more modular the evolutionary process was simplified.  This investigation 

provided useful material for Muthuraman’s research. 

The limitations of McMinn’s Animat are that the individual modules do not grow but are 

fixed in size.  These are placed within the ANN and are trained individually with 

independent fitness functions.  Additionally, the unit functionality is fixed and the different 
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types of neurons are designed for specific tasks.  This is a top down approach to creating 

an artificial system, and requires designer knowledge of the modules required.  The model 

is an extremely useful model for robots, Remotely Operated Vehicles (ROVs), 

Autonomously Operated Vehicles (AOVs) etc., which have a specific design and 

functionality and operate in a known environment.  For further explanation of this section 

see [McMinn 2002] 

 

2.5 Evolution of Functions within the Animat Nervous System - Upper 

Layers 

 

Reddipogu’s work has strongly biological influences.  After considering several biological 

vision systems, she researched the visual system of the toad, due to the structural similarity 

between toad and human Central Nervous Systems (CNS) and that it was one of the few 

vertebrate systems thoroughly researched by biologists, [Reddipogu, 2002]. 

 

When humans see an object such as a glass, they are able to identify it quickly.  However, 

glasses come in many different shapes, sizes and colours.  Humans can still identify the 

classification of the object even if they have never seen that exact type before.  Neural 

networks have difficulty in doing this.  If presented with a different object from the same 

domain there is no guarantee that the network will “work it out”.  Even if the object is 

known, it can be presented in a different orientation so that it is no longer recognised.  

Other researchers such as Reid [1989] have worked on the problems of distinguishing 

objects when presented in untrained size or translational positions.  There has been much 

less work done on distinguishing between objects which are trained sequentially but 

presented simultaneously, such as a network being presented with two examples of a glass 

at the same time.  Add to this the requirement for differentiation, size and translation 

capabilities and this is quite a challenging problem. 

 

A novel visual system, based on the differentiation between prey and predator, was 

constructed.  This is of fundamental importance to the unconstrained environment as all 

previous (simple type) ANNs cannot differentiate between two individually trained stimuli 

if they are presented with both simultaneously [Reddipogu, 2002]. 
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Figure 2.4 - Reddipogu's Artificial Vision System, 

reproduced by permission of Reddipogu [2002] 

 

The above diagram, figure 2.4, shows the implemented modular assembly. 

 

The system is based on a modified biological neural circuit proposed by Ewert [1987].  

The components are McCulloch-Pitts neurons with sigmoid (logistic) outputs.  Reddipogu 

made use of an Evolutionary Algorithm employing Reinforcement Learning (EARL) to 

train the system. 

 

A robotic visual system was developed from the network’s ability to recognise 

combinations of patterns trained separately.  It was suspected that the modularity of the 

system gave rise to these abilities.  Useful lessons on modular placement were learned 

from this and implemented by Muthuraman [2005].  For further explanation of this section 

see [Reddipogu, 2002] 

 

2.5.1  Summary of Animat Investigation 

 

McMinn and Reddipogu produced interesting results in their investigation of the effects of 

evolutionary modularity on the functionality of Artificial Neural Networks.  There are two 

other main areas noted by MacLeod that were, at the time, still to be incorporated. 

 

Firstly, their systems had fixed modules that are placed in a hierarchical order based on 

functionality.  The systems do not grow and the separate modules are evolved individually.  
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This means the Incremental Growth introduced by MacLeod was not incorporated into the 

model.  This is attended to in Muthuraman’s work. 

 

Secondly, the unit functionality is limited and requires design based on what the parent 

modular functionality is.  The use of different types of Artificial Neuron was sufficient for 

the purpose of this research but the authors were aware of and commented on the 

limitations.  The significance of this was reinforced and clarified by Muthuraman.  The 

solution to this problem is the subject of this thesis. 
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2.6 The Evolution of Modular Artificial Neural Netw orks 

 

The modular networks used by McMinn and Reddipogu still required a fixed hierarchical 

design that represented a severe limitation in the unconstrained environment.  The solution 

to this was essentially to combine the work of MacLeod, McMinn and Reddipogu.  This 

was done by Muthuraman whose work was to focus on the evolution of the modular 

aspects of the system.  The evolution should be both unconstrained and open-ended.  It 

must therefore operate using an incremental adaptation to its environment.  Such an 

approach replaces the constraints required by design with interaction of environmental 

parameters that are equivalent to evolution by natural selection in nature. 

 

 

Figure 2.5 - Muthuraman's Robotic Body Plan Evolution, 

reproduced by permission of Muthuraman [2005] 

 

The system, invented by Muthuraman, began with a mechanically simple robot in a simple 

environment (actually as simple as possible).  The robot used was akin to an artificial mud-

skipper with simple single-jointed limbs.  The environment is as complex as the robot’s 

ability to sense it, so only factors that it can react to can be part of the fitness function.  The 

environment and the robot’s body plan become gradually more sophisticated.  This 

incremental change is expressed in the robot being able to sense different, or more detailed, 
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environmental factors and react with more degrees of freedom.  Its visual field also grows 

and accommodates more patterns. 

 

To allow the robot to take advantage of greater inputs and outputs, previously evolved 

neural network modules are retained but not retrained.  New modules are added and 

adapted to the whole structure.  They undergo training and evolutionary change until the 

fitness function is satisfied.  The process is an implementation of what MacLeod termed 

“Incremental Evolution”. 

 

The influence on this work is to make the focus and demonstration more robotic, which 

ties in with the previous work by the group.  The robot’s complexity can be varied as 

required.  It can have input sensors, pattern generation and control networks, rather like the 

human body itself. 

 

2.6.1  Principles of Modularity 

 

There is a singular contribution from Muthuraman that is of fundamental importance to the 

incremental evolution of modular networks.  Muthuraman successfully produced an 

algorithm that allows the MANNs to evolve in an unconstrained manner.  Where previous 

work had made use of some intra-modular evolution, the algorithm allows all inter and 

intra-modular design to be evolved.  This algorithm can be called the “Principles of 

Modularity”.  For a full explanation, see Muthuraman [2005]. 

 

The principles of modularity contain four components.  The first is of primary importance 

to the aim of this thesis, and the others are also relevant. 

 

1. Functionality 

The importance of the neuron’s functionality was observed and shown; restricted 

functionality creates an over complexity of the modules in compensation.  If the 

unit functionality is not enough, then there can be functions which cannot be 

evolved (even with larger networks).  No solution to this was provided by 

Muthuraman as it is the basis of work by this author. 
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2. Wiring 

Modules must be permitted to break connections between neurons and modules.  

Even small residual weights on unwanted connections, that appear mathematically 

to have no influence, do not permit the system to operate correctly. 

3. Placement 

The physical location of new modules within the system is essential to the success 

of the system.  Once this is known, it can be incorporated as part of the EA. 

4. Size 

There are a certain minimum number of neurons which each module must have in 

order to evolve correctly.  Over-connection of neurons causes the information to be 

lost in the background noise of the network. 

 

There is a complicated interaction between these principles.  Module size and connections 

are strongly linked to unit functionality.  The growth of the modules must be balanced with 

their training. 

 

2.6.2  Complexity of Training 

 

The increase in computational cost of retraining networks that increase in size to fulfil a 

functional requirement was known to MacLeod.  Just how important this is and how 

debilitating to large systems was commented on by Muthuraman.  It is demonstrated in the 

following example. 

 

If a module begins as a fully connected structure of 10 neurons, each having only one 

connection to all other neurons and including a feedback to itself, then there are 102 = 100 

weights that require training. 

 

If a new module adds another 10 fully connected neurons, then the whole system must be 

retrained with 202 = 400 weights.  So, to reach this stage the module has undergone, 

sequentially, training on 100 then 400 weights.  This means 500 weights have undergone 

training. 
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If a small Artificial Neural Network is eventually evolved to a size equivalent to 100 

modules, totalling 103 neurons, it will have 103 x 103 = 106, one million, weights that 

require simultaneous training. 

 

The total number of connections trained to reach this stage, is the sum of a sequence of 

squares.  (10,20,30,40,…1000). 

 

The sum of n2 where n is the set of integers from 1 to x is given as follows; 
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 equation 2.1 

 

In this case, x represents the effective number of modules; so, by the time the system is 

composed of 100 modules, it will have undergone training on the sum of n2 for x = 100 

modules.  At 100 connections a module this means 33,835,000 total weights have been 

trained. 

 

If the system complies with Incremental Growth, each new module is probably not fully 

connected to the previous modules.  The entire system still requires to be retrained after 

each addition.  The cost is the sum of the sequence (100 + 200 + 300 + 400 +… + 10000).  

This can be written as 100 x (1 + 2 + 3 + 4 + … + 100).  This is expressed as the following 
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This results in a total 505,000 trained connections by the same stage, 67 times less. 

 

A fruit fly has around 103 times as many neurons as in this artificial example, about a 

million, with vastly more connections.  A human has around 107, “ten million” times as 

many, with an average of 2x103 to 5x103 connections per neuron [Edelman, 1987].  If the 

brain was rewired at every evolutionary junction, every one of these connections would 

have to be re-evolved and re-trained.  There is simply no possibility of a viable creature 

being produced in such a staggering search space. 

 



 27 

If instead the training follows the principles of Incremental Evolution, then only the new 

module requires to be trained.  Following the same example, with the same 100 

connections in the initial module, once these are trained, they are left alone.  On the 

addition of each new module, only the new connections are trained. 

 

The total number of trained connections on the addition of the second module is 100 + 100 

= 200. 

 

If we expand this example to 100 modules, totalling 103 neurons, there are a resultant 104 

connections.  As only each new module is trained, each connection is only trained once, 

therefore the Total Incremental Training cost gives a total training cost of 100 x 100 = 104 

trained connections. 

 

In this example Incremental Evolution has trained 1000 connections, while Incremental 

Growth has 505,000 connections and Sequential Growth has trained 33,835,000 

connections.  The evolutionary advantage is 0.19801%  and 0.00295% respectively of the 

required training.  In each of the non-iterative evolutionary methods a progressively larger 

network has to be trained.  In Artificial Neural Networks smaller networks train in fewer 

epochs. 

 

The costs (in terms of training requirement of connections) for each new stage of training 

can be expressed as follows; 

 

Sequential Growth  (AxB) 

Incremental Growth  (A+B) 

Incremental Evolution  (B) 

 

where A equals the complexity of the previous stage and B is the complexity of the newly 

added stage. 
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2.6.3  Functionality and Modularity in Artificial N eural Networks 

 

As previously stated, the importance of functionality at a neuron level was already known 

to the group even at the stage of MacLeod’s initial work.  McMinn and Reddipogu had 

implemented systems that were successful but relied on design at neuron level and again 

unit functionality caused problems in their implementations.   Muthuraman designed his 

own neurons for specific tasks, and went on to establish the necessity for a highly 

adaptable neuron that had been missing from the previous work.  There was now a need for 

a “Universal Neuron” that could take any position in any of the modules and evolve or 

train to fit the desired functionality. 

 

2.7 Conclusions Drawn from Previous Work 

 

Early research targeted the growth of simple networks to solve uncomplicated functions.  

This relied on the existing simple neuron structure and evolutionary techniques.  The 

limitations of these was observed, particularly with regard to intensive design by the user, 

iterative training, modularity, time-domain performance and functionality.  At an early 

stage, research became focused on robotic development as a method for simulating an 

unconstrained and challenging environment in which to develop advanced networks. 

 

The ability of Artificial Neural Networks to perform a single well defined task but be poor 

at solving non-specific problems or multiple tasks, led to the group’s work on communities 

of cooperative neural networks.  These developed into the fixed hierarchical modules of 

the Animat nervous system. 

 

An effort to overcome the restrictions of specific fixed operation and a designed hierarchy 

gave rise to the combination of growth and modularity algorithms.  The resultant Principles 

of Modularity enabled the Evolutionary Algorithm for Modular Growth to be both open 

ended and environmentally unconstrained. 

 

During this research the limitations of the existing neurons became apparent at almost 

every stage.  These limitations resulted in specific neuron designs, dependent on the 

network function.  Pursuing these issues of functionality would have been a distraction 
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from the research at hand - but there are two obvious limitations to the approach.  Firstly, 

there were no time-domain capabilities for the simpler neurons and no evidence that a 

cluster could easily develop them.  Secondly, increasing the number of neurons through 

clustering into functional groups increases the complexity of the search space as previously 

discussed, and makes a solution exponentially more difficult to find. 

 

Work by other researchers has made clear that increasing the complexity of the system 

cannot on its own provide a solution to the non-specific problem, [Potter et al., 1995], 

[Thompson, 1996].  This is because the system does not laterally increase its abilities, and 

perform different tasks, simply by increasing its size in units or connections.  Increases in 

the system’s size are restricted in terms of universality and generalisation as discussed in 

this thesis. 

 

This may seem to conflict with the accepted doctrine that an Artificial Neural Network is a 

universal mapping function from problem domain to solutions space [Hornik, 1989], 

[Barron, 1993] and [Sima and Orponen, 2003].  However, time-series problems are outside 

the domain of the simple neurons based on the McCulloch-Pitts model. 

 

All of this points to the requirement for some type of  “Universal Neuron” as defined 

earlier in this chapter.  What is meant by “universal” will be discussed in the next chapter. 
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Chapter 3 

Universality and Generalisation in the Spatial Domain 
 

3.1 Introduction to the Chapter 

 

The terms “Universal” and “Generalisation” are central to this project and occur frequently 

in Artificial Neural Network literature.  This chapter explains what they mean in the 

context of this thesis and the research of the group. 

 

Definition of Universality : 

The ability of an Artificial Neural Network to approximate any functional mapping 

from its input (data) space to its output (solution) space. 

 

Definition of Generalisation : 

The ability of an Artificial Neural Network to correctly classify new data which 

belongs to the same system as the training data with which it has been taught. 

 

3.2 Universality 

 

A universal approximator is one that can perform an arbitrary mapping from one multi-

dimensional data space to another.  This is generally regarded as a mapping from an input 

space to a output space.  A universal optimiser is one that performs well on a large set of 

optimisation problems within the same mapping from input space to output space. [Duch 

and Jankowski, 1997], [Briggs, 2005].  An example is shown in figure 3.1, where different 

representations of characters are recognised as one of 4 letters. 
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Figure 3.1 – Text recognition mapping function 

 

One of the factors that brought most neural network research to a halt in the 1970s was the 

work by Minsky and Papert [1969].  Amongst other observations, they showed two major 

weaknesses with Perceptron universality. 

 

Firstly, as shown in figure 3.2, a single neuron of the McCulloch-Pitts type, which 

accounted for almost all artificial neural units of the day, could not provide a solution to 

the XOR problem.  The XOR problem is a two dimensional example of the parity-check 

problem and therefore easy to visualise, (see figure 3.3).  It can be expanded into any 

number of dimensions and is known as the “d-bit parity problem”. 

 

 

Figure 3.2 – McCulloch-Pitts Neuron 

 

Figure 3.3 – Exclusive-or (XOR) problem 
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Secondly, they demonstrated that a simple two-layer perceptron was not capable of 

providing a useful function approximation outside a narrow class. 

 

In hindsight, their work did ANN research a great service, because, through visualising the 

problems, they allowed a greater understanding of network limitations.  This focused 

attention on solving these problems and a great deal of the subsequent work on universality 

is based on their observations or in providing solutions to them.  The second weakness 

provided a solution to the first using Backpropagation training [Rumelhart, Hinton and 

Williams, 1986], [Werbos, 1974], [Parker, 1985] as shown in figure 3.4. 

 

 

Figure 3.4 – solution to the parity-check problem 

 

The solution, of course lies in the use of networks rather than individual neurons as shown 

in the diagram and it can be extended to any d-bit parity problem so that multi-layer 

networks are universal approximators [Hornik, 1989].  This extension has a mathematical 

basis as shown by Kolmogorov [1957], who disproved Hilbert’s famous 13th conjecture.  

Flaws were pointed out and fixed by subsequent authors including Lorentz [1966] who 

extended Kolmogorov’s work to show, in theory, that an approximation can be obtained 

for any multi-variate function by a compositional network of univariate functions.  The 

specific function determines the accuracy of the approximation.  Despite this, there are 

many limitations and the specific size of the model cannot be determined from the function 

itself.  As Elder and Brown [1992] observed, “inducing such a model from sample data 

remains a great challenge”. 

 

Applications to neural networks have shown that Kolmogorov’s theorem could be 

generalised for Multi-Layer Perceptrons (MLPs) or any multi-layer feed-forward neural 
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network, and so these could be considered to be universal approximators [De Figueiredo, 

1980]. 

 

Hecht-Nielson noted that Kolmogorov’s superposition can be interpreted as a three-layer 

neural network and any continuous function defined in (d) dimension unit hypercube could 

be implemented exactly by a three layer network of (2d+1) hidden units and with a suitable 

transfer function [Hecht-Nielsen, 1987]. 

 

A survey of universality [Tikk, Kóczy, and Gedeon, 2001] has shown that since then it has 

been proved that different types of neural network possessed the universal approximation 

property [Blum and Li, 1991], [Hornik, Stinchcombe and White, 1989], [Kurkov´a, 1992]. 

 

As noted above, the specific transfer function is of critical importance to a network’s 

universality [Duch and Jankowski, 1997].  Extending the functionality of the unit can 

reduce the dimensional requirement of the network and it has been shown that a single 

hidden layer neural network can be a universal approximator [Hornik, Stinchcombe and 

White, 1989]. 

 

Single-layer neural networks with sigmoidal functions have been demonstrated as 

universal approximators.  They can approximate an arbitrary continuous function, on a 

compact domain, with arbitrary precision, given sufficient number of neurons [Cybenko, 

1989]. 

 

This can be extended to a continuous function, that show a single unit of the correct type 

can itself be a universal approximator [Capanni et al., 2003]. 

 

Polynomial networks (see next chapter) have been shown to have both universal 

approximation abilities and good generalisation [Nikolaev, 2003].  Nikolaev notes that 

problems in generalisation can, partially, be attributed to fixed network structure [Chang 

and Cheung, 1992] and that this cannot be countered by restricting the polynomial 

complexity or by their learning algorithms and therefore under-fitting or over-fitting occurs 

[Heywood and Noakes, 1996]. 
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3.3 Generalisation 

 

In many neural network applications generalisation is best explained by a pattern 

recognition example.  Once a network has been trained to recognise specific patterns from 

a training set, it may be presented with patterns that were not members of that set.  If the 

network has learned the underlying structure of the problem domain, then it should be able 

to correctly classify these new patterns.  Such a network is said to have good 

generalisation.  If the network cannot generalise, then it is simply performing a one-to-one 

mapping from the input space to the solution space as in figure 3.5a.  This could be 

achieved far more simply with a lookup table or template match [Gurney, 1997a], [Bishop, 

1995a]. 

 

 

Figure 3.5a – A one-to-one mapping 

 

 

Figure 3.5b – A many-to-one mapping 
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Figure 3.5b shows the many-to-one mapping actually required.  The new patterns or cases 

that the network operates on must belong to the same system as the training set [Elder and 

Brown, 1992].  Failure to generalise can be attributed to many different factors such as: 

 

• The training set not being a true representation of the problem, perhaps because too 

few examples are used or they cluster in areas and do not contain all the factors that 

separate the cases. 

• The network having too few neurons or weights, so that it may not be able to 

differentiate between all the factors and will under-generalise.  This will be observable 

in training, as the network will have difficulty achieving (or fail to reach) an acceptable 

target error. 

• The network having too many neurons or weights.  In this case, it may fit the training 

set too well and suffer from what is termed over-training or over-fitting. 

• If the search space is too big, the initial parameters may result in the network reaching 

a sub-optimal minimum before it can find a good solution or the global minimum. 
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3.3.1 Over-Fitting and Over-Training 

 

 

Figure 3.6 – Generalisation and over-training – modified from Gurney [1997b] 

 

Consider figure 3.6.  There are two classes distinguished by open and closed symbols.  The 

training set is shown as circles and the untrained patterns are shown as squares. 

 

In the first diagram-pair (a & b), the two lines represent the linear separation of a two 

hidden neuron MLP.  Initially, it appears that there is poor training as two open circles lie 

directly on the linear separators.  This will result in some residual error in training.  The 

network is then tested with the untrained data, represented by the squares, and correctly 

classifies them.  The network has therefore generalised well with the unseen data, 

capturing its essential characteristics in pattern space. 
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If the low error in training is not accepted and a lower error is sought by either continuing 

to train (altering the hyperplanes), as in the second pair (c & d) or adding additional 

separators, as in the third pair, figure (e & f) then a zero error can be found.  However, 

once the unseen data is added neither of these techniques manage to correctly classify the 

new patterns.  These networks have been over-trained and possess poor generalisation.  

They have over-fitted the decision surface to accommodate all the noise and specifics of 

the training data without learning the underlying trends [Gurney, 1997c], [Bishop, 1995b].  

Networks that are too large for the problem domain are susceptible to learning without 

good generalisation [Chen, 1991] and can result in a multi-dimensional Lagrange 

interpolation [Steffensen, 1950] of the training data.  This is expressed in very poor 

recognition ability when presented with new patterns.  However, the extent of the 

performance is determined by the nuances of the pattern space. 

 

Overtraining can be countered with testing called “cross-validation” [Gurney, 1997d] or 

“holdout-validation” [Pednault, 2004].  In these, the error during training is tested on a 

validation-set of untrained patterns that come from the same problem as the training-set.  

As shown in figure 3.7, the error tends to follow that of the training-set but remains slightly 

higher.  As training continues, the training-set error will continue to decrease but at some 

point the validation-set error will begin to rise.  This is the point when the network is 

starting to over-fit and is losing its ability to generalise. 

 

 

Figure 3.7 – Training and validation error – modified from [Gurney, 1997e] 

 

number of training epochs 

error 
training-set error 
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3.4 Universality and Generalisation Trade-Off 

 

From the previous section, it can be seen that a balance must be found between 

generalisation and universality.  ANNs should be adaptable and therefore universal in their 

environment and this can be done by increasing their size.  However, we also know that as 

the size increases, the network risks losing its generalisation abilities.  So the solution to 

this is to combine the lessons learned about training and growth with an increased 

functionality of the basic unit, as in Chapter 4, that allows the use of fewer units in the 

ANN construction.  However, not just any unit can be used; it should be an improvement 

over linear seperability but must have some constraints or the results may be polynomial 

over-fitting, (see Appendix D).  The investigation of such functionality is the purpose of 

the next chapter. 
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Chapter 4 

Power Series 
 

4.1 Introduction to the Chapter 

 

This chapter outlines a neural model, which has been designed to be flexible enough to 

assume most mathematical processes.  It is particularly useful in evolutionary networks as 

it allows the network complexity to increase without adding neurons.  The theory is 

presented in this chapter, this forms the base for the development of both time-series and 

non time-dependent applications as the next chapter shows.  This work was originally 

published by Capanni [2003], see Appendix A. 

 

4.2 Evolution by Devolved Action 

 

The requirements that lead to the research covered in this chapter were introduced in the 

paper “Evolution and Devolved Action” by MacLeod et al., [2002].  This paper identified 

many of the problems with Artificial Intelligence (AI) development, among which was unit 

functionality. 

 

4.2.1  Unit Functionality 

 

All neural biological systems have similar neurons.  However all do not have exactly the 

same unit functionality, even within one organism [Levitan and Kaczmarek, 2001].  

Neurons have been categorised into general types, based on physical appearance, location 

in the organism and perceived function but the subtle differences go deeper than these 

broad categorisations and the operations of the more exotic types are not fully understood. 

 

Also, as described in the last chapter, there are many different types of artificial unit, such 

as, Perceptrons, Radial basis units, Sigma-Pi units, etc.  “What is needed is an evolutionary 

system which can evolve any reasonable neural function” [MacLeod et al., 2002]. 
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This is the basis of the Power Series research (and through its expansion from the static to 

the time-domain, it also leads logically onto the Artificial BioChemical Networks 

presented later in this thesis). 

 

4.3 Power Series 

 

Power expansions belong to a grouping of infinite sequences and series where the nth term 

is a function un(x).  The general power series is; 
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210   equation 4.1  

 

where the numbers na  (n = 0,1,2,…) are constants independent of each other and of x.  

They are used extensively in mathematical physics, allowing descriptions of various 

phenomena including signals such as current and voltage, [Thomas and Finney, 1996a]. 

 

In a sequence un(x) = cxn, or un(x) = c(x-a)n, where a and c are non-zero constants, then the 

sequence converges to zero if |x| < 1 or |(x-a)| < 1, and converges to c if x = 1 or (x-a) = 1 

and otherwise it diverges. 

 

If it converges, the sum to infinity of a formal power series can be expressed as; 
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  equation 4.2  

 

These power series can be truncated to give polynomial approximations to standard 

elementary functions such as ex and sin x.  The range over which these approximations are 

accurate is determined by the order of the polynomial used (and proximity to the radius of 

convergence). 

 

It is a specific type of polynomial expansion derived from power series that is of interest in 

this thesis, namely the Taylor Polynomials. 
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4.4 Taylor and Maclaurin Series 

 

While not every function may be represented by a power series, every1 function f that is 

defined in a neighbourhood of x = 0 and has finite derivatives f’ , f’’ , … ,fn at 0 generates 

polynomials p0(x), p1(x), … , pn(x) that approximate f(x) successively more accurately for 

values of x near 0, [Thomas and Finney, 1996b]. 

 

For any non-negative integer k, the polynomial pk(x) can be taken to be the terms up to and 

including xk in the power series shown in equation 4.2 to give; 
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The coefficients 0a , … , ka  are determined as the derivatives of f(x) at x = 0, (the point (0, 

f(0)) ).  Thus, the polynomials p0(x), p1(x), … , pk(x) expressed as in equation 4.3 pass 

through (0, f(0)).  This is shown in equations 4.4(i to iv);  
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Replacing the coefficients allows the expression to be re-written as shown; 
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1 Actually, there are some exceptions - certain pathologic functions such as the function defined piecewise as 
f(x) = e−1/x² if x ≠ 0 and f(0) = 0.  All the derivatives of f(x) are zero at x = 0.  Therefore the Taylor series of 
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The specific Taylor series shown in equation 4.5 corresponds to expansion about x = 0 and 

is called the Maclaurin series, [Thomas and Finney, 1996c].  If an approximation is 

required near another point a, the powers can be re-written as (x-a) which results in the 

following Taylor polynomial and series; 
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This results in the approximation ( )xpk  about x = a for any non-pathologic function f(x), 

that has finite derivatives of all orders at a.  As with the previous power series 

approximations, the Taylor approximation can be improved by increasing the order. 

 

4.5 Relevance of Taylor Series 

 

The paper “Evolution by Devolved Action” [MacLeod et al., 2002] set out a biological 

basis for exploring unit functionality.  This was followed up by the current author Capanni 

[2003] where a new neural model was presented, based on the idea that a neural unit 

should be flexible enough to fulfil any differentiable mathematical function required of it.  

The model is a logical extension of the Perceptron and the first advances mentioned by 

Capanni in this paper were later developed to what is presented in this and the next 

chapter. 

 

Any lower unit number universality of a Taylor Series network compared to MLP comes at 

a price, as polynomial over-fitting can develop, Appendix D.  Taylor series networks are 

vulnerable to the Plasticity-Stability dilemma, explained below, through what Bishop 

[1995] calls the Bias-Variance trade-off. 

 

                                                                                                                                                    
f(x) is zero even though the function f(x) is not zero.  So it is assumed that f is well approximated by its 
Taylor polynomials. 
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The Plasticity – Stability dilemma is as follows: 

 Plasticity: The ability of a network to learn new patterns. 

 Stability: The ability to retain previously trained patterns. 

Dilemma: A fixed topology network cannot learn new patterns without 

affecting the memory of old ones. 

 

4.6 Linear vs. Non-Linear Separability 

 

The previous chapter introduced linear separability and explained how this simple concept 

was the basis for Artificial Neural Network functionality.  The advantages and limitations 

of this with respect to universality, generalisation and the famous parity-bit problem were 

explored.  In figure 4.1 it is shown visually how a single, second order TS neuron can 

exactly map a non-linear boundary, whereas a McCulloch-Pitts Multi-Layer Perceptron 

requires two layers and several neurons to approximate the same boundary (it cannot 

match it exactly).  A potential disadvantage of which, that will be explored later, is the 

danger of exact matching, resulting in over-fitting and loss of generalisation. 

 

0.4 0.2 0 0.2 0.4
0.5

0

0.5

 

Figure 4.1 - Comparison of McCulloch-Pitts MLP to single 2nd order TS neuron 

 

A non-linear decision boundary can only ever by approximated by a set of linear 

separators.  While for generalisation purposes approximation may be desirable, a non-

linear separator can either exactly match the boundary or, if the training algorithm includes 

an approximation element, provide such a level of approximation with a single unit of 

sufficient power order. 
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The universality of the TS neuron can be seen in that it reduces to a MP neuron as shown 

in equations 4.8c and 4.9a and explained below. 

 

4.7 Model Solution 

 

The majority of ANNs currently use a neuron developed from the original McCulloch-Pitts 

model, as shown in figure 4.2.  Other types use a Euclidean difference formula S = (x – w).  

Those that do not may still utilise the initial (input x weight) summation stage.  The output 

from this stage usually undergoes a transformation using a threshold or squashing function.  

This function normalises the output, common examples being binary {0,1} or logistic 

sigmoid (0,1).  Without the use of the normalising function, the activity of this neuron is 

given by; 
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The variable S denotes the sum of each input xi multiplied by the strength of its connection 

termed the weight wi and is known as the “activation” of the neuron.  In the absence of a 

normalising function the output of the neuron O is equal to S as shown in equation 4.8b. 
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      equation 4.8b  

 

For a neuron of two inputs this can be given as the easily visualised equation 4.8c of a 

straight line with respect to the variables x1, x2. 

 

2211 wxwxO +=      equation 4.8c  
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Figure 4.2 - McCulloch-Pitts neuron of n inputs 

 

As discussed previously in this chapter continuous non-pathologic function can be 

modelled using an infinite power series as shown in equation 4.2, specifically a Taylor 

series as shown in equation 4.5.  This can be implemented as a neuron using the output 

function shown in equations 4.9 and figure 4.3. 

 

A TS neuron of two inputs with a second order expansion can be expressed as in equation 

4.9a.  The variables x1, x2 are independent of each other in real terms and in the 

mathematical sense.  Therefore x1, x2 could be replaced by x, y. 
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For a TS neuron of two inputs, an order p expansion can be expressed as in equation 4.9b. 
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In its full expression, a TS neuron of n inputs expanded to an order of m can be expressed 

as equation 4.9c. 
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Sum= (x1.w1 + … + xn.wn) 
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In all of equations 4.9, the derivatives of the time-series are replaced by the weights in a 

like for like manner, so that; 
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 for f(x) as the function is now multi-variate in f(x1,…,xn).  

 

The term f(0) can be replaced with the bias θi as in standard MP neuron operation to give 

equation 4.10a. 
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In an MP neuron, θ is a property of the neuron, not the connection.  However, f(0) is a 

constant and so the sum of all the θi can given as θ, a constant term without input, to give 

equation 4.10b. 
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Figure 4.3 – Taylor series neuron of n inputs and order m 

 

The factorial term p! is theoretically absorbed by the weight term and as the values for xi 

should be constrained within the range [-1,1] or [0,1] then the powers of xi will not become 
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uncontrollably large.  However, some account of this must be taken when generating the 

initial parameters for the neurons by dividing the initial range for each power by the 

appropriate factorial or the factorial must be left in place to give equation 4.10c.  If this is 

not done then the higher powers will have a disproportionate significance than a Taylor 

series would indicate and may result in high sensitivity to small changes in weights or 

inputs that have a major effect on boundary conditions.  As higher orders of power are 

taken the weights may become so small that their effect is negligible (especially if the 

implementation has a limited decimal accuracy).  In the case of the weights, a well 

structured training program may compensate for this but a significant point is that the 

effect of noise would be magnified by these disproportionate values that could have a 

significant effect on the generalisation abilities of the network. 
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Comparison of equations 4.8c and 4.9a shows that if the coefficients of the second order 

terms of x1 and x2 reduce to zero then the TS neuron reverts back to a McCulloch-Pitts 

performance.  This remains true for any number of terms as a McCulloch-Pitts represents 

the first order of a Taylor Series, or Power Series, neuron. 

 

Note that each connection has a separate weight for each order of series used.  It is not 

practically possible to implement an infinite series without contributing to Bellman’s 

[1961] “curse of dimensionality”.  Therefore it is necessary to restrict the order of the 

Taylor series, possibly to as much as a second or third order series.  However it has already 

been demonstrated that a second order series is many times more capable of approximating 

a non-linear separator as it can follow the contour rather than exploiting tangents.  Within 

the following sections the specifics of restricting the orders are examined. 

 

As each input undergoes a separate Taylor series expansion the operation of the neurons 

does not represent a true multi-variable Taylor series.  This is intentional as if it was 

allowed to do so then the “curse of dimensionality” would apply and the implementation 

would produce a variation of the Polynomial Neural Network (PNN) [Ivakhnenko, 1968].  

This would have eight variables for a 2nd order 2 input neuron, and as such is frequently 
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restricted to two inputs such as in the Group Method of Data Handling (GMDH), 

[Ivakhnenko, 1971]. 
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Chapter 5 

Taylor Series Neurons and Networks 
 

5.1 Introduction to Chapter 

 

This chapter demonstrates the implementation of the Taylor series neural model which was 

presented in the previous chapter.  The implementation is compared to equivalent Single 

and Multi-Layer Perceptron and the results are shown.  Significant operations are explored, 

with specific attention being paid to universality and generalisation.  Other major 

polynomial type networks are also discussed.  Finally, the relevance of time-domain 

operation is introduced and the application of power series networks to this is illustrated 

with an explanation of how this leads to the Artificial BioChemical Networks presented in 

the next chapter.  Additional results and expanded figures, denoted F.#, are included in 

Appendix F. 

 

5.2 Background to Chapter 

 

As discussed in Chapter 4, the Taylor Series neuron differs from the McCulloch-Pitts 

neuron in its connections and weights. 

 

Both neuron types can utilise a range of output functions, common ones being the 

piecewise linear, threshold (also called heaviside step) function, the logistic sigmoid and 

the hyperbolic tangent functions.  The combination of the summation function and the 

output function is called the transfer function. 
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5.2.1  Output Functions 

 

To assist with visualisations the threshold and logistic sigmoid piecewise output functions 

are illustrated below.  The linear and hyperbolic tangent output functions are included in 

Appendix F. 

 

2 0 2

0.5

1

t x( )

x  

Figure 5.1 – Threshold function t(x) 

 

   equation 5.1 

 

A threshold function, sometimes called a “heaviside or step function”, usually operates 

with output {min, max} values and a decision or threshold value.  If the sum reaches the 

threshold values, the output is set to max; otherwise, it is set to min. 

 

The specific function shown here has an output set of {0,1} which are commonly used 

values.  The function may use any pair of values however, these and the set {-1,1} are the 

most frequently implemented. 

 

The step function produces the binary decision about a threshold point, often denoted by 

the Greek lower-case theta θ.  In the example shown in figure 5.1 and equation 5.1, the 

theta value is 0.5. 

 

t(x) = 1 if t ≥ 0.5 
0 if t < 0.5 
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A neuron using such a function is often called a Threshold Logic Unit (TLU).  Theta is 

usually set at the same value for all neurons in the network, often the mid-point between 

the output max and min.  Such a network can be denoted as TLU{θ, min, max} with 

TLU{0.5,0,1} and TLU{0,-1,1} being typical values.  In the perceptron training algorithm, 

θ is a trainable parameter. 
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Figure 5.2 – Logistic sigmoid function l(x) 
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The sigmoid function is probably the most commonly used output function.  The example 

shown in figure 5.2 and equation 5.2 is the logistic sigmoid.  This is a useful extension of 

the step function that provides a continuous solution and overcomes the limitations of the 

previous binary functions.  It is symmetric through the range [0,1] about its output value of 

0.5 and has a slope controllable by a parameter rho ρ and an intersect by the use of bias θ, 

which is inherited from the threshold function.  The effect of these is shown in figure 5.3 at 

the end of this section. 

 

5.3 Design and Implementation 

 

In this section, the capabilities of the individual Taylor Series neuron are explored and 

compared to the McCulloch-Pitts neuron in the same environment.  It is intended that an 

understanding of the operation of single neurons will assist in the understanding of the 

operation of a network of neurons. 
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5.3.1  Taylor Series Neuron Output Functions 

 

Two inputs (x1,x2) are used so that the operation can be easily visualised.  For the Taylor 

series neuron, implementation proceeds in increasing order of powers while it is feasible to 

analyse and represent the unit like this. 

 

The output O and sum S values of the MP and the TS neurons are represented by equations 

5.3 and equations 5.4, which are derived from the equations 4.8(a,b,c) and equations 

4.10(a,b,c) respectively.  This assumes no transfer function is used and represents a linear 

output function with no amplification. 
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Specifically for a 2nd order and a 3rd order expansion, equation 5.4b can be expressed as 

5.4c and 5.4d respectively. 
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The terms in the square brackets represent the change from the previous order of power.  

Notice that for equation 5.4c, this indicates the change from a 1st order neuron; comparing 

this to equation 5.3b, shows that a 1st order TS neuron is a MP neuron.  This means that if a 

linear separator is required in a TS network then weights {wi,p} will train to 0 for all 

powers p > 1. 
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A logistic sigmoid output function, as in equation 5.5a, is applied to give the output values 

of each as shown in equation 5.6 for a MP neurons and equation 5.7 for a TS neuron.  This 

function squashes the output to [0,1].  The maximum and minimum values are theoretically 

reached when the sum value reaches ±∞.  Practically, this occurs due to computational 

rounding to prevent exponential overflow. 
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The equations for the logistic hyperbolic tangent output function are given in Appendix F.  

These are no more complicated than those of the sigmoid function as it operates on 

repeated terms. 

 

As the logistic sigmoid function is the main output function used in this thesis, an 

explanation is given.  A logistic function has a range of [0,1], while a threshold function 

forces a choice between the extreme values of {0,1}.  This is not as unrelated as it appears; 

it is attributable to the previously mentioned term sometimes used with the logistic 

function, the slope, denoted by the Greek lower case rho ρ and affecting the sensitivity of 

the function - the range of the sum over which the output produces its extreme values.  

This is shown in equation 5.5b and figure 5.3.  So the threshold replaces an extreme use of 

ρ and is used to simulate a binary decision of the logistic function.
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Figure 5.3 – Affect of slope over logistic sigmoid 

 

A neural network makes a decision on the inputs it receives.  To do this mathematically, a 

threshold function can be employed to give a binary response.  However, not all decisions 

are binary and so a continuous output can give a decision expressed in more detail or 

confidence.  If such an output is to be of value, it must be quantifiable.  Therefore a 

squashing function is used to constrain the outputs to a known range so each specific 

output can be qualified and the values do not tend to such large numbers that the network 

saturates and becomes untrainable. 

 

In calculating the operations of the neurons, a classical matrix notation or an object model 

can be used. 

 

ρ = 1 
ρ → 0 

ρ → ∞ 
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5.4 Testing : Single Neuron Functionality 

 

This section visualises the various separator functions in three dimensions.  The x-axis and 

y-axis represent the inputs (x1,x2) while the z-axis shows the output value. 

 

5.4.1  McCulloch-Pitts Functions 

 

The McCulloch-Pitts neuron is first examined as a benchmark.  This is shown with two 

different separators; threshold and logistic sigmoid.  The piecewise linear and hyperbolic 

tangent separators are shown in Appendix F. 

 

The sum value of the neuron is calculated as in equation 5.3b.  In the specific example 

shown in equation 5.8, the value of 0.5 is assigned to w1, w2 and θ.  This is chosen to scale 

and shape the separator to the relevant axes so that its operation can be clearly shown. 

 

5.05.05.0 21 +⋅+⋅= xxSum    equation 5.8  

 

  

Figure 5.4(a,b,c) – The Sum value expressed as a function of inputs 

 

In figure 5.4a the resultant sum is visualised as a flat plane which can take any angle 

between the output-axis and the input-plane (made from the input axes x1,x2).  It can also 

transect the input-plane in any straight line.  The contours in the z-axis, including where it 

meets the input-plane, represent any proportionality of decision.  These contours are all 

straight lines as shown in figure 5.4b by rotating the figure to view directly through the 

input-plane.  This plane extends to a hyper-plane in more than two input dimensions.  

x2 

x1 

sum 

x1 x2 

sum x1 

x2 



 56 

Viewing the gradient from directly into the input-plane shows the increase in output-axis 

value symmetrically and uniformly with respect to the input-plane. 

 

When a threshold, as in equation 5.1, is applied to the Sum values of equation 5.8 and 

figure 5.4, the step can be seen.  This is similar to the piecewise linear separator without 

the incremental region.  The McCulloch-Pitts neuron originally used this type of separator 

and it remains popular. 

 

  

Figure 5.5(a,b,c) – Threshold output functions 

 

Figures 5.5 show the clear binary separation that is typical of the threshold function.  As 

figure 5.5b shows this is still a linear operation, with only one contour in the output, z-axis.  

The result is obvious when viewed in terms of z-axis values of figure 5.5c. 

 

The sigmoid output functions squash the output into a domain.  In contrast to the 

discontinuities of the piecewise linear and threshold functions.  This means that any 

measurable change in the sum has a distinct effect on the output although changes are not 

linearly equitable. 

 

In the next figures, the logistic sigmoid separator of equation 5.5 is applied to the values of 

equation 5.8 and figure 5.4.  The resultant figures 5.6 are obviously more complicated than 

the previous separators.  The output range is now squashed to (0,1) and the function is 

continuous and differentiable over its entire range. 
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Figure 5.6(a,b,c) – Logistic sigmoid output functions 

 

The sigmoid plane in figure 5.6a can be seen to be an extension of the two dimensional 

sigmoid curve into three dimensions.  This is verified by taking a cross section of the plane 

in figure 5.6b.  The effect on the decision surface is shown in figure 5.6c, where the 

decision surface can be seen to be completely incremental in terms of output.  However, 

the gradient is non-uniform, which allows the amplification/squashing of data from the 

input-plane.  As before, the expansion into more dimensions results in hyperplanes 

operating equivalently. 

 

The sensitivity of the function can be tuned to the relevant area of the input plane by the 

use of a slope parameter.  The lineage of the function can be also observed through the 

effect of ρ є {0.1,1,10}, although ρ can take any value. 

 

  

Figure 5.7(a,b,c) – Logistic sigmoid output functions with ρ 

 

As ρ → 0 the function approaches its equivalent step function, approximating a vertical 

plane through the input-plane mid point, and becomes increasingly sensitive to changes in 

the input-plane.  As ρ → ∞, the function stretches out becoming less sensitive to changes 

in the input-plane and approximates a horizontal plane through the Output-axis mid point.  
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Figure 5.7a and figure 5.7b show all three values of ρ, the original value of 1 is retained 

from the previous example is shown by the middle sigmoid.  The z-axis decision is shown 

in figure 5.7c for (ρ = 0.1), a comparison to figure 5.5c and figure 5.5c shows that a 

decreasing value of ρ causes the output function to approximate the threshold output 

function. 

 

5.4.2  Taylor Series Functions 

 

The Taylor Series neuron is examined with the same two output functions as the 

McCulloch-Pitts neuron.  These are; threshold and logistic sigmoid.  The piecewise linear 

and hyperbolic tangent are shown in Appendix F.  The separators will be shown on a 2nd 

order and 3rd order Taylor Series neuron.  Parameter values will remain the same as before, 

except when this places the observable region outside any decision boundary.  Then 

specific examples will be shown to demonstrate the full flexibility of the Taylor Series 

neuron. 

 

The sum values of the neurons are calculated using equation 5.4c for 2nd order and 

equation 5.4d for 3rd order.  These are compared directly to the previous calculation of 

equation 5.3b, 1st order or MP. 

 

In the specific example shown - a 2nd order Taylor Series neuron in equation 5.9 and a 3rd 

order Taylor Series neuron in equation 5.10 - the terms in square brackets represent the 

additional parameters required for the increase to the current order of power.  Equation 5.8 

and figures 5.4 which represent the McCulloch-Pitts neuron or a 1st order Taylor Series 

neuron, are repeated for comparison purposes. 

 

The value of 0.5 is assigned to w1,1, w2,1, w1,2, w2,2, w1,3, w2,3 and θ except when stated 

otherwise.  This is done to scale and shape the output function to the relevant axes so that 

its operation can be clearly shown. 
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Figure 5.4(a,b,c) – The Sum value expressed as a function of inputs 

 

  

Figure 5.8(a,b,c) – The Sum value of 2nd order Taylor Series neuron 

 

  

Figure 5.9(a,b,c) – The Sum value of 3rd order Taylor Series neuron 

 

As the Taylor Series neuron increases from a 1st to 3rd order it may immediately be 

observed, through figures 5.8(a,b) and 5.9(a,b) that there is now a non-linear summation 

function and this takes the form of a contoured-plane in the output-domain. 
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There does not initially appear to be much variation between the 2nd and 3rd order.  

However, if figure 5.8c and figure 5.9c are examined, it may be observed that an 

adaptability in dimensionality has occurred with the increase to 3rd order.  The contours in 

figure 5.8c show that a 2nd order power is all that is required for a non-linear separator; 

however, observing the contours shows that there is an apparent symmetrical but non-

uniform (in the input-plane) relationship to the output-domain.  So far, all examples have 

used identical inputs in the dimensions of the input-domain and this gives rise to the 

symmetry being equal in all input-plane dimensions.  This is shown more clearly in figures 

5.10.  The introduction of the 3rd order terms allows an extra variation.  The variation in the 

input-plane is non-linear; however, it is also non-symmetrical in input-plane dimensions. 

 

It can be surmised that extending the order to 4th and above will extend the variation 

between the input-dimensions and the output-plane.  What practical use this may have will 

depend on the complexity of the input-domain.  Any increase in order beyond the 

requirements of the input-dimensions will simply increase the number of parameters that 

the network has, beyond those required.  This will result in reduced training performance 

in terms of number of epochs and over-fitting.  This is illustrated later in the experimental 

section. 
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Figure 5.10(a,b,c) – Sum value of 2nd order Taylor Series neuron focusing on decision 

region 
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The non-linear symmetry of the input-plane (x1,x2) in the output-domain is clearly shown 

in figures 5.10.  This is a marked improvement over the linear-plane of the 1st order as it is 

also capable of representing this.  It is achieved by increasing the co-efficient of the 2nd 

order terms; this corresponds to an increase in magnitude of weights as shown in equation 

5.11. 

 

The simple extension of the 1st to 2nd order allows output functions similar to the Sigma-Pi 

neurons described by Rumelhart et al., [1986] but with a gradient expression and without 

the restrictions on network topology and non-linearity.  While the extension to 3rd order 

gives the additional capabilities of non-symmetry in the 2nd dimension, this is achieved in 

the same way as for the 2nd order, with the emphasis on 3rd order terms, shown in figures 

5.11 and equation 5.12. 
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Figure 5.11(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on decision 

region 

 

The effect of each order of power can be shown through independently varying the 

coefficient, or weight, affecting it.  This is first shown in all orders with positive values of 

the 1st, 2nd, and 3rd order Taylor Series neurons.  Negative values simply invert the decision 

surface of the output-axis. 
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Skewing the inputs in the 1st order neuron (McCulloch-Pitts) results in a tilt of the flat 

plane towards the input-axis with the lower coefficient, shown in equation F.8 and through 

comparison of figures 5.4 and figures F.7.  This effect of skewing 1st order inputs is 

inherited by the Taylor-Series neurons when the pairs of higher orders coefficient remain 

equal.  The 2nd order neuron is shown in equation F.9 and by comparison of figures 5.10 

and figures F.8.  For the 3rd order neuron equation F.9 and a comparison of figures 5.11 

and figures F.12 apply. 

 

Higher order terms can be examined by skewing individual orders, or combinations of 

higher orders, while fixing the 1st order terms and remaining higher orders.  The various 

combinations of this are examined in Appendix F for 2nd and 3rd order neurons. 

 

Skewing the 2nd order coefficients on their own causes the decision surface to stretch along 

the input-axis with the lower coefficient.  This is best visualised by comparing figure 5.10c 

and figure F.9c although it is observable in the other relevant figures. 

 

The effects of skewing the 1st or 2nd order terms individually on their own affect different 

aspects of the decision surface.  This implies an independence of operation.  If both the 1st 

and 2nd order terms are altered from equation 5.11 to give equation F.9 and equation F.10 

and applied simultaneously, they give equation F.11.  A comparison of figures F.8, figures 

F.9 and figures F.10 shows the independence of the actions of the 1st and 2nd orders.  

Figures F.10 shows a direct combination of both effects. 

 

An effect of the results of this independence between the different orders mean that the 

decision surface can be altered independently towards what is required.  This is without an 

interaction between the orders becoming reliant on parameter interaction and therefore 

much more difficult to control than independent parameters. 

 

Examining the effects of different input domain values with added 3rd order terms results in 

figures F.12 to figures F.24.  These show both the independence of the power terms and 

the effect of each order on the separator.  These are all created by modifying the terms of 

equation 5.12 and can be compared to the symmetrical input-domain in figures 5.11. 
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The above figures, and those in Appendix F, demonstrate the flexibility of the Taylor 

Series neuron with respect to its inputs.  In each case the variation in the coefficients is 

seen to be independent, allowing an element of control of the neuron while being able to 

exploit all the variation of the output-domain. 

 

In the previous sections, the polarity of the coefficients has always been positive.  The 

input values have taken either positive and negative values.  What follows are examples of 

the coefficients taking different polarity, positive/negative values, for the same values of 

inputs. 

 

The combinations of possible values are enormous, so the following are examples of 

interesting occurrences to show the flexibility of the error surface.  If all values take the 

opposite polarity then the error surface is inverse in the output-domain; therefore, any 

combinations of values that produce valleys in the output-domain will produce peaks if the 

polarities of all values are inverted. 

 

McCulloch-Pitts neuron. 

 

5.05.05.0 21 +⋅−⋅= xxSum    equation 5.13  

 

   

Figure 5.12(a,b,c) – The Sum value expressed as a function of inputs of McCulloch-Pitts 

neuron with opposing polarity of coefficients 

 

The sum values shown in equation 5.8 are altered to a negative coefficient for the second 

input, to give equation 5.13.  A resultant angular change occurs in the orientation of the 

output-plane.  This is manifested in the decision-surface as a rotation of 90° around the 
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decision-axis as shown in figure 5.14c.  This alteration does not express any change to the 

ability of the McCulloch-Pitts neuron to be a linear separator.  If the other coefficient is 

given a negative polarity, then the rotation occurs in the opposite direction.  If both are 

applied a 180° rotation occurs. 

 

Taylor Series neuron - 2nd order. 
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Figure 5.13(a,b,c) – Sum value of 2nd order Taylor Series neuron focusing on the decision 

region with opposing polarity of 2nd order coefficients 

 

The 2nd order Taylor Series neuron can partially invert its decision-surface by altering 

equations 5.11, 5.12 and F.9 to F.25.  These regions are only symmetrical as the opposing 

coefficients of equation 5.14 have equal magnitude; the region can stretch and tilt just as in 

the previous section.  Once separators are applied later in this chapter, the importance of 

this specific example is explored. 

 

As before, when different orders of coefficients were skewed with respect to the input-axis, 

the polarity of these coefficients can also be altered.  The same rules apply, as shown in 

figure 5.12.  A 1st order swap in polarity causes a rotational effect in the McCulloch-Pitts 

neurons.  If applied to the 1st orders of a 2nd order or higher Taylor Series neuron, then the 

decision-surface undergoes the same rotation.  Likewise, the effects of other orders are 

independent when applied to neurons of higher orders. 
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Taylor Series neuron - 3rd order. 
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Figure 5.14(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision 

region with opposing polarity of 3rd order coefficients 

 

The 3rd order Taylor Series neuron allows a decision boundary with more gradient changes, 

which permits some interesting behaviour.  This does not inhibit it from mimicking the 

capabilities of the 2nd order neuron - it can utilise any of these and apply its own.  Equation 

5.15 is modified from equation 5.12 in the same way as before.  The figures 5.14 can be 

compared to figures 5.11 to demonstrate the decision-surface changes as can figures 5.15 

and F.25 to F.27. 
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Taylor Series neuron - mixed orders. 
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Figure 5.15(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision 

region with opposing polarity of various coefficients 

 

Despite the intricacies of the output-domain, it is when the output functions are applied 

that the values become obvious.  This is attended to next in this chapter. 

 

Taylor Series neuron – output functions. 

 

The output functions are applied to the 2nd order Taylor Series neuron as expressed in 

equation 5.11 and shown in figures 5.10.  The following figures 5.16, 5.17 and F.28, F.29 

are all performed on the same 2nd order Taylor Series neuron which has parameters that 

focus the figures on the decision region. 

 

  

Figure 5.16(a,b,c) – Threshold output functions 
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Figure 5.17(a,b,c) – Logistic sigmoid output functions 

 

The same output functions are now applied to the 3rd order Taylor Series neuron as 

expressed in equation 5.12 and shown in figures 5.11.  The following figures 5.18, 5.19 

and F.30, F.31 are all performed on the same 3rd order Taylor Series neuron which has 

parameters that focus the figures on the decision region. 

 

  

Figure 5.18(a,b,c) – Threshold output functions 

 

  

Figure 5.19(a,b,c) – Logistic sigmoid output functions 
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From examining figures 5.16 to figures 5.19 and F.28 to F.31, it appears that there are 

major differences between the 2nd and 3rd order Taylor Series neuron.  This shows how the 

addition of different power terms can dramatically change the operation of the neuron.  

The 2nd order output functions have similarities which are in part due to the equal values 

used for the coefficients of the input-axis, that give rise to a symmetrical decision-region in 

both axes, essentially a circle in the decision-surface.  What is obvious from comparing the 

figures from each 2nd order and 3rd order set, is that the 3rd order neurons appears to retain 

some symmetry, as would be expected given the parameters used; however, it is not the 

same in every dimension.  This is caused by odd powers operating on negative input 

values.  Increasing the order of power has a resultant increase in the degrees of freedom the 

neuron can operate with. 

 

In a comparison against the McCulloch-Pitts figures 5.5 to figures 5.7 and F.3 to F.6, it 

may be seen that the Taylor Series neuron can act as a non-linear separator no matter 

which output function is used.  Equally importantly, they can enclose or isolate a complete 

region of the decision surface and, if there is a continuous function applied to this, it can 

return a continuous output, as in the sigmoid functions. 

 

Taylor Series neuron - non-linear and isolating behaviours. 

 

The capabilities that are permitted by the non-linear and isolating behaviours are of 

significant importance to ANNs.  A set of examples of what these can do is now presented. 

 

The following shows a 2nd order Taylor Series neuron as in equation 5.17 and figures F.26.  

The decision-surfaces shown are for the threshold in figures 5.20 and the logistic sigmoid 

in figures 5.21.  These should be compared with figures 5.16 and 5.17 respectively. 

 








 ⋅+⋅
+⋅+⋅−=

2

0.35.0
15.195.05.0

2
2

2
1

21

xx
xxSum   equation 5.17  

 



 69 

  

Figure 5.20(a,b,c) – Threshold output functions 

 

   

Figure 5.21(a,b,c) – Logistic sigmoid output functions 

 

If the 2nd order Taylor Series neuron has parameters that are allowed to become non-

symmetrical, its output functions can form an oval for threshold functions, as shown in 

figures 5.20.  It may also form a series of concentric ovals, for continuous or sigmoid 

functions, as shown in figures 5.21.  A piecewise linear function would show an oval 

plateau bounded by a series of concentric oval contours and finishing with a second outer 

oval plateau.  These ovals can be larger than the decision region and so bisect it in curves 

and curved hyper-planes.  This is something a McCulloch-Pitts neuron is not capable of 

and that a network of such neurons can only approximate. 

 

If another case is examined, that of the 2nd order neuron shown in equation 5.14 and figures 

5.13, then an even more important capability can be demonstrated. 
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Figure 5.22(a,b,c) – Threshold output functions 

 

  

Figure 5.23(a,b,c) – Logistic sigmoid output functions 

 

 

Figure 5.23(d,e) – Rotations of logistic sigmoid output functions 

 

It can be seen in figures 5.22 that a threshold function can separate non-continuous 

regions; this shows that a 2nd order Taylor Series neuron can provide a solution to the XOR 

(parity-bit) problem presented by Minsky and Papert [1969], which was a significant factor 

in the downturn of research in ANNs until backpropagation became widely known in the 

1980s as discussed in Chapter 3.  The sigmoid functions produce a saddle or butterfly 

shape which can be viewed in the various rotations of figures 5.23.  For a MLP to perform 

this solution to the XOR problem at least three McCulloch-Pitts neurons are required.  As 
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the MLP can only approximate a curve, it is a further order of dimension out in an attempt 

to approximate a curved plane. 

 

A 3rd order Taylor Series neuron can operate with even more flexibility than the 2nd order.  

The examples shown are based on the 3rd order neuron of equation 5.16 and figures 5.15.  

The decision-surfaces shown are for the threshold in figures 5.24 and the logistic sigmoid 

in figures 5.25. 

 

  

Figure 5.24(a,b,c) – Threshold output functions 

 

  

Figure 5.25(a,b,c) – Logistic sigmoid output functions 

 

The use of 3rd order terms allow the Taylor Series neuron to isolate a non-symmetrical 

region and to divide up the remaining problem-domain.  This is shown clearly in figures 

5.24 and can be observed in the contours of figures 5.25.  Behaviour like this is far beyond 

the flexibility of McCulloch-Pitts neurons.  However, the more flexible the behaviour, the 

harder it is to control and therefore attention must be paid in the training method to this - 

and subduing terms such as the factorial divisor are advisable.  If the orders of power are 

increased, then both the flexibility and difficulty in control will increase also. 
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5.4.3  Universality and Robustness Trade-Off 

 

The more universal a neuron becomes, the more functional it becomes.  It is then capable 

of performing mappings beyond those of other neurons.  This appears to be a 

straightforward benefit.  The drawback is that as this results in a single neuron performing 

complex functions, the system becomes dependant on individual neurons.  A critical failure 

may then occur if one neuron is damaged (as opposed to the gradual degradation of 

performance which occurs in networks with many simpler neurons). 

 

An overdependence on single components therefore creates a lack of redundancy which 

can lead to a delicately balanced system where good noise tolerance is un-achievable.  This 

results in a trade off between universality and robustness. 

 

This point does not reduce the requirement for a neuron to be universal, or at least more 

universal than the models currently implemented.  However it may be that such neuron 

should be able to be implemented in instances that allows them to perform at different 

levels of functionality. 

 

5.4.4  Summary – Single Neuron Functionality 

 

In a comparison of the Taylor Series neuron against the McCulloch-Pitts neuron, it can be 

seen that the Taylor Series neuron is not bound by the linear separator properties of the 

McCulloch-Pitts neuron - although it can, if necessary, adopt them.  Clearly, the Taylor 

Series neuron can adopt curved separators and through this solve problems like the parity 

bit problem.  The flexibility of the Taylor Series neuron must be controlled with a carefully 

constructed training algorithm, as the addition of new orders of powers significantly 

changes the error surface by introducing new degrees of freedom.  However, all orders of 

power operate independently and therefore, if there is an error-minimum-seeking training 

method employed, these sudden changes are likely to be avoidable. 

 

The Curse of Dimensionality [Bellman, 1961] associated with higher-order units that 

prevents their use with many input parameters or orders of power is controllable and 

limited in the Taylor Series neuron.  The complexity increases in a Taylor Series neuron is 



 73 

in order of sums as new orders are added, rather than products.  This is due to the lack of 

interaction between the inputs, which is not the case in other Polynomial units. 

 

The operation of Taylor Series neurons as part of a practical network is the subject of the 

next section. 
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5.5 Taylor Series ANNs vs. McCulloch-Pitts ANNs 

 

In the previous section, the flexibility of Taylor Series neurons was explored.  Their 

abilities were examined and contrasted with those of McCulloch-Pitts neurons.  This 

section now considers networks of such neurons and how they perform against each other. 

 

The networks used in these experiments are presented in two topologies.  Each of these is 

populated with MP neurons for benchmark testing and then TS neurons for comparison 

testing.  The topologies are a single-layer network and a two-layer network.  When 

populated with McCulloch-Pitts neurons these are referred to as a Single-Layer Perceptron 

(SLP) and a Multi-Layer Perceptron.  When populated with Taylor Series neurons they are 

termed as a Single-Layer Taylor Series network (SLT) and a Multi-Layer Taylor Series 

network (MLT).  All of these networks have an additional layer of input nodes. 

 

The networks implement a standard logistic sigmoid function as shown in equation 5.5. 

 

The performance characteristics of the networks during and after training are compared.  

These characteristics include training time, memory capacity, and pattern recognition 

ability. 

 

5.5.1  First Comparison 

 

This is a comparison of a SLP and a SLT using the standard Delta Rule training for the 

McCulloch-Pitts neurons and a derived Delta Rule for the Taylor Series neurons.  There is 

no variation in network topology as it is determined by the problem parameters; both 

networks have 35 input nodes (one per pattern data unit) and 26 output neurons (one per 

input pattern).  The patterns presented are shown in the next section. 

 

The purposes of this test are to examine training time of the networks and to assess their 

noise tolerance capabilities. 
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5.5.2  Second Comparison 

 

The second comparison is of a MLP and a MLT using a modified Genetic Algorithm as the 

training mechanism.  A compact parameter problem is presented to compare network 

training time on multiple layers, and test MLP and MLT topology requirements.  The 

purposes of this test are to examine training time of the multi-layer networks and to 

determine the minimum network size.  

 

5.5.3  Third Comparison 

 

The third comparison uses the same MLP and MLT as the previous test but uses a larger 

training set to ensure that the networks are capable of expanding their problem domains, 

and to quantify any effect of this on network size. 

 

5.6 Comparison Parameters 

 

Three performance parameters are compared.  These are: training time to achieve a target 

error, minimum network size to achieve the target error (memory capacity) and noise 

tolerance. 

 

5.6.1  Training Time 

 

Training times are quantified in terms of epochs.  Consideration is also given to the 

computational overheads, as different networks may have different lengths of epoch.  In 

addition to total training time, it is important to observe the error profile during training as 

this can reflect on both possible improvements to the training algorithm and on the 

performance of the trained network.  

 

In general, a shorter training time is advantageous.  However, most practical networks are 

fully trained before their operational phase so in most cases only very significantly longer 

training times, (to the extent that the network is impractical) are of importance. 
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5.6.2  Minimum Network Size 

 

The ability of one network to show the same memory capabilities as another with a 

reduced network size is important.  The smaller network demonstrates superior universality 

- the ability to map from input to solution space. 

 

5.6.3  Noise Tolerance 

 

The network’s resistance to noise is a test of its ability to generalise.  A network with a 

higher noise tolerance is more capable of correctly classifying new or damaged inputs from 

the data set. 

 

5.7 Design and Implementation 

 

The networks were tested with two different data sets.  A [3x3] grid, related to robot 

vision, was used for the MLP vs. MLT comparison.  This allowed a simple network to be 

set up for a direct comparison of the neuron types.  A [7x5] pattern set, see figures 5.26, 

was first used to test the noise performance of the neurons in the SLP and SLT.  This was 

also used on the MLP and MLT to confirm that the performance achieved using the 

smaller grid was scalable. 

 

5.7.1  Data Set 

 

The first data set tests the network’s ability to recognise the 26 capital letters of the western 

alphabet, figures 5.26a.  This is a standard data set, used in the University research group 

and many others.  Each image is a [7x5] matrix (35 inputs).  There are two sets, a binary 

{0,1} and a continuous range [0,1].  These values were chosen as they represent the range 

of the output function used, the logistic sigmoid .  The second data set tests its ability to 

recognise patterns on a [3x3] matrix, (9 inputs), see figures 5.26b. 
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Figure 5.26a(i,ii) – Network training sets – 5x7 grids 

 

 

Figure 5.26b – Network training set – 3x3 grid 

 

5.7.2  Single-Layer Network Topologies 

 

The network topologies are shown in a general format; the number of input nodes is 

dictated by the number of parameters in the training patterns, and the number of output 

neurons is dictated by the number of patterns the network is required to classify. 
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Figure 5.27 – SLP – Single-Layer Perceptron 

 

The single-layer network implementing McCulloch-Pitts neurons shown in figure 5.27 has 

a topology determined by the problem parameters as mentioned above. 

 

 

Figure 5.28 – SLT – Single-Layer Taylor Series network 
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The single layer implementation using Taylor Series neurons, (figure 5.28), has the same 

topology as the SLP.  The difference is in the connections between the output neurons and 

the input nodes.  There are the same number of these however each one may have multiple 

weights - one for each order of power that the neuron is implementing.  The Taylor Series 

neurons and weights are denoted with double borders. 

 

The outputs, targets and errors are utilised by the Delta Rule by Widrow and Hoff [1960], 

for the SLP and a derived Delta Rule by this author, that takes the powers into account, for 

the SLT.  It is not necessary to give a full expansion at this point.  Appendix C on the 

Backpropagation Algorithm includes the Delta Rule to train the output layer and the 

derived Delta Rule for the SLT. 

 

5.7.3  Multi-Layer Network Topologies 

 

 

Figure 5.29 – MLP – Multi-Layer Perceptron 

 

The multi-layer implementation of the Perceptron using McCulloch-Pitts neurons, see 

figure 5.29, retains the same input node and output neuron structure as in the SLP; 
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however it also has a hidden layer.  The structure of the network shown is a standard and 

well tested topology. 

 

 

Figure 5.30 – MLT – Multi-Layer Taylor Series network 

 

The network shown in figure 5.30 represents a multi-layer Taylor Series network.  The 

Taylor Series neuron operation is the same as in figure 5.61 and is denoted with double 

borders. 

 

In the multi-layer networks the hidden layer is placed between the inputs and outputs and 

denoted as circles.  The number of hidden neurons is not usually determined by exact 

methods in neural networks but by trial and error. 

 

Training on all multi-layer networks is via a modified Genetic Algorithm. 
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5.8 First Experiment : Comparing 

  McCulloch-Pitts SLP and Taylor Series SLT – 5x7 test 

 

This experiment tests training times and noise tolerance.  The McCulloch-Pitts based 

network of figure 5.27 and the Taylor Series based network of figure 5.28 were trained on 

the 26 patterns shown in figure 5.26a.  Where it assist understanding, larger versions of all 

multi-line graphs are supplied in Appendix F. 

 

5.8.1  Training Time 

 

The first set of information that was presented to the networks use the input values from 

figure 5.26a(i); all inputs are from the set {0,1}.  The output targets belong to the set {0,1}.  

The target error was set at 0.125.  The error used is the Least Mean Square calculation as 

shown in Appendix C on Backpropagation. 

 

 

Figure 5.31a – Comparison of error vs. epoch for SLP and SLT networks 

 

The performances of the SLP appear similar to the SLT as the order of the Taylor Series is 

increased.  Only results from 29 epochs onwards and the first 3 orders are shown for 
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clarity.  Higher orders were tested, but these performed little differently from the 3rd order.  

This is discussed later in the chapter. 

 

 

Figure 5.31b – Comparison of error vs. epoch for SLP and SLT networks 

epoch ≥ 99 

 

The training performance becomes different at low errors.  Due to the initial similarity, this 

is not clear from figure 5.31a and so is shown by figure 5.31b.  The graph focuses on the 

epochs from 99 onwards, where the advantages of the SLT in achieving lower errors can 

be seen.  The time taken to reach the target error drops significantly from 150 epochs to 

116 by adding a 2nd order term and then decreases slightly to 113 by adding higher terms. 
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Figure 5.31c – Comparison of epoch vs. power for SLP and SLT networks 

network targets є {0,1} 

 

The experiment was repeated with a constrained input set of {0.1,0.9}.  This both 

increased the difficulty in separating the patterns, (as the previous input values of 0 have 

no effect on weight calculations or training), and allows the different Taylor Series (orders 

of power) non-linear operation.  Training time increased to 207, 164 and 161 epochs 

respectively.  The performance in the experiments is summarised in figure 5.31c.  The 

order of power of 1 indicates the SLP, orders of 2 or greater indicate the SLT.  The solid 

line shows the initial data set of {0,1}, the dashed line the data set of {0.1,0.9}.  Both 

experiments were tested sequentially by increasing the SLT to the 10th order and then 

progressively each 10th order to the 100th order and no further improvement was found. 

 

A second set of experiments were then carried out.  These involved setting the targets to 

{0.1,0.9}.  As the previous targets are at the extreme values of the output function, they 

were achievable by allowing the network weights to tend to large magnitudes.  These 

targets require a “finer tuning” of the weights and have correspondingly longer training 

times, as shown in figure 5.32. 
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Figure 5.32 – Comparison of epoch vs. power for SLP and SLT networks 

network targets є {0.1,0.9} 

 

For inputs of {0.1,0.9} and {0,1} the training time has significantly increased; however, 

the reduction is in line with increasing orders of power and follows the same profile as 

before.  There is little fluctuation as the orders are increased.  This may be due to initial 

starting values.  Orders were not tested above the 5th power as there seemed little to 

investigate. 

 

Finally, the training pattern set of {0,1} values was replaced with the continuous values 

[0,1], as shown in figure 5.26a(ii).  This increases the problem difficulty and produced an 

expected increase in training time, shown in figure 5.33.  The targets were returned to 

{0,1}. 
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Figure 5.33 – Comparison of epoch vs. power for SLP and SLT networks 

network targets є {0,1} 

 

The additional complexity of the problem increases the network training time beyond that 

for the input set of {0.1,0.9}, despite this set allowing some 0 value inputs.  Even with the 

continuous inputs, the problem is still 3rd order solvable. 
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5.8.2  Noise Tolerance 

 

Noise was tested at an increasing value from 0% to 24%, where 0% represents the original 

patterns and 24% represents the addition of a randomly generated value between 0.00 and 

0.24 to every input data unit. 

 

The networks were presented with problems which were arranged into sets as; 

 

• data patterns figure 5.26a(i) inputs {0,1} and targets {0,1}. 

• data patterns figure 5.26a(i) inputs {0.1,0.9} and targets {0,1}. 

 

• data patterns figure 5.26a(i) inputs {0,1} and targets {0.1,0.9}. 

• data patterns figure 5.26a(ii) inputs [0,1] and targets {0,1}. 

 

Other combinations were also tested to assess if there were any unusual behaviours; 

however, these four tests proved sufficient for comparison. 

 

The first pair of tests have similar results, but the alteration of the inputs from {0,1} to 

{0.1,0.9} reduces the noise tolerance of the SLP and the SLT for most TS orders.  

However, as there is a random element in the noise, anomalies do occur.  The average error 

level for the SLT has increased as it does for the SLP.  These noise effects are shown in 

figure 5.33a for the inputs {0,1} and figure 5.33b for the inputs {0.1,0.9}. 
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Figure 5.33a – Comparison of error vs. noise% for SLP and SLT networks 

network inputs є {0,1} 

 

 

Figure 5.33b – Comparison of error vs. noise% for SLP and SLT networks 

network inputs є {0.1,0.9} 
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The experiments were run multiple times to ensure that typical performances was 

represented.  The mean value is not shown as this gives a smooth, misleading performance 

which is of importance later.  In figures 5.33, the highest, worst performance, belongs to 

the SLP.  The “mess” of other lines belongs to the SLT of orders 2nd to 10th.  The 

individual lines of the SLT are not as important as their communal location. 

 

It is clear that the addition of orders of power to the units improves the noise tolerance of 

the network.  The lines represent the total error for all patterns at a particular noise level.  

The SLP error can be seen to be clearly greater than the SLT error.  The effect of this noise 

is not evenly distributed and all orders of SLT and the SLP recognise roughly the same 

number of patterns over all noise levels and only misrecognises between 4 and 6 patterns 

out of 650 presentations.  There is one exception; the SLT of 8th order recognised all 

patterns.  These occurrences are mainly due to the random element in the noise generation.  

When the data set {0.1,0.9} is used, despite the slight rise in error, pattern recognition 

improves significantly for the SLT, which reduces to 3 missed recognitions; however, the 

SLP rises to 7 missed recognitions.  This may be due to the effect of 0 and 1 inputs to the 

TS neuron.  As the TS neuron implements power terms, these values are non-applicable for 

0 inputs and act as a second weight; however, they are still a linear operation for a 1. 

 

The second test shows an unusual effect in SLPs and SLTs.  The inputs are returned to 

{0,1} and the targets are set to {0.1,0.9}.  As previously reported, the training time 

increases dramatically as the networks try to fine-tune the weights to these targets.  In the 

previous reported examples the average error across all added noise for the SLP was in the 

region of 0.35 and 0.38 for the two data sets; it now rises to 0.43.  For the SLT, the average 

across all powers was 0.23 and 0.25 - it now rises to 0.41.  This is what would be expected 

for over-fitting.  However, the error rise is smooth, as shown in figure 5.34. 
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Figure 5.34 – Comparison of error vs. noise% for SLP and SLT networks 

network inputs є {0,1} - targets є {0.1,0.9} 

 

Comparing the smooth behaviour of this test to the erratic behaviour displayed previously 

does not show any apparent advantage.  If the number of patterns the SLP and the SLT are 

able to recognise is tested, the result is that both networks recognise all patterns at all noise 

levels.  This is excellent for avoiding the effect of noise in networks in general, however, it 

is so effective that it does not allow a direct comparison between the SLP and the SLT.  

Due to this, the targets for the final test are returned to {0,1}.  It should be noted that this 

experimental performance contradicts much of the theory researched on polynomial over-

fitting.  This is attached as Appendix D. 
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Figure 5.35 – Comparison of error vs. noise% for SLP and SLT networks 

network inputs є [0,1] - targets є {0,1} 

 

The noise profiles of the SLP and the SLT appear similar whether using the data set with 

continuous data [0,1] or the constrained data {0,1}.  The SLP has an average error of 0.36, 

(which is between the previous performances on data sets {0.1,0.9} and {0,1}) while the 

SLT has an average of 0.24 (which is between its previous performances on the same 

data).  As regards the number of patterns recognised, the SLP performs slightly poorly 

compared to the SLT, with 10 missed recognitions.  The SLT has an average of 4 missed 

recognitions. 

 

The continuous data set [0,1] was examined with targets of {0.1,0.9} and showed similar 

behaviour to the constrained data set {0,1}.  However, there was a rise in average error 

values.  Although it was possible to generate misrecognitions in the SLT by testing with 

noise, these occurred rarely and in general the SLP and SLT recognise all patterns. 
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5.9 Second Experiment : Comparing  

  McCulloch-Pitts MLP and Taylor Series MLT – 3x3 test 

 

The McCulloch-Pitts based network of figure 5.29 and the Taylor Series based network of 

figure 5.30 were trained on a 3x3 grid size. 

 

The error, the number of hidden neurons required to achieve satisfactory performance, and 

the associated number of training epochs were assessed.  This was to confirm that the 

performance of the TS neuron can be extended into a MLT.  The number of problem 

parameters is reduced to simplify the comparison, hence the smaller grid size used.  The 

only new assessment is in the number of hidden neurons required. 

 

The training method employed is a Genetic Algorithm.  Training time is measured in 

number of generations required to reach a target error.  The size of each individual in the 

GA is determined by the number of parameters in the network.  This means that a MLT 

will require a larger GA than a MLP.  The parameters of the GA are shown in figure 5.36. 

 

Parameter Value 

String size One floating point number per weight 

Population size 100 

Crossover Random 10 point max 

Mutation rate Uniform random 1% 

Mutation Uniform random ±5 

Selection Roulette 

Figure 5.36 – Genetic Algorithm - parameters 
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5.9.1  Training Time 

 

The MLP was of a fixed size.  When the problem was consistently solvable by the MLP, 

the MLT was used and various power orders were applied to the network.  The effect of 

this against training time is shown in figure 5.37. 

 

 

Figure 5.37 – Comparison of generations vs. power for MLP and MLT networks 

 

This network was three layered, consisting of 9 inputs and 11 neurons configured for 

character recognition, as 5 hidden neurons and 3 output neurons.  It can be seen that there 

is little point in introducing orders above the 3rd.  Although the training epochs decrease, 

the computational power required for training increases - in the case of the 3rd order 

neuron, by three times.  However, there is still a net improvement in training time.  These 

results were reported by Capanni et al. [2003] 
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5.9.2  Size of Network 

 

When used in a standard pattern recognition system, the use of the higher order neurons 

allow the system to operate with fewer units, as shown in figure 5.38. 

 

 

Figure 5.38 – Comparison of size vs. power for MLP and MLT networks 

 

It can be seen in both cases that above the 5th order, performance shows little improvement. 

Indeed, there may be disadvantages in using too many orders, [Bishop, 1995a].  In this 

case, the reduction in number of neurons is offset by the increase in the multiply and 

accumulate instructions required for a more complex network.  These results were also 

reported by Capanni et al. [2003]. 
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5.10 Third Experiment : Comparing  

  McCulloch-Pitts MLP and Taylor Series MLT – 5x7 test 

 

The McCulloch-Pitts based network of figure 5.29 and the Taylor Series based network of 

figure 5.30 were trained on the 26 patterns shown in figure 5.26a. 

 

This was to confirm that the TS neurons operates as expected as the problem domain 

becomes more complicated. 

 

A MLP, shown in figure 5.29, was presented with the pattern in figure 5.26a(i).  The 

network trained sporadically with 5 hidden layer neurons.  This is a well researched 

network and it is known that the starting parameters can affect whether it successfully 

trains with this size of hidden layer.  If the size is increased to 6 neurons the training 

becomes consistent. 

 

From the experiments in the previous two sections, it appears that for this data set, using a 

TS neuron of 3rd order achieves the maximum benefit in generalisation and training time.  

This order of TS neuron is applied to the MLT network shown in figure 5.30 using the data 

of figure 5.26a(i).  The MLT successfully trains on this larger data set with only 4 hidden 

layer neurons.  This is a smaller network than was found for the MLP trained by either the 

GA or with Backpropagation. 

 

5.11 Summary of Network Comparisons 

 

An examination of Taylor Series networks has produced some interesting results.  When 

compared against single-layer McCulloch-Pitts networks, using Delta Rule training, the 

performance of the two networks follows a similar path of improving error verses epoch 

count, as shown in figure 5.31a.  Interestingly, increasing the order of the TS neuron has 

little or no effect in the early stages of the error profile.  The conclusion is that during this 

time the network is improving its performance through the use of linear separators and the 

higher orders are unable to present an advantage.  Once training slows down for the MP 

network it becomes progressively harder to solve the problem with linear separators, and 

the TS higher orders show an advantage (figures 5.31b and 5.31c).  This is why the SLT, 
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2nd order, only shows an improvement over the SLP at low errors.  Following the same 

reasoning, the TS 3rd order shows no improvement over the 2nd order until the error is 

further reduced and the problem becomes more difficult to solve with a combination of 1st 

and 2nd order separators.  The reason no improvement is shown by adding higher orders is 

that the network does not require them to solve the problem and in this case, the transition 

between 3rd and 4th order does not occur. 

 

In the problem presented, increasing the order of power reduces the number of training 

epochs required up to 3rd order, when no additional advantage is gained with further 

increases, (see figure 5.31c). 

 

If the SLT is implemented sequentially, in software, then there are calculations for each 

increase in power and so the processing overload is greater for the higher order power even 

given the reduced number of epochs.  In a parallel hardware implementation this would not 

be the case and the higher orders would have a speed advantage.  It may be the case that a 

gradient descent learning algorithm, specifically derived for a TS network, could impart an 

advantage to the software implementation that reduces the training cost. 

 

Adding TS powers improves noise tolerance, (see figure 5.33a).  In the problem presented 

there is little gain in increasing the power beyond the 2nd order.  The SLT advantage in 

noise tolerance occurs in terms of a lower error on all noise levels and a similar pattern 

recognition capability to the SLP, as reported.  Once the TS neurons are allowed to have 

inputs which provide a non-linear function, (see figure 5.33b), the effect of the noise 

tolerance results in better pattern recognition compared to the MP neurons SLP, as 

reported.  This is to be expected as a smooth separator provides a better optimal fit, in data 

space, than the piecewise separator produced by a network of first order (perceptron) units. 

 

Once the targets set for the networks were altered as in figure 5.34, it was observed that the 

non binary targets resulted in the network better fitting the problem and producing a result 

intrinsically more noise tolerant, without validation training.  The conclusion is that this 

may be due to the fine tuning of weights, giving a more robust network. 

 

When a comparison of neurons is performed using a multi-layer network, the TS neuron 

shows the same advantages as outlined above, in training time.  Additionally, and 
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importantly, the TS MLT can recognise the same number of patterns with fewer neurons 

than the MP MLP.  This shows an increase in universality of the TS neurons over the MP 

neurons (it may be argued that this is due to the greater number of weights associated with 

TS neurons).  Some of this work has shown that with increasing pattern complexity, the TS 

neurons retain this advantage over MP neurons.  This work was done using a GA and the 

development of a more appropriate gradient descent algorithm would allow greater 

examination. 

 

In summary, the Taylor Series neuron has demonstrated better generalisation abilities than 

the McCulloch-Pitts neuron by consistently performing better in noise tolerance tests.  

Additionally, it showed an advantage in the number of training epochs required.  There is 

the strong suggestion that these advantages can be improved through specific training 

algorithm development. 

 

5.12 Time Domain Problems 

 

So far in this thesis discussion has centred around the use of neurons in the spatial domain 

(for example the recognition of a stationary pattern).   However, such abilities are not 

sufficient in many applications.  Consider, for example, a neural network which has to 

produce an output which controls the legs of a robot.  Such a neuron must have outputs 

which vary with time (in order, for example, to raise or lower the legs in the correct 

sequence).  Of course, this is exactly analogous to the neurons that control leg movements 

in animals.  The neurons so far discussed can only produce such time-varying outputs if 

part of a complex network with internal feedback paths.  However, as is well known, 

biological neurons themselves produce time varying outputs and therefore operate quite 

differently from the artificial McCulloch-Pitts-derived models.  This has spurred 

researchers towards modelling such neurons (often called spiky neurons) as discussed in 

the next chapter.  Therefore, no thesis on neuron functionality could be complete without a 

discussion on time-varying neuron models and this is the subject of the  second half of this 

thesis (from Chapter 6 onwards).  However, before embarking on that route, first consider 

whether the power series neurons that have been discussed in this chapter can serve as a 

template for time-varying behaviour. 
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5.12.1  Pulse Generators 

 

To produce time-varying signals a small oscillatory network was employed.  The network 

used a pair of neurons arranged in a recurrent system, (see figure 5.39).  The outputs from 

each neuron, at time t, become the inputs to the cross-connected neurons at time t+1.  The 

TS produces an output based on incrementing the order of expansion terms, based on the 

signal received at time tn.  This results in a declining effect of signal over time, without the 

requirement for a leaky-integration summing function. 

 

 

Figure 5.39 – Neural Oscillator 

 

The network was given the task of producing outputs that mimicked specific wave-forms.  

The first experiments were based on producing simple exponential decay in the unit, (see 

figure 5.40).  This was chosen as it was simple, not cyclic, useful as a basis for other 

functions, and as it was known that the output would initially have to rise to the peak value 

and provide a rough approximation of a biological action potential. 
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Figure 5.40 – Time-Series exponential decay – theoretical output 

 

The units were altered incrementally based on the coefficients of their Taylor Series to give 

the best performance of the network, (see figure 5.40), which shows the output from one of 

the neurons.  The desired exponential decay is shown with the actual best performance 

neuron output.  The action potential-like performance produces a resultant error in the first 

time units that decays rapidly; any further improvement relies on reducing this time period.  

The result of this experiment was then applied to the network using a GA, which evolved 

to give the solutions in figure 5.41. 
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Figure 5.41 – Time-Series exponential decay - achieved 

 

The network can produce a reasonable approximation of the desired output (a single 

neuron output is shown).  However it was unclear as to how variation could be introduced 

in to the system to allow different pulses to be generated or different wavelengths to be 

produced, other than by training them into the network using a GA.  However, such a 

network still could not respond to changes in its input signal. 

 

To test the flexibility of the system, various pulses were trained with different target sets.  

The network topology and functionality were not altered.  The performance was reasonable 

in production of triangular, square and sinusoidal waves, all of which are useful in walking 

gaits.  The sinusoidal pulse is shown in figure 5.42. 
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Figure 5.42 – Time-Series sinusoidal wave 

 

Despite the reasonable performance, the evolution of such outputs required a considerable 

training time and the network was only capable of producing a single output without being 

retrained. 

 

5.12.2  Summary of Time Domain Problems 

 

The oscillators produced in these experiments were functional but limited.  They lack 

convergent control (the ability to respond to inputs and produce different outputs).  They 

can produce a time-varying signal, however they require to be reset each time they 

complete a pulse or as the signal degrades. 

 

In summary, the Taylor Series neuron has proved highly capable in the spatial domain, in 

terms of generalisation and universality.  Attempting to adapt it to time-domain behaviour 

produces interesting effects but the behaviour had an artificial quality and lacked 

adaptability.  It may be possible to develop this with further work, although how to do this 

was not readily apparent. 

 

From the difficulties experienced with time-domain behaviour, a new approach was sought 

and this led to the investigation into single-celled intelligence and the development of the 

Artificial BioChemical Networks outlined in the next chapter. 
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5.13 Literature Search of Other Highly Functional Neuron Types 

 

There are many Artificial Neuron types that attempt to increase the unit functionality 

through alternative mapping functions.  These include: Polynomial Neurons (GMDH), 

Product Units, Second-Order Neural Networks, Higher-Order Neural Networks, Sigma-Pi 

Units, Functional Link Units and Radial Basis Function Units.  Other types exist, but these 

are the major units with some similarity in application or function to the approach 

presented here. 

 

These methods have similarities to that of the Taylor Series neuron presented in this 

chapter.  The similarities are mainly in the use of polynomial terms.  The differences are 

related to interaction between the inputs, which results in the Curse of Dimensionality and 

restrictions on connectivity. 

 

Polynomial approaches are based on the work of Ivakhnenko [1968], [1971], who 

produced “The Group Method of Data Handling” (GMDH) as a rival to the method of 

stochastic approximations.  This was before Backpropagation had been introduced as a 

method of training multi-layer networks, and caused a brief revival in specific ANN 

research just before its decline due to Minsky and Papert [1969].  GMDH uses familiar 

ANN terminology and topology but has many differences as its conception pre-dates the 

modern expanse of research in ANNs.  For example, each GMDH neuron has two inputs 

and its output is a six weight quadratic combination. 

 

Since that time the terms “polynomial neural networks” and “GMDH” have become 

interchangeable.  There have been several commercial applications, such as those of 

Barron Associates Inc [2005].  Barron Associates Inc was founded by Roger L. Barron 

who with his son Andrew R Barron contributed extensively to research on polynomial 

networks. 

 

“Product Units” were introduced by Durbin and Rumelhart [1989].  In a two layer 

representation of this network, the hidden layer is usually replaced with product units and 
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the output layer remains as a summation unit.  This can be applied to most problems that 

are solvable by Backpropagation trained feed-forward MLPs. 

 

There are size advantages to this, as shown by Engelbrecht and Ismail [1999], who 

demonstrate that a quadratic function of the form (ax2 + c) can be produced by a product 

unit network of 1 hidden and 1 output unit, (a MLP requires 2 hidden units to do this).  

They show this to be an increased “information storage capacity”, as was also 

demonstrated with the TS MLT in this chapter.  They also note the problems with gradient 

descent algorithms, due to the “turbulent error surface”, and suggest algorithms including 

Particle Swarm Optimisation, Leapfrog and Genetic Algorithms, as they are global 

optimisers.  This was found to be the case with the GA trained TS MLT. 

 

Second Order neurons introduced by Giles & Maxwell [1987] allow a simple interaction 

between inputs and do not necessarily express a power term.  These can be regarded as a 

type of polynomial neuron.  An illustration of this can be shown by the summation 

function y(x) = f(w1.x1 + w2.x2 +w3.x1.x2).  The second order unit is not restricted to such 

simple operations and can increase in complexity.  It is used in applications such as Animat 

control by Crabbe and Dyer [2001] and has attracted interest in specific training methods 

that could assist other similar neurons, [Milenkovic et al., 1996]. 

 

There is a considerable difference in expert opinion on the uses of polynomial networks 

compared to other advanced neuron types.  For example, Duch and Jankowski [1999] 

favour periodic and localised functions over polynomials, “For that reason we are quite 

sceptical about the use of orthogonal polynomials as output functions [Qian et al., 1990], 

[Chen, 1991], for high dimensional problems.”, citing Barron [1993], amongst others as 

evidence.  Barron, however is a strong proponent of polynomial networks and has 

produced a great deal of work, much through the previously cited Barron Associates Inc. 

 

The universality of polynomials is in far less dispute; Nikolave [2003] shows this, “These 

PFNNs are … for their universal approximation abilities according to the Weierstrass 

theorem”, citing Cotter [1990] who uses the well known Stone-Weierstrass theorem.  This 

is supported by Bishop [1996], “that it can approximate any continuous mapping to 

arbitrary accuracy provided the number M of hidden units is sufficiently large.” 
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Other related work has been investigated in the use of Higher Order, Sigma-Pi units which 

are explained by Bishop [1995b], who generalises second order units as having interaction 

between x1 and x2 but not having the power of either.  As well as Functional-link networks 

Pao [1989] who makes the distinction between higher order terms in those that represent 

joint activations against those that, through functional expansion, increase the 

dimensionality. 

 

The Taylor Series neuron presented in this chapter can be used as a single type within a 

network and it does not need supporting neuron types.  There is no restriction on the 

number of inputs each neuron takes in comparison with similar topology networks and this 

reduces the design overheads of networks.  This allows the TS neuron to be implemented 

in a modular style where the inclusion of a unit or connection does not affect the network 

as a whole.  It also allows object style programming techniques to be more easily used and 

results in simpler implementation. 

 

There is no interaction between the inputs of a Taylor Series neuron as this would results in 

the Curse of Dimensionality.  Increase in orders of power have a summation increase in 

weight requirements.  This is in part the reason why other neurons types restrict the 

number of inputs they take. 

 

Taylor Series neuron coefficients can allow it to perform as a linear McCulloch-Pitts style 

neuron if linear separation is required, and implement increasing orders of power as the 

problem solution requires. 

 

While some of the other neuron types are suited to global training algorithms, the SLT was 

easy to train with a modified Delta Rule Algorithm. 
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Chapter 6 

Artificial BioChemical Networks 
 

6.1 Introduction to the Chapter 

 

This chapter considers the problem of producing time-varying behaviours in artificial 

neurons.  Following on from the previous work, existing artificial neurons designed for 

time-domain behaviour are examined and their disadvantages highlighted.  Then biological 

sources are re-examined; these lead to a consideration of environmental intelligence as 

expressed in single-celled organisms.  From this initial inspiration, a new approach is 

developed - this is called the Artificial BioChemical Network. 

 

6.2 Spiking Neurons 

 

The various models of spiking neurons are the obvious units to consider when trying to 

produce an artificial time-dependent network.  These attempt to emulate the signal spike or 

action potential which occurs when a biological neuron fires.  The original model and the 

basis for many subsequent models is the “Hodgkin-Huxley Model” [1952].  The 

publication of this model achieved a Noble Prize for its authors.  These neurons may be 

regarded as the third generation of neuron models.  The first generation being the 

McCulloch-Pitts threshold logic units, and the second being the models employing a 

continuous activation function such as the sigmoid models.  Many spiking neuron models 

have been developed but there are two frequently implemented models, which have their 

own sub-models based on the “formal spiking” or “general spike-response” model 

proposed by Gerstner [1994].  They are called the “spike response” model [Gerstner, 1995] 

and the “integrate-and-fire” model which incorporates the work of Stein [1967]. 

 

6.2.1  Biological Spiking Neurons 

 

The original paper that began neural network research by McCulloch and Pitts [1943] was 

an attempt to produce mathematical algorithms to model the activity of neurons.  It 

assumed that a neuron either fired or did not, and so the output was binary.  Later 
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developments allowed the use of continuous functions, some of which are described in 

Chapter 4.  Neither method took account of time as part of the encoding of information and 

it was due to biological evidence that later spiking models were developed to model time 

factors. 

 

It is known that biological neurons fire at various rates, between their maximum and 

minimum frequencies, depending on stimulation [Maass, 1997].  The stimulations may be 

excitatory or inhibitory. 

 

Figure 6.1 – Biological and Artificial Neurons 

adapted from MacLeod [2004] 
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6.2.2  Hodgkin-Huxley Model 

 

The Hodgkin-Huxley model is the model on which many artificial spiking neurons are 

based. 

 

In this model, action potentials result from currents passing through ion channels in the 

biological cell membrane.  Hodgkin and Huxley performed a series of experiments on the 

giant axon of the squid; they succeeded in measuring these currents and described their 

dynamics in terms of non-linear ordinary differential equations.  Good descriptions are 

given by Vreeken [2003] and Gerstner and Kistler [2002a]. 

 

Hodgkin and Huxley’s model was based on these experiments.  They found that three 

different types of ion current were present in the axon; sodium (Na+), potassium (K+) and 

chlorine (Cl-).  The flow through the sodium and potassium ion channels is voltage-

dependant, while the chlorine leakage current is assigned for all non-specifically described 

channels.  These are represented as conductance-capacitance circuits in electronic 

engineering and simulated as such in software.  Figure 6.2 shows a representation of the 

ion and circuit diagrams. 

 

 

Figure 6.2 – Hodgkin-Huxley model 
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The value Cm is the capacitance of the membrane, the ion channels are represented by K+ 

and Na+ and the total leakage attributed to all other ions is R.  This is a simplified diagram 

of a spiking model and is specific to the Hodgkin-Huxley approach.  A full explanation is 

beyond the requirements of this thesis; however, the basic operation and equations are 

included below.  In the model the ion flows are derived separately over time and the 

channels are expressed as resistance or conductance and capacitance of the circuit.  This 

model has been pursued, and is in current use as a method of studying biological neurons.  

It relies on equating a stimulus (introduced current) with its effect on the various ion flows. 

 

A summary of the operation of the model is as follows; 

 

• An input current I(t) is introduced in to the cell. 

This current causes an increase in charge across the capacitor Cm, and can leak out, 

through the channels in the cell membrane (represented by the channel resistances). 

 

This gives a capacitor current IC and the current IK, the ion channels’ component.  This is 

expressed as; 

( ) ( ) ( )∑+=
K

KC tItItI     equation 6.1  

In equation 6.1, ΣIK is the flow over all ion channels.  As capacitance is the amount of 

charge stored across an electrical potential, equation 6.2. 

V

Q
C =      equation 6.2  

• The charging current IC can now be expressed as follows; 

t

V
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∂=      equation 6.3  

• Combining this with equation 6.1 gives; 
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K
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∂
∂

∑    equation 6.4  

The voltage V is the membrane potential.  The Hodgkin-Huxley model describes three 

types of channel, which are characterised by their conductances (gL, gNa, gK) and reverse 

potentials (EL, ENa, EK).  The leakage conductance gL is voltage independent, while the 

conductance of gNa and gK vary with voltage and time.  The conductance and reverse 

potential parameters are empirical parameters. 
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The operation of the model is controlled by gating variables that represent the probability 

that a channel is open.  The (Na+) channel is controlled by the actions of m and h; the 

potassium (K+) channel is controlled by n. 

 

( ) ( ) )(43
LLKK

K
NaNaK EVgEVngEVhmgI −+−+−=∑   equation 6.5  

 

The function of the gating variables and the model require further calculus; however, it is 

not necessary to elaborate further here.  A good expansion can be found in Gerstner and 

Kistler [2002b]. 

 

The gating variables can be expressed so that, for a fixed voltage V, the variable x є 

{ n,m,h} approaches the value x0(V) with a time constant tx(V).  These are shown in figures 

6.3 and 6.4. 

 

 

Figure 6.3 – Equilibrium function 
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Figure 6.4 – Time constant 

 

In the Hodgkin-Huxley model, the resting voltage was adjusted to V(0), figure 6.3.  If a 

sufficiently large current is introduced to the system in a sufficiently short time as I(t), 

figure 6.2, then the a spike is produced, as in figure 6.5. 

 

 

Figure 6.5 – Single spike 

reproduced with permission from Gerstner and Kistler, [2002c] 

 

It is the action potential-like spikes produced by these models that give them the name 

“spiking neuron”. 

 

It can be seen from these calculations that the computational resources required are large.  

This requirement is similar for the alternative spiking models previously mentioned.  

Although the signals produced by these models are biologically plausible, they lack 

flexibility – they only produce spikes.  It is considered that a more flexible approach would 

be useful in engineering systems. 
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Having observed the limitations in operation and the difficulties in implementation of the 

present spiking neuron models, it was decided to look for a simpler and more flexible 

approach.  After considering the alternatives, a review of alternative biological systems 

was undertaken.  Only one other type of biological intelligence was obvious as a result of 

this reassessment and, fortunately, this turned out to lead to both flexible and simple time-

varying models.  This is the artificial biochemical approach described below. 

 

6.3 Origins of Biological Intelligence 

 

As presented by Hameroff et al., [1998], the majority of life on Earth is represented by 

single celled organisms.  During the 3.5 billion years of the pre-Cambrian period, life was 

composed of only these organisms.  Then, during the Cambrian period the first multi-

cellular life appeared and with it the first neurons. 

 

Amongst the single-celled life forms are a group called the Protoctists, which live in a 

variety of different environments including every environment that multi-celled life has 

colonised.  Those which display animal-like behaviour are usually called Protozoa.  The 

name literally means “first animals” and they evolved about 2.5 billion years ago. 

 

The arrival of multi-cellular life did not render Protozoa extinct.  They persisted and 

colonised new biological environments. 

 

6.4 Single Celled Intelligence 

 

Despite their primitive reputation, protozoa display remarkable abilities and behaviours, as 

documented by Alberts et al., [1994a].  Some have stinging darts with which they disable 

their prey; others have sensory hairs to feel their way about and sense the vibration of prey 

approaching and a few even have leg-like appendages for locomotion.  They can avoid 

light with their sensitive eyespots and actively hunt for their food.  Some even build 

shelters - shells with which to protect themselves from predators and the environment.  

They display many of the traits of intelligence. 
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As Protozoa have had the longest time of any non-bacterial cellular organism to evolve 

[Curtis, 1982] they exhibit an enormous variety of forms and behaviours.   They have a 

range of relative sizes greater than that between a rabbit and a blue whale, even though 

they are largely microscopic, (mainly ranging in size from 10-200µm), [Alberts et al., 

1994b] and include the most complex cells known, [Sleigh, 1989]. 

 

Protozoan anatomy can include structures that interact with the external cellular 
environment, receiving information through sensory bristles or photoreceptors, and 
moving via flagella, cilia and other appendages, absorbing food through mouth-like 
parts and reacting with muscle-like contractile bundles.  They are so divergent in 
motility that this is the main method used to classify them. 
 
All the similar actions performed by multi-cellular life-forms utilising dedicated 
types of cells are performed in protozoa via dedicated sub-cellular structures 
[Alberts et al., 1994c]. 
 

These animals exhibit intelligent behaviour in their reactions to the environment that 

increase their survival chances; they do so as a single cell, with no neural network to 

communicate.  This has a significant influence on the later sections of this thesis. 

 

6.4.1  Natural BioChemical Networks 

 

Protozoa display the behaviours described above by means of interactions between 

proteins in their cytoplasm.  Proteins are the chemical workhorses of the cell [Alberts et al., 

1994d].  It is the cell proteins that the DNA genetic code specifies, as shown in figure 6.6.  

This scheme is so fundamental that it is sometimes referred to as the “Central Dogma” of 

biology. 
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Figure 6.6 – Central Dogma 

 

Proteins are the central part of cell biology, they mediate every biological action.  As DNA 

cannot directly affect the organism, it may be said that it exhibits devolved action through 

the protein, [MacLeod et al., 2002].  Proteins are the biological Universal Machines, of the 

cell; they are responsible for all elements of movement, structure, communication and 

organisation; chemical activity is also under the control of proteins. 

 

6.5 A Framework for Artificial Cellular Intelligenc e 

 

Proteins perform all the important operations of the cell, from making new and destroying 

old material, to sensing and signalling changes in the cell's environment.  Proteins achieve 

these operations through chemical interactions.  All proteins bind to other chemicals; some 

synthesise new molecules by joining bound component parts together, others break them 

up - such chemically active proteins are called enzymes.  Yet others use their ability to 

bind by joining to other proteins, changing their behaviour and forming signalling 

networks within the cell, as described by Alberts et al., [1994e].  Such a network is best 

illustrated by a simplified theoretical example - see figure 6.7. 

 

Figure 6.7 - Simplified signalling pathway 

 

Figure 6.7 is a hypothetical example of a protein network.  Molecules in the cell's external 

environment “A” bind to receptor proteins “B”, which straddle the cell membrane.  This 

binding changes the shape of the receptor and causes a protein “C”, which was bound to 

the receptor, to disassociate from it.  Protein “C” then floats freely in the cell's cytoplasm 



 113 

and eventually binds with the protein “D” (chemicals in the cytoplasm are buffeted around 

by thermo-dynamic forces, which act to mix the constituents).  When “C” and “D” are 

bound as shown at “E”, they can bind further to a motor protein “F”, a protein which can 

change its shape by a large amount, allowing it to move quite large objects.  The motor 

protein is attached to the cell's outer membrane and this causes the cell to move towards or 

away from the molecules “A” by changing its shape [Capanni et al., 2005]. 

 

6.6 Artificial BioChemical Networks 

 

Given the system described above and shown in figure 6.7, it is fairly obvious that it is 

possible to express such biochemical interactions as a network no different in appearance 

from other connectionist networks, (see figure 6.8). 

 

 

Figure 6.8 - ABN vs. ANN topology 

 

Given this, one might present the signals in such a network as shown in figure 6.8.  The lag 

time at a node, until the presence of the signalling protein, is “A” and time “B” is 

proportional to a node’s activity.  Activity may be calculated using previously described 
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time-series techniques or a simple leaky-integrator technique as reported by Gurney 

[1997].  To create an Artificial BioChemical Network, “A”, “B” and the connection 

pathway strengths may be set using a Genetic Algorithm. 

 

 

Figure 6.9 - Basic unit cycle 

A GA may also be implemented to choose which of the time periods “A” or “B” is 

proportional (or inversely proportional) to the unit activity and which is fixed, as described 

previously. This additional evolvable parameter, introduced by MacLeod, C. and Maxwell, 

G., [2003] has been used in this thesis to produce pulse width or frequency modulated units 

as shown in figure 6.10. 

 

Such flexibility allows for the production of more universal units from this basic type and 

it has been suggested that such dynamics may lead to the new perspectives on intelligence 

as proposed by MacLeod and Maxwell, [1999]. 
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Figure 6.10 – Pulse modulated units 

 

The units shown in figure 6.10 are an extension of the general behaviour shown in figure 

6.9.  If appropriate variations on this general behaviour can be produced by ABN units, 

then small modules of these should in theory be able to produce any pulse sequence in the 

binary time-domain; this would be a time-domain equivalent to the McCulloch-Pitts XOR 

or parity-bit problem. 

 

The capabilities of protozoa show clearly that there are creatures that exhibit intelligence 

without neural pathways and it is from this observation that the ABN was developed. 

 

This approach takes inspiration from the biochemical protein communications of the 

protozoa, however, it does not try to recreate them artificially.  This results in a flexible 

approach which is far simpler to implement than spiking models.  Future development can 

build on this initial model to add functionality through additional biochemical activity. 

 

6.7 Literature Review on Cellular Models 

 

There are various other models inspired by intercellular processes in the literature.  They 

can be roughly divided into two classes, those that attempt to construct an Artificial 
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Intelligence system by basing themselves on rules governing cellular interactions, and 

those that attempt to model cellular biochemistry to better understand the operation of cells 

from this viewpoint.  The later is frequently used to model the effect of pharmacological 

products or study biochemical pathways, as in Almogy et al., [2001], Hodgson et al., 

[2004], and Kiehl and Bonissone [2002]. 

 

The “standard Cellular Neural Network” (CNN) devised by Chua and Yang, [1988] at the 

University of California at Berkeley was proposed as a practical alternative to Hopfield-

derived recurrent networks.  It is a continuous time and state dynamical system, well suited 

for analogue circuit implementation.  The CNN was designed to be a useful signal 

processing paradigm and was implemented in hardware with the advent of Very Large 

Scale Integration electronics. 

 

This type of system is a logical development of Cellular Automata (CA), which were 

proposed by Stanislas Ulam in the 1940s and is related to Von Neumann's work dealing 

with self-reproduction and artificial life.  In fact, Ulam suggested this framework to Von 

Neumann as a direction for his self-reproduction theories, [Von Neumann and Burks, 

1997].  Nowadays, CAs are mainly used to prove theories or model physical processes, 

[Dogaru, 2003]. 

In practical terms, the implementation of CNNs uses equations of non-linear functions 

which define the cell function.  Several developments have come from this work including 

“reaction-diffusion cellular nonlinear networks”, [Chua et al., 1995] and Generalized 

Cellular Automata, [Chua et al., 1998], which includes CAs as an extension of the CNN. 

 

The approaches that have approximated cells at a biochemical level have produced some 

interesting models and observations. 

 

Elowitz and Leibler, [2000] propose a synthetic oscillatory network of transcriptional 

regulators.  They base their work on observations that networks of interacting bio-

molecules are responsible for the functions in living cells.  However, they point out that 

there is poor understanding of any “design principles” underlying how such intracellular 

networks function.  They propose examining a particular function and constructing a 

synthetic network based on it.  The interesting part of this work, is that they construct an 

oscillating network, that over a period of hours, induces the synthesis of a specific protein.  
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This produces a noisy “artificial clock” which it is proposed may lead to the engineering of 

new cellular behaviours as well as a better understanding of naturally occurring networks. 

 

Thattai and Oudenaarden, [2001] model specific stochastic biochemical reactions using 

noise terms in deterministic dynamic equations.  They see this as a method by which they 

can implement threshold transfer and noise reduction simultaneously with the aim of 

mediating signal transfer in both artificial and biological networks.   

 

Gontar [2004], presents Discrete Chaotic Dynamics (DCD) as networks of interacting 

agents capable of energy and information exchange.  This appears as a biochemical 

equivalent to cellular automata and results in pattern generation, which Gontar 

characterises as emergent, self-organising behaviour.  However; 

 

“The mathematical structures of the difference equations we present do not include 

any form of time, neither classical continuous astronomic time, nor the so-called 

discrete time that has no clear meaning.” 

 

The principles used are of discrete time and space difference, resulting in artificial life 

systems. 

 

The basis of much of the work outlined above is not to produce new AI models, but to 

better understand the biochemistry of biological systems, 

 

“ In the spirit of this analysis of the transcriptional regulatory networks, it is 

becoming possible to design artificial biological networks to implement desired 

functions, paving the way to new therapeutic approaches.”, [Vandenbunder, 2001]. 

 

A small amount of work uses biological inspiration for AI models which are mainly of the 

CNN type.  It is clear however that a consensus exists on the importance of protein 

function and that much future research depends on a the ability to model this behaviour. 

 

In comparison with the proposed approach on ABNs, the cellular models that attempt to 

replicate cellular biochemistry are not in general concerned with Artificial Intelligence and 

therefore do not use the appropriate biochemistry to simulate this.  Instead they attempt to 
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observe how the biochemistry reacts to proposed physical and chemical influences.  The 

models that attempt to construct an AI system use neighbourhood models,  which differ 

from previous ANN topologies by only having a multi-dimensional array layout.  A variety 

of these can be implemented using analogue processing with continuous signal values and 

connecting only to neighbouring cells.  They have a wide range of applications, in the 

same areas as continuous type ANNs.  However they retain the rigid topology and 

connection as well as having an associated complexity of computation due to the 

implementation of each cell. 
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Chapter 7 

Artificial BioChemical Networks - Design and Function 
 

7.1 Introduction to the Chapter 

 

This chapter presents the models of Artificial BioChemical Network units and the 

networks developed from them.  These networks are based on the recognition and control 

tasks of previous research as detailed in Chapter 2. 

 

7.1.1  Design 

 

The artificial biochemical node is the equivalent of an artificial neuron. As described in the 

previous chapter, its activation represents the occurrence of a protein or a similar bio-active 

chemical. 

 

The ABNs were all trained using a Genetic Algorithm.  However, it should be noted that 

because a GA relies on randomly generated parameter values with their attendant 

quantisation, they have a poorer response to noise than those using a gradient descent 

algorithm.  To allow a more direct comparison, a Backpropagation Algorithm was 

constructed for the pulse-width ABNs. 

 

7.1.2  Experiments 

 

The experiments below are presented in three main sections.  They are accompanied by the 

implementation of Backpropagation-SLP and a Backpropagation-MLP trained on a simple 

pattern recognition problem - this provided a benchmark for comparison with the ABNs. 

 

The first experimental section investigated an ABN sensitive to pulse duration (that is, 

pulse width modulated) as described in the previous chapter, this is termed ABNw.  The 

second section considers an ABN sensitivity to pulse frequency, termed ABNF.  The third 

section combines the two pulse modulated unit types into a “Universal” pulse modulated 

ABN, termed ABNU. 
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Having demonstrated the network’s pattern recognition abilities, it was then used in robotic 

control systems to produce different walking gaits.  This, in conjunction with the previous 

pattern-recognition experiments, demonstrates the ABNs’ universality.  Finally, the 

combination of two ABNs, where the pattern recognition outputs of the first are the inputs 

to a second, gait-generating network, shows that the networks can be used in a modular 

fashion. 

 

7.2 Pulse-Width Modulated ABNs 

 

The signal is propagated in a feed-forward manner in the pulse-width ABNw.  This is 

chosen as such a network is known to be intrinsically stable. 

 

7.2.1  Time Concepts 

 

The ABNw approach is based on time-dependent behaviour.  As such, every node in the 

ABNw is examined as if they all operate in a parallel manner.  Their state at time (t) is 

assessed and then time is incremented to (t+1). 

 

For the purpose of visualising this and implementing the code, a tick is incremented in a 

programme loop and is the smallest measure of time in the system.  During a tick cycle, the 

state of all the neurons is checked and incremented. In practical terms the time periods 

used in tests was in the range from 10 to 100 ticks. One fundamental change to the way a 

feed-forward ABNw is coded compared to an ANN is that in an ANN the neurons are 

assessed starting with the inputs and progressing to the outputs, whereas in an ABNw, the 

output nodes are assessed and then incremented and the program works back to the inputs 

(as the information flows forward, this allows parallel implementation). 
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7.2.2  Inputs and Interpretation of Patterns 

 

The signals used in experiments (as inputs, outputs and between neurons) were digital 

pulse trains of values 0 and +1 or, in some tests, +1 and -1.  The inputs were repeating 

waveforms of the type shown below. 

 

 

Figure 7.1 – Transfer functions – pulse-width 

 

The patterns were left on the inputs until the ABNw output was established. 

 

7.2.3  Nature of the Pulse Dynamics 

 

The pulse consists of an on time and an off time.  As noted above, these have fixed 

amplitudes.  The amplitude during the time period ton is one unit, while during time period 

toff it is 0 units. 

 

When a constant pulse-width (PW) is implemented, it follows; 

 

PWtt offon =+     equation 7.1  
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Figure 7.2 – Pulse-width max and min profiles 

 

The length ton encodes the information the node is sending.  Minimum and maximum 

values of this set the limits of the pulse, as shown in figure 7.2.  The possible 

interpretations are shown in pairs on each line.  In the first set the entire pulse takes 

maximum and minimum values.  In the second set the minimal pulse starts with a single ton 

tick while the maximum pulse finishes with a single toff tick. 

 

The relationship between the time periods and the pulse width results in an automatic 

synchronisation of all nodes in the ABNw that activate at initial time t (because, regardless 

of ton, the cycle length ton + toff is constant).  This can be of benefit in many situations but is 

an obvious dynamic constraint.  It is considered later in pulse frequency modulation 

whether the nodes should be capable of synchronous or non-synchronous action. 

 

The duration of a pulse is measured in ticks, a pulse being produced at one node at time t 

cannot affect any other nodes until it reaches them at a later time.  This means that it takes 

the pulse a period of time to move from the outputs of one neuron to the inputs of the next 

- this may be termed the “Propagation Delay”.  In the initial implementation, this delay is a 

constant for all distances between the communicating nodes in the ABNw.  It is considered 

that in a biological system, the variation in this delay may have significant effects.  One 

such effect, which is well documented, is that sound is localised by time differences 

between signals arriving from both ears, see Palmer et al., [2002].  Given this, in future 

research, this delay may be a system variable. 
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The implications of the delay are that the leading edge of the pulse has arrived at its 

destination before the firing node has finished generating it.  In reality this is plausible in a 

biochemical interaction within a cell and between cells, however it would not occur in 

neurons, because of the time taken for an action potential to propagate down an axon.  If 

this delay is not implemented, then a signal beginning at the inputs of the ABNw would 

instantly propagate to the next layer, and so on from layer to layer, restricting the 

development of a pulse stream.  The delay is further complicated in that a node completes 

its pulse before acting on the signal it has received - the node can receive stimulation 

during its pulse cycle and this contributes to the next pulse (due to the effect of the leaky 

integrator). 

 

The total time it takes for the effects of an input to be observed at the outputs is called the 

“Reflex Time” of the network.  This will equal ((propagation delay + PW) x number of 

layers).  Likewise, once the stimulus is removed there will be an equivalent “Decay Time” 

for the stimulation at the ABNw inputs to stop producing a signal at the ABNw outputs. 

 

7.2.4  Integration of Signals by the Node 

 

The pulse duration is a representation of the strength of the weighted input signal to the 

node.  The first stage is the calculation of node activation.  This is the process by which the 

Sum (the node’s activation value) is calculated, the Sum is represented as S. 

 

There are two methods to initially consider for the calculation of S at time t.  These 

incorporate the current weighted input values, the previous value and a leaky integration 

(LI) factor alpha (α). 

 

1−⋅+⋅=∑ tnnt SwiS α     equation 7.2  

( )LISwiS tnnt α−+⋅= −∑ 1     equation 7.3  
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These add a decayed version of the previous to the current activation, therefore they do not 

model the biological neuron, which when firing completely depletes its S value.  However, 

they correspond more to biochemical signal integration.  The equations show respectively 

a non-linear and a linear decay in S in the absence of further stimulus. 

 

The second stage is the calculation of pulse time.  The S values calculated in the previous 

section produce an output pulse of amplitude one unit and duration ton.  The calculation of 

this is the same for all nodes and utilises the logistic-sigmoid function, denoted (σ). 

 

( ) PWSt ton ⋅= σ      equation 7.4a  

 

This S is acted on by a sigmoid function which normalises it.  From equation 7.1, the 

duration toff can be calculated. 

 

onoff tPWt −=      equation 7.4b  

 

7.2.5  Outputs and Interpretation of Pulses 

 

To understand what the outputs are, one has to think in terms of pulse time.  First, consider 

the inputs to the ABNw.  When a pattern is presented to the network inputs at time t, the 

input node immediately produces a repeating pulse based on the magnitude of this input.  

Any subsequent node performs signal integration, as described in the previous section, and 

so functions differently. 

 

( ) PWSton ⋅= σ      equation 7.8  

 

In equation 7.8, S equals the value passed directly to the inputs from the data pattern, 

normalised to the range of the amplitude of the outputs which are [0,+1] or [-1,+1]. 

 

In figure 7.3, the pulse produced at the input nodes for the maximum and minimum pattern 

values is shown. 
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Figure 7.3 - Arrival of pattern values 

 

In this interpretation there is no accumulation of a S value, the input node reinitialises each 

time it completes a pulse-width and reacts to the stimulus level it receives from the data 

pattern, preventing signal saturation.  This is the only way inputs differ from subsequent 

nodes. 

 

7.2.5.1  Synchronisation of Signals 

 

The artificial mechanics in this stage results in synchronisation of the signals.  All the input 

neurons will fire immediately they are initialised and after each pulse cycle ends.  The time 

values for the (possibly zero) pulses, as shown in figure 7.2, correspond to the following 

equations. 

 

mintton =  where [ ]1,0min ∈t    equation 7.9a  

maxttoff =  where [ ]1,max −∈ PWPWt   equation 7.9b  

 

The implemented version is shown in figure 7.3. 

 

7.2.5.2  Observation of the Pulse 

 

If a node is observed to begin a pulse of duration PW at tn, this will finish at tn+PW-1.  The 

observation is broken down as follows; the first measurable increment lasts 1 tick, from t = 

0 until t = 1.  This means that the last measurable increment of the pulse starts when the 

node is assessed at t = 0 + PW - 1.  Although this lasts until t = 0 + PW, when the node is 

assessed at t = PW the subsequent pulse has started. 
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Figure 7.4 – Observation of pulse-width 

 

7.2.5.3  Reflex and Decay Time of Network 

 

In connectionist approaches to static-domain problems, the signal effectively propagates 

instantly from the inputs to the outputs.  In a MLP the signal progresses from one layer to 

another in turn; however, there is usually no concept of the signal taking a time period to 

progress through or between nodes.  In an ABNw, there is a time period between the 

application of a pattern to the input nodes, to when it results in an observable change from 

the output nodes.  This is the previously introduced reflex time of the network.  This is of 

importance in calculating when the ABNw has relaxed and a stable output has been 

produced.  Likewise once the pattern has been removed from the input nodes, there is a 

delay until this no longer has an effect on the outputs.  The delay time only has an effect 

between different patterns being presented to the ABNw and has no other relevance here. 
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7.3 Pulse-Frequency Modulated ABNs 

 

The pulse-frequency ABNF topology was arranged in the same structure as the pulse-width 

ABNw.  As with the previous network this is intrinsically stable.  However, in the case of a 

pulse-frequency network the matter is not as straightforward, as the network may become 

cyclically-stable with a repeating sequence of output values. 

 

7.3.1  Nature of the Pulse Dynamics 

 

As with the previous case, the pulse consists of an on time and an off time.  Equation 7.10 

gives the total signal duration; however, it is no longer constant. 

 

PWtt offon =+     equation 7.10  

 

In contrast with the previous case, the length toff encodes the information the node is 

sending, see figure 7.5.  Again the possible values are arranged in pairs, one on each line.  

The calculations that determine the pulse-time set minimum and maximum values which 

determine the total pulse cycle time.  The relationship between the time periods and the 

pulse cycle time results in the nodes of the ABNF being non-synchronised. 
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Figure 7.5 – Pulse-frequency max and min profiles 

 

The different nature of the ABNF dynamics results in various differences compared to the 

ABNw.  While a pulse-frequency node signal always begins with a measurable ton, a pulse-

width node can (in theory) have a minimum signal with no measurable ton; however, the 

ABNw implemented here used a minimum ton signal of 1 tick.  While a pulse-width node 

operates with a signal pulse duration, the pulse-frequency node does not.  Therefore, it is 

necessary to note the ton that starts the pulse, then measure the toff that determines its value 

and is completed by the arrival of the next ton. 

 

As in the previous ABNw, it takes the pulse a period of time to move from the outputs of 

one node to the inputs of the next, the propagation delay.  Again, the total time it takes for 

the effects of an input to reach the outputs of the ABNF is termed the reflex time. 
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7.3.2  Calculation of Pulse Time 

 

This is the first significant difference from the pulse-width node.  As before, the 

calculation is the same for all nodes.  The start of a frequency pulse is signalled by an 

output pulse of amplitude 1 and duration 1 tick, this is still called ton.  The sum values S 

now produce an output pulse of amplitude 0 and duration toff. 

 

1=ont       equation 7.11a  

 

The sum S is acted on by a sigmoid function σ which is normalised to the duration of the 

pulse to allow a constant pulse cycle time.  From equation 7.10, the duration PF can be 

calculated. 

 

( ) max

1

PFS
t

t
off ⋅

=
σ

    equation 7.11b  

 

With pulse-width nodes, limits were set by having a fixed pulse cycle time; in contrast, 

with the pulse-frequency nodes, the maximum duration is set by toff. 

 

The input nodes produce an equivalent continuous pulse, a zero pulse is used which has the 

following values; 

 

1=ont       equation 7.12a  

1max −= PFtoff     equation 7.12b  

 

This maximum is calculated to a number of ticks.  The input neuron which presents this 

value cannot re-fire until PF is completed. 

 



 130 

7.3.3  Observation of the Pulse 

 

In the previous case, an ABNw, all outputs completed simultaneously.  With pulse-

frequency nodes they are independent.  The outputs are observed until all have relaxed, but 

these must be assessed at each tick, not over each complete pulse-width cycle. 

 

When a pulse-frequency node begins a pulse of duration 10 ticks (PF10) at t = n, then this 

observation completes at tn+PF-1.  In this case, this is t = 10.  The second pulse begins; in 

this example it is of duration PF3 and completes at t = 13, (see figure 7.6). 

 

 

Figure 7.6 – Observation of pulse-frequency 

 

With no constant cycle time, the ABNF cannot be assumed to be synchronised and a count 

of the pulses has to be made. 

 

7.3.4  Relaxation 

 

The network does not relax in the same manner as the pulse-width network.  The network 

instead can either produce a constant repeating pulse or a wave-train that cyclically repeats. 

 

The result of this behaviour is that each output node can relax at a different time and each 

pulse in the cycle can take a different number of ticks.  In comparison to other nodes there 

may be a different number of such pulses in such a cycle and the starting tick of this may 

be different for every output node. 
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7.4 Universal-Pulse Modulated ABNs 

 

With the implementation of an ABNU, there is a universality and robustness trade-off as 

was previously explained in Chapter 5. 

 

7.41  Production of Locomotive Gaits 

 

A good example of a control signal is that which encodes a locomotive gait in a mobile 

legged robot.  This will be used to demonstrate the waveform producing capabilities of the 

ABNU.  Both McMinn [2002] and Muthuraman [2005] produced locomotive gaits for 

legged robots, however they produced only the gait profile; that is the signal controlled the 

timing of the limbs and the duration of each stride but it did not encode the speed of limb 

movement. 

 

To produce a walking gait there are three factors to consider.  Firstly, each limb must 

receive a separate signal that is in the correct phase with the other limbs.  Secondly, the 

signal each limb receives must be for the correct duration.  Thirdly, each limb must receive 

a signal which indicates how fast it is to move. 

 

Receiving signals in the correct phase is a feature of the ABNU.  To receive them for the 

correct length of time, a variable pulse-width is biologically plausible and can be used for 

stride duration.  This leaves the third requirement, encoding speed. 

 

Encoding amplitude within the pulse-width could accommodate speed, but as this is not 

biologically plausible it was not attempted here (although the further work, Chapter 9, 

gives more detail).  It is more useful to regard the stride as a construction of smaller units 

rather than a single unit attempting to carry more than one type of information.  Therefore, 

a combination of pulse-width to encode stride duration and pulse-frequency to encode limb 

speed should suffice for a complete control signal for a locomotive gait; these are shown in 

figure 7.7.  The specific phase will be controlled by the ABNU. 
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Figure 7.7 – Walking and running biped pulse 

 

The importance of being able to combine pulse types is shown above.  The combination of 

pulse-width and pulse-frequency ABN nodes can produce different pulses to act as gait 

generators.  Any combination can use McCulloch-Pitts style nodes, which an ABN node 

can simulate with the appropriate leaky integration parameters.  The above diagram can be 

expanded to other gait profiles or limb numbers.  In the cases shown, the input data must 

be produced by an ABN module, while the gaits can be produced by a variety of 

topologies. 

 

left limb 

left limb 

right limb 

right limb 
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7.42  Pulse Profiles 

 

Each pulse-width and pulse-frequency waveform consists of several phases, which have 

been shown in the previous diagrams.  Let us now consider what is required of a universal 

pulse. 

 

 

Figure 7.8 – Pulse profiles for universal pulses 

 

The pulse can be broken down into different periods as shown in figure 7.8.  These consist 

of a period “a” before the signal arrives (this, in biological terms, can be viewed as the 

presence of an inhibitory protein, but is more likely to simply be the absence of a protein).  

In the diagram, this is followed by the period “b” in which a signal is present.  Then 

follows a period “c” which is the phase following the active phase during which the node 

does not produce any active signal. 

 

From the two profiles shown it is clear that phase “a” may simple be the phase “c” from 

the previous pulse. 

 

Given that only the periods {a,b} are considered and the period d = a + b, then what is to 

be determined is which of these periods are determined by the function of the node.  Only 

one of these can be controlled by the ABN nodes created in this thesis, future work, 

Chapter 9, considers other cases.  The activation of the node is a calculated variable and 

this through an output function determines the duration of one of the periods. 
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In the case of “a” the pulse width node previously discussed, period “d” is a constant, 

period “b” has a duration determined by the stimulation of the node and has output 

amplitude of 1, and period “a” is calculated as (d - b) and has output of 0. 

 

In the case of “a” the pulse frequency node previously discussed, period “b” has fixed 

duration of 1 and has output amplitude of 1, period “a” is determined by the stimulation of 

the node and has output of 0, and period “d” is calculated as (a + b).  In the computation of 

this, a maximum value was set for period “d” and was used in determining period “a”. 

 

There are two variations allowed for by the universal ABN, as follows:  Firstly, when 

period “d” is a constant or has a maximum value, this is now an evolvable attribute of the 

node.  Secondly, the pulses always begin with a leading 1 followed by a 0, and the node 

may evolve to produce a leading 0 followed by a 1. 

 

There are other variations to pulse profiles which may be considered, however these 

require more than one degree of freedom to be implemented in the outputs of the node (not 

currently practical) or produce no practical benefit.  The pulse types presented above are 

sufficient to encode the walking gaits as intended. 
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Chapter 8 

Artificial BioChemical Networks - Experiments and 

Results 
 

8.1 Introduction to the Chapter 

 

This chapter presents the implementations of the Artificial BioChemical Networks with 

tasks in pattern recognition and control and compares performance against specific Multi-

Layer Perceptrons.  Each type of ABN is shown in turn, with its associated experiments.  

Finally, these two tasks are combined into a modular system for robotic vision and 

locomotion. 

 

8.1.1  Credibility of Software 

 

As the purpose of this chapter is to show the validity of new connectionism methods, only 

simple tasks are performed.  All patterns and control signals are recognised or produced in 

response to an input set of four continuous parameters.  These are represented using a 2x2 

grid.  To ensure credibility, these experiments were independently replicated.  William 

Clayton of Olin College was asked to validate the theory based on a requirements 

description of the ABN.  He did this using a much larger pattern set which consisted of a 

5x5 grid.  Equivalent performance to the systems presented in this chapter was reported 

and this is included in Appendix A as a published paper. 
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8.2 Pulse-Width Modulated ABNw – Trained using a GA 

 

The first experiment set out to produce an ABN that was pulse-width modulated and 

trained by a Genetic Algorithm (denoted ABNw-GA) for pattern recognition.  The initial 

setup consisted of four patterns with associated targets. 

 

8.2.1  Program Implementation and Interface 

 

The experiments were implemented in C++.  However, C++ does not provide a good 

graphical capability.  Therefore, the programme’s progress was displayed through 

command windows and by examining results in a text editor and a spreadsheet.  Each 

programme activation created separate “event” files.  Once the ABNw was performing 

correctly, a C++ generated graphical interface was constructed. 

 

This graphical interface consists of a tag structure using Dynamic HyperText Markup 

Language (DHTML) and follows from rules in an Interface Markup Language (IML).  An 

IML separates data from function and presentation so that these components can be built 

up into a modular structure.  Figure 8.1 shows the interface displaying the first successful 

event. 
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Figure 8.1 – Graphical Interface for ABNw-GA - using IML 

 

The design is robust and efficient, so as not to distract from the research by attempting to 

produce a higher quality GUI.  Colour variations were implemented to display information 

which may not be obvious in non-colour figures, therefore relevant incidents are verbally 

explained. 
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8.2.2  Successful ABNw – Trained using a GA - Success 

 

The following figures 8.3 shows the results of the first successful event.  Firstly, figure 

8.3a shows the resolved ABNw output pulse for the first pattern, the remaining patterns are 

included in Appendix G as figures G.1 to G.3.  Secondly, figure 8.3b gives the individual 

ticks that are the basis for the pulses of figure 8.3a; in this event maximum pulse duration 

was set to 10 ticks, figures G.4 to G.6 show the ticks for the remaining patterns.  Thirdly, 

figures 8.3c(i,ii) show the GA population fitness and the fittest individual.  Finally, figure 

8.3d shows the evolved signal-pathway weights, rescaling the smaller values for the output 

layer and comparing them to the original signal-pathway values. 

 

The GA parameters used were as follows: 

 

Parameter Value 

String size One floating point number per signal-pathway 

Population size 10 

Crossover Random 50% parent choice 

Mutation rate Uniform random 1% 

Mutation Uniform random ±(original range) 

Selection Roulette 

Figure 8.2 – Genetic Algorithm - parameters 

 



 139 

 

Figure 8.3a – ABNw-GA output pulse – pattern 0 

 

 

Figure 8.3b – ABNw-GA output ticks – pattern 0 
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Figure 8.3c(i) – ABNw-GA population fitness 

 

 

Figure 8.3c(ii) – ABNw-GA fittest individual 

 

 

Figure 8.3d – ABNw-GA signal-pathway strengths 
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It is shown in figures 8.3a and G.1 to G.3 that the first pulse of all nodes for all patterns is a 

0.5 output.  This represents the node output immediately on initialisation.  The following 

0.0 output is due to the resolution of the evolved signal-pathway parameters; hidden node 

outputs (with an initialisation value of 0.5).  This is a chance occurrence, based on the 

signal-pathways and is different in later events. 

 

Recognition time for pattern 2 is four pulses, the other patterns require three.  An 

additional pulse is generated for all node outputs to evaluate ABNw relaxation. 

 

Overall the ABNw error (all nodes, all patterns), designated eABN, is 0.0 (the target was set 

at 0.5).  The nature of GA training can cause sudden individual improvements as indicated 

in figures 8.3c.  In other iterations of the experiment, the GA produced an eABN between 0 

and 0.5. 

 

Figures 8.3b and G.4 to G.6 show the ticks that construct each pulse.  In this event most 

patterns are rapidly recognised, with the exception of pattern 2 (figure G.5), which takes 

slightly longer.  This may be a result of over-training and is examined later in this chapter. 

 

The GA takes 3262 generations to resolve, however most of these do not affect the fittest 

individual, as shown in figures 8.3c.  Due to the random nature of GA training there is 

variation in this, and acceptable solutions are found in under 200 generations. 

 

There are major differences in signal-pathway strengths, (see figure 8.3d).  Hidden values 

have a range of 117, outputs have a range of 26.  These ranges vary over various events - 

however hidden strengths always have a greater range than outputs. 

 

Once successful, this experiment was repeated 50 times to validate the results and examine 

specific functionality regarding pulse-duration and relaxation behaviour. 
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8.2.3  ABNw – Trained using a GA - Relaxation Time 

 

Over ten events the maximum number of pulses taken for a single pattern-node to relax 

was 7, while the average (mean) of all pattern-nodes was 3.48125.  This includes the 

additional conformation pulse (on a basis of two identical pulses to indicate ABNw 

relaxation).  As expected, the node with a pulse-target of 1 usually has a longer relaxation 

time than those with a pulse-target of 0. 

 

Most events show a pulse value increasing or decreasing on each subsequent pulse towards 

the target.  Some exceptions are shown in figures 8.4. 

 

Figure 8.4a – ABNw-GA output pulse – indirect target acquisition – pattern 2 

 

Figures 8.4a shows outputs 1 and 2 for pattern 2.  Output 1 rises to a maximum value of 1 

before dropping to its target of 0.  This results in a delay in the relaxation of the ABNw, 

shown by the triple relaxation-pulse of output 2.  Using the two pulse rule for relaxation 

would have produced an error on output 1 if output 2 had not caused the next pulse to be 

generated.  While this shows a possible problem with only taking two pulses to show 

relaxation, this technique is designed for a human to extract information out of the ABNw, 

not as a component part of its operation.  It also indicates a more dynamic nature than is 

initially apparent, as shown in figure 8.5. 
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Figure 8.5a – ABNw-GA output pulse – indirect target acquisition – pattern 2 

 

8.2.4  ABNw – Trained using a GA - Minimum Error Achieved 

 

The majority of events achieved an error of 0, despite a target error of 0.5.  The nature of 

the ABNw results in an error increment proportional to maximum pulse-duration.  Figure 

8.5a displays an error of 0.1 for output 1. 

 

Similar to ANN error, total error (eABN) is the sum of pattern errors (ep) which are the sum 

of node errors (en).  The node errors are calculated (target – output).  The values they can 

take are increments of (1 / pulse-width), the total number of increments is (C), (see 

equations 8.1).  An LMS error is not required due to quantisation.  In the cases when an 

error remained, it was due to a single node and pattern. 

 

PW

C
en =  RC ∈  ticksPWC ≤    equation 8.1a  

∑= np ee       equation 8.1b  

∑= pABN ee       equation 8.1c  
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Figure 8.6a – ABNw-GA output pulse –residual node error – pattern 0 

 

ABNw behaviour is not straightforward and has been shown not to be simple or 

unidirectional in changes in output values.  In figure 8.6a, it can also be seen that the target 

of a node can be achieved and then lost if another node forces it to continue pulsing.  In 

this example the relaxation time associated with node 0 causes the node 2 error.  It is 

possible that this is a result of the stop criterion of the GA and if the stop criterion was 

altered, this type of error may not occur.  This was not serious enough to investigate in 

detail at this stage, but may merit attention in future work. 

 

8.2.5  ABNw – Trained using a GA - Training Time 

 

The training time (in generations) which produced an acceptable solution (eABN < 0.5) 

varied greatly.  It ranged from 53 to 3263 and averaged (mean) 553.  Whether an eABN of 0 

was achieved bore little relation to the training time.  The system displayed a tendency to 

achieve a low population average (mean) error; this fluctuated, with little change to the 

fittest individual, then a sudden rapid improvement to that individual.  This is presumably a 

result of key values (in specific signal-pathways) evolving, this behaviour is shown in 

figure 8.7d. 

 



 145 

 

Figure 8.7d – ABNw-GA population fitness – error vs. generation. 

 

8.2.6  ABNw – Trained using a GA - Signal-Pathway Strength 

 

The hidden signal-pathways’ range always exceeded that of the output signal-pathways.  

No consistency could be found in the ratio of hidden to output values.  This shows that 

there are a great number of possible solutions to the problem presented.  The average 

(mean) range for the hidden signal-pathways was 123 (-60 to +63) while for the outputs a 

range of 37.7 (-27.1 to 10.6) was evolved. 

 

8.2.7  ABNw – Trained using a GA - Noise Tolerance 

 

The performance of the evolved ABNw-GAs were tested with noise to assess their 

generalisation ability.  The type of noise used was proportional and exact as explained 

below. 

 

Proportional and exact noise was defined as damaging every data unit by the same 

proportion of the possible range that unit can take, rather than a random value.  For 

example, a pattern with 5% noise would have a data unit showing a value of 0.95 instead 

of 1.0 and a data unit of 0.05 instead of 0.0.  If this is increased to 10%, the values would 

become {0.9,0.1}. 

 

This type of noise is used as different data units have different importance in the ABNs’ 

ability to recognise a pattern.  If, for example, 10% random noise is applied to patterns this 

may result in not affecting these data units and gives the network an appearance of noise 

tolerance.  Then if 5% random noise is applied and some critical data units are damaged, 

the ABN cannot recognise the same pattern and so the comparison of noise tolerance 

becomes redundant.  Therefore noise proportionality and exactness allows a strict 
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comparison of noise levels by avoiding different loading of critical and non critical data 

units. 

 

Examine the following diagram.  The undamaged T and I are shown at the left and right.  

Beside each is a damaged version of itself, but is the central pattern a T or an I? 

 

 

Figure 8.8 - Progressive damage to patterns 

 

8.2.8  ABNw – Trained using a GA - Results of Noise Tolerance 

 

Like many experiments in this field, there is the potential to generate enormous quantities 

of information, so the reporting is restricted to the important information from several new 

events (only those where a specific % of noise had an effect on performance). 

 

The first event (successful iteration of the program) examined noise from 0% to 50% and 

reported noise at 0% (undamaged) then 45%, 46% and 50% (all data units identical). 

 

The ABNw-GA showed very good noise tolerance.  As the noise was increased (1% at a 

time) to 45%, all patterns were still recognised and there was no increase in eABN (which 

remained at 0.1).  In practical terms, the ABNw-GA recognised all patterns and remained 

confident in its outputs.  At 50% noise all data units are identical, with values of 0.5 

(effectively 100% damage).  Therefore, a complete immunity to 90% damage is very good 

performance. 

 

When the noise is increased to 46% there is a critical failure, and eABN jumps to 6.0 (out of 

a maximum 16.0).  The effect of this is that only one pattern is recognised (this is 

accidental, as at 50% noise the pattern remains recognised and is the default network 

output). 
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Critical failure is extremely poor in engineering terms as there is no warning of the 

system’s performance degrading.  A gradual degradation is a strength of connectionist 

approaches.  Figure 8.9a show the comparison between the 45% and 46% noise for pattern 

0.  Figures G7 to G9 show the comparison for the remaining patterns. 

 

 

Figure 8.9a – ABNw-GA output pulse - noise 45%,46% – pattern 0 

 

The patterns for 45% noise show how little information the ABNw-GA requires to 

recognise them.  Unfortunately there is no indication that failure is imminent and occurs at 

46%. 

 

A second event (complete implementation of the ABN) reported an eABN of 0.1 for noise of 

0%.  Noise tolerance remains unchanged until 15%, where the ABNw-GA fails on pattern 

0, this shown in Appendix G, figure G.10. 

 

Noise is increased, at 25% pattern 0 is misrecognised as pattern 2, and at 26% noise pattern 

3 is miss-recognised as pattern 1; these are shown in figures G.11.  Once the noise is 
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increased to 36% pattern 3 changes to be misrecognised as pattern 2.  Once noise reaches 

46%, there is complete failure and all patterns are identified as pattern 2.  The result of this 

is that the ABNw-GA is still undergoing a critical failure; however it affects patterns 

differently. 

 

A third event is described to give an example of over-fitting.  The previous two events took 

646 and 1291 generations respectively to achieve an error of 0.1.  This event took 2680 

generations to achieve an error of 0.  Once the noise was raised to 5%, there was a failure 

to recognise pattern 1, (see figure G.12). 

 

In ANNs, overtraining has a detrimental effect on noise tolerance.  It appears that the 

ABNw-GA suffers similarly.  The work on McCulloch-Pitts and Taylor Series networks in 

Chapter 5, examined overtraining and showed that amongst the affecting factors is training 

time. 

 

An examination of ABNw-GA parameters’ tolerance to noise was therefore undertaken, 

and showed that the output function through the parameter ρ - had no effect; the variable of 

leaky integration α –also showed no effect; finally the signal quantisation was examined - 

once more no improvement was found. 

 

The only difference between the ABNw-GAs which showed different noise tolerance was 

their signal-pathways.  Therefore the problem must be associated with these parameter 

values.  This leads to the next experiments where an ABNw was trained with a derived 

Backpropagation Algorithm and compared against a similar ANN.  This training was 

chosen as the GA is a global search algorithm and can find local minima (which may be 

very different solutions to the same problem), while the BP is a gradient descent algorithm 

that seeks the globally minimum solution. 
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8.3 Pulse-width modulated ABNw – Trained with BP 

 

The pulse-width modulated ABN has been shown to work well in pattern recognition tasks.  

The main remaining problem is its critical failure in some or all patterns when the noise 

reaches a high enough level.  A specifically derived Backpropagation Algorithm would 

allow an examination of noise tolerance in a well documented environment and a 

comparison against an equivalent ANN. 

 

This next section presents the problems overcome in producing such an algorithm and the 

algorithm used.  The abilities of an ABNw, trained with such an algorithm, are then given. 

 

8.3.1  Problems with ABNw Backpropagation 

 

The two major problems with ABNw Backpropagation training concern quantisation and 

credit assignment.  In addition there is a minor performance restriction due to quantisation. 

 

The first problem is related to quantisation that result in a high error, eABN.  When the 

algorithm was implemented, the ABNw appeared to train with a reducing eABN in a manner 

which resembled gradient descent and indicated an attempt to fit the problem; however, the 

initial eABN range of (8,12) reduces to a range of (2,4) and shows no further improvement.  

From the previous section on ABNw-GA it is known that this is not the lower limit.  

Through code and output analysis at each stage the problem was identified. 

 

In Appendix C, the equations for backpropagation are given.  These can be applied to 

ABNw nodes in an appropriate manner.  Equation 8.2 gives the standard delta calculation 

for an output node “α”, designated δα.  This factor is related to the node error en and node 

target and node output, and allows appropriate changes in the connecting signal-pathways. 

 

( ) ( )αααααδ outettoutout −⋅−⋅= arg1    equation 8.2  
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A similar term is required for the hidden node, in this case node “A” and this is given as 

equation 8.3.  This is the credit assignment portion of backpropagation. 

 

( ) ( )ββαα δδδ AAAAA wwoutout ⋅+⋅⋅−⋅= 1    equation 8.3  

 

The problem noted as above regards the occurrence of 0 or 1 values.  With the use of a 

sigmoid type function, (equation 8.4a), these are unlikely to occur and will only do so if 

the magnitude of the sum value gets so big that it has to be rounded to 0 or 1. 

 

( )Sume
Output −+

=
1

1
     equation 8.4a  

 









−−= 1

1
ln

Output
Sum     equation 8.4b  

 

It can be seen from equations 8.2 and 8.3 that if the outputs outα or outA ever produce a 0 

or 1 value, then the associated delta term δα or δA will also be 0 which results in a 0 change 

in signal-pathway strengths.  This usually occurs when the target has been achieved; 

however, there are two situations that can cause a delta of 0 when training has not 

completed. 

 

Theoretically, a delta of 0 can occur in an ANN if a maximum en is produced; this is 

usually extremely unlikely and should be resolved when different patterns are presented.  If 

it does occur, it may be due to computational rounding.  In an ABNw-BP, maximum en 

may be caused by quantisation.  If this occurs, then eABN will not improve at all, but as it is 

clear that it can with the GA, this can be ruled out. 

 

A delta of 0 may also occur in the opposite situation, that is a minimum en falsely 

occurring.  In this case, the eABN will reduce prematurely and suddenly stop.  This is the 

problem that actually presented itself in ABNw-BP training.  In an ANN, this will only 

occur if the sigmoid value is rounded due to computational requirements.  In an ABNw, it 

may be caused by quantisation. 
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The solution in an ANN is to use sufficient decimal places.  An ABNw operates using a 

different method; increasing accuracy can be achieved by increasing the number of ticks 

that the pulse-width contains.  So a pulse-width of 10 ticks can only produce values of one 

decimal place.  Obviously relying on large pulse-durations increases computational 

complexity in the ABNw. 

 

This hypothesis was tested by implementing a pulse-width of 100 ticks.  The targets were 

altered to {0.1,0.9}, (replacing {0,1}).  The first attempt immediately produced a 

successful result in 156 epochs.  However, subsequent events were not always successful 

and the ABNw-BP became stuck at unacceptable errors as before.  This improvement 

showed that the solution may have been found but was still suffering from the quantisation 

effect.  As this problem was solved with an ABNw-GA, of pulse-width 10 ticks and targets 

{0,1}, these observations do not indicate that a viable solution has been found.  When 

tested on noise, the ABNw-BP showed no difference in performance to the ABNw-GA. 

 

Given the improvement and conflicts explained above, a variety of pulse profiles were 

assessed.  As each was examined the sigmoid output was analysed graphically, (figure 

5.7).  This showed (due to quantisation) that the outputs {0,1} occur when the sum value 

exceeds ±2.197 for a pulse-width of 10 ticks and when the sum exceeds ±4.596 for 100 

ticks, (equation 8.4b).  As the Sum in an ABN is an accumulation value, this is a very 

small range of operation. 

 

A solution was attempted that took into account the slope parameter ρ, (equation 8.5).  

From figure 5.17 this can be seen to stretch the range of Sum S, over which an output 

between (0,1) is produced.  The ABNw-BP with a PW of 10 ticks and targets {0,1} trained 

successfully (once the second problem was also solved). 

 

( ) ρ/1

1
Sume

Output −+
=      equation 8.5  

 

As the quantisation effect of ticks causes a rounding to 1/PW decimal places, this resultes 

in 0 delta values occurring when the node output comes within 1/PW of the target or (1 - 

target) for targets {0,1}.  The use of ρ allows the deltas to take smaller values. 
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Various values for ρ were examined, both relating to pulse width and taking a constant 

value.  As a mathematical rule, ρ should be less than the pulse-width, to allow the full 

range of outputs to be produced.  For practical purposes, a value of 2.5 to 10 proved 

successful. 

 

The second problem with ABNw-BP is related to problems with credit assignment.  The 

credit assignment problem was first identified by Samuel [1951] and described as a 

fundamental problem by Minsky [1961], to which a specific theoretical solution was 

presented by Minsky and Papert [1969].  The training algorithm for this specific solution 

was given by Rumelhart, Hinton and Williams, [1986], (see Appendix C).  What must be 

basically considered is; 

 

In a multi-layer network, how much does each hidden unit contribute to the error of 

each output unit (en ) that it connects to. 

 

In the system presented and solved by Rumelhart et al., [1986], the signal and error were in 

the static domain; in an ABNw these are both multi-layer and multi-dimensional in the 

time-domain. 

 

In a MLP-BP, the pattern presented instantaneously produces the outputs and errors.  All 

the information required for each neuron is known, as there is a single (sum, output) pair to 

assess.  In an ABNw, the pulse from a node evaluated at time tn is the result of the inputs 

accumulated over a time-period tn-m.  Due to the effect of quantisation and leaky-

integration, as m increases the effect of the inputs at tn-m decreases.  Therefore, the solution 

considered the inputs from tn-1.  (This is not the complete solution, but is sufficient at this 

stage.  This point is also addressed in further work). 

 



 153 

The solution is as follows: 

 

1. The ABN has relaxed at time tn, when each output node has produced a pulsen, which is 

the same as the previous pulsen-1.  These values are used to calculate the relevant output 

delta values. 

2. The error share for the hidden nodes is calculated as the sum of the deltas for the output 

nodes multiplied by their signal-pathway strengths (as in standard BP). 

3. Then the delta values for the hidden nodes are calculated.  However, the current output 

from the hidden nodes, pulsen, has not yet reached the output nodes.  It is the previous 

pulsen-1 that must be used (this is the difference for the time-domain). 

4. The output signal-pathways can be adjusted using the output deltas and the outputs 

from the hidden layer at time tn-1. 

5. The hidden signal-pathways are adjusted in the same manner as the outputs; however, 

this depends on what type of unit connects to them.  If there is a previous hidden layer, 

then the pulsen-2 would be needed, if they are input nodes (which send a repeating 

pulse) then any pulse values can be used.  This latter option is far easier to implement. 
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8.3.2  The ABNw Backpropagation Algorithm 

 

The equations for the ABNw-BP algorithm are presented; they have the same layer 

relationship as the equations given in Appendix C, and relate to an ABNw with equivalent 

topology.  This assumes that ABNw-BP nodes use a logistic sigmoid function, as 

implemented in this thesis. 

 

First, the deltas for the output nodes are calculated. 

 

( ) ( ))()()( arg1 nnn outettoutout αααααδ −⋅−⋅=    equation 8.6a  

( ) ( ))()()( arg1 nnn outettoutout βαβββδ −⋅−⋅=   equation 8.6b  

 

These are used to calculate the new signal-pathway strengths s+. 

 

)1( −
+ ⋅⋅+= nAAA outss ααα δη      equation 8.7a  

)1( −
+ ⋅⋅+= nBB outss Bααα δη      equation 8.7b  

)1( −
+ ⋅⋅+= nCCC outss ααα δη      equation 8.7c  

)1( −
+ ⋅⋅+= nAAA outss βββ δη      equation 8.7d  

)1( −
+ ⋅⋅+= nBB outss Bβββ δη      equation 8.7e  

)1( −
+ ⋅⋅+= nCCC outss βββ δη      equation 8.7f  

 

The deltas for the hidden layer are calculated. 

 

( ) ( )ββαα δδδ AAnAnAA wwoutout ⋅+⋅⋅−⋅= −− )1()1( 1   equation 8.8a  

( ) ( )ββαα δδδ BBnBnBB wwoutout ⋅+⋅⋅−⋅= −− )1()1( 1   equation 8.8b  

( ) ( )ββαα δδδ CCnCnCC wwoutout ⋅+⋅⋅−⋅= −− )1()1( 1   equation 8.8c  

 

These are used to calculate the strength of the hidden signal-pathways; however, as the 

outputs from the input nodes remain constant while the data pattern is presented, there is 

no need to calculate a pulse at tn-2. 
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ΩΩ
+
Ω ⋅⋅+= outss AAA δη      equation 8.9a  

Boutss BB ⋅⋅+=+
ααα δη      equation 8.9b  

CCC outss ⋅⋅+=+
ααα δη      equation 8.9c  

λλλ δη outss AAA ⋅⋅+=+      equation 8.9d  

λλλ δη outss BBB ⋅⋅+=+      equation 8.9e  

λλλ δη outss CCC ⋅⋅+=+      equation 8.9f  

 

This completes the training for one data pattern presented to the ABNw. 
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8.3.3  Performance of ABNw - Trained with BP 

 

The ABNw-BP was presented with the same problem and parameters as the ABNw-GA.  

The interface was enhanced as shown in figure 8.12. 

 

 

Figure 8.10 – Interface for ABNw-BP 

 

The signal-pathway strengths (pre and post training) are recorded, in the ABNw-GA there 

was a family of individuals and so pre-training values were omitted.  The hidden node 

outputs are included; they were examined for the formulation of the ABNw-BP algorithm.  

The number of epochs to reach the target error replaced the number of generations.  The 

interface shows a successful training event output in figures 8.11 and G.13 to G.21, some 

screens are cropped due to size. 
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8.3.4  Comparison of ABNw – BP and ABNw – GA 

 

This section refers to specific training events where examples are shown - many events 

were assessed to ensure the ones reported accurately reflect system performance. 

 

 

Figure 8.11a – ABNw-BP output pulse – pattern 0 
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Figure 8.11b – ABNw-BP output ticks – pattern 0 

 

An examination of the ABNw-BP output pulses, (figures 8.11a and G.13 to G.15), and their 

associated output ticks, (figures 8.11b and G16 to G18), show two immediately obvious 

differences to the ABNw-GA. 

 

Firstly, the ABNw-BP takes more pulses to relax.  This is a feature that can be reduced; 

however, it may be evidence that the ABNw-BP is more robust.  This theme is developed 

later in noise tolerance analysis. 

 

Secondly, the eABN is contributed to by multiple en values.  Previously, all eABN were 

loaded onto a single node and pattern.  These differences are related, in that spreading the 

error around the connections appears to give a higher noise tolerance, as was seen in 

Chapter 5. 
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The nature of BP is to implement small changes to signal-pathways, individually and 

progressively moving the en for each node-pattern towards the target.  This increases the 

likelihood of achieving the target error without leaping past it, as a GA is prone to do.  The 

residual eABN is therefore spread around the ABNw-BP, not concentrated in one particular 

area.  This error distribution is a feature of good generalisation. 

 

 

Figure 8.11c – ABNw-BP hidden nodes – pattern 0 

 

In the hidden node outputs, (figures 8.11c and G.19 to G.21), the last pulse output does not 

reach the output nodes before the ABNw relaxes.  All the hidden nodes have relaxed to a 

range of [0,1].  This indicates that the hidden nodes are performing a recognition function, 

not just echoing the inputs, and that backpropagation is making use of these values. 
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Figure 8.11d(i,ii) – ABNw-BP pre & post training signal-pathway strengths 

 

The signal-pathway strengths, (figures 8.11c), account for the functional difference of the 

ABNw-BP when compared to the ABNw-GA.  Initial values and then the trained values are 

shown.  In contrast to the GA, the hidden values are smaller than the output values - this 

was consistent over several events.  Importantly, the trained values are far smaller than 

those found by the GA. 

 

Another observation is that if several ABNw-BP are trained to the same error, then they 

always finds the same (or very similar) signal-pathway strengths; however, these are not 

necessarily assigned to the same nodes.  This implies that the ABNw-BP is finding the 

global-minimum solution to the problem, while the ABN-GA is finding local-minima 

(some of which may be magnifications of the global-minimum). 
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Figure 8.11e – ABNw-BP – error vs. epoch 

 

The improved error minimising of the ABNw-BP is shown in figure 8.11e.  This emulates 

the classical and gradual reduction in eABN of gradient descent.  The spikes that occur 

during the descent may be due to the approximations that are implemented, or may be an 

exaggeration of known anomalies in BP (errors are capable of rising in adjacent epochs). 

 

8.3.5  ABNw - Trained with BP - Noise Tolerance 

 

This section reports on the noise tolerance of the ABNw-BP.  Some comparisons with the 

ABNw-GA are made, however the main comparison is with the MLP-BP in the next 

section.  Examples are used from different events, which were tested to confirm that they 

are typical performances. 

 

The ABNw-BP was trained on two target errors {0.5,0.05}.  The ABNw-BP took 519 

epochs to achieve an eABN of 0.4 with target 0.5, and 759 epochs to achieve an eABN of 0.0, 

with target 0.05.  The minimum eABN, due to quantisation, is 0.1 so the ABNw-BP is forced 

to over-fit. 

 

The effect of noise on the ABNw-BP trained to target eABN {0.5} appears at 5%, far lower 

than in most of the ABNw-GA events; however, the error effect is dispersed amongst the 

nodes and patterns, (figures 8.12 and G.22 to G.24).  The rise in error from 0% to 5% noise 

causes graceful degradation, (observed at the output nodes), as desired, while the hidden 

nodes are similarly gradually affected. 

e A
B

N
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Figure 8.12 – ABNw-BP output pulse - target eABN 0.5 - noise 0%,5% - pattern 0 

 

An examination of noise across several events produced the results shown at figure 8.13, 

where at specific noise there is an effect in eABN.  The individual pattern errors ep are 

shown. 

 

 

Figure 8.13 - ABNw-BP - target eABN 0.5 - error vs. noise 
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The trained ABNw-BP has an eABN of 0.4 at a noise of 0% (undamaged) and the error 

increases progressively with rising noise.  At 5% noise, three outputs ep {0,2,3} degrade 

slightly but there is no more damage until 15% noise where ep {2} is affected, and then at 

25% noise where ep {0,1} are affected.  At 26% noise two patterns are affected; ep {0} 

improves, ep {3} degrades.  All ep then remain unchanged until 36% noise where all are 

affected, and then until 46% where maximum eABN occurs. 

 

Despite the rising eABN, the ABNw-BP can correctly identify its inputs, performing signal 

separation, at 45% noise when the input domain is constrained to 10% of its original range. 

 

The effect of noise on the ABNw-BP trained to target eABN {0.05} is shown in figures 8.14 

and G.25 to G.27. 

 

Figure 8.14 – ABNw-BP output pulse - target eABN 0.05 - noise 0%,5% - pattern 0 

 

The same examination of the effect of noise for this ABNw-BP as the previous one is 

shown in figure 8.15. 
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Figure 8.15 - ABNw-BP - target eABN 0.05 - error vs. noise 

 

The trained ABNw-BP has an eABN of 0.0 at a noise of 0% (undamaged).  The effect of 

noise appears at 5%, as it did in the previous example.  The overall performance between 

the ABNw-BP trained to eABN {0.05} and eABN {0.5} is so similar that a comparison of 

eABN vs. noise, shown in figure 8.16, shows almost no difference. 

 

 

Figure 8.16 - ABNw-BP - targets eABN 0.5, 0.05 - error vs. noise 

 

The initial advantage of the ABNw-BP trained to eABN {0.05} over eABN {0.5} disappears at 

5% noise and performance remains slightly worse as noise increases.  This indicates that 
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training to the lower error results in an over-fitting by the ABNw-BP.  The network remains 

highly noise tolerant with complete recognition at 45% noise. 

 

Figure 8.17 - ABNw-BP - targets eABN 0.5, 0.05 - trained signal-pathways 

 

If the signal-pathway strengths are compared, (figure 8.17), for the ABNw-BPs trained to 

different targets, their values show similarities.  The hidden signal-pathways are almost 

identical, despite belonging to different nodes.  They are matched between the ABNw-BPs 

as nodes {0,1}, nodes {1,2} and nodes {2,0}.  While the output signal-pathways appear 

unrelated, if examined as properties of the hidden node from which they connect, then they 

too are almost identical.  This is shown for the first node, the others match in the same 

way.  The original random signal-pathway has no obvious correlation.  Therefore, the 

similar end point came from different starting points. 
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These similarities in the pathway strengths are the result of the nature of the problem.  This 

is a simple problem domain and results in only one global-minimum solution local to the 

initial random signal-pathway strengths.  Networks trained to the same error are likely to 

end up with the same weights, even if the starting values are different.  The ABNw-GA 

produces vastly different pathway strengths because the GA allows for a global search in 

the problem domain. 

 

In the comparison between the ABNw-BP and the ABNw-GA, training time is a factor; 

however once these networks are trained, the only difference is in values of their signal-

pathway strengths.  The result of the larger signal-pathways of the ABNw-GA is that the 

ABNw-BP degrades gracefully with noise, while the ABNw-GA suffers critical failures.  

The ABNw-GA’s larger signal-pathways amplify small changes caused by noise and have a 

greater influence on network performance. 

 

The ABNw-BP’s ability to achieve low target eABN while retaining noise tolerance and 

graceful decay is compared with a standard MLP-BP in the next section, as these later two 

effects are usually incompatible. 

 

8.4 Multi-Layer Perceptron – Trained with BP 

 

A MLP was constructed and trained with the Backpropagation Algorithm as shown in 

Appendix C.  The MLP is of equivalent topology to the ABNs; 4 input nodes, 3 hidden 

neurons and 4 output neurons.  The input range is normalised to [0,1], and the neurons use 

a Sum activation and a logistic sigmoid output function. 

 

The same patterns and target errors were presented to the MLP-BP and its noise tolerance 

was tested with the same values as used before. 

 

8.4.1  MLP – Trained with BP - Memory Capacity 

 

The MLP-BP and the ABNw-BP achieve low errors (eMLP or eABN) with 3 hidden units 

(nodes or neurons), producing a complete problem solution.  Both recognise patterns with 

2 hidden units; however, their confidence is low, these networks are unable to achieve a 
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low error.  On various events, a network error of approximately 2.0 was achieved.  When 

trained with a single hidden unit, neither MLP-BP nor ABNw-BP came close to a solution, 

with an error of approximately 6.0.  In both topologies, the ABNw-BP can achieve a 

slightly lower error by adapting quantisation effects. 

 

8.4.2  MLP – Trained with BP - Training Time 

 

The MLP-BP requires many more training epochs to reach the same errors as the ABNw-

BP and takes progressively longer as the target is lowered.  When a slope, ρ, is included in 

the MLP-BP, training time increases further.  This is to be expected, however it benefits 

MLP-BP noise tolerance; this is addressed later. 

 

network error target approximate 

epochs to reach 

ABN tick (10)  0.5  500 

ABN tick (10)  0.05  750 

MLP ρ (1)  0.5  1200 

MLP ρ (10)  0.5  10000 

MLP ρ (1)  0.05  90000 

MLP ρ (10)  0.05  900000 

Figure 8.18 - Epoch comparison 

 

The advantage of the ABNw-BP increases as the target error is lowered.  While the ABNw-

BP training time rose from 500 to 750 epochs, the MLP-BP ρ (1) rose from 1200 to 90,000 

epochs.  When a ρ of 10 is set for the MLP-BP, training time increases proportionally, as 

expected. 
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8.4.3  MLP – Trained with BP - Noise Tolerance 

 

The MLP-BP and the ABNw-BP show high noise tolerance for this problem.  The 

differences are discussed on a case by case basis. 

 

The ABNw-BP and the MLP-BP were trained with a target error of 0.5.  The ABNw-BP 

performance was shown in figure 8.13.  For the MLP-BP 1 ≤ ρ ≤ 10, equivalent examples 

are shown in figures 8.19. 

 

 

Figure 8.19a – MLP-BP ρ (1) - target error 0.5 - error vs. noise 

 

 

Figure 8.19b – MLP-BP ρ (10) - target error 0.5 - error vs. noise 
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Comparing figures 8.13 and 8.19 shows that while at low noise the ABNw-BP produces on 

average a higher error than both MLP-BP networks, as the noise rises the ABNw-BP 

performance improves compared to the MLP-BP ρ (1).  However, it remains poorer than 

the MLP-BP ρ (10).  Average errors are compared in figure 8.20. 

 

 

Figure 8.20 - ABNw-BP and MLP-BP - target error 0.5 - error vs. noise 

 

It appears that the ABNw-BP has a performance which is between the two MLP-BPs.  This 

is actually slightly more subtle, at 25% noise, the MLP-BP ρ (1) fails to recognise all 

patterns, the MLP-BP ρ (10) recognises all patterns at up to 44% noise, the ABNw-BP 

recognise all up to 45% noise. 

 

The ABNw-BP performance when a target error of 0.05 was set is shown in figure 8.15.  

Equivalent examples are shown for the MLP-BP 1 ≤ ρ ≤ 10, in figures 8.21. 
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Figure 8.21a – MLP-BP ρ (1) - target error 0.05 - error vs. noise 

 

 

Figure 8.21b – MLP-BP ρ (10) - target error 0.05 - error vs. noise 

 

Comparing figures 8.15 and 8.21 shows that at low noise the ABNw-BP, similar to before, 

produces an average error higher than both the MLP-BPs.  As the noise rises, the ABNw-

BP and MLP-BPs behaviour is similar to that shown in the previous example.  The error 

changes in response to noise are more sudden for the MLP-BPs.  Average errors are 

compared in figure 8.22. 
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Figure 8.22 - ABNw-BP and MLP-BP - target error 0.05 - error vs. noise 

 

The ABNw-BP performance still lies somewhere between the two MLP-BPs.  Again, the 

actual performance on patterns recognised is more subtle.  At a noise of only 23% the 

MLP-BP ρ (1) fails to recognise all patterns, the MLP-BP ρ (10) recognises all up to 36% 

noise, as does the ABNw-BP. 

 

8.4.4  MLP – Trained with BP - Summary 

 

The ABNw-BP and MLP-BPs suffer a generalisation depredation as target errors are 

lowered indicating classic over-fitting.  In training time and recognition tests the ABNw-BP 

performs better than either MLP-BP and it is better at avoiding critical failures. 

 

The ABNw-BP demonstrates excellent noise tolerance in tasks that MLP-BPs specialise in; 

however, the MLP-BP can only be presented with an idealised signal (a snapshot of the 

input data), while the ABNw-BP can receive a continuous signal that is required for 

interacting with real world systems, for example artificial vision. 

 

The comparison is also biased in favour of the MLP-BP, as it is allowed to operate 

unrestrictedly while the ABNw-BP is restricted in decimal places by the pulse-width. 
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8.5 Pulse-Frequency Modulated ABNF – Trained using a GA 

 

A major change in the ABN was implemented for pulse-frequency modulation, (denoted 

ABNF).  The topology was the same as that of the ABNw, and the network was presented 

with the same pattern.  The network was trained by a Genetic Algorithm, ABNF-GA. 

 

8.5.1  ABNF – Trained using a GA - Apparent Success 

 

During the incremental changes in producing the ABNF performance was inconsistent with 

apparently successful outputs changing to give errors.  This was due to the more 

complicated behaviour of the ABNF rendering the relaxation criteria used for the ABNw 

unreliable. 

 

The reason for inconsistent success was that the ABNF is capable of producing the same 

type of relaxation output as the ABNw.  However, in other events when the network 

appeared to relax, the pulses were part of a cyclic-stability output. 

 

An ABNF therefore has two relaxed states.  When a constant repeating pulse was produced, 

this was taken to be the node value.  When there was cyclic-stability then the average value 

of all pulses in the cycle was taken as the node’s output; in some cases this was not 

detected and a relaxed value was assumed from the cycle. 

 

8.5.2  Successful ABNF – GA Implementation 

 

The following figures 8.23 and G.28 to G.33 show the first successful event with both 

relaxed and cyclic behaviour.  Firstly, figures 8.23a and G.28 to G.30 give the resolved 

ABNF output pulses.  Secondly, figures 8.23b and G.31 to G.33 show the individual ticks. 
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Figure 8.23a – ABNF-GA output pulse – pattern 0 

 

 

Figure 8.23b – ABNF-GA output ticks – pattern 0 



 174 

When presented with a pattern, the 4 output nodes produce different numbers of pulses.  

This is a result of the ABNF having a variable pulse-duration.  Examining the tick count 

shows that each pattern presented undergoes the same tick count, as every node continues 

to pulse until all nodes have relaxed. 

 

One consequence of the nodes producing the same number of ticks, is that some nodes are 

in mid-pulse when the last ABNF node relaxes, so that any partial pulse information is 

discarded. 

 

Cyclically-stable behaviour occurs in some of the nodes, see figure G.28 for node 1 and 

figure G.29 for node 2.  In the first case there is a clear 5 pulse cycle with one pulse of 0.4 

followed by 4 pulses of 1.0.  This should give an output average (mean) of 0.808, however 

the value was taken as 1.0, the relaxed value of the last two pulses based on pulse-width 

relax.  The second case is different; the cyclic values are (0.3,0.7,0.5,0.7) and this gives an 

average value of 0.55 which is the value reported.  This averaged pulse is added onto the 

end of the pulse output. 

 

The relaxed evaluation takes priority over the cyclic-stability.  The results of which is 

longer cycles or, for those with little fluctuation, the average (mean) value is replaced by 

average (mode) value. 

 

8.5.3  Comparison of ABNF – GA and ABNw – GA 

 

The pulse-width ABNF-GA was evaluated on four criteria; relaxation time, minimum error, 

evolutionary time, and signal-pathway strength.  All the relevant ABNF and ABNw 

parameters were equivalent.  These included 3 hidden nodes, an α of 0.9 and a ρ of 1.0.  

The target eABN was {0.5}. 

 

8.5.4  ABNF – Trained using a GA - Relaxation Time 

 

The ABNF-GA continues to pulse until all output nodes have relaxed.  To determine 

whether the ABNF has relaxed, an extra pulse is required on single outputs and an extra 

cycle for cyclic-stability.  These are an observer requirement, not an ABNF requirement.  

Given this, an observation of the ABNw showed a range of (3,7) pulses (equating to 30 to 
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70 ticks) for an individual node and pattern, with an average in the range (3,4).  The ABNF 

had a range of (38,93) ticks with an average of 49.  This shows that the ABNF performs in 

a similar timescale to the ABNw. 

 

8.5.5  ABNF – Trained using a GA - Minimum Error Achieved 

 

The ABNw achieved an average eABN of 0.07 when pursuing a target of 0.5.  The ABNF 

achieved an average eABN of 0.195.  Both of these networks show a tendency to over-fit the 

problem. 

8.5.6  ABNF – Trained using a GA - Training Time 

 

The evolutionary training time for the ABNw had a range of (53,3262) generations with an 

average (rounded mean) of 553.  The ABNF range was (26,632) generations with an 

average (rounded mean) of 305. 

 

The ABNF trained in fewer generations when successful, however, while the ABNw always 

found a solution, the ABNF occasionally reached the maximum permitted generation count. 

 

8.5.7  ABNF – Trained using a GA - Signal-Pathway Strength 

 

Recall that for the ABNw, the average ranges were; 

 

• hidden pathways 123 (-60 to +63) 

• output pathways 37.7 (-27.1 to 10.6) 

 

The ABNF produces; 

 

• hidden pathways 118.8 (-48.6 to +70.2) 

• output pathways 28.3 (-19.3 to 9) 

 

As both ABNs have a similar range of signal-pathway values, this indicates that a network 

of mixed nodes may be possible. 
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8.5.8  ABNF – Trained using a GA - Noise Tolerance 

 

Noise has greater effect on ABNF performance than on the previous ABNw.  Examples of 

noise effects are shown and discussed, (see figures 8.24 and G.34 to G.41). 

 

 

Figure 8.24a – ABNF-GA output pulse - target eABN 0.5 - noise 0% - pattern 0 

 

The pulse outputs show relaxed values, having resolved all cyclic-stability behaviour.  The 

overall performance illustrated, in figures 8.24a and G.34 to G.36, shows an error of 0.1 

for pattern 0 and pattern 3, indicating a relatively stable performance. 

 

The pulses are resolved from the ticks shown in figure 8.24b.  These are more difficult to 

interpret than ABNw ticks and give an example of the differing pulse stream a node can 

produce. 
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Figure 8.24b - ABNF-GA output ticks - target eABN 0.5 - noise 0% - pattern 3 
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The ABNF is affected by low levels of noise, beginning at 5%. 

 

 

Figure 8.24c – ABNF-GA output pulse - target eABN 0.5 - noise 5% - pattern 0 

 

The output from pattern 0 is shown in figure 8.24c.  When compared with figure 8.24a, it 

can be seen that the ABNF does not recognised it.  All other patterns are recognised with 

no eABN change.  This is similar to the critical failure that occurred with the ABNw-GA, 

however the noise tolerance is at a much lower level. 

 

As noise increases to 15%, eABN reduces.  The output for pattern 2, node 0 and 3, shows a 

reduced time to relax.  This is shown in figures G.37 and G.38 and is a result of converting 

a cyclically-stable output to a relaxed output (on pattern 3), resulting in faster relaxation 

for the ABNF as the other nodes relaxed in fewer ticks. 

 

The ABNF is unaffected by increase in noise until 25%.  A cyclic-stable output is produced 

by a previously relaxed node, (node 1, pattern 0), as shown in figure G.39. 
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Various increases in noise affect the eABN.  At 46% noise, the network is unable to 

differentiate between patterns; at 36% noise, cyclic behaviour occurs with extremely 

variable in-cycle pulses, figures G.40 and G.41. 

 

The effects of noise were tested on several events and showed that the ABNw is far more 

tolerant of noise than the ABNF.  This may be due to the instability of the ABNF’s cyclic-

behaviour. 

 

The previous effect of the slope ρ was considered and tested.  There was no notable effect 

on the noise tolerance of the ABNF-GA, which is in keeping with ABNw-GA performance.  

The maximum pulse-duration was examined to assess quantisation.  This is more 

detrimental to the ABNF’s training time, as it is assessed every tick, than to the ABNw’s 

training time. 

 

8.5.9  ABNF – Trained using a GA - Summary 

 

In general the ABNF is capable of the same performance as the ABNw; however, as it 

produces cyclically-stable as well as relaxed outputs, it produces greater variation in its 

behaviour.  As a consequence the ABNw has a higher noise tolerance and is 

computationally less demanding than the ABNF.  Training factors, such as number of 

generations, favour the ABNF slightly.  The similarity in signal-pathway behaviour 

indicates that an ABN of combined node types is possible. 

 

Both ABNs are viable alternative pattern recognition networks to the MLP.  Their 

advantage is that they can be used in time domain problems as well, while the MLP must 

take a static view of time data. 
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8.6 Universal-Pulsing ABN 

 

ABN success in pulse width and frequency modulated pattern recognition is the first part 

of a universal solution - ABNU - in addition the production of a time-domain signal is 

desired.  For this thesis, a robot walking gait time-domain signal was chosen, (in keeping 

with the author’s research group’s area of expertise) and it represents a general wave-form 

generation. 

 

A walking gait is defined by the sequence of limb movements, the duration of each stride 

and the speed of each limb movement.  To do this a network must produce a number of 

pulse-frequency “spikes” (amplitude 1 values) arriving in a time period. 

 

A pulse-width signal could determine both limb sequence and stride duration; however, the 

stride would move at constant (maximum) speed for the duration of the pulse as the 

amplitude is constant. 

 

A pulse-frequency consisting of the correct number of frequency pulses at the correct time 

would produce the correct movement.  From the previous sections it appears unlikely that 

an ABNF node can be this responsive on its own. 

 

The implementation co-ordinates a different pulse-width for each gait and an associated 

pulse-frequency.  The co-ordination of the different limbs is an effect of the ABNU which 

consists of a mixture of the previous nodes and their variants. 
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8.6.1  Walking Gait 

 

In a quadruped walking gait, a single limb moves at a time.  There are many possible 

topologies for achieving any of the gaits, only one is required here.  This gait is achievable 

in a three layer ABNU.  In the figure 8.25a, the limbs are shown as FR-front right, FL-front 

left, RR-rear right, and RL-rear left. 

 

 

Figure 8.25a – Walking-gait - layer 1 outputs 

 

In this example the pulse-duration is 80 ticks.  The 4 each nodes produce a control pulse-

width signal.  If pattern value interpreted, from top to bottom, the nodes produce evaluated 

outputs of (0.25, -0.5, -0.25, 0.5).  The pulse can generate a leading 0 or 1 amplitude. 

 

The second layer combines the layer 1 signals, allowing pulse separation.  This permits 

both a leading and trailing amplitude of 0. 

 

 

Figure 8.25b – Walking-gait - layer 2 outputs 

 

This allows both limb sequence and stride duration to be produced by the ABNU, while 

stride speed is still required.  For this a pace signal is required, (see figure 8.25c). 

 

 

Figure 8.25c – Walking-gait - layer 3 outputs 
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It does not really matter when the pulse-frequency (speed) signal is integrated with the 

pulse-width (duration) signal.  In this example, a third layer is used for a simpler 

demonstration. 

 

The walking gait is the most difficult to generate as it requires independent movement of 

all limbs. 

 

8.6.2  Trotting Gait 

 

For a trotting gait, the limbs move in diagonally opposing pairs.  Due to the limb pairing 

and stride symmetry, this is a achievable in a two layer ABNU. 

 

 

Figure 8.26a – Trotting-gait - layer 1 outputs 

 

This example uses a pulse-duration of 30 ticks, (figure 8.26a).  The nodes produce outputs 

of (0.5, -0.5, -0.5, 0.5).  The second layer provides the pace signal. 

 

 

Figure 8.26b – Trotting-gait - layer 2 outputs 

 

Limbs (FL,RR) move slower than the other pair, 7 pulses for every 8.  This is caused when 

there is an imbalance in pulse-width and pulse-frequency.  Components of a biological 

system would mask this with its more complex generation system (far more pulses and 

using thousands of ticks per second).  This is an example of the trade off between 

universality and functionality, placing too much importance on single nodes.  Increasing 

the number of ticks in a pulse-width reduces the effect.  An alternative is selecting an 
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appropriate pulse-duration to include the missing 8th pulse, figure 8.26c.  If more pulse 

frequency nodes are included then the effect can be countered without having to adjust 

pulse-duration, figure 8.26d. 

 

 

Figure 8.26c – Trotting-gait pulse - duration 32 - layer 2 outputs 

 

 

Figure 8.26d – Trotting-gait – additional pulse frequency nodes - layer 2 outputs 

 

8.6.3  Gallop Gait 

 

The galloping gait also pairs the limbs, front and rear.  The only animal with a true gallop 

is the salt water crocodile as all other creatures have a delay between the paired limbs.  

This gait is of the same complexity as the trot, with different timings. 

 

 

Figure 8.27a – galloping-gait - layer 1 outputs 

 

This example uses a pulse-duration of 10 ticks, (figure 8.27a).  The nodes produce outputs 

(0.5, 0.5, -0.5, -0.5). 
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Figure 8.27b – Galloping-gait - layer 2 outputs 

 

The second layer provides the pace signal.  The addition of this layer produces the outputs 

in figure 8.27b.  The same imbalance occurred with the trot recurs with the gallop; in this 

case the front limbs move faster than the rear.  It is possible that this is actually required by 

a robot.  All quadrupeds do not have a symmetric front rear body shape and therefore the 

front or rear limbs may be more powerful/move at different speed to compensate.  As 

before this can be equalised with a change to pulse-duration or additional frequency nodes, 

(see figures 8.27c and 8.27d). 

 

 

Figure 8.27c – Galloping-gait pulse duration 12 - layer 2 outputs 

 

 

Figure 8.27d – Galloping-gait – additional pulse frequency nodes - layer 2 outputs 
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8.6.4  Universal-Pulsing ABN - Summary 

 

All required locomotion gaits have been produced by the ABNU (using pulse-width, pulse-

frequency and their inverse pulse modulations). 

 

The pattern recognition abilities of the ABNs are equivalent to that of the MLP; however, 

MLP networks have difficulty producing suitable time-domain control outputs (for 

example for pulse-width modulated motor control). 

 

As Artificial BioChemical Networks can perform pattern recognition, they do not require 

other devices to construct a complete recognition-control system.  Artificial BioChemical 

Networks have inherently time-domain functionality and do not have this disadvantage.  

They may therefore be trained to control the gaits of a simulated quadruped robot.  The 

robot uses servo motors to control limb movement, (figure 8.28).  These limbs have one 

active and one passive degree of freedom. 

 

 

Figure 8.28 – Robot leg layout 

 

This simulation has been used and reported many times previously.  The dynamics of the 

legs and the robot are fully reported by Muthuraman et al., [2003] and McMinn [2002].  

Figure 8.29 shows limb movements generated when the network was evolved to walk.  The 

result corresponds well with the perfect pattern (a perfect pattern would have a repeat time 

of 60 time steps and a movement from position 80 to position 100). 
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Figure 8.29 – Movement pattern of legs 

 

8.7 Modular ABNs 

 

The abilities of ABNs to perform pattern recognition and produce time-domain signals 

show that they are as functional as ANNs.  ABNs have the advantage of being able to use 

both time-domain and spatial-domain data.  This presents an alternative approach to 

connectionism.  In addition, these behaviours are performed by the same unit types and the 

same topology type.  ANN functionality typically comprises different units and topologies. 

 

Modular ANNs have been extensively researched by the author’s group, as in McMinn 

[2002] and Muthuraman [2005] and have demonstrated capabilities beyond that of 

individual ANNs.  ABN modules have been connected together to produce a control signal 

response to a recognition data input. 

 

The ABN modules can be connected in the same manner as ANN modules, which is 

straightforward.  Outputs of a pattern-recognition ABN are the inputs of the control signal 

ABN, (figure 8.30a).  If specific recognition outputs are suitable as control module inputs, 

either the recognition module is trained with new targets or a translation module is placed 

between them, (figure 8.30b). 
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Figure 8.30a – Recognition - control modules ABN 

 

In the two module ABNU system, the environment inputs are continuous signals of fixed 

but different amplitude.  The recognition module outputs are produced as time-domain 

pulses.  These are a combination of pulse-width and pulse-frequency, depending on the 

nodes utilised.  They arrive as control ABNU inputs with time-domain behaviour. 

 

When the control ABN inputs are of fixed amplitude but time variable, they are normalised 

by the input layer of the control ABN.  Therefore second and later modules in the system 

receive information in the format that their input layer would expect for environmental 

inputs.  This can cause problems with cyclic behaviour and so a translation module is used 

which produces the control output values. 

 

 

Figure 8.30b – Recognition - translation - control modules ABN 

 

In the three module ABNU system the operation remains consistent, however the 

recognition module output, with variable pulse-width and amplitude 1, is translated to a 

constant output of amplitude (0,1). 
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The difference between these module arrangements is that the first produces a signal that 

was relaxed for the first module before it was permitted to progress, while the second 

allows the ABNU system to relax as a whole.  The second is preferred as it is unsupervised 

free in determining signal progression; it is the method implemented in this thesis. 

 

8.8 Summary 

 

The ABN systems discussed in this chapter are a new and different approach to 

connectionist AI.  Instead of a neural networks basis, they model the chemical signalling 

within cells.  Of course, as observed, such signalling lies at the root of neuron functionality 

also, as the neuron is itself a cell. 

 

The retention of generalisation and universality as discussed by Capanni et al., [2003] 

affects the ABN performance in pattern recognition and control systems, allowing for 

graceful decay as noise increases.  Such “fuzzy” uncertainty is far more stable than a 

system that performs longer with higher accuracy then undergoes critical failure with little 

warning. 

 

With regards to mobile robot operation there is a functional advantage of ABN pattern 

recognition.  Most pattern recognition is achieved “in vitro” where time is not a 

constraining factor; here “snapshot” pattern recognition can be utilised.  In an artificial 

organism that has to adapt to its environment “in vivo” then an ABN information flow 

pattern system can assimilate information as it appears. 

 

The implementation of universal ABNs allows a single type of intelligent unit to perform 

all the operations of a modular AI used in robot control, and can be encoded as part of the 

evolutionary algorithm.  This can be achieved without an operator placing specific units as 

shown in the systems presented by Muthuraman [2005].  In these he noted the importance 

of unit functionality without which (depending on the module purpose), specific units are 

required. 

 

The ABN approach detailed here has several advantages.  It simplifies the design of time 

dependant outputs which, in turn, allows the straightforward implementation of Central 
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Pattern Generator networks in robots, pulse-width modulation for motor control and other 

similar systems.  However, the ABN networks are equally at home in traditional pattern-

recognition tasks.  They also allow systems to be developed which behave in many 

respects like spiking neuron models, but without the associated complexity. 

 

Finally, ABNs may be trained using traditional methods and are suited to the development 

of new methods based on known training algorithms. 
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Chapter 9 

Further Work 
 

9.1 Introduction to the Chapter 

 

There are five main topics in this chapter.  Firstly, areas of exploration from the 

development of the Taylor Series networks.  Secondly, investigations into Artificial Neural 

Network functionalities that were observed during the TS research.  Thirdly, memory in 

connectionist networks.  Fourthly, outstanding exploration in Artificial BioChemical 

Networks.  Finally, combinations of TS and ABN techniques. 

 

9.2 Taylor Series SLT and MLT 

 

The problems presented to the Single-Layer Taylor Series network were solved with 3rd 

order TS neurons, and increasing the order beyond this gave no advantage.  One direction 

for further work would be an investigation into more difficult problems, to assess if 4th 

order (or higher) terms can prove an advantage. 

 

Firstly, the relationship of these results should be compared with the known advantages 

that 3rd order SLT networks show over 2nd.  If higher order terms continue to show little or 

no effect until the network has achieved a low error, then an algorithm could be developed 

to perform initial training on 1st order terms and only introduce the higher orders as 

training improvements decrease.  These higher order terms could be initialised with a 

weights range based on observing the trained state of such networks (as they may have a 

different profile). 

 

Secondly, there is also the influence of the factorial divisor to consider.  These factorial 

divisors reduce the influence that their weights may have.  As it is, a 4th order weight has ¼ 

the effect of a 3rd order weight of the same magnitude.  Given the dynamics of ANN 

training, it may be possible to discard this divisor and to allow the weights to accommodate 

the effect, with an appropriate initialisation step. 
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Thirdly, any advantage of a divisor could be assessed against the training overheads of the 

additional computations entailed.  This is based on the observation that once a network is 

trained, any divisors could be incorporated into their associated weights before use.  This 

would remove any later computation on these divisors and network performance would be 

identical. 

 

The proposed research on increasing orders of power with regard to training time 

improvements should also take into consideration the effect of noise tolerance given any 

changes in network training performance. 

 

9.3 ANN Performance – Noise, Targets and Validation 

 

In general ANN performance, the advantages of noise tolerance, with regards to target 

setting have been well demonstrated.  These merit additional investigation.  ANNs have 

been extensively researched and there is considerable work by other authors in this area; 

however, subject to a literature review, a close look at pattern-target relationships with 

regards to noise tolerance and overtraining would be in order.  This would be evaluated 

against validation trained networks. 

 

9.4 Displaced Equilibrium – Memory in Connectionist Systems 

 

As part of the project work in the thesis, a system was investigated where an ANN was 

evolved to achieve a partial success in a problem.  The particular problem was to associate 

different walking performance with input parameters.  This evolutionary training was 

equivalent to the hard-wired biological component referred to as “genetic memory”, which 

allows organisms to survive in their initial environment. 

 

The next phase was to introduce a learning algorithm that would minimise the error in the 

environment to achieve efficiency in walking.  This differed from most learning algorithms 

in that the ANN learned while it performed. 

 

The algorithm made use of several components that were evolved variables.  A learning 

rate amplified any changes.  A Hebbian (and anti-Hebbian) variable affected any active 
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connections.  A synchronous variable affected any active connection when other 

connections were also active while a mediated contribution affected a connection (active or 

not) if associated connections were active.  A bio-chemical feedback acted as an error to 

the entire ANN. 

 

When this was implemented, the ANN was able to function on introduction to the 

environment and adapt to its maximum efficiency. 

 

Once the input parameters were altered, to simulate a different walking environment, the 

learning algorithm allowed the ANN to adapt to the new environment as well, through 

altering its connection values.  If the input change was too great (such as a radically 

different environment) then the ANN was unable to adapt. 

 

Once the ANN was returned to its original environment, the learning algorithm adapted the 

ANN once more.  This returned the connection values to the same as before, hence the 

term “displaced equilibrium”. 

 

There were two observations that prevented this work from being included in the thesis.  

Firstly, a type of artificial amnesia developed.  As the connection values shifted from one 

environment to another, some were permitted to break (a feature of the algorithm).  These 

broken connections were never reformed and the ANN adapted by finding alternative 

solutions to a retuned environment.  Eventually, too many connections were lost and the 

ANN could no longer adapt to changes.  This is not an endpoint for this research, as 

adaptations to the original algorithm or connection formation could be used.  Although it 

had been decided at this point that this was of no direct benefit to the project, future work 

in the area was considered worthwhile. 

 

Secondly, when compared to biological systems there remains a problem in that the entire 

ANN is involved in all its activities.  That a fully connected system is limited in 

development was observed and supported by the ongoing work of the research group in 

modular networks.  It was therefore decided that this research should be later assigned to a 

modular development. 
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9.5 ABN Design 

 

As the ABNs were introduced as a new concept, various opportunities for explorative 

research presented themselves during their construction; while not an exhaustive list, those 

that showed potential are included here. 

 

9.5.1  Topology 

 

To allow comparisons, the topologies of the ABNs were constructed in a similar manner to 

ANNs.  These ABN topologies are fixed structures and do not permit adaptable changes in 

topology whereas biological systems do, both during initial development and through their 

life span.  The thesis introduced the ABN concept as an alternative AI technique and 

accepted some initial restrictions to do so.  It is intended that nodes may develop 

peripatetic behaviour and a project examining a hybrid Swarm-ABN system is proposed to 

this effect. 

 

9.5.2  Pulse Time 

 

The following method is suggested for future work and integrates the pulse information 

Sum S into ton and incorporates the previous ton value and a leaky integration LI factor 

alpha α. 

 

( )( ) ( )LIPWSt ton ασβ −⋅⋅=+    equation 9.1  

 

Previous nodes have not altered the pulse parameters after a pulse has commenced, this is 

in keeping with biological neuron pulses.  As biological neurons are pulse-frequency and 

not pulse-width there is little to alter.  This is not the case with biochemical signalling, 

where the protein parameters are part of ongoing processes that may dynamically change.  

Allowing the pulse-width to vary after it has commenced a cycle would result in a 

variation in pulse-duration and introduce non-synchronisation in the ABNw. 
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9.5.3  Amplitude Modulation 

 

Biological neuron signals are not amplitude modulated but are time modulated, while 

artificial neurons such as McCulloch-Pitts are amplitude modulated but not time 

modulated.  Biochemical signal-pathways can, in addition to time modulated signals, 

produce an amplitude factor by increasing the quantities of protein in the system.  Current 

implementations of ABNs seek to model the time modulated signals but do not incorporate 

amplitude modulation.  This has been due to the problem domain, where only one degree 

of freedom is incorporated into the input data and hence one type of signal modulation is 

performed by the ABN.  Amplitude modulation may be a property of the ABN rather than 

the node, as adding such functionality contributes greater degrees of freedom to the output 

than are supplied by the input.  Changes in the problem domain may be required to 

accommodate this. 

 

Amplitude over time was a consideration when attempting to produce walking gaits.  The 

gait was achieved through combining pulse-width and pulse-frequency modulation.  It may 

be that gait transition, such as moving from a walk to a run, would benefit from such work.  

However, it is suspected that it will be more important in allowing speed variable gaits.  

For example, bipedal gaits are more similar in profile than those of quadrupeds; but for 

each there must be some method of signalling the power behind the limb as creatures can 

walk, trot, canter, pace and gallop at various speeds.  This is the only way that creatures of 

differing physical size keep pace with each other. 

 

Different amplitudes allow the possibility of using a “0” as the “no signal” state, the “+1” 

as the active move state - which lifts a limb forward and “-1” as the recovery state – which 

returns a limb to the initial position.  Although biological systems signals do not operate 

this way, it may be conducive to artificial movement. 

 

9.5.4  Improvements to ABNw Backpropagation 

 

Although the method used proved successful for the ABNw there are some improvements 

possible, especially with regard to the use of the relevant hidden pulses.
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The pulse from the hidden layer that was used to alter the weights for the output pulsen was 

hidden pulsen-1.  This is correct, but of limited accuracy. 

 

The output pulsen is produced from Sumn at the output node, which has been accumulated 

by the arriving of pulse0 to pulsen-1 from the hidden layer, the effect of each accumulated 

value being diminished by the factor α at every tick. 

 

engthPathwayStrtudePulseAmpliSumSum ticktick ⋅+⋅= == 12 α  equation 9.2  

 

• When pulsen-1 has fully arrived the effect of the leading edge has diminished by α10.  

Given an α of 0.9, this is approximately 0.35. 

• The effect on the trailing edge of the previous hidden pulse is diminished by α11 and 

the leading edge by α20. 

• This effect continues until the first pulse is computed. 

 

As can be seen the more recent a pulse is the more significant its effect.  A cumulative 

term CT could therefore be used instead of the hidden pulsen-1. 

 

Given this, it must be considered why Backpropagation works using hidden pulsen-1 

instead of CT.  This may be due to the error being moved in the correct direction, using a 

reduced value, akin to implementing a learning rate < 1.0 (assuming CT is greater than 

pulsen-1).  There is also the consideration that the hidden pulsen-1 may actually approximate 

CT.  This is due to the leading edge of the pulse having an amplitude of “1” and the trailing 

edge having the amplitude “0”. 

 

9.6 Taylor-Series Functionality with ABNs 

 

In this thesis there were two different approaches to unit functionality.  Both were 

successful, one in the static-domain and one in the time-domain.  As the TS neuron 

operated on the summation function and the ABN node operated on the output function, 

there is the potential to combine both of these and assess how they work across both 

domains.  Although this is beyond the scope of this thesis, it is a logical next step. 
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Chapter 10 

Conclusions 
 

10.1 Introduction to the Chapter 

 

This chapter presents the conclusions of the project.  The original objectives, as described 

in Chapter 1, are revisited with reference to the work presented in this thesis.  Then a 

discussion of the original contributions follows.  A summary of the main findings and 

further work is made.  Finally, some concluding remarks concerning the success of the 

project are made. 

 

10.2 Project Objectives Revisited 

 

The objectives as stated in Chapter 1 were: 

 

1. To review the literature on the subject of generalised Artificial Neural Networks 

2. To review the biological relationship of the work 

3. To develop an appropriate generalised neural model 

4. To extend the function of the above to time domain behaviour 

5. To compare these results with published and standard data 

6. To integrate these models into a complete neural system 

7. To apply this system to a standard problem 

8. To compare these results with previously published material 

 

These can now be considered in terms of what was achieved. 

 

10.2.1  To Review the Literature 

 

The initial background reading and study, that was necessary to understand the purpose of 

the project, was undertaken at the beginning of the research.  The main examination began 

with the work which was later used in “Evolution and Devolved Action” [MacLeod et al., 

2002], (Appendix B), which this author contributed to.  Study then centred on various 
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recommended AI textbooks, included in the bibliography, and continued with a review of 

the work of McMinn [2002].  As the project developed a continuous review of appropriate 

literature, including Muthuraman [2005], contributed to the body of knowledge. 

 

10.2.2  To Review the Biological Relationship of the Work 

 

The author examined the biological basis of Artificial Intelligence and centred on genetics 

and brain function.  As the project developed away from traditional connectionism 

approaches, a greater emphasis was placed on biochemistry and the intelligence expressed 

by single-celled organisms. 

 

10.2.3  To Develop an Appropriate Generalised Neural Model 

 

An appropriate generalised neural model was developed, described in Chapters 4 and 5, 

using a Taylor Series expansion.  The generalisation capability of the TS neuron was 

explored and an associated investigation on its universality was completed.  These both 

gave favourable results for the new model.  Once the neuron had been fully investigated, 

the model was integrated into network topologies and trained with a Genetic Algorithm.  

Additionally, beyond the requirements, it was shown that the model could be used with a 

standard learning algorithm, (see Appendix C).  The functionality of the neuron was then 

explored in the networks it was added to, which again resulted in a favourable 

performance.  This work led to a publication [Capanni et al., 2003], shown in Appendix A. 

 

10.2.4  To extend the Function to Time-Domain Behaviour  

 

The TS models were implemented as neural oscillators, which produced some interesting 

results.  Their limitations were noted and although they may merit further work, they did 

not show sufficiently promising results to include a specific section.  Instead, this 

investigation inspired the later successful research into the alternative connectionist system 

ABN. 
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10.2.5  Compare Results with Published and Standard Data 

 

A comparison of the results with standard data and ANNs was made.  This included a 

single neuron solution to the parity-bit problem [Minsky and Papert, 1969], which 

demonstrated the improved functionality of the TS neuron over the McCulloch-Pitts 

neuron.  The generalisation and universality of the TS networks, single and multi-layer, 

were compared with that of the Single-Layer Perceptron and the Multi-Layer Perceptron.  

In these comparisons the new model showed several advantages, including training time, 

network size and noise tolerance.  This was presented in Chapter 5. 

 

10.2.6  Integrate Models into a Complete Neural System 

 

Due to the investigation into the time-domain behaviour, the integration instead led to the 

investigation into alternative connectionist approaches.  This resulted in the proposal of an 

Artificial BioChemical Network, (Chapter 6), after extensive research into biological 

intelligence. 

 

This model was developed as a complete connectionist system for time-domain problems 

and a series of experiments and comparisons were set out, (Chapter 7). 

 

The functionality of this model was examined and compared against standard ANN types.  

The same capabilities were examined in the spatial-domain as before and the new model 

performed successfully.  Then the same ABN models were tasked with the production of 

time-domain behaviour that their ANN competitors found difficult or impossible to 

produce, and once more produced successful results, (Chapter 8). 

 

10.2.7  Apply this System to a Standard Problem 

 

This new connectionist model was applied to the task of producing locomotion gaits for 

robots, as had the previous models by McMinn [2002] and Muthuraman [2005].  It was not 

necessary to compare against these previous approaches as the project had been developed 

using the lessons learned from them as a direction for study.  The model was able to 

produce the required locomotion gaits and complete the objective requirements.  This was 

achieved with a single unit type (ABN) rather than designed neurons, (Chapter 8). 
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10.2.8  Compare Results with Previously Published Material 

 

The development and comparison of the new model’s capabilities was compared at the 

appropriate stages throughout the thesis.  This showed the various advantages of the new 

model in its ability to interpret both spatial-domain data and time-domain data.  This work 

was completed by the model’s ability to process data across both domains, without the 

requirement for a translation system.  The results from the tests on the model’s 

functionality and comparisons of data (sections 10.2.6 to 10.2.8) contributed to a 

publication by Capanni et al., [2005]. 

 

10.3 Novel Aspects of this Research 

 

The new contributions of this research are as follows: 

 

• A new approach to connectionism based on the biochemistry of single celled 

organisms. 

This approach, Artificial BioChemical Networks, is the primary contribution in this 

thesis.  It has produced new time-domain units and network paradigms.  These have 

performed well when compared against standard, thoroughly researched and 

developed, ANN models.  The new models are in their infancy and they have 

tremendous potential for further development.  This work is presented in Chapters 6, 7 

and 8. 

 

• A highly functional advance to the neuron model based on the Taylor Series approach, 

(Chapters 4 and 5). 

A new model was introduced, based on mathematical theory, which was then shown to 

be highly, but controllably, functional as a neuron when compared to the previous 

model.  This was demonstrated by a solution to the parity-bit problem which the 

McCulloch-Pitts neuron is incapable of producing. 

 

• A comprehensive theoretical and experimental consideration of the mapping abilities of 

neurons in the spatial-domain, (Chapter 5). 
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The integration of the new highly functional model into networks showed that the 

neuron’s capabilities could be implemented using traditional learning algorithms, with 

the potential for further improvement. 

 

• Demonstrations of these models in modular connectionist networks. 

As described in Chapter 8, the capabilities of the new models have been shown in 

modular units which can produce the relevant outputs to communicate and build into a 

modular connectionist system, processing both spatial and time-domain information. 

 

• A consideration and investigation of neural functionality in the context of robotic 

systems, presented in Chapters 7 and 8.  As shown, the capabilities of the new models 

have been shown to be of real value in practical implementations. 

 

• A basis for further research into learning, modular networks and time-domain 

connectionism, presented as part of the further work section, (Chapter 9). 

 

10.4 Summary of Suggested Further Work 

 

• Investigation of higher order problems solvable by the Taylor Series SLT and MLT. 

• Production of order specific learning algorithms for the SLT and MLT. 

• Investigation of specific target selection towards improvement in ANN noise tolerance. 

• An investigation into adaptable memory in connectionist systems to produce AIs that 

can adapt to changes in their environments. 

• Further investigate memory in connectionist systems as a modular component 

• Construct hybrid Swarm-ABN system. 

• Investigate alternative methods of pulse timing in ABNs. 

• Encode additional information through the inclusion of amplitude modulation in ABN 

systems. 

• Develop and improve the ABNw Backpropagation Algorithm. 

• Combine the advanced in spatial-domain and time-domain functionality through the 

development of a Taylor Series ABN. 
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10.5 Concluding Remarks 

 

The project has successfully incorporated and extended the findings of its own and 

concurrent research, the management of which has introduced the author to a greater 

understanding of research. 

 

Although there have been difficulties to overcome in developing and complicating these 

objectives, mainly in turning away from dead ends instead of forcing an ineffectual path 

through, and in allowing new areas to be fully investigated by colleagues, the project has 

found its own purpose and has contributed new knowledge to the field. 

 

In particular it has provided a viable foundation for a new type of universal unit for use in 

connectionist AI. 

 

The author believes that the work in the areas of neural functionality and Artificial 

BioChemical Networks are useful contributions to connectionist research. 

 

This thesis joins a body of work which furthers the implementation of Evolutionary 

Artificial Intelligence.  It is hoped that the contributions of this research may be integrated 

with those of associated researchers to provide innovative and exciting intelligence 

capabilities in modular and diversely functional systems. 
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Appendix A 

Papers Produced During the Research 
 

A.1 Introduction to the Appendix 

 

The following contains two papers: 

 

Capanni, N.F., Macleod, C., Maxwell, G., 2003, An Approach to Evolvable Neural 

Functionality, ICANN-ICONIP, Joint International Conference on Artificial Neural 

Networks and International Conference on Neural Information Processing, Istanbul, 

Turkey, Proc. supplementary volume for short papers, pp 220-223. 

 

Capanni, N.F., Macleod, C., Maxwell, G., Clayton, W., 2005, Artificial BioChemical 

Networks, CIMCA-IAWTIC, Joint International Conference on Computational 

Intelligence for Modelling, Control and Automation and International Conference on 

Intelligent Agents, Web Technologies & Internet Commerce, Vienna, Austria, Proc. IEEE 

special issue, vol. 2, pp 98-102. 
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Appendix B 

Evolution and Devolved Action 
 

B.1 Introduction to the Appendix 

 

“Evolution and Devolved Action” examines the limitation of current Artificial Intelligence, 

concentrating on connectionist models such as Artificial Neural Networks which are 

created through Evolutionary Algorithms.  The paper presents ideas on how these 

limitations may be overcome and was the initial information source for this research. 
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Appendix C 

Backpropagation Algorithm, SLT Delta Rule and Pulse-
Width Backpropagation 

 

C.1 Introduction to the Appendix 

 

This appendix presents the Backpropagation Algorithm as used for static-domain training 

of Multi-Layer Perceptrons in this thesis.  A component of this algorithm is the Delta Rule, 

which is used for training Single-Layer Perceptrons.  A specifically derived Delta Rule is 

presented; it was created and used for training Single-Layer Taylor Series networks.  The 

last algorithm presented is a derived version of Backpropagation, which suits the 

requirements for the time-domain training of the pulse-width modulated Artificial 

BioChemical Network. 

 

C.2 The Backpropagation Algorithm 

 

Backpropagation was introduced by Rumelhart, Hinton and Williams, [1986].  This 

remains the most prevalent training method used in feed-forward networks.  There have 

been many improvements made to the initial method since its introduction, however the 

algorithm was used in this thesis to compare the performance of different artificial units 

and did not examine the assorted alternative versions of the algorithm. 

 

Backpropagation is a gradient-following error-minimising algorithm.  This means that as 

the algorithm progresses the parameter alterations cause the error to follow the downwards 

slope until a minimum level is reached.  This error minimum is usually not encountered as 

the stop criterion (a higher target error) should be found first. 

 

( )∑∑
= =

−=
m

i

n

j
ijijepoch ote

1 1

2

2
1    equation C.1  

 

The epoch error (eepoch) is defined as in equation C.1 where there are m data-patterns.  This 

is called the Least Mean Square (LMS) error.  Each pattern error (ep) is the sum of its 
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neuron errors where there are n output neurons.  The neuron error is designated (en) where 

n may be replaced by the specific neuron identifier. 

 

• The epoch error is calculated each epoch and compared against the stop criterion. 

• Only the neuron errors are used in the training algorithm. 

 

Summary of the Backpropagation Algorithm operation: 

 

Once a pattern has completed its forward pass of the MLP training begins.  It is customary 

to encompass all of the training from this point onwards as Backpropagation; however the 

initial training on the output layer follows Perceptron training delta rules and was used 

before Backpropagation was introduced. 

 

 

Figure C.1 – Backpropagation of an MLP 

 

Figure C.1 shows an MLP arrangement of nodes and neurons.  Training proceeds as 

follows: 

 

• For each pattern in turn, the output neurons errors en are calculated.  For the output 

neurons; 
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( )ααα outette −= arg     equation C.2a  

( )βββ outette −= arg     equation C.2b  

 

• The errors en are used to calculate an associated parameter for each output neuron.  

This assesses the change its connecting weights should undergo and incorporates the 

first derivative of the output function used.  In this case the logistic sigmoid.  The 

parameter is denoted by the lower case Greek letter delta (δ) - for the output neurons 

this is; 

 

( ) ααααδ eoutout ⋅−⋅= 1     equation C.3a  

( ) ββββδ eoutout ⋅−⋅= 1     equation C.3b  

 

• The deltas are used to calculate the new values of each connecting weight using the 

Delta Rule.  Weight values are designated wij where i is the connecting unit in the 

previous layer and j is the current neuron.  The new weight is indicated as w+.  For the 

above network the calculations are as follows; 

 

AAA outww ⋅⋅+=+
ααα δη     equation C.4a  

Boutww BB ⋅⋅+=+
ααα δη     equation C.4b  

CCC outww ⋅⋅+=+
ααα δη     equation C.4c  

AAA outww ⋅⋅+=+
βββ δη     equation C.4d  

Boutww BB ⋅⋅+=+
βββ δη     equation C.4e  

CCC outww ⋅⋅+=+
βββ δη     equation C.4f  

 

In equations C.4 the term η is the Greek lower case eta and is a constant called the learning 

rate.  Usually a η ≤ 1.  At this stage the weights for the output layer have been altered; 

however, as indicated, Backpropagation has not been implemented. 

 

Backpropagation refers to the method by which the error at each output node is back-

propagated to the hidden nodes so that the correct share of responsibility for this error can 
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be allocated and the hidden weights adjusted.  This is the “credit assignment” problem 

defined by Minsky [1961]. 

 

• As with the output layer the first stage in any hidden layer is to calculate the delta 

values for each neuron, as follows; 

 

( ) ( )ββαα δδδ AAAAA wwoutout ⋅+⋅⋅−⋅= 1   equation C.5a  

( ) ( )ββαα δδδ BBBBB wwoutout ⋅+⋅⋅−⋅= 1   equation C.5b  

( ) ( )ββαα δδδ CCCCC wwoutout ⋅+⋅⋅−⋅= 1   equation C.5c  

 

In equations C.5 the neuron error en of (targetn – outputn) is replaced by the credit 

assignment term.  This is the delta value of each neuron in the subsequent layer multiplied 

by the strength of the connection.  Using their delta terms, the new weights for each hidden 

neuron are found in exactly the same method as for the output neurons. 

 

ΩΩ
+
Ω ⋅⋅+= outww AAA δη     equation C.6a  

ΩΩ
+
Ω ⋅⋅+= outww BBB δη     equation C.6b  

ΩΩ
+
Ω ⋅⋅+= outww CCC δη     equation C.6c  

λλλ δη outww AAA ⋅⋅+=+     equation C.6d  

λλλ δη outww BBB ⋅⋅+=+     equation C.6e  

λλλ δη outww CCC ⋅⋅+=+     equation C.6f  

 

Once these calculations are completed, exactly one pattern has been passed forward 

through the network to find its outputs, and using the error calculation this pattern error has 

been passed back through the network to calculate the training.  After this has been done 

for all patterns an epoch has occurred. 
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C.3 SLT Delta Rule 

 

The delta rule for a Single-Layer Taylor Series network must take into account the multiple 

weights for each connection and their associated factorial and power terms. 

 

 

Figure C.2 – Delta Rule of an SLT 

 

The Delta Rule is only concerned with training an output layer.  The rule used is based on 

the version implemented in Backpropagation and proceeds as follows; 

 

• For each pattern in turn, the output neurons’ errors en are calculated.  For the output 

neurons; 

 

( )ααα outette −= arg     equation C.7a  

( )βββ outette −= arg     equation C.7b  

 

This is the same as for a McCulloch-Pitts neuron.  This is a property of the neuron, related 

to its output, and as such it is not affected by the connections to the neuron. 

 

• The errors en are used to calculate the deltas δn for the output neurons - this is; 

 

( ) ααααδ eoutout ⋅−⋅= 1     equation C.8a  

( ) ββββδ eoutout ⋅−⋅= 1     equation C.8b  
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Once more as a property of the neuron this is the same as in the MP neuron. 

 

The deltas are used to calculate the new values of each connecting weight using the Delta 

Rule.  This is different to the MP neuron as there are now multiple weights connecting 

each neuron and node.  Weight values are designated wijp where i is the connecting unit in 

the previous layer, j is the current neuron and p is the order of power the weight is 

connected via. 

 

• For the above network, assuming a 2rd order implementation, the calculations are as 

follows; 

 

!1

1

11
Ω

Ω
+
Ω ⋅⋅+=

out
ww ααα δη     equation C.9a  

!2

2

22
Ω

Ω
+
Ω ⋅⋅+=

out
ww ααα δη     equation C.9b  

!1

1

11
Ω

Ω
+
Ω ⋅⋅+=

out
ww βββ δη     equation C.9c  

!2

2

22
Ω

Ω
+
Ω ⋅⋅+=

out
ww βββ δη     equation C.9d  

!1

1

11
λ

αλαλα δη out
ww ⋅⋅+=+     equation C.9e  

!2

2

22
λ

αλαλα δη out
ww ⋅⋅+=+     equation C.9f  

!1

1

11
λ

βλβλβ δη out
ww ⋅⋅+=+     equation C.9g  

!2

2

22
λ

βλβλβ δη out
ww ⋅⋅+=+     equation C.9h  

 

• For any weight designated wijp, the new weight can be calculated as follows; 

 

!p

out
ww

p
i

jijpijp ⋅⋅+=+ δη     equation C.10b 

 

Once completed for every pattern, an epoch has occurred. 
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C.4 Pulse-Width Backpropagation 

 

For an ABNw the Backpropagation Algorithm must consider the time-domain parameters 

that accumulate the Sum value for each node.  The algorithm and its derivation was 

presented in Chapter 8 with future considerations presented in Chapter 9.  Given an ABN 

of equivalent topology to the ANN shown in figure C.1, the algorithm is summarised for 

nodes α and A, all other nodes in the same layers having equivalent operation. 

 

• The output node error en is calculated for time ti; 

 

( ) ( )( )ii outette ααα −= arg     equation C.11a  

 

This is the same calculation as used for an Artificial Neuron once output at ti is evaluated. 

 

• The associated delta term is calculated; 

 

( )( ) ( )ii eoutout ααααδ ⋅−⋅= 1     equation C.12a  

 

This is also the same as for an AN. 

 

• The delta values are used to calculated the new signal-pathway strengths s+. 

 

)1( −
+ ⋅⋅+= iAAA outss ααα δη     equation C.13a  

)1( −
+ ⋅⋅+= iBB outss Bααα δη     equation C.13b  

)1( −
+ ⋅⋅+= iCCC outss ααα δη     equation C.13c  

 

These calculations take into consideration that the most recent output from the previous 

layer is not the correct one to use, as it was in an AN.  Instead the output at the previous 

time t(i-1) must be used.   

 

At this point the output layer has been trained and the credit assignment must be made for 

the hidden nodes. 
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• The delta for the hidden layer node A is; 

 

( ) ( )ββαα δδδ AAnAnAA wwoutout ⋅+⋅⋅−⋅= −− )1()1( 1  equation C.14a  

 

This delta value is used to calculate the strength of the hidden signal-pathways.  In this 

example the outputs from the input nodes remain constant while the data pattern is 

presented.  Therefore there is no need to calculate a pulse at t(i-2). 

 

• The new hidden signal-pathway strengths s+ are; 

 

ΩΩ
+
Ω ⋅⋅+= outss AAA δη     equation C.15a  

λλλ δη outss AAA ⋅⋅+=+     equation C.15b  

 

If the previous layer was also a layer of hidden node rather than input nodes then time-

domain again becomes important. 

 

• In this case the calculations are; 

 

( )2−ΩΩ
+
Ω ⋅⋅+= iAAA outss δη     equation C.16a  

( )2−
+ ⋅⋅+= iAAA outss λλλ δη     equation C.16b  

 

Once completed, the ABN has relaxed for one pattern and had its signal-pathways 

adjusted.  After this has been done for all patterns an epoch has occurred. 
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Appendix D 

Polynomial Over-Fitting 
 

D.1 Introduction to the Appendix 

 

Networks composed of polynomial-type neurons have remarkable pattern recognition 

abilities.  These abilities may be due to their capacity to follow a decision boundary 

contour far more accurately than McCulloch-Pitts neurons Duch and Jankowski, [1999].  

This is attributed by Giles and Maxwell, [1987] to their modelling of the high-order 

structure of the environment in which they operate.  These authors also give a useful and 

detailed definition of generalisation in neural networks. 

 

D.2 Polynomial Over-Fitting 

 

A network composed of linear separators requires an infinite number of them to exactly 

map any smooth curve, whereas a polynomial may be able to follow it perfectly.  Herein 

lies both a functional advantage and a potential weakness. 

 

 

Figure D.1 – Polynomial over-fitting 

modified from [Bishop 1995] 

 

Figure D.1(a) shows an attempt by a singe linear separator to distinguish between the 

classes of open and closed circles.  This results in many errors in the training-set.  Figure 

D.1(b) shows a single polynomial separator.  This approximates the decision boundary 

much better and accounts for fewer errors.  If the single polynomial separator is allowed to 

increase its order until it reaches a zero error, (see Figure D.1(c)), it can classify all the 

training-set correctly.  This shows the ability of the polynomial compared to the linear-

(a) (b) (c) 
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separator.  It may be more apparent if the linear separator is viewed as a polynomial of first 

order terms Capanni et al., [2003]. 

 

 

Figure D.2 – Polynomial over-fitting of smooth curve 

 

A single polynomial is used to approximate a decision boundary such as shown in figure 

D.2, and allowed to increase in order to improve its fit.  This may then become prone to 

over-fitting as it attempts to intersect with every training-data point and makes abrupt 

changes to do so.  In the example shown, the decision boundary is closely approximated by 

a 2nd order polynomial.  Then the order of the polynomial is increased, shown as 6th order, 

until there is an exact mapping, 8th order.  The neuron does exactly what it is asked to do 

by the training algorithm and finds an exact solution to the training-set.  The extreme 

differences in the decision boundary show the inherent danger of over-fitting through the 

pattern matching abilities of polynomial neurons. 

 

There are many approaches to avoid over-fitting with higher-order networks.  One method 

is to evolve the order of the polynomial with an Evolutionary Algorithm while training the 

EA’s parameters with another approach, such as a separate EA or a derived gradient 

descent algorithm.  If the fitness takes account of over-fitting then a fitness function with a 

weighting factor can be used [Kim and Park, 2003].  Methods can be derived from linear 

separation training to utilise error feedback, such as Backpropagation Nikolaev [2003].  In 

a known problem, where there is no set formula for determining the size of the hidden 

layer in a MLP, these methods can be extended to polynomial networks.  If the network 

size is incorrectly set and the algorithm does not allow the network to alter its size, then 

over-fitting or under-fitting will occur Chang and Cheung, [1992]. 

 

actual boundary 

six order approximation 

eight order approximation 
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It is a prime requirement of networks to have good generalisation, that is to be tolerant of 

noise in the training patterns.  Therefore the network must either be very problem-specific 

or be flexible enough to include generalisation within its training algorithm. 
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Appendix E 

Methods 
 

E.1 Introduction to the Appendix 

 

The experiments in this thesis used a variety of software.  The main software used was 

Borland C++ version 5.02.  Minor simulations were assessed through Visual Basic (VB) 

within Microsoft Excel 2003.  Additional visual functionality was achieved with Microsoft 

HTA interfaces which used HTML, CSS, JavaScript and VB.  Visualisation was achieved 

through Mathcad 11 Enterprise Edition and user- constructed Graphical Interfaces in 

DHTML. 

 

The algorithms used or derived have been supplied appropriately in Chapters 5 and 8 and 

in Appendix C. 

 

All the different systems required individual programmes, however the inclusion of all of 

these would not benefit the thesis.  As an example, supplied below are the flow charts for 

the programme design of an Evolutionary Algorithm used to evolve the connectionist 

networks. 
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Start main_program 
 

This function controls the 

flow of the program.  It is sub 

divided into sections of 

requirement specific code. 

 

Data Format 
 

- Parameters for the format 
of the input data 
 
Evolutionary System 
Format 
 
- The dimentions of the 
Evolutionary System 

setup_evolutionary_system 
 
Initialises a random value for the 
genes of the evolutionary system. 

load_data 
 
Loads the data from a file into the appropriate array. 
This is a multi use function and may be overloaded. 

assign_targets 
 
Assigns a desired network output for each training pattern. 
Uses separate columns binary 1 with binary 0 separators. 
The number of columns = number of training patterns 

darwin 
 
Copies the fittest individual from the population to an array. 

Begin Evolution Loop 

matrix_produc_t3 
 
Assigns a desired network output for each training pattern. 

matrix_product_3c2v1 
 
Assigns a desired network output for each training pattern. 

test_darwin 
 
Tests the surviving individual against test data 
Displays output to screen. 

c_results 
 
Saves the population data for the current generation into a 
“csv” file. 

matrix functions 

load_data 
 
Recall of previously called function 

next 
page 

next 
page 

next 
page 

next 
page 
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test_fitness 
 
Finds the fitness of each member of the population. 
Achieved  by passing each pattern through the neural 
network which the evolutionary system codes and 
calculating the error. 
 
The error is measure of actual output against desired output. 
 
Unlike backpropagation the error is calculated exclusively 
on desired output minus actual output. 

selection 
 
selection returns a value for the fittest individual “minimum 
error”.  If sufficiently fit the break out of loop is performed. 
 
The individuals are then reordered in decreasing fitness 

crossover 
 
The fittest 50% of individuals breed. 
Each breads once with a randomly selected mate. 
Self breeding is not permitted. 
Crossover occurs a random (1 to 10) of times for each 
mating. 
No parents survive into the next generation. 

mutation 
 
Each gene in each individual is checked for mutation which 
occurs at a set % chance. 
Mutation changes the value of the gene by a random 
amount with a set range. 

Decision 
 

Has a sufficient fitness 

No 

previous 
page 

previous 
page 

previous 
page 

previous 
page 
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no return 

( &ReD[0], &TD[0], 

( &Wm0[0], &Wm1[0], 

no return 

( &Wm0[0], &Wm1[0], 

load_data 
void load_data ( int a, char *fname, int b, int *matrix ) 

 
Variables 
- counter (c1) int 
- input file pointer FILE (*ifp) 
 
// check file exists 
// load data from file to array 
for ( c1 = 0; c1 < size of matrix ; c1++ ) 
fscanf (ifp, “%1d”, &array_addr[c1]) 

no return 

no return 

( “TrData.dat”, TPn, 

( “TrData.dat”, TPn, 

no return 

main 
 

Data Format 
- No. Training Patterns (TPn) 
- No. Testing Patterns (TePn) 

- No. Rows in Data 
Patterns (p_r) 
- No. Columns in Data 
Patterns (p_c) 
- No. Elements in Data 
Patterns (p_e) 
 
Network Topology 
- No. Hidden Layer 
Neurons (hl) 
- No. Output Layer Neurons 
(ol) ol = TPn 
 
Network Operation 
- Maximum no. training 
cycles (max) 
- Training Rate Hidden 
Layer (eta_h) 
- Training Rate Output 
Layer (eta_o) 
- Target Error (target_error) 
- Bias of Neurons (bia) 
 

Matrices 

test 
 
Variables 
- counters (c1) int 
- current training pattern being used (TPc) int 
 

Matrices 
- output values for hidden layer (outputs_h) [hl] double 
- output values for output layer (outputs_o) [ol] double 
 
// loop for each pattern until all patterns are tested. 
while ( sum_error > target_error && count < max ) 
// loop for each pattern 
for ( TPc = 0; TPc < TPn; TPc++) 
// calculate output for network 
// calculate output for hidden layer 
net = ( TD_addr[p_e]*Wm0_addr[p_e*hl] ) 
outputs_h[hl] = 1/(1+(exp(-net))) 
// calculate output for output layer 
net = ( outputs_h[hl]*Wm1_addr[hl*o] ) 
outputs_o[ol] = 1/(1+(exp(-net))) 
// apply binary activation 
if (outputs_o[ol] > 0.5 ) outputs_o[ol] = 1 
else outputs_o[ol] =0 
// read outputs into results matrix 
 

Functions 
- void matrix_product ( int, double*, int, int, int*, double*) 

results 
 
Variables 
- counters (c1, c2) int 
- pattern match (check) int 
- no. patterns recognised (rec) int 
 
// display results on screen 
// save results to file 

( &Wm0[0], 
&Wm1[0] ) no return 

setup_matrix 
void setup_matrix (int a , int b, int c, 
double *matrix_0, double *matrix_1) 
 
Variables 
- counter (c1) int 
 
// seed weights matrices with random numbers < 1. 
for ( c1 = 0; c1 < size of matrix ; c1++ ) 
Wm_addr[c1] = random(100 / 100.00) 

next 
page 
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matrix_product_3c2v1 
void matrix_product ( double *Wm0_addr, double *Wm1_addr, int 
*TD_addr ) 
 

Variables 
- counters (c1, c2) int 
- counter, no. training cycles (count_cycles) int 
- current training pattern being used (TPc) int 
- sum of errors for all patterns (sum_error = 1.0) double 
- combined error for propagating error to hidden layer  (c_error = 0.0) 
double 
- sum of weights*inputs for each neuron (net) double 
 

Matrices 
- output values for hidden layer (outputs_h) [hl] double 
- output values for output layer (outputs_o) [ol] double 
- error values for hidden layer (delta_h) [hl] double 
- error values for output layer (delta_o) [ol] double 
- change in weights for hidden layer (DELTA_h) [p_e*hl] double 
- change in weights for output layer (DELTA_o) [hl*ol] double 

 

train 
void train ( double *Wm0_addr, double *Wm1_addr, int *TD_addr ) 
 

Variables 
- counters (c1, c2) int 
- counter, no. training cycles (count_cycles) int 
- current training pattern being used (TPc) int 
- sum of errors for all patterns (sum_error = 1.0) double 
- combined error for propagating error to hidden layer  (c_error = 0.0) double 
 

Matrices 
- output values for hidden layer (outputs_h) [hl] double 
- output values for output layer (outputs_o) [ol] double 
- error values for hidden layer (delta_h) [hl] double 
- error values for output layer (delta_o) [ol] double 
- change in weights for hidden layer (DELTA_h) [p_e*hl] double 
- change in weights for output layer (DELTA_o) [hl*ol] double 
 
// loop for each pattern until error has reached target or maximum cycles have occurred. 
while ( sum_error > target_error && count < max ) 
// loop for each pattern 
for ( TPc = 0; TPc < TPn; TPc++) 
// calculate output for network 
// calculate output for hidden layer 
matrix_product_3c2v1( 1, p_e, hl, TPc, &outputs_h[0], &TD_addr[0], &Wm0_addr[0] ) 
outputs_h[hl] = 1/(1+(exp(-outputs_h[hl]))) 
// calculate output for output layer 
matrix_product_3( 1, hl, ol, &outputs_o[0], &outputs_h[0], &Wm1_addr[0] ) 
outputs_o[ol] = 1/(1+(exp(-outputs_o[ol]))) 
// calculate error for output layer 
delta_o[o1] = outputs_o[o1]*(1-outputs_o[o1])*(Target – Output) 
// calculate sum_error for network 
sum_error += delta_o[o1] 
// calculate change in weights for output layer 
DELTA_o[hl*ol] = eta_o*delta_o[ol]*outputs_h[hl] 
// calculate new weights for output layer 
Wm1_addr[hl*ol] += DELTA_o[hl*ol] 
// calculate error for hidden layer 
c_error =+ ( delta_o[ol]*Wm1_addr[hl*ol] ) 
delta_h[hl] = outputs_h[hl]*(1-outputs_h[hl]*c_error) 
// calculate change in weights for hidden layer 
DELTA_h[p_e*hl] = eta_h*delta_h[hl]*TD_addr[p_e] 
// calculate new weights for hidden layer 
Wm0_addr[p_e*hl] += DELTA_h[p_e*hl] 
 

Functions 
- void matrix_product_3 ( int, double*, int, int, int*, double*) 
- void matrix_product_3c2v1( int, double*, int, int, double*, double*) 
 

matrix_product_3 
void matrix_product ( double *Wm0_addr, double *Wm1_addr, int *TD_addr ) 
 

Variables 
- counters (c1, c2) int 
- counter, no. training cycles (count_cycles) int 
- current training pattern being used (TPc) int 
- sum of errors for all patterns (sum_error = 1.0) double 
- combined error for propagating error to hidden layer  (c_error = 0.0) double 
- sum of weights*inputs for each neuron (net) double 
 

Matrices 
- output values for hidden layer (outputs_h) [hl] double 
- output values for output layer (outputs_o) [ol] double 
- error values for hidden layer (delta_h) [hl] double 
- error values for output layer (delta_o) [ol] double 
- change in weights for hidden layer (DELTA_h) [p_e*hl] double 
- change in weights for output layer (DELTA_o) [hl*ol] double 

previous 
page 
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Appendix F 

Taylor Series Neuron Results 
 

F.1 Introduction to the Appendix 

 

Additional results and enlarged figures from chapter 5 are included in this appendix for 

fullness and clarification.  Each is placed under the title of the section which they relate 

too. 

 

From 5.2.1  Output Functions 

 

The linear and hyperbolic tangent output functions are illustrated below. 

 

2 1 0 1 2

0.5

1

pl x( )

x  

Figure F.1 – Piecewise linear function pl(x) 

 

   equation F.1 

 

A linear function is termed “piecewise linear” when the output is constrained to linear 

operation within a region.  In the example shown in figure F.1 and equation F.1, the 

function is linear in the region (-0.5,0.5).  Outside this region, it operates a threshold 

function.  Without the linear region, the function collapses to a threshold function. 

 

This function is useful for directly reflecting the input values while preventing saturation 

when very large values occur. 

pl(x )= 
1 if x ≥ 0.5 
x if -0.5 < x < 0.5 
0 if x ≤ -0.5 
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Figure F.2 – Hyperbolic tangent function tanh(x) 
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The hyperbolic tangent is probably the second most common function.  It is similar to the 

logistic function with the range anti-symmetrical about the origin.  The function, shown in 

figure F.2 and equation F.2, has a range [-1,1].  There are some advantages to this which 

are associated with training parameters.  The specifics of these are reasonably well known, 

[Haykin, 1999], and are not discussed further here. 

 

The last two functions to consider are the step-logistic and step-hyperbolic tangent 

functions.  These take a threshold on the functions shown in figure 5.2 (logistic sigmoid 

function l(x)) and figure F.2 (hyperbolic tangent function tanh(x)).  The output becomes 

that of figure 5.1, threshold t(x), for the sets {0,1} and {-1,1} respectively. 

 

These functions are not usually considered as part of the training process of any network.  

They are only of use if a decision output is required from a network and decimal values 

provide more information than needed.  These are rounded to the nearest integer output 

from the relevant set. 

 

From 5.3.1  Taylor Series Neuron Output Functions 

 

The equations for the logistic hyperbolic tangent output function shown below, equation 

F3.  The range of the output is [-1,+1].  This gives output values in equation F.4 for MP 

and equation F.5 for TS. 
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From 5.4 Testing : Single Neuron Functionality 

 

This section visualises the various separator functions in three dimensions.  The x-axis and 

y-axis represent the inputs (x1,x2) while the z-axis shows the output value. 

 

From 5.4.1  McCulloch-Pitts Functions 

 

The first simple operator is the piecewise linear separator as shown in equation F.1.  The 

output range is constrained in [0,1] as shown in equation F.6 and limits any values from the 

input range of sum ≥ 1 or sum ≤ 0.  The obvious drawback of this strategy is that a sum can 

greatly exceed these values, resulting in an output value that does not directly equate to the 

sum.  This may result in saturation of network parameters with no direct proportional 

effect on the output. 
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   equation F.6 

 

  

Figure F.3(a,b,c) – Piecewise linear output functions 

 

A comparison of figure F.3a with figure 5.4a shows a similar profile with a maximum and 

minimum output.  Figure 5.4b shows that the output separator remains linear within its 

range.  Figure F.3c now shows the two extreme values the outputs can take with a uniform 

gradient connecting them. 

 

The values assigned to the piecewise linear separator are critical and unexpected operation 

can result in discontinuities.  Such an example is shown in equation F.7. 

 

   equation F.7 

 

  

Figure F.4(a,b,c) – Piecewise linear output functions 

O = 
1 if S ≥ 0.5 
S if S > -0.5 
0 if S ≤ -0.5 

O = 
1 if S ≥ 1.0 
S if S > 0.0 
0 if S ≤ 0.0 



 v 

Figures F.4 show the effect of incorrect assignment of parameters.  This can be utilised if 

there is a purpose to it; however, the drop below the minimum value and the sudden step to 

the maximum value can make behaviour erratic. 

 

When the hyperbolic tangent sigmoid is examined, it can be seen that it is very similar to 

the logistic sigmoid except that the output-plane is squashed in (-1,1). 

 

  

Figure F.5(a,b,c) – Hyperbolic tangent output function 

 

The hyperbolic tangent plane in figure F.5 is visually very similar to the logistic sigmoid.  

Comparing equations 5.5 and F.3 shows similar derivation.  In fact, the logistic sigmoid’s 

major advantage is in calculation time, while the hyperbolic tangent’s is its anti-

symmetrical output-plane about the origin.  This symmetry may assists in training.  The 

mathematical implication of multiplying by numbers close to 0 in the logistic sigmoid, 

compared with number close to -1 in the hyperbolic tangent sigmoid, affect the rate of 

convergence.  Its sensitivity is as adaptable as the logistic sigmoid, figures 5.7. 

 

  

Figure F.6(a,b,c) – Hyperbolic tangent output functions with ρ 

 

As ρ → 0 or as ρ → ∞, equivalent effects occur as, seen in the logistic sigmoid function.
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From 5.4.2  Taylor Series Functions 

 

The dramatic effects produced by using input values of differing polarity are examined 

below. 

 

5.05.15.0 21 +⋅+⋅= xxSum      equation F.8  

 

  

Figure F.7(a,b,c) – The Sum value expressed as a skewed function of inputs 

 

The effect of skewing the inputs in the 1st order neuron (McCulloch-Pitts) is simply to tilt 

the flat plane towards the input-axis with the lower coefficient.  This can be seen in 

equation F.8 and as a comparison between figures 5.4 and figures F.7. 
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Figure F.8(a,b,c) – Sum value of 2nd order Taylor Series neuron focusing on decision 

region – skewed on 1st order 
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In equation F.9 the 1st order terms are skewed, while the coefficients of the 2nd order terms 

remain equal, the equivalent of what occurred in figures F.7.  The curved plane of figures 

5.10 is tilted in the same manner to give the figures F.8 and results in moving the output-

domain decision centre towards the input-axis with the lower coefficient. 
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Figure F.9(a,b,c) – Sum value of 2nd order Taylor Series neuron focusing on decision 

region – skewed on 2nd order 

 

Skewing 2nd order terms while keeping equal 1st order term coefficients, stretches the 

decision surface along the lower coefficient input-axis, shown by figures 5.10c to F.9c. 
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Figure F.10(a,b,c) – Sum value of 2nd order Taylor Series neuron focusing on decision 

region – skewed on same input for 1st and 2nd order 
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The independence of operation of the order terms is shown through skewing the 1st or 2nd 

order terms on their own.  The altered 1st and 2nd order terms from equation F.9 and 

equation F.10 are applied simultaneously to give equation F.11.  A comparison of figures 

F.8, figures F.9 and figures F.10 shows the independence of the actions of the 1st and 2nd 

orders.  The combination of these effects are shown in Figures F.10. 
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Figure F.11(a,b,c) – Sum value of 2nd order Taylor Series neuron focusing on the decision 

region – skewed on different inputs for 1st and 2nd order 

 

The independence of the 1st and 2nd orders can be confirmed through figures F.11, where 

the effect of the 1st order shows a movement towards the other input-axis while the effect 

of the 2nd order remains the same.  As the 1st order coefficients are swapped, but the 2nd 

order terms remain the same, this is consistent with what is expected. 

 

Figures F.12 to figures F.24 examining the effects of different input domain values with 

added 3rd order terms.  These show both the independence of the power terms and the 

effect of each order on the separator. 



 ix








 ⋅+⋅
+

⋅+⋅
+⋅+⋅+=

6

0.30.3

2

05.005.0
05.105.05.0

3
2

3
1

2
2

2
1

21

xxxx
xxSum   

equation F.13  

 

  

Figure F.12(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision 

region – skewed on 1st order 

 

In equations F.13, the 1st order terms are skewed, while the coefficients of the 2nd and 3rd 

order terms remain equal.  As expected, the curved plane of figures 5.11 tilts towards the 

input-axis with the lower coefficient, in the same manner as before, to give the figures 

F.12. 
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Figure F.13(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision 

region – skewed on 2nd order 

 



 x

When the 2nd order terms are skewed, while the coefficients of the 1st and 3rd order terms 

remain equal, the decision surface is once more stretched along the input-axis with the 

lower coefficient. 
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Figure F.14(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision 

region – skewed on 3rd order 

 

From the effect of skewing the 1st or 2nd order terms on their own, it is observable that they 

affect different aspects of the 3rd order decision surface in the same manner as they did for 

the 2nd order Taylor Series neuron.  When the 3rd order is skewed the effect is to stretch the 

decision surface in the manner of the 2nd order; however, it is stretched with respect to the 

underlying 1st and 2nd order curved-plane, so the gradient of the 3rd order curve is affected 

as is its proximity to the axis along which it is stretched. 

 

Equations F.16 to F.25 and their accompanying figures F.15 to F.24 show all the variation 

of skewing the coefficients of the orders 1st, 2nd, 3rd of powers with respect to the input 

terms (x1,x2). 
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Figure F.15(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision 

region – skewed on same inputs for 1st and 2nd order 
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Figure F.16(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision 

region – skewed on same inputs for 1st and 3rd order 
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Figure F.17(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision 

region – skewed on same inputs for 2nd and 3rd order 
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Figure F.18(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision 

region – skewed on same inputs for 1st and 2nd and 3rd order 
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Figure F.19(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision 

region – skewed on different inputs for 1st and 2nd order 
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Figure F.20(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision 

region – skewed on different inputs for 1st and 3rd order 
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Figure F.21(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision 

region – skewed on different inputs for 2nd and 3rd order 
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Figure F.22(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision 

region – skewed on different inputs for 1st and same 2nd and 3rd order 
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Figure F.23(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on decision 

region – skewed on inputs for same 1st and 3rd and different 2nd order 
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Figure F.24(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on decision 

region – skewed on inputs for same 1st and 2nd and different 3rd order 

 

The above figures demonstrate the flexibility of the Taylor Series neuron, showing that the 

variation in the coefficients is independent.  Thus allowing control of the neuron while 

permitting exploitation all the variation of the output-domain. 
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From Taylor Series neuron - mixed orders. 
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Figure F.25(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision 

region with opposing polarity of various coefficients 
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Figure F.26(a,b,c) – Sum value of 2nd order Taylor Series neuron focusing on the decision 

region with opposing polarity of 1st order coefficients 
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Figure F.27(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision 

region with negative polarity of 1st order coefficients 

 



 xviii

From Taylor Series neuron –output functions. 

 

The output functions are applied to the 2nd order Taylor Series neuron as expressed in 

equation 5.11 and shown in figures 5.10. 

 

  

Figure F.28(a,b,c) – Piecewise linear output functions 

 

  

Figure F.29(a,b,c) – Hyperbolic tangent output functions 

 

The same output functions are now applied to the 3rd order Taylor Series neuron as 

expressed in equation 5.12 and shown in figures 5.11. 

 

  

Figure F.30(a,b,c) – Piecewise linear output functions 
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Figure F.31(a,b,c) – Hyperbolic tangent output functions 
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Figure 5.31a – Comparison of error vs. epoch for SLP and SLT networks 
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Figure 5.31b – Comparison of error vs. epoch for SLP and SLT networks 

epoch ≥ 99 



 xxii

 

 

Figure 5.33a – Comparison of error vs. noise% for SLP and SLT networks 

network inputs є {0,1} 
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Figure 5.33b – Comparison of error vs. noise% for SLP and SLT networks 

network inputs є {0.1,0.9} 
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Figure 5.34 – Comparison of error vs. noise% for SLP and SLT networks 

network inputs є {0,1} - targets є {0.1,0.9} 
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Figure 5.35 – Comparison of error vs. noise% for SLP and SLT networks 

network inputs є [0,1] - targets є {0,1} 
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Figure 5.40 – Time-Series exponential decay – theoretical output 



 xxvii

 

Figure 5.41 – Time-Series exponential decay - achieved
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Appendix G 

Artificial BioChemical Networks Results 
 

G.1 Introduction to the Appendix 

 

Additional results and enlarged figures from chapter 8 are included in this appendix for 

fullness and clarification.  Each is placed under the title of the section which they relate 

too. 

 

From 8.2.2  Successful ABNw – Trained using a GA – Success 

 

 

Figure G.1 – ABNw-GA output pulse – pattern 1 
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Figure G.2 G.3 – ABNw-GA output pulse – pattern 2,3 

 

 

Figure G.4 – ABNw-GA output ticks – pattern 1 
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Figure G.5 – ABNw-GA output ticks – pattern 2 

 

 

 

Figure G.6 – ABNw-GA output ticks – pattern 3 
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From 8.2.8  ABNw – Trained using a GA - Results of Noise Tolerance 

Figure G.7 – ABNw-GA output pulse - noise 45%,46% – pattern 1 

Figure G.8 – ABNw-GA output pulse - noise 45%,46% – pattern 2 
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Figure G.9 – ABNw-GA output pulse - noise 45%,46% – pattern 3 

 

  

Figure G.10 – ABNw-GA output pulse - noise 14%,15% - pattern 0 
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Figure G.11 – ABNw-GA output pulse - noise 25%,26% - patterns 0,3 

 

Figure G.12 – ABNw-GA output pulse - noise 0%,5% - pattern 1 
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From 8.3.4  Comparison of ABNw – BP and ABNw – GA 

 

 

Figure G.13 – ABNw-BP output pulse – pattern 1 

 

  

Figure G.14, G.15 – ABNw-BP output pulse – patterns 2,3 
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Figure G.16 – ABNw-BP output ticks – pattern 1 

 

 

Figure G.17 – ABNw-BP output ticks – pattern 2 
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Figure G.18 – ABNw-BP output ticks – pattern 3 

 

  

Figure G.19, G.20, G.21 – ABNw-BP hidden nodes – patterns 1,2,3 
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Figure G.22 – ABNw-BP output pulse - target eABN 0.5 - noise 0%,5% - pattern 1 

 

Figure G.23 – ABNw-BP output pulse - target eABN 0.5 - noise 0%,5% - pattern 2 
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Figure G.24 – ABNw-BP output pulse - target eABN 0.5 - noise 0%,5% - pattern 3 

 

Figure G.25 – ABNw-BP output pulse - target eABN 0.05 - noise 0%,5% - pattern 1 
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Figure G.26 – ABNw-BP output pulse - target eABN 0.05 - noise 0%,5% - pattern 2 

 

Figure G.27 – ABNw-BP output pulse - target eABN 0.05 - noise 0%,5% - pattern 3 
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From 8.5.2  Successful ABNF – GA Implementation 

 

Figure G.28 – ABNF-GA output pulse – pattern 1 

 

Figure G.29, G.30 – ABNF-GA output pulse – patterns 2,3 
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Figure G.31 – ABNF-GA output ticks – pattern 1 

 

 

Figure G.32, G.33 – ABNF-GA output ticks – patterns 2,3 
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From 8.5.8  ABNF – Trained using a GA - Noise Tolerance 

 

 

Figure G.34 – ABNF-GA output pulse - target eABN 0.5 - noise 0% - pattern 1 

 

Figure G.35, G.36 – ABNF-GA output pulse - target eABN 0.5 - noise 0% - patterns 2,3 
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Figure G.37, G.38 – ABNF-GA output pulse - target eABN 0.5 - noise 15% - patterns 2,3 

 

 

Figure G.39 – ABNF-GA output pulse - target eABN 0.5 - noise 25% - pattern 0 
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Figure G.40, G.41 – ABNF-GA output pulse - target eABN 0.5 - noise 36% - patterns 2,3 

 

 


