The Functionality of Spatial and Time Domain Artificial

Neural Models

A thesis submitted to
The Robert Gordon University
in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

Niccolo Francesco Capanni

School of Engineering
The Robert Gordon University
Aberdeen, Scotland, August 2006

Declaration

| hereby declare that this thesis is a record afkkwmdertaken by myself. That it has not
been the subject of any previous application fodegree and that all sources of

information have been duly acknowledged.

Niccolo Francesco Capanni

2006

Abstract

This thesis investigates the functionality of theitsi used in connectionist Artificial
Intelligence systems. Artificial Neural Networksrin the foundation of the research and
their units, Artificial Neurons, are first compar@dth alternative models. This initial
work is mainly in the spatial-domain and introdueesew neural model, termed a Taylor
Series neuron. This is designed to be flexibleughoto assume most mathematical
functions. The unit is based on Power Series thaod a specifically implemented Taylor
Series neuron is demonstrated. These neurons farpamicularly usefulness in
evolutionary networks as they allow the complexityincrease without adding units.
Training is achieved via various traditional andivkd methods based on the Delta Rule,
Backpropagation, Genetic Algorithms and associatealutionary techniques. This new
neural unit has been presented as a controllalderare highlyfunctional alternative to

previous models.

The work on the Taylor Series neuron moved inteetolomain behaviour and through the
investigation of neural oscillators led to an exaation of singlecelled intelligence from

which the later work developed.

Connectionist approaches to Atrtificial Intelligenaee almost always based on Artificial
Neural Networks. However, another route towardealRd Distributed Processing was
introduced. This was inspired by the intelligerdisplayed by single-celled creatures
called Protoctists (Protists). A new system bameaetworks of interacting proteins was
introduced. These networks were tested in pateraognition and control tasks in the
time-domain and proved more flexible than most aeunodels. They were trained using
a Genetic Algorithm and a derived BackpropagatiolyoAthm. Termed *“Artificial

BioChemical Networks” (ABN) they have been presdnés an alternative approach to

connectionist systems.

Acknowledgements

| would like to thank my family and those friendfiase assistance over the years has
allowed me to reach this level of academia. Myepts continued faith in education has

encouraged me to attempt to improve my own knovdedg

There is a debt to my supervisor Dr Chris MacLedrtictv has accrued over the years and
will require considerable effort to repay. | ams@aprateful for the assistance provided by
my second supervisor Mr Grant Maxwell who has beemexcellent source of advice and

stability during this time.

Various additional people have greatly assistegroof reading and expert advice, their
corrections and alternative views have enriched effprts. These are Miss Claire
Jamieson, Dr Stuart Watt, and Prof. Adam McBrideSfoathclyde University).

| would like to thank the other researchers whoehpermitted me to include details of
their work in this text; Dr Christopher MacLeod, Dravid McMinn, Dr Sethuraman
Muthuraman, and Mrs Ann B Reddipogu.

A consideration should also be shown to my examinddr Tony Miller of The Robert
Gordon University, Professor C Tim Spracklen of tbeiversity of Aberdeen and

Professor Philippe De Wilde of Heriot-Watt Univeysi

Finally I am grateful to those staff of the SchoolsComputing and Engineering who have

provided encouragement and support.

N F Capanni 31:5:06

Declaration

Abstract

Table of Contents

Acknowledgments

Contents

Chapter 1 -
1.1
1.2
1.3
1.4
1.5
1.6

Chapter 2 -
2.1
2.2
2.3
2.4

2.5
2.6
2.7

Introduction to the Thesis

Introduction to the Chapter
The Nature of the Problem

Universality and Generalisation of Artificiaedron Function

Aims and Objectives
Novel Aspects of this Research

Thesis Structure

Review of Previous Work

Introduction to the Chapter

Single String Evolutionary Techniques

Animat Nervous Systems

Using Evolutionary Atrtificial neural Networks Design
Hierarchal Animat Nervous System

Evolution of Functions within the Animat NensgSystem
The Evolution of Modular Artificial Neural Netwks
Conclusions Drawn from Previous Work

10
17
18

20
23
28

Chapter 3 - Universality and Generalisation in theSpatial Domain

3.1
3.2
3.3
3.4

Chapter 4 -
4.1
4.2
4.3
4.4
4.5
4.6
4.7

Chapter 5 -
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

5.9
5.10
5.11

5.12
5.13

Introduction to the Chapter
Universality
Generalisation

Universality and Generalisation trade-off

Power Series

Introduction to the Chapter
Evolution and Devolved Action
Power Series

Taylor and Maclaurin Series
Relevance of Taylor Series

Linear vs. Non-Linear Separability
Model Solution

Power Series Neuron
Introduction to the Chapter
Background to Chapter
Design and Implementation
Testing : Single Neuron Functionality
Taylor Series ANNs vs. McCulloch-Pitts ANNs
Comparison Parameters
Design and Implementation
First experiment : Comparing

McCulloch-Pitts SLP and Taylor-Series SLT — 5&3tt
Second experiment : Comparing

McCulloch-Pitts MLP and Taylor-Series MLT — 35t
Third experiment : Comparing

McCulloch-Pitts MLP and Taylor-Series MLT — 55t
Summary of Network Comparisons
Time Domain Problems

Literature Search of Other Highly Functionaikon Types

30
30
34
38

39
39
40

41

42

43

44

49
49
51
55
47
75
76
81

91

94

94

96
101

Chapter 6 -
6.1
6.2
6.3
6.4
6.5
6.6
6.7

Chapter 7 -
7.1
7.2
7.3
7.4

Chapter 8 -
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Chapter 9 -
9.1
9.2
9.3
9.4
9.5
9.6

Artificial BioChemical Networks

Introduction to the Chapter 104
Spiking Neurons 104
Origins of Biological Intelligence 110
Single Celled Intelligence 110
A Framework for Artificial Cellular Intelligerec 112
Artificial BioChemical Networks 113
Literature Review on Cellular Models 116

Artificial BioChemical Networks - Desigh and Function

Introduction to the Chapter 119
Pulse-Width Modulated ABNs 120
Pulse-Frequency Modulated ABNs 127
Universal-Pulse Modulated ABNs 131

Artificial BioChemical Networks - Experiments and Results

Introduction to the Chapter 135
Pulse-Width Modulated ABN- Trained using a GA 136
Pulse-Width Modulated ABN- Trained with BP 149
Multi-Layer Perceptron — Trained with BP 166
Pulse-Frequency Modulated ABN Trained using a GA 172
Universal-Pulsing ABN 160
Modular ABNs 186
Summary 188

Future Research

Introduction to the Chapter 190
Taylor-Series SLT and MLT 190
ANN Performance — Noise, Targets and Validation 191
Displaced Equilibrium — Memory in Connectiorfiststems 191
ABN Design 193

Taylor-Series Functionality with ABNs 195

Chapter 10 - Conclusions

10.1 Introduction to the Chapter 196
10.2 Project Objectives Revisited 196
10.3 Novel Aspects of this Research 199
10.4 Summary of Further Work 200
10.5 Concluding Remarks 201
References 202

Appendix A - Papers Produced During Research

Appendix B - Evolution and Devolved Action

Appendix C - Backpropagation Algorithm, SLT Delta Rule
and Pulse-Width Backpropagation

Appendix D - Polynomial Over-Fitting

Appendix E — Methods

Appendix F - Taylor Series Neuron Results

Appendix G - Artificial BioChemical Networks Results

Chapter 1

Introduction to the Thesis

1.1 Introduction to the Chapter

This chapter sets out the problems addressed byrdipect and explains their presentation
in this thesis. Firstly, the aim and objectivestlué research are outlined and discussed,
next the original ideas that were discovered usgh®yproject are detailed. Finally, the

remaining chapters are listed and summarised.
1.2 The Nature of the Problem

This project contributes research into the buildbtgcks of Artificial Neural Networks
(ANNS) - the Artificial Neurons (ANs) or Logic Urat(LUS).

Currently, most research into the applications dffisial Neural Networks falls into three
areas; pattern recognition, control and signal y@mal As most development of neural
networks is therefore focused on improvements @sehabilities, it has resulted in the use

of one of several types of standard models.

The three main standard models are the McCullotis-FMP) used in Multi-Layer
Perceptrons (MLPs), the Radial Basis unit in neksaf the same name and the Spiking
neurons of computational neuroscience. There everal lesser known models such as

Sigma-PIl and Adeline units.

However such a focused, application led, approaaiot suitable for all neural networks.
Consider, for example, evolutionary networks beaisgd in robot control. In this case, the
networks need to be able to evolve to deal witfeBht functions — for example, visual

processing or actuator control.

If a single type of unit is to perform these tasksust be flexible enough to evolve into a
form suitable for all of them. This is what is medy the term “Universal Unit” in the

context of this project. The object of the reshapcesented here is to investigate the

functionality necessary to achieve this.

In other words, the project aims to investigateearal model suitable for use in artificial
neural systems, where information may come fromyragata domains (both inputs and
outputs). Such systems include (but are not lianite) evolutionary networks and

applications such as robotics.

1.3 Universality and Generalisation of Artificial Neuron Function

The starting point for this research was a surviegrficial biological nervous systems.
When considering this, it should be noted thatrtbrerous systems of animals are modular
— that is they are made up of several smaller dsy@perating together as an ensemble.
Therefore, any investigation of functionality mbstar this in mind.

Biological neurons exist in a variety of shapegesiand functions. They have also
evolved specialisation, on an operation level, ddp® on their role in the part of the
nervous system in which they reside. DisentangBogh complexity is difficult and

therefore a more systematic, theoretical and madliead approach was adopted in the

project. To this end, the research was split tpptvvo sections.

The first investigation was into units that wereidaed to operate in a static abstract data
space. This visualisation approach was pioneesedlimsky and Papert [1969] who
represented the output from a McCulloch-Pitts bdgeceptron” type unit as a straight
line (sometimes known as a “Linear Separator”) uchsa data space. In the research

presented here, this and subsequent work is coedrasd extended.

The second investigation was into units that coderimation in the time domain (that is,
by means of a varying waveform). An example o tis the biological neuron itself,
which encodes its level of stimulation as the pkoba pulsing waveform. Such units are
important because system outputs (for exampleatheators of a legged robot) often need
a time varying waveform to drive them (becausedbguence of events in the system is

important).

A new theoretical framework was constructed arosuch Time Domain Units in order to
establish their limitations in a similar way to thiatic abstract data space of the non-time
varying neurons. Additionally, this investigatited to a new connectionist model, based
on the dynamics of biochemistry rather than neurons

Finally, once these investigation were over, thé@sudeveloped were integrated into a
simple evolutionary modular system (based on addggbot) in order to test their
effectiveness.

1.4 Aims and Objectives

The overall aim of the research in this thesisoignvestigate new “Integrated Neural
Models” that fulfils the evolvable functionality gairements discovered through previous
research in Artificial Neural Networks.

The primary aim is to investigate the School’'s glefa “generalised neuron” based on the
Taylor Series (TS) [MacLeod et al., 2001] and tee ukis model to build a more
controllable neuron using Evolutionary TechniqueBhe system will be tested against
standard models to find how its generalisation sl compared. Then, the unit
functionality will be expanded to incorporate timh@main data. The goal of these stages is

to produce a neuron that can act as a buildingkidlarcthe next stage of the project.

The neural model investigated in the previous stagdo be integrated into routing and
learning algorithms to produce a working systenowklver, as explained below, this aim
altered during the course of the research andte#te development of a new approach to

connectionism termed Atrtificial BioChemical NetwserfABNS).

To accomplish these aims, the following objectivese set out at the beginning of the

project.

To review the literature on the subject of genedi Artificial Neural Networks.

A literature search into generalised Artificial NauNetworks will be undertaken. This
constitutes a portion of the background researcth®fproject. Initially concentration is
placed on alternative neuron models and architesturThe field will then broaden to
include methods from associated fields in Artifidiatelligence. Both mathematical and
biological approaches are examined. The literagaeech will continue for the duration of

the project, and is included in each chapter asogpiate.

To review the biological relationship of the wonsaying particular attention to the

cellular, embryological and evolutionary aspects.

Textbooks, documentaries, papers and web sitesetinbmlogy, genetics, zoology,

nervous systems and evolution will be examinedil@si®d. These will placed in context
with the appropriate research material obtainedhftbe literature search. Such material
will concentrate on biologically inspired Artifididntelligence implementations. This

background material is covered in Chapters 2, 3Gand

To develop an appropriate generalised neural moflesed on the above, which can
assume any function (in combination with a genafigorithm). It is anticipated that this
will rely on the polynomial models in which backgnd research has been completed.

The purpose of this section is to produce an ArafiNeuron that will be flexible enough
to solve problems in the static mapped space tlsaighe MP neuron cannot solve. This
will be accomplished by the problem being examifrech a mathematical viewpoint and
implementing a solution based on the Taylor Polyiabm The neuron is reported as a
“Universal Neuron” in this thesis, with the requirents for it being identified in Chapter 2
and its capabilities being discussed in ChapteR8search into such a neuron is presented

in Chapters 4 and 5.

To extend the function of the above to time-dornahaviour.

The Atrtificial Neuron produced will be extendedth@ time domain so that it can produce
time varying behaviour such as waveforms. In presiprojects, McMinn [2002] and
Muthuraman [2005], have shown that such behavi@ag @ssential for controlling systems
like robot actuators. This also has a biologiasib as such oscillators are known to exist
in all nervous systems. These investigation asdlte are presented in Chapters 5,6,7 and
8.

To compare these results with published and stahdata.
The results will be compared with standard ANN afada. A review is included in
Chapter 5.

To integrate these models into a complete neurstksy.
The neuron models and the placement algorithmsheilintegrated into a single neural
system, as described in Chapter 8. This systeralale®d under investigation to become

of a biochemical rather than neural basis.

To apply this system to a standard problem suctih@®volutionary walking robots which
exist within the School.

The integrated system will be used to recogniséicaait visual stimuli, produce control
signals as a response to these and convert theoteignals into a walking gait based on
the simulated robot models used by the other rekgaojects in the group. This work is

described in Chapter 8.

To compare these results with previously publighaterial.
These results were compared with other publishsdltgefrom within the group and the

approaches of external researchers, as descrilikd relevant sections.

1.4.1 Alteration to Objectives During the Project

As with all PhD projects, results from the earlyipds informed the direction of the later
research. In this case, the unexpected richneggeaieuron models investigated inspired
the author to concentrate on these aspects ofrtsjecp and to scale down the planned
research into learning algorithms. It was alsoidit that the routing and placement
algorithms was sufficiently complex to merit theiwn project and this was completed by
Muthuraman [2005].

To develop an adaptable learning algorithm, possibhsed on the “neuron in a box”
concept, which can add a learning influence togheve.
As mentioned above, a review of the research ofpimgect’s first eighteen months

suggested that more effort should be expended swareh into neural functionality. To

this end it was decided to undertake only preliminaork on learning. This research is

outlined in Chapter 9.

To develop a placement and routing algorithm fag wéth the system described above.
Again, as a result of early findings, as noted &pav was decided to make the initial
research into routing and placement a PhD projedtisiown right. Muthuraman [2005]
undertook this. The current author used the apigpresults of this work, developed it
and incorporated it into the current thesis. Téisontributes to the work of Chapter 8.

1.5 Novel Aspects of this Research

These are some of the aspects of this researchdhatbute to the originality of the thesis.

* A highly functional advance to the neuron modeldolagn the Taylor Series approach,
Chapters 4 and 5.

* A comprehensive theoretical and experimental canaitbn of the mapping abilities of
neurons in the spatial-domain, Chapter 5.

« A new approach to connectionism based on the bioidtey of single celled
organisms. This approach yielded insights into miewe varying units and network
paradigms. This work is presented in Chaptersaihd/8.

* The integration of the models produced into modatarnectionist networks. This is
described in Chapter 8.

* A consideration and investigation of neural funcéiity in the context of robotic
systems, presented in Chapters 7 and 8.

* A basis for further research into learning, modufetworks and time-domain

connectionism presented as part of the further wedtion in Chapter 9.

1.6 Thesis Structure

An overview of the remaining chapters is given belo

Chapter 2 - Review of Previous Work
The work undertaken by previous researchers withe group is described and the

development and context of the current work is @xed.

Chapter 3 - Universality and Generalisation in Bpatial Domain
In this chapter, the concept of universality islexpged at the unit and network level.

Chapter 4 - Power Series
The mathematical basis of a new neural model isgmted and compared to historically

similar and alternative approaches.

Chapter 5 - Power Series Neuron
This chapter demonstrates the implementation ofntibelels developed in the previous

chapter.

Chapter 6 - Artificial BioChemical Networks
The chapter examines the environmental intelligease expressed in single celled

organisms.

Chapter 7 - Artificial BioChemical Networks - Designd Function

The chapter extends the research to time varyistgsys and suggests a new model based
on biochemical pathways. This Connectionist masl@hplemented, compared with other
models and its limitations explored. The new igihtegrated into a modular network.

Chapter 8 - Atrtificial BioChemical Networks - Expeents and Results
Both new approaches are combined to produce ditiaithode that is universal in both

the spatial and time domain, as defined in theiptesvchapters.

Chapter 9 - Further Work
Suggestions are made for further work. These declmprovements and extensions to the
work described in this thesis, as well as its coration with the other work from the

research group.

Chapter 10 - Conclusions
The main objectives of this research are revissed critically appraised and the original

contribution of the work is discussed.

Published papers, extra results and reports proddueng this research are included in

the appendices.

Chapter 2

Review of Previous Work

2.1 Introduction to the Chapter

The Artificial Neural Networks group is based iretS8chool of Engineering at the Robert
Gordon University. It was formed by MacLeod andxviall in 1994. At the time of
writing (October 2005), in the main research aleae the group had published 16 papers
externally, 15 MSc, 1 MPhil and 3 PhD theses ad aglcontributing towards BSc and

BEng honours projects, and various press and magariicles.

Since its establishment, the group’s main interéstge been in Evolutionary Artificial
Neural Networks (EANNs). The ultimate purpose lté tesearch is to achieve a viable
process by which real artificial intelligence cae imstigated. Advancement occurs in
steps, not leaps and the group is working towagtsfeeantly improving Artificial Neural
Networks’ real world functionality as a means toevére greater purpose. Possibly due to
the strong engineering element in the group, teearh has mainly used legged robots as
test beds.

Membership of the group has varied with staff arnddent progression. A core
composition of four full-time members of staff withfull academic workload and three
research students is indicative of the general. siZée early work of the group was
broadly supported by Eident Ltd who contributed dod¢ the first two PhDs, those of

MacLeod and McMinn. The later research has opeénatthout external support.

This chapter shows the logical development of mesefrom MacLeod [1999] through
McMinn [2002] and Reddipogu [2002] to Muthuramar®(8], in conjunction with this

thesis.

2.2 Single String Evolutionary Techniques

The first thesis from the group by MacLeod [1998{ssout the initial concepts that have
been explored through later projects. These cdadepus on fundamental problems in
ANNs that have restricted their abilities. One thése restrictions is that artificial
networks are frequently highly designed. This tgrtheir functionality and they are often
highly or fully-connected, small and highly taskesjfic. The discoveries of subsequent
researchers support the observations in the pajeoldtion and Devolved Actidn
[MacLeod et al., 2002] and this author’s basic dssethat:

“The greater the dependence on outside destignmore specific, inflexible or

restricted the network functionality will Be.

MacLeod’s major contribution was his Single Striggolutionary Technique, termed
“Incremental Evolution”. This concentrated on thptimisation of ANN topologies

through their synthesis by Embryological and Eviohéry Algorithms (EAS).

The importance of modularity was also discussedapdoposal for an artificial nervous
system for an animal-like robot called an Animatilgdh, 1991] was made in the thesis as
a test bed for the development of modular networkbe significance of the failure of

current ANNSs to address time series modelling wss abserved.

Macleod’s second contribution was a clear list miiglems or limitations of current ANNSs.
The investigation of these problems, their soluti@md that of subsequently uncovered

challenges, is the basis for all other resear¢hergroup.

221 Embryological Algorithm and Incremental Evolition

The terms “Embryological Algorithm” and “Incremeht&volution” are to an extent
interchangeable. The latter term is that which lged used and was also referred to as

“Incremental Growth”. However, different reseanchese alternative terminology and a

proposal on this is given later in this chapter.

10

As the author’s research group applies it, Incraaidfvolution operates by increasing the
functionality of an individual through the additiof component parts. Layers or modules
of components are added onto a simpler but funatiorodel and evolve together with its
ability to sense and respond to its environments &kin to foetal development, where the

embryo increases in complexity through a recogmésaéries of stages which mimic those

of its evolutionary ancestry.

The embryological development of a fish, chick,, papbit and human at different stages
is shown in figure 2.1. Note the stage by stagelaiities between different animals that
grow into very different individuals. The similgri goes deeper than physical

resemblances. The biochemistry and physiology tef brganism may also have
similarities.

Figure 2.1 - After diagram in: ‘The penguin booktleé Natural World”, edited Martin et
al., [1976],

The parity between embryology and evolutionary ttgwment is the inspiration behind
Incremental Growth. Existing EAs do not add newnponents to the structure of
previous individuals in an incremental manner. tdad, they create a new population of
more complex but completely re-wired individualghis is a major difference between this
and previous methods and has important ramificatiovith respect to cost and

functionality. The exact nature of these are dised later.

11

The implication of embryological development isttlaanewly evolved individual is not
completely re-wired after the previous stage, nathat the new additions are layered
around the older ones. This is particularly appiane the nervous system as shown by
MacLean’s [1990] Model of the Brain, figure 2.2.

rational brain

mammal brain

reptilian brain

Figure 2.2 — MacLean’s theory of brain organisation

In summary, MacLeod’s Incremental Evolution allaavs ANN to grow from a simple to a

complex form, until it is able to perform its intded function.

2.2.2 Growth Strategies

Macleod presented six ways in which an ArtificiaéuMal Network could increase in
functionality, to become capable of achieving aigoh to a set problem. These “Growth

Strategies” are:

1. Change the number of neurons.

Increase or decrease the number of neurons irea lay
2. Change the connectivity.

The number of active weights of the network maybered.
3. Asymmetry.

More connectivity may be provided in parts of tietwork.

12

4. Horizontal connections.
Synchronous networks may introduce connectionsdmtweurons in the same
layer.

5. Skipping layers.
A connection may omit the immediate subsequentriaye connect to one
deeper into the network.

6. Feedback.

Feedback may be allowed to any previous layer.

MacLeod applied these growth strategies succegdfultiemonstrate solutions to pattern

recognition problems. In doing this, four limitatis were observed.

1. The whole network is retrained after each alteratmits topology.
MacLeod discusses this — and its significanceesgmted later in this chapter.
2. The network architecture is highly structured amajpde.
3. The algorithm was only applied to simple tasks aodld be more useful if applied
to other applications as well as pattern recogmitio
MacLeod proposed further development with “A franeekvfor evolution of an
Animat Nervous System” [MacLeod et al., 1998].
4. Only McCulloch-Pitts neurons were implemented.

The research that followed on from MacLeod’s wdrk to overcome these limitations.
McMinn and Reddipogu developed the training witepect to topology alterations and
expanded the complexity and flexibility of the atebture in significantly different ways.

McMinn went on to advance the complexity of theaoaiipm and develop new neuron
models. Muthuraman presented a complete solutisattaining after topology alterations
and to the limitation of structure, both of whiclincbe combined with work by this author.
McMinn’s advances on applications were supersedgdnbdular implementation by

Muthuraman and this author. Finally, Muthuramamdoiced more flexible, elegant

models and showed the importance of this.

13

2.2.3 Incremental Training

There is a quandary with the training of many ANWkich is applicable to several
standard types of network and those based on timnetading Multi Layer Perceptrons and
their associated feed-forward networks as welleasirent networks. Once such an ANN
has been trained, it cannot alter its abilitieg, eecognise additional patterns, without
undergoing retraining with the new data set. Ténases all the previous knowledge.
Additionally, if the network is to be retrained &ftit has increased in complexity, then
there is an increase in training cost. Such was difficulty with the retraining
requirements that Grossberg [1976] introduced AdagResonance Theory (ART) as an
alternative method. ART is a useful approach lsuvery limited in how it operates,
mainly by increasing network size when a new mememequired. Just how expensive
these retraining requirements actually are wasrgbdeby Muthuraman and is presented

later in this chapter.

The solution proposed by MacLeod is to train theahANN, then to allow it to undergo
Incremental Growth. Further training is only apdlito the newly added parts of the
network. Proving the viability of this became theajor objective of Muthuraman’s

research.

2.2.3.1 A Proposal on Terminology

Terminology is introduced as research uncoversvations. Often these are shared across
different fields, occur in different contexts oeapplied to concurrent discoveries, so that
to the reader they may have different meanings. itAs applied in the context of this
thesis, Macleod’s “Incremental Growth” refers t@ thddition of modules to an ANN or
comparative units to the sensory, control or outpmwtictures of a robot. Macleod’'s
“Incremental Training” refers to the training ofetmewly added modules while leaving
previously trained modules unaltered. If both éhéscremental Strategies are applied as

parts of the same algorithm then that algorithiwaited “Incremental Evolution”.

14

2.2.4 A Framework for Evolution of an Animat Nervaus System

In his thesis, MacLeod explored the importancehef tinconstrained environment, non-
specific problems and previous work on modular oeks. He proposed work on the
animal-like robots called Animats, from MacLeod 989 as a test-bed for Modular
Artificial Neural Networks (MANNSs) which could bexposed to an unconstrained
environment. This proposal formed the basis ferrdsearch of McMinn and Reddipogu.

MacLeod'’s discussions on MANN synthesis and fumatly was the foundation of the

subsequent modular work of McMinn, Reddipogu andhivtaman.

2.25 The Plasticity — Stability Dilemma

It should be mentioned that with the limited untmsling of the operation of memory at a
cellular and sub-cellular level, in Biological NaurNetworks (BNNs), any training
algorithm must overcome a lack of biological inggimn. These solutions rely on
increasing the number of units that compose theesyand BNNs do not seem to operate

in this way.

The previously mentioned difficulties of standardtificial Neural Network models to
retain their capabilities during the acquisition rdw ones presents a dilemma. Most
ANNSs initialise in an untrained state. They aresidered trained when they have reached
a level of usefulness expressed by an arbitragilyValue of an error function. To achieve
this stability (the ability of a network to retainained patterns) they sacrifice their
plasticity (the ability of a network to learn nevatferns). This is expressed as the

Plasticity-Stability dilemma [Wasserman et al., 9P8

Muthuraman’s work on modularity may present methbgsvhich this dilemma may be

overcome without specifically designing a trainadgorithm to counter it.

2.25.1 A Note on Modularity

The development in the previous sections reliemodular networks. These are not a new
concept in Artificial Neural Networks. Their imgance is widely understood and they are

a popular research subject, this is well reportediam [2000]. However, just like fully

15

connected global neural networks, modular netwarksoften application specific and on
examination their synthesis is designed and theyirmdtexible , as shown by McMinn
[2002].

From his work on modularity and functionality, Maaid identifies the three growth
strategies of size, shape and configuration. Theseénvestigated by Muthuraman [2005]

who adapts and develops these into his “Principlédodularity”.

2.2.6 Time Series Modelling

The inability of many current ANNs to operate wiilme varying data is observed by
MacLeod. He examines attempts to solve the timesenodelling problem and suggests
how this may be investigated. Further, when theoostrained environment expands to
include time-dependent data as well as spatial tii@ta the magnitude of the non-specific
problem is greatly increased. There have been npaayious attempts to address this
problem but they generally rely on complex modelshsas spiking neurons [Maas and
Bishop, 1999].

Biological Neural Networks have evolved in a timepdndent environment and so the
inclusion of time-series data in their processihgitg has been natural. Most current
Artificial Neural Networks regard data as fixed asphtially observable. Even time series
data is often sampled or mapped into a spatial dobefore it is presented to the network
[Bishop 1995].

An investigation into the time domain response @finoans became a major component of

this thesis to allow the possibility of real tim&@omous robotics.

16

2.3 Animat Nervous Systems

The Animat Nervous System (ANS) model suggestedMibglLeod was proposed as an
initial concept. It is hierarchical and modulalt. is therefore an incomplete solution to
non-specific problems as it does not operate inuaconstrained environment. It is,
however, a significant step towards this. A fudyolvable modular system was not the

initial intention of the project but was proposetlaleveloped during work on the Animat.

The Animat model separates out component moduleshierarchical parts which each
have their own systems to control. The interactadnthese modules combines the

solutions to separate problems and allows the Anionunction.

McMinn performed the work on the lower layers ofstimodel. These produced the
reflexes and cyclic patterns the Animat requirednmbility. Reddipogu worked on the
upper layers. These represent the sensory inglpeotessing, which corresponded, in

this case, to visual stimulation.

17

2.4 Using Evolutionary Artificial

Neural

Networks

Hierarchal Animat Nervous System - Lower Layers

McMinn’s model is shown in figure 2.3. Multiple moles can exist in certain layers;

these are marked with an asterisk. The hierarchinacture is evident.

infefligent processing
svstems. Biological
brains not completely
undarstood

Priorifises what fo do
depending on the
situafion ofthe animaf

Sensony svsfems, e.q.
sound vision, smell el

Behaviours (both innate
and lgamed) for
parfarming seqlences of
movemenis

Examples inciude

walking, running,

swirmming, fying,
respiration, chewing

One reflex far each
controllable acfuator

Higher functions

Priority resolution

|

Sensory processing [detects the

animat's environment)

I

Behaviours™ (produce

sequences of actions and

reflexes to perform some

useful task)

Action modules®
(rhythmic patterns of

maovement)

h J
Reflexes™ (provide direct

L control over hardware —

wheel, leg, thrusters, etc)
r Y

Y
‘ Drives® ‘ ‘ Sensors® |

N/

Erain

Spinal cord

Eody

Figure 2.3 - McMinn’s Artificial Nervous System

Reproduced by permission of McMinn [2002]

18

to Design

A detailed account of the operation of this struetwill not be given here, as it is not

directly relevant to the current work and was sspéed by the modular work of

Muthuraman. It is sufficient to report that McMirused the model successfully. He
implemented EANNs which incorporated Central Patt8enerators (CPGs) as the action
layer and artificial reflexes in the reflex layevidMinn, 2002]. The CPGs effected

appropriate walking gaits for the Animat. McMinacsessfully evolved both biped and
guadruped gaits. The reflexes controlled the mrsibf an actuator in a simulation of a
DC electric motor.

To develop the reflexes, the neuron model usedth@dicCulloch-Pitts with a sigmoid
(logistic) transfer function. Three main classi€aolutionary Algorithms: Evolutionary
Programming, Evolutionary Strategy and Genetic Athms (GAs) were applied to the

synthesis of simple feed-forward and recurrent ANNIkese provided good solutions.

McMinn constructed a new neural model to generhee dpecific timings required for
CPGs. The McCulloch-Pitts neurons initially used dot have time-domain behaviour
and so McMinn built in rigid time parameters. Tihga-modular topology for the CPGs

was evolved; the topology of the inter-module catioas was designed.

The conclusion of McMinn’'s work was the combinatiohthe reflexes with the CPGs.
The reflexes require a continuous input (from thdoCulloch-Pitts heritage) while the
CPGs produce a pulsed time-domain output. McMherdfore added a Leaky Integrator
(LI) as an interface between the modules.

McMinn also included an alternative investigati@ing the CPGs, operating as oscillators.
Biological neural oscillators [Lansner et al998] are known to exist, so this was an
appropriate investigation. The oscillating outpugs produced in response to a specific
input. Pattern generators received this oscillasignal and produced the appropriate
quadruped gaits of gallop, trot, pronk, and waMcMinn concluded that by making the
CPGs structures more modular the evolutionary m®ees simplified. This investigation
provided useful material for Muthuraman’s research.

The limitations of McMinn’s Animat are that the imdiual modules do not grow but are
fixed in size. These are placed within the ANN am@ trained individually with

independent fitness functions. Additionally, thetdunctionality is fixed and the different

19

types of neurons are designed for specific tadkss is a top down approach to creating
an artificial system, and requires designer knogdedf the modules required. The model
is an extremely useful model for robots, Remotelpefated Vehicles (ROVS),
Autonomously Operated Vehicles (AOVs) etc., whichvén a specific design and
functionality and operate in a known environmeRbr further explanation of this section
see [McMinn 2002]

2.5 Evolution of Functions within the Animat Nervows System - Upper

Layers

Reddipogu’s work has strongly biological influencesfter considering several biological
vision systems, she researched the visual systé¢hedbad, due to the structural similarity
between toad and human Central Nervous Systems)(@NSthat it was one of the few
vertebrate systems thoroughly researched by bitdReddipogu, 2002].

When humans see an object such as a glass, thaplareo identify it quickly. However,
glasses come in many different shapes, sizes dodrso Humans can still identify the
classification of the object even if they have meseen that exact type before. Neural
networks have difficulty in doing this. If presedtwith a different object from the same
domain there is no guarantee that the network “witirk it out”. Even if the object is
known, it can be presented in a different orientatso that it is no longer recognised.
Other researchers such as Reid [1989] have worketh® problems of distinguishing
objects when presented in untrained size or traoskl positions. There has been much
less work done on distinguishing between objectschvlare trained sequentially but
presented simultaneously, such as a network beegepted with two examples of a glass
at the same time. Add to this the requirementdiffierentiation, size and translation

capabilities and this is quite a challenging proble

A novel visual system, based on the differentiattmtween prey and predator, was
constructed. This is of fundamental importanceéh® unconstrained environment as all
previous (simple type) ANNs cannot differentiatévizen two individually trained stimuli

if they are presented with both simultaneously [iRedgu, 2002].

20

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

PO

1Retirzml C%ells

) &=
‘/Ou.
O o
=
() o
'\O\o

Output Neurons

v v

Prey and Orient Prey and Snap
—> Excitatory Input —_—> Inhibitory Input

Figure 2.4 - Reddipogu's Artificial Vision System,
reproduced by permission of Reddipogu [2002]

The above diagram, figure 2.4, shows the implentemtedular assembly.

The system is based on a modified biological nearauit proposed by Ewert [1987].
The components are McCulloch-Pitts neurons witimsig (logistic) outputs. Reddipogu
made use of an Evolutionary Algorithm employing iReicement Learning (EARL) to

train the system.

A robotic visual system was developed from the oekg ability to recognise
combinations of patterns trained separately. I waspected that the modularity of the
system gave rise to these abilities. Useful lessmm modular placement were learned
from this and implemented by Muthuraman [2005]r feother explanation of this section
see [Reddipogu, 2002]

2.5.1 Summary of Animat Investigation
McMinn and Reddipogu produced interesting resultgheir investigation of the effects of

evolutionary modularity on the functionality of Krtial Neural Networks. There are two

other main areas noted by MacLeod that were, dirthes still to be incorporated.

Firstly, their systems had fixed modules that deeqd in a hierarchical order based on

functionality. The systems do not grow and theasafe modules are evolved individually.

21

This means the Incremental Growth introduced by IMad was not incorporated into the

model. This is attended to in Muthuraman'’s work.

Secondly, the unit functionality is limited and veg@s design based on what the parent
modular functionality is. The use of different égof Artificial Neuron was sufficient for
the purpose of this research but the authors werarea of and commented on the
limitations. The significance of this was reinfedcand clarified by Muthuraman. The
solution to this problem is the subject of thissise

22

2.6 The Evolution of Modular Artificial Neural Netw orks

The modular networks used by McMinn and Reddipddursquired a fixed hierarchical
design that represented a severe limitation irutfenstrained environment. The solution
to this was essentially to combine the work of Meatl, McMinn and Reddipogu. This
was done by Muthuraman whose work was to focushenevolution of the modular
aspects of the system. The evolution should bl baotonstrained and open-ended. It
must therefore operate using an incremental adaptab its environment. Such an
approach replaces the constraints required by mesith interaction of environmental
parameters that are equivalent to evolution byrahgelection in nature.

C:ﬁ

C

One passive, one active D.O.F Two active degrees of freedom
“mudskipper” “mudskipper” |
¢

— —
C ﬁ |
Semi-stable quadruped. Each leg

with two active degrees of
freedom.

=]

Figure 2.5 - Muthuraman's Robotic Body Plan Evoluti

reproduced by permission of Muthuraman [2005]

The system, invented by Muthuraman, began with ehamra@cally simple robot in a simple
environment (actually as simple as possible). rbbet used was akin to an artificial mud-
skipper with simple single-jointed limbs. The ewviment is as complex as the robot’s
ability to sense it, so only factors that it caaateto can be part of the fitness function. The
environment and the robot’s body plan become giaduaore sophisticated. This

incremental change is expressed in the robot keigyto sense different, or more detailed,

23

environmental factors and react with more degrédseedom. Its visual field also grows

and accommodates more patterns.

To allow the robot to take advantage of greateutsi@and outputs, previously evolved
neural network modules are retained but retrained. New modules are added and
adapted to the whole structure. They undergoitrgiand evolutionary change until the
fitness function is satisfied. The process israplementation of what MacLeod termed

“Incremental Evolution”.

The influence on this work is to make the focus dedhonstration more robotic, which
ties in with the previous work by the group. Thbat's complexity can be varied as
required. It can have input sensors, pattern géoerand control networks, rather like the

human body itself.

2.6.1 Principles of Modularity

There is a singular contribution from Muthuramaattis of fundamental importance to the
incremental evolution of modular networks. Muthuem successfully produced an
algorithm that allows the MANNSs to evolve in an anstrained manner. Where previous
work had made use of some intra-modular evolutiba, algorithm allows all inter and

intra-modular design to be evolved. This algoritisan be called the “Principles of

Modularity”. For a full explanation, see Muthuram@005].

The principles of modularity contain four comporgeniThe first is of primary importance

to the aim of this thesis, and the others are r@k&vant.

1. Functionality
The importance of the neuron’s functionality waseted and shown; restricted
functionality creates an over complexity of the mled in compensation. If the
unit functionality is not enough, then there can fbactions which cannot be
evolved (even with larger networks). No solutiam this was provided by
Muthuraman as it is the basis of work by this autho

24

2. Wiring
Modules must be permitted to break connections éetwneurons and modules.
Even small residual weights on unwanted connectitivag appear mathematically
to have no influence, do not permit the systempterate correctly.

3. Placement
The physical location of new modules within thetegs is essential to the success
of the system. Once this is known, it can be ipocated as part of the EA.

4. Size
There are a certain minimum number of neurons whath module must have in
order to evolve correctly. Over-connection of rees causes the information to be

lost in the background noise of the network.

There is a complicated interaction between theseiptes. Module size and connections
are strongly linked to unit functionality. The gritn of the modules must be balanced with

their training.
2.6.2 Complexity of Training

The increase in computational cost of retrainingvoeks that increase in size to fulfil a
functional requirement was known to MaclLeod. Juwstv important this is and how
debilitating to large systems was commented on kyhMraman. It is demonstrated in the

following example.

If a module begins as a fully connected structurd® neurons, each having only one
connection to all other neurons and including albeek to itself, then there are?:0 100

weights that require training.

If a new module adds another 10 fully connectedoresy then the whole system must be
retrained with 26 = 400 weights. So, to reach this stage the motat undergone,
sequentially, training on 100 then 400 weights.isTtheans 500 weights have undergone

training.

25

If a small Artificial Neural Network is eventuallgvolved to a size equivalent to 100
modules, totalling 10neurons, it will have T0x 10° = 1®, one million, weights that

require simultaneous training.

The total number of connections trained to reach $kage, is the sum of a sequence of
squares. (10,20,30,40,...1000).

The sum of Awhere n is the set of integers from Xits given as follows:

an I S equation 2.1
e 3 2 6

In this casex represents the effective number of modules; sahbytime the system is
composed of 100 modules, it will have undergoniitig on the sum of nfor x = 100
modules. At 100 connections a module this mean8353000 total weights have been
trained.

If the system complies with Incremental Growth, reaew module is probably not fully
connected to the previous modules. The entireesystill requires to be retrained after
each addition. The cost is the sum of the sequéri®+ 200 + 300 + 400 +... + 10000).

This can be writtenas 100 x (1 +2 + 3+ 4 + ...00)L This is expressed as the following
C DZ n= 2(”1 +n,) equation 2.2
=1

This results in a total 505,000 trained connectionthe same stage, 67 times less.

A fruit fly has around 1dtimes as many neurons as in this artificial exanpbout a
million, with vastly more connections. A human hkasund 10, “ten million” times as
many, with an average of 2x® 5x1G connections per neuron [Edelman, 1987]. If the
brain was rewired at every evolutionary junctiomery one of these connections would
have to be re-evolved and re-trained. There iplsimo possibility of a viable creature
being produced in such a staggering search space.

26

If instead the training follows the principles eofctlemental Evolution, then only the new
module requires to be trained. Following the saexample, with the same 100
connections in the initial module, once these aaméd, they are left alone. On the
addition of each new module, only the new connest@re trained.

The total number of trained connections on thetamdof the second module is 100 + 100
= 200.

If we expand this example to 100 modules, totalll®yneurons, there are a resultant 10
connections. As only each new module is trainegheconnection is only trained once,
therefore the Total Incremental Training cost gigestal training cost of 100 x 100 =*10

trained connections.

In this example Incremental Evolution has train@®d connections, while Incremental
Growth has 505,000 connections and Sequential Grohds trained 33,835,000
connections. The evolutionary advantage is 0.19%80dnd_0.00295%espectively of the

required training. In each of the non-iterativeletionary methods a progressively larger
network has to be trained. In Artificial Neural tWerks smaller networks train in fewer

epochs.

The costs (in terms of training requirement of ctions) for each new stage of training

can be expressed as follows;

Sequential Growth (AxB)
Incremental Growth (A+B)
Incremental Evolution (B)

where A equals the complexity of the previous stage B is the complexity of the newly

added stage.

27

2.6.3 Functionality and Modularity in Artificial N eural Networks

As previously stated, the importance of functidiyadit a neuron level was already known
to the group even at the stage of MacLeod’s inittatk. McMinn and Reddipogu had

implemented systems that were successful but reliedesign at neuron level and again
unit functionality caused problems in their impleraions. Muthuraman designed his
own neurons for specific tasks, and went on tobdéista the necessity for a highly

adaptable neuron that had been missing from thequework. There was now a need for
a “Universal Neuron” that could take any positionany of the modules and evolve or

train to fit the desired functionality.

2.7 Conclusions Drawn from Previous Work

Early research targeted the growth of simple ndta/¢o solve uncomplicated functions.
This relied on the existing simple neuron structarel evolutionary techniques. The
limitations of these was observed, particularlyhwiégard to intensive design by the user,
iterative training, modularity, time-domain perfancte and functionality. At an early
stage, research became focused on robotic devetdpasea method for simulating an

unconstrained and challenging environment in whactievelop advanced networks.

The ability of Artificial Neural Networks to perfor a single well defined task but be poor
at solving non-specific problems or multiple tadksl, to the group’s work on communities
of cooperative neural networks. These developéal time fixed hierarchical modules of

the Animat nervous system.

An effort to overcome the restrictions of specfiied operation and a designed hierarchy
gave rise to the combination of growth and modtyaigorithms. The resultant Principles
of Modularity enabled the Evolutionary AlgorithmrfModular Growth to be both open

ended and environmentally unconstrained.
During this research the limitations of the exigtineurons became apparent at almost

every stage. These limitations resulted in speaieuron designs, dependent on the

network function. Pursuing these issues of fumetibly would have been a distraction

28

from the research at hand - but there are two aisviinitations to the approach. Firstly,

there were no time-domain capabilities for the sanmeurons and no evidence that a
cluster could easily develop them. Secondly, iasirey the number of neurons through
clustering into functional groups increases the glexity of the search space as previously

discussed, and makes a solution exponentially mhffreult to find.

Work by other researchers has made clear thatasicrg the complexity of the system
cannot on its own provide a solution to the norcgmeproblem, [Potter et al., 1995],
[Thompson, 1996]. This is because the system dotkterally increase its abilities, and
perform different tasks, simply by increasing itgesin units or connections. Increases in
the system’s size are restricted in terms of usiai@ly and generalisation as discussed in
this thesis.

This may seem to conflict with the accepted doettimat an Artificial Neural Network is a
universal mapping function from problem domain t@usions space [Hornik, 1989],
[Barron, 1993] and [Sima and Orponen, 2003]. Ha@vetime-series problems are outside

the domain of the simple neurons based on the Mo€hPitts model.

All of this points to the requirement for some type “Universal Neuron” as defined
earlier in this chapter. What is meant by “uniedrsvill be discussed in the next chapter.

29

Chapter 3

Universality and Generalisation in the Spatial Doman

3.1 Introduction to the Chapter

The terms “Universal” and “Generalisation” are cehto this project and occur frequently
in Artificial Neural Network literature. This chtgy explains what they mean in the

context of this thesis and the research of thegrou

Definition of Universality :
The ability of an Artificial Neural Network to apptimate any functional mapping

from its input (data) space to its output (solujispace.

Definition of Generalisation :
The ability of an Artificial Neural Network to carctly classify new data which

belongs to the same system as the training datawhich it has been taught.
3.2 Universality

A universal approximator is one that can performadpitrary mapping from one multi-

dimensional data space to another. This is gdgerejarded as a mapping from an input
space to a output space. A universal optimisenethat performs well on a large set of
optimisation problems within the same mapping froput space to output space. [Duch
and Jankowski, 1997], [Briggs, 2005]. An exampglshown in figure 3.1, where different

representations of characters are recognised asf@hketters.

30

Input Space m

Output Space
ARAAA .
BB 5B B function 1000
ctccc 0100
DDDDD 0010
0001

Figure 3.1 — Text recognition mapping function

One of the factors that brought most neural netweslearch to a halt in the 1970s was the
work by Minsky and Papert [1969]. Amongst othes@lvations, they showed two major

weaknesses with Perceptron universality.

Firstly, as shown in figure 3.2, a single neurontleé McCulloch-Pitts type, which

accounted for almost all artificial neural unitstbé day, could not provide a solution to
the XOR problem. The XOR problem is a two dimenaloexample of the parity-check
problem and therefore easy to visualise, (see diguB). It can be expanded into any

number of dimensions and is known as the “d-biitpg@roblem”.

.ﬂ
r Y
@ Threzhald Outpurt

LERF)

Figure 3.2 — McCulloch-Pitts Neuron

iy | ip | Desired Outpui Clasp _ _ o
0'0 0 C1 A single linear decision
oL 1T 5 G o tbhou_ndarty cartmot classify
R 17T the input vectors
R o V1 i1 [(0,0),(1,1)] and

i»[(0,1),(1,0)] correctly.
Cl C2 1

Figure 3.3 — Exclusive-or (XOR) problem

31

Secondly, they demonstrated that a simple two-lgy@ceptron was not capable of

providing a useful function approximation outsideaasrow class.

In hindsight, their work did ANN research a greatvice, because, through visualising the
problems, they allowed a greater understanding effvork limitations. This focused
attention on solving these problems and a gredtaléhe subsequent work on universality
iIs based on their observations or in providing sohs to them. The second weakness
provided a solution to the first using Backpropagatiraining [Rumelhart, Hinton and
Williams, 1986], [Werbos, 1974], [Parker, 1985]sl®wn in figure 3.4.

Figure 3.4 — solution to the parity-check problem

The solution, of course lies in the use of netwadtker than individual neurons as shown
in the diagram and it can be extended to any gdiity problem so that multi-layer
networks are universal approximators [Hornik, 198%his extension has a mathematical
basis as shown by Kolmogorov [1957], who disproviithert’s famous 13th conjecture.
Flaws were pointed out and fixed by subsequentaasitincluding Lorentz [1966] who
extended Kolmogorov’s work to show, in theory, that approximation can be obtained
for any multi-variate function by a compositionadtwork of univariate functions. The
specific function determines the accuracy of thpraxmation. Despite this, there are
many limitations and the specific size of the markeinot be determined from the function
itself. As Elder and Brown [1992] observed, “inthgs such a model from sample data

remains a great challenge”.

Applications to neural networks have shown that k@jorov’'s theorem could be

generalised for Multi-Layer Perceptrons (MLPs) oi anulti-layer feed-forward neural

32

network, and so these could be considered to beersal approximators [De Figueiredo,
1980].

Hecht-Nielson noted that Kolmogorov's superpositgam be interpreted as a three-layer
neural network and any continuous function defimeftl) dimension unit hypercube could
be implemented exactly by a three layer networ{2df+1) hidden units and with a suitable

transfer function [Hecht-Nielsen, 1987].

A survey of universality [Tikk, Koczy, and Gede@®01] has shown that since then it has
been proved that different types of neural netwmoksessed the universal approximation
property [Blum and Li, 1991], [Hornik, Stinchcombhad White, 1989], [Kurkov'a, 1992].

As noted above, the specific transfer function fisciatical importance to a network’s
universality [Duch and Jankowski, 1997]. Extendihg functionality of the unit can
reduce the dimensional requirement of the netwadk ia has been shown that a single
hidden layer neural network can be a universal @pprator [Hornik, Stinchcombe and
White, 1989].

Single-layer neural networks with sigmoidal funoso have been demonstrated as
universal approximators. They can approximate @itrary continuous function, on a
compact domain, with arbitrary precision, givenfisignt number of neurons [Cybenko,
1989].

This can be extended to a continuous function, shatv a single unit of the correct type

can itself be a universal approximator [Capantail €22003].

Polynomial networks (see next chapter) have beemwishto have both universal
approximation abilities and good generalisationkpdhev, 2003]. Nikolaev notes that
problems in generalisation can, partially, be litied to fixed network structure [Chang
and Cheung, 1992] and that this cannot be countbgedestricting the polynomial

complexity or by their learning algorithms and #fere under-fitting or over-fitting occurs
[Heywood and Noakes, 1996].

33

3.3 Generalisation

In many neural network applications generalisatisnbest explained by a pattern

recognition example. Once a network has beenettaio recognise specific patterns from
a training set, it may be presented with pattehas were not members of that set. If the
network has learned thenderlyingstructure of the problem domain, then it shouldblke

to correctly classify these new patterns. Such edwork is said to have good

generalisation. If the network cannot generalisen it is simply performing a one-to-one
mapping from the input space to the solution spagan figure 3.5a. This could be

achieved far more simply with a lookup table or péate match [Gurney, 1997a], [Bishop,
1995a].

one-to-one mapping

Input Space poor generalisation
Output Space

10000 “A”
O#### unknown R”
O#### unknown A”
O#### unknown A”
O#### unknown A”

7

Original trained character /A

Other versions of charac
Figure 3.5a — A one-to-one mapping

many-to-one
Input Space mapping

Output Space

10000 all
characters
HAH

Original trained character@
Other versions of charac (A"

Figure 3.5b — A many-to-one mapping

34

Figure 3.5b shows the many-to-one mapping actwatiyired. The new patterns or cases
that the network operates on must belong to theesarstem as the training set [Elder and

Brown, 1992]. Failure to generalise can be attaduo many different factors such as:

* The training set not being a true representatiothefproblem, perhaps because too
few examples are used or they cluster in areasdandot contain all the factors that
separate the cases.

 The network having too few neurons or weights, kat tit may not be able to
differentiate between all the factors and will unrdeneralise. This will be observable
in training, as the network will have difficulty lsieving (or fail to reach) an acceptable
target error.

* The network having too many neurons or weightsthig case, it may fit the training
set too well and suffer from what is termed overring or over-fitting.

» If the search space is too big, the initial parargetnay result in the network reaching

a sub-optimal minimum before it can find a gooduioh or the global minimum.

35

3.3.1 Over-Fitting and Over-Training

o o o o
a) » D) >
A A
° ° ° .
°
o ° o - oXe o - o
o o o o
° [%
o ° o T M o
o o
o o o o
A A
° °
°
o o o 5
o °
o
o o
° o
o o ° °
e) > 0

[
>

Figure 3.6 — Generalisation and over-training — ified from Gurney [1997b]

Consider figure 3.6. There are two classes disisiged by open and closed symbols. The
training set is shown as circles and the untrapadterns are shown as squares.

In the first diagram-pair (a & b), the two linespresent the linear separation of a two
hidden neuron MLP. Initially, it appears that #1és poor training as two open circles lie
directly on the linear separators. This will reésnl some residual error in training. The
network is then tested with the untrained dataresgnted by the squares, and correctly
classifies them. The network has therefore geisedhlwell with the unseen data,

capturing its essential characteristics in patspace.

36

If the low error in training is not accepted anbbwaer error is sought by either continuing
to train (altering the hyperplanes), as in the sdcpair (¢ & d) or adding additional
separators, as in the third pair, figure (e & f@rtha zero error can be found. However,
once the unseen data is added neither of theseiteels manage to correctly classify the
new patterns. These networks have been over-ttaane possess poor generalisation.
They have over-fitted the decision surface to acgoonate all the noise and specifics of
the training data without learning the underlyingnds [Gurney, 1997c], [Bishop, 1995b].
Networks that are too large for the problem donsi@ susceptible to learning without
good generalisation [Chen, 1991] and can resultairmulti-dimensional Lagrange
interpolation [Steffensen, 1950] of the trainingtada This is expressed in very poor
recognition ability when presented with new patternHowever, the extent of the
performance is determined by the nuances of thternpagpace.

Overtraining can be countered with testing calletb&s-validation” [Gurney, 1997d] or
“holdout-validation” [Pednault, 2004]. In theséeterror during training is tested on a
validation-set of untrained patterns that come fittve same problem as the training-set.
As shown in figure 3.7, the error tends to folldvatt of the training-set but remains slightly
higher. As training continues, the training-sebewill continue to decrease but at some
point the validation-set error will begin to ris€lhis is the point when the network is
starting to over-fit and is losing its ability temeralise.

A

error : approximate region where N

| over-fitting occurs —— training-set error
1

---- validation-set error

v

number of training epochs

Figure 3.7 — Training and validation error — maatififrom [Gurney, 1997¢]

37

3.4 Universality and Generalisation Trade-Off

From the previous section, it can be seen that lanba must be found between
generalisation and universality. ANNs should bepadble and therefore universal in their
environment and this can be done by increasing thee. However, we also know that as
the size increases, the network risks losing itseegdisation abilities. So the solution to
this is to combine the lessons learned about trgiand growth with an increased
functionality of the basic unit, as in Chapter Hattallows the use of fewer units in the
ANN construction. However, not just any unit canused; it should be an improvement
over linear seperability but must have some comggar the results may be polynomial
over-fitting, (see Appendix D). The investigatiohsuch functionality is the purpose of

the next chapter.

38

Chapter 4

Power Series

4.1 Introduction to the Chapter

This chapter outlines a neural model, which hasilesigned to be flexible enough to
assume most mathematical processes. It is patigulseful in evolutionary networks as
it allows the network complexity to increase withadding neurons. The theory is
presented in this chapter, this forms the bas¢h®rdevelopment of both time-series and
non time-dependent applications as the next chagtews. This work was originally

published by Capanni [2003], see Appendix A.
4.2 Evolution by Devolved Action

The requirements that lead to the research covaréus chapter were introduced in the
paper ‘Evolution and Devolved Actidiiy MacLeod et al., [2002]. This paper identified
many of the problems with Atrtificial Intelligencél) development, among which was unit

functionality.
4.2.1 Unit Functionality

All neural biological systems have similar neurortdowever all do not have exactly the
same unit functionality, even within one organistrefitan and Kaczmarek, 2001].
Neurons have been categorised into general typsgdoon physical appearance, location
in the organism and perceived function but the IsuBiifferences go deeper than these

broad categorisations and the operations of the mxotic types are not fully understood.
Also, as described in the last chapter, there ameyndifferent types of artificial unit, such

as, Perceptrons, Radial basis units, Sigma-Pi,wetits ‘What is needed is an evolutionary

system which can evolve any reasonable neuralifmidMacLeod et al., 2002].

39

This is the basis of the Power Series researchtf@odgh its expansion from the static to
the time-domain, it also leads logically onto thetificial BioChemical Networks

presented later in this thesis).
4.3 Power Series

Power expansions belong to a grouping of infinéguences and series where tfieterm

is a functionun(x). The general power series is;
Y ax"=a, tax+ax’ +a x> +..+ax"+... equation 4.1

where the numbers, (n = 0,1,2,...) are constants independent of eabbraind ofx.

They are used extensively in mathematical physatewing descriptions of various

phenomena including signals such as current artdgal[Thomas and Finney, 1996a].

In a sequenca,(x) = cX', orun(X) = c(x-a)', wherea andc are non-zero constants, then the
sequence converges to zerx|f4 1 or |k-a)| < 1, and converges toif x=1 or k-a)=1

and otherwise it diverges.

If it converges, the sum to infinity of a formalyer series can be expressed as;

n

equation 4.2

n

D ax" =ag +a,x+a,x* +a;x° +...+a,X
n=0

These power series can be truncated to give polloapproximations to standard
elementary functions such d@sandsin x The range over which these approximations are
accurate is determined by the order of the polyabmsed (and proximity to the radius of

convergence).

It is a specific type of polynomial expansion dedfrom power series that is of interest in

this thesis, namely the Taylor Polynomials.

40

4.4 Taylor and Maclaurin Series

While not every function may be represented by wevcseries, evelyfunctionf that is
defined in a neighbourhood &f= 0 and has finite derivativeés f’, ... f" at 0 generates
polynomialspo(X), pi(x), ... , R(X) that approximatd(x) successively more accurately for
values ofx near 0, [Thomas and Finney, 1996b].

For any non-negative integkrthe polynomiapy(x) can be taken to be the terms up to and

includingx® in the power series shown in equation 4.2 to give;

p (X)=a, +ax+a,x* +a,x* +...+a x* equation 4.3
The coefficientsa,, ... , a, are determined as the derivatives(®j atx = 0, (the point (O,
f(0))). Thus, the polynomialgy(x), pi(X), ... , R(X) expressed as in equation 4.3 pass

through (0f(0)). This is shown in equations 4.4(i to iv);

Py () = a, where a, =f(0) equation 4.4i

p,(x) = a, +a,x where a, =f' (0) equation 4.4ii
.) _£0) .

P, (x) =a, taXx+a,X where a, = % equation 4.4iii

p (X)=a, +ax+a,x* +a,x* +...+ax*

()
k!

where a, = equation 4.4iv

Replacing the coefficients allows the expressiobgae-written as shown;

x* equation 4.5

pk(x): f(0)+ f'(O)x+ f"2!(0) 2 + f;(O) 4+ fkka)

! Actually, there are some exceptions - certaingdatiic functions such as the function defined pigse as
f(x) = e ¥ if x # 0 andf(0) = 0. All the derivatives dx) are zero ak = 0. Therefore the Taylor series of

41

The specific Taylor series shown in equation 4.5esponds to expansion about 0 and
is called the Maclaurin series, [Thomas and Finr396c]. If an approximation is
required near another poiaf the powers can be re-written asaj which results in the
following Taylor polynomial and series;

p.(X)=a, +a,(x-a)+a,(x-a) +a,(x-a)’ +...+a,(x-a) equation 4.6
(X)=a,+a(x-a)+a,(x-a) +a .

p.0= 1@+ @)+ D (x-a + T gy D@ gy

equation 4.7

This results in the approximatiop, (x) aboutx = a for any non-pathologic functiofx),

that has finite derivatives of all orders at As with the previous power series

approximations, the Taylor approximation can bermupd by increasing the order.
4.5 Relevance of Taylor Series

The paper Evolution by Devolved ActidrfMacLeod et al., 2002] set out a biological
basis for exploring unit functionality. This waslbwed up by the current author Capanni
[2003] where a new neural model was presented,dbarethe idea that a neural unit
should be flexible enough to fulfil any differertila mathematical function required of it.
The model is a logical extension of the Perceptind the first advances mentioned by
Capanni in this paper were later developed to whatresented in this and the next

chapter.

Any lower unit number universality of a Taylor SErinetwork compared to MLP comes at
a price, as polynomial over-fitting can develop,p&pdix D. Taylor series networks are
vulnerable to the Plasticity-Stability dilemma, &iped below, through what Bishop

[1995] calls the Bias-Variance trade-off.

f(x) is zero even though the functi®{x) is not zero. So it is assumed tlias well approximated by its
Taylor polynomials.

42

The Plasticity — Stability dilemma is as follows:
Plasticity: The ability of a network to learn ngatterns.
Stability: The ability to retain previously trath@atterns.
Dilemma: A fixed topology network cannot learn npatterns without

affecting the memory of old ones.

4.6 Linear vs. Non-Linear Separability

The previous chapter introduced linear separalalitgt explained how this simple concept
was the basis for Artificial Neural Network funatimlity. The advantages and limitations
of this with respect to universality, generalisatemd the famous parity-bit problem were
explored. In figure 4.1 it is shown visually howsengle, second order TS neuron can
exactly map a non-linear boundary, whereas a MocCiPitts Multi-Layer Perceptron

requires two layers and several neurons to appmenthe same boundary (it cannot
match it exactly). A potential disadvantage of ethithat will be explored later, is the

danger of exact matching, resulting in over-fittangd loss of generalisation.

Figure 4.1 - Comparison of McCulloch-Pitts MLP toge 2" order TS neuron

A non-linear decision boundary can only ever by rappnated by a set of linear
separators. While for generalisation purposes aqppiation may be desirable, a non-
linear separator can either exactly match the baryndr, if the training algorithm includes
an approximation element, provide such a level pggreximation with a single unit of

sufficient power order.

43

The universality of the TS neuron can be seenanithreduces to a MP neuron as shown

in equations 4.8c and 4.9a and explained below.
4.7 Model Solution

The majority of ANNs currently use a neuron devebbfrom the original McCulloch-Pitts
model, as shown in figure 4.2. Other types usedi@ean difference formula = (x — w)
Those that do not may still utilise the init{@put x weightsummation stage. The output
from this stage usually undergoes a transformaitgng a threshold or squashing function.
This function normalises the output, common exasgieing binary {0,1} or logistic
sigmoid (0,1). Without the use of the normalisfngction, the activity of this neuron is

given by;

S=> xw, equation 4.8a

The variableS denotes the sum of each inpumultiplied by the strength of its connection
termed the weightv, and is known as the “activation” of the neurom. the absence of a
normalising function the output of the neui©ns equal td&Sas shown in equation 4.8b.

0=> xw equation 4.8b

For a neuron of two inputs this can be given aseih&ly visualised equation 4.8c of a

straight line with respect to the variablesx..

O = x,W, + X,W, equation 4.8c

44

Inputs {X ... %}

X1 Sum= (X.wy + ... + X W)

O
Output = f(S)

Weights {w ... w}

Figure 4.2 - McCulloch-Pitts neuron minputs

As discussed previously in this chapter continums-pathologic function can be
modelled using an infinite power series as showedqnation 4.2, specifically a Taylor
series as shown in equation 4.5. This can be mghted as a neuron using the output
function shown in equations 4.9 and figure 4.3.

A TS neuron of two inputs with a second order egpamcan be expressed as in equation

4.9a. The variables;, x; are independent of each other in real terms andhén
mathematical sense. Therefagex, could be replaced by y.

O =X Wy, +)XW, + X W, , + X5 W, , equation 4.9a
For a TS neuron of two inputs, an orgezxpansion can be expressed as in equation 4.9b.

—ul 1 2 2 p p
O= KXWy FXoWo ¥ X Wi, +XoW,, +. X Wi p X3 W, o

equation 4.9b

In its full expression, a TS neuron minputs expanded to an orderrmafcan be expressed
as equation 4.9c.

m n

f (X X)) =0 =D % W equation 4.9¢

p=1li=1

45

In all of equations 4.9, the derivatives of thedigeries are replaced by the weights in a

like for like manner, so that;

P
W, = gf_p 0 E—I— for p =k andi is dependent on the input,
X

k
replacing% for f(x) as the function is now multi-variate fifx, ..., %,).

The termf(0) can be replaced with the bi@sas in standard MP neuron operation to give

equation 4.10a.

O= Zm:(zn:(xipva +0)j equation 4.10a
p=1

i=1

In an MP neurong is a property of the neuron, not the connectittowever,f(0) is a
constant and so the sum of all thecan given ag, a constant term without input, to give

equation 4.10b.

O=0+ ZZ XPW equation 4.10b
p=1i=1
Inputs {x ...
P bR Sum =6 + (Xp.wy g + (X1)2-W1,1 + ...

+ (X)"Wom+ ... + (%)™ -Wh.m)

X1

! WiiWi2... Wm

- o

| Output = f(S)

| Wh1Who ...

X, n,1 Wh,2 WA,m

Weights {w ... W}

Figure 4.3 — Taylor series neuronmihputs and ordem

The factorial ternp! is theoretically absorbed by the weight term asdhe values fax
should be constrained within the range [-1,1] ot]@hen the powers of will not become

46

uncontrollably large. However, some account o$ thiust be taken when generating the
initial parameters for the neurons by dividing tingial range for each power by the
appropriate factorial or the factorial must be lafplace to give equation 4.10c. If this is
not done then the higher powers will have a dispridgnate significance than a Taylor
series would indicate and may result in high sentsitto small changes in weights or
inputs that have a major effect on boundary coouliti As higher orders of power are
taken the weights may become so small that théacefs negligible (especially if the
implementation has a limited decimal accuracy). tie case of the weights, a well
structured training program may compensate for khis a significant point is that the
effect of noise would be magnified by these disprtipnate values that could have a

significant effect on the generalisation abilitcfghe network.

m n W
0=6+Y > % '—'p equation 4.10c
pel i=1 P

Comparison of equations 4.8c and 4.9a shows thakittoefficients of the second order
terms ofx; andx, reduce to zero then the TS neuron reverts back McCulloch-Pitts
performance. This remains true for any numbereohs as a McCulloch-Pitts represents
the first order of a Taylor Series, or Power Semesiron.

Note that each connection has a separate weighdgaitin order of series used. It is not
practically possible to implement an infinite serieithout contributing to Bellman’s
[1961] “curse of dimensionality”. Therefore it iecessary to restrict the order of the
Taylor series, possibly to as much as a seconiror drder series. However it has already
been demonstrated that a second order series i tmaas more capable of approximating
a non-linear separator as it can follow the contatiner than exploiting tangents. Within
the following sections the specifics of restrictiihg orders are examined.

As each input undergoes a separate Taylor serjgansion the operation of the neurons
does not represent a true multi-variable Tayloteser This is intentional as if it was
allowed to do so then the “curse of dimensionalityduld apply and the implementation
would produce a variation of the Polynomial Neudatwork (PNN) [lvakhnenko, 1968].

This would have eight variables for & @rder 2 input neuron, and as such is frequently

a7

restricted to two inputs such as in the Group Meétld Data Handling (GMDH),
[lvakhnenko, 1971].

48

Chapter 5

Taylor Series Neurons and Networks

5.1 Introduction to Chapter

This chapter demonstrates the implementation oTthdor series neural model which was
presented in the previous chapter. The implemientas compared to equivalent Single
and Multi-Layer Perceptron and the results are shofignificant operations are explored,
with specific attention being paid to universalignd generalisation. Other major
polynomial type networks are also discussed. Bindhe relevance of time-domain
operation is introduced and the application of posaries networks to this is illustrated
with an explanation of how this leads to the Actdi BioChemical Networks presented in
the next chapter. Additional results and expaniiguares, denoted F.#, are included in

Appendix F.
5.2 Background to Chapter

As discussed in Chapter 4, the Taylor Series nedlitiars from the McCulloch-Pitts

neuron in its connections and weights.

Both neuron types can utilise a range of outputctions, common ones being the
piecewise linear, threshold (also called heavisidgp) function, the logistic sigmoid and
the hyperbolic tangent functions. The combinatidnthe summation function and the

output function is called the transfer function.

49

5.2.1 Output Functions
To assist with visualisations the threshold andskigsigmoid piecewise output functions

are illustrated below. The linear and hyperbadingent output functions are included in

Appendix F.

t(X) 0.57

-2 0 2

X

Figure 5.1 — Threshold functid(x)

1 ift>o05
tha = { 0 ift<05

equation 5.1

A threshold function, sometimes called a “heavistlestep function”, usually operates
with output {min, max} values and a decision oretsinold value. If the sum reaches the

threshold values, the output is set to max; otheawi is set to min.

The specific function shown here has an outputo$d0,1} which are commonly used
values. The function may use any pair of valuesewer, these and the set {-1,1} are the

most frequently implemented.
The step function produces the binary decision abaireshold point, often denoted by

the Greek lower-case thefa In the example shown in figure 5.1 and equafdh the

theta value is 0.5.

50

A neuron using such a function is often called ae$hold Logic Unit (TLU). Theta is
usually set at the same value for all neurons énnttwork, often the mid-point between
the output max and min. Such a network can be tddnas TLUY, min, max} with
TLU{0.5,0,1} and TLU{0,-1,1} being typical valuesln the perceptron training algorithm,
0 is a trainable parameter.

I(x) 0.5]

10 0 10
X

Figure 5.2 — Logistic sigmoid functid(x)

100 = ——r equation 5.2
l+e

The sigmoid function is probably the most commamed output function. The example
shown in figure 5.2 and equation 5.2 is the logistgmoid. This is a useful extension of
the step function that provides a continuous smtuind overcomes the limitations of the
previous binary functions. It is symmetric througke range [0,1] about its output value of
0.5 and has a slope controllable by a parametep dral an intersect by the use of bias
which is inherited from the threshold function. eTéffect of these is shown in figure 5.3 at
the end of this section.

5.3 Design and Implementation

In this section, the capabilities of the individulylor Series neuron are explored and
compared to the McCulloch-Pitts neuron in the samaronment. It is intended that an
understanding of the operation of single neurons agisist in the understanding of the

operation of a network of neurons.

51

5.3.1 Taylor Series Neuron Output Functions

Two inputs ki,x2) are used so that the operation can be easilyahsgd. For the Taylor
series neuron, implementation proceeds in incrgasider of powers while it is feasible to

analyse and represent the unit like this.

The outputO and suntSvalues of the MP and the TS neurons are represéytequations
5.3 and equations 5.4, which are derived from theagons 4.8(a,b,c) and equations
4.10(a,b,c) respectively. This assumes no trarigfeation is used and represents a linear

output function with no amplification.

2

0=S=6+) xw equation 5.3a
i=1

O0=S=80+xW, +X,W, equation 5.3b
m 2 W.

0=S=6+) > xP '—'p equation 5.4a
= p:
m (W, W,

O:S:0+Z(X1PL"’+X2” Llpj equation 5.4b
p=1 P P:

Specifically for a 2 order and a3 order expansion, equation 5.4b can be expressed as

5.4c and 5.4d respectively.

— 2 WL2 2 W2,2 .
O =0+ XWy, +X,W,, +| X + X5 > equation 5.4c
W. W. W. W.
O = G+ X W, + X,W,, + X % + X ;’2 + {xf % + X3 ;3} equation 5.4d

The terms in the square brackets represent thegehfaom the previous order of power.
Notice that for equation 5.4c, this indicates tharge from alorder neuron; comparing
this to equation 5.3b, shows that*adtder TS neuron is a MP neuron. This means tlaat i
linear separator is required in a TS network thenghts {wip} will train to O for all

powersp > 1.

52

A logistic sigmoid output function, as in equat®ia, is applied to give the output values
of each as shown in equation 5.6 for a MP neuradsegjuation 5.7 for a TS neuron. This
function squashes the output to [0,1]. The maxinamth minimum values are theoretically
reached when the sum value reaches iPractically, this occurs due to computational

rounding to prevent exponential overflow.

Output= ﬁ equation 5.5a
€
Output= T+ lsin equation 5.5b
€
1 .
o=f(s)= . equation 5.6a
1+ e_(0+i§1XiW|j
o= 1 [6b
=[5 cTommram) equation 5.
0=f(S)= %1 2 equation 5.7a
1+ e_[wpz‘la& ?J
1 :
O= equation 5.7b

The equations for the logistic hyperbolic tangemipat function are given in Appendix F.
These are no more complicated than those of theasiy function as it operates on

repeated terms.

As the logistic sigmoid function is the main outpuihction used in this thesis, an
explanation is given. A logistic function has aga of [0,1], while a threshold function
forces a choice between the extreme values of {OTljis is not as unrelated as it appears;
it is attributable to the previously mentioned tesometimes used with the logistic
function, the slope, denoted by the Greek lowee ¢asp and affecting the sensitivity of
the function - the range of the sum over which dlput produces its extreme values.
This is shown in equation 5.5b and figure 5.3. tl&othreshold replaces an extreme use of
p and is wused to simulate a binary decision of thegistic function.

53

Figure 5.3 — Affect of slope over logistic sigmoid

A neural network makes a decision on the inputsdeives. To do this mathematically, a
threshold function can be employed to give a bimagponse. However, not all decisions
are binary and so a continuous output can give asida@ expressed in more detail or
confidence. If such an output is to be of valuemust be quantifiable. Therefore a
squashing function is used to constrain the outpmuta known range so each specific
output can be qualified and the values do not terglich large numbers that the network

saturates and becomes untrainable.

In calculating the operations of the neurons, asital matrix notation or an object model
can be used.

54

5.4 Testing : Single Neuron Functionality

This section visualises the various separator fanstin three dimensions. The x-axis and

y-axis represent the inputs f,) while the z-axis shows the output value.

541 McCulloch-Pitts Functions

The McCulloch-Pitts neuron is first examined aseadhmark. This is shown with two
different separators; threshold and logistic siginoThe piecewise linear and hyperbolic
tangent separators are shown in Appendix F.

The sum value of the neuron is calculated as ira@ogu 5.3b. In the specific example

shown in equation 5.8, the value of 0.5 is assigned, w, andéd. This is chosen to scale

and shape the separator to the relevant axestsisstbperation can be clearly shown.

Sum= 050C% + 050k, + 05 equation 5.8

Figure 5.4(a,b,c) — The Sum value expressed ascidn of inputs

In figure 5.4a the resultant sum is visualised dtat@plane which can take any angle
between the output-axis and the input-plane (maala the input axeg;,x;). It can also

transect the input-plane in any straight line. Thatours in the z-axis, including where it
meets the input-plane, represent any proportignalitdecision. These contours are all
straight lines as shown in figure 5.4b by rotatthg figure to view directly through the

input-plane. This plane extends to a hyper-planenore than two input dimensions.

55

Viewing the gradient from directly into the inpupe shows the increase in output-axis

value symmetrically and uniformly with respect e input-plane.

When a threshold, as in equation 5.1, is appliethéoSum values of equation 5.8 and
figure 5.4, the step can be seen. This is sinbilahe piecewise linear separator without
the incremental region. The McCulloch-Pitts neuooiginally used this type of separator

and it remains popular.

sum

0.5
0.6
0.4

0.2

X1 X2

Figure 5.5(a,b,c) — Threshold output functions

Figures 5.5 show the clear binary separation thaypical of the threshold function. As
figure 5.5b shows this is still a linear operatiaith only one contour in the output, z-axis.

The result is obvious when viewed in terms of zsasdlues of figure 5.5c.

The sigmoid output functions squash the output iat@lomain. In contrast to the
discontinuities of the piecewise linear and thréghminctions. This means that any
measurable change in the sum has a distinct edfethe output although changes are not

linearly equitable.

In the next figures, the logistic sigmoid separatbequation 5.5 is applied to the values of
equation 5.8 and figure 5.4. The resultant figlr@sare obviously more complicated than
the previous separators. The output range is rpyashed to (0,1) and the function is

continuous and differentiable over its entire range

56

sum

I

0.6

044

0 e o

Figure 5.6(a,b,c) — Logistic sigmoid output funaso

The sigmoid plane in figure 5.6a can be seen tarbextension of the two dimensional
sigmoid curve into three dimensions. This is vedfby taking a cross section of the plane
in figure 5.6b. The effect on the decision surfé&&eshown in figure 5.6¢c, where the

decision surface can be seen to be completelyrmam&al in terms of output. However,

the gradient is non-uniform, which allows the arigédition/squashing of data from the

input-plane. As before, the expansion into mormatisions results in hyperplanes
operating equivalently.

The sensitivity of the function can be tuned to thkevant area of the input plane by the
use of a slope parameter. The lineage of the ifumatan be also observed through the
effect ofp € {0.1,1,10}, althoughp can take any value.

sum

0.5
0.6
0.4

0.2

X1 X2

Figure 5.7(a,b,c) — Logistic sigmoid output funasowithp

As p — 0 the function approaches its equivalent steptfangcapproximating a vertical
plane through the input-plane mid point, and be@mereasingly sensitive to changes in
the input-plane. Ag — oo, the function stretches out becoming less semsttivchanges

in the input-plane and approximates a horizontah@lthrough the Output-axis mid point.

57

Figure 5.7a and figure 5.7b show all three values, dhe original value of 1 is retained
from the previous example is shown by the middignsiid. The z-axis decision is shown
in figure 5.7c for 4 = 0.1), a comparison to figure 5.5¢ and figurec5shows that a
decreasing value gb causes the output function to approximate thestwlel output

function.
54.2 Taylor Series Functions

The Taylor Series neuron is examined with the sdamwe output functions as the
McCulloch-Pitts neuron. These are; threshold agikstic sigmoid. The piecewise linear
and hyperbolic tangent are shown in Appendix F.e $aparators will be shown on ¥ 2
order and % order Taylor Series neuron. Parameter valuesravitiain the same as before,
except when this places the observable region dmitany decision boundary. Then
specific examples will be shown to demonstrate fthieflexibility of the Taylor Series

neuron.

The sum values of the neurons are calculated usiqgtion 5.4c for ¥ order and
equation 5.4d for "3 order. These are compared directly to the previcalculation of
equation 5.3b,%lorder or MP.

In the specific example shown - & ®rder Taylor Series neuron in equation 5.9 anf a 3
order Taylor Series neuron in equation 5.10 - #ren$ in square brackets represent the
additional parameters required for the increas@eacurrent order of power. Equation 5.8
and figures 5.4 which represent the McCulloch-Rigsiron or a % order Taylor Series

neuron, are repeated for comparison purposes.
The value of 0.5 is assigned Wa 1, W1, W12, Wa 2, Wy 3, W 3 and § except when stated

otherwise. This is done to scale and shape thaubfunction to the relevant axes so that

its operation can be clearly shown.

Sum= 05C% + 050k, + 05 equation 5.8

Sum~ 05+ 050x; + 05k, +

050X + 050X .
{ 1 2 } equation 5.9

58

Sum= 05+ 05X, + 05X, +

0502 + 052 +[o.scxf + 0.5&3}
2 6

equation 5.10

Figure 5.9(a,b,c) — The Sum value 8f@&der Taylor Series neuron

As the Taylor Series neuron increases from®atal 3¢ order it may immediately be
observed, through figures 5.8(a,b) and 5.9(a,b) tthexre is now a non-linear summation
function and this takes the form of a contouredipla the output-domain.

59

There does not initially appear to be much varatietween the ™ and 3 order.
However, if figure 5.8c and figure 5.9c are exarding may be observed that an
adaptability in dimensionality has occurred witle thcrease to"3order. The contours in
figure 5.8c show that a"®order power is all that is required for a non-tinseparator;
however, observing the contours shows that ther@nispparent symmetrical but non-
uniform (in the input-plane) relationship to thetfmut-domain. So far, all examples have
used identical inputs in the dimensions of the trgamain and this gives rise to the
symmetry being equal in all input-plane dimensiombis is shown more clearly in figures
5.10. The introduction of thé®®rder terms allows an extra variation. The vaiatn the

input-plane is non-linear; however, it is also reymmetrical in input-plane dimensions.

It can be surmised that extending the order foadd above will extend the variation
between the input-dimensions and the output-plaii@at practical use this may have will
depend on the complexity of the input-domain. Angrease in order beyond the
requirements of the input-dimensions will simplgn@ase the number of parameters that
the network has, beyond those required. This negllt in reduced training performance
in terms of number of epochs and over-fitting. sTisi illustrated later in the experimental

section.

5 equation 5.11

Sum= 05+ 0050k, + 005X, {

1002 +1.0D<§}

Figure 5.10(a,b,c) — Sum value 8f Brder Taylor Series neuron focusing on decision

region

60

The non-linear symmetry of the input-plangX.) in the output-domain is clearly shown
in figures 5.10. This is a marked improvement dberlinear-plane of the®lorder as it is
also capable of representing this. It is achiegdncreasing the co-efficient of thd“2
order terms; this corresponds to an increase imitate of weights as shown in equation
5.11.

The simple extension of thé'1o 2% order allows output functions similar to the SigRia
neurons described by Rumelhart et al., [1986] bith & gradient expression and without
the restrictions on network topology and non-liityar While the extension to3order
gives the additional capabilities of non-symmetrytie 2% dimension, this is achieved in
the same way as for thé®@rder, with the emphasis off ®rder terms, shown in figures
5.11 and equation 5.12.

Sum= 05+ 0050, + 005X, +

0050 + 0050 {1.5 o¢ +15 D(S}
2 6

equation 5.12

sum sum

Figure 5.11(a,b,c) — Sum value &t 8rder Taylor Series neuron focusing on decision

region

The effect of each order of power can be shownudiinoindependently varying the
coefficient, or weight, affecting it. This is firshown in all orders with positive values of
the £, 2 and & order Taylor Series neurons. Negative values Isitnpert the decision

surface of the output-axis.

61

Skewing the inputs in the®lorder neuron (McCulloch-Pitts) results in a tifttbe flat
plane towards the input-axis with the lower coédint, shown in equation F.8 and through
comparison of figures 5.4 and figures F.7. Thifeafof skewing T order inputs is
inherited by the Taylor-Series neurons when thespai higher orders coefficient remain
equal. The ? order neuron is shown in equation F.9 and by coispa of figures 5.10
and figures F.8. For thé®3rder neuron equation F.9 and a comparison ofdig%.11

and figures F.12 apply.

Higher order terms can be examined by skewing iddal orders, or combinations of
higher orders, while fixing the®lorder terms and remaining higher orders. Theouati

combinations of this are examined in Appendix FA%rand & order neurons.

Skewing the # order coefficients on their own causes the degisiaface to stretch along
the input-axis with the lower coefficient. Thishisst visualised by comparing figure 5.10c

and figure F.9c although it is observable in tHeeotelevant figures.

The effects of skewing the''or 2' order terms individually on their own affect diféat
aspects of the decision surface. This impliesndependence of operation. If both tife 1
and 2° order terms are altered from equation 5.11 to giyeation F.9 and equation F.10
and applied simultaneously, they give equation F.Alcomparison of figures F.8, figures
F.9 and figures F.10 shows the independence ofattiens of the % and 29 orders.

Figures F.10 shows a direct combination of botba.

An effect of the results of this independence betwthe different orders mean that the
decision surface can be altered independently wswahat is required. This is without an
interaction between the orders becoming reliantparameter interaction and therefore

much more difficult to control than independentgraeters.

Examining the effects of different input domainues with added'3order terms results in
figures F.12 to figures F.24. These show bothitidependence of the power terms and
the effect of each order on the separator. Thesalhcreated by modifying the terms of
equation 5.12 and can be compared to the symmiatrmat-domain in figures 5.11.

62

The above figures, and those in Appendix F, dematsstthe flexibility of the Taylor
Series neuron with respect to its inputs. In eeade the variation in the coefficients is
seen to be independent, allowing an element ofrcbaf the neuron while being able to
exploit all the variation of the output-domain.

In the previous sections, the polarity of the coefhts has always been positive. The
input values have taken either positive and negatatues. What follows are examples of
the coefficients taking different polarity, pos&imegative values, for the same values of

inputs.

The combinations of possible values are enormoasthe following are examples of
interesting occurrences to show the flexibilitytbé error surface. If all values take the
opposite polarity then the error surface is invarseéhe output-domain; therefore, any
combinations of values that produce valleys indbput-domain will produce peaks if the

polarities of all values are inverted.

McCulloch-Pitts neuron.

Sum= 050k - 05x, + 05 equation 5.13

sum

Figure 5.12(a,b,c) — The Sum value expressed ascidn of inputs of McCulloch-Pitts

neuron with opposing polarity of coefficients
The sum values shown in equation 5.8 are alteredregative coefficient for the second

input, to give equation 5.13. A resultant anguhange occurs in the orientation of the

output-plane. This is manifested in the decisiorface as a rotation of 90° around the

63

decision-axis as shown in figure 5.14c. This alien does not express any change to the
ability of the McCulloch-Pitts neuron to be a lineseparator. If the other coefficient is
given a negative polarity, then the rotation ocaanrshe opposite direction. If both are
applied a 180° rotation occurs.

Taylor Series neuron - 2% order.

equation 5.14

Sum= 05+ 0050k, + 005X, {

1002 —1.0&5}
2

Figure 5.13(a,b,c) — Sum value &f Brder Taylor Series neuron focusing on the degisio

region with opposing polarity of'2order coefficients

The 2 order Taylor Series neuron can partially invest diecision-surface by altering

equations 5.11, 5.12 and F.9 to F.25. These regaom only symmetrical as the opposing
coefficients of equation 5.14 have equal magnittige;region can stretch and tilt just as in
the previous section. Once separators are aplatiedin this chapter, the importance of
this specific example is explored.

As before, when different orders of coefficientgavekewed with respect to the input-axis,
the polarity of these coefficients can also beratte The same rules apply, as shown in
figure 5.12. A i order swap in polarity causes a rotational efledche McCulloch-Pitts

neurons. If applied to the'brders of a % order or higher Taylor Series neuron, then the
decision-surface undergoes the same rotation. wisee the effects of other orders are

independent when applied to neurons of higher srder

64

Taylor Series neuron - ¥ order.

Sum= 05+ 0050k, + 005X, +

0050 + 0050%; {1.5 X -15 D(S}
2 6

equation 5.15

Figure 5.14(a,b,c) — Sum value &f 8rder Taylor Series neuron focusing on the degisio

region with opposing polarity of 8order coefficients

The 3% order Taylor Series neuron allows a decision bawndith more gradient changes,
which permits some interesting behaviour. Thissdoet inhibit it from mimicking the
capabilities of the® order neuron - it can utilise any of these andyajp own. Equation
5.15 is modified from equation 5.12 in the same w&a\before. The figures 5.14 can be
compared to figures 5.11 to demonstrate the decminface changes as can figures 5.15
and F.25 to F.27.

65

Taylor Series neuron - mixed orders.

2 _ 2 _ 3 3
Sum= 05+ 05T, - 05X, + 2> 20'055‘2 J{ 105 +10 D‘z}

6

equation 5.16

/
A
e
I 1 1
AR

Figure 5.15(a,b,c) — Sum value &t 8rder Taylor Series neuron focusing on the degisio

region with opposing polarity of various coefficien

Despite the intricacies of the output-domain, itMisen the output functions are applied

that the values become obvious. This is attendeext in this chapter.
Taylor Series neuron — output functions.

The output functions are applied to th® Brder Taylor Series neuron as expressed in
equation 5.11 and shown in figures 5.10. The ¥Yalhg figures 5.16, 5.17 and F.28, F.29
are all performed on the sam& ®rder Taylor Series neuron which has parametexs th
focus the figures on the decision region.

sum

0.5
0.6
0.4

0.2+

X1 X2

Figure 5.16(a,b,c) — Threshold output functions

66

sum

Figure 5.17(a,b,c) — Logistic sigmoid output funos

The same output functions are now applied to tHeoBler Taylor Series neuron as
expressed in equation 5.12 and shown in figure$.5The following figures 5.18, 5.19
and F.30, F.31 are all performed on the saflerler Taylor Series neuron which has

parameters that focus the figures on the decisgion.

sum sum

0.5

0.6

0.4+

0.2

X1 X2

Figure 5.19(a,b,c) — Logistic sigmoid output funos

67

From examining figures 5.16 to figures 5.19 and8R@ F.31, it appears that there are
major differences between th& and 3 order Taylor Series neuron. This shows how the
addition of different power terms can dramaticailyange the operation of the neuron.
The 29 order output functions have similarities which arepart due to the equal values
used for the coefficients of the input-axis, thiakegise to a symmetrical decision-region in
both axes, essentially a circle in the decisioriag@. What is obvious from comparing the
figures from each™ order and %§ order set, is that thé®rder neurons appears to retain
some symmetry, as would be expected given the maemmused; however, it is not the
same in every dimension. This is caused by oddep®wperating on negative input
values. Increasing the order of power has a r@stibcrease in the degrees of freedom the

neuron can operate with.

In a comparison against the McCulloch-Pitts figubes to figures 5.7 and F.3 to F.6, it
may be seen that the Taylor Series neuron cansaet @on-linear separator no matter
which output function is used. Equally importantlyey can enclose or isolate a complete
region of the decision surface and, if there iatiouous function applied to this, it can

return a continuous output, as in the sigmoid fiomst
Taylor Series neuron - non-linear and isolating beaviours.

The capabilities that are permitted by the nondmand isolating behaviours are of

significant importance to ANNs. A set of exampbésvhat these can do is now presented.

The following shows a" order Taylor Series neuron as in equation 5.1 7figndes F.26.
The decision-surfaces shown are for the threshofijures 5.20 and the logistic sigmoid

in figures 5.21. These should be compared withrég 5.16 and 5.17 respectively.

equation 5.17

2 2
Sum= 05- 095X, + 1150, +{0.5 X2 + 30 &2}

2

68

sum

0.5
0.6
0.4

0.2+

X1 X2

sum o sum

Figure 5.21(a,b,c) — Logistic sigmoid output funos

If the 29 order Taylor Series neuron has parameters thatloeed to become non-

symmetrical, its output functions can form an ofal threshold functions, as shown in
figures 5.20. It may also form a series of congerdvals, for continuous or sigmoid

functions, as shown in figures 5.21. A piecewisedr function would show an oval

plateau bounded by a series of concentric ovalocwatand finishing with a second outer
oval plateau. These ovals can be larger than ¢bisidn region and so bisect it in curves
and curved hyper-planes. This is something a MoCHPitts neuron is not capable of
and that a network of such neurons can only apprata.

If another case is examined, that of thedtder neuron shown in equation 5.14 and figures

5.13, then an even more important capability caddreonstrated.

69

Figure 5.23(d,e) — Rotations of logistic sigmoidpu functions

It can be seen in figures 5.22 that a thresholcctian can separate non-continuous
regions; this shows that 8°rder Taylor Series neuron can provide a soluticime XOR
(parity-bit) problem presented by Minsky and PapE969], which was a significant factor
in the downturn of research in ANNs until backprgg@i@on became widely known in the
1980s as discussed in Chapter 3. The sigmoid iimctproduce a saddle or butterfly
shape which can be viewed in the various rotatafrfgures 5.23. For a MLP to perform
this solution to the XOR problem at least three MibGth-Pitts neurons are required. As

70

the MLP can only approximate a curve, it is a fartbrder of dimension out in an attempt

to approximate a curved plane.

A 3" order Taylor Series neuron can operate with evererfiexibility than the 2 order.
The examples shown are based on fA@®ler neuron of equation 5.16 and figures 5.15.
The decision-surfaces shown are for the threshofijures 5.24 and the logistic sigmoid

in figures 5.25.

Figure 5.25(a,b,c) — Logistic sigmoid output funos

The use of ¥ order terms allow the Taylor Series neuron toaiola non-symmetrical
region and to divide up the remaining problem-demarhis is shown clearly in figures
5.24 and can be observed in the contours of figbr2s. Behaviour like this is far beyond
the flexibility of McCulloch-Pitts neurons. Howayehe more flexible the behaviour, the
harder it is to control and therefore attention traes paid in the training method to this -
and subduing terms such as the factorial diviseraavisable. If the orders of power are

increased, then both the flexibility and difficultycontrol will increase also.

71

54.3 Universality and Robustness Trade-Off

The more universal a neuron becomes, the moreifunattit becomes. It is then capable
of performing mappings beyond those of other nesironThis appears to be a
straightforward benefit. The drawback is thathas tesults in a single neuron performing
complex functions, the system becomes dependaimidondual neurons. A critical failure

may then occur if one neuron is damaged (as opptsdte gradual degradation of

performance which occurs in networks with many $anpeurons).

An overdependence on single components therefea&es a lack of redundancy which
can lead to a delicately balanced system where gom# tolerance is un-achievable. This

results in a trade off between universality andustbess.

This point does not reduce the requirement for @wareto be universal, or at least more
universal than the models currently implementedoweber it may be that such neuron
should be able to be implemented in instances dhaivs them to perform at different

levels of functionality.

544 Summary — Single Neuron Functionality

In a comparison of the Taylor Series neuron agaimestMcCulloch-Pitts neuron, it can be
seen that the Taylor Series neuron is not bounthéylinear separator properties of the
McCulloch-Pitts neuron - although it can, if ne@ys adopt them. Clearly, the Taylor
Series neuron can adopt curved separators andgtintbis solve problems like the parity
bit problem. The flexibility of the Taylor Seri@guron must be controlled with a carefully
constructed training algorithm, as the additionnefw orders of powers significantly
changes the error surface by introducing new degoééreedom. However, all orders of
power operate independently and therefore, if tie@n error-minimum-seeking training

method employed, these sudden changes are likbly wvoidable.
The Curse of Dimensionality [Bellman, 1961] asstadawith higher-order units that

prevents their use with many input parameters dersr of power is controllable and

limited in the Taylor Series neuron. The complgxiicreases in a Taylor Series neuron is

72

in order of sums as new orders are added, ratherphoducts. This is due to the lack of

interaction between the inputs, which is not theeda other Polynomial units.

The operation of Taylor Series neurons as part mfaatical network is the subject of the

next section.

73

5.5 Taylor Series ANNs vs. McCulloch-Pitts ANNs

In the previous section, the flexibility of Tayl@eries neurons was explored. Their
abilities were examined and contrasted with thokévioCulloch-Pitts neurons. This

section now considers networks of such neuronshamdthey perform against each other.

The networks used in these experiments are presente/o topologies. Each of these is
populated with MP neurons for benchmark testing #reh TS neurons for comparison
testing. The topologies are a single-layer netwarkl a two-layer network. When
populated with McCulloch-Pitts neurons these aferred to as a Single-Layer Perceptron
(SLP) and a Multi-Layer Perceptron. When populatéti Taylor Series neurons they are
termed as a Single-Layer Taylor Series network (Said a Multi-Layer Taylor Series

network (MLT). All of these networks have an aduhal layer of input nodes.

The networks implement a standard logistic signfiorgttion as shown in equation 5.5.

The performance characteristics of the networksnduand after training are compared.
These characteristics include training time, memoaypacity, and pattern recognition
ability.

5.5.1 First Comparison

This is a comparison of a SLP and a SLT using thedard Delta Rule training for the
McCulloch-Pitts neurons and a derived Delta Ruletlie Taylor Series neurons. There is
no variation in network topology as it is deterndniey the problem parameters; both
networks have 35 input nodes (one per pattern waith and 26 output neurons (one per
input pattern). The patterns presented are showmei next section.

The purposes of this test are to examine trainimg of the networks and to assess their

noise tolerance capabilities.

74

5.5.2 Second Comparison

The second comparison is of a MLP and a MLT usingpdified Genetic Algorithm as the
training mechanism. A compact parameter problempresented to compare network
training time on multiple layers, and test MLP akid. T topology requirements. The
purposes of this test are to examine training twhehe multi-layer networks and to

determine the minimum network size.

5.5.3 Third Comparison

The third comparison uses the same MLP and MLThagtevious test but uses a larger
training set to ensure that the networks are capabkxpanding their problem domains,

and to quantify any effect of this on network size.

5.6 Comparison Parameters

Three performance parameters are compared. Thes#aning time to achieve a target
error, minimum network size to achieve the targebre(memory capacity) and noise

tolerance.

5.6.1 Training Time

Training times are quantified in terms of epoch€onsideration is also given to the
computational overheads, as different networks treye different lengths of epoch. In
addition to total training time, it is important adoserve the error profile during training as
this can reflect on both possible improvements he training algorithm and on the

performance of the trained network.
In general, a shorter training time is advantageddswever, most practical networks are

fully trained before their operational phase soniost cases only very significantly longer
training times, (to the extent that the networkmgractical) are of importance.

75

5.6.2 Minimum Network Size

The ability of one network to show the same memacapabilities as another with a
reduced network size is important. The smallewodt demonstrates superior universality

- the ability to map from input to solution space.

5.6.3 Noise Tolerance

The network’s resistance to noise is a test odliiity to generalise. A network with a
higher noise tolerance is more capable of corretélgsifying new or damaged inputs from

the data set.

5.7 Design and Implementation

The networks were tested with two different dates.seA [3x3] grid, related to robot

vision, was used for the MLP vs. MLT comparisorhisTallowed a simple network to be
set up for a direct comparison of the neuron typad.7x5] pattern set, see figures 5.26,
was first used to test the noise performance ohtheons in the SLP and SLT. This was
also used on the MLP and MLT to confirm that thefqrenance achieved using the

smaller grid was scalable.

57.1 Data Set

The first data set tests the network’s abilitydoagnise the 26 capital letters of the western
alphabet, figures 5.26a. This is a standard dzttaused in the University research group
and many others. Each image is a [7x5] matrixi(@its). There are two sets, a binary
{0,1} and a continuous range [0,1]. These valuesenchosen as they represent the range
of the output function used, the logistic sigmoidrhe second data set tests its ability to

recognise patterns on a [3x3] matrix, (9 inputeg Bgures 5.26b.

76

[CEC NN e
[[| 'y (il Jool [e{ow/ey [T [}
CEEET mEC

[11|

[| e ..
N T EEEER (| Em
EEEEEEEEEE | EEEEC
[(.
| [

CEN CECCECCEC N
LN e e]
N TENTETE e
EN EEEE

u
T T
| Bennn EEEEER N

EEE mEE (L e .

(. L]

Figure 5.26a(i,ii) — Network training sets — 5x7dgr

[11 Imm]
e
rorrarTs

Figure 5.26b — Network training set — 3x3 grid

5.7.2 Single-Layer Network Topologies

The network topologies are shown in a general farrittee number of input nodes is

dictated by the number of parameters in the trgimpatterns, and the number of output

neurons is dictated by the number of patterns éteark is required to classify.

1

output weights

input data
outputs

input nodes
output layer

Figure 5.27 — SLP — Single-Layer Perceptron

The single-layer network implementing McCullocht®ieurons shown in figure 5.27 has

a topology determined by the problem parameterseagioned above.

output weights

input data
outputs

output layer

Figure 5.28 — SLT — Single-Layer Taylor Series rokv

78

The single layer implementation using Taylor Sernesrons, (figure 5.28), has the same
topology as the SLP. The difference is in the emtions between the output neurons and
the input nodes. There are the same number of th@sever each one may have multiple
weights - one for each order of power that the orus implementing. The Taylor Series

neurons and weights are denoted with double barders

The outputs, targets and errors are utilised byDibléa Rule by Widrow and Hoff [1960],
for the SLP and a derived Delta Rule by this ayttiat takes the powers into account, for
the SLT. It is not necessary to give a full expamsat this point. Appendix C on the
Backpropagation Algorithm includes the Delta Rutettain the output layer and the
derived Delta Rule for the SLT.

5.7.3 Multi-Layer Network Topologies

hidden weights
output weights

input data
outputs

output layer
hidden layer

Figure 5.29 — MLP — Multi-Layer Perceptron

The multi-layer implementation of the PerceptronngsMcCulloch-Pitts neurons, see
figure 5.29, retains the same input node and outgutron structure as in the SLP;

79

however it also has a hidden layer. The struotfithie network shown is a standard and

well tested topology.

hidden weights

output weights

: \ 4
"f"é fat it -.:*é .P‘*“': ’
R T G T
| k)
4
input data ’
outputs

output layer

hidden layer

Figure 5.30 — MLT — Multi-Layer Taylor Series netiko
The network shown in figure 5.30 represents a rtajger Taylor Series network. The
Taylor Series neuron operation is the same asyurdi5.61 and is denoted with double
borders.
In the multi-layer networks the hidden layer isqald between the inputs and outputs and
denoted as circles. The number of hidden neursnsot usually determined by exact

methods in neural networks but by trial and error.

Training on all multi-layer networks is via a madd Genetic Algorithm.

80

5.8 First Experiment : Comparing
McCulloch-Pitts SLP and Taylor Series SLT — 5x7dst

This experiment tests training times and noiseraolee. The McCulloch-Pitts based
network of figure 5.27 and the Taylor Series basevork of figure 5.28 were trained on
the 26 patterns shown in figure 5.26a. Wheresisasinderstanding, larger versions of all

multi-line graphs are supplied in Appendix F.

5.8.1 Training Time

The first set of information that was presentedhi® networks use the input values from
figure 5.26a(i); all inputs are from the set {0,1Fhe output targets belong to the set {0,1}.

The target error was set at 0.125. The error isélte Least Mean Square calculation as

shown in Appendix C on Backpropagation.

0.6

LMS error

0.4

0.2

0 T T T T T T T T T T T T
20 39 49 59 69 79 89 99 109 119 129 139 149

epoch

Figure 5.31a — Comparison of error vs. epoch fdP 8hd SLT networks

The performances of the SLP appear similar to thie & the order of the Taylor Series is

increased. Only results from 29 epochs onwards thadfirst 3 orders are shown for

81

clarity. Higher orders were tested, but thesequeréd little differently from the'3order.

This is discussed later in the chapter.

0.25
0.2 1

0.15 H=-

0.1 1

LMS error

0.05 -

0 T T T T T
99 109 119 129 139 149

epoch

Figure 5.31b — Comparison of error vs. epoch foP &hd SLT networks
epoch> 99

The training performance becomes different at lowwrs. Due to the initial similarity, this
is not clear from figure 5.31a and so is shownigure 5.31b. The graph focuses on the
epochs from 99 onwards, where the advantages dbltfiein achieving lower errors can
be seen. The time taken to reach the target drops significantly from 150 epochs to

116 by adding a" order term and then decreases slightly to 113ojng higher terms.

82

220 -
200 4

180 ~ Y

_— ——inputs ¢ {0,1}
160 -
—-—-inputs € {0.1,0.9}

epoch

140 ~

120 ~

100 T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10

order of power

Figure 5.31c — Comparison of epoch vs. power fd? 8hd SLT networks
network targets {0,1}

The experiment was repeated with a constrainedtigetl of {0.1,0.9}. This both
increased the difficulty in separating the pattelas the previous input values of O have
no effect on weight calculations or training), aibws the different Taylor Series (orders
of power) non-linear operation. Training time ie@sed to 207, 164 and 161 epochs
respectively. The performance in the experimestsummarised in figure 5.31c. The
order of power of 1 indicates the SLP, orders ai Zreater indicate the SLT. The solid
line shows the initial data set of {0,1}, the dadHae the data set of {0.1,0.9}. Both
experiments were tested sequentially by increatiegSLT to the 10 order and then

progressively each forder to the 100 order and no further improvement was found.

A second set of experiments were then carried diitese involved setting the targets to
{0.1,0.9}. As the previous targets are at the exte values of the output function, they
were achievable by allowing the network weightstéod to large magnitudes. These
targets require a “finer tuning” of the weights amalve correspondingly longer training

times, as shown in figure 5.32.

83

1900 -
1700 ~

1500 b
1300
1100
900
700 -
500 +
300 -
100

1
7

inputs € {0,1}
—-——--inputs e {0.1,0.9}

epoch

order of power

Figure 5.32 — Comparison of epoch vs. power for 8h& SLT networks
network targets {0.1,0.9}

For inputs of {0.1,0.9} and {0,1} the training timeas significantly increased; however,
the reduction is in line with increasing orderspofwer and follows the same profile as
before. There is little fluctuation as the ordars increased. This may be due to initial
starting values. Orders were not tested aboveStheower as there seemed little to
investigate.

Finally, the training pattern set of {0,1} valuesasvreplaced with the continuous values
[0,1], as shown in figure 5.26a(ii). This increaske problem difficulty and produced an
expected increase in training time, shown in figir@3. The targets were returned to
{0,1}.

84

240 1~
230 A
220 A

e .
2 200 - — inputs € [0,1]

180 A

170 A

160 T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10

order of power

Figure 5.33 — Comparison of epoch vs. power for 8h& SLT networks
network targets {0,1}

The additional complexity of the problem increates network training time beyond that

for the input set of {0.1,0.9}, despite this sdbaling some 0 value inputs. Even with the
continuous inputs, the problem is stiff 8rder solvable.

85

5.8.2 Noise Tolerance
Noise was tested at an increasing value from 02#%, where 0% represents the original
patterns and 24% represents the addition of a ratydgenerated value between 0.00 and

0.24 to every input data unit.

The networks were presented with problems whiclevaeranged into sets as;

data patterns figure 5.26a(i) inputs {0,1} and &s{0,1}.
data patterns figure 5.26a(i) inputs {0.1,0.9} aadyets {0,1}.

» data patterns figure 5.26a(i) inputs {0,1} and &isg{0.1,0.9}.
» data patterns figure 5.26a(ii) inputs [0,1] andjéds {0,1}.

Other combinations were also tested to assesseik tiwvere any unusual behaviours;

however, these four tests proved sufficient for parison.

The first pair of tests have similar results, the <eration of the inputs from {0,1} to
{0.1,0.9} reduces the noise tolerance of the SLE #me SLT for most TS orders.
However, as there is a random element in the nars@nalies do occur. The average error
level for the SLT has increased as it does forShE. These noise effects are shown in
figure 5.33a for the inputs {0,1} and figure 5.3l the inputs {0.1,0.9}.

86

total error

total error

1.2

——SLP
----8LT2
-----SLT3
--—-SLT4

noise %

Figure 5.33a — Comparison of error vs. noise% td? 8nd SLT networks

0.9 A
0.8
0.7 1
0.6 1
0.5 1
0.4 -
0.3 1
0.2 1

0.1 1

network inputs {0,1}

noise %

Figure 5.33b — Comparison of error vs. noise% 1d? &nd SLT networks

network inputs {0.1,0.9}

87

The experiments were run multiple times to ensurat ttypical performances was
represented. The mean value is not shown asithes g smooth, misleading performance
which is of importance later. In figures 5.33, thighest, worst performance, belongs to
the SLP. The “mess” of other lines belongs to 8iel of orders ¥ to 10". The

individual lines of the SLT are not as importantfasr communal location.

It is clear that the addition of orders of powetthie units improves the noise tolerance of
the network. The lines represent the total eroorall patterns at a particular noise level.
The SLP error can be seen to be clearly greaterttteSLT error. The effect of this noise
is not evenly distributed and all orders of SLT dhd SLP recognise roughly the same
number of patterns over all noise levels and onigr@ognises between 4 and 6 patterns
out of 650 presentations. There is one exceptioa; SLT of & order recognised all
patterns. These occurrences are mainly due tatitdom element in the noise generation.
When the data set {0.1,0.9} is used, despite tightskise in error, pattern recognition
improves significantly for the SLT, which reduces3 missed recognitions; however, the
SLP rises to 7 missed recognitions. This may keetduhe effect of 0 and 1 inputs to the
TS neuron. As the TS neuron implements power tetimese values are non-applicable for

0 inputs and act as a second weight; however,dahewtill a linear operation for a 1.

The second test shows an unusual effect in SLPsSaid. The inputs are returned to
{0,1} and the targets are set to {0.1,0.9}. As\poeisly reported, the training time
increases dramatically as the networks try to fumee the weights to these targets. In the
previous reported examples the average error aatbadded noise for the SLP was in the
region of 0.35 and 0.38 for the two data setsow mises to 0.43. For the SLT, the average
across all powers was 0.23 and 0.25 - it now tigés41. This is what would be expected

for over-fitting. However, the error rise is smiooas shown in figure 5.34.

88

0.9 1
0.8 -
0.7 1
0.6 -
0.5 -

04 - M@ 7

0.3 A i

total error

02 7 . M"
014 =™

noise %

Figure 5.34 — Comparison of error vs. noise% foP @ind SLT networks
network inputs {0,1} - targetse {0.1,0.9}

Comparing the smooth behaviour of this test todtiatic behaviour displayed previously
does not show any apparent advantage. If the nuailpatterns the SLP and the SLT are
able to recognise is tested, the result is thdt hetworks recognise all patterns at all noise
levels. This is excellent for avoiding the effettoise in networks in general, however, it
Is so effective that it does not allow a direct pamson between the SLP and the SLT.
Due to this, the targets for the final test areinetd to {0,1}. It should be noted that this
experimental performance contradicts much of tle®m researched on polynomial over-

fitting. This is attached as Appendix D.

89

0.9 -
0.8 -
0.7 1
06
0.5
04 -
0.3 1
0.2 1
0.1 1

total error

Figure 5.35 — Comparison of error vs. noise% foP @inhd SLT networks

network inputs [0,1] - targets: {0,1}

The noise profiles of the SLP and the SLT appeailai whether using the data set with
continuous data [0,1] or the constrained data {0,Ihe SLP has an average error of 0.36,
(which is between the previous performances on seits {0.1,0.9} and {0,1}) while the
SLT has an average of 0.24 (which is between i&vipus performances on the same
data). As regards the number of patterns recodnite SLP performs slightly poorly
compared to the SLT, with 10 missed recognitiobe SLT has an average of 4 missed

recognitions.

The continuous data set [0,1] was examined withetar of {0.1,0.9} and showed similar
behaviour to the constrained data set {0,1}. Hosvewhere was a rise in average error
values. Although it was possible to generate magaitions in the SLT by testing with

noise, these occurred rarely and in general the&@IldPSLT recognise all patterns.

90

5.9 Second Experiment : Comparing
McCulloch-Pitts MLP and Taylor Series MLT — 3x3 test

The McCulloch-Pitts based network of figure 5.29 éime Taylor Series based network of
figure 5.30 were trained on a 3x3 grid size.

The error, the number of hidden neurons requireattoeve satisfactory performance, and
the associated number of training epochs were ss3esThis was to confirm that the
performance of the TS neuron can be extended in@L& The number of problem

parameters is reduced to simplify the comparis@mch the smaller grid size used. The

only new assessment is in the number of hiddenomswequired.

The training method employed is a Genetic Algorithiiraining time is measured in
number of generations required to reach a target.eThe size of each individual in the
GA is determined by the number of parameters inngttgvork. This means that a MLT

will require a larger GA than a MLP. The parametafrthe GA are shown in figure 5.36.

Parameter Value

String size One floating point number per weight
Population size 100

Crossover Random 10 point max

Mutation rate Uniform random 1%

Mutation Uniform random 5

Selection Roulette

Figure 5.36 — Genetic Algorithm - parameters

91

5.9.1 Training Time

The MLP was of a fixed size. When the problem wassistently solvable by the MLP,
the MLT was used and various power orders wereiegppb the network. The effect of

this against training time is shown in figure 5.37.

40.00 -
35.00
30.00 + average no.

25.00 1 generations to
train

20.00 4
— — ——no. aborted

15.00 1 generations
10.00
.00 4 ~

0.00 e

1 2 3 4 5 6 7 & 9 10

generations

order of power series

Figure 5.37 — Comparison of generations vs. poaweMLP and MLT networks

This network was three layered, consisting of Sutapand 11 neurons configured for
character recognition, as 5 hidden neurons and@ibuneurons. It can be seen that there
is little point in introducing orders above th&.3Although the training epochs decrease,
the computational power required for training imses - in the case of thé& drder
neuron, by three times. However, there is stiledimprovement in training time. These

results were reported by Capanni et al. [2003]

92

5.9.2 Size of Network

When used in a standard pattern recognition systieenuse of the higher order neurons

allow the system to operate with fewer units, asashin figure 5.38.

70.00
60.00 ~
50.00 4
40.00 4
30.00 4

network size

20.00
10.00 ~

':IEI':I T T T T T T T T T 1
1 2 3 4 5 G 7 8 g 10

order of power series

Figure 5.38 — Comparison of size vs. power for Ml MLT networks

It can be seen in both cases that above tharder, performance shows little improvement.
Indeed, there may be disadvantages in using tooy mefers, [Bishop, 1995a]. In this
case, the reduction in number of neurons is offgethe increase in the multiply and
accumulate instructions required for a more completwork. These results were also

reported by Capanni et al. [2003].

93

5.10 Third Experiment : Comparing
McCulloch-Pitts MLP and Taylor Series MLT — 5x7 test

The McCulloch-Pitts based network of figure 5.29 éime Taylor Series based network of
figure 5.30 were trained on the 26 patterns showfiigure 5.26a.

This was to confirm that the TS neurons operatesxgected as the problem domain

becomes more complicated.

A MLP, shown in figure 5.29, was presented with gfadtern in figure 5.26a(i). The

network trained sporadically with 5 hidden layemurmns. This is a well researched
network and it is known that the starting paranset@an affect whether it successfully
trains with this size of hidden layer. If the si®eincreased to 6 neurons the training

becomes consistent.

From the experiments in the previous two sectidgregppears that for this data set, using a
TS neuron of § order achieves the maximum benefit in generatisatind training time.
This order of TS neuron is applied to the MLT netikvehown in figure 5.30 using the data
of figure 5.26a(i). The MLT successfully trains tms larger data set with only 4 hidden
layer neurons. This is a smaller network than feasd for the MLP trained by either the
GA or with Backpropagation.

5.11 Summary of Network Comparisons

An examination of Taylor Series networks has predusome interesting results. When
compared against single-layer McCulloch-Pitts nekspusing Delta Rule training, the
performance of the two networks follows a similattpof improving error verses epoch
count, as shown in figure 5.31a. Interestinglgreéasing the order of the TS neuron has
little or no effect in the early stages of the egpoofile. The conclusion is that during this
time the network is improving its performance thgbuhe use of linear separators and the
higher orders are unable to present an advant@gee training slows down for the MP
network it becomes progressively harder to soleegioblem with linear separators, and
the TS higher orders show an advantage (figuresb5aBd 5.31c). This is why the SLT,

94

2" order, only shows an improvement over the SLPoat érrors. Following the same
reasoning, the TS'Border shows no improvement over tH¥ @rder until the error is
further reduced and the problem becomes more diffto solve with a combination of'1
and 2 order separators. The reason no improvemenbisrsiby adding higher orders is
that the network does not require them to solveptioblem and in this case, the transition

between ¥ and 4" order does not occur.

In the problem presented, increasing the orderoofgp reduces the number of training
epochs required up to™3order, when no additional advantage is gained itther

increases, (see figure 5.31c).

If the SLT is implemented sequentially, in softwatteen there are calculations for each
increase in power and so the processing overlogreeter for the higher order power even
given the reduced number of epochs. In a pardadledware implementation this would not
be the case and the higher orders would have a sph@ntage. It may be the case that a
gradient descent learning algorithm, specificaltyiged for a TS network, could impart an

advantage to the software implementation that resltize training cost.

Adding TS powers improves noise tolerance, (saadi¢gp.33a). In the problem presented
there is little gain in increasing the power beyahd 29 order. The SLT advantage in

noise tolerance occurs in terms of a lower erroalbmoise levels and a similar pattern
recognition capability to the SLP, as reported.c®the TS neurons are allowed to have
inputs which provide a non-linear function, (segufe 5.33b), the effect of the noise
tolerance results in better pattern recognition garad to the MP neurons SLP, as
reported. This is to be expected as a smooth a&parovides a better optimal fit, in data

space, than the piecewise separator produced binerk of first order (perceptron) units.

Once the targets set for the networks were altasdd figure 5.34, it was observed that the
non binary targets resulted in the network beiténgd the problem and producing a result
intrinsically more noise tolerant, without validai training. The conclusion is that this

may be due to the fine tuning of weights, givingare robust network.

When a comparison of neurons is performed usinguki-tayer network, the TS neuron

shows the same advantages as outlined above, imngratime. Additionally, and

95

importantly, the TS MLT can recognise the same remdf patterns with fewer neurons
than the MP MLP. This shows an increase in unalagysof the TS neurons over the MP
neurons (it may be argued that this is due to tkatgr number of weights associated with
TS neurons). Some of this work has shown that initheasing pattern complexity, the TS
neurons retain this advantage over MP neuronss Whirk was done using a GA and the
development of a more appropriate gradient desedgurithm would allow greater

examination.

In summary, the Taylor Series neuron has demoesiiattter generalisation abilities than
the McCulloch-Pitts neuron by consistently perfarguibetter in noise tolerance tests.
Additionally, it showed an advantage in the numdiietraining epochs required. There is
the strong suggestion that these advantages campreved through specific training

algorithm development.

5.12 Time Domain Problems

So far in this thesis discussion has centred artldise of neurons in the spatial domain
(for example the recognition of a stationary pafter However, such abilities are not
sufficient in many applications. Consider, for exde, a neural network which has to
produce an output which controls the legs of a rob®uch a neuron must have outputs
which vary with time (in order, for example, to gaior lower the legs in the correct
sequence). Of course, this is exactly analogodkemeurons that control leg movements
in animals. The neurons so far discussed can mgiluce such time-varying outputs if
part of a complex network with internal feedbackhga However, as is well known,
biological neurons themselves produce time varyotputs and therefore operate quite
differently from the artificial McCulloch-Pitts-deed models. This has spurred
researchers towards modelling such neurons (ofladcspiky neurons) as discussed in
the next chapter. Therefore, no thesis on newnationality could be complete without a
discussion on time-varying neuron models and thité subject of the second half of this
thesis (from Chapter 6 onwards). However, befondaking on that route, first consider
whether the power series neurons that have beensdied in this chapter can serve as a

template for time-varying behaviour.

96

5.12.1 Pulse Generators

To produce time-varying signals a small oscillatoggwork was employed. The network
used a pair of neurons arranged in a recurrenésygsee figure 5.39). The outputs from
each neuron, at time become the inputs to the cross-connected neaotimet+1l. The
TS produces an output based on incrementing ther @fdexpansion terms, based on the
signal received at tim. This results in a declining effect of signal otieme, without the

requirement for a leaky-integration summing funatio

recurrent weights

actual outputs

meurons

Figure 5.39 — Neural Oscillator

The network was given the task of producing outploés mimicked specific wave-forms.

The first experiments were based on producing sregponential decay in the unit, (see
figure 5.40). This was chosen as it was simpld, ayalic, useful as a basis for other
functions, and as it was known that the output wanitially have to rise to the peak value

and provide a rough approximation of a biologicaian potential.

97

1.2

084

1 4 7101316192225263134374043 46495255 586164677073 7679828588 9194097
time — Theoretical Output

— — —-Desired Output
------- Error

Figure 5.40 — Time-Series exponential decay — #texa output

The units were altered incrementally based on tedficients of their Taylor Series to give
the best performance of the network, (see figu4@)>which shows the output from one of
the neurons. The desired exponential decay is sheith the actual best performance
neuron output. The action potential-like performeproduces a resultant error in the first

time units that decays rapidly; any further impnmeat relies on reducing this time period.

The result of this experiment was then appliech®rtetwork using a GA, which evolved
to give the solutions in figure 5.41.

98

—--—-gen 100

Desired Output

e TS e

1 5 9 13 177 21 256 29 33 37 41 45 49 53 5 61 65 69 73 77 81 8 89 93 97

time

Figure 5.41 — Time-Series exponential decay - a€liie

The network can produce a reasonable approximaifothe desired output (a single
neuron output is shown). However it was uncleatodsow variation could be introduced
in to the system to allow different pulses to beegated or different wavelengths to be
produced, other than by training them into the lekwsing a GA. However, such a

network still could not respond to changes inngsut signal.

To test the flexibility of the system, various pgswere trained with different target sets.
The network topology and functionality were noeedd. The performance was reasonable
in production of triangular, square and sinusowaves, all of which are useful in walking

gaits. The sinusoidal pulse is shown in figure25.4

99

neuron 0

Output

neuran 1

Output

e 22 25 28 31 34

ta

Generation 1000

— — —-desired output

Figure 5.42 — Time-Series sinusoidal wave

Despite the reasonable performance, the evolufiGuch outputs required a considerable
training time and the network was only capablerofdpcing a single output without being

retrained.

5.12.2 Summary of Time Domain Problems

The oscillators produced in these experiments vienetional but limited. They lack
convergent control (the ability to respond to irgpahd produce different outputs). They
can produce a time-varying signal, however theyuireqto be reset each time they

complete a pulse or as the signal degrades.

In summary, the Taylor Series neuron has provellyigapable in the spatial domain, in
terms of generalisation and universality. Attemgtto adapt it to time-domain behaviour
produces interesting effects but the behaviour Bad artificial quality and lacked
adaptability. It may be possible to develop thithviurther work, although how to do this
was not readily apparent.

From the difficulties experienced with time-domaighaviour, a new approach was sought
and this led to the investigation into single-aglletelligence and the development of the

Artificial BioChemical Networks outlined in the neghapter.

100

5.13 Literature Search of Other Highly Functional Neuron Types

There are many Artificial Neuron types that attentptincrease the unit functionality
through alternative mapping functions. These ideluPolynomial Neurons (GMDH),

Product Units, Second-Order Neural Networks, Higbetter Neural Networks, Sigma-Pi
Units, Functional Link Units and Radial Basis FuoictUnits. Other types exist, but these
are the major units with some similarity in applica or function to the approach

presented here.

These methods have similarities to that of the dra@eries neuron presented in this
chapter. The similarities are mainly in the usgolynomial terms. The differences are
related to interaction between the inputs, whicults in the Curse of Dimensionality and

restrictions on connectivity.

Polynomial approaches are based on the work of hivakko [1968], [1971], who
produced “The Group Method of Data Handling” (GMDBY a rival to the method of
stochastic approximations. This was before Bagbggation had been introduced as a
method of training multi-layer networks, and causedrief revival in specific ANN
research just before its decline due to Minsky Ragert [1969]. GMDH uses familiar
ANN terminology and topology but has many differes@s its conception pre-dates the
modern expanse of research in ANNs. For exampleh &MDH neuron has two inputs

and its output is a six weight quadratic combinatio

Since that time the terms “polynomial neural netgbrand “GMDH” have become
interchangeable. There have been several comrmepgications, such as those of
Barron Associates Inc [2005]. Barron Associates Was founded by Roger L. Barron
who with his son Andrew R Barron contributed exieely to research on polynomial

networks.

“Product Units” were introduced by Durbin and Ruhzet [1989]. In a two layer

representation of this network, the hidden layeasnssally replaced with product units and

101

the output layer remains as a summation unit. Tarsbe applied to most problems that

are solvable by Backpropagation trained feed-folWaLPs.

There are size advantages to this, as shown byllieght and Ismail [1999], who

demonstrate that a quadratic function of the foaxt ¢ c) can be produced by a product
unit network of 1 hidden and 1 output unit, (a Mtdjuires 2 hidden units to do this).
They show this to be an increased “information ajer capacity”, as was also
demonstrated with the TS MLT in this chapter. Théso note the problems with gradient
descent algorithms, due to the “turbulent errofegg”, and suggest algorithms including
Particle Swarm Optimisation, Leapfrog and Genetigofithms, as they are global

optimisers. This was found to be the case withGAetrained TS MLT.

Second Order neurons introduced by Giles & Max\\EI87] allow a simple interaction
between inputs and do not necessarily express &mt@nm. These can be regarded as a
type of polynomial neuron. An illustration of thsan be shown by the summation
function y(x) =f(wi.x13 + W2.% +W3.X1.X2). The second order unit is not restricted to such
simple operations and can increase in complexitis used in applications such as Animat
control by Crabbe and Dyer [2001] and has attractegtest in specific training methods

that could assist other similar neurons, [Milenkoei al., 1996].

There is a considerable difference in expert opiroa the uses of polynomial networks
compared to other advanced neuron types. For dearbpich and Jankowski [1999]
favour periodic and localised functions over polynals, “For that reason we are quite
sceptical about the use of orthogonal polynomial®@put functions [Qian et al., 1990],
[Chen, 1991], for high dimensional problems.”, rgtiBarron [1993], amongst others as
evidence. Barron, however is a strong proponenfpainomial networks and has

produced a great deal of work, much through theipusly cited Barron Associates Inc.

The universality of polynomials is in far less digg Nikolave [2003] shows this, “These
PFNNs are ... for their universal approximation dig$ according to the Weierstrass
theorem”, citing Cotter [1990] who uses the welbkm Stone-Weierstrass theorem. This
is supported by Bishop [1996], “that it can approate any continuous mapping to

arbitrary accuracy provided the number M of hiddaits is sufficiently large.”

102

Other related work has been investigated in theotisigher Order, Sigma-Pi units which
are explained by Bishop [1995b], who generalisesrs@ order units as having interaction
betweenx; andx; but not having the power of either. As well anétional-link networks
Pao [1989] who makes the distinction between higitder terms in those that represent
joint activations against those that, through fiomal expansion, increase the

dimensionality.

The Taylor Series neuron presented in this chaggerbe used as a single type within a
network and it does not need supporting neuronstyp@&here is no restriction on the
number of inputs each neuron takes in comparisdm sumilar topology networks and this
reduces the design overheads of networks. Thosvalthe TS neuron to be implemented
in a modular style where the inclusion of a uniconnection does not affect the network
as a whole. It also allows object style prograngriechniques to be more easily used and

results in simpler implementation.

There is no interaction between the inputs of ddrayeries neuron as this would results in
the Curse of Dimensionality. Increase in orderp@iver have a summation increase in
weight requirements. This is in part the reasory wther neurons types restrict the

number of inputs they take.
Taylor Series neuron coefficients can allow it &sfprm as a linear McCulloch-Pitts style
neuron if linear separation is required, and im@etmincreasing orders of power as the

problem solution requires.

While some of the other neuron types are suitegldbal training algorithms, the SLT was

easy to train with a modified Delta Rule Algorithm.

103

Chapter 6

Artificial BioChemical Networks

6.1 Introduction to the Chapter

This chapter considers the problem of producingetirarying behaviours in artificial
neurons. Following on from the previous work, @rg artificial neurons designed for
time-domain behaviour are examined and their digathges highlighted. Then biological
sources are re-examined; these lead to a consateraft environmental intelligence as
expressed in single-celled organisms. From thigaininspiration, a new approach is

developed - this is called the Artificial BioChemidNetwork.
6.2 Spiking Neurons

The various models of spiking neurons are the alsvianits to consider when trying to
produce an artificial time-dependent network. Ehagempt to emulate the signal spike or
action potential which occurs when a biological neeufires. The original model and the
basis for many subsequent models is the “Hodgkirkeju Model” [1952]. The
publication of this model achieved a Noble Prizeifs authors. These neurons may be
regarded as the third generation of neuron modelhe first generation being the
McCulloch-Pitts threshold logic units, and the setdoeing the models employing a
continuous activation function such as the signmmatels. Many spiking neuron models
have been developed but there are two frequentheimented models, which have their
own sub-models based on the “formal spiking” or rigeal spike-response” model
proposed by Gerstner [1994]. They are called sipgké response” model [Gerstner, 1995]

and the “integrate-and-fire” model which incorpesathe work of Stein [1967].
6.2.1 Biological Spiking Neurons
The original paper that began neural network resely McCulloch and Pitts [1943] was

an attempt to produce mathematical algorithms talehdahe activity of neurons. It

assumed that a neuron either fired or did not, smdthe output was binary. Later

104

developments allowed the use of continuous funsti@@me of which are described in
Chapter 4. Neither method took account of timpaas of the encoding of information and
it was due to biological evidence that later spikmodels were developed to model time
factors.

It is known that biological neurons fire at variotetes, between their maximum and
minimum frequencies, depending on stimulation [Mad997]. The stimulations may be
excitatory or inhibitory.

Neuron with high activity Neuron with low activity

A neuron which is
weakly stimulated
produces few
pulses per second.

A biological neuron
that is strongly
stimulated
produces many
pulses per second.

Time Time

strongly stimulated produces a weakly stimulated produces a
large amplitude output signal. small amplitude output.

|
i
|
;
|
An artificial neuron that is | An artificial neuron which is
|
|
i
|
i

Time Time

Figure 6.1 — Biological and Artificial Neurons
adapted from MacLeod [2004]

105

6.2.2 Hodgkin-Huxley Model

The Hodgkin-Huxley model is the model on which maaniificial spiking neurons are

based.

In this model, action potentials result from cutsepassing through ion channels in the
biological cell membrane. Hodgkin and Huxley peried a series of experiments on the
giant axon of the squid; they succeeded in meaguhiase currents and described their
dynamics in terms of non-linear ordinary differahtequations. Good descriptions are
given by Vreeken [2003] and Gerstner and Kistl@02a].

Hodgkin and Huxley’'s model was based on these @xpats. They found that three
different types of ion current were present in éxen; sodium (N9, potassium (K) and
chlorine (Cl). The flow through the sodium and potassium itvnmels is voltage-
dependant, while the chlorine leakage currentsggasd for all non-specifically described
channels. These are represented as conductar@eiteape circuits in electronic
engineering and simulated as such in software.urgi§.2 shows a representation of the

ion and circuit diagrams.

exterior

open ion L
channel . interior + .

closed ion
channel

v

exterior

Figure 6.2 — Hodgkin-Huxley model

106

The value G is the capacitance of the membrane, the ion chsuame represented by K
and N& and the total leakage attributed to all other isnR. This is a simplified diagram
of a spiking model and is specific to the Hodgkinxtey approach. A full explanation is
beyond the requirements of this thesis; howeves, lthsic operation and equations are
included below. In the model the ion flows areivkst separately over time and the
channels are expressed as resistance or condu@adoeapacitance of the circuit. This
model has been pursued, and is in current usavastleod of studying biological neurons.
It relies on equating a stimulus (introduced cutyanth its effect on the various ion flows.

A summary of the operation of the model is as fotip

* Aninput current(t) is introduced in to the cell.
This current causes an increase in charge acressajpacitorC,, and can leak out,
through the channels in the cell membrane (repteddyy the channel resistances).

This gives a capacitor currel and the currenik, the ion channels’ component. This is

expressed as;
1(t)=1c0)+> 1 (t) equation 6.1
K

In equation 6.1Xlk is the flow over all ion channels. As capacitamc¢he amount of

charge stored across an electrical potential, exuét2.

Q

C== equation 6.2
\Y
* The charging current can now be expressed as follows;
. = C%—\t/ equation 6.3

* Combining this with equation 6.1 gives;
C%—\t/ =31, (1) +1(t) equation 6.4
K

The voltageV is the membrane potential. The Hodgkin-Huxley slodescribes three
types of channel, which are characterised by th@nductancesg(, gna G«) and reverse
potentials E_, Ena, Ex). The leakage conductange is voltage independent, while the
conductance ofjna and g vary with voltage and time. The conductance agwkerse

potential parameters are empirical parameters.

107

The operation of the model is controlled by gatiagiables that represent the probability
that a channel is open. The (IN@hannel is controlled by the actions of m andhi

potassium (K) channel is controlled by n.

1 =0wmhlV -Ey,)+g,n*(V -E)+, (V -E,) equation 6.5
K

The function of the gating variables and the madguire further calculus; however, it is
not necessary to elaborate further here. A goguhmsion can be found in Gerstner and
Kistler [2002b].

The gating variables can be expressed so thata fiixed voltageV, the variablex ¢
{n,m,} approaches the valug(V) with a time constarti(V). These are shown in figures
6.3 and 6.4.

1.2 7
1 - - - _
0.8
Z 061
=
0.4
0.2 1
I+—T—T T 7T T T T T T T T T T T
:\31?:}?-‘3:& j,_‘:}i._‘?} Pi‘};»._?} rzf}:\i‘.* Qn’_\ "‘;"L?'L P 4._.-:“} .é‘.* z,‘i‘.l 4:._?} &"}h\?‘i‘.‘

V(mv)

Figure 6.3 — Equilibrium function

108

[PR = R T =
1 1 11 1 1

V) e

T L B S I
1 1 L1

L=}

T
AP T T T T T T T T N5, L, T L0, T O, L
FEPOPP PP S S P PP SOS

V(imv)
Figure 6.4 — Time constant
In the Hodgkin-Huxley model, the resting voltageswadjusted to V(0), figure 6.3. If a

sufficiently large current is introduced to the teys in a sufficiently short time dgt),

figure 6.2, then the a spike is produced, as réd.5.

—

(=) L] Lo L 20

t [ms]
Figure 6.5 — Single spike

reproduced with permission from Gerstner and KisflZ002c]

It is the action potential-like spikes produced thgse models that give them the name

“spiking neuron”.

It can be seen from these calculations that thepatational resources required are large.
This requirement is similar for the alternative kipg models previously mentioned.
Although the signals produced by these models @&odically plausible, they lack
flexibility — they only produce spikes. It is codered that a more flexible approach would

be useful in engineering systems.

109

Having observed the limitations in operation anel dhifficulties in implementation of the
present spiking neuron models, it was decided &k limr a simpler and more flexible
approach. After considering the alternatives, \aexe of alternative biological systems
was undertaken. Only one other type of biologiotdlligence was obvious as a result of
this reassessment and, fortunately, this turnedmlgad to both flexible and simple time-

varying models. This is the artificial biochemiegdproach described below.

6.3 Origins of Biological Intelligence

As presented by Hameroff et al., [1998], the m&joof life on Earth is represented by
single celled organisms. During the 3.5 billioraggof the pre-Cambrian period, life was
composed of only these organisms. Then, duringGhmbrian period the first multi-

cellular life appeared and with it the first newson

Amongst the single-celled life forms are a groupechthe Protoctists, which live in a
variety of different environments including evemgvéonment that multi-celled life has
colonised. Those which display animal-like behaviare usually called Protozoa. The
name literally means “first animals” and they eamhabout 2.5 billion years ago.

The arrival of multi-cellular life did not renderrdozoa extinct. They persisted and

colonised new biological environments.

6.4 Single Celled Intelligence

Despite their primitive reputation, protozoa digptamarkable abilities and behaviours, as
documented by Alberts et al., [1994a]. Some hawgisg darts with which they disable
their prey; others have sensory hairs to feel thvaiyy about and sense the vibration of prey
approaching and a few even have leg-like appendegescomotion. They can avoid
light with their sensitive eyespots and activelynhdor their food. Some even build
shelters - shells with which to protect themselfresn predators and the environment.

They display many of the traits of intelligence.

110

As Protozoa have had the longest time of any natebal cellular organism to evolve
[Curtis, 1982] they exhibit an enormous varietyfaims and behaviours. They have a
range of relative sizes greater than that betweeabhit and a blue whale, even though
they are largely microscopic, (mainly ranging izesifrom 10-200um), [Alberts et al.,
1994b] and include the most complex cells knowteifB, 1989].

Protozoan anatomy can include structures that interact with the external cellular
environment, receiving information through sensory bristles or photoreceptors, and
moving via flagella, cilia and other appendages, absorbing food through mouth-like
parts and reacting with muscle-like contractile bundles. They are so divergent in
motility that this is the main method used to classify them.

All the similar actions performed by multi-cellular life-forms utilising dedicated
types of cells are performed in protozoa via dedicated sub-cellular structures
[Alberts et al., 1994c].

These animals exhibit intelligent behaviour in the2actions to the environment that
increase their survival chances; they do so asmglesicell, with no neural network to

communicate. This has a significant influencetmnlater sections of this thesis.

6.4.1 Natural BioChemical Networks

Protozoa display the behaviours described abovemlegns of interactions between
proteins in their cytoplasm. Proteins are the dbhahworkhorses of the cell [Alberts et al.,
1994d]. It is the cell proteins that the DNA geaebde specifies, as shown in figure 6.6.
This scheme is so fundamental that it is sometiraésred to as the “Central Dogma” of
biology.

Cell Nucleus

memprane
RNA

i Protein

e
e B
%iﬁ

111

Figure 6.6 — Central Dogma

Proteins are the central part of cell biology, thesdiate every biological action. As DNA
cannot directly affect the organism, it may be ghat it exhibitsdevolved actiorthrough
the protein, [MacLeod et al., 2002]. ProteinstheebiologicalUniversal Machinesof the
cell; they are responsible for all elements of nmeget, structure, communication and

organisation; chemical activity is also under thatool of proteins.

6.5 A Framework for Artificial Cellular Intelligenc e

Proteins perform all the important operations & tlell, from making new and destroying
old material, to sensing and signalling changethéncell's environment. Proteins achieve
these operations through chemical interactiond.p#iteins bind to other chemicals; some
synthesise new molecules by joining bound compoparts together, others break them
up - such chemically active proteins are calledyeres. Yet others use their ability to
bind by joining to other proteins, changing theiehhviour and forming signalling

networks within the cell, as described by Albertsale, [1994e]. Such a network is best

illustrated by a simplified theoretical examplesedigure 6.7.

Figure 6.7 - Simplified signalling pathway

Figure 6.7 is a hypothetical example of a protetwork. Molecules in the cell's external
environment “A” bind to receptor proteins “B”, wiicstraddle the cell membrane. This
binding changes the shape of the receptor and saupeotein “C”, which was bound to

the receptor, to disassociate from it. Protein tk&n floats freely in the cell's cytoplasm

112

and eventually binds with the protein “D” (chemg#h the cytoplasm are buffeted around
by thermo-dynamic forces, which act to mix the d¢iuasnts). When “C” and “D” are
bound as shown at “E”, they can bind further to@an protein “F”, a protein which can
change its shape by a large amount, allowing imtwe quite large objects. The motor
protein is attached to the cell's outer membrarkthis causes the cell to move towards or

away from the molecules “A” by changing its sha@agpanni et al., 2005].
6.6 Atrtificial BioChemical Networks

Given the system described above and shown indi@ur, it is fairly obvious that it is
possible to express such biochemical interactiena aetwork no different in appearance
from other connectionist networks, (see figure 6.8)

mput nodes output nodes

::'\'.é."c.tive signal pathv.'ag'-'s_‘_': i]
Kt oG O

EPRISSS SR .

inactive signal pathways

o l

protein
pathways

hidden nodes

mput nodes
output nodes

signal pathways

output signal

protein
pathways

Figure 6.8 - ABN vs. ANN topology
Given this, one might present the signals in suchtaork as shown in figure 6.8. The lag

time at a node, until the presence of the sigmalimotein, is “A” and time “B” is

proportional to a node’s activity. Activity may lealculated using previously described

113

time-series techniques or a simple leaky-integraémhnique as reported by Gurney

[1997]. To create an Artificial BioChemical Netwkor‘A”, “B” and the connection

pathway strengths may be set using a Genetic Ahguori

A

Time from triggering |
protein’s presence to
its appearance

B

Protein activity

Protein present

Y

Time
Figure 6.9 - Basic unit cycle
A GA may also be implemented to choose which of tihee periods “A” or “B” is
proportional (or inversely proportional) to the uactivity and which is fixed, as described
previously. This additional evolvable parametetraduced by MacLeod, C. and Maxwell,
G., [2003] has been used in this thesis to progutse width or frequency modulated units

as shown in figure 6.10.

Such flexibility allows for the production of mowmiversal units from this basic type and
it has been suggested that such dynamics may dethe thew perspectives on intelligence

as proposed by MacLeod and Maxwell, [1999].

114

Frequency

t tz (t+1n (t+1)

Output

t7 is inverselv proportional to the protein activity,
t] Is constant.

+ Width

» t; +t ! ((tHln + (t+1 k)

Sl
L

t tz (t+1n (t+1)

" -

COutput

Y

Time
t1 is inversely proportional to the protein activity,
t] +1z 15 constant.

Figure 6.10 — Pulse modulated units

The units shown in figure 6.10 are an extensiothefgeneral behaviour shown in figure
6.9. If appropriate variations on this generaldebdur can be produced by ABN units,
then small modules of these should in theory be &bproduce any pulse sequence in the
binary time-domain; this would be a time-domainieglent to the McCulloch-Pitts XOR
or parity-bit problem.

The capabilities of protozoa show clearly that ¢hare creatures that exhibit intelligence

without neural pathways and it is from this obs&orathat the ABN was developed.

This approach takes inspiration from the biochemmatein communications of the
protozoa, however, it does not try to recreate tlaetificially. This results in a flexible
approach which is far simpler to implement tharkisygg models. Future development can
build on this initial model to add functionalityrttugh additional biochemical activity.

6.7 Literature Review on Cellular Models

There are various other models inspired by intarzel processes in the literature. They

can be roughly divided into two classes, those #tsgmpt to construct an Atrtificial

115

Intelligence system by basing themselves on ruteseming cellular interactions, and
those that attempt to model cellular biochemistripetter understand the operation of cells
from this viewpoint. The later is frequently usedmodel the effect of pharmacological
products or study biochemical pathways, as in Alyneg al., [2001], Hodgson et al.,
[2004], and Kiehl and Bonissone [2002].

The “standard Cellular Neural Network” (CNN) devdsey Chua and Yang, [1988] at the
University of California at Berkeley was proposedapractical alternative to Hopfield-
derived recurrent networks. It is a continuousetiamd state dynamical system, well suited
for analogue circuit implementation. The CNN wassigned to be a useful signal
processing paradigm and was implemented in hardwdéte the advent of Very Large
Scale Integration electronics.

This type of system is a logical development ofl@at Automata (CA), which were
proposed by Stanislas Ulam in the 1940s and isectlto Von Neumann's work dealing
with self-reproduction and artificial life. In fgdJlam suggested this framework to Von
Neumann as a direction for his self-reproductioaoties, [Von Neumann and Burks,
1997]. Nowadays, CAs are mainly used to prove riegcor model physical processes,
[Dogaru, 2003].

In practical terms, the implementation of CNNs usgsiations of non-linear functions
which define the cell function. Several developtedrave come from this work including
“reaction-diffusion cellular nonlinear networks’Cliua et al., 1995] and Generalized
Cellular Automata, [Chua et al., 1998], which ira#g CAs as an extension of the CNN.

The approaches that have approximated cells abahédmical level have produced some

interesting models and observations.

Elowitz and Leibler, [2000] propose a synthetic ilkestory network of transcriptional

regulators. They base their work on observatidra nhetworks of interacting bio-
molecules are responsible for the functions imbvcells. However, they point out that
there is poor understanding of any “design priregplunderlying how such intracellular
networks function. They propose examining a palaic function and constructing a
synthetic network based on it. The interesting pathis work, is that they construct an

oscillating network, that over a period of hourgjuces the synthesis of a specific protein.

116

This produces a noisy “artificial clock” which & proposed may lead to the engineering of

new cellular behaviours as well as a better undedstg of naturally occurring networks.

Thattai and Oudenaarden, [2001] model specifichststic biochemical reactions using
noise terms in deterministic dynamic equationseyTsee this as a method by which they
can implement threshold transfer and noise reducsionultaneously with the aim of

mediating signal transfer in both artificial an@lbigical networks.

Gontar [2004], presents Discrete Chaotic DynamR€}) as networks of interacting
agents capable of energy and information exchang&is appears as a biochemical
equivalent to cellular automata and results in gpatt generation, which Gontar
characterises as emergent, self-organising behaviéowever;

“The mathematical structures of the difference eéquatwe present do not include
any form of time, neither classical continuous astmic time, nor the so-called

discrete time that has no clear meaning.

The principles used are of discrete time and splifference, resulting in artificial life

systems.

The basis of much of the work outlined above is tooproduce new Al models, but to

better understand the biochemistry of biologicatems,

“In the spirit of this analysis of the transcriptadnregulatory networks, it is
becoming possible to design artificial biologicattworks to implement desired

functions, paving the way to new therapeutic apphes’, [Vandenbunder, 2001].

A small amount of work uses biological inspiratimn Al models which are mainly of the
CNN type. It is clear however that a consensustexon the importance of protein

function and that much future research dependstha ability to model this behaviour.

In comparison with the proposed approach on ABNs,dellular models that attempt to
replicate cellular biochemistry are not in gene@icerned with Artificial Intelligence and

therefore do not use the appropriate biochemistigirhulate this. Instead they attempt to

117

observe how the biochemistry reacts to proposegipalyand chemical influences. The
models that attempt to construct an Al system wesghibourhood models, which differ
from previous ANN topologies by only having a mutmensional array layout. A variety
of these can be implemented using analogue progessth continuous signal values and
connecting only to neighbouring cells. They havevide range of applications, in the
same areas as continuous type ANNs. However th&inr the rigid topology and

connection as well as having an associated conipleofi computation due to the

implementation of each cell.

118

Chapter 7

Artificial BioChemical Networks - Design and Functon

7.1 Introduction to the Chapter

This chapter presents the models of Artificial Bi@@ical Network units and the
networks developed from them. These networks ased on the recognition and control

tasks of previous research as detailed in Chapter 2
7.1.1 Design

The artificial biochemical node is the equivalehto artificial neuron. As described in the
previous chapter, its activation represents theiweace of a protein or a similar bio-active

chemical.

The ABNs were all trained using a Genetic Algorithidowever, it should be noted that
because a GA relies on randomly generated paranwetieles with their attendant
guantisation, they have a poorer response to rbee those using a gradient descent
algorithm. To allow a more direct comparison, aclaopagation Algorithm was

constructed for the pulse-width ABNSs.
7.1.2 Experiments

The experiments below are presented in three neaitioss. They are accompanied by the
implementation of Backpropagation-SLP and a Bagspgation-MLP trained on a simple
pattern recognition problem - this provided a benatk for comparison with the ABNs.

The first experimental section investigated an AB&hsitive to pulse duration (that is,
pulse width modulated) as described in the previchapter, this is termed ABN The
second section considers an ABN sensitivity to @@ilequency, termed ABN The third
section combines the two pulse modulated unit typsa “Universal” pulse modulated
ABN, termed ABN..

119

Having demonstrated the network’s pattern recogmiéibilities, it was then used in robotic
control systems to produce different walking gaitsis, in conjunction with the previous
pattern-recognition experiments, demonstrates tlBN$A universality. Finally, the
combination of two ABNs, where the pattern recagnitoutputs of the first are the inputs
to a second, gait-generating network, shows thatngtworks can be used in a modular

fashion.

7.2 Pulse-Width Modulated ABNs

The signal is propagated in a feed-forward mannethe pulse-width ABN. This is

chosen as such a network is known to be intringistéble.

7.2.1 Time Concepts

The ABN, approach is based on time-dependent behavioursudl, every node in the
ABN,, is examined as if they all operate in a parallenner. Their state at timé (s

assessed and then time is incrementet+b) (

For the purpose of visualising this and implementine code, a tick is incremented in a
programme loop and is the smallest measure ofitinttee system. During a tick cycle, the
state of all the neurons is checked and incrementegractical terms the time periods
used in tests was in the range from 10 to 100 .tiCke fundamental change to the way a
feed-forward ABN, is coded compared to an ANN is that in an ANN tieairons are
assessed starting with the inputs and progressitiget outputs, whereas in an ABNhe
output nodes are assessed trah incremented and the program works back tonjnats

(as the information flows forward, this allows pebimplementation).

120

7.2.2 Inputs and Interpretation of Patterns
The signals used in experiments (as inputs, outpots between neurons) were digital

pulse trains of values 0 and +1 or, in some testsand -1. The inputs were repeating

waveforms of the type shown below.

Input

OQutputs
b i L
9:1 on'off ratio
3:3 on'off ratio
] [|

1:9 on'off ratio

Figure 7.1 — Transfer functions — pulse-width
The patterns were left on the inputs until the ABNIitput was established.
7.2.3 Nature of the Pulse Dynamics
The pulse consists of aon timeand anoff time As noted above, these have fixed
amplitudes. The amplitude during the time petigds one unit, while during time period
to it IS O units.

When a constant pulse-widtR\()) is implemented, it follows;

t,, tts = PW equation 7.1

121

- 1 = 1
% ton % Totr
o 0 o0
time time
tip to tio to
tof'f' ton
1 |
S S
s ton e Torr |-|
S S
o 0 O g
time time

tio to tio to

Figure 7.2 — Pulse-width max and min profiles

The lengtht,, encodes the information the node is sending. MM and maximum
values of this set the limits of the pulse, as sihow figure 7.2. The possible
interpretations are shown in pairs on each line. thie first set the entire pulse takes
maximum and minimum values. In the second sefrtimémal pulse starts with a singig

tick while the maximum pulse finishes with a singletick.

The relationship between the time periods and thisepwidth results in an automatic
synchronisation of all nodes in the ABKhat activate at initial time(because, regardless
of ton, the cycle lengthy, + tor is constant). This can be of benefit in manyagitins but is

an obvious dynamic constraint. It is considere@rlan pulse frequency modulation

whether the nodes should be capable of synchromomsn-synchronous action.

The duration of a pulse is measured in ticks, agbking produced at one node at ttme
cannot affect any other nodes until it reaches themlater time. This means that it takes
the pulse a period of time to move from the outmitsne neuron to the inputs of the next
- this may be termed the “Propagation Delay”. He initial implementation, this delay is a
constant for all distances between the communigatodes in the AB\l It is considered
that in a biological system, the variation in tdslay may have significant effects. One
such effect, which is well documented, is that sbus localised by time differences
between signals arriving from both ears, see Pabhel., [2002]. Given this, in future

research, this delay may be a system variable.

122

The implications of the delay are that the leadeuge of the pulse has arrived at its
destination before the firing node has finishedegating it. In reality this is plausible in a
biochemical interaction within a cell and betweeslls; however it would not occur in
neurons, because of the time taken for an actidéenpal to propagate down an axon. If
this delay is not implemented, then a signal bagmmt the inputs of the ABNwould
instantly propagate to the next layer, and so amfrlayer to layer, restricting the
development of a pulse stream. The delay is futbenplicated in that a node completes
its pulse before acting on the signal it has reambiv the node can receive stimulation
during its pulse cycle and this contributes to rie&t pulse (due to the effect of the leaky

integrator).

The total time it takes for the effects of an inpube observed at the outputs is called the
“Reflex Time” of the network. This will equal ((@pagation delay W) x number of
layers). Likewise, once the stimulus is removestatwill be an equivalent “Decay Time”

for the stimulation at the ABNinputs to stop producing a signal at the ABdtputs.

7.2.4 Integration of Signals by the Node

The pulse duration is a representation of the gthenf the weighted input signal to the
node. The first stage is the calculation of noctevation. This is the process by which the
Sum (the node’s activation value) is calculated,$im is represented &s

There are two methods to initially consider for ttedculation ofS at timet. These

incorporate the current weighted input values, grevious value and a leaky integration
(LI) factor alphad).

S =) i,w, +al5, equation 7.2

S =Y, +S, ~a(L1) equation 7.3

123

These add a decayed version of the previous toutrent activation, therefore they do not
model the biological neuron, which when firing cdetply depletes it§ value. However,
they correspond more to biochemical signal integnat The equations show respectively

a non-linear and a linear decay3im the absence of further stimulus.

The second stage is the calculation of pulse tiffifee S values calculated in the previous
section produce an output pulse of amplitude oneamu duratiort,,. The calculation of
this is the same for all nodes and utilises thestaggsigmoid function, denoted)

t,, =o(S)PW equation 7.4a

This Sis acted on by a sigmoid function which normaliges From equation 7.1, the

durationtys can be calculated.

ty = PW-t equation 7.4b

on

7.2.5 Outputs and Interpretation of Pulses

To understand what the outputs are, one has tk thiterms of pulse time. First, consider
the inputs to the AB)l When a pattern is presented to the network ;ypttimet, the
input node immediately produces a repeating puészd on the magnitude of this input.
Any subsequent node performs signal integrationlessribed in the previous section, and
so functions differently.

t,, =o(S)PW equation 7.8

on

In equation 7.8S equals the value passed directly to the inputs fitee data pattern,

normalised to the range of the amplitude of theotist which are [0,+1] or [-1,+1].

In figure 7.3, the pulse produced at the input sdde the maximum and minimum pattern

values is shown.

124

wvahies

Loy tg
. I
pattems nputs . '
pulzes : I
O i
1: .
m 5 [

Figure 7.3 - Arrival of pattern values

In this interpretation there is no accumulatiorma&value, the input node reinitialises each
time it completes a pulse-width and reacts to timawdus level it receives from the data
pattern, preventing signal saturation. This isdhé way inputs differ from subsequent

nodes.
7.25.1 Synchronisation of Signals

The artificial mechanics in this stage resultsyinchronisation of the signals. All the input
neurons will fire immediately they are initialisadd after each pulse cycle ends. The time
values for the (possibly zero) pulses, as showiigure 7.2, correspond to the following

equations.

t,, =t where t_, 0[0]] equation 7.9a

on min

ty =t where t,_ ., D[PW, PW—l] equation 7.9b

The implemented version is shown in figure 7.3.
7.25.2 Observation of the Pulse

If a node is observed to begin a pulse of duraBtatt,, this will finish att,.pw.1. The
observation is broken down as follows; the firsaswable increment lasts 1 tick, fram

O until t = 1. This means that the last measurable incremetiteopulse starts when the
node is assessedtat 0 + PW - 1 Although this lasts unttl= 0 + PW, when the node is

assessed at= PWthe subsequent pulse has started.

125

topw
To2pw

To+pwi1

2nd pulse

F

PW

Figure 7.4 — Observation of pulse-width

7.25.3 Reflex and Decay Time of Network

In connectionist approaches to static-domain prablethe signal effectively propagates
instantly from the inputs to the outputs. In a Mible signal progresses from one layer to
another in turn; however, there is usually no cphcé the signal taking a time period to
progress through or between nodes. In an fBidere is a time period between the
application of a pattern to the input nodes, to wheesults in an observable change from
the output nodes. This is the previously introduceflex time of the network. This is of
importance in calculating when the ARNhas relaxed and a stable output has been
produced. Likewise once the pattern has been rethérom the input nodes, there is a
delay until this no longer has an effect on thepatg. The delay time only has an effect
between different patterns being presented to #8,Aand has no other relevance here.

126

7.3 Pulse-Frequency Modulated ABNs

The pulse-frequency ABNopology was arranged in the same structure apulse-width
ABN,. As with the previous network this is intrinsigestable. However, in the case of a
pulse-frequency network the matter is not as dttbogward, as the network may become
cyclically-stable with a repeating sequence of atyalues.

7.3.1 Nature of the Pulse Dynamics

As with the previous case, the pulse consists afratimeand anoff time Equation 7.10

gives the total signal duration; however, it isloiger constant.

+t4 = PW equation 7.10

In contrast with the previous case, the lengthencodes the information the node is
sending, see figure 7.5. Again the possible valwresarranged in pairs, one on each line.
The calculations that determine the pulse-timenseimum and maximum values which

determine the total pulse cycle time. The relaiop between the time periods and the

pulse cycle time results in the nodes of the ABMing non-synchronised.

127

maximum ton minimum ton
1 1
Lot
0 0
Toff
15T to tio tp
1:IZ'I:IZ'.l ton
1] 1
0 0
Loff
-1 Toft -1
tip o tio i

Figure 7.5 — Pulse-frequency max and min profiles

The different nature of the ABNdynamics results in various differences compacethée
ABN,,. While a pulse-frequency node signal always kegiith a measurablg,, a pulse-
width node can (in theory) have a minimum signahwio measurabl&,, however, the
ABN,, implemented here used a minimugpsignal of 1 tick. While a pulse-width node
operates with a signal pulse duration, the pulegtfency node does not. Therefore, it is
necessary to note thg, that starts the pulse, then measuretghehat determines its value
and is completed by the arrival of the ngxt

As in the previous ABIY, it takes the pulse a period of time to move frthi outputs of

one node to the inputs of the next, the propagateay. Again, the total time it takes for
the effects of an input to reach the outputs ofAB&lr is termed the reflex time.

128

7.3.2 Calculation of Pulse Time

This is the first significant difference from theulpe-width node. As before, the
calculation is the same for all nodes. The stara drequency pulse is signalled by an
output pulse of amplitude 1 and duration 1 ticks ik still calledt,,,. The sum value$S

now produce an output pulse of amplitude 0 andtoura.

t, =1 equation 7.11a

The sumSis acted on by a sigmoid functienwhich is normalised to the duration of the
pulse to allow a constant pulse cycle time. Frajuation 7.10, the duratioRF can be

calculated.

t -— X equation 7.11b
o(S)PF

max

With pulse-width nodes, limits were set by havinggx@d pulse cycle time; in contrast,
with the pulse-frequency nodes, the maximum dunasaet bytq.

The input nodes produce an equivalent continuoigepa zero pulse is used which has the

following values;

t,, =1 equation 7.12a

-1 equation 7.12b

max

This maximum is calculated to a number of tickshe Tnput neuron which presents this

value cannot re-fire untPF is completed.

129

7.3.3 Observation of the Pulse

In the previous case, an ABNall outputs completed simultaneously. With pulse
frequency nodes they are independent. The ougpatebserved until all have relaxed, but

these must be assessed at each tick, not oveceayiiete pulse-width cycle.

When a pulse-frequency node begins a pulse ofidara0 ticks PF,o) att = n, then this
observation completes &tpr.1. In this case, this is= 10. The second pulse begins; in

this example it is of duratioRF; and completes at= 13, (see figure 7.6).

Tp+pF
To+2pF ' 4
| 1 To+pra I
: A 1o
I 1 : [
I i
1 1
! i 1stpulse
! :
| HI o
— '
PF t

Figure 7.6 — Observation of pulse-frequency

With no constant cycle time, the ABNMannot be assumed to be synchronised and a count

of the pulses has to be made.

7.3.4 Relaxation

The network does not relax in the same mannereapulse-width network. The network

instead can either produce a constant repeatirsg ula wave-train that cyclically repeats.

The result of this behaviour is that each outputencan relax at a different time and each
pulse in the cycle can take a different numbeiabist In comparison to other nodes there
may be a different number of such pulses in suchcke and the starting tick of this may

be different for every output node.

130

7.4 Universal-Pulse Modulated ABNs

With the implementation of an ABN there is a universality and robustness tradeasff

was previously explained in Chapter 5.

7.41 Production of Locomotive Gaits

A good example of a control signal is that whicltaaes a locomotive gait in a mobile
legged robot. This will be used to demonstratewheeform producing capabilities of the
ABNy. Both McMinn [2002] and Muthuraman [2005] proddclecomotive gaits for

legged robots, however they produced only the mraiile; that is the signal controlled the
timing of the limbs and the duration of each stite it did not encode the speed of limb

movement.

To produce a walking gait there are three factorgdnsider. Firstly, each limb must
receive a separate signal that is in the correas@lwith the other limbs. Secondly, the
signal each limb receives must be for the corracatibn. Thirdly, each limb must receive

a signal which indicates how fast it is to move.

Receiving signals in the correct phase is a feabfithe ABN,. To receive them for the
correct length of time, a variable pulse-width isl@gically plausible and can be used for

stride duration. This leaves the third requirementoding speed.

Encoding amplitude within the pulse-width could @menodate speed, but as this is not
biologically plausible it was not attempted heréh@ugh the further work, Chapter 9,

gives more detail). It is more useful to regare $itride as a construction of smaller units
rather than a single unit attempting to carry ntben one type of information. Therefore,
a combination of pulse-width to encode stride dara&nd pulse-frequency to encode limb
speed should suffice for a complete control sigoah locomotive gait; these are shown in

figure 7.7. The specific phase will be controll®dthe ABN,.

131

&
running - frequency “\' "
combined signal

t running - width $) left limb
M resulting pulse
QM 11 1T

L J

left - limb " >
combined signal
t running - width | g right limb
M}_ resulting pulse
right - limb / - 1 1 1 :

F 3
walking - frequency

bined signal
I combined signa

LTI

-

& .
walking - width I . left limb

J—I—,—’ resulting pulse
e I T

left - limb i -
combined signal
4) _ _
walking - width - right limb
| | | l 1 resulting pulse

> —
-
>

right - limb /;

Figure 7.7 — Walking and running biped pulse

The importance of being able to combine pulse typatiown above. The combination of
pulse-width and pulse-frequency ABN nodes can preddifferent pulses to act as gait
generators. Any combination can use McCullochsRstyle nodes, which an ABN node
can simulate with the appropriate leaky integrapanameters. The above diagram can be
expanded to other gait profiles or limb numberms.the cases shown, the input data must
be produced by an ABN module, while the gaits ca&npboduced by a variety of

topologies.

132

7.42 Pulse Profiles

Each pulse-width and pulse-frequency waveform ciesif several phases, which have
been shown in the previous diagrams. Let us nawgider what is required of a universal

pulse.

d d d
> > .] - >
F L F
- 0 b - P
a - L C a - L a .| [
o+ i b mm— 4 >
» >
time time

Figure 7.8 — Pulse profiles for universal pulses

The pulse can be broken down into different periaglshown in figure 7.8. These consist
of a period “a” before the signal arrives (this,hiological terms, can be viewed as the
presence of an inhibitory protein, but is moreljki® simply be the absence of a protein).
In the diagram, this is followed by the period “bi which a signal is present. Then
follows a period “c” which is the phase followinket active phase during which the node

does not produce any active signal.

From the two profiles shown it is clear that ph&semay simple be the phase “c” from

the previous pulse.

Given that only the periods {a,b} are considered #re period d = a + b, then what is to
be determined is which of these periods are detextnby the function of the node. Only
one of these can be controlled by the ABN nodesateckin this thesis, future work,

Chapter 9, considers other cases. The activatidheonode is a calculated variable and

this through an output function determines the tiomeof one of the periods.

133

In the case of “a” the pulse width node previoudigcussed, period “d” is a constant,
period “b” has a duration determined by the stiriafa of the node and has output

amplitude of 1, and period “a” is calculated as fj and has output of 0.

In the case of “a” the pulse frequency node prestipualiscussed, period “b” has fixed
duration of 1 and has output amplitude of 1, petedds determined by the stimulation of
the node and has output of 0, and period “d” iswated as (a + b). In the computation of

this, a maximum value was set for period “d” andwaed in determining period “a”.

There are two variations allowed for by the uniger&BN, as follows: Firstly, when
period “d” is a constant or has a maximum valugs ikynow an evolvable attribute of the
node. Secondly, the pulses always begin with dingal followed by a 0, and the node

may evolve to produce a leading 0 followed by a 1.

There are other variations to pulse profiles whiohy be considered, however these
require more than one degree of freedom to be imgaiéed in the outputs of the node (not
currently practical) or produce no practical benefThe pulse types presented above are

sufficient to encode the walking gaits as intended.

134

Chapter 8
Artificial BioChemical Networks - Experiments and

Results

8.1 Introduction to the Chapter

This chapter presents the implementations of th#iéal BioChemical Networks with

tasks in pattern recognition and control and comp@erformance against specific Multi-
Layer Perceptrons. Each type of ABN is shown mtwith its associated experiments.
Finally, these two tasks are combined into a madsistem for robotic vision and

locomotion.
8.1.1 Credibility of Software

As the purpose of this chapter is to show the itgliaf new connectionism methods, only
simple tasks are performed. All patterns and @bisignals are recognised or produced in
response to an input set of four continuous pararsetThese are represented using a 2x2
grid. To ensure credibility, these experiments everdependently replicated. William
Clayton of Olin College was asked to validate theoty based on a requirements
description of the ABN. He did this using a muahgker pattern set which consisted of a
5x5 grid. Equivalent performance to the systermesgmted in this chapter was reported
and this is included in Appendix A as a publishagey.

135

8.2 Pulse-Width Modulated ABN, — Trained using a GA

The first experiment set out to produce an ABN thais pulse-width modulated and
trained by a Genetic Algorithm (denoted ABIEA) for pattern recognition. The initial

setup consisted of four patterns with associategets.

8.2.1 Program Implementation and Interface

The experiments were implemented in C++. Howe@f+ does not provide a good
graphical capability. Therefore, the programmelogpess was displayed through
command windows and by examining results in a &gitor and a spreadsheet. Each
programme activation created separate “event”.fil€dnce the ABIN was performing

correctly, a C++ generated graphical interface eaasstructed.

This graphical interface consists of a tag struectusing Dynamic HyperText Markup
Language (DHTML) and follows from rules in an Irftere Markup Language (IML). An
IML separates data from function and presentatmmhat these components can be built
up into a modular structure. Figure 8.1 showsitierface displaying the first successful

event.

136

Select Results |Evaluated output for each node Summery
Pulse Output . Pattern 0
pattern [
Owtput O
pattern 1
0
0 pulses 2 Target Output Error
pattern 2 P ? g
— — | 1 1 1 0
0 0 0
pattern 3 o 0 o
0 0 0
Tick Output Qutput 1
pattern 0 0 actual values
J pulses 3
pulse
pattern 1 1 output 0 1 2 3
0 |o05/0|1]1
pattern 2 1 |os/oloo
Owtput 2
2 |os|ojojo
pattern 3 3 |o050/0/0
) 0
Evolution O pulses 3
1
population |
individual | Cutput 2
Weights o
0 pulses 3
individual |

Figure 8.1 — Graphical Interface for ARMNGA - using IML

The design is robust and efficient, so as not stralct from the research by attempting to
produce a higher quality GUI. Colour variationsr@&venplemented to display information
which may not be obvious in non-colour figures,réfiere relevant incidents are verbally

explained.

137

8.2.2 Successful ABN— Trained using a GA - Success

The following figures 8.3 shows the results of thist successful event. Firstly, figure
8.3a shows the resolved ARMutput pulse for the first pattern, the remaingagterns are
included in Appendix G as figures G.1 to G.3. ety figure 8.3b gives the individual
ticks that are the basis for the pulses of figuBagin this event maximum pulse duration
was set to 10 ticks, figures G.4 to G.6 show tbkstifor the remaining patterns. Thirdly,
figures 8.3c(i,ii) show the GA population fitnessdathe fittest individual. Finally, figure
8.3d shows the evolved signal-pathway weights alesg the smaller values for the output

layer and comparing them to the original signahpaty values.

The GA parameters used were as follows:

Parameter Value

String size One floating point number per signaghpeay
Population size 10

Crossover Random 50% parent choice

Mutation rate Uniform random 1%

Mutation Uniform random z(original range)

Selection Roulette

Figure 8.2 — Genetic Algorithm - parameters

138

Evaluated output for each node Summery
1
Pattern 0
Output 0 L
e I i
o:l_|
0 pulses 3 Target Output Error
. 1 1 0
1] 0 0
0 0 0
Output 1 e g .
o:m_____ actual values
0 pulsss 2
pulse
! output 0 1 2 2
0 |b5[0|1)1
1 |05/0/00
Output 2
2 |os5(o0jojo
3 |05/0/00
ol ____
0 pulses 3
1
Output 2
ol ____
0 pulsss 2

Figure 8.3a — ABIN-GA output pulse — pattern 0

Output for each node of pattern 0

1
o S —
0 ticks 33
1
Output 1 |||||
o
Q

ticks EE]
1
Oulpul2|||||
0
0 ticks EE]
1
Output3|||||
0
0 ticks 38
actual values
tick
output| 0 1|2 3/ 4 586|789/ 10 11 1213|1415 18 17 18| 18| 20| 21|22 23 24 25 26/ 27 28 29 30| 31| 32| 33|34 35 36
o [1]1]1]1|1|ofofojojo|o|o|e|e|a|a|o|o|ofef ||| a|a|a|a||]||2]|2]|1]|1]1]n
1 [1]1/1/1|1]0|o|o|o/o/o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o/o/o|o|o|o|o|o]|a
2z [1]/1]1]1/1|o|o|ojojo/o| o o|o|o|o|o|/o|/ofofofofoojo|o|o|o|o|o|o|o|o|a|o0|0|0
3 |1/1/1/1[1/0/o/o/ojojo|o|o|o|o|ojo|o|o|o|o|o|0/oofofofofo o ojojojojo/ofo

o e a o
o e a o
o o a o

Figure 8.3b — ABIN-GA output ticks — pattern O

139

Average error of each generation

number of generations

g each column 1ts 7 values 2262
Figure 8.3c(i) — ABN-GA population fitness
Error of fittest individual of generation
a 2ach r::‘l‘::m gena::igfaluﬁ 2262
Figure 8.3c(ii) — ABN-GA fittest individual
Hidden Weights Qutput Weights Rescaled Output Weights
28 8
node 0 g I'_ node 0 . I.
88 |
29 -18
node 0 e — l.
88 8
29 I
node 1 e -ll node 1 .
88 |I
o9 -18
node 1 e .-.I
8 a8
-28
node 2 g — node 2 a —
8 I
I o9 -18
node 2 0
I 88 8
25 I
node 3 . _'. node 3 .]
88 I
. 08
trained range o |_ a -2 -18
Vs -
omigicnal range I .] &
25 . i 0.8
- trained range 0. @ trained range T
UH 1 UH =
amigional range 08 amigicnal range | 0.8
-18 -18

Figure 8.3d — ABIN-GA signal-pathway strengths

140

It is shown in figures 8.3a and G.1 to G.3 thatfitet pulse of all nodes for all patterns is a
0.5 output. This represents the node output imatelyi on initialisation. The following
0.0 output is due to the resolution of the evolsgghal-pathway parameters; hidden node
outputs (with an initialisation value of 0.5). $his a chance occurrence, based on the

signal-pathways and is different in later events.

Recognition time for pattern 2 is four pulses, thther patterns require three. An
additional pulse is generated for all node outpuisvaluate ABI relaxation.

Overall the ABN, error (all nodes, all patterns), designatggheis 0.0 (the target was set
at 0.5). The nature of GA training can cause sndaeéividual improvements as indicated
in figures 8.3c. In other iterations of the expernt, the GA produced angy between 0O
and 0.5.

Figures 8.3b and G.4 to G.6 show the ticks thastant each pulse. In this event most
patterns are rapidly recognised, with the exceptibpattern 2 (figure G.5), which takes

slightly longer. This may be a result of over4tiag and is examined later in this chapter.

The GA takes 3262 generations to resolve, howewest of these do not affect the fittest
individual, as shown in figures 8.3c. Due to th@dom nature of GA training there is

variation in this, and acceptable solutions areébin under 200 generations.
There are major differences in signal-pathway sfifes) (see figure 8.3d). Hidden values
have a range of 117, outputs have a range of 2fsélranges vary over various events -

however hidden strengths always have a greateertdyag outputs.

Once successful, this experiment was repeatedri#stio validate the results and examine
specific functionality regarding pulse-duration aethxation behaviour.

141

8.2.3 ABN, — Trained using a GA - Relaxation Time

Over ten events the maximum number of pulses téela single pattern-node to relax
was 7, while the average (mean) of all pattern-sogdlas 3.48125. This includes the
additional conformation pulse (on a basis of tweniical pulses to indicate ABRN

relaxation). As expected, the node with a pulsgetiaof 1 usually has a longer relaxation

time than those with a pulse-target of 0.

Most events show a pulse value increasing or dstrg@an each subsequent pulse towards

the target. Some exceptions are shown in figures 8

1

Owtput 1

0 pulses 4

Cwtput 2

]
0 pulses 4

Figure 8.4a — ABN-GA output pulse — indirect target acquisition tt@an 2

Figures 8.4a shows outputs 1 and 2 for patter@@tput 1 rises to a maximum value of 1
before dropping to its target of 0. This resuitsaidelay in the relaxation of the ARN
shown by the triple relaxation-pulse of output @sing the two pulse rule for relaxation
would have produced an error on output 1 if outhliad not caused the next pulse to be
generated. While this shows a possible problenm witly taking two pulses to show
relaxation, this technique is designed for a humoagxtract information out of the ABN

not as a component part of its operation. It atslicates a more dynamic nature than is

initially apparent, as shown in figure 8.5.

142

Owtput 1

2 pulses 4

Owtput 2
0
2 pulses 4

Figure 8.5a — ABIN-GA output pulse — indirect target acquisition tan 2

8.2.4 ABN, — Trained using a GA - Minimum Error Achieved

The majority of events achieved an error of 0, desptarget error of 0.5. The nature of
the ABN, results in an error increment proportional to maxn pulse-duration. Figure

8.5a displays an error of 0.1 for output 1.

Similar to ANN error, total error ggn) is the sum of pattern errors,{evhich are the sum
of node errors (. The node errors are calculated (target — outplihe values they can
take are increments of (1 / pulse-width), the tatamber of increments is (C), (see
equations 8.1). An LMS error is not required doejtiantisation. In the cases when an

error remained, it was due to a single node aniat

e = < COR C<|PW, equation 8.1a
PW

e, = e equation 8.1b

€ren = zep equation 8.1c

143

Owitput O

0 pulses 4

Output 2

0

0 pulses 4

Figure 8.6a — ABIN-GA output pulse —residual node error — pattern O

ABN,, behaviour is not straightforward and has been showt to be simple or
unidirectional in changes in output values. lufgy8.6a, it can also be seen that the target
of a node can be achieved and then lost if anathde forces it to continue pulsing. In
this example the relaxation time associated witden® causes the node 2 error. It is
possible that this is a result of the stop criterad the GA and if the stop criterion was
altered, this type of error may not occur. Thisswet serious enough to investigate in
detail at this stage, but may merit attention iuife work.

8.2.5 ABN, — Trained using a GA - Training Time

The training time (in generations) which produced aceptable solution fg&y < 0.5)
varied greatly. It ranged from 53 to 3263 and aged (mean) 553. Whether ageof O
was achieved bore little relation to the trainimgd. The system displayed a tendency to
achieve a low population average (mean) error; flactuated, with little change to the
fittest individual, then a sudden rapid improvementhat individual. This is presumably a
result of key values (in specific signal-pathwagsplving, this behaviour is shown in
figure 8.7d.

144

Average error of each generation

(4=}

2
a number of generations 288

Figure 8.7d — ABN-GA population fithess — error vs. generation.

8.2.6 ABN, — Trained using a GA - Signal-Pathway Strength

The hidden signal-pathways’ range always exceedatdf the output signal-pathways.
No consistency could be found in the ratio of hrdde output values. This shows that
there are a great number of possible solutiondhéoproblem presented. The average
(mean) range for the hidden signal-pathways was(¥&6fBto +63) while for the outputs a
range of 37.7 (-27.1 to 10.6) was evolved.

8.2.7 ABN, — Trained using a GA - Noise Tolerance

The performance of the evolved ARMBAs were tested with noise to assess their
generalisation ability. The type of noise used \weagportional and exact as explained
below.

Proportional and exact noise was defined as damaguery data unit by the same
proportion of the possible range that unit can taiher than a random value. For
example, a pattern with 5% noise would have a datshowing a value of 0.95 instead
of 1.0 and a data unit of 0.05 instead of 0.0this is increased to 10%, the values would
become {0.9,0.1}.

This type of noise is used as different data umige different importance in the ABNS’
ability to recognise a pattern. If, for exampl®%d random noise is applied to patterns this
may result in not affecting these data units anegithe network an appearance of noise
tolerance. Then if 5% random noise is applied soe critical data units are damaged,
the ABN cannot recognise the same pattern and sacdmparison of noise tolerance
becomes redundant. Therefore noise proportionaityl exactness allows a strict

145

comparison of noise levels by avoiding differerdidong of critical and non critical data

units.

Examine the following diagram. The undamaged T kback shown at the left and right.

Beside each is a damaged version of itself, biltascentral pattern a T or an 1?

Figure 8.8 - Progressive damage to patterns

8.2.8 ABN, — Trained using a GA - Results of Noise Tolerance

Like many experiments in this field, there is tleggmtial to generate enormous quantities
of information, so the reporting is restricted he important information from several new

events (only those where a specific % of noisedradffect on performance).

The first event (successful iteration of the progy@&xamined noise from 0% to 50% and
reported noise at 0% (undamaged) then 45%, 4696@%d(all data units identical).

The ABN,-GA showed very good noise tolerance. As the nwige increased (1% at a
time) to 45%, all patterns were still recognised #mere was no increase ipsg (which
remained at 0.1). In practical terms, the ABSA recognised all patterns and remained
confident in its outputs. At 50% noise all datatsirare identical, with values of 0.5
(effectively 100% damage). Therefore, a completeunity to 90% damage is very good

performance.

When the noise is increased to 46% there is aaritailure, and gn jumps to 6.0 (out of
a maximum 16.0). The effect of this is that onlyeopattern is recognised (this is
accidental, as at 50% noise the pattern remainsgneged and is the default network
output).

146

Critical failure is extremely poor in engineeringrmhs as there is no warning of the
system’s performance degrading. A gradual degi@uas a strength of connectionist
approaches. Figure 8.9a show the comparison betthee45% and 46% noise for pattern
0. Figures G7 to G9 show the comparison for tiheareing patterns.

Evaluated output for each node Summery Evaluated output for each node: Summery
1 1
Pattern 0 Pattern 0
Cutput 0 Orrigional With 45 Noise Cutput 0 Orrigional With 46 Noise
’ " INEH ; " B
0 pulses 2 0 pulses 2
1 1
Target Output Error Target OQutput Error
1 1 0 1 0 1
Cutput 1 0 0 0 Output 1 o l @
0 0 0] 0]
a 0 0 0 0] 0]
0 pulsss 2 0 pulses 2
1 1
actual values actual values
pulse pulse
Output 2 output 0 12 3 Output 2 output 0 1 2 3
0 0.5 011] 0.5 000
1 5
0 1 05000 0 1 0.5 01|11
0 pulses 3 2 |os0|00 0 pulses 3 2 |os 0|00
’ 3 |os0{00 1 3 |05/0/0f0
Output 3 Output 3
] 0
0 pulses 2 0 pulses 2

Figure 8.9a — ABIN-GA output pulse - noise 45%,46% — pattern O

The patterns for 45% noise show how little inforimatthe ABN,-GA requires to
recognise them. Unfortunately there is no indarathat failure is imminent and occurs at
46%.

A second event (complete implementation of the AB3borted an gy of 0.1 for noise of
0%. Noise tolerance remains unchanged until 15kerevthe ABN-GA fails on pattern

0, this shown in Appendix G, figure G.10.

Noise is increased, at 25% pattern 0 is misrecegras pattern 2, and at 26% noise pattern

3 is miss-recognised as pattern 1; these are shoviigures G.11. Once the noise is

147

increased to 36% pattern 3 changes to be misresedjris pattern 2. Once noise reaches
46%, there is complete failure and all patternsideatified as pattern 2. The result of this
is that the ABN-GA is still undergoing a critical failure; howevér affects patterns

differently.

A third event is described to give an example ddrefitting. The previous two events took
646 and 1291 generations respectively to achieveran of 0.1. This event took 2680
generations to achieve an error of 0. Once thsenaias raised to 5%, there was a failure

to recognise pattern 1, (see figure G.12).

In ANNSs, overtraining has a detrimental effect amise tolerance. It appears that the
ABN,-GA suffers similarly. The work on McCulloch-Pitsd Taylor Series networks in
Chapter 5, examined overtraining and showed thaihgst the affecting factors is training

time.

An examination of ABN-GA parameters’ tolerance to noise was thereforderiaken,
and showed that the output function through thampatern - had no effect; the variable of
leaky integratioru —also showed no effect; finally the signal quaaite was examined -

once more no improvement was found.

The only difference between the ARNGAs which showed different noise tolerance was
their signal-pathways. Therefore the problem nhestassociated with these parameter
values. This leads to the next experiments whardBN,, was trained with a derived
Backpropagation Algorithm and compared againstnail@ ANN. This training was
chosen as the GA is a global search algorithm amdfiad local minima (which may be
very different solutions to the same problem), @hiie BP is a gradient descent algorithm

that seeks the globally minimum solution.

148

8.3 Pulse-width modulated ABN, — Trained with BP

The pulse-width modulated ABN has been shown tckwwgll in pattern recognition tasks.
The main remaining problem is its critical failuresome or all patterns when the noise
reaches a high enough level. A specifically detiBackpropagation Algorithm would
allow an examination of noise tolerance in a wabicumented environment and a

comparison against an equivalent ANN.

This next section presents the problems overconpedducing such an algorithm and the
algorithm used. The abilities of an ARNrained with such an algorithm, are then given.

8.3.1 Problems with ABN, Backpropagation

The two major problems with ABNBackpropagation training concern quantisation and

credit assignment. In addition there is a minafgrenance restriction due to quantisation.

The first problem is related to quantisation thedult in a high error, @n. When the
algorithm was implemented, the ABNyppeared to train with a reducingg in a manner
which resembled gradient descent and indicatedtampt to fit the problem; however, the
initial eagy range of (8,12) reduces to a range of (2,4) awmdvsmo further improvement.
From the previous section on ARMGA it is known that this is not the lower limit.

Through code and output analysis at each stagertiidem was identified.

In Appendix C, the equations for backpropagatiom given. These can be applied to
ABNy, nodes in an appropriate manner. Equation 8.2sdive standard delta calculation
for an output noded”, designated,. This factor is related to the node errgiaad node

target and node output, and allows appropriate ggmim the connecting signal-pathways.

J, =out, [{L-out,) [{target, —out,) equation 8.2

149

A similar term is required for the hidden nodethis case node “A” and this is given as

equation 8.3. This is the credit assignment portibbackpropagation.
J, =out, [ﬂl—outA)[Qa'L7 Wy, +9, EWAﬂ) equation 8.3

The problem noted as above regards the occurreh@eop 1 values. With the use of a
sigmoid type function, (equation 8.4a), these arkkely to occur and will only do so if

the magnitude of the sum value gets so big tHastto be rounded to 0 or 1.

_ 1 .
Output= W equation 8.4a
1 :
Sum=-In -1 equation 8.4b
Output

It can be seen from equations 8.2 and 8.3 théteifoutputs oytor oufy ever produce a 0
or 1 value, then the associated delta tésrr 5 will also be 0 which results in a 0 change
in signal-pathway strengths. This usually occutsemv the target has been achieved,;
however, there are two situations that can causkel& of 0 when training has not

completed.

Theoretically, a delta of 0 can occur in an ANNaifmaximum g is produced; this is
usually extremely unlikely and should be resolvdeewdifferent patterns are presented. If
it does occur, it may be due to computational rangnd In an ABN,-BP, maximum g
may be caused by quantisation. If this occurg) #agy will not improve at all, but as it is

clear that it can with the GA, this can be ruled ou

A delta of 0 may also occur in the opposite situgtithat is a minimum .efalsely
occurring. In this case, thegg will reduce prematurely and suddenly stop. Thishie
problem that actually presented itself in ABBP training. In an ANN, this will only
occur if the sigmoid value is rounded due to corapahal requirements. In an ABNit

may be caused by quantisation.

150

The solution in an ANN is to use sufficient decinpddces. An ABN operates using a

different method; increasing accuracy can be aelidw increasing the number of ticks
that the pulse-width contains. So a pulse-width®ticks can only produce values of one
decimal place. Obviously relying on large pulseations increases computational

complexity in the ABN.

This hypothesis was tested by implementing a pwisia of 100 ticks. The targets were
altered to {0.1,0.9}, (replacing {0,1}). The firsattempt immediately produced a
successful result in 156 epochs. However, subsggwents were not always successful
and the ABN-BP became stuck at unacceptable errors as befdtes improvement
showed that the solution may have been found batstith suffering from the quantisation
effect. As this problem was solved with an ABSA, of pulse-width 10 ticks and targets
{0,1}, these observations do not indicate that abile solution has been found. When

tested on noise, the ABNBP showed no difference in performance to the AEBA.

Given the improvement and conflicts explained abavevariety of pulse profiles were
assessed. As each was examined the sigmoid owgmitanalysed graphically, (figure
5.7). This showed (due to quantisation) that thgputs {0,1} occur when the sum value
exceeds +2.197 for a pulse-width of 10 ticks anekrvthe sum exceeds +4.596 for 100
ticks, (equation 8.4b). As the Sum in an ABN isamtumulation value, this is a very

small range of operation.

A solution was attempted that took into account shape parametes, (equation 8.5).
From figure 5.17 this can be seen to stretch tihhgeaof SumS over which an output
between (0,1) is produced. The ABBP with aPW of 10 ticks and targets {0,1} trained

successfully (once the second problem was als@dplv

Output= equation 8.5

1+ e—(Sun)/p

As the quantisation effect of ticks causes a raumdo 1PW decimal places, this resultes
in O delta values occurring when the node outpatewithin 1PW of the target or (1 -

target) for targets {0,1}. The use pfllows the deltas to take smaller values.

151

Various values fop were examined, both relating to pulse width arkdntaa constant
value. As a mathematical rule,should be less than the pulse-width, to allow filie
range of outputs to be produced. For practicappses, a value of 2.5 to 10 proved

successful.

The second problem with ABNBP is related to problems with credit assignmeihe
credit assignment problem was first identified bgnfiel [1951] and described as a
fundamental problem by Minsky [1961], to which aesific theoretical solution was
presented by Minsky and Papert [1969]. The trairatgorithm for this specific solution
was given by Rumelhart, Hinton and Williams, [198@ee Appendix C). What must be
basically considered is;

In a multi-layer network, how much does each hidaieih contribute to the error of

each output unit ¢g) that it connects to.

In the system presented and solved by Rumelhait,d1986], the signal and error were in
the static domain; in an ABNthese are both multi-layer and multi-dimensiomalthe

time-domain.

In a MLP-BP, the pattern presented instantaneguslguces the outputs and errors. All
the information required for each neuron is knoasthere is a single (sum, output) pair to
assess. In an ABJ the pulse from a node evaluated at times the result of the inputs
accumulated over a time-periag., Due to the effect of quantisation and leaky-
integration, asn increases the effect of the inputg,at decreases. Therefore, the solution
considered the inputs frotg;. (This is not the complete solution, but is st at this

stage. This point is also addressed in furtheikjvor

152

The solution is as follows:

1. The ABN has relaxed at ting when each output node has produced a puldgch is
the same as the previous pulseThese values are used to calculate the reledptit
delta values.

2. The error share for the hidden nodes is calculasetthe sum of the deltas for the output
nodes multiplied by their signal-pathway strend#sin standard BP).

3. Then the delta values for the hidden nodes arelledbzl. However, the current output
from the hidden nodes, pulsdéas not yet reached the output nodes. It iptbeious
pulse.; that must be used (this is the difference fortittne-domain).

4. The output signal-pathways can be adjusted usiagotitput deltas and the outputs
from the hidden layer at tintg ;.

5. The hidden signal-pathways are adjusted in the saamner as the outputs; however,
this depends on what type of unit connects to thérthere is a previous hidden layer,
then the pulse; would be needed, if they are input nodes (whiandse repeating

pulse) then any pulse values can be used. Thes Fbtion is far easier to implement.

153

8.3.2 The ABN, Backpropagation Algorithm

The equations for the ABNBP algorithm are presented; they have the samer lay
relationship as the equations given in Appendia@] relate to an ABNwith equivalent
topology. This assumes that ABMBP nodes use a logistic sigmoid function, as

implemented in this thesis.

First, the deltas for the output nodes are caledlat

0, =out,, E(ﬂ— outa(n))[ﬁt arget, — outa(n)) equation 8.6a

0, =O0Uty,, [Ql—outﬁ(n))tﬁt arget, —outﬁ(n)) equation 8.6b

These are used to calculate the new signal-patswaggths'.

Sha = Saq +1708, [OUL, equation 8.7a
Sga = Sgq 11D, UL equation 8.7b
Sca = Scq 171D, OUL,) equation 8.7c
Sps = Sag +171 1D, bUt, equation 8.7d
Sgp = Sgp +17 D, [OUL, ;) equation 8.7e
S¢p = Sep +11 D, [OUL, equation 8.7f

The deltas for the hidden layer are calculated.

Op = 0Uty g E(ﬂ— outA(n_l))Eﬂda (W, + 9, DNA/,,) equation 8.8a
Og = OUtg,y) E(ﬂ— outB(n_l))Eﬂda (Wg, + 9, DNB/,,) equation 8.8b
Oc =O0Ute, 4 E(ﬂ— outc(n_l))Eﬂda e, +9, chﬁ) equation 8.8c

These are used to calculate the strength of theehigignal-pathways; however, as the
outputs from the input nodes remain constant wiiéedata pattern is presented, there is

no need to calculate a pulseat

154

Soa = Soa +17 5, [OUL,
Sta = Sea +111D, [OUL
Sta = Scq +171D, [OUt
S/:A = SAA +,7 []5A |])Ut/1
S,z =S, +17 [[Out,

Sic =Sy +/7 B [out,

This completes the training for one data patteas@nted to the ABN

155

equation 8.9a
equation 8.9b
equation 8.9c
equation 8.9d
eguation 8.9e

equation 8.9f

8.3.3

The ABN,-BP was presented with the same problem and pagasnas the ABN-GA.
The interface was enhanced as shown in figure 8.12.

Select

Results

pattern 0

pattern 1

pattern 2

pattern 3

pattern 0

pattern 1

pattern 2

pattern 3

epoch

T

initial

i

trainied

Performance of ABN - Trained with BP

=10l x|

Output 0

Cutput 1

Cutput 2

Output 2

Evaluated output for each node

pulses

pulses

pulses

pulses

Summery

Pattern 0

Orrigional With 0% Hoise

" "

Target Output Error
1 1 0

o o]
o o o
o o]

actual values

pulse
output 0 1 2|3 4 5 87
5/03/08(09 1|1 [1[1
50z 0 0|00 o0
5/0.2(01(0.1|0.1| 0 (0|0

o o o o

o
1
z
3 510201010101 00

Evaluated output for hidden node|

1

Output 0

1] pulses 7

Cutput 1

0 pulsss 7

Cutput 2

0 pulsss 7

The signal-pathway strengths (pre and post tra)ramg recorded, in the ABNGA there

Figure 8.10 — Interface for ABNBP

was a family of individuals and so pre-trainingued were omitted. The hidden node

outputs are included; they were examined for thenfdation of the ABN-BP algorithm.

The number of epochs to reach the target erroacepl the number of generations. The

interface shows a successful training event outpfigures 8.11 and G.13 to G.21, some

screens are cropped due to size.

156

8.3.4 Comparison of ABN, — BP and ABN, — GA

This section refers to specific training events kghexamples are shown - many events

were assessed to ensure the ones reported acguediett system performance.

Evaluated output for each node Summery
1
Pattern 0
Cutput 0 Orrigional With 0% Noise
; "
0 pulses 4
1
Target Output Error
1 0.2 0.1
Cutput 1 0 0 a
0 0.1 0.1
o 0 0.1 0.1
0 pulses 4
1
actual values
pulse
Output 2 output o 1 2 3 4
0 05 0207 0909
R >
o 1 0502 0|0 |0
0 pulses 4 2 |05(02 01|01 01
1 32 |05(02/01/01/ 01
Cutput 3
0
0 pulses 4

Figure 8.11a — ABN-BP output pulse — pattern 0

157

Output for each node of pattern 0

Output 0

o ticks 48
1
Output 1
o
o ticks 48
1
Output 2
o
o ticks 48
1
Output 3
o
0 ticks 42

actual values

tick
output 0 12|24 5 & 7 & 9 10 1112 13|14 15 16|17 18|19 20 21| 22 23| 24 25 26| 27 28|29 30 21|32 33 24| 35 36| 37 38|39 40| 41|42 43| 44| 45 46| 47| 48 49
o 1(1(1|1|1(0joj0|jOjO|1|1|0|0|O0|D|O0|O|OQ|O|1|1|1|1|1|1|[1|0(fO0|O(1|1 (11|11 |[V[1|[1|0[1|1[1]1[1]1[1]1[1]0
1 1/1{1/1|/1/0/0/0/O/OD/1 /1|0 OO0/ OO0 OO/ OD/O0O/ D/ 0O/ OD/0O/OD|OO|(OO(O/O|(O/O|(OD/O|(D|/O|D|O|(D|O|(D|O|D|O|(D|0D|D|0O
2 1/1(1/1/1/0/0/0/O/OD/1 /1|0 OO0/ OO0/ O/ O/ OD/1 O/ 0O/ OD/0O/OD|(OO(OOf(1 O(O0O O|(OD/O|(D|/O|D|O|1 | O|(D|O|D|O|(D|0D|D| 0O
3 1/1(1/1/1/0/0/0/O/OD/1 /1|0 OO0/ OO0/ O/ O/ OD/1 O/ 0O/ OD/0O/OD|(OO(OOf(1 O(O0O O|(OD/O|(D|/O|D|O|1 | O|(D|O|D|O|(D|0D|D| 0O

Figure 8.11b — ABI-BP output ticks — pattern O

An examination of the ABMBP output pulses, (figures 8.11a and G.13 to Gari] their
associated output ticks, (figures 8.11b and G1&18), show two immediately obvious
differences to the ABNGA.

Firstly, the ABN,-BP takes more pulses to relax. This is a featia¢ can be reduced;
however, it may be evidence that the ABBIP is more robust. This theme is developed

later in noise tolerance analysis.

Secondly, the gy is contributed to by multiple,evalues. Previously, allagn were
loaded onto a single node and pattern. Theserelifées are related, in that spreading the
error around the connections appears to give aehigbise tolerance, as was seen in
Chapter 5.

158

The nature of BP is to implement small changesignat-pathways, individually and
progressively moving the,dor each node-pattern towards the target. Thiseamses the
likelihood of achieving the target error withouafeng past it, as a GA is prone to do. The
residual ggn is therefore spread around the ABRP, not concentrated in one particular

area. This error distribution is a feature of ggederalisation.

Evaluated output for hidden node

1
Owtput O

0 pulses 4

Cutput 1

0 pulses 4

Output 2

a
0 pulsss 4

Figure 8.11c — ABN-BP hidden nodes — pattern 0

In the hidden node outputs, (figures 8.11c and @I10.21), the last pulse output does not
reach the output nodes before the ABi¢laxes. All the hidden nodes have relaxed to a
range of [0,1]. This indicates that the hiddene®dre performing a recognition function,

not just echoing the inputs, and that backpropagasi making use of these values.

159

Hidden Weights Output Weights Rescaled Hidden Weights Hidden Weights Output Weights Rescaled Hidden Weights
1 4
node 0 > node 0 2
1 1 4 4
1 0 -5
node 0 0 node 0 node 0 . node 0 .
1 4
1 = -
1 5
node 1 2 node 1 o
1 1 4 4
1 0 0 ® 0
node 1 a node 1 node 1 node 1
1 4
1 i -
1 . o 5
node 2 node 2 2
1 1 4 4
1 g 0 * 0
node 2 2 L 2 node 2 node 2
1 4
-1
1 o g 5
node 3 node 3 o
1 1 4 4
0.6 1 0g . 0.8 . 08
trained range trained range trained range 0 0 -5 trained range 0 0
Vs : g - w5 E g - VE 0.8 WE 0
omigional range 0.6 1 omigicnal rangs 0.8 omigional range h 4 omigional range -
0.8 . 0.8
-1 trained range o 0 A -5 trained range o g -5
Vs vs
omigional range g omigional range 0.8
-1 -B

Figure 8.11d(i,ii) — ABN-BP pre & post training signal-pathway strengths

The signal-pathway strengths, (figures 8.11c), antdor the functional difference of the

ABN,-BP when compared to the ABNGA. Initial values and then the trained values ar
shown. In contrast to the GA, the hidden valuessanaller than the output values - this
was consistent over several events. Importantly,ttained values are far smaller than
those found by the GA.

Another observation is that if several ABBP are trained to the same error, then they
always finds the same (or very similar) signal-path strengths; however, these are not
necessarily assigned to the same nodes. Thisamfhat the ABN-BP is finding the
global-minimum solution to the problem, while thaBR-GA is finding local-minima

(some of which may be magnifications of the glotméhimum).

160

epoch error

(=]

€aBN

Figure 8.11e — ABIN-BP — error vs. epoch

The improved error minimising of the ABNBP is shown in figure 8.11e. This emulates
the classical and gradual reduction igne of gradient descent. The spikes that occur
during the descent may be due to the approximativaisare implemented, or may be an

exaggeration of known anomalies in BP (errors apable of rising in adjacent epochs).

8.35 ABN, - Trained with BP - Noise Tolerance

This section reports on the noise tolerance ofAB#&l,-BP. Some comparisons with the
ABN,-GA are made, however the main comparison is whih MLP-BP in the next
section. Examples are used from different evemitsch were tested to confirm that they

are typical performances.

The ABN,-BP was trained on two target errors {0.5,0.05}heTABN,-BP took 519
epochs to achieve angg of 0.4 with target 0.5, and 759 epochs to achavegy of 0.0,
with target 0.05. The minimumgy, due to quantisation, is 0.1 so the ABRP is forced

to over-fit.

The effect of noise on the ABNBP trained to targetagn {0.5} appears at 5%, far lower
than in most of the AB)NGA events; however, the error effect is disperagubngst the
nodes and patterns, (figures 8.12 and G.22 to G.2P4é¢ rise in error from 0% to 5% noise
causes graceful degradation, (observed at the buotmes), as desired, while the hidden

nodes are similarly gradually affected.

161

Evaluated output for each node Summery Evaluated output for each node Summery
1 1
Pattern 0 Pattern 0
Output 0 Orrigional With 0% Noise Cutput 0 Orrigional With 5% Noise
0 o
a pulses 6] pulses &
1 1
Target Output Error Target Output Error
1 1 b 1 0.8
Output 1 0 0 0 Output 1 0] o
0 o] 0 o 0
0 0 o 0 0 0 0.1 @
a pulses 8 0 pulses &
1 1
actual values actual values
pulse pulse
Output 2 output 0 | 1|2 2 4 58 Outout 2 output ¢ 1 2 2 4 =
0 050207090511] 0.5/02|0.6 0.8/ 0.9 09
. 1 0502 0| 0| 0|00 1 0502 0 0 0l 0
8 5| 0.
] pulses 6 2 05 020101 0|00 i} pulses 5 2 050201 0| 0| 0
1 2 05020101 0 00 . 3 |05/02 01010101
Cutput 2 Output 3
’] I [e
pulses © 0 pulses 5

Figure 8.12 — ABN-BP output pulse - targekg 0.5 - noise 0%,5% - pattern O

An examination of noise across several events pedithe results shown at figure 8.13,
where at specific noise there is an effect igne The individual pattern errors, are

shown.

—o— pattern 0
—o— pattern 1
---#-- pattern 2
— a— -pattern 3

[] - T T T T T T T 1
0% 5% 15% 25% 26% 36% 46% 5&0%

noise

Figure 8.13 - ABN-BP - target gy 0.5 - error vs. noise

162

The trained ABN-BP has an g\ of 0.4 at a noise of 0% (undamaged) and the error
increases progressively with rising noise. At 5@isa, three outputs, §0,2,3} degrade
slightly but there is no more damage until 15% eaihere g{2} is affected, and then at
25% noise wherep€e[0,1} are affected. At 26% noise two patterns affected; g {0}
improves, g {3} degrades. All g then remain unchanged until 36% noise where all ar

affected, and then until 46% where maximuigneoccurs.

Despite the rising &N, the ABN,-BP can correctly identify its inputs, performinigrsal

separation, at 45% noise when the input domaionstcained to 10% of its original range.

The effect of noise on the ABNBP trained to targetagy {0.05} is shown in figures 8.14
and G.25to G.27.

Evaluated output for each node Summery Evaluated output for each node Summery
1 1
Pattern 0 Pattern 0
Output 0 Orrigional With 0% Noise Output 0 Orrigional With 5% Moise
0 0
] pulses 6] pulses §
1 1
Target Output Error Target Qutput Error
1 1 0 1 e @D
Output 1 a a Q Output 1] o 0
0 0 0 0 0.1
o a 0 bl o 0 0.1
a pulses & o pulses &
1 1
actual values actual values
pulse pulse
Cutput 2 output o 1 2 2 2 §8 Output 2 output 0 1|2 3 4 8
0 |05/02/ 07090911 0 |05 02070808908
g 1 0502 0] 0|00 8 1 05 02 O)]] (1]
0 pulses & 2 |05/0201/01 0|00 D pulses § 2 |05/02/02 0101|041
1 3 050201 0 0 00 - 3 0.5/02|0.1/0.1/0.1/ 01
Cutput 2 Output 3
2 0
0 pulses & 0 pulses &

Figure 8.14 — ABN-BP output pulse - targeigy 0.05 - noise 0%,5% - pattern 0

The same examination of the effect of noise fos tABN,-BP as the previous one is
shown in figure 8.15.

163

—<o— pattern 0
—0o— pattern 1
---#-- pattern 2
— &— -pattern 3

[]_ T T T T T T T 1
0% 5% 18% 25% 26% 36% 46% 50%

noise

Figure 8.15 - ABN-BP - target gsn 0.05 - error vs. noise

The trained ABN-BP has an gy of 0.0 at a noise of 0% (undamaged). The efféct o
noise appears at 5%, as it did in the previous @i&mThe overall performance between
the ABN,-BP trained to g {0.05} and egn {0.5} is so similar that a comparison of

easn VS. noise, shown in figure 8.16, shows almostifferénce.

———target {0.5}
— -+ —target {0.05}

CABN

O __d T T T T T T T 1
0% 9% 15% 25% 26% 36% 46% 50%

noise

Figure 8.16 - ABN-BP - targets gy 0.5, 0.05 - error vs. noise

The initial advantage of the ABNBP trained to gy {0.05} over ey {0.5} disappears at

5% noise and performance remains slightly worsacése increases. This indicates that

164

training to the lower error results in an overifigt by the ABN,-BP. The network remains

highly noise tolerant with complete recognitior4&86 noise.

Hidden Weights Qutput Weights Rescaled Hidden Weights Hidden Weights Output Weights Rescaled Hidden Weights
4 5
& o
v v
node 0 : & node 0 g *
4 3 5 3
y . V'S
v v
E:]
node 0 node 0 node 0 g
B
K] -5

\

node 1
5 3

node 1 node 1 node 1
]
E:] o
node 2
5 3
E:] o
node 2 node 2 node 2
9 -5 9 0
node 3 . node 3
3 3 2 3
0.8 0.8 0e 5 0.8
. = :) ; .
trained rangs 0 0 trained range 0 trained rangs 0 0 trained range 0 0
s w3 s w3
P 0.6 - 0.8 e 0.8 e 0.8
omigicnal range 4 omigional range omigicnal range omigional range
- — 0.2 . - — 08
5 rained range 0 5 5 rained range 0
Vs Vs
omigicnal range 08 omigional range B
E:] -2

Figure 8.17 - ABN-BP - targets g\ 0.5, 0.05 - trained signal-pathways

If the signal-pathway strengths are compared, (Egt17), for the ABIN-BPs trained to
different targets, their values show similaritie¥he hidden signal-pathways are almost
identical, despite belonging to different nodeshey are matched between the ABRPs

as nodes {0,1}, nodes {1,2} and nodes {2,0}. While output signal-pathways appear
unrelated, if examined as properties of the hidaegae from which they connect, then they
too are almost identical. This is shown for thestfinode, the others match in the same
way. The original random signal-pathway has noial correlation. Therefore, the

similar end point came from different starting gein

165

These similarities in the pathway strengths are¢kalt of the nature of the problem. This
is a simple problem domain and results in only gledal-minimum solution local to the
initial random signal-pathway strengths. Netwottiegned to the same error are likely to
end up with the same weights, even if the startialgies are different. The ABNGA
produces vastly different pathway strengths bec#usesA allows for a global search in

the problem domain.

In the comparison between the ABIBP and the ABIN-GA, training time is a factor;
however once these networks are trained, the affgrehce is in values of their signal-
pathway strengths. The result of the larger sigadgihways of the ABNGA is that the
ABN,-BP degrades gracefully with noise, while the ARBSA suffers critical failures.
The ABN,-GA'’s larger signal-pathways amplify small changassed by noise and have a

greater influence on network performance.

The ABN,-BP’s ability to achieve low targetag while retaining noise tolerance and
graceful decay is compared with a standard MLP+Bfhé next section, as these later two

effects are usually incompatible.

8.4 Multi-Layer Perceptron — Trained with BP

A MLP was constructed and trained with the Backpggiion Algorithm as shown in
Appendix C. The MLP is of equivalent topology tetABNSs; 4 input nodes, 3 hidden
neurons and 4 output neurons. The input rangen®alised to [0,1], and the neurons use

a Sum activation and a logistic sigmoid output tiorc

The same patterns and target errors were presemted MLP-BP and its noise tolerance
was tested with the same values as used before.

8.4.1 MLP — Trained with BP - Memory Capacity
The MLP-BP and the ABNBP achieve low errors (gp or esn) With 3 hidden units

(nodes or neurons), producing a complete probldotisn. Both recognise patterns with

2 hidden units; however, their confidence is lolaese networks are unable to achieve a

166

low error. On various events, a network error gbraximately 2.0 was achieved. When
trained with a single hidden unit, neither MLP-B& WBN,-BP came close to a solution,
with an error of approximately 6.0. In both topgks, the ABN-BP can achieve a
slightly lower error by adapting quantisation effec

8.4.2 MLP — Trained with BP - Training Time

The MLP-BP requires many more training epochs &ehethe same errors as the ABN
BP and takes progressively longer as the tardetnisred. When a slopeg, is included in
the MLP-BP, training time increases further. Tisigo be expected, however it benefits

MLP-BP noise tolerance; this is addressed later.

network error target approximate

epochs to reach

ABN tick (10) 0.5 500
ABN tick (10) 0.05 750
MLP p (1) 0.5 1200
MLP p (10) 0.5 10000
MLP p (1) 0.05 90000
MLP p (10) 0.05 900000

Figure 8.18 - Epoch comparison

The advantage of the ABNBP increases as the target error is lowered. &\thi2 ABN,-
BP training time rose from 500 to 750 epochs, thd°’NBP p (1) rose from 1200 to 90,000
epochs. When a of 10 is set for the MLP-BP, training time increagroportionally, as
expected.

167

8.4.3 MLP — Trained with BP - Noise Tolerance

The MLP-BP and the ABNBP show high noise tolerance for this problem. e Th
differences are discussed on a case by case basis.

The ABN,-BP and the MLP-BP were trained with a target eob0.5. The ABN-BP
performance was shown in figure 8.13. For the MBEP1 <p < 10, equivalent examples
are shown in figures 8.19.

250
2.00 - r”’#.
~
—o— pattern 0
1.60 4 o
o —0o— pattern 1
-1
100 4 ---#-- pattern 2
— a— -pattern 3
0.50 +
DUU T T T T T T T 1

0% &% 18% 25% 26% 36% 46% &0%

noise

Figure 8.19a — MLP-BP (1) - target error 0.5 - error vs. noise

1.20

1.00 4

0.80 + ——— pattern 0
—o— pattern 1

& 0.60 - P

---#-- pattern 2

0.40 + — a— -pattern 3

0.20 ~

UUU T T T T T T T 1

0% &% 15% 25% 26% 36% 46% 50%

noise

Figure 8.19b — MLP-BB (10) - target error 0.5 - error vs. noise

168

Comparing figures 8.13 and 8.19 shows that whilewatnoise the ABN-BP produces on
average a higher error than both MLP-BP networlssthe noise rises the ABNBP
performance improves compared to the MLPyBRL). However, it remains poorer than

the MLP-BPp (10). Average errors are compared in figure 8.20.

1.60
1.40 A ,"‘:f
1.20
1.00
0.80 -
0.60 -
0.40 -
0.20 -

UDU T T T T T T T 1
0% 5% 158% 25% 26% 36% 46% 50%

noise

—o— ABN
—ao— MLP rho 10
---#--MLP rho 1

enend epcp

Figure 8.20 - ABN-BP and MLP-BP - target error 0.5 - error vs. noise

It appears that the ABNBP has a performance which is between the two BER: This
is actually slightly more subtle, at 25% noise, MeP-BP p (1) fails to recognise all
patterns, the MLP-BR (10) recognises all patterns at up to 44% noise,ABN,-BP

recognise all up to 45% noise.

The ABN,-BP performance when a target error of 0.05 wasssshown in figure 8.15.

Equivalent examples are shown for the MLP-BPp <10, in figures 8.21.

169

3.00 ~

280 1 L
d,jf
2.00 1
- —<>—pattern[1]
* —0— pattern
& 1.50 - i P
p -8 o ---#-- pattern 2
1.00 1 e L. L — a— pattern 3
0.50 - ’
UUU __. 1 ._J_'f-:.-"' T 1 T T T 1
0% 5% 15% 25% 26% 36% 46% 50%
noise

Figure 8.21a — MLP-BP (1) - target error 0.05 - error vs. noise

1.20

1.00 4

0.80 + ——— pattern 0
—o— pattern 1

& 0.60 - P

---#-- pattern 2

0.40 + — a— -pattern 3

0.20 ~

0.00 - .

0% &% 15% 25% 26% 36% 46% 50%

noise

Figure 8.21b — MLP-BR (10) - target error 0.05 - error vs. noise

Comparing figures 8.15 and 8.21 shows that at losenthe ABN,-BP, similar to before,
produces an average error higher than both the BIRB- As the noise rises, the ABN
BP and MLP-BPs behaviour is similar to that showrthe previous example. The error
changes in response to noise are more sudden doMttP-BPs. Average errors are

compared in figure 8.22.

170

—a— ABN
—o— MLP rho 10
---#--MLP rho 1

EnEN &ENLP
—
[
1

-'I-.-'#_{'_IJ—D_-'I_D/-I/ T T 1
D% 5% 15% 25% 26% 36% 46% 50%

noise

Figure 8.22 - ABN-BP and MLP-BP - target error 0.05 - error vs. B0is

The ABN,-BP performance still lies somewhere between the MiLP-BPs. Again, the
actual performance on patterns recognised is maipes At a noise of only 23% the
MLP-BP p (1) fails to recognise all patterns, the MLP-BRPLO) recognises all up to 36%
noise, as does the ABNBP.

8.4.4 MLP — Trained with BP - Summary

The ABN,-BP and MLP-BPs suffer a generalisation depredatentarget errors are
lowered indicating classic over-fitting. In tramgi time and recognition tests the ABBP

performs better than either MLP-BP and it is bedtegivoiding critical failures.

The ABN,-BP demonstrates excellent noise tolerance in tdeksMLP-BPs specialise in;
however, the MLP-BP can only be presented withdmalised signal (a snapshot of the
input data), while the ABNBP can receive a continuous signal that is reduiicr

interacting with real world systems, for examplgfiaral vision.

The comparison is also biased in favour of the MBEB-as it is allowed to operate

unrestrictedly while the ABN-BP is restricted in decimal places by the pulsetiwi

171

8.5 Pulse-Frequency Modulated ABN— Trained using a GA

A major change in the ABN was implemented for pdieguency modulation, (denoted
ABN¢g). The topology was the same as that of the gB&hd the network was presented
with the same pattern. The network was trained Benetic Algorithm, ABN-GA.

8.5.1 ABN: — Trained using a GA - Apparent Success

During the incremental changes in producing the ABBrformance was inconsistent with
apparently successful outputs changing to givergrroThis was due to the more
complicated behaviour of the ABNendering the relaxation criteria used for the ABN

unreliable.

The reason for inconsistent success was that the:A8 capable of producing the same
type of relaxation output as the ABN However, in other events when the network

appeared to relax, the pulses were part of a egtdibility output.

An ABNE therefore has two relaxed states. When a consgpaating pulse was produced,
this was taken to be the node value. When thesecyelic-stability then the average value
of all pulses in the cycle was taken as the nodetput; in some cases this was not

detected and a relaxed value was assumed fronytie c
8.5.2 Successful ABN— GA Implementation
The following figures 8.23 and G.28 to G.33 show fhrst successful event with both

relaxed and cyclic behaviour. Firstly, figures32and G.28 to G.30 give the resolved
ABN¢g output pulses. Secondly, figures 8.23b and G33.83 show the individual ticks.

172

1] pulses 4

pulses a9

pulses 4

Figure 8.23a — ABMGA output pulse — pattern O

Figure 8.23b — ABIN-GA output ticks — pattern O

173

When presented with a pattern, the 4 output nodedupe different numbers of pulses.
This is a result of the ABNhaving a variable pulse-duration. Examining tic& tount
shows that each pattern presented undergoes thetgantount, as every node continues
to pulse until all nodes have relaxed.

One consequence of the nodes producing the samieemwhticks, is that some nodes are
in mid-pulse when the last ABNhode relaxes, so that any partial pulse infornmatgo
discarded.

Cyclically-stable behaviour occurs in some of tleeles, see figure G.28 for node 1 and
figure G.29 for node 2. In the first case thera dear 5 pulse cycle with one pulse of 0.4
followed by 4 pulses of 1.0. This should give awpoit average (mean) of 0.808, however
the value was taken as 1.0, the relaxed valueeofatst two pulses based on pulse-width
relax. The second case is different; the cyclicesare (0.3,0.7,0.5,0.7) and this gives an
average value of 0.55 which is the value reportétis averaged pulse is added onto the
end of the pulse output.

The relaxed evaluation takes priority over the icystability. The results of which is
longer cycles or, for those with little fluctuatiotihe average (mean) value is replaced by

average (mode) value.

8.5.3 Comparison of ABN — GA and ABN,, — GA

The pulse-width ABN-GA was evaluated on four criteria; relaxation tjmmenimum error,
evolutionary time, and signal-pathway strength. | tie relevant ABN and ABN,
parameters were equivalent. These included 3 hiddeles, am of 0.9 and & of 1.0.

The target gsn was {0.5}.

8.5.4 ABN: — Trained using a GA - Relaxation Time

The ABN=GA continues to pulse until all output nodes haekxed. To determine
whether the ABN has relaxed, an extra pulse is required on siogtputs and an extra
cycle for cyclic-stability. These are an obserxeguirement, not an ABNrequirement.

Given this, an observation of the ABNhowed a range of (3,7) pulses (equating to 30 to

174

70 ticks) for an individual node and pattern, watihaverage in the range (3,4). The ABN
had a range of (38,93) ticks with an average of #Bis shows that the ABNoerforms in

a similar timescale to the ABN

8.5.5 ABN: — Trained using a GA - Minimum Error Achieved

The ABN, achieved an averagegg of 0.07 when pursuing a target of 0.5. The ABN
achieved an averagggg of 0.195. Both of these networks show a tendeooyer-fit the
problem.

8.5.6 ABN: — Trained using a GA - Training Time

The evolutionary training time for the ABNad a range of (53,3262) generations with an
average (rounded mean) of 553. The ABfdnge was (26,632) generations with an

average (rounded mean) of 305.

The ABN- trained in fewer generations when successful, kewevhile the ABN, always

found a solution, the ABNoccasionally reached the maximum permitted geioerabunt.

8.5.7 ABN: — Trained using a GA - Signal-Pathway Strength

Recall that for the ABIY, the average ranges were;

* hidden pathways 123 (-60 to +63)
* output pathways 37.7 (-27.1 to 10.6)

The ABN: produces;

* hidden pathways 118.8 (-48.6 to +70.2)
* output pathways 28.3 (-19.3 to 9)

As both ABNs have a similar range of signal-pathwalges, this indicates that a network

of mixed nodes may be possible.

175

8.5.8 ABN: — Trained using a GA - Noise Tolerance

Noise has greater effect on ABIderformance than on the previous ABNExamples of
noise effects are shown and discussed, (see fig.2dsand G.34 to G.41).

Evaluated output for each node

Cutput 0

0 pulses 23

Output 1

0 pulses

Output 2

a pulses

Output 3

0
] pulses L=

Figure 8.24a — ABNGA output pulse - targehen 0.5 - noise 0% - pattern 0

The pulse outputs show relaxed values, having vedddll cyclic-stability behaviour. The
overall performance illustrated, in figures 8.24wl &.34 to G.36, shows an error of 0.1

for pattern 0 and pattern 3, indicating a relaghahble performance.
The pulses are resolved from the ticks shown iaréd.24b. These are more difficult to

interpret than ABN ticks and give an example of the differing pult®am a node can

produce.

176

Qutput for each node of pattern 2

o ‘ ‘ ‘ ‘
u -- I O O O e e e e e e
0 ticks 51
'H

Cuteut 1 ‘ ‘
0 ticks 51
ik

o ‘ ‘ ““““ “““
ui --- R AR RRARRARAANRAAREAAEREARINESRAANAANAERAENAERARNANAEE
0 ticks 51
'H

Output 3 ‘ ‘
0 ticks 51

Figure 8.24b - ABIN-GA output ticks - targetsgn 0.5 - noise 0% - pattern 3

177

The ABN: is affected by low levels of noise, beginning #.5

Evaluated output for each node

1
Output 0

0 pulses 2

Cutput 1

0 pulses 4

Cutput 2

0 pulses 2

Output 3

a
0 pulses 4

Figure 8.24c — ABIN-GA output pulse - targehen 0.5 - noise 5% - pattern 0

The output from pattern 0 is shown in figure 8.2A%hen compared with figure 8.24a, it
can be seen that the ABMoes not recognised it. All other patterns amogaised with
no exsn change. This is similar to the critical failuteat occurred with the ABNGA,

however the noise tolerance is at a much lowel.leve

As noise increases to 15%gg reduces. The output for pattern 2, node 0 arsh@ws a
reduced time to relax. This is shown in figure8Gand G.38 and is a result of converting
a cyclically-stable output to a relaxed output @itern 3), resulting in faster relaxation

for the ABN: as the other nodes relaxed in fewer ticks.

The ABNk is unaffected by increase in noise until 25%. y&lic-stable output is produced

by a previously relaxed node, (node 1, patterm®hown in figure G.39

178

Various increases in noise affect thgse At 46% noise, the network is unable to
differentiate between patterns; at 36% noise, cybkhaviour occurs with extremely

variable in-cycle pulses, figures G.40 and G.41.

The effects of noise were tested on several exvammdsshowed that the ABNs far more
tolerant of noise than the ABN This may be due to the instability of the ABNcyclic-

behaviour.

The previous effect of the slopewas considered and tested. There was no nottbld e
on the noise tolerance of the ABI&A, which is in keeping with ABIN\-GA performance.
The maximum pulse-duration was examined to assessitigation. This is more
detrimental to the ABNSs training time, as it is assessed every ticknttmthe ABN,'s

training time.

8.5.9 ABN: — Trained using a GA - Summary

In general the ABN is capable of the same performance as the fBidwever, as it
produces cyclically-stable as well as relaxed owstpit produces greater variation in its
behaviour. As a consequence the ABMas a higher noise tolerance and is
computationally less demanding than the ABNTraining factors, such as number of
generations, favour the ABNSslightly. The similarity in signal-pathway behaur

indicates that an ABN of combined node types isitde.
Both ABNs are viable alternative pattern recogmitioetworks to the MLP. Their

advantage is that they can be used in time domaipblgms as well, while the MLP must

take a static view of time data.

179

8.6 Universal-Pulsing ABN

ABN success in pulse width and frequency modulg@iitern recognition is the first part
of a universal solution - ABN\ - in addition the production of a time-domain sibms
desired. For this thesis, a robot walking gaitetidomain signal was chosen, (in keeping
with the author’s research group’s area of expeErasd it represents a general wave-form

generation.

A walking gait is defined by the sequence of limbwements, the duration of each stride
and the speed of each limb movement. To do tmsteawork must produce a number of

pulse-frequency “spikes” (amplitude 1 values) angvin a time period.

A pulse-width signal could determine both limb sexee and stride duration; however, the
stride would move at constant (maximum) speed e duration of the pulse as the

amplitude is constant.

A pulse-frequency consisting of the correct nunmidfdrequency pulses at the correct time
would produce the correct movement. From the previsections it appears unlikely that
an ABN: node can be this responsive on its own.

The implementation co-ordinates a different pulséthvfor each gait and an associated

pulse-frequency. The co-ordination of the différiembs is an effect of the ABNwhich
consists of a mixture of the previous nodes anil tlagiants.

180

8.6.1 Walking Gait

In a quadruped walking gait, a single limb movesdatme. There are many possible
topologies for achieving any of the gaits, only ameequired here. This gait is achievable
in a three layer ABN. In the figure 8.25a, the limbs are shown as FRtfright, FL-front
left, RR-rear right, and RL-rear left.

FR

]
FL]
]
]

RR
RL

o a0 40 60) 100 120 140 160 150 200 220

Figure 8.25a — Walking-gait - layer 1 outputs

In this example the pulse-duration is 80 ticks.e Bheach nodes produce a control pulse-
width signal. If pattern value interpreted, frooptto bottom, the nodes produce evaluated

outputs of (0.25, -0.5, -0.25, 0.5). The pulse ganerate a leading 0 or 1 amplitude.

The second layer combines the layer 1 signalsyailp pulse separation. This permits

both a leading and trailing amplitude of 0.

FR
FL

|
]
RR 1
]

RL

o 20 40 &0 &0 00 120 140 160 &0 200 220

Figure 8.25b — Walking-gait - layer 2 outputs

This allows both limb sequence and stride duratmie produced by the ABN while

stride speed is still required. For this a pagediis required, (see figure 8.25c).

1
FR
FL !

1]
RR '
1]
RL 1
1]

o 20 40 &0 &l 00 120 140 160 150 200 ZE0

Figure 8.25c — Walking-gait - layer 3 outputs

181

It does not really matter when the pulse-frequefspeed) signal is integrated with the
pulse-width (duration) signal. In this example,ttard layer is used for a simpler

demonstration.

The walking gait is the most difficult to generat® it requires independent movement of

all limbs.

8.6.2 Trotting Gait

For a trotting gait, the limbs move in diagonallyposing pairs. Due to the limb pairing

and stride symmetry, this is a achievable in alayer ABNy.

FR
FL

RR
RL

) 15 30 45 60 I a0 05 120 135 150 165 150 195 210 225

Figure 8.26a — Trotting-gait - layer 1 outputs

This example uses a pulse-duration of 30 tickgu(e 8.26a). The nodes produce outputs

of (0.5, -0.5, -0.5, 0.5). The second layer presithe pace signal.

FR
FL

RR
RL L

o

[N

1
1
1
]

) 15 30 45 L) 3 a0 105 120 133 150 165 1&0 135 210 225

Figure 8.26b — Trotting-gait - layer 2 outputs

Limbs (FL,RR) move slower than the other pair, ’ps for every 8. This is caused when
there is an imbalance in pulse-width and pulsetieegy. Components of a biological
system would mask this with its more complex getn@masystem (far more pulses and
using thousands of ticks per second). This is wample of the trade off between
universality and functionality, placing too muchpgartance on single nodes. Increasing

the number of ticks in a pulse-width reduces theotf An alternative is selecting an

182

appropriate pulse-duration to include the missifigp8ise, figure 8.26¢. If more pulse
frequency nodes are included then the effect canooetered without having to adjust

pulse-duration, figure 8.26d.

FR
FL

RR
RL

16 32 45 Gd g0 EL) 1z 128 144 160 178 132 208

Figure 8.26¢ — Trotting-gait pulse - duration 3ayer 2 outputs

FR
FL

RR
RL

15) 45) I a0 105 120 133 150 165 150 135 210 225

Figure 8.26d — Trotting-gait — additional pulsegnency nodes - layer 2 outputs

8.6.3 Gallop Gait

The galloping gait also pairs the limbs, front aedr. The only animal with a true gallop
is the salt water crocodile as all other creatur@ge a delay between the paired limbs.

This gait is of the same complexity as the trothwdifferent timings.

FR
FL

RR
RL

|
]
]
]

(=S T R~

a 0 20 3040 50 &0 W &0 3 W0 10 120 150 40 150 160 170 1§00 130 200 210 220 230

Figure 8.27a — galloping-gait - layer 1 outputs

This example uses a pulse-duration of 10 tickgu(é 8.27a). The nodes produce outputs
(0.5, 0.5, -0.5, -0.5).

183

FR
FL

RR
RL

o ad a0 L. -

]
|
]
]

0 10 20 30 40 50 &0 mo a0 a0 100 M0 120 130 MO 150 160 70 130 130 200 20 220 230

Figure 8.27b — Galloping-gait - layer 2 outputs

The second layer provides the pace signal. Theiadaf this layer produces the outputs
in figure 8.27b. The same imbalance occurred wightrot recurs with the gallop; in this

case the front limbs move faster than the reais possible that this is actually required by
a robot. All quadrupeds do not have a symmetoatfrear body shape and therefore the
front or rear limbs may be more powerful/move dfedent speed to compensate. As

before this can be equalised with a change to miusation or additional frequency nodes,
(see figures 8.27c and 8.27d).

FR]
L
Rl
RL

o]

a 32 64 36 125 160 132 224

Figure 8.27c — Galloping-gait pulse duration 1dyelr 2 outputs

FR
FL

RR
RL

-

]
|
1
]

(=R R

30 B0 a0 120 150 150 210

Figure 8.27d — Galloping-gait — additional pulseginency nodes - layer 2 outputs

184

8.6.4 Universal-Pulsing ABN - Summary

All required locomotion gaits have been producedhgyABN, (using pulse-width, pulse-

frequency and their inverse pulse modulations).

The pattern recognition abilities of the ABNs acgiigalent to that of the MLP; however,
MLP networks have difficulty producing suitable #mdomain control outputs (for
example for pulse-width modulated motor control).

As Artificial BioChemical Networks can perform pah recognition, they do not require
other devices to construct a complete recognitimmi+ol system. Artificial BioChemical

Networks have inherently time-domain functionalégyd do not have this disadvantage.
They may therefore be trained to control the gafta simulated quadruped robot. The
robot uses servo motors to control limb movemedigue 8.28). These limbs have one

active and one passive degree of freedom.

@ Active (driven) joint.
Driven by motor and
gear arrangement.

Locking knee (stops

/bott om joint moving
forward).

Passive (gravity driven)
joint.

Bottom (free) part of
leg.

Figure 8.28 — Robot leg layout

This simulation has been used and reported mamgstpneviously. The dynamics of the
legs and the robot are fully reported by Muthurameaml., [2003] and McMinn [2002].
Figure 8.29 shows limb movements generated whendtvweork was evolved to walk. The
result corresponds well with the perfect patterpdeect pattern would have a repeat time
of 60 time steps and a movement from position §fotition 100).

185

105

A
S
/1
" &
100- [. \
[A
i F \
/ ;o
[,

\ ,'/\\
\ "
[/ | \ / i /\ N\
/ / \ /A \ /
951 \ / \ | T o
fov) VA N R A \
o |/ (VA L/ Vi L
g | \/ / \/, \/ \/ \/
E 90 /\\ \ ¥ \< >\ K/ /
\ h !
VAN R AL A
\ | S U WY \ /
& \ / \ \\ \ ! \ / \ /] /
/ Vo \ Y / \ / \ i
VIRV RVIRVIR WY
80 v Y \f Y \ / v
\

75 | I I I | I I | I
0 20 40 60 80 100 120 140 160 180 200
System time steps

Figure 8.29 — Movement pattern of legs

8.7 Modular ABNs

The abilities of ABNs to perform pattern recognitiand produce time-domain signals
show that they are as functional as ANNs. ABNsehidne advantage of being able to use
both time-domain and spatial-domain data. Thissgmés an alternative approach to
connectionism. In addition, these behaviours aréopmed by the same unit types and the

same topology type. ANN functionality typicallyroprises different units and topologies.

Modular ANNs have been extensively researched byatithor's group, as in McMinn
[2002] and Muthuraman [2005] and have demonstratepabilities beyond that of
individual ANNs. ABN modules have been connectagkther to produce a control signal
response to a recognition data input.

The ABN modules can be connected in the same maaiekNN modules, which is
straightforward. Outputs of a pattern-recognithBBN are the inputs of the control signal
ABN, (figure 8.30a). If specific recognition outsuare suitable as control module inputs,
either the recognition module is trained with nangets or a translation module is placed
between them, (figure 8.30b).

186

recoghition cotitol

efvvitortettal module o dle output signals
patterns
NN] 1 a8 01

-,
pess I ey =

o=
[us]
=
L
=
[us]
=
L J

1to 1l signal pathwrays

1101 signal pathorays module to module

ervironment to maodule

Figure 8.30a — Recognition - control modules ABN

In the two module ABN system, the environment inputs are continuousassgof fixed
but different amplitude. The recognition modulepais are produced as time-domain
pulses. These are a combination of pulse-width @rde-frequency, depending on the

nodes utilised. They arrive as control ABMputs with time-domain behaviour.

When the control ABN inputs are of fixed amplituslet time variable, they are normalised
by the input layer of the control ABN. Therefoecend and later modules in the system
receive information in the format that their indayer would expect for environmental

inputs. This can cause problems with cyclic betsavand so a translation module is used

which produces the control output values.

" tratislation
) recognition cottrol
efrvitofmettal modile module T outpt signals
patters ::
111 11 —3 ST
J— Il BN BN N . B BN BN E
' T .) et J— R
) ABN . ABN ABN w

1to 1 signal pathwrays

. module to module
1to 1 signal pathways 1tol signal patboerays

errrirontment to moduale module to module

Figure 8.30b — Recognition - translation - contradules ABN
In the three module ABN system the operation remains consistent, howeker t

recognition module output, with variable pulse-widtnd amplitude 1, is translated to a

constant output of amplitude (0,1).

187

The difference between these module arrangemetitstigshe first produces a signal that
was relaxed for the first module before it was p#ed to progress, while the second
allows the ABN, system to relax as a whole. The second is pegfeas it is unsupervised
free in determining signal progression; it is thethhod implemented in this thesis.

8.8 Summary

The ABN systems discussed in this chapter are a mad different approach to
connectionist Al. Instead of a neural networksidakey model the chemical signalling
within cells. Of course, as observed, such sigrmglies at the root of neuron functionality

also, as the neuron is itself a cell.

The retention of generalisation and universalitydeacussed by Capanni et al., [2003]
affects the ABN performance in pattern recogniteomd control systems, allowing for
graceful decay as noise increases. Such “fuzzgenainty is far more stable than a
system that performs longer with higher accuraenttindergoes critical failure with little

warning.

With regards to mobile robot operation there isuacfional advantage of ABN pattern
recognition. Most pattern recognition is achievéd vitro” where time is not a

constraining factor; here “snapshot” pattern redogm can be utilised. In an artificial
organism that has to adapt to its environment firo'vthen an ABN information flow

pattern system can assimilate information as ieapp

The implementation of universal ABNs allows a sengpe of intelligent unit to perform

all the operations of a modular Al used in robattcol, and can be encoded as part of the
evolutionary algorithm. This can be achieved withan operator placing specific units as
shown in the systems presented by Muthuraman [20Bbihese he noted the importance
of unit functionality without which (depending ohet module purpose), specific units are

required.

The ABN approach detailed here has several advesitay simplifies the design of time

dependant outputs which, in turn, allows the shiggward implementation of Central

188

Pattern Generator networks in robots, pulse-widtduhation for motor control and other
similar systems. However, the ABN networks areadlgguat home in traditional pattern-
recognition tasks. They also allow systems to beebbped which behave in many

respects like spiking neuron models, but withoetdabsociated complexity.

Finally, ABNs may be trained using traditional madk and are suited to the development

of new methods based on known training algorithms.

189

Chapter 9
Further Work

9.1 Introduction to the Chapter

There are five main topics in this chapter. Fygsthreas of exploration from the
development of the Taylor Series networks. Seggniavestigations into Artificial Neural
Network functionalities that were observed during TS research. Thirdly, memory in
connectionist networks. Fourthly, outstanding exgtion in Artificial BioChemical
Networks. Finally, combinations of TS and ABN teitfues.

9.2 Taylor Series SLT and MLT

The problems presented to the Single-Layer TaykieS network were solved witH?3
order TS neurons, and increasing the order beyloisdyave no advantage. One direction
for further work would be an investigation into raadifficult problems, to assess if'4

order (or higher) terms can prove an advantage.

Firstly, the relationship of these results shoudddompared with the known advantages
that 3° order SLT networks show ovef® If higher order terms continue to show little or
no effect until the network has achieved a low erfzen an algorithm could be developed
to perform initial training on °i order terms and only introduce the higher ordeys a
training improvements decrease. These higher aeetens could be initialised with a

weights range based on observing the trained sfadach networks (as they may have a

different profile).

Secondly, there is also the influence of the faatativisor to consider. These factorial
divisors reduce the influence that their weightyave. As it is, aorder weight has ¥4
the effect of a '8 order weight of the same magnitude. Given theacyins of ANN
training, it may be possible to discard this diviand to allow the weights to accommodate

the effect, with an appropriate initialisation step

190

Thirdly, any advantage of a divisor could be assg@sgainst the training overheads of the
additional computations entailed. This is basedhenobservation that once a network is
trained, any divisors could be incorporated inteirttassociated weights before use. This
would remove any later computation on these digisord network performance would be

identical.

The proposed research on increasing orders of pawdr regard to training time
improvements should also take into considerati@ndtfiect of noise tolerance given any

changes in network training performance.

9.3 ANN Performance — Noise, Targets and Validation

In general ANN performance, the advantages of ntossrance, with regards to target
setting have been well demonstrated. These meditianal investigation. ANNs have
been extensively researched and there is considenaisk by other authors in this area;
however, subject to a literature review, a closeklat pattern-target relationships with
regards to noise tolerance and overtraining wowdnborder. This would be evaluated
against validation trained networks.

9.4 Displaced Equilibrium — Memory in ConnectionistSystems

As part of the project work in the thesis, a systeas investigated where an ANN was
evolved to achieve a partial success in a probl&ire particular problem was to associate
different walking performance with input parameter3his evolutionary training was
equivalent to the hard-wired biological componegierred to as “genetic memory”, which

allows organisms to survive in their initial enviroent.
The next phase was to introduce a learning algaritiat would minimise the error in the
environment to achieve efficiency in walking. Thiffered from most learning algorithms

in that the ANN learned while it performed.

The algorithm made use of several components tlea¢ wvolved variables. A learning
rate amplified any changes. A Hebbian (and anbdin) variable affected any active

191

connections. A synchronous variable affected awmjiva connection when other
connections were also active while a mediated dmutton affected a connection (active or
not) if associated connections were active. Ad#iemical feedback acted as an error to
the entire ANN.

When this was implemented, the ANN was able to tioncon introduction to the

environment and adapt to its maximum efficiency.

Once the input parameters were altered, to simalatéferent walking environment, the
learning algorithm allowed the ANN to adapt to thew environment as well, through
altering its connection values. |If the input changas too great (such as a radically
different environment) then the ANN was unabledazt.

Once the ANN was returned to its original envirominéhe learning algorithm adapted the
ANN once more. This returned the connection valoethe same as before, hence the
term “displaced equilibrium”.

There were two observations that prevented thikvimm being included in the thesis.
Firstly, a type of artificial amnesia developeds the connection values shifted from one
environment to another, some were permitted tokbadeature of the algorithm). These
broken connections were never reformed and the Addisipted by finding alternative
solutions to a retuned environment. Eventually, neany connections were lost and the
ANN could no longer adapt to changes. This is aotendpoint for this research, as
adaptations to the original algorithm or connectiormation could be used. Although it
had been decided at this point that this was aflirect benefit to the project, future work

in the area was considered worthwhile.

Secondly, when compared to biological systems therains a problem in that the entire
ANN is involved in all its activities. That a fyllconnected system is limited in
development was observed and supported by the mggoork of the research group in
modular networks. It was therefore decided that thsearch should be later assigned to a

modular development.

192

9.5 ABN Design

As the ABNs were introduced as a new concept, uariopportunities for explorative
research presented themselves during their cotistngevhile not an exhaustive list, those

that showed potential are included here.
9.5.1 Topology

To allow comparisons, the topologies of the ABNseweonstructed in a similar manner to
ANNs. These ABN topologies are fixed structured da not permit adaptable changes in
topology whereas biological systems do, both dumitgal development and through their
life span. The thesis introduced the ABN conceptaa alternative Al technique and
accepted some initial restrictions to do so. Itingended that nodes may develop
peripatetic behaviour and a project examining aridyBwarm-ABN system is proposed to

this effect.
952 Pulse Time

The following method is suggested for future word antegrates the pulse information
Sum S into ty, and incorporates the previotss value and a leaky integratidd factor

alphaa.
t,.+=(80(S)PW)-a(Ll) equation 9.1

Previous nodes have not altered the pulse parasnafter a pulse has commenced, this is
in keeping with biological neuron pulses. As bgtal neurons are pulse-frequency and
not pulse-width there is little to alter. Thisnst the case with biochemical signalling,
where the protein parameters are part of ongoinggsses that may dynamically change.
Allowing the pulse-width to vary after it has commeed a cycle would result in a

variation in pulse-duration and introduce non-syoaisation in the ABIN.

193

9.5.3 Amplitude Modulation

Biological neuron signals are not amplitude modwdabut are time modulated, while
artificial neurons such as McCulloch-Pitts are datage modulated but not time
modulated. Biochemical signal-pathways can, initamd to time modulated signals,
produce an amplitude factor by increasing the qtiestof protein in the system. Current
implementations of ABNs seek to model the time niaigal signals but do not incorporate
amplitude modulation. This has been due to thélpro domain, where only one degree
of freedom is incorporated into the input data Aedce one type of signal modulation is
performed by the ABN. Amplitude modulation mayderoperty of the ABN rather than
the node, as adding such functionality contribgtester degrees of freedom to the output
than are supplied by the input. Changes in thélpmo domain may be required to

accommodate this.

Amplitude over time was a consideration when attimgpto produce walking gaits. The
gait was achieved through combining pulse-width pmide-frequency modulation. It may
be that gait transition, such as moving from a wtalk run, would benefit from such work.
However, it is suspected that it will be more intpat in allowing speed variable gaits.
For example, bipedal gaits are more similar in ipgadhan those of quadrupeds; but for
each there must be some method of signalling tkespbehind the limb as creatures can
walk, trot, canter, pace and gallop at various @pe€lhis is the only way that creatures of

differing physical size keep pace with each other.

Different amplitudes allow the possibility of usiag‘0” as the “no signal” state, the “+1”
as the active move state - which lifts a limb forsvand “-1” as the recovery state — which
returns a limb to the initial position. Althouglolmgical systems signals do not operate
this way, it may be conducive to artificial moverhen

954 Improvements to ABN, Backpropagation

Although the method used proved successful forABBl,, there are some improvements
possible, especially with regard to the use of thgevant hidden pulses.

194

The pulse from the hidden layer that was usedtés Hie weights for the output pulseas

hidden pulsgi. This is correct, but of limited accuracy.

The output pulseis produced from Sugrat the output node, which has been accumulated
by the arriving of pulsgto pulsg.; from the hidden layer, the effect of each accutedla

value being diminished by the factoat every tick.

Sum,., = a Bum,,., + PulseAmpliude[PathwayStength equation 9.2

« When pulsg; has fully arrived the effect of the leading edges ldiminished by:™°.
Given ano of 0.9, this is approximately 0.35.

« The effect on the trailing edge of the previousdeid pulse is diminished hy* and
the leading edge by?°.

« This effect continues until the first pulse is cartgd.

As can be seen the more recent a pulse is the sigmdicant its effect. A cumulative

term CT could therefore be used instead of thedndullsg ;.

Given this, it must be considered why Backpropagativorks using hidden pulse
instead of CT. This may be due to the error benuyed in the correct direction, using a
reduced value, akin to implementing a learning rate.0 (assuming CT is greater than
pulse.;). There is also the consideration that the hidudse.; may actually approximate
CT. This is due to the leading edge of the pubserty an amplitude of “1” and the trailing
edge having the amplitude “0”.

9.6 Taylor-Series Functionality with ABNs

In this thesis there were two different approack®sunit functionality. Both were

successful, one in the static-domain and one intitne-domain. As the TS neuron
operated on the summation function and the ABN nouolerated on the output function,
there is the potential to combine both of these asskess how they work across both

domains. Although this is beyond the scope ofttiésis, it is a logical next step.

195

Chapter 10

Conclusions

10.1 Introduction to the Chapter

This chapter presents the conclusions of the projébe original objectives, as described
in Chapter 1, are revisited with reference to thmkwpresented in this thesis. Then a
discussion of the original contributions followsA summary of the main findings and

further work is made. Finally, some concluding aeks concerning the success of the

project are made.
10.2 Project Objectives Revisited

The objectives as stated in Chapter 1 were:

To review the literature on the subject of gensealiArtificial Neural Networks
To review the biological relationship of the work

To develop an appropriate generalised neural model

To extend the function of the above to time donteEhaviour

To compare these results with published and stdrifa

To integrate these models into a complete neusiéry

To apply this system to a standard problem

© N o g A~ wbdPRE

To compare these results with previously publisimaderial

These can now be considered in terms of what wais\aed.

10.2.1 To Review the Literature

The initial background reading and study, that wasessary to understand the purpose of
the project, was undertaken at the beginning ofélsearch. The main examination began

with the work which was later used in “EvolutiondaDevolved Action” [MacLeod et al.,
2002], (Appendix B), which this author contributeml Study then centred on various

196

recommended Al textbooks, included in the bibligdmg and continued with a review of
the work of McMinn [2002]. As the project develapa continuous review of appropriate

literature, including Muthuraman [2005], contribdit® the body of knowledge.

10.2.2 To Review the Biological Relationship of thWork

The author examined the biological basis of Ardidntelligence and centred on genetics
and brain function. As the project developed avieym traditional connectionism
approaches, a greater emphasis was placed on histheand the intelligence expressed

by single-celled organisms.

10.2.3 To Develop an Appropriate Generalised Neurdlodel

An appropriate generalised neural model was deeedlogdescribed in Chapters 4 and 5,
using a Taylor Series expansion. The generalisatEpability of the TS neuron was
explored and an associated investigation on itgeusality was completed. These both
gave favourable results for the new model. Oneentturon had been fully investigated,
the model was integrated into network topologied @ained with a Genetic Algorithm.

Additionally, beyond the requirements, it was shawat the model could be used with a
standard learning algorithm, (see Appendix C). Turectionality of the neuron was then
explored in the networks it was added to, which irageesulted in a favourable

performance. This work led to a publication [Capagt al., 2003], shown in Appendix A.

10.2.4 To extend the Function to Time-Domain Behawr

The TS models were implemented as neural oscifatehich produced some interesting
results. Their limitations were noted and althotigdy may merit further work, they did

not show sufficiently promising results to include specific section. Instead, this
investigation inspired the later successful redearto the alternative connectionist system
ABN.

197

10.2.5 Compare Results with Published and Standarfata

A comparison of the results with standard data ANINS was made. This included a
single neuron solution to the parity-bit problem ipsky and Papert, 1969], which
demonstrated the improved functionality of the T&unon over the McCulloch-Pitts
neuron. The generalisation and universality of Ti&enetworks, single and multi-layer,
were compared with that of the Single-Layer Percegpand the Multi-Layer Perceptron.
In these comparisons the new model showed sevevanhtages, including training time,

network size and noise tolerance. This was predentChapter 5.

10.2.6 Integrate Models into a Complete Neural Stam

Due to the investigation into the time-domain bebax the integration instead led to the
investigation into alternative connectionist apptues. This resulted in the proposal of an
Artificial BioChemical Network, (Chapter 6), aftesxtensive research into biological

intelligence.

This model was developed as a complete connectisystem for time-domain problems

and a series of experiments and comparisons weoeisgChapter 7).

The functionality of this model was examined anthpared against standard ANN types.
The same capabilities were examined in the spdtialain as before and the new model
performed successfully. Then the same ABN modesewasked with the production of
time-domain behaviour that their ANN competitorsurid difficult or impossible to

produce, and once more produced successful re@liapter 8).

10.2.7 Apply this System to a Standard Problem

This new connectionist model was applied to th& tasproducing locomotion gaits for
robots, as had the previous models by McMinn [2@0%] Muthuraman [2005]. It was not
necessary to compare against these previous ap@®as the project had been developed
using the lessons learned from them as a diredtorstudy. The model was able to
produce the required locomotion gaits and comgleteobjective requirements. This was

achieved with a single unit type (ABN) rather tlgasigned neurons, (Chapter 8).

198

10.2.8 Compare Results with Previously Published Merial

The development and comparison of the new modalfmlgilities was compared at the
appropriate stages throughout the thesis. Thisvetidhe various advantages of the new
model in its ability to interpret both spatial-domaata and time-domain data. This work
was completed by the model’'s ability to processadatross both domains, without the
requirement for a translation system. The reséitsn the tests on the model's
functionality and comparisons of data (sections2B).to 10.2.8) contributed to a

publication by Capanni et al., [2005].

10.3 Novel Aspects of this Research

The new contributions of this research are asvdailo

* A new approach to connectionism based on the biodtey of single celled
organisms.
This approach, Artificial BioChemical Networks, tise primary contribution in this
thesis. It has produced new time-domain units metvork paradigms. These have
performed well when compared against standard, otlghly researched and
developed, ANN models. The new models are in thefancy and they have
tremendous potential for further development. Mnisk is presented in Chapters 6, 7
and 8.

« A highly functional advance to the neuron modeldoasn the Taylor Series approach,
(Chapters 4 and 5).
A new model was introduced, based on mathematiealry, which was then shown to
be highly, but controllably, functional as a neumhen compared to the previous
model. This was demonstrated by a solution to ghsty-bit problem which the
McCulloch-Pitts neuron is incapable of producing.

* A comprehensive theoretical and experimental canattbn of the mapping abilities of

neurons in the spatial-domain, (Chapter 5).

199

The integration of the new highly functional modeto networks showed that the
neuron’s capabilities could be implemented usimaglitronal learning algorithms, with

the potential for further improvement.

 Demonstrations of these models in modular conneistio networks.
As described in Chapter 8, the capabilities of tle&v models have been shown in
modular units which can produce the relevant ostpatcommunicate and build into a

modular connectionist system, processing both alpatid time-domain information.

* A consideration and investigation of neural funcéiity in the context of robotic
systems, presented in Chapters 7 and 8. As shbertapabilities of the new models

have been shown to be of real value in practicalementations.

* A basis for further research into learning, modutetworks and time-domain

connectionism, presented as part of the furthekwection, (Chapter 9).

10.4 Summary of Suggested Further Work

* Investigation of higher order problems solvablealy Taylor Series SLT and MLT.

* Production of order specific learning algorithmsttee SLT and MLT.

* Investigation of specific target selection towairdprovement in ANN noise tolerance.

* An investigation into adaptable memory in conneugsbsystems to produce Als that
can adapt to changes in their environments.

* Further investigate memory in connectionist systama modular component

» Construct hybrid Swarm-ABN system.

* Investigate alternative methods of pulse timing\BNNs.

* Encode additional information through the inclusaramplitude modulation in ABN
systems.

» Develop and improve the ABNBackpropagation Algorithm.

* Combine the advanced in spatial-domain and timeailorfunctionality through the

development of a Taylor Series ABN.

200

10.5 Concluding Remarks

The project has successfully incorporated and ee@nthe findings of its own and
concurrent research, the management of which hasduced the author to a greater

understanding of research.

Although there have been difficulties to overcomedeveloping and complicating these

objectives, mainly in turning away from dead emalstead of forcing an ineffectual path

through, and in allowing new areas to be fully stgated by colleagues, the project has
found its own purpose and has contributed new kedgé to the field.

In particular it has provided a viable foundatian & new type of universal unit for use in

connectionist Al.

The author believes that the work in the areas efral functionality and Artificial

BioChemical Networks are useful contributions toamectionist research.

This thesis joins a body of work which furthers timplementation of Evolutionary
Artificial Intelligence. It is hoped that the coitiutions of this research may be integrated
with those of associated researchers to provideviive and exciting intelligence

capabilities in modular and diversely functionastgyns.

201

References

Chapter 1

MacLeod, C., McMinn, D., Reddipogu, A., and Capamhj 2002. Evolution by Devolved
Action: Towards the Evolution of Systems. In Appier8 of McMinn, D., Using
Evolutionary Artificial Neural Networks to Designiéfarchical Animat Nervous Systems,
PhD thesis, The Robert Gordon University.

McMinn, D., 2002 Using Evolutionary Artificial Neural Networks to Bign Hierarchical
Animat Nervous Systen3hD thesis, The Robert Gordon University.

Minsky, M. L. and Papert, S. A., 196@erceptronsexpanded ed., 1990. Cambridge, MA:
MIT Press.

Muthuraman, S., 2009.he Evolution of Modular Artificial Neural Network3hD thesis,
The Robert Gordon University.

Chapter 2

Azam, F., 2000Biologically Inspired Modular Neural NetworkBhD thesis, Virginia
Polytechnic Institute and State University.

Barron, A,. 1993. Universal Approximation Bounds Superposition of a Sigmoidal
Function.|EEE Transactions of Information Theoiwol. 39, No. 3, pp. 930-945.

Bishop, C. M., 1995Neural Networks for Pattern Recognitiabst edition. Oxford
University Press. pp 302-304.

Edelman, G. M., 198 Neural Darwinism: The Theory of Neuronal Group $tta, 1st
edition. New York: Basic Books. pp. 213.

Ewart, J. P., 1987. Neuroethology of Releasing Ma@ms: Prey Catching in Toads.
Behavioral and Brain Sciencegol. 10, No. 3, pp. 337-367.

202

Grossberg, S., 1976. Adaptive Pattern Classifinadiod Universal Recoding, I: Parallel
Development and Coding of Neural Feature DetecRitdogical CyberneticsVol. 23, pp.
121-134.

Hornik, K., 1989. Multilayer Feedforward NetworkeadJniversal Approximator$yeural
Networks Vol. 2 pp 359-366.

Lansner A., Kotaleski J. H. and Grillner S., 19®®deling the spinal neuronal circuitry
underlying locomotion in a lower vertebrate. Annafishe New York Academy of
Sciences : Neuronal Mechanisms for Generating LatomActivity, Vol. 860 pp 239-
249.

Maas, W. and Bishop, C. M., 199ulsed Neural Network4;st edition. Cambridge, MA:
MIT Press.

MacLean, P.D., 1990 he Triune Brain in Evolution : Role in PaleocerabFunctions

1st edition. Springer.

MacLeod, C., Maxwell, G.M., McMinn, D., 1998. A na@work for Evolution of an
Animat Nervous System. IRroc. of EUREL European Advanced Robotics Systems
Development: Mobile Robot$-10 September 1998. Leiria, Portugal. VolumePargier
18.

MacLeod, C., 1999The Synthesis of Artificial neural Networks usimp& String
Evolutionary Technique®hD thesis, The Robert Gordon University.

MacLeod, C., McMinn, D., Reddipogu, A., and Capamhj 2002. Evolution by Devolved
Action: Towards the Evolution of Systems. In Appier8 of McMinn, D., Using
Evolutionary Artificial Neural Networks to Designiéfarchical Animat Nervous Systems,
PhD thesis, The Robert Gordon University.

Martin, E., ed., 1976T'he Penguin Book of the Natural WarMiddlesex UK. Penguin:

Harmondsworth.

203

McMinn, D., 2002 Using Evolutionary Artificial Neural Networks to Bign Hierarchical
Animat Nervous SystenhD thesis, The Robert Gordon University.

Muthuraman, S., 2009.he Evolution of Modular Artificial Neural Network3hD thesis,
The Robert Gordon University.

Potter, M. A., De Jong, K. A., and Grefenstette].J.1995. A coevolutionary approach to
learning sequential decision rules. Aroc. of the Sixth International Conference on
Genetic AlgorithmsJuly 1995, San Mateo,CA. pp. 366-372.

Reddipogu, A., Maxwell, G. and MacLeod, C., 2008. IAnovative Neural Network
Based on The Toad’s Visual System.Pnoc. of ACTIVS, Advanced Concepts for
Intelligent Vision System8:11 September 2002. Ghent, Belgium: Ghent Unityensp.
144-149.

Reid, M. B., Spirkovska, L., Ochoa, E., 1989. Rafidining of Higher-Order Neural
Networks for Invariant Pattern Recognition.Rroc. of IJCNN International Joint
Conference on Neural Network&9 May 1998, Anchorage, Alaska. Vol. 1 pp. 68226
Sima, J., Orponen, P., 2003. A taxonomy of neugtivark models - General Purpose
Computation with Neural Networks A Survey of Conxitie Theoretic ResultdNeural

ComputationVol. 15, pp. 2727-2778

Thompson, A., 1996. Silicon evolution. Broc. of Genetic Programming@8-31 July
1996, Palo Alto. pp. 444-452.

Wasserman, P. D., 1988eural computing: Theory and Practiddew York: van
Nostrand Reinhold. pp. 127.

Wilson, S. W., 1991. The Animat Path to @lonferences in from animals to animats

204

Chapter 3
Bishop, C. M., 1995aNeural Networks for Pattern Recognitidtst edition. Oxford

University Press.

Bishop, C. M., 1995\eural Networks for Pattern Recognitidtst edition. Oxford
University Press. pp. 11.

Blum, E. K. and Li, L. K., 1991. Approximation thgoand feedforward networksleural
Networks Vol. 4, No. 4, pp. 511-515.

Briggs, F., 2005Universal Meta Optimizatiofonline] Available from:
http://www.generation5.org/content/2004/Universaidd@ptimization.asp, [Accessed 22
November 2005]

Capanni, N. F., MacLeod, C., Maxwell, G., 2003. Approach to Evolvable Neural
Functionality. InProc. of ICANN/ICONIP Joint International Confernon Artificial
Neural Networks and International Conference ontfdelnformation Processing26-29
June 2003. Istanbul, Turkey. Vol. 2, pp. 220-223.

Chang, C. and Cheung, J.Y., 1992. Backpropagatgorithm for higher order neural
network. InProc. International Joint Conference Neural Netwsrk-11 June 1992.

Baltimore, MD. pp. 164-166.

Chen, M., 1991Analyses and Design of Multi-Layer Perceptron Udhajynomial Basis

Functions PhD thesis, The University of Texas at Arlington.

Cybenko, G., 1989. Approximation by superpositioha sigmoidal function.
Mathematics of Control, Signals, and Systeviwd. 2, No. 4, pp. 303-314.

De Figueiredo, R. J. P., 1980. Implications andiaafons of Kolmogorov’s
superposition theorenEEE Transactions . Automation and Contnoh 1227-1230.

205

Duch, W. and Jankowski, N., 1997. New neural tran&fnctions Applied Mathematics
and Computer Scienc¥ol. 7, pp. 639-658.

Elder IV, J. F., Brown, D. E., 199fhduction and Polynomial Networks>C-TR-92-009,
Institute for Parallel Computation and DepartmdrBygstems Engineering, University of
Virginia, Charlottesville, VA. pp. 29.

Gurney, K., 1997aAn Introduction to Neural Network&® edition. UCL Press.

Gurney, K., 1997bAn Introduction to Neural Networks®' edition. UCL Press. pp. 81.
Gurney, K., 1997cAn Introduction to Neural Networks:' edition. UCL Press. pp. 80.
Gurney, K., 1997dAn Introduction to Neural Networks:' edition. UCL Press. pp. 83-84.
Gurney, K., 1997€An Introduction to Neural Networks:' edition. UCL Press. pp 84.
Hecht-Nielsen, R., 1987. Kolmogorov’'s mapping neoework existence theorerm
Proc. of the International Conference on NeuralWatks 1987. New York, Vol. lll, pp.

11-14.

Heywood, M. and Noakes, P., 1996. A framework fiopiioved training of Sigma-Pi
networks. IEEE Trans. Neural Network¥ol. 6, pp. 893-903.

Hornik, K., Stinchcombe, M. and White, H., 1989. IMayer Feedforward Networks are
Universal ApproximatordNeural NetworksVol. 2, pp. 359-366.

Kolmogorov, A.N., 1957. On the Representation ohf@wous Functions of Several
Variables by Superpositions of Continuous Functimin®ne Variable and Addition.

Dokladi. Vol. 114. pp. 679-681.

Kurkov'a, V., 1992. Kolmogorov’s theorem and malgiér neural network§eural
NetworksVol. 5, pp. 501-506.

206

Lorentz, G. G., 1966Approximation of FunctiondNew York : Holt, Rinehart, and

Winston.

Minsky, M. L. and Papert, S. A., 19@9erceptronsexpanded ed., 1990. Cambridge, MA:
MIT Press.

Nikolaev, N. Y., 2003. Learning Polynomial Feedfard Neural Networks by Genetic
Programming and BackpropagatidBEE Transactions on Neural Networkéol. 14,
No.2, pp. 337-350.

Parker, D. B., 1983.earning logic Technical Report TR-47, Cambridge, MA: MIT

Center for Research in Computational EconomicsMadagement Science.

Pednault, E., 2004 ransform Regression and the Kolmogorov Superpositheorem
IBM T. J. Watson Research Center, New York.

Rumelhart, D. E., Hinton, G. E., & Williams, R. 1986.Learning Internal
Representations by Error Propagatioviol. 1 of Computational models of cognition and
perception. Cambridge, MA: MIT Press. Chap. 8,3#2-362.

Steffensen, J. F., 195Mterpolation New York: Chelsea Publishing Company.
Blum, E. K. and Li, L. K., 1991. Approximation thgoand feedforward networksleural
Networks\Vol. 4(4), pp. 511-515.

Tikk, D., Kéczy, L. T. and Gedeon, T. D., 20@Lsurvey on the universal approximation
and its limits in soft computing techniquéesearch Working Paper RWP-IT-02-2001,

School of Information Technology, Murdoch UniveysiPerth, W.A. pp. 14.

Werbos, P. J., 1978eyond regression: New tools for prediction andlgsia in the

behavioral science$’hD thesis, Harvard University, Cambridge, MA.

207

Chapter 4
Bellman, R., 1961Adaptive Control Processes: A Guided T.diew Jersey: Princeton

University Press.

Bishop, C. M., 1995Neural Networks for Pattern Recognitiabst edition. Oxford
University Press. pp 333-338, 373-374.

Capanni, N. F., MacLeod, C., Maxwell, G., 2003. Approach to Evolvable Neural
Functionality. InProc. of ICANN/ICONIP Joint International Conferenon Artificial
Neural Networks and International Conference ontfdelnformation Processing26-29
June 2003. Istanbul, Turkey. Vol. 2, pp. 220-223.

Ivakhnenko A.G., 1968. The Group Method of Data tHisng — A rival of the Method of

Stochastic Approximatiorsoviet Automatic ControVol. 13, No. 3.

Ivakhnenko, A.G., 1971. Polynomial Theory of Comp&ystemslEEE Transactions on
Systems, Man, Cybernetidfol. 1, No.4, pp. 364-378.

Levitan, I. B. and Kaczmarek, L. K., 2001he Neuron: Cell and Molecular Biologg™
edition. Oxford University Press Inc, USA. Chafepp. 23-41.

MacLeod, C., McMinn, D., Reddipogu, A., and Capamhhj 2002. Evolution by Devolved
Action: Towards the Evolution of Systems. In Appier8 of McMinn, D., Using
Evolutionary Artificial Neural Networks to Designiéfarchical Animat Nervous Systems,
PhD thesis, The Robert Gordon University.

Thomas, G. B., Finney, R. L., 19962alculus and Analytic Geometrgth edition.
Addison Wesley Publishing Company. Chapter 8, pg. 6

Thomas, G. B., Finney, R. L., 199@bBalculus and Analytic Geomeifr9th edition.
Addison Wesley Publishing Company. Chapter 8, fR-673.

208

Thomas, G. B., Finney, R. L., 199@galculus and Analytic Geometrgth edition.
Addison Wesley Publishing Company. Chapter 8, gR-673, 687.

Chapter 5

Barron, A. R., 1993. Universal approximation boufatssuperpositions of a sigmoid
function.IEEE Transactions on Information Theokjol. 39, pp. 930-945.

Barron, 2005pioneering and advancement of polynomial neuralvoeks[online]

Available from: http://www.barron-associates.comcgessed 11 November 2005]

Bellman, R., 1961Adaptive Control Processes: A Guided T.diew Jersey: Princeton

University Press.

Bishop, C. M., 1995aNeural Networks for Pattern Recognitidtrst edition. Oxford
University Press. pp. 9-14.

Bishop, C. M., 1995\eural Networks for Pattern Recognitidtst edition. Oxford
University Press. pp. 134.

Bishop, C. M., 1996Neural Networks: A Pattern Recognition Perspectivchnical
Report. NCRG. [online] Available from: http://wwwerg.aston.ac.uk/ [Accessed 11
November 2005]

Capanni, N. F., MacLeod, C., Maxwell, G., 2003. Approach to Evolvable Neural
Functionality. InProc. of ICANN/ICONIP Joint International Confernon Artificial
Neural Networks and International Conference ontfdelnformation Processing26-29
June 2003. Istanbul, Turkey. Vol. 2, pp. 220-223.

Chen, M. S., 1991Analyses and Design of Multi-Layer Perceptron Udtadynomial
Basis FunctionsPhD thesis, The University of Texas at Arlington.

Cotter, N. E., 1990. The Stone-Weierstrass the@ethits application to neural networks.
IEEE Transactions on Neural Network&l. 1, pp. 290-295.

209

Pao, Y. H., 1989Adaptive Pattern Recognition and Neural Netwodkst edition.
Reading, MA: Addison-Wesley.

Crabbe, F., Dyer, M., 200G oal Directed Adaptive Behaviour in Second-Ordeurdé
Networks The MAXSON family of architectur&sificial Intelligence Lab, Computer

Science Department, University of California, Losg&les.

Duch, W. and Jankowski, N., 1999. Survey of Ne@uaiput FunctionsNeural Computing
SurveysVol.2, pp. 163-212.

Durbin, R. and Rumelhart, D., 1989. Product Ut omputationally Powerful and
Biologically Plausible Extension to Backpropagathetworks.Neural ComputationVol.
1, pp. 133-142.

Engelbrecht, A. P. and Ismail, A., 1999. Trainingduct unit neural networkStability
and Control: Theory and Applicationgol. 2, No. 1-2, pp. 59-74.

Giles, C. L., Maxwell, T., 1987. Learning, Invara@ and Generalization in High Order
Neural NetworksApplied OpticsVol. 26, No. 23, pp. 4972.

Ivakhnenko A.G., 1968. The Group Method of Data tHisng — A rival of the Method of

Stochastic ApproximatiorSoviet Automatic ControVol. 13, No. 3.

Ivakhnenko, A.G., 1971. Polynomial Theory of Comp&ystemslEEE Transactions on
Systems, Man, Cybernetidfol. 1, No.4, pp. 364-378.

Milenkovic, S., Obradovic, Z. and Litovski, V., 18Annealing Based Dynamic Learning
in Second-Order Neural NetworKBechnical Report, Department of Electrical

Engineering, University of Nis, Yugoslavia.

Minsky, M. L. and Papert, S. A., 1989erceptronsexpanded ed., 1990. Cambridge, MA:
MIT Press.

210

Nikolaev, N Y., 2003. Learning Polynomial Feedfard Neural Networks by Genetic
Programming and BackpropagatidBEE Transactions on Neural Network#ol. 14 No.
2, pp.337-350

Qian, S., Lee, Y. C., Jones, R. D., Barnes, C. &g Lee, K., 1990. Function
approximation with an orthogonal basis netPhoc. of IJCNN International Joint

Conference on Neural Networkgol. 3, pp. 605-619.

Rumelhart, D. E., McClelland, J. L., et al., 19B@rallel distributed processing :

explorations in the microstructure of cognitiddambridge, MA. MIT Press.

Widrow, B. and Hoff, M., 1960. Adaptive switchingauits. In Proc1960 IRE WESCON
Convention Record/ol. 4, pp. 96 - 104.

Chapter 6

Alberts, B., Bray, D., Lewis, J., Raff, M., Robers, Watson, J. D., 1994Molecular
Biology of the Cell3rd edition. New York: Garland Publishing Inc. p$-25,. 111-135,
721-782.

Alberts, B., et al, 1994Molecular Biology of the CelBrd edition. New York: Garland
Publishing Inc. pp 24.

Alberts, B., et al, 1994d&olecular Biology of the CelBrd edition. New York: Garland
Publishing Inc. pp 25.

Alberts, B., et al, 1994dVolecular Biology of the CelBrd edition. New York: Garland
Publishing Inc. pp 128-135, 211, 564-565.

Alberts, B., et al, 1994é&/olecular Biology of the CelBrd edition. New York: Garland
Publishing Inc. pp 557-558.

Almogy, G., Stone, L., Ben-Tal, N., 2001. Multi-§&Regulation, a Key to Reliable
Adaptive Biochemical PathwayBjophysical JournalVol. 81, pp. 3016—-3028.

211

Capanni, N.F., Macleod, C., Maxwell, G., Clayton,, 2005, Artificial BioChemical
Networks, CIMCA-IAWTIC,Joint International Conference on Computational
Intelligence for Modelling, Control and Automatiand International Conference on
Intelligent Agents, Web Technologies & Internet Gmrce 28-30 November 2005.
Vienna, Austria. In Proc. IEEE special issue, \®lpp 98-102.

Chau, H. F., Yan, K. K., Wan, K. Y., and Siu, L. \0298. Classifying rational densities
using two one-dimensional cellular automdtae American Physical SocieBhysics
Review Vol. 57, pp. 1367-1369.

Chua, L. O., and Yang, L., 1988. Cellular neuraloeks: Theory and ApplicationtEEE
Trans. Circuits and Systemol. 35, pp. 1257-1290.

Chua, L. O., Hasler, M., Moschytz, G. S., Neiryngk,1995. Autonomous cellular neural
networks: A unified paradigm for pattern format@amd active wave propagatidiEE
Transactions on Circuits and Systems |: Fundamehtalory and Applications/ol. 42,
No. 10, pp. 559-577.

Curtis, H., 1968The Marvelous Animals: An Introduction to the Pmia.Garden City,
N.Y., Published for the American Museum of Natw&tory [by] the Natural History

Press.

Dogaru, R., 2003. Universality and Emergent Computan Cellular Neural Networks.
Cellular paradigms theory and simulatiochapter 2, World Scientific.

Elowitz, M. B., and Leibler, S., 2000. A synthetiscillatory network of transcriptional
regulatorsLetters, NatureVol. 403, pp. 335-338.

Gerstner, W. and Van Hemmen, J. L., 1994. How txidee neural activity - spikes, rates,

or assembliesRdvances in Neural Information Processing Systensa6 Francisco, CA:
Morgan Kaufmann. pp. 463-470.

212

Gerstner, W., 1995. Time structure of the actiuityeural network model&hysics
Review\Vol. 51, pp. 738-758.

Gerstner, W. and Kistler, W. M., 200Z8piking Neuron Models. Single Neurons,
Populations, PlasticityCambridge University Press. Chapter 2.2.

Gerstner, W. and Kistler, W. M., 20028piking Neuron Models. Single Neurons,
Populations, PlasticityCambridge University Press. Chapter 2.2.1.

Gerstner, W. and Kistler, W. M., 200Zgpiking Neuron Models. Single Neurons,
Populations, PlasticityCambridge University Press. Chapter 2.2.2.1.

Gontar, V., 2004. The dynamics of living and thmkisystems, biological networks, and

the laws of physicDiscrete Dynamics in Nature and Sociefpl. 1, pp. 101-111.

Gurney, K., 1997An Introduction to Neural Networks:' edition, UCL Press. pp. 116.

Hameroff, S., Kaszniak, A. and Scott, A., 1998ward a Science of Consciousness II:
The 1996 Tucson Discussions and Deha@@snbridge, MA: MIT Press. pp.421-437.

Hodgkin, A. L. and Huxley, A. F., 1952. A Quantitet Description of Membrane Current
and its Application to Conduction and ExcitatiorNerve.Journal of PhysiologyVol.
117 pp 500-544.

Hodgson, B.J., Taylor, C.N., Ushio, M., Leigh, J.Ralganova, T., Baganz, F., 2004.
Intelligent modelling of bioprocesses: a comparisbatructured and unstructured

approache®Bioprocess Biosystems EngineeriMgl. 26, pp. 353-359.

Khiel, T. R., and Bonissone, P. P., 2003. EvolAmtificial Biochemical Reaction
Networks First Steps. IRroc. International Conference on Systems Biol&jy.ouis MO,
November 2003.

Maass, W., 1997. Networks of Spiking Neurons : Tha&d Generation of Neural Network
Models.Neural NetworksVol. 10, pp. 1659-1671.

213

MacLeod, C, 2004Technical notes on spiking neurgfi®chnical report. The Robert

Gordon University.

MacLeod, C. and Maxwell, G., 1999. Intelligent SagRrocessingzlectronics World.
Vol. 105, No. 1764, December 1999, pp. 978-981.

MacLeod, C. and Maxwell, G., 2003. Practical Neltatworks, part 4: Applications and
large Neural Net<lektor ElectronicsVol. 29, No. 320, April 2003, pp. 28-31.

MacLeod, C., McMinn, D., Reddipogu, A., and Capamhj 2002. Evolution by Devolved
Action: Towards the Evolution of Systems. In Appier8 of McMinn, D., Using
Evolutionary Artificial Neural Networks to Designiéfarchical Animat Nervous Systems,
PhD thesis, The Robert Gordon University.

McCulloch, W. S. and Pitts, W. H., 1943. A logicalculus of the ideas immanent in
nervous activityBulletin of Mathematical Biophysic¥ol. 5, pp. 115-133.

Sleigh, M. A., 1989Protozoa and Other Protist4™ edition, London: Edward Arnold.

Stein, R. B., 1967. Some models of neuronal vdiigbBiophysics. JournalNol. 7, pp.
37-68.

Thattai, M. and van Oudenaarden, A., 2002. Attaonaif Noise in Ultrasensitive
Signaling CascadeBjophysics JournalVol. 82, No. 6, June 2002, pp. 2943-2950.

Vandenbunder, B., 2001. Genomics in the understgnafi the mechanisms of
transcriptional regulatiorBulletin du cancer.Vol. 88, No. 3, pp. 253-60. Translated from

French.

Von Neumann, J. and Burks, A. ed., 1966eory of Self-Reproduction Automata,

University of lllinois Press, 1997 Translated frémench.

214

Vreeken, J., 200Bpiking neural networks, an introductiohechnical report. Institute of

Information and Computing Sciences, Utrecht Unikgrs

Chapter 7

McMinn, D., Maxwell, G. and MacLeod, C., 2002. Ewvmbnary Artificial Neural

Networks for Quadruped Locomotion. Rroc. of ICANN the International Conference on
Neural Networks27-30 August 2002. Madrid, Spain, pp. 789 — 794.

Muthuraman, S., 2009.he Evolution of Modular Artificial Neural Network8hD Thesis,
The Robert Gordon University, 2004.

Palmer, A.R., Shackleton, T.M. and McAlpine D., 20B8leural mechanisms of binaural

hearing.Tutorial, Acoustic Science & Technologfol. 23, No. 2.

Chapter 8

Capanni, N. F., MacLeod, C., Maxwell, G., 2003. Approach to Evolvable Neural
Functionality. InProc. of ICANN/ICONIP Joint International Confenon Atrtificial
Neural Networks and International Conference onfdkelnformation Processing26-29
June 2003. Istanbul, Turkey. Vol. 2, pp. 220-223.

McMinn, D., Maxwell, G. and MacLeod, C., 2002. Ewvmbnary Artificial Neural
Networks for Quadruped Locomotion. Rroc. of ICANN the International Conference on
Neural Networks27-30 August 2002. Madrid, Spain, pp. 789 — 794.

Minsky, M., 1961. Steps toward artificial intelligee.Proceedings Institute of Radio
EngineersVol. 49, pp. 8-30.

Minsky, M. L. and Papert, S. A., 1989erceptronsexpanded ed., 1990. Cambridge, MA:
MIT Press.

Muthuraman, S., Maxwell, G. and MacLeod, C., 2008 Evolution of Modular

Artificial Neural Networks for Legged Robot Contrdlrtificial Neural Networks and
Neural Information Processindgerlin: Springer. pp. 488-495.

215

Muthuraman, S., 2009.he Evolution of Modular Artificial Neural Network3hD thesis,
The Robert Gordon University.

Rumelhart, D. E., Hinton, G. E., & Williams, R. 1986.Learning Internal
Representations by Error Propagatioviol. 1 of Computational models of cognition and
perception. Cambridge, MA: MIT Press. Chapter 8,319-362.

Samuel, A., 1957. Some studies in machine leamnsigy the game of checkelBM
Journal of Research and Developmeérnsl. 3, pp. 210-229.

Chapter 10

Capanni, N. F., MacLeod, C., Maxwell, G., 2003. Approach to Evolvable Neural
Functionality. InProc. of ICANN/ICONIP Joint International Confenon Atrtificial
Neural Networks and International Conference onfdkelnformation Processing26-29
June 2003. Istanbul, Turkey. Vol. 2, pp. 220-223.

Capanni, N.F., Macleod, C., Maxwell, G., Clayton,,\2005, Artificial BioChemical
Networks, CIMCA-IAWTIC,Joint International Conference on Computational
Intelligence for Modelling, Control and Automatiand International Conference on
Intelligent Agents, Web Technologies & Internet Gumarce 28-30 November 2005.
Vienna, Austria. In Proc. IEEE special issue, \®lpp 98-102.

MacLeod, C., McMinn, D., Reddipogu, A., and Capamhj 2002. Evolution by Devolved
Action: Towards the Evolution of Systems. In Appieri8 of McMinn, D., Using
Evolutionary Artificial Neural Networks to Designdtarchical Animat Nervous Systems
-PhD thesis, The Robert Gordon University.

McMinn, D., 2002 Using Evolutionary Artificial Neural Networks to Bign Hierarchical
Animat Nervous Systent3hD thesis, The Robert Gordon University.

Minsky, M. L. and Papert, S. A., 196@erceptronsexpanded ed., 1990. Cambridge, MA:
MIT Press.

216

Muthuraman, S., 2009.he Evolution of Modular Artificial Neural Network3hD thesis,
The Robert Gordon University.

Appendices
Bishop, C. M., 1995Neural Networks for Pattern Recognitiakst edition. Oxford
University Press. pp 13-14.

Capanni, N. F., MacLeod, C., Maxwell, G., 2003. Approach to Evolvable Neural
Functionality. InProc. of ICANN/ICONIP Joint International Confenon Atrtificial
Neural Networks and International Conference onfdkelnformation Processing26-29
June 2003. Istanbul, Turkey. Vol. 2, pp. 220-223.

Chang, C. and Cheung, J. Y., 1992. Backpropagatgorithm for higher order neural
network. InProc. International Joint Conference Neural NetwsfRaltimore, MD. pp.
164-166.

Duch, W., and Jankowski, N., 1999. Survey of Nelirahsfer Functions\Neural
Computing Surveyd/ol. 2, pp. 163-212.

Giles, C.L., Maxwell, T., 1987. Learning, Invarian@nd Generalization in High Order
Neural NetworksApplied OpticsVol. 26, No. 23, pp. 4972.

Haykin, S., 1999Neural Networks, A Comprehensive Foundat@f edition. Prentice
Hall. pp. 139.

Kim, D. W. and Park, G. T., 2008. Design of EA-based Self-Organizing Polynomial
Neural Networks using Evolutionary Algorithm formiaear System Modelindechnical

report. Department of Electrical Engineering, Kokaversity.

Minsky, M., 1961. Steps toward artificial intelligee.Proceedings Institute of Radio
EngineersVol. 49, pp. 8-30.

217

Nikolaev, N. Y., 2003. Learning Polynomial Feedfard Neural Networks by Genetic
Programming and BackpropagatidBEE Transactions on Neural Network#ol. 14, No.
2, pp. 337-350.

Rumelhart, D. E., Hinton, G. E., & Williams, R. 1986.Learning Internal

Representations by Error Propagatioviol. 1 of Computational models of cognition and
perception. Cambridge, MA: MIT Press. Chapter 8,319-362.

218

Appendix A

Papers Produced During the Research

A.1 Introduction to the Appendix
The following contains two papers:

Capanni, N.F., Macleod, C., Maxwell, G., 2003, Ampphoach to Evolvable Neural
Functionality, ICANN-ICONIP, Joint International @ference on Artificial Neural
Networks and International Conference on Neurabrimftion Processing, Istanbul,

Turkey, Proc. supplementary volume for short papggy220-223.

Capanni, N.F., Macleod, C., Maxwell, G., Clayton,,VZ005, Artificial BioChemical

Networks, CIMCA-IAWTIC, Joint International Conferee on Computational
Intelligence for Modelling, Control and Automaticend International Conference on
Intelligent Agents, Web Technologies & Internet Goetce, Vienna, Austria, Proc. IEEE
special issue, vol. 2, pp 98-102.

An Approach to Evolvable Neural Functionality

Miccolo Capanni, Christopher MacLeod, Grant Maxwell
The Robert Gordon University, Aberdeen AB10 IFR, UK.

Abstract. This paper outlines a neural model, which has been designed to be flexible
enough to assume most mathematical functions. This is particularly useful in evolutionary
networks as it allows the network complexity to increase without adding neurons, Theory
and results are presented, showing the development of both time series and non-time

dependent applications.

Introduction

Research imto Arificial Neural MNetworks
{AMNMNs) has resulted in a diverse range of
neurcn models that have improved network
functionality and expanded applications.
Improvements in training methodologies have
further increased the possibilities and this has
spurred extensive work on the intricacies of
improving training time and network
robusiness.

Examples of the resulting innovative neuron
models include Radial Basis, Leaky
Integration, Mon-linear and Spiking types [1].
Despite this, most widely used ANNs operate
on a varation of the classical neural
{Continuous Perceptron) model.

Our research team has produced a new neural
model based on the idea that a neural unit
should be flexible enough to fulfil any
differentiable mathematical function required
of it [2]. This model is a logical extension of
the Perceptron and is particularly useful in
evolutionary and control applications.

Basic Power Series Neuron

The most common artificial neural models in
current use are those developed from the
original MeCulloch-Pitts neuron. lznoring the
squashing or activation function, which
normalises the output, the activity of this
neuron is given by:

Where n is the number of inputs, x; is an input
and w; is the corresponding weight.

For a two input neuron, with input x associated
with weight b and input v associated with
weight ¢ (as illustrated in figure 1), the activity
could be written as:

)=bx+cy

¥ c

Figure 1. A simple neuron

This, of course, corresponds to a linear
separator [3].

We can model any continupus function using
an infinite Power Series [4] (for example a
Taylor series);

flx)=cx+ e+ +8 2"

This is the basic series, which is given in most
references. However, it can be extended to any
number of variables (and hence any number of
dimensions). For example, in two dimensions,
the series is:

D =bx+cy+bx’ +c,3" +bx* +..

Notice that the first two terms are the same as
in the first equation. This could correspond to
a two-input neuron with inputs %, and v and
weights by, ¢, A three input version of this

neuron is shown in figure 2.

X by, b, b,

XV, E
v flx,v.2z)

dy, da, ds,....

Figure 2. A polynomial nearon

More generally, for v variables and an 3 order
series;

f0=%Ya,,o

=l o=l

Which is a non-linear separator. This can also
be expanded to include input product terms
(eg. wxy) [5]). which can enclose areas as
discussed below.

Separators in the Second Order Case

To illustrate some of the attributes of higher
order separators, let us first consider the
second order case of a two input neuron with
inputs labelled i, and weights @,

8 = ag dy + o0y iy + [wady” + 05,7
Figure 3 shows how a single second order

neurcn can separate areas requiring many
linear separators.

0s
(L T

—0s L
=ad -0 a ®2 o4

Figure 3. S8econd order separator

Figure 4 shows in a three-dimensional plot
how the neuron can form a separator which
can enclose (or exclude) a particular area.

Note that to reduce sensitivity in the neuron, it
is often necessary to divide the higher power
terms by their factorial.

Figure 4. More complex second order
separator

In all of these models, the weights of the
second powers can evolve to “07, and the
Perceptron emerges.

Separators in the Third Order Case

The decision surface can be further
complicated through expansion of the power
series, The symmetrical limitation of the 2™
order case can be removed by adding a 3"
order as shown in figure 5.

" - 2 P X a3
8 = i dp T o0y dy T ads” Fwndy” + gl +
.11

Figure 5. 3D Decision surface of 3" order
neuron

Addition of higher powers increases the
complexity of the decision surface and allows
greater separation and isolation of decisions.

More Complex Cases

The addition of higher orders of the power
series is not the only method of improving the
unit functionality. The previous neurons had
no interaction between the inputs. However, if
interaction is allowed, even more complex
behaviour exists (as in sigma-pi units).

8= ay.dy +oopdy + @20p" + syt + [o (150,) +
a2 v onoad
I'.'I.'I:.{:Iu.!] }_mn.{lu.h}]

A 2" order expansion is shown, with the
complex expansions enclosed within brackets.

The addition of these product terms allows
greater flexibility in the decision surface
without continually expanding the power
series. It also introduces a greater element of
asymmetrical separation and isolation of
distinct regions through the interaction of the
inputs. A 3* order complex neuron produces a
separator as shown in figure 6.

Figure 6. 3D decision surface 3" order
incomplete complex neuron

Applications

Allowing neurons to use higher powers of their
inputs allows smooth separators as shown in
figure 3. This improves generalisation in the
network, although for higher orders
seneralisation decreases again [3].

These neurcns are particularly useful in control
systems in a similar way to radial basis units as
they can take complex continuous forms
without the need for large networks.

In evolutionary networks they allow the
complexity of the network to increase by
adding extra orders without adding new units
to the network structure.

Finally, they can be used with Taguchi Method
training [6] by training the first order initially
and adding and training each additional order
thereafter for a more accurate response.

Some Typical Results

When used with evolutionary training
methods, the neurons allow us to reduce the
number of epochs required to reach a solution
as shown in figure 7.

number of generation for orders of
power series

TO00

E 100 .‘l.
g mo—
'E 4000 ."‘-
E @
o] TT-p g o
a 1008

oo

i 2 -1 4 -] T & g a

order of power series

Figure 7. Reduction of training epochs

This network is three layered, consisting of 23
inputs and 60 neurons configured for character
recognition. One can see that there is little
point in introducing orders above the third.
Although the training epochs decrease, the
computational power required for training
increases - in the case of the three order
neuron, by three times, However, there is still
a net improvement in training time.

As mentioned above we can also train one
order of the neuron at a time using an
evolutionary algorithm.

When used in a standard pattern recognition
system (of the same type mentioned in relation
to figure 7), the use of the higher order neurons
allows the system to operate with fewer units,
as shown in figure 8.

minimum network size

B

E-R-B-B-B-N. 0
B
|1

no. of neurons

order of power series

Figure 8. Number of units required in character
recognition system

One can see in both cases, that above the fifth
order, performance shows little improvement.
Indeed there may be disadvantages in using
too many orders [5]. In this case, the reduction
in number of neurons offsets the increase in
multiply and accumulate instructions required
for a more complex network.

Future Work - Time Series Models
A time response can also be modelled with
another Power Series

fity=a+bt+ct® +_elc

Where t is the time wvariable. There is no
evidence that the temporal properties of
neurcns are this complex. As a result, it is
often easier to simply make an evolvable {or
trainable) time decay.

flo)y=ae”

A squashing function may be applied to this if
necessary, as can another time series
representing a delay (refractory period) of the
neuron’s cutput,

This response can be multiplied with the
power series described earlier to provide a
neuron that is capable of mimicking any
differentiable function of fime.

Conclusions

The neuron described above may prove useful
in several application areas including control
systems and evolutionary svstems. Its principal
asset is that it allows the network to evolve
with a wide variety of behaviours from a small
number of neurons,

References

1. Arbib, M.: The Handbook of Brain Theory
and MNeural Networks, The MIT Press
(1998)

. Khanna, T.:

MaclLeod, €., McMinn, D., et al:
Evolution by devolved action: towards the
evolution of systems. In appendix B of:
MeMinn, D, Using Evolutionary Artificial
Meural Metworks to Design Hierarchical
Animat Nervous Systems, PhD Thesis, The
Robert Gordon University, Aberdeen, UK
(2002)

Foundations of Neural
Metworks, Addison Wesley (1990)

. Croft, A, Davison, R, Hargreaves, M.

Engineering Mathematics, Addison-Wesley
(1996) 418-440

Bishop, C. M.; Neural Networks for Pattern
Recognition, Oxford (1995) 914

. MacLeod, C., Maxwell, G. M.0 Using

Taguchi Methods to Train Artificial Nevral
Metworks,” Al Review, 13, 3, Kluwer
(1999) 177-184

Artificial BioChemical Networks

**Nigcolo Capanni, **Christopher MacLeod, *'Grant Maxwell, “William Clayton
"The Robert Gordon Erniversity, School of Compuring, St Andrew Sireer, AB23 THG
“The Robert Gordon L-’nii-'e'i'.\':'r_'.x Schaol of Engineering, Schoollill, ABI 1FR
“Aberdeen, Scoiland UK
‘Ofin University, Olin Way, Needham, MA 02492-1200), USA
E-mail nc@comp.rgnac.uk; chrisanacleod@reg.ae.uk: prant.maxwell@ g ac. ik,
Williaim. Clayront@ siudenis.olin.edu

Abstract

Conmectionise approaches o Anificial Invelligence
are. afmost alwavs based on Arificial - Newral
Merworks. However, there i enother route fowards
Paratlel Distribuied Provessing, taking as i
inspiration e intelligence displaved by single celled
creaiures called Protectisis | Provises) This iy based on
petworks of interacting proteing. Such nenworks may be
uwsed in Patnern Recognition ond Cepirol asks and are
mare flexible than most newron models. In this paper
they are demonstrared W Imape Recopniion
applicarions and in Legged Robor comrol, They are
trained wsing o Generic Algoritim and Back
Prepsagarion.

1. Introduction

Protoctists, also called Protists. are singled celled
organisms which live in a varety of different
environments [1]. Those which display animal-like
behaviour are usually called Protozoa and make up a
large part of the fauna often disparagingly known as
“pond life”,

However, despite their primitive reputation, they
display remarksable abilities and behaviours [2]. Some
have stinging darts with which they disable their prey;
others have sensory hairs to feel their way about and
sense the vibration of prey approaching and a few even
have leg-like appendages for locomotion. They can
avoid light with their sensitive evespots and actively
hunt for their food. The wvarety they display is
enormous, with a range of relative sizes greater than
that between a rabbit and a blue whale. Some even
build shelters - shells with which to pratect themselves
from predators and the environment, They display
many of the traits of intelligence,

Vi

2. Natural Biochemical Networks

Protozoa display the behaviours described above by
means of interactions between proteins in their
cytoplasm. Proteins are the chemical workhorses of the
cell [2]. 1t is the cell proteins which the DNA genetic
code specifies, as shown in Figure 1. This scheme is so
fundamental that it is sometimes referred to as the
“Central Dogma” of biology.

S

P l_::!!ﬂ'l_l.;.:!:l;‘;\\
A
Ve ¢ & 5 \

AN P
¢ X __.-" .
] 5 e \
all T |
ﬂ'lEI'IlbIEﬂ.E o
i BNA '
| i
\) ;
" . o Protein J
% " . -"'J
O #

et
i
.

"H“ i

Figure 1. Central Dogma

Proteins perform all the important operations of the
cell - making new material, destroying old and sensing
and signalling changes in the cell's environment. All
proteins bind to other chemicals. Some synthesise new
molecules by joining bound component parts together,
others hreak them up - such proteins are called
Enzymes. Yet others use their ability to bind by joining
to other proteins, changing their behaviour and thereby
forming signalling networks within the cell [2], Such a

signalling network is best illustrated by example - see
Figure 2.

Figure 2. A simpiified signalling pathway

Figure 2 is a hypothetical example of a signalling
network. Molecules in the cell's external environment
A bind 1o receptor proteins B. This changes the shape
of the receptor and causes a protein O, which was
bound to the receptor to disassociate from it This
protein then floats freely in the cell's cytoplasm and
eventually binds with the protein D (chemicals in the
cytoplasm are buffeted around by thermo-dynamic
forces which act o mix the constituents). When C and
D are bound as shown in E._ they can bind further to a
motor protein F (a protein which can change its shape
by a large amount, allowing it to move large objects).
The motor protein is attached to the cell’s outer
membrane and this causes the cell to move towards or
away from the molecules A by changing its shape.

Obviously such a system may be represented by a
network in a similar way to a Neural Net [2]. In this
case, the nodes would represent the proteins, the
connections their interactions and layers represent
sequential/hierarchical protein interaction. One can
alse see that the system allows for intricate control
over these functions - for example, by using other
proteins. generated as a result of other intemnal or
external cetlular stimuli, which can stimulate or
suppress those shown [4). An appropriate name for
such a network might be an Amificial Biochemical
Network (ABN).

3. Artificial Biochemical Networks

Ciiven that in the simplest implementation, the basic
network topology can be constructed to be no different
in appearance from other connectionist networks, the
difference is mainly in the unit furctionality and
information flow. A typical output is shown in Figure
3. The lag time until the presence of the protein is felt
is A: this is set using the Genetic Algorithm which can

vii

alse train the network weights, Time B is proportional
o umit activity. the constant of proportionality being
defined by the Genetic Algorithm. Unit activity is
calculated using a standard Leaky Integrator [S].

Loy
=
o
i A
‘—?" Time froa tgRenng B
= procein’s presence 1o ies & >
et Prefmn present
Time
Figure 3. Unit cycle

The Genetic Algorithm has also been implemented
to choose which of the time periods A or B is
proportional {or inversely proportional) to the unit
activity and which &5 fixed [6]. This additional
evolvable parameter (7] has lead o pulse width or
frequency modulated units as shown in Figure 4.

This allows for the production of more universal
units from this basic npe. It has been suggested that
such dynamics may lead to new perspectives on
intellipence [8].

breyuency
1
? 1 & iy 1
g | Ll SR %
(B "
15 brerselr proportonal to e protsig aczvizy, Thme
L vviialant,
b Width
[+ L AEHmEEERY
tad =
H
z } fi K iy =ity
=
=
i
f

T inveresly praportera’ ie fom predsm ac-ay
LT monslad

Figure 4. Pulse modulated units

4, Examples in Pattern Recognition

A network based on the units described above (in
this case the Pulse Width Modulated variety) was
compared with a standard Multilayer Perceptron
{MLP} in pattern recognition problems. A 5 by 5 pixel
grid was set up with standard roman characters and
alternative identifiers as shown in Figure 3.

Figure 5. A 5 by 5 grid of lener "G, simple
predator and prey identifiers

It was tested first whether the network had the same
memaory capacity as an equivalent MLP network {(one
with the same number of units). The networks used had
25 inputs (comesponding to the input pattern pixels)
and the same number of output units as patterns. The
number of hidden layer units was then increased and
the network irained. using a [200, 200] Genetic
Algorithm, with one pattern at a time (starting with
character .A_) until failure. The results are shown in
Figure 6. The solid line shows the MLP and quantised

viii

ABN results, the dashed line the initial {un-quantised)
ABN.

Sl ERRVRT ST T VY A

Figure 6. Memory performance of ABN vs. MLP

It may be seen from the figure that the two networks
hold a similar number of patterns slight differences at
first attributed to different initial values used in the
training algorithm were found to be characteristics of
the time-domain quantisation of ABNs.

MNext the systems were tested to establish their
generalisation abilities. Noise was progressively added
to the data and the performance measured. Figure 7
shows the results of this (lines are represented as
previously). The noise addition procedure is that used
in the MATLAB Meural Networks toolbox [9].

)

3 * i

(R RT L II T PR e LT

-

an o
RUEE R]

Figure 7. Noise tolerance of ABN vs. MLP

ol
RN L]

Again, it may be seen that the networks are
comparable in performance. Similar results were also
obtained for the Frequency Modulated and full
versions of the network. The ABN showed better
generalisation and an investigation on this is reported
[6].

1t was also shown that the network could be trained
using standard Back Propagation. In these cases. the

scalar inputs {in the case of the characters used ahove,
a black pixel was a 1 and a white () where coded as
pulsez using a sigmoidal transfer function for
normalisation as shown in Figure 8. The outputs were
similarly normalised.

lnl.lll.

3 #

Irhoneahe

== il | |

1.8 co ol cati s

Figure 8. Transfer function

A method of Back Propagation was synthesised for
the time domain specifics of the ABN. This resulted in
an improved training time over standard Back
Propagation from the same initial parameters but as
expected no functional improvement in memory or
generzalisation [6].

5. Examples in control

The results above show that, in pattern recognition
problems, the network is simifar in performance to a
standard MLP type network, There is scarcely any
advantage in this in terms of time independent pattern
recognition as it is more complex to program (having
to keep internal clocks to account for where the units
are in their cycles). There are functional advantages
which are discussed [6] in the conclusions.

However, MLP networks have difficulty producing
suitable outputs to control time domain tasks (for

example PWM motor control), The ABN network is
inherently time domain and does not have this
disadvantage. It was therefore also trained w control
the gaits of a simuelated bipedal legged robot. The robot
is based on a physical robot. the legs of which are
controlled by servo motors as shown in Figure 9, The
legs have one active and one passive degree of
freedom. The network has four units; two chosen by
the CiA are designated outputs.

O Active [doiven) joint.
Deiven by molor and

FEAT ETTANTAThET.

Locling mee [stops
bosttomn jodnd npoving,
[ezwurd).

rad ||

Passive {pravity driven)
joint.

Mottom [free) nart of
lez.

Figure 9. Robot leg layout

Space resmictions here stop us from exploring there
dynamics in depth; however. this simulation has been
used and reported many times previously and the
dynamics of the legs and the robot are fully reported in
other papers [10. 11]. Figure 10 shows the leg
movements generated when the network was evolved
to walk. The result comesponds well with the perfect
pattern (a perfect pattern would have a repeat time of
60 tme steps and a movement from position 30 o
position 100}

g i AT

' [
L e L]
Erdal

Figure 10. Movement pattern of legs

Irezdiza

6. Conclusions

The system discussed in this paper is a new and
different approzch to connectionist Al Instead of being
based on neural networks. it models the chemical
signalling within cells. Of course, such signalling lies
at the root of neuron functionality also, as the neuron is
itself a cell,

The retention of both generalisation and universality
[12] affects the ABMN performance in pattern and
control, allowing for graceful decay as noise increases.
Such “fuzzy" uncertainty is far more stable than a
system that performs longer with higher accuracy then
undergoes critical failure with little warning.

With regards to mobile robot operation there is a
functional advantage of ABN pattern recognition.
Most pattern recognition is achieved “in vitro" where
time is not a constraining factor, here “snapshot™
pattern recognition can be utilised. In an artificial
organism that has to adapt to its environment “in vivo™
then an ABN information flow pattern system can
assimilate information as it appears.

The implementation of ABN= allows a single type
of intelligent units to perform all the operations of a
modular Al used in robot control and can be encoded
as part of the evolutionary algorithm with an operator
placing specific units.[6, 13].

The approach has several advantages. 1t simplifies
the design of time dependant outputs which, in tum,
allows the straightforward implementation of Central
Pattern Generator networks in robots, Pulse Width
Modulation for Motor Control and other similar
systems. However, the networks are equally at home in
traditional Pattern Recognition tasks. They also allow
systems to be developed which behave in many
respects like Spiking Neuron models, but without the
associated complexity. Finally. they may be trained
using traditional methods,

References

[1] H. Curtis, The marvellons animals: an introduction to the
Progozon, Heinemann education, 1969,

2] B. Alberts et al, Molecular Biology of the Cell, Garland
Publishing Inc. New York, 1994 (3rd editon). pp24 - 25 111
- 135721 - 782

[3] A.R. Barron, B.L. Barron and E.J. Wegman, “Statistical
learning networks: A unifying view", in Computer Science
and Statistics: Proceedings of the 20t Svmposivm on the
Fnterface, edited by EJ. Wegman, 192-203, 1992,

[4] €. Macleod and G Maxwell, “Evolutionary
Electronics™. Pracrical Electronics, August 1999,

[5] K. Gurey, An Insroduction fo Newral Neswerks, UCL
Press, 1997,

[6] N.F. Coapanmi, Evelvable Newral Functionalicy and
Artificial BioChemical Networks, PhD Thesis, The Robert
Giordon University, 2006,

171 C. Macleod and G. Maxwell, “Practical Newral
Metworks, part 4 Applicaons amd large Newral Neis”™,
Elelior Elecironics, vol 29, no 320, April 2003, 28-31.

[8] C. MacLeod and G, Maxwell, “Intelligent Signal
Processing”, Elecirmrics World, vol 105, no 1764, December
19499, 9T8-981.

[9] H. Demuth and M. Beale, MATIAR Newral Network
rootbor manual, The MATH WORKS inc, 10140 -11.46,
194,

1 5. Muothuraman, G, Maxwell and C. MacLeod, “The
Evoluton of Modular Artificial Newral Networks for Legged
Robot Control”. Artificial Newral Networks and Newral
Informarion Processing. Springer, Berlin, 2003, 488-445.
1] Do MeMinn, G Maxwell and O Macleod,
“Evolutionary Artificial Neoral Networks for Cuadruped
Locomotion™, Proceedings of the Intermational Conference
on Mewral Networks FCANN 2002, Madnd, Spain, 32,
T89.704.

[12] N.F. Capanm, C. MacLeod, G. Maxwell, “An Approach
to Ewolvable Newral Functonality™, Proceedings of
JCANNICONIP, e 22()-223, 203,

[13] 8. Muthuraman, The Evelution of Medwlar Artificial
MNewral Networks, PhId Thesis, The Robert Gordon
University, 2004

Appendix B

Evolution and Devolved Action

B.1 Introduction to the Appendix

“Evolution and Devolved Action” examines the lintitan of current Artificial Intelligence,
concentrating on connectionist models such as ig¢idlf Neural Networks which are
created through Evolutionary Algorithms. The papeesents ideas on how these

limitations may be overcome and was the initiabinfation source for this research.

Evolution and Devolved Action: towards the evolution of systems.

C. MacLeod, D. McMinn, A. B. Reddipogu, N. F. Capanni, G. M. Maxwell.
School of Electronic and Electrical Engineering,
The Robert Gordon University, Aberdeen.

Introduction.
The Artificial Neural Networks group at the Robert Gordon University has, over the
last six years, built up considerable knowledge and practical experience in
Evolutionary Artificial Neural Networks. This experience started with the PhD project
by C MacLeod [1] and continued with the work of D McMinn [2] which is due for
submission in June 2001. These are being followed up by the work of research
students A B Reddipogu and N F Capanni.

Initial work concentrated on Neural Networks that could grow to fulfil their function.
C MacLeod, in his thesis on this topic, proposed a model of a robotic control system
to be used as a vehicle for further research. This model formed the basis of D
McMinn’s project. The robotic control system [2, 3, 4] has a defined modular
structure that enables the researcher to create networks for particular tasks and so
allow the robot to function. McMinn has used this structure successfully as a basis to
develop Evolutionary ANNs implementing Central Pattern Generators and Reflexes
for robot locomotion.

It has become apparent, over the course of these projects, that a network that can
evolve into a modular structure without the need for designed partitioning would be
the next step forward for the group’s research. This should allow the network to
develop naturally and in an open-ended way without the need to artificially constrain
it. Such an approach needs an evolutionary algorithm that can automatically and
naturally evolve a “system”: that is, a modular network rather than a fully
interconnected homogenous structure. No acceptable Genetic or Evolutionary
Techniques are currently available to do this. The group therefore needed to look to
nature and discover the reasons why natural systems allowed such modularity to
evolve and how it might be exploited in the course of future work.

It was felt that this work would be a culmination of the group’s research to date, both
furthering the work on robotic control systems and also including ideas from previous
practical work, by MacLeod and McMinn, in terms of Evolutionary Networks and
Incremental Evolution (Embryological Algorithms) [1]. This is because such a
network will need to evolve and to “grow” from a simple to complex structure. The
research and ideas that lay the foundations for this work are contained in this report.
The report also considers two related aspects (neural learning and neural function),
but as explained above, it is the layout topology or wiring which is felt to be the most
important topic. After all, complex systems may be built up from simple elements,
such as transistors or gates (or indeed, at the most basic level, atoms), providing that
they are interconnected in the correct manner.

Therefore, to summarise: We are concerned with discovering an evolutionary method
capable of evolving systems. To establish a method capable of this, we must look

again at the action of biological evolution and compare it with current artificial
evolutionary methods.

PART A — A critical review of biological evolution.

A.1 Artificial Evolutionary Methods.

ANNSs are usually directly coded into a GA [5], if such is to be used for topology
evolution, each node or connection being part of the chromosome. However, the
entire human genome does not contain enough space to directly code even a small
part of an actual biological brain (let alone the rest of the body). So we must look
again at the action of real genetics, as this must hold a clue to understanding the
complexity of the biological system.

A.2 Biological genetic action.

DNA is a code arranged in the form of a long string. Each position in the string has
one of four possible values; these correspond to the four nucleotide bases. This code
is transcribed by a rather complex machinery to amino acid. Three bases code for one
amino acid (the three bases are known as a codon). This would allow a total of 4° = 64
possible amino acids to be specified. However the code has redundancy built in
(which reduces errors) and so only 20 amino acids are actually coded.

The proteins are made of these amino acids, joined together. Thus the DNA, by
coding a string of amino acids, codes proteins (essentially, one protein = one gene).
All that the genetic material does is code proteins and nothing else. The proteins are
made by the amino acids joining together via peptide bonds (the joining is done
automatically by the machinery which transcribes DNA to Protein). There is no
defining line between a polypeptide and a protein. The genome of a simple organism
such as e. coli can code about 4000 proteins. A human genome can code some 30,000
and 60,000 is considered the practical limit (due to problems with mutation) [6].

A.3 Proteins are the really clever part of genetics.

Every action in biology is mediated by proteins; they are the Universal Machines
which make all biological processes possible. If other chemicals are required, they
must be made with the aid of proteins. This vital point is summarised in figure 1.

Fig 1, Relationship between DNA and proteins.

DNA - code

Manufacturing mechanism

A

Proteins — means of action — Universal Machines

Because DNA cannot directly control the organism, we may say that the system
exhibits a Devolved Action. All control proceeds via the proteins (the contrast with the
artificial version is obvious).

Therefore, the system has two functional components. Firstly a code which can be
mutated and exchanged through breeding. Secondly the machines (ie the proteins)
which the code specifies (perhaps part is a better description than machine. This is
because proteins can self assemble into more complex structures. However, it is worth
remembering that there is much more to proteins than just self-assembly).

Examples of proteins:

Actin - Protein which operates mechanically to produce muscle contraction.
Haemoglobin — Carries oxygen supply around the body.

Enzymes — Catalyse chemical reactions.

So, these substances can perform almost any task. Figure 2 shows a tentative
classification.

Fig 2, Proteins as Universal Machines.

Protein

|Mechanical movement | | Structural | | Electrical| Chemical| |Organisational |

It is astonishing that nature has one group of substances which can perform all these
functions. The classification also shows up some of the limitations of organisms; there
are some things which proteins cannot achieve.

One could, in fact, imagine a great map of all possible genotypes (DNA codes) to all
possible phenotypes (resulting protein group structures, some of which would be
organisms). Once such a process is understood, it opens up the possibility of
“biological engines”- artificial biological structures engineered via DNA manipulation
to become, for example, motors or other mechanisms. Imagine an engine running on
grass in the same way a cow does. Such bio-engines might more resemble bagpipes
than internal combustion engines.

All this throws up a problem for the designer of artificial systems: The biological
system is not directly coded as in the current Artificial Evolutionary Algorithms -
what is coded are the universal machines which can assemble themselves or other
parts into a system. There is presently no way of synthesising such universal
machines. Therefore, any system we design will be less adaptable than nature’s
machines (although it is arguable that a similar effect might be achieved by a code
being supplied to a Universal Manufacturing Machine; such a system would not be
able to interlock as discussed below). In the sections that follow we will consider how
some of the most important of these machines operate.

Of course, it might be argued that even the process described above is not truly
mimicking nature. After all, why not start with the most basic components, which
occur naturally in the system - Electrons, Protons and Neutrons? These self assemble
under the control of thermodynamic forces into molecules. One can argue, indeed,

from this point of view, that the current search in physics for a “theory of everything”,
is no more that the search for the initial rules governing the way fundamental
automata assemble. However, it should be borne in mind that, apart from life,
evidence of organised complex dynamical structures in nature is hard to find. Most
structures form into “lumps” like familiar rocks. What complex structures do exist -
crystal and dendritic mineral structures, for example, are the produce of simple
automata rather than complex processes like those present in life. DNA and life can
therefore be seen as having rather unique properties (perhaps because of their
complexity). A point further underlined by the absence of life (or even evolution)
based on any other chemical system, produced either in nature or the laboratory.

A.4 The importance of interlocking.

The proteins themselves can effect the DNA by binding to it and stopping it
manufacturing other proteins. They can also effect each other and work together to
create much more complexity in the system (see descriptions of signal peptides and
adhesion molecules, below) [7]. Such behaviour may be termed interlocking, in that
the different parts of the whole have evolved to function as a system.

Interlocking is a vital part of the organisational ability inherent in biological
organisms and allows them to exhibit complexity which would be impossible through
separately functional components.

Interlocking is puzzling because it is difficult to understand how one machine can
evolve separately from another and still show inter-dependence on it. The explanation
lies in the fact that proteins are all made from combinations of the same 20 amino
acids. So eventually natural mutation will produce one protein which effects another
in a beneficial way. In other words, the evolutionary search distance between proteins,
which can effect each other, is not too great. This is dramatically illustrated in the
genctic discasc called sickle cell anacmia. In this disorder, there is a mutation in the
coding for haemoglobin. This mutation causes the protein to form long thread-like
structures within the cell and this causes problems with its function. However, it
shows that a small mutation can change a protein from one machine (which carries
oxygen) to another (a self assembled structural protein). So the crux of the matter is:
Because proteins are built from the same limited number of units, they can interact
and relatively small variations can completely change their function (and occasionally
into something useful) [8].

A.5 The power of the universal machine — Protozoa.

Such is the power of this system that it can design ‘intelligence’ without the need for
neural circuitry. For example, consider the Protozoa; these are single celled animals
which display almost unbelievable complexity and apparent intelligence (defined
loosely). All this is achieved by protein chemistry. They show that with a powerful
organisational system, perhaps the individual components need not be complex
‘processing units’ such as neurons [9].

A.6 The perfect artificial evolutionary system is not achievable with
current technology.

We can now see that the most general Artificial Evolutionary System would consist of
a mutatable code, which specifies general universal machines (and the process which
turns code into machine).

The general universal machine itself would be a machine capable of forming any
mechanism or structure, capable of fully interlocking, with a small evolutionary
distance between itself and others, and finally, capable of forming associations which
can direct their own organisation.

If we apply selection (natural or artificial) to such a system, we could eventually
evolve any mechanism. Although this is currently impossible, a method will be
suggested in which a more restricted set will prove useful.

A.7 Active Machines and Organisational Machines.
First, let us make an important distinction between two types of protein. Those which
form the active processing machinery and those which direct the construction of such,

figure 3.

Fig 3, Protein machines.

Active Machines

| Organisational machines

If we can tackle the organisational part of the system, perhaps its power may be used
(as demonstrated by the protozoa) to build complex structures without the need for a
completely universal (active) machine.

A.8 Organisational proteins.

Presently, we do not understand all the mechanisms of organisation within an
organism. However, what is known is powerful enough to solve many of the
organisational problems we are concerned with. There are several different types of
organisational protein identified. These operate in quite different ways [10].

One example, signal peptides, act like keys, allowing proteins which have the signal
peptide chain attached to enter different organelles of the cell. Generally, once the
protein has entered, the signal peptide (which forms only a short part of the total
protein chain), is discarded. Proteins get distributed around the cell by the normal
thermodynamic forces which act on all chemicals within the cell [11].

A.9 Cellular structure.

Why do all known, large organisms maintain a cellular structure? The answer to this
question lies in the fact that the mechanism of chemical distribution in the cell is
driven by thermodynamic forces as just described. The molecules are buffeted by
other constituents of the cell and eventually, because of the small physical volume

Vi

involved, will find their way to the area where they are required (for example, be
admitted by a gate to their signal peptide into another section of the cell)[12].

For billions of years organisms existed as single cells before multicellular structure
developed. With the organisation of earth’s biochemical system (which may be only
one of many possible), multicellular organisation is necessary to achieve sizes greater
than about Imm.

A.10 Gradients.

The chemical signals which allowed signalling inside cells were adapted to allow
signals to propagate from cell to cell. In fact, all multicellular organisms have
extensive intercellular signalling built into their chemistry.

Probably the most important of these intercellular signals are gradients. If one cell
emits a chemical signal, it reduces in concentration as it travels out from the cell
which emitted it. Cells have a built-in threshold to these chemical gradients and can
switch off or on the expression of proteins according to whether they are receiving
enough of the signal or not (once a protein is switched on, it can maintain itself by
positive feedback, that is it supports its own production. It can also block other
proteins by binding to their DNA sites). This mechanism plays a pivotal role in the
differentiation of cells in the foetus and in their eventual position in the body - and so
the formation of a patterned organism. For example, cells migrate along gradients (so
they control the eventual position of cells) and gradients can cause the cell to switch
on the expression of proteins which might change it into (say) a muscle cell (so
gradients control cell function). The symmetrical nature of gradients is the reason why
animal bodies display radial or axial symmetry. It also explains the fractal nature of
some biological systems (because, as each chemical gradient triggers, it produces
divisions at successively smaller levels, so producing a self-similar pattern at
successive dimensions) [13, 14, 15].

A.11 Neurons.

The neuron developed to allow long distance signalling. This is important because, for
the reasons listed above, there are limits to intercellular signalling, particularly in
terms of speed (and gradients like other chemical signals, which are not re-triggered
in each cell, only operate over a distance of less than a couple of millimetres).

So Neurons developed with long cellular processes which can stretch over a much
larger distance. Once they had this property, they could also develop a more
specialised signalling apparatus. This is important if any organism is to react to its
environment quickly (chemical signals are slow), with the obvious evolutionary
advantage this would give the organism. In fact, neurons are one of the most ancient
of all cells. They also demonstrate another type organisational protein, those which
control cellular adhesion. These cause some cells to be able to adhere to each other
and not to others. This appears, along with gradients and cellular migration, to be a
major factor in neural organisation [16]. Neurons also use gradients to direct their
long processes to their destinations (axon growth factors), something which, if we
could harness it, could direct the wiring of three dimensional integrated circuits.

vii

PART B — A New approach to ANNSs.

B.1 An Evolutionary Artificial Neural Network.

Now, all this may have left the feeling that we know what goes into an evolutionary
system but we couldn’t replicate it because we can not replicate a universal machine
(at least at present). However, while a full system is currently beyond our capabilities,
we can identify, for a neuron, which parameters are important and so limit the case to
something more manageable. However, to do this, we need a cunning scheme to
replicate some of the diversity which nature provides.

We should recognise, firstly, that what the universal machines build are cells and
what they give to these cells are a series of properties or attributes which aid self-
organisation. For example, attributes include the ability to adhere to other cells or the
ability to migrate along gradients. One way of looking at this, which helps us to
simplify the problem, is the hierarchy shown in figure 4.

Fig 4, DNA and proteins as part of a systems structure.

DNA

Codes

Proteins The machines

Build
4

Components | The neurons which have attributes

0

Organise into

Systems | Ganglia and other large scale structures

Obviously, it isn’t quite as simple as this because proteins outside cells (in the cellular
or developmental environment) help organise components and also play an important
part in the functioning of the system. This is shown by the side arrows in the diagram.
However, this idea does give us more to work with than the most basic systems
outlined earlier.

The problem is best split into two different parts. Firstly, the function of the neuron
and secondly its connections (this is where the modularity of the network arises).
These two parts, in a way, are roughly equivalent to the distinction between active and
organisational machines. It is to the second of these that we will mainly apply our
evolutionary ideas.

B.2 Components necessary to make a general neural system.
First let us consider the functionality of the neuron, what is required here? Well, there
are really just two components, figure 5.

viii

Fig 5. [Neural functionality |

[Neural unit function|

Secondly, we need to consider the organisational mechanism of the network. We can
identify the most important aspects of this from nature; these are shown in figure 6.

Fig 6, Network
organisation (topology).

Organisation

| Positional

The importance of these will be become obvious as we proceed.

| Connections

B.3 Functionality.
Let us consider the two components of the function of the neuron.

B.3.1 Unit function.

Contrary to popular belief, all neurons do not have the same unit functionality.
Actually, some operate in quite different ways from each other. In fact we do not fully
understand the operation of some of the more exotic types. What is needed is an
cvolutionary system which can cvolve any reasonable ncural function. This would
mimic the universal machines within the cell which can arrange themselves to
produce a wide range of electrical behaviours.

Although we could simply choose a combination of operators genetically [17], we can
also model any function using an infinite Power Series (for example a Taylor Series):

n—1

y=a+bx+cx’ +..+6,x

n
This is the basic series which is given in most text books, However, it is extendable to

any number of variables (and hence any number of dimensions)- for example in 3
dimensions:

[y, z)=a+bx+b,y+bz+cx* +...etc

If this were an ANN x, y and z would be the three inputs and by, ¢, and d, would be
the respective weights as shown in figure 7.

Fig 7, a polynomial ANN.

. B, B B e ‘m f(x,y,z)

Or, more generally, for y variables and a y, order series.
— YA 4 el
f@)=3) a,.0.
n=1 m=1
Shown in figure 8.

Fig 8, a more generalised neuron.

n-1
Oy, 101

B
/

n-1
O yOy

f(o)

As an example, we could approximate a circle of radius Jawith a two variable

second order Power Series (coefficients b= 0).
feuy)=x*+y’=a

We could also generalise the series more by adding fractional powers o, "" or
products of inputs 5,5, etc. Actually, the normal McCulloch-Pitts neuron is nothing

more than a first order series. If the term a is included, it corresponds to bias in the
network. It should be obvious when one considers that the separator in a normal
neuron is a straight line that a first order power series is simply a straight line
approximation to a function. A first order network may approximate any function
provided there are enough neurons in the system. The coefficient vectors a, b, c, etc
are weights which must be trained. So we have a system which can emulate almost
any function of the neuron (which has a continuous response). Now let us consider
time response.

We could model any time response with another Power Series:

f(O)=a+bt+ct® +..etc

but there is no evidence that the temporal properties of neurons are this complex. So it
may be easier to simply make a evolvable (or trainable) time decay:

f(@®)=ae” (a,beR)

By applying a threshold function to this it is easy to produce a good approximation to
“spiky” neurons. Usually a would be 1 and b negative, and so our general neuron has
this function:

f(neuron) =T (i) (¢)

Where T(;) is a nth order Power Series of the input vector i A squashing function
may be applied to this if necessary and we could also add a refractory (rest) period
[18].

B.3.2 Learning.

How could such a system learn? Consider a biological neuron; what are its possible
learning mechanisms? We can find the answer to this problem by drawing the isolated
neuron - a “neuron in a box”, figure 9, and writing down all the possible parameters
which could allow it to learn (After all, the neuron is only connected to other neurons.
So the only possible mechanisms involve either signals transmitted from other units or
chemical signals from the surrounding medium).

Fig 9 Isolated “neuron in a box”

. g

w Influences on learning
Influences on learning ®

«—

Influences on learning

Some examples might be:

a) Biochemical. The neuron is bathed in a ‘soup’ of intercellular fluid. Hormonal and
other stimuli can affect this soup. For example, its constituents might change in
the presence of hunger, pain, fright, the urge to mate, etc (or, in a simple system,
simply a good / bad signal). The signal would effect whole regions, not individual
synapses. Let us call this component B.

b) Hebbian (or Anti-Hebbian). A synapse gets strengthened through use. The more
activity it has, the stronger it becomes. This contribution effects each synapse

individually and is therefore a matrix. Let us call this component H .

Xi

¢) Synchronous (or Anti). A synapse gets strengthened when it is active at the same
time as others (and weakened if it is not). Like the Hebbian contribution, this is
therefore a matrix. Let us call this component S .

d) Mediated. One synapse (or a group of them) controls the strength of an other.

M, j=ax+by+...etc

Where a, b, etc are constants defined by evolution (or learned), x, y etc are other
inputs to the neuron. This effect may be difficult to achieve in practical terms, and
since there is no evidence for it from biology, it may be best left out of a model.

The mathematical forms of these learning mechanisms have not been expanded
because they are reasonably obvious. Of course the programmer may choose to add

one of the traditional learning methods to (or instead of) these.

The total learning contribution to the weight matrix could be expressed as.

W* =W +n(aB(bH +cS))

W' = updated weight matrix. 1 = learning rate. a, b, ¢ = sensitivity to individual
learning types. W = old weight matrix.

It is fairly obvious that these mechanisms, which are biologically realistic, are highly
dependent on network topology. After all, a synchronous or mediated learning
strategy will only work with neurons which are placed in the correct positions within
networks — it is easy to see that in other positions they could have no effect or cause
the network to deviate away from the required response. They are therefore probably
only suitable for use with networks whose topology is defined using evolutionary
mechanisms. This topology dependence may be the reason why it has been so difficult
to decide on biologically feasible learning mechanisms for ANNs.

B.4 Organisation

It has already been explained that, of the three elements of network specification,
(learning, neural function and connection pattern), the connection pattern or topology
of the network would appear to be particularly important. One can perhaps see this if
one considers that all machinery, whether artificial or natural, is made from smaller
elements, indeed, in the ultimate analysis from atoms themselves. It is merely a matter
of selecting and placing (and in the case of neurons, connecting) these elements to
produce the response required.

In the case of neural networks (and also electronic systems is general) an important
aspect of the system is its modularity. In the case of the robotic system presented in D
McMinn'’s thesis, the network has been artificially partitioned into Reflexes, CPG and
Biological Oscillator. When one attempts to evolve this system as a fully
interconnected homogeneous network, the result is failure - or at least considerable
difficulty. Therefore, the standard genetic algorithm is not suitable and we must look
to a new paradigm — one which has the evolution of a modular system integrated into
1it.

Xii

Before embarking on an exploration of the methods capable of doing this, let us first
pause to consider why a fully connected network seems incapable of producing the
results we require. Work needs to be done on the theoretical basis of this question as
there seems to be a theorem missing from systems theory which adequately explains
it. However three possible avenues of enquiry might be:

a) The fully connected networks currently used are too small.

Almost all networks are limited by orthodoxy to three layers. Kolmogorov’s theorem
is usually cited to support this view. However, this assumes that the problem is a
single data domain solvable with straight line separators. In practice however, the
problem may involve multiple data domains or multiple data transformations and so
the simple three layer model may not be adequate.

In theory a homogeneous “deep” network like that shown in figure 10 should, through
its learning process, become a modular network as shown - the deleted weights
becoming very small. That such networks are not often experimented with may be one
reason why we don’t observe this phenomena. Another could be that BP is not a
suitable algorithm for training such a system (although a GA should do it).

Fig 10, a “deep” network.

i) Fully connected

Emergent
Modular
structure

b) The networks have to process separate datasets.

Xiii

To illustrate this point let us take an example. Suppose that we have inputs from a
complex visual system which requires several layers of processing (for example
feature detection) and also inputs from an equally complex auditory system. If we
tried to process both of these in the same network it would cause difficulty because
the two independent datasets are not separated and can interfere with one another. the
same argument might also apply to complex operations even within the same set. So
separate discrete networks would certainly make this processing task easier.

c) A single large network represents too large a search space for the evolutionary
algorithm.

Several smaller networks would represent a smaller search space, but in McMinn’s
networks the size was small and the single large network still did not converge well,
which indicates that this explanation may be false.

B.4.1 Organisation - methods

Let us now turn our attention to some practical methods of introducing modularity
into the network. At the simplest level, there are two basic approaches to this. One
could adopt a method based on developmental biology, using computer models of
cellular differentiation, migration and pattern formation to fashion a network.
Alternatively, we could take an engineering standpoint and try and extract the essence
of what is required to produce a modular network and code this from a purely
pragmatic point of view. However, whichever path one chooses, there are certain
obvious aspects that the algorithm will have to accommodate:

1. Position. In biologically inspired algorithms, the neurons must be placed
in the correct positions in the “evolution space” or body.

2. Number. At each position the algorithm will have to decide the number
of neurons to be present in each module and the number of
modules.

3. Function. What the units actually do in each position.

4. Connections. Connections must be established both locally between neurons

in the same module and globally between different modules.

Although these ideas may be implicit in all the solutions resulting from the different
ideas described below, some may be easier to implement and more successful than
others. Outlined are five methods for creating modular networks, these are:

i) Using models of biological neural development.

ii) Using a set of production rules.

iii) Using fractals or similar mathematical models of natural patterns.

iv) Adapting traditional evolutionary techniques such as the Genetic Algorithm.
V) Using Direct Modular Growth on a network.

Let us consider each of these in turn.

B.4.2 Modelling Biology

In biology, the formation of patterns in the organism is not particularly well
understood. There are however certain generalisations we can make which are
probably sufficient in themselves to allow us to develop an Artificial Neural Network
that can evolve modularity [20]. The processes involved are differentiation,

Xiv

proliferation, migration, and patterning in normal cells. On top of these, there is cell
orientation and connection formation in the case of neurons. The order in which these
occur may be different in different cell types. Let us consider these aspects separately.

In the new embryo, the cells have no set function. Differentiation is the process
whereby these “stem cells” become specialised to be bone, muscle, neurons or one of
the many other cell types in the body. When the fertilised egg cell attaches itself to the
womb lining, it may be a chemical signal from the mother that starts development. It
is thought that a chemical gradient starts cell differentiation. Cells further away from
the point of attachment in the womb may be below the threshold level, whereas those
closer are above it. This triggers a change in the cells closest to the womb lining that
is the start of the road to development. Large aggregates of cells differentiate first,
forming gross structures; these in turn start producing other gradients which allow
differentiation to take place on a smaller scale and so on. The birthdays of the cells
(when they differentiated) are important in this respect, as earlier cells tend to form
the larger structures and later cells the finer. As an example, in the limb bud of an
animal, developmental genes progressively get switched on and form finer and finer
structure, starting with the form of the limb and working down eventually to the
digits.

Proliferation is tied up with differentiation. Obviously there needs to be enough cells
to build the structures of the organism and since development starts from a single cell,
the embryo’s cells are continuously dividing and so that the cell mass becomes larger.

Migration is important in some cell types and in particular neurons. Basically the idea
is that cells may proliferate and differentiate far away from the point where they are
finally going to be used and so they travel or migrate to their final homes. Exactly
why this evolved is not particularly clear, but it may be an accident of evolution.
Neurons originate in the same layer as the skin (they may have originally been skin
cells that became specialised during the course of evolution) and they have to move if
other tissue is to become enervated. Migration is mediated by chemical attractors and
cellular adhesion.

Patterning is the result of the previous processes. Cells can form patterns in situ by
proliferation and differentiation — this is what happens with bone and muscle. As
different cells form, they switch on new developmental genes, which form their own
gradients, and spark the next level of differentiation and pattern detail. This
mechanism results in symmetrical structures (because gradients are involved) and
fractal structures (because larger patterns cause smaller ones to form in more and
more detail). Whether migration is involved or not, these three mechanisms have the
result that: The right type of tissue is at the right place and in the right quantity.

From the point of view of a computer model, we can simplify the picture to say that
we need to place the correct quantity of cells in the correct place. This may be done if
artificial gradients are set up which allow “seed cells” to be placed, figure 11. These
may be assigned numbers which signify their attraction towards two perpendicular
poles, therefore locating themselves in 2D space (3D space is obviously just as easy).
The seeds then proliferate to form the correct number of neurons. One has got to make

XV

sure that the genetic coding for this is such that when mutations or crossover occur
they conserve positional and proliferation information.

Figure 11, Artificial Gradients can be set up in an evolution space.

N

w E
S
N
< —————T_Seed cells are placed
*
% %
w * E
%*
S
N

Seeds proliferate

Notice that modules are
obvious and these could
W E either be locally wired
using a mechanism like
v that shown below, or

S fully interconnected
locally.

Cell orientation and the formation of connections are particular to neurons as they
have to form “wiring”. Experiments show that axons form along chemical pathways
ensuring that one part of the brain is connected, as appropriate, to another. The
mechanism could be mimicked by allowing the neurons to grow connections from
only one side, these would then progress outwards until they connected with another
neuron which was compatible with the first (compatibility values could be attached to
neurons). Or alternatively, all neurons (and the sensory inputs and motor outputs of
the network) may be labelled with markers which specify attractors for the growth of
connections from the placed neurons. Those which are closer or have stronger
markers ‘win’ and connections are made towards them.

In schemes like this, numbers are attached to each neuron type which allow the units
to find their own connection patterns. This idea is equivalent to proteins getting
expressed in individual neuron types hence allowing them to self-organise. The
organisational machinery is contained within the individual neurons and not in a
universal genotype. Action is therefore devolved.

Of course this example is used simply to illustrate the issues involved in
implementing a scheme based on nature. One could include much more complex

XVi

details from developmental biology, right up to creating a sophisticated model which
simulated the effect of known genes (for example the hox genes), or axon growth
factor. However, the basic idea remains the same and it is doubtful if this level of
detail confers much advantage over a simpler algorithm that captures the essence of
the system.

B.4.3 Production Rules and Trees

Another system which captures the biological approach, but at a more abstract level,
is to use a set of Production Rules to configure the network. Either the rules, or the
network that they produce, can be conveniently written down in the form of a tree -
following the tree from top to bottom produces the network. A typical tree for
encoding a network shown in figure 11 is shown in figure 12.

Figure 12, A tree encoding a network.

Seed neuron 1 Seed neuron 2 Seed neuron 3 Seed neuron 4
(position) (position) (position) (position)
A
Offspring | .. OffSpring Offspring | Offspring | ... etc
neurons neurons neurons neurons
Conn- Conn-
ections | .ueeen. ections | e etc

Of course this is really just an alternative way of representing the biological system
which was illustrated in the previous example. The tree comes under the control of the
Evolutionary Algorithm - which is basically the production rules for creating it. They
might include, for example, neuron proliferation (turning one neuron into many),
migration and so on. Arranging the system like this however has the advantage that
one can allow mutation and recombination (crossover) in the G.P. fashion by
swapping or mutating individual branches of the tree. In this way important sections
of the network can be reused without having to be re-evolved.

This is just one of many possible trees which could be used to encode the network and
many different production rules which could be used. The alternative to encoding the
network is to encode the production rules themselves as the tree [19], figure 13, the
rules in this case being produced by the Evolutionary Algorithm.

XVii

Figure 13, Production rules.

Start (seed)

‘ Divide Divide | | Divide ‘

End A
‘ End ‘ | End |

End

The connections may be part of the production rules or evolved through the hierarchy
established by the rules themselves. The arguments about recombination and mutation
outlined for the previous case apply here also.

B.4.4 Fractals

Many of the patterns produced by living organisms are self-similar at different scales.
This phenomenon can be seen clearly in many plants - good examples are ferns. The
study of such structures has become popular and important in recent years and some
aspects of them (although not all) are tied up with non-linear systems and in particular
so-called chaotic dynamics. Mappings of the stability of such systems produce the
beautiful “Mandelbrot Set” and others. Other self-similar structures can be produced
by the repeated application of a formation rule, by geometric transformations or by
self-organisation in automata. However they are produced, such structures are often
referred to as “Fractals” [21]. The word Fractal is widely misused and applies to many
different types of system - here we are taking a loose meaning, understanding it to
mean a mathematical model which forms approximately self-similar systems that
resemble biological structures.

The importance of fractals is that they are often the mathematical form resulting from
the action of genetics. They display symmetry (as does the biological nervous system)
and are generally “lumpy” (modular). The idea that fractals could be used to define
neural net topology has been suggested before [22], but researchers have yet to take it
seriously enough to produce working systems. One of the main reasons for this is that
it would require the design or discovery of a fractal system suited for the job
(currently available fractals are not).

Not all types of fractal would be suitable for use in the definition of neural nets. There
are three important attributes which the fractal should have. Firstly, it must be
constructed from lines, because these will be the connections in the network.
Secondly, it must be able to grow, from a simple to a complex structure, the later
stages building on the earlier. Finally, it must have “nodes” at which neurons or
modules can be placed.

XVili

There are three types of fractal (and perhaps several others) which almost
immediately fit the bill. These are outlined below.

i) Dawkin’s Biomorphs.

Biomorphs made their appearance in the book ‘The Blind Watchmaker’, by Richard
Dawkins [23]. In the book, Dawkins explained the operation of evolution in animal
populations. To aid his explanation of the evolutionary process, he developed a simple
computer program which produced branching structures which he named Biomorphs.
Each time the program ran, the Biomorph grew; that is, it added another layer to its
structure, figure 14. Dawkins encoded a sequence of numbers which represented the
structure of the Biomorph as a string and which can be mutated - hence the method is

inherently genetic.
v - MOK

Fig 14, Typical Biomorph development.

In the original program, the Biomorph was represented by nine genes. The genes
influence parameters such as the height and width of the structure. The Biomorphs
always grew by branching into two segments (as a biological cell divides in two,
during reproduction).

The process has several important properties:

o [t represented a structured search and produced a structured result

o It allowed growth from simple to complex structures

o [t was based on sound biology (although the final algorithm is not a direct model of
nature).

o [t appeared to be adaptable to neural nets

The system, as presented by Dawkins, is not in itself suitable for use with neural
networks. However, it may be possible to use a similar algorithm as the basis of a
system suitable for use with ANNs.

(i1) “L” (Lindenmayer) systems.

These are often seen in the context of producing beautiful plant-like patterns,
particularly ferns and trees. They are generated through the repeated application of
rules. Like the Biomorphs described above they can “grow” from simple to complex
and can display line features. Other similar fractals include Pythagoris and
Mandelbrot trees.

(iii) Cellular Automata.

Certain types of Cellular Automata can also be configured to produce similar
structures to fractals, both symmetrical and non-symmetrical. They can form branch-
like dendritic structures in the same way as the other fractals discussed. However
these are built up from the self-assembling properties of the automata rather than from
a mathematical formula, transformations or growth rules like the other structures. In
the case of the automata, systems can be envisaged where the neurons are the

XixX

automata themselves, or alternatively, where the dendritic chains simply form the
“wiring” of the network. Both “L” systems and automata are illustrated in Stewart's
book [21].

The three examples given above are simply used to illustrate the possibility of the
fractal use in ANN definition, very little real work has been done in this area. As
mentioned, none of the systems, as they presently stand, are really suitable and a
structure really needs to be designed which “fits the bill”. However, once this is done,
there are two way to use the fractal. Firstly, the nodes of the fractal could be used as
placement points for neurons and the branches their connections; this is illustrated in
figure 15 below. Or, alternately, the nodes could be placement points for network
modules (probably fully interconnected). Looking at figure 15, one can see why the
basic Biomorph is not suitable for use. However, other fractals do display fully
interconnected modules with sparse interconnectivity between them.

Fig 15, Using a fractal to produce connectivity.

Black blobs are
neurons or
modules.

B.4.5 Altering existing Evolutionary Algorithms

One obvious area which we have not yet touched on is whether the standard
evolutionary algorithms such as Genetic Algorithms or Evolutionary Strategies could
be modified to produce a modular result. Some possible ways of achieving this are:

1) Define each module by a section of chromosome within the population of the GA.
Each neuron appears as a sub-string within the module and for each might be coded:
(1) The weights, (2) The function of the unit and (2) The wiring or topology. Some
neurons are designated inputs and some outputs. These allow connections to other
modules (for ease of coding the inputs and outputs can come at the beginning and end
of each string and delineate it). As modules are added to the structure, the strings are
allowed to grow.

2) An extension of this idea is to have a fixed string length for each module, but to
allow certain parts of the string to turn on or off or define the network (akin to
pruning). This is an attempt to get around the problem of strings having to grow if
modules become bigger or alternatively, have an independent GA for each module.

A new module could be created when the GA string reaches a certain fixed size - at
which point it would automatically “bud off” a sub-network which would be wired
independently of the first. Alternately this could be done once the network had
fulfilled its function (once the fitness function was as high as possible).

B.4.6 Direct Growth

At the opposite end of the spectrum from the biological approach is a purely
engineering point of view. From an engineering view we simply want to place groups

XX

of neurons into a modular structure and connect them together to form a system under
the control of evolution. There are a number of approaches we could adopt to achieve
this. Consider the concept of an “evolution space” were the network will develop as
shown in figure 16.

Input side, these are connections from sensors
O O O O O O O O

Fig 16, An “evolution

space”
Evolution space

O 0 O O O O O O
Output side, these are the connections to actuators

In the systems developed in McMinn’s thesis and in previous projects a single
network is caused to evolve in the space as shown below in figure 17

Figure 17, A network, as evolved in McMinn’s thesis.

Input side, these are connections from sensors
O O

(®)])] (@) @)

Output side, these are the connections to actuators

However, the concept can be easy adopted to serve modular networks in two obvious
ways. Firstly, by replacing individual neurons in the diagram above by networks,
figure 18.

Fig 18, Adapting the above idea to modular networks.

Input side, these are connections from sensors

O O O
Input side
Modular
network
Output side
O O

Output side, these are the connections to actuators

XXi

The internal wiring of the modular network would be determined by one evolutionary
algorithm (the local algorithm), the wiring between networks and inputs/outputs by
another (the global algorithm). The algorithm would start with few inputs and outputs
and build up by added these and more modular networks (this is the incremental part
of the system described in detail in the next section). How much of the previous
network is conserved on each iteration could be varied in different algorithms.
Another, possibly more flexible system is shown in figure 19.

Figure 19, Another system.

Network Module

Input side, these are connections from sensors

©C O O O O O O O O O O
New inputs added from network

Evolution space

New outputs added from network

O 0 O O O O O O o O O

e

Output side, these are the connections to actuators

In this case only connections evolve in the evolution space (although one could also
allow single neurons to be placed in this space). The operation other than this is the
same as the previous system described.

Naturally, the best aspects of the systems described in the previous section may be
“mixed and matched” to provide a better result.

B.4.7 Other issues in Modular Evolution

i) Limitations of Evolutionary Techniques

There are several problems with Evolutionary Algorithms. Some are fairly obvious
and others are subtle. One of the more subtle problems has to do with the inter-
reaction between different parts of the system and is well illustrated by Timetabling.

Time Tabling is extremely important in academic and some other environments and
basically involves assigning lecture classes, lecturers, rooms and timeslots so that
classes run smoothly. Because the resources are limited it is not as trivial a problem as
it might, at first, appear. Generally it is done by a human carefully placing the correct
classes and teachers into the correct time slots, but this is tedious and time consuming.
Genetic Algorithms have been devised to try and solve the Timetabling Problem.

The Genetic Algorithm is actually very good at helping with the problem. It can often

nearly complete the timetable - however, a human can always do better and usually
has to finish the task. The reason for this turns out to be important: a human can see

XXii

intuitively that placing certain time slots in a particular order early in the structure
allows other slots to fit more easily later. Of course, given enough time, a GA would
stumble across the same combination, but it is just one in a huge number. This is the
advantage of design or intuition over evolution.

The same argument also applies to modular networks. Evolution has many different
combinations to search and in any large network it may be a next to impossible task
for it to find a particularly important combination of parameters which satisfy a
particular requirement.

The other problem of modular network design is anything but subtle - what do the
modules actually do? If the weights in a module have to be trained then how is the
fitness function determined. This is analogous to training the hidden layer of a normal
neural net.

In the following discussion, a possible answer to these two questions will be given in
terms of incremental evolution. It should be remembered that, whatever the
researcher’s doubts about the difficulty of implementing this, the two tenants of
evolutionary connectionism should be borne in mind:

1. can a machine be intelligent to the point of consciousness?
Yes. The biological brain shows this to be true and it is a machine.

2. Is it possible to create such a machine?
Yes. Nature has designed such a machine through blind biological evolution and so
therefore can artificial evolution.

ii) Possible solutions to these dilemmas.

The solution to the problems mentioned above lies in Incremental Evolution [1]. To
understand this, consider the evolutionary development of the human brain. As the
monkey brain developed into the ape brain and the ape into the human brain, did the
whole structure re-wire itself each time? No, re-wiring tens of billions of neurons is
simply not feasible. A much more reasonable explanation is that the brain added to its
structure, building new modules on top of old. The scaffolding of the mammalian
(and indeed the reptilian) nervous system is still present, buried deep within our own
[24].

This is the process which can help us to evolve Modular Artificial Nervous Systems.
Start with a few simple modules which allow the system to function at a primitive
level in a constricted environment and build on these as the system develops.

Such an approach requires that sensor inputs and actuator outputs from the network
must also evolve in complexity along with network - in effect evolving the body plan
of the robot. For example, a legged robot might start of with simple, single degree of
freedom legs, each with a single control input and a single sensory output as shown in
figure 20a.

XXili

Fig 20, Robot evolution.

Evolution of “body
[X J [X) plan”

Evolution

Evolution

space Sensor input from leg space

Actuator ofitput to leg

First modules control simple robot ‘ | More complex robot with multi-jointed legs

a) b)

Once the system can control the simple legs, extra degrees of freedom can be added
and the network allowed to evolve (incrementally), figure 20b. The control system for
a prosthetic might also proceed along similar lines, starting with gross movements and
working down finally to digits. Likewise, a sensory system like vision would start
perhaps with a single eye spot - only able to perceive light and dark and evolve
complexity from there.

Obviously, any complex artificial organism would start life (as in both evolutionary
and developmental biology) as a simple group of cells and develop.

One can perhaps also see some limitations in this structure. Although it is possible to
see intuitively that it might work for robots, it probably would not work (or at least to
work so well) for systems with a high degree of serialism in their design. One might
postulate from this that there are some systems which nature would find it very
difficult to design but which humankind would find easy. This is an aspect which has
yet to be investigated.

iii) Operation of a practical algorithm

Let us consider how such a system might operate in a practical sense. This is best
illustrated by an example. Suppose that we have a direct growth system as described
in section B.4.6. As described above, the algorithm will start with a simple evolution
space with few modules (one in this case), figure 21a.

Figure 21, Evolutionary algorithm operates on direct growth.

Network module

é) O ——— T o PO

Evolution space

a) b) ©)

XXV

This one module can be configured using two nested Evolutionary Algorithms. The
first EA wires the module to the inputs and outputs of the system (the Global EA), the
second wires the module internally (the local EA).

To illustrate this further: the global EA first selects an external connection topology,
then the local EA configures the module’s internal wiring. Once the internal wiring
has reached its peak fitness this configuration is stored and the global EA runs onto its
next set-up. In this way, the combination of best local and global connections can be
found.

Having wired the simple system up, the algorithm next adds another module and more
input/outputs to the outside world. The process is then repeated except that the
previously wired modules are retained and the new modules wired on top (global
connections to previous modules may change but local connections are retained),
figures 21b and c.

The exact formation of the algorithm has yet to be developed. For example, it may be
that operation is better if some changes to previously wired modules are allowed,
particularly to modules which have been recently placed. This could be implemented
using a simulated annealing algorithm running alongside the EAs. Multiple levels of
modular networks (networks of networks) could be dealt with in the same way — using
nested EAs.

Another important aspect of this type of system is the genetic operators which are
used in the EA. Conventional EAs use recombination and mutation, but in nature
large sections of DNA can be accidentally deleted, inserted, copied and inverted. This
potentially allows chunks of network to be duplicated. Such duplication is a huge
advantage. It could allow hard-to-evolve sections of network or whole modules to be
reused. One can see the advantage of this given the problem described in time tabling
above. In fact large parts of the human brain consists of millions of repeated modules,
consisting of a few hundred neurons. These may be “learning units”, configured to
expedite learning — which may be heavily intertwined with topology as described in
section B.3.2.

Conclusions

This paper has attempted to explain the lack of success of traditional Evolutionary
Algorithms by outlining the differences between them and Biological Evolution. In
particular the point that DNA codes self-organising chemicals which can produce
repeating (modular) structures. It is pointed out that a artificial equivalent of this is
difficult to implement.

As an alternative, several new methods of considering ANNs are suggested including
several new methods of organising the ANN topology.

Finally some suggestions about the practical running of the algorithm are made.

XXV

References:

[1] The synthesis of Artificial Neural Networks using Single String Evolutionary
Techniques, C MacLeod, PhD Thesis, The Robert Gordon University, 1999.

[2] D McMinn, PhD Thesis, The Robert Gordon University, 2001.

[3] A Framework for evolution of an animat nervous system, C MacLeod et al,
EUREL Advanced Robotics Systems Development (conf), 1998. Paper 18.

[4] An evolutionary artificial nervous system for Animat locomotion, D McMinn et
al, ICEANN -Engineering applications of neural networks (conf), 2000. p170-6.

[5] Combinations of Genetic Algorithms and Neural Networks: A survey of the state
of the Art, J D Schaffer D Whitley L J Eshelman, COGANN -92 (conf), IEEE comp
soc press, 1992.

[6] Molecular biology of the cell (3™ edition), B Alberts, D Bray et al, Garland
Publishing Inc, 1994. p104 - 10.

[7] As reference 6, but p204-5, 404 -5, 573-4.

[8] As reference 6, but p104 - 10, 56 - 7, 111 - 35.

[9] As reference 6, but p24 -5.

[10] As reference 6, but p556 -60, also ch12.

[11] As reference 6, but p95 - 7, 111 - 35.

[12] As reference 6, but p556 - 560, also ch12.

[13] As reference 6, but p721 — 27, 1050 — 66, 1080 — 92, ch 21.

[14] Open University video — course s202, Biology, form and function course, video
title : Patterns in developing gradients.

[15] Cellular Development, D R Garrod, Chapman-Hall, 1973.

[16] As reference 6, but p1119 — 30.

[17] As reference 1, but pA78 - A98.

[18] Investigation of an advanced neural network model, S I Monsen, MSc Thesis,
The Robert Gordon University, 2000.

[19] Genetic synthesis of Boolean neural networks with a cell rewriting development
process, F Gruau, /n Combinations of Genetic Algorithms and Neural Networks,
IEEE Computer Soc Press, 1992.

[20] A new approach to neural network topology, J Murray, MSc Thesis, The Robert
Gordon University, 2000.

[21] Life’s other secret, lan Stewart, Penguin books, 1989.

[22] As reference 1, but p70-76, A3-AS.

[23] The blind watchmaker, R Dawkins, Penguin books, 1991.

[24] The brain: The last frontier, R M Restak, Warner Books, 1979. p 50 - 52.

V2.1

XXVi

Appendix C

Backpropagation Algorithm, SLT Delta Rule and Pulse
Width Backpropagation

C.1 Introduction to the Appendix

This appendix presents the Backpropagation Algarids used for static-domain training
of Multi-Layer Perceptrons in this thesis. A compat of this algorithm is the Delta Rule,
which is used for training Single-Layer Perceptrodsspecifically derived Delta Rule is
presented; it was created and used for trainingl&ibayer Taylor Series networks. The
last algorithm presented is a derived version oftkpeopagation, which suits the
requirements for the time-domain training of thelspuwvidth modulated Artificial

BioChemical Network.
C.2 The Backpropagation Algorithm

Backpropagation was introduced by Rumelhart, Hintord Williams, [1986]. This
remains the most prevalent training method useféeéd-forward networks. There have
been many improvements made to the initial methodesits introduction, however the
algorithm was used in this thesis to compare théopaance of different artificial units
and did not examine the assorted alternative vessob the algorithm.

Backpropagation is a gradient-following error-mimimg algorithm. This means that as
the algorithm progresses the parameter alteratianse the error to follow the downwards
slope until a minimum level is reached. This emonimum is usually not encountered as

the stop criterion (a higher target error) showdddund first.
- poch :%z z (tij -0,)2 equation C.1

The epoch error {gocn is defined as in equation C.1 where therenadata-patterns. This

is called the Least Mean Square (LMS) error. Epattern error (g is the sum of its

neuron errors where there areutput neurons. The neuron error is designatgduleere

n may be replaced by the specific neuron identifier.

* The epoch error is calculated each epoch and cadayainst the stop criterion.

* Only the neuron errors are used in the trainingratigm.

Summary of the Backpropagation Algorithm operation:

Once a pattern has completed its forward passeoMhbP training begins. It is customary
to encompass all of the training from this pointvands as Backpropagation; however the

initial training on the output layer follows Pertegm training delta rules and was used

before Backpropagation was introduced.

hidden weights output weights

&
&

actual outputs neuron error

input nodes
output layer target outputs

hidden layer

Figure C.1 — Backpropagation of an MLP

Figure C.1 shows an MLP arrangement of nodes amdons. Training proceeds as

follows:

* For each pattern in turn, the output neurons erggi@e calculated. For the output

neurons;

e, =(target, —out,) equation C.2a

e = (t arget, — outﬁ) equation C.2b

« The errors gare used to calculate an associated parametezaftir output neuron.
This assesses the change its connecting weightddsbadergo and incorporates the
first derivative of the output function used. st case the logistic sigmoid. The
parameter is denoted by the lower case Greek lé&iea ¢) - for the output neurons

this is;

J, =out, [{1-out,)&, equation C.3a
0, =0uty [(1— outﬁ)Eeﬂ equation C.3b

 The deltas are used to calculate the new valuesadfi connecting weight using the
Delta Rule. Weight values are designatgdwherei is the connecting unit in the
previous layer anglis the current neuron. The new weight is indidatew’. For the

above network the calculations are as follows;

Wy, =W,, +7[d, [out, equation C.4a
Wy, =Wy, +770, [but, equation C.4b
WS, =W, +7170, [but, equation C.4c
Wy = W,, +17 0D, [Out, equation C.4d
Wig = W +177 (8, [OUL, equation C.4e
Weg = Weg +1/7 0B, (DUt equation C.4f

In equations C.4 the termis the Greek lower case eta and is a constamcctike learning
rate. Usually a < 1. At this stage the weights for the output layawér been altered;

however, as indicated, Backpropagation has not lmeglemented.

Backpropagation refers to the method by which tihvereat each output node is back-

propagated to the hidden nodes so that the caheat of responsibility for this error can

be allocated and the hidden weights adjusted. iBhibe “credit assignment” problem
defined by Minsky [1961].

» As with the output layer the first stage in anyded layer is to calculate the delta

values for each neuron, as follows;

3, = out, [{L-out,){d, W, + 3, ,,) equation C.5a
3 = outy [{L-outy) {0, T, + 3, (Wg,) equation C.5b
J =out. [fL-out) {3, v, + I, Dv,) equation C.5¢c

In equations C.5 the neuron errof @ (target — outpug) is replaced by the credit
assignment term. This is the delta value of eaalron in the subsequent layer multiplied
by the strength of the connection. Using theitaledrms, the new weights for each hidden

neuron are found in exactly the same method ath&output neurons.

Woa = W, +77 0D, [Out, equation C.6a
Wog = Wog +77 B [OUL, equation C.6b
We = Wy +77 D, [Out, equation C.6¢
W), =W,, +77 5, [Dut, equation C.6d
Wz =W, +77 [[Out, equation C.6e
W =W, +77 [[out, equation C.6f

Once these calculations are completed, exactly matéern has been passed forward
through the network to find its outputs, and udimg error calculation this pattern error has
been passed back through the network to calcutateraining. After this has been done

for all patterns an epoch has occurred.

C.3 SLT Delta Rule

The delta rule for a Single-Layer Taylor Seriesnoek must take into account the multiple

weights for each connection and their associatetifial and power terms.

output weights

actual outputs pattern error

input nodes
output layer target outputs

Figure C.2 — Delta Rule of an SLT

The Delta Rule is only concerned with training ampaot layer. The rule used is based on

the version implemented in Backpropagation andgeds as follows;

* For each pattern in turn, the output neurons’ sregrare calculated. For the output

neurons;

e, =(target, —out,) equation C.7a

€ = (t arget, — outﬁ) equation C.7b

This is the same as for a McCulloch-Pitts neur®his is a property of the neuron, related

to its output, and as such it is not affected lgydbnnections to the neuron.
* The errors gare used to calculate the deldagor the output neurons - this is;

d, =out, [{l-out,)&, equation C.8a

O, =0uty [(l— out/,,)Ee/,, equation C.8b

Once more as a property of the neuron this isdhgesas in the MP neuron.

The deltas are used to calculate the new valuesadi connecting weight using the Delta
Rule. This is different to the MP neuron as thare now multiple weights connecting
each neuron and node. Weight values are designgtedherei is the connecting unit in
the previous layerj is the current neuron and p is the order of pother weight is

connected via.

« For the above network, assuming & @&der implementation, the calculations are as

follows;

1
u .
Wog1 = Wogq +77 08, E'c% equation C.9a
.]c_JthZ .
Wogp = Wog, +17 LD, o equation C.9b
ut,”
W;Zﬂl =Wop +17 []5[? GO]_—I equation C.9c
. ut,” .
Wogpo =Wog, +177 L0, Elo—z equation C.9d
ut,’ .
W)y =Wy, +77 08, E’ol—lﬂ equation C.9e
R out,” .
Wipp =Wy, +1700, 52—| equation C.9f
1
Wis =W, +17 LD, EI]_—I equation C.9¢g
ut,’ .
W;ﬂZ =Wy5, t17 wp E"OZ—IA equation C.9h

* For any weight designated,, the new weight can be calculated as follows;

out "

| equation C.10b
p!

+ =
Wi, =Wy, +77 LD

Once completed for every pattern, an epoch haseztu

Vi

C.4 Pulse-Width Backpropagation
For an ABN, the Backpropagation Algorithm must consider timeetidomain parameters
that accumulate the Sum value for each node. Tgeritdim and its derivation was
presented in Chapter 8 with future consideraticlesgnted in Chapter 9. Given an ABN
of equivalent topology to the ANN shown in figurelCthe algorithm is summarised for
nodesa andA, all other nodes in the same layers having egemntalperation.
* The output node error & calculated for timg;

€)= (t arget, —outa(i)) equation C.11a
This is the same calculation as used for an Aréfibieuron once output atis evaluated.
* The associated delta term is calculated;

J, =out, Eﬂl— outa(i))Eea(i) equation C.12a

This is also the same as for an AN.

« The delta values are used to calculated the nevalsgathway strengths .

Spa =Sag 110D, [bUL,; equation C.13a
Sga = Sg, +17 D, [OUt,_, equation C.13b
Sca =Scq +11 D, Dbuty, equation C.13c

These calculations take into consideration thatntiost recent output from the previous
layer is not the correct one to use, as it wasiAB. Instead the output at the previous

time t;.1) must be used.

At this point the output layer has been trained #edcredit assignment must be made for

the hidden nodes.

Vil

e The delta for the hidden layer nodes;

O, =0Ut, E&L— outA(n_l))[ﬂé'a (W,, + 95 HNM) equation C.14a
This delta value is used to calculate the strenftthe hidden signal-pathways. In this
example the outputs from the input nodes remainsteon while the data pattern is

presented. Therefore there is no need to calcalptédse at;.,).

« The new hidden signal-pathway strengthare;

Spa = Soa +17 [0, [DUL, equation C.15a

Syx =S, +77 [0, [but, equation C.15b

If the previous layer was also a layer of hiddedehoather than input nodes then time-

domain again becomes important.

* |n this case the calculations are;

Soa = Saa 77 (D, [oUty) equation C.16a

Sia =S)a 175, [but,_,) equation C.16b

Once completed, the ABN has relaxed for one pattnd had its signal-pathways

adjusted. After this has been done for all pastemm epoch has occurred.

viii

Appendix D

Polynomial Over-Fitting

D.1 Introduction to the Appendix

Networks composed of polynomial-type neurons hasmmarkable pattern recognition
abilities. These abilities may be due to their céiyato follow a decision boundary
contour far more accurately than McCulloch-Pittsine@s Duch and Jankowski, [1999].
This is attributed by Giles and Maxwell, [1987] toeir modelling of the high-order
structure of the environment in which they operaidese authors also give a useful and

detailed definition of generalisation in neuralwetks.

D.2 Polynomial Over-Fitting

A network composed of linear separators requiregnfinite number of them to exactly
map any smooth curve, whereas a polynomial maybbeta follow it perfectly. Herein

lies both a functional advantage and a potentiakness.

v

(b)
Figure D.1 — Polynomial over-fitting
modified from [Bishop 1995]

Figure D.1(a) shows an attempt by a singe lineparsgor to distinguish between the
classes of open and closed circles. This resultsany errors in the training-set. Figure
D.1(b) shows a single polynomial separator. Thipraxmates the decision boundary
much better and accounts for fewer errors. Ifdingle polynomial separator is allowed to
increase its order until it reaches a zero ersee (Figure D.1(c)), it can classify all the

training-set correctly. This shows the ability bktpolynomial compared to the linear-

separator. It may be more apparent if the linepagator is viewed as a polynomial of first

order terms Capanni et al., [2003].

actual boundal
six order approximatic

- eight order approximatic

Figure D.2 — Polynomial over-fitting of smooth carv

A single polynomial is used to approximate a decidboundary such as shown in figure
D.2, and allowed to increase in order to improgefitt This may then become prone to
over-fitting as it attempts to intersect with evdrgining-data point and makes abrupt
changes to do so. In the example shown, the dedundary is closely approximated by
a 2% order polynomial. Then the order of the polynonisaihcreased, shown a¥ 6rder,
until there is an exact mappind” 8rder. The neuron does exactly what it is askedto
by the training algorithm and finds an exact solutto the training-set. The extreme
differences in the decision boundary show the iahiedanger of over-fitting through the

pattern matching abilities of polynomial neurons.

There are many approaches to avoid over-fitting Wigher-order networks. One method
Is to evolve the order of the polynomial with anoksionary Algorithm while training the

EA’s parameters with another approach, such as araepEA or a derived gradient
descent algorithm. If the fitness takes accourdvef-fitting then a fitness function with a
weighting factor can be used [Kim and Park, 2008ethods can be derived from linear
separation training to utilise error feedback, sastBackpropagation Nikolaev [2003]. In
a known problem, where there is no set formuladetermining the size of the hidden
layer in a MLP, these methods can be extended m@amial networks. If the network

size is incorrectly set and the algorithm doesallmiw the network to alter its size, then

over-fitting or under-fitting will occur Chang ari@heung, [1992].

It is a prime requirement of networks to have ggederalisation, that is to be tolerant of
noise in the training patterns. Therefore the ndtwoust either be very problem-specific

or be flexible enough to include generalisatiorhwatits training algorithm.

Appendix E
Methods

E.1 Introduction to the Appendix

The experiments in this thesis used a variety ofwsweé. The main software used was
Borland C++ version 5.02. Minor simulations wessessed through Visual Basic (VB)
within Microsoft Excel 2003. Additional visual futignality was achieved with Microsoft
HTA interfaces which used HTML, CSS, JavaScript afgl Wisualisation was achieved
through Mathcad 11 Enterprise Edition and user- twooed Graphical Interfaces in
DHTML.

The algorithms used or derived have been suppliptbapately in Chapters 5 and 8 and
in Appendix C.

All the different systems required individual pragrmes, however the inclusion of all of
these would not benefit the thesis. As an exanguipplied below are the flow charts for
the programme design of an Evolutionary Algorithmeduido evolve the connectionist

networks.

main_program

This function controls the
flow of the program. Itis sub
divided into sections of

requirement specific code.

Data Format

- Parameters for the format
of the input data

Evolutionary
Format

System

- The dimentions of the
Fuvalittinnarv Svstem

Start

A 4

setup_evolutionary_system

Initialises a random value for the

[ST DR (R

PR,

load_data

A 4

Loads the data from a file into the appropriatayrr
This is a multi use function and may be overloaded.

next

page

assign_targets

Assigns a desired network output for each traipatern.
Uses separate columns binary 1 with binary 0 sépata
The number of columns = number of training patterns

Begin Evolution Loop ——»

i matrix fiinctions ! {

darwin

Copies the fittest individual from the populatianan array.

matrix_produc_t3

A

Assigns a desired network output for each traipatern.

matrix_product_3c2vl

load_data

Recall of previously called function

Assigns a desired network output for each traipatern.

e e e =

___________ 7 s
E next
| page

V i

test_darwin next

Tests the surviving individual against testdata | E- R b_ége

Displays output to screen. X

v
C_results

Saves the population data for the current generatio a
“csv” file.

previous
page

previous
page

previous
page

previous
page

|

test_fitness

Finds the fitness of each member of the population.
Achieved by passing each pattern through the heura
network which the evolutionary system codes and
calculating the error.

The error is measure of actual output against eldsiutput.

Unlike backpropagation the error is calculated esiviely
on desired output minus actual output.

selection

selection returns a value for the fittest individttainimum
error”. If sufficiently fit the break out of loois performed.

The individuals are then reordered in decreasingds

\ 4
Decision
llama A A ffiAalAn + Fibin A~
No
\ 4

Crossover

The fittest 50% of individuals breed.

Each breads once with a randomly selected mate.
Self breeding is not permitted.

Crossover occurs a random (1 to 10) of times fohea
mating.

No parents survive into the next generation.

mutation

Each gene in each individual is checked for mutatibich
occurs at a set % chance.

Mutation changes the value of the gene by a random
amount with a set range.

main

Data Format
- No. Training Patterns (TPn)
- No. Testing Patterns (TePn)

- No. Rows in Data
Patterns (p_r)

- No. Columns in Data
Patterns (p_c)

- No. Elements in Data
Patterns (p_e)

Network Topology

- No. Hidden Layer

Neurons (hl)
- No. Output Layer Neurons
(ol) ol = TPn

Network Operation
- Maximum no.
cycles (max)

- Training Rate Hidden
Layer (eta_h)

training

(&Wmo0],

no return

setup_matrix
void setup_matrix (int a , int b, int c,
double *matrix_0, double *matrix_1)

Variables
- counter (cl) int

/I seed weights matrices with random numbers < 1.
for (¢l = 0; cl < size of matrix ; c1++)

(“TrData.dat”. TPn.

A 4

no return

A 4

load_data
void load_data (int a, char *fname, int b, int *nia)

Variables
- counter (cl) int
- input file pointer FILE (*ifp)

/I check file exists
/I'load data from file to array
for (¢l =0; cl < size of matrix ; c1++)

fmmmnnE [U/ A AN O mviemn. AT Aa

(&WmOI0l. &Wm1I0l.

no return
(“TrData.dat”. TPn.

no return

test

Variables
- counters (cl) int
- current training pattern being used (TPc) int

- Training Rate Output | gwmorol. &Wm1fol. |
Layer (eta_o) >
- Target Error (target_error) no return

- Bias of Neurons (bia) (&ReDIO] &TDIOl
Matrices no return

results

Variables

- counters (c1, c2) int
- pattern match (check) int
- no. patterns recognised (rec) int

/I display results on screen
Il save resitllts to fi

A

Matrices
- output values for hidden layer (outputs_h) [dudle
- output values for output layer (outputs_o) [alubdle

/I'loop for each pattern until all patterns aredds
while ('sum_error > target_error && count < max)
/' loop for each pattern

for (TPc = 0; TPc < TPn; TPc++)

/I calculate output for network

/I calculate output for hidden layer

net = (TD_addr[p_e]*WmO_addr[p_e*hl])
outputs_h[hl] = 1/(1+(exp(-net)))

/I calculate output for output layer

net = (outputs_h[hI[*Wm21_addr[hl*o])
outputs_o[ol] = 1/(1+(exp(-net)))

/I apply binary activation

if (outputs_o[ol] > 0.5) outputs_o[ol] = 1

else outputs_o[ol] =0

/I read outputs into results matrix

Functions

- void matrix nrodiiet (int donhle* int int intHonhe*)

next
page

matrix_product_3c2vl
void matrix_product (double *WmO0_addr, double *Wnatdr, int
*TD_addr)

Variables

- counters (c1, c2) int

- counter, no. training cycles (count_cycles) int

- current training pattern being used (TPc) int

- sum of errors for all patterns (sum_error = t@)ble

- combined error for propagating error to hiddereta(c_error = 0.0)
double

- sum of weights*inputs for each neuron (net) deubl

Matrices

- output values for hidden layer (outputs_h) [ldLible

- output values for output layer (outputs_o) [aludle

- error values for hidden layer (delta_h) [hl] d&ub

- error values for output layer (delta_o) [ol] d&ib

- change in weights for hidden layer (DELTA_h) [phi¢double
- change in weights for output layer (DELTA_o) [blfdouble

previous

page

matrix_product_3
void matrix_product (double *WmO_addr, double *Wnatidr, int *TD_addr)

Variables

- counters (c1, c2) int

- counter, no. training cycles (count_cycles) int

- current training pattern being used (TPc) int

- sum of errors for all patterns (sum_error = H@)ble

- combined error for propagating error to hiddereta(c_error = 0.0) double
- sum of weights*inputs for each neuron (net) deubl

Matrices

- output values for hidden layer (outputs_h) [fdble

- output values for output layer (outputs_o) [adjutle

- error values for hidden layer (delta_h) [hl] dub

- error values for output layer (delta_o) [ol] dteib

- change in weights for hidden layer (DELTA_h) [phi¢double

A 4

train
void train (double *WmO_addr, double *Wm1_addt,AhD_addr)

Variables

- counters (c1, c2) int

- counter, no. training cycles (count_cycles) int

- current training pattern being used (TPc) int

- sum of errors for all patterns (sum_error = H@)ble

- combined error for propagating error to hiddegreta(c_error = 0.0) double

Matrices

- output values for hidden layer (outputs_h) [dlible

- output values for output layer (outputs_o) [altle

- error values for hidden layer (delta_h) [hl] deub

- error values for output layer (delta_o) [ol] dteib

- change in weights for hidden layer (DELTA_h) [phigédouble
- change in weights for output layer (DELTA_o) [blfdouble

/' loop for each pattern until error has reachegeteor maximum cycles have occurred.
while (sum_error > target_error && count < max)

/l'loop for each pattern

for (TPc = 0; TPc < TPn; TPc++)

/I calculate output for network

/[calculate output for hidden layer

matrix_product_3c2v1(1, p_e, hl, TPc, &outputs]h§rD_addr[0], &WmO_addr[0])
outputs_h[hl] = 1/(1+(exp(-outputs_h[hl])))

/[calculate output for output layer

matrix_product_3(1, hl, ol, &outputs_o[0], &outguh[0], &Wm1_addr[0])
outputs_o[ol] = 1/(1+(exp(-outputs_oJ[ol])))

/I calculate error for output layer

delta_o[o1] = outputs_o[o1]*(1-outputs_o[o1])*(Tatg- Output)

/I calculate sum_error for network

sum_error += delta_o[01]

/[calculate change in weights for output layer

DELTA_ofhl*ol] = eta_o*delta_o[ol]*outputs_h[hl]

/I calculate new weights for output layer

Wm1_addrfhl*ol] += DELTA_o[hl*ol]

/I calculate error for hidden layer

c_error =+ (delta_o[ol]*Wm1_addr[hl*ol])

delta_h[hl] = outputs_h[hlI]*(1-outputs_h[hl]*c_emo

/I calculate change in weights for hidden layer

DELTA_h[p_e*hl] = eta_h*delta_h[hl]*TD_addr[p_e]

/I calculate new weights for hidden layer

WmO_addr[p_e*hl] += DELTA_h[p_e*hl]

Functions
- void matrix_product_3 (int, double*, int, inht¥, double*)
- void matrix_product_3c2v1(int, double*, int, jmtouble*, double*)

Appendix F

Taylor Series Neuron Results

F.1 Introduction to the Appendix

Additional results and enlarged figures from chafere included in this appendix for
fullness and clarification. Each is placed under tile of the section which they relate
too.

From 5.2.1 Output Functions

The linear and hyperbolic tangent output functiomsikustrated below.

Figure F.1 — Piecewise linear functipkfx)

1 if x>0.5
pl(x)=+ x if -0.5<x<0.5
0 if x<-0.5
equation F.1

A linear function is termed “piecewise linear” whéme output is constrained to linear
operation within a region. In the example shownfigure F.1 and equation F.1, the
function is linear in the region (-0.5,0.5). Odtsithis region, it operates a threshold

function. Without the linear region, the functioollapses to a threshold function.

This function is useful for directly reflecting tleput values while preventing saturation

when very large values occur.

tanh(x) f ; f i
P -10 -5 0 5 10

Figure F.2 — Hyperbolic tangent functitanh(x)

() _ g0

tanhx) = € equation F.2
€

e

The hyperbolic tangent is probably the second mastneon function. It is similar to the
logistic function with the range anti-symmetrictloat the origin. The function, shown in
figure F.2 and equation F.2, has a range [-1,1]er@lare some advantages to this which
are associated with training parameters. The dpgdaf these are reasonably well known,

[Haykin, 1999], and are not discussed further here.

The last two functions to consider are the stepstogiand step-hyperbolic tangent
functions. These take a threshold on the functgimsvn in figure 5.2 (logistic sigmoid
function l(x)) and figure F.2 (hyperbolic tangent functitamh(x)). The output becomes
that of figure 5.1, thresholigx), for the sets {0,1} and {-1,1} respectively.

These functions are not usually considered as afteotraining process of any network.
They are only of use if a decision output is reqlifi®m a network and decimal values
provide more information than needed. These araded to the nearest integer output

from the relevant set.
From 5.3.1 Taylor Series Neuron Output Functions
The equations for the logistic hyperbolic tangentpati function shown below, equation

F3. The range of the output is [-1,+1]. This gieesput values in equation F.4 for MP
and equation F.5 for TS.

— e .
Output= e P) equation F.3

(€+éxiw| J —(€+E X Wi J
0=1f(g)= © - —° - equation F.4a
g | {odom)
(B+xw+xW5) _ A= (6+xwW+Xows,)
o= il e o equation F.4b

e(9+X1W1+X2W2) + e_(9+X1V"1+X2W2)

o0=f(g)=2 | | equation F.5a
(2 0te] o foto)
e p=li=1 p! + e p=1i=1 p!

m(W w m(W w
e(eerzq[xlp;!ersz;!pj] e—(¢9+pz=1[xlprl)*!p+x§;!pj]

m W, W, m W, W.
peeree)] | An Bl
p=1 p: p: +e p=1 P! p!

o= equation F.5b

m
/N
o
¥
™

From 5.4 Testing : Single Neuron Functionality

This section visualises the various separator fanstin three dimensions. The x-axis and

y-axis represent the inputs, f,) while the z-axis shows the output value.

From 5.4.1 McCulloch-Pitts Functions

The first simple operator is the piecewise linegrasator as shown in equation F.1. The
output range is constrained in [0,1] as shown waéiqn F.6 and limits any values from the
input range of surk 1 or sunx 0. The obvious drawback of this strategy is thedim can
greatly exceed these values, resulting in an owplute that does not directly equate to the
sum. This may result in saturation of network patars with no direct proportional

effect on the output.

1 if S>1.0

O= S if S>0.0

0 if S<0.0
equation F.6

0.5
0.6
0.4

0.2

Figure F.3(a,b,c) — Piecewise linear output funmio

A comparison of figure F.3a with figure 5.4a shavsimilar profile with a maximum and
minimum output. Figure 5.4b shows that the outgeparator remains linear within its
range. Figure F.3c now shows the two extreme gdlue outputs can take with a uniform

gradient connecting them.

The values assigned to the piecewise linear sepaacaritical and unexpected operation

can result in discontinuities. Such an exampghswvn in equation F.7.

1 if S>0.5
O= S if S>-0.5
0 if S<-0.5

equation F.7

0.5

Figure F.4(a,b,c) — Piecewise linear output funio

Figures F.4 show the effect of incorrect assignnoéqtarameters. This can be utilised if
there is a purpose to it; however, the drop belmvrhinimum value and the sudden step to

the maximum value can make behaviour erratic.

When the hyperbolic tangent sigmoid is examinedait be seen that it is very similar to

the logistic sigmoid except that the output-plaequashed in (-1,1).

Figure F.5(a,b,c) — Hyperbolic tangent output fiorct

The hyperbolic tangent plane in figure F.5 is viguaery similar to the logistic sigmoid.
Comparing equations 5.5 and F.3 shows similar deam. In fact, the logistic sigmoid’s
major advantage is in calculation time, while thgpdrbolic tangent’s is its anti-
symmetrical output-plane about the origin. This Bytry may assists in training. The
mathematical implication of multiplying by numberkse to 0 in the logistic sigmoid,
compared with number close to -1 in the hyperbtdizgent sigmoid, affect the rate of

convergence. Its sensitivity is as adaptable asastic sigmoid, figures 5.7.

Figure F.6(a,b,c) — Hyperbolic tangent output fioret withp

Asp — 0 or ap — =, equivalent effects occur as, seen in the logsgmoid function.

From 5.4.2 Taylor Series Functions

The dramatic effects produced by using input valfediffering polarity are examined
below.

Sum= 050k + 150k, + 05 equation F.8

Figure F.7(a,b,c) — The Sum value expressed asveesgkieinction of inputs

The effect of skewing the inputs in th& drder neuron (McCulloch-Pitts) is simply to tilt
the flat plane towards the input-axis with the lovemefficient. This can be seen in

equation F.8 and as a comparison between figudeartl figures F.7.

equation F.9

2 2
Sum= 05+ 0050%, + 105X, _{1.05(1 +10 &2}

2

Figure F.8(a,b,c) — Sum value df ®rder Taylor Series neuron focusing on decision

region — skewed or™lorder

Vi

In equation F.9 the*lorder terms are skewed, while the coefficientthef?® order terms
remain equal, the equivalent of what occurred guiries F.7. The curved plane of figures
5.10 is tilted in the same manner to give the #gulF.8 and results in moving the output-

domain decision centre towards the input-axis Withlower coefficient.

equation F.10

Sum= 05+ 0050, + 005[X, {

1002 + 3.05@}
2

Figure F.9(a,b,c) — Sum value df ®rder Taylor Series neuron focusing on decision

region — skewed on"2order

Skewing 2° order terms while keeping equal brder term coefficients, stretches the

decision surface along the lower coefficient inpuis, shown by figures 5.10c to F.9c.

0K + 300X :
Sum= 05+ 0050k + 105C%, +[1OD(1 5 SOD(Z} equation F.11

Figure F.10(a,b,c) — Sum value of Brder Taylor Series neuron focusing on decision

region — skewed on same input fétand 2° order

vii

The independence of operation of the order ternstigsvn through skewing thé'br 2
order terms on their own. The alterel dnd 2% order terms from equation F.9 and
equation F.10 are applied simultaneously to giveaggn F.11. A comparison of figures
F.8, figures F.9 and figures F.10 shows the inddeece of the actions of thé' and 2°

orders. The combination of these effects are shoviagures F.10.

equation F.12

Sum= 05+ 1050k, + 005[X, {

1005 + 3002 }
2

Figure F.11(a,b,c) — Sum value of Brder Taylor Series neuron focusing on the decision

region — skewed on different inputs f&f dnd 2 order

The independence of thé' and 29 orders can be confirmed through figures F.11, wher
the effect of the 3 order shows a movement towards the other input-akile the effect
of the 29 order remains the same. As thiédkder coefficients are swapped, but tfié 2

order terms remain the same, this is consisteit wiitat is expected.
Figures F.12 to figures F.24 examining the effadtslifferent input domain values with

added % order terms. These show both the independencheopower terms and the

effect of each order on the separator.

viii

Sum= 05+ 0050, + 105X, +

0050¥] + 0050} { 300¢ + 30 Dﬂ
2 6

equation F.13

Figure F.12(a,b,c) — Sum value &t 8rder Taylor Series neuron focusing on the decision

region — skewed or*order

In equations F.13, the'order terms are skewed, while the coefficientthef 2 and &’
order terms remain equal. As expected, the cuplade of figures 5.11 tilts towards the
input-axis with the lower coefficient, in the sammanner as before, to give the figures
F.12.

Sum= 05+ 0050k, + 005X, +

0050 + 1055 { 300¢ + 30 Dﬂ
6

equation F.13

Figure F.13(a,b,c) — Sum value ¢t 8rder Taylor Series neuron focusing on the decision

region — skewed on"¢order

When the ¥ order terms are skewed, while the coefficientshef £' and & order terms
remain equal, the decision surface is once moedcsied along the input-axis with the

lower coefficient.

2 2 3 3
Sum= 05+ 005k, + 005, +—224 * 0050 {3'05‘1 +90 D‘z}

6

2

equation F.15

Figure F.14(a,b,c) — Sum value ¢t 8rder Taylor Series neuron focusing on the decision

region — skewed on®order

From the effect of skewing thé'dr 2' order terms on their own, it is observable thayth
affect different aspects of th& ®rder decision surface in the same manner asdioefpr

the 2" order Taylor Series neuron. When tifeaBder is skewed the effect is to stretch the
decision surface in the manner of tH8 @der; however, it is stretched with respect ® th
underlying ' and 2° order curved-plane, so the gradient of tffeoBder curve is affected

as is its proximity to the axis along which it teetched.

Equations F.16 to F.25 and their accompanying figyid5 to F.24 show all the variation
of skewing the coefficients of the orderd 2" 3% of powers with respect to the input

terms g,X2).

Sum= 05+ 005X, + 105X, +

0050 +1050¢ [300G¢ +30 D(S}
2 6

equation F.16

Figure F.15(a,b,c) — Sum value &t 8rder Taylor Series neuron focusing on the decision
region — skewed on same inputs fdrahd 2 order

Sum= 05+ 005, + 105X, +

0050%] + 0050} [300¢ +90 &3}
6

equation F.17

104

Figure F.16(a,b,c) — Sum value &t 8rder Taylor Series neuron focusing on the decision

region — skewed on same inputs fdrahd & order

Xi

Sum= 05+ 0050, + 005X, +

0050 +1050¢ [300¢ +90 &3}
2 6

equation F.18

Figure F.17(a,b,c) — Sum value &t 8rder Taylor Series neuron focusing on the decision
region — skewed on same inputs &t @nd 3 order

A 2 + 1 2 . 3 +9, D(3
Sum= 05+ 0050X, + 1050k, + 20> * 1050, +[3OD<1 90 2}

6

equation F.19

Figure F.18(a,b,c) — Sum value &t 8rder Taylor Series neuron focusing on the decision

region — skewed on same inputs fdrahd 29 and 3 order

Xii

Sum= 05+ 0050, + 105X, +

1050 + 0050 [300¢ + 30 D(S}
2 6

equation F.20

Figure F.19(a,b,c) — Sum value &t 8rder Taylor Series neuron focusing on the decision
region — skewed on different inputs fétand 29 order

A 2 + 0! 2 I 3 + 3 D(?s
Sum= 05+ 005X, + 105k, +-20>% * 0050 +[9OD<1 30 2}

6

equation F.21

Figure F.20(a,b,c) — Sum value &t 8rder Taylor Series neuron focusing on the decision
region — skewed on different inputs fof dnd & order

Xiii

Sum= 05+ 0050, + 005X, +

0050 +1050¢ [9005¢ + 30 &3}
2 6

equation F.22

Figure F.21(a,b,c) — Sum value &t 8rder Taylor Series neuron focusing on the decision
region — skewed on different inputs féf and & order

Sum= 05+ 005X, + 105X, +

1050 + 0050 [900¢ + 30 D(S}
6

equation F.23

Figure F.22(a,b,c) — Sum value &t 8rder Taylor Series neuron focusing on the decision

region — skewed on different inputs f6f dnd same™ and & order

Xiv

Sum= 05+ 0050, + 105X, +

1050 + 0050 { 300¢ +90 D@}
2 6

equation F.24

Figure F.23(a,b,c) — Sum value &t 8rder Taylor Series neuron focusing on decision
region — skewed on inputs for santeahd 3 and different 2 order

Sum= 05+ 005X, + 105X, +

0050 +1050¢ { 9005¢ + 30 D@}
6

equation F.25

Figure F.24(a,b,c) — Sum value &t 8rder Taylor Series neuron focusing on decision

region — skewed on inputs for santeahd 2% and different % order
The above figures demonstrate the flexibility of Taylor Series neuron, showing that the

variation in the coefficients is independent. Thliswing control of the neuron while

permitting exploitation all the variation of thetput-domain.

XV

From Taylor Series neuron - mixed orders.

Sum= 05+ 0050k, — 005K, +

2

0050} - 0.0055; { -150¢ +15 D(S}
6

equation F.26

Figure F.25(a,b,c) — Sum value ¢t 8rder Taylor Series neuron focusing on the decision

region with opposing polarity of various coefficien

equation F.27

2 2
Sum= 05- 095X, + 1150, +{0.5 X2 + 30 &2}

2

Figure F.26(a,b,c) — Sum value &f Brder Taylor Series neuron focusing on the decision

region with opposing polarity oflorder coefficients

XVi

Sum= 05- 011X, - 006[X, +

12202 + 17002 J{ 4260¢ + 5.79&3}
6

equation F.28

Figure F.27(a,b,c) — Sum value &t 8rder Taylor Series neuron focusing on the decision
region with negative polarity of'lorder coefficients

XVii

From Taylor Series neuron —output functions.

The output functions are applied to th¥ @rder Taylor Series neuron as expressed in
equation 5.11 and shown in figures 5.10.

Figure F.29(a,b,c) — Hyperbolic tangent output fioms

The same output functions are now applied to tHeoBler Taylor Series neuron as

expressed in equation 5.12 and shown in figurek. 5.1

il

|

0.5

0.6

0.4+

0.2+

Figure F.30(a,b,c) — Piecewise linear output fuongi

XVili

Figure F.31(a,b,c) — Hyperbolic tangent output fioms

XixX

LMS error

G I I I I I I I I I I I I
29 39 49 59 69 79 89 99 109 119 129 139 149

epoch

Figure 5.31a — Comparison of error vs. epoch fd? &hd SLT networks

XX

0.25 -

0.2 -

0.15 =-

0.1 A

LMS error

0.05 A

G I I I I I
99 109 119 129 139 149

epoch

Figure 5.31b — Comparison of error vs. epoch foP &hd SLT networks
epoch> 99

XXI

total error

1.2 -

0.8 -

0.6 -

0.4 -

0.2 -

——SLP

----SLT2
-----SLT3
--—--SLT4

noise %

Figure 5.33a — Comparison of error vs. noise% td? 8nd SLT networks

network inputs {0,1}

XXii

total error

noise %

Figure 5.33b — Comparison of error vs. noise% 1d? &nd SLT networks
network inputs {0.1,0.9}

xXxiii

——SLP
----SLT2
----SLT3
----SLT4
- SLT5
— — SLT6

total error

0.9 1 ——SLP

0.8 - --—-SLT2

0.7 - ---—-SLT3

0.6 - -.---SLT4

os4 _gr SLT5
— — SLT6

ol - — SLT7

ol A5 _._.SLTS

021 mﬂmﬂwﬂw - oL To

01477 SLT 10

D I T
0 10 20
noise %

Figure 5.34 — Comparison of error vs. noise% foP @ind SLT networks
network inputs {0,1} - targetse {0.1,0.9}

XXV

total error

0.9 -
0.8 -
0.7 1
0.6
0.5
0.4 -
0.3
0.2 1
0.1 1

noise %

Figure 5.35 — Comparison of error vs. noise% foP @ind SLT networks

network inputs [0,1] - targets: {0,1}

XXV

——SLP
----SLT2
~---SLT3
----SLT4
- 8LT5
— — SLT6

1.2

1 4 7101316192225283134374043464952555861646770 737679828588 910497

time — Theoretical Output

— — —-Desired Output
------- Error

Figure 5.40 — Time-Series exponential decay — #texal output

XXVi

1.2

-——-gen 1

—--—-gen 100

Desired Output

-
-

———
L ST o —_—

0 ||.;T|.-rT|.-rﬁfT||’ﬁ-Tﬁh%ﬁ=m=‘Eﬂ*ﬁfl‘H=ﬁ?ﬂ'ﬂﬂ‘ﬁfﬂ'ﬁﬁﬁ
1 5 9 13 177 219 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 865 89 93 97

time

Figure 5.41 — Time-Series exponential decay - aelie

XXVii

Appendix G

Artificial BioChemical Networks Results

G.1 Introduction to the Appendix

Additional results and enlarged figures from cha@eare included in this appendix for

fullness and clarification. Each is placed under tile of the section which they relate

too.

From 8.2.2 Successful ABN— Trained using a GA — Success

Evaluated output for each node Summery

! Pattern 1

Output 0

0
0 pulses 3 Target Output Error

a a
1

[=)

1]
a a
a a

Output 1

o actual values

0 pulses 2
pulse

output o 1 2 3

] 0.5/0/0|0
1 0.5/0(1]1
Output 2
2 0.5/0/ 00
3 0.5 000
a
0 pulses 3
1
Output 3
a
0 pulses 3

Figure G.1 — ABN-GA output pulse — pattern 1

Evaluated output for each node Summery Evaluated output for each node Summery
1 1
Pattern 2 Pattern 3
Output 0 . Output 0 L
[B L
o:l_____ oM __
0 pulses & Target Output Error 0 pulses 3 Target Output Error
0 0 0
. o [} [.
0 0 0 0 0 0
1 1 0 o 0 0
Cutput 1 . . . Ouwtput 1 L L .
o:m_____ actual values oM _____ actual values
0 pulses 4 0 pulses 2
pulse pulse
1
output ¢ 1 2 32 4 ! output © 12 2
o |os/olo|ojo 0 |os/o0foo
1 |05/0/ 0 00 1 |os|/ofolo
Output 2 Output 2
2 |05(0/04/1]1 2 |os|ofolo
3 |o0s5(0| 0 0|0 3 |os|0[1)1
o:l_| o:M___
0 pulsss 4 0 pulses 2
1 1
Output 3 Output 3 ||
o:m____ 0 I_
0 pulses 4 0 pulses 3

Figure G.2 G.3 — ABN-GA output pulse — pattern 2,3

1
Output 0 |||||
0
0

Output for each node of pattern 1

tidks 23
1
o ||||| ||||||||||||||||||||
LE | | | |
] ticks 8
5
cMPMZ|||||
0
0 ticks 28
5
O“pma|||||
0
0 ticks 23
actual values
tick
output 0|12 3 4 567 8 9101112 13| 14|15 16 17| 18 19 20| 21|22 23| 24| 25|26 27 28 29 30| 31| 32| 33| 34| 35|36 37 38| 39
o |1[1]1/1]10/0/o/ofo/o|o|o|o|o|o o|o|o|o oflofo/o|o|o|o|/o|o|ojofofofo 0|ojo|o|oo
1 [1]1]1]1]|1|o|o|o]e|e| o|o|o|o|o|o|o|o|o|e|a|a|a|aalafafa|a|a]a]a]a]a]afa|a]a]]n
2 |1[1|1]1]1|0|o|o|o|o/o|o|o|o|o|o|o|o|o|o/o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|afa]o
3 [1]1]1/1/1|0lofo/0jo|o|o|o o|ofo 0o|o|o|o|o|o|o/ofofofo o|ojo|e|o|o|oo|ofo 0|00

Figure G.4 — ABN-GA output ticks — pattern 1

Output for each node of pattern 2

1
Cutout 0 ““‘
0
0
1
Qutput 1 ““‘
0
[tids
1
o ||||| |||| ||||||||||||||||||||
0
[tids 48
1
o |||||
0
[

ticks

tiss
actual values
tick
oUtput 0 1|2 3 4587 8 5 10| 11|12 13 14/ 15 18 17 18 18 20 21 22| 23 24 25 26 27| 28| 29|30 313233 34 35 38 37 3§ 38| 40 &1 42 43 44 45/48| 47| 48 49
o |11]1]1]1]0/00 o|o|oo|ofo ofojo/o of/ooo ofaojo/ofa|o/o]eofo o/o/a o oo oofcojoo]a]a]e
1 [1]1]1/1]1/c|o|o]ajo| a| o] o|a|o|o|o|a o/ 6/o/ao/o]o]o|o]e|ac|a|o]ec|e|o o]ae|o o][ajo|o ofac]o/o]a]e|a]e
2 11111000000 0 0 0 0000001111000 0001 111111 111111111 1111
3 [1/1]1]1]1]0/00 o|o|o|o|o|o ofajo/o ofooo ofajo/o/ofa|o|o]eafoo/o/a o ojoooofoojojo]ala]e
Output for each node of pattern 3
1
Output 0 |||||
[}
0 tidks 23
1
Output 1 |||||
0
[} ticks 23
1
omputz|||||
0
0 tids 23
1
o ||||| ||||||||||||||||||||
0 I
[} tids 23
actual values
tick
output| 0|1 2|3/ 4 56 78|93 10| 11(12| 13 14|15/ 16 17| 18| 19|20 21| 22| 23 24|25 26|27 23| 29|30 31|32|33 34|35/ 3837 38|39
o |1/1/1|1|1/0/o/c|ojo 0|0 o|o|o|ofojo|o|ofo/o|o|o|/o|ojofojo|o|o|ofo|o|o|ofoj0 00
1 |1[1|1|1|1/o|o|o|ojo/ o 0|00 0o|o|o|o|ofo|o/0|o|o ojo|o|o|ojofoja|o|ofofo|o|o|afa
2 |1/1]/1/1/1/0/ojc/ojo/o|o|o|o|o|ofojo|o|ofoj/o|o|o|o|ojo|ojo|o|o|ofo|o|o|ofo|0 00
3 |1|1]1|1|1]|c|ojo|ojajo|o|o|o|a|afoja|a|of1|v| || a|afa]a||r[afe|a[a[a[1]1|1|1

Figure G.6 — ABN-GA output ticks — pattern 3

From 8.2.8

Evaluated output for each node

1

Output 0

0 pulses 2

Output 1

0 pulses 2

Output 2

0 pulses 2

Output 3

]
0 pulses 3

COrrigional

Summery

Pattern 1

« E

Target Output Error

]] 0
1 1 0
a a 0
o a 0

actual values

pulse
output o 12 2
0 |os/0/ojo
1 |05[of1]1
2 |os|{ojojo
3 |os|o/ojo

With 45 Noise

Evaluated output for each node

1

Output 0

a
0 pulses 2

Output 1

0 pulses 2

Output 2

0 pulses 3

Output 3

a
0 pulses 2

Orrigional

ABN, — Trained using a GA - Results of Noise Tolerance

Summery

Pattern 1

I

Target Output Error

] 0]
1 1 a
a 0 a
a 0 a

actual values

pulse
output o 1
0 |os/0/00

[&]
[*)

Figure G.7 — ABN-GA output pulse - noise 45%,46% — pattern 1

Evaluated output for each node

1

Output O

a
0 pulses 2

Output 1

0 pulses 2

Output 2

0
0 pulses 3

Output 3

o
0 pulses 2

Orrigional

Summery

Pattern 2

R F

Target Qutput Error

0 0 0
0 0 0
1 1 0
0 0 0

actual values

pulse
output o0 1 2
]

050

050
2 05011

080

=]
@ @ W

With 45 Noise

Evaluated output for each node

1

Cutput O

o
0 pulses 2

Output 1

o
0 pulses 2

Output 2

a
0 pulses 2

Output 3

a
0 pulses 2

Orrigional

Summery

Pattern 2

]

Target Qutput Error

a 0 a
] 1
1 0
a 0 a

actual values

pulse
output 0 1 2 2

a 05000

Figure G.8 — ABN-GA output pulse - noise 45%,46% — pattern 2

With 46 Noise

With 46 Noise

Evaluated output for each node Summery Evaluated output for each node Summery
1 1
Pattern 3 Pattern 3
Output 0 Orrigional With 45 Noise Cutput 0 Orrigional With 46 Noise
; mn I FF ’ ™
0 pulses 4 0 pulsss 2
1 1
Target Qutput Error Target Output Error
o o bl 0 a 0
Owtput 1 0 0 0 Output 1 0 1 @
o o bl o a]
g 1 0.8 0.1 o 1 0 @
0 pulses 4 0 pulses 2
1 1
actual values actual values
pulse pulse
Output 2 output 0 1 2 3 4 Cutput 2 output o 12 3
0 |05/0 0|00 0 |05/0/00
=
= 1 050/ 0|0 |0 . 1 0.5(0(1[1
0 pulses 4 2 |os/0j0|0 |0 0 pulses 2 2 |o5(0|oj0
- 2 |05/ 00508908 ’ 3 |05/0/00
Cutput 2 Output 3
2 a
0 pulsss & 0 pulses 2

Figure G.9 — ABN-GA output pulse - noise 45%,46% — pattern 3

Evaluated output for each node

1

Output 0
o
o pulses T
1
Output 1
o
o pulses T
1
Output 2
o
o pulses T
1
Output 3
o
o pulses 7

Orrigional

Summery

Pattern 0

With 14% Noise

"l %l

Target Output Error

1 0.8 0.1
o o o
o o o
o o o

actual values

pulse

Evaluated output for each node
1
Output 0
o
0 pulses 2
1
Output 1
o
0 pulses 2
1
Output 2
o
0 pulses 2
1
Output 3
o
0 pulses 3

Summery

Pattern 0

Orrigional With 15% Noise

W

Target Output Error
1

o o oo
o o o o

actual values

pulse

output ©

(5]
w

Figure G.10 — ABN-GA output pulse - noise 14%,15% - pattern O

Evaluated output for each node Summery Evaluated output for each node Summery
1 1
Pattern 0 Pattern 3

Cutput 0 Orrigional With 25% Noise Cutput 0 Orrigional With 26% Noise

” " %l ’ =

Q pulses & 0 pulses 2

1 1

Target Output Error Target Qutput Error
1 0 0 0 a

Qutput 1 o 0 0 Output 1 0 1 @

0 pulses & 0 pulses 2

1 1

actual values actual values
pulse pulse
Output 2 output 0 1 2 2 45 Output 2 output © 1 22
0 05 0|0 0 |00 0 |05 0 |00

0 1 05 0 0/ 0 |00 0 1 0.5 0 1)1

0 pulsss E 2 |05 0 |0|/0s8|1[1 0 pulses 2 2 |ps 0|00

1 3 |os5|/0g(o0| 0 (0|0 1 2 (050200
Cutput 2 Output 3

a a

] pulses & 0 pulses 3

Figure G.11 — ABN-GA output pulse - noise 25%,26% - patterns 0,3

Evaluated output for each node Summery Evaluated output for each node Summery
1 1
Pattern 1 Pattern 1
Cutput 0 Orrigional With 0% Noise Output 0 Orrigional With 5% Noise
; " " ; o I
0 pulsss 2 pulses 2
1 1
Target Output Error Target Output Error
a 0 bl 0 2]
Output 1 q q [i] Output 1 q [i] @
a 0 bl 0 0 0
2 o 0 2 o a bl 0
0 pulses 3 pulses 2
1 1
actual values actual values
pulse pulse
Output 2 output o 1 2 3 Cutput 2 output o 12 2
b 05000 0 0.5 0(00
5
0 1 050/ 1)1 0 1 05000
0 pulses 2 2 05 000 pulses 3 2 05000
- 3 (05000 . 3 (05000
Output 3 Output 3
bl a
0 pulses 2 pulsas 2

Figure G.12 — ABN-GA output pulse - noise 0%,5% - pattern 1

Vi

From 8.3.4

Evaluated output for each node

1

Output 0
0
o pulses
1
Output 1
o
] pulses
1
Output 2
0
o pulses
1
Output 3
]
0 pulses

Comparison of ABN, — BP and ABN, — GA

Evaluated output for each node Summery
1 Pattern 1
Output 0 Orrigional Withi 0% Noise

“ I
0 pulses 5§

Target Output Error

o]]
Output 1 1 0.9 0.1
0 01 01

0 o 01 04

o pulses 5

actual values

pulse
Output 2 output 0 | 1 2 2 4 5
0 |os/02{o0|0|0|o0
> 1 |05|/02/086/02/ 0909
0 pulses 5 2 |05/0201 010101
1 3 |05/02[0.1]0.1]0.1]|01
Cutput 2

o
o pulses 5

Figure G.13 — ABN-BP output pulse — pattern 1

Summery Evaluated output for each node
1
Pattern 2
Orrigional With 0% Noise Cutput 0
i 2] ;
[} o pulses T
1
Target Output Error
o a a
o o o Output 1
1 0.3 0.1
0 0 0 a
a o pulsss T
1
actual values
pulse
output o 1| 2|2 4 5 8 Output 2
0 |o5(0z2(01|0|0|0|0
1 0.5/0.2/0.1|01|01| 0 | 0 a
[2 |05/02 07 080909 09 0 pulses Ld
3 |os5(0z20|0|0|0|0 "
Output 3
0
i} 0 pulses G

Orrigional

n

output ¢ 1 2z 3 4 &
0.5 0.2/ 0.1 0.1 01041 0

Summery

Pattern 3

n

Target Output Error

o o o
o o o
a a o
1 09 a1

actual values

pulse

=1

05020101/ 0|00
0502 0 0 0|00
05020607 080909

With 0% Noise

09

Figure G.14, G.15 — ABNBP output pulse — patterns 2,3

vii

Output for each node of pattern 1

actual values

tick
m“1234537851“11 12/ 13 14 15 168 17 18189 20|21 22|23 24 25 28 27 28 28 30 31 32 33 34 35 36 37 38 39 40 41 42|43 44| 45 468 47 48 48 50 51 52 58
o [1]1]1/1]1/0]o/o]olo/ 1| 1]/ 0|0/ 0|0/ 0|0/ 0/o/0|o|o|o|o|o|ofo|ofojo|o/of[o/ofo|o|ofo|o]o]|o/ojo/ojo/0joj0|ojo|a]0 o
1 |1[1]1]1)1]o|o|o|oo 1| 1| o|o]a|o]o|a]e|a|a]|a][a]|a]1]1]o]a]o]aja]afa]afa|a]a|a|o|afa|a]a]a]a]a]a]a]]a]]1]n o
2 [1]1]1]1]1]0]o/o]olo/ 1| 1] 0|0/ 0|0/ 0|0/ 0|0/ 1|0|0|o|o|o|ofo|ofo|1|o/o|[o]/ofo|o|ofo|o]1]|0/0|a/0j0o/0joj0|o|1|a]0 o
3 [1]1]1/1]1|0]o|o/olo[1| 1|00/ 0|0o/0|0o 0|0/ 1|0|0|o|o|o|o|o|o|o|1|o/o|o/o|o|o|o|o|o|1]|0/0|0/0|0/0|0/0|0|1|a]0 o

Figure G.16 — ABN-BP output ticks — pattern 1

Output for each node of pattern 2

output| 0| 1/2/3/4/5 8| 7 &8 5 101112/ 1314 15| 18| 17| 18|19 20| 21| 22| 23| 24| 25 26| 27| 28|29 30| 31 32| 33| 34| 35| 38| 37| 38| 39| 40
a 1711110900001 1 0 090 0 90000 1TOQO0QOQO0OQO0CO0O0OQDO0QOQO0QO0CO0CO0CO0DO0QO0DO0CO0O0OQ
1 11111000001 1 000 0 0 00O0“1To000O0O0O0O0OO0OO0OT1TO0O0CO0OO0O0OO0CO0O0O0
2 1711110900001 1009090900011 1 1111000111 1 1 1 1 100
3 11111000001 1/ 0 00 0 0 0 0O0O0CO0OO0O0OO0OO0O0OO0OCOO0CO0OO0O0OO0OO0CO0OO0CO0O0O0

Figure G.17 — ABN-BP output ticks — pattern 2

Vil

Output for each node of pattern 3

1} ; ; ;
. “‘“ ‘ ’ I
oMUNNR AN
0

ticks

1} ; ; ;
. “‘“ ‘ ’ I
oMUNER AN
0

ticks

1 B 5
o “‘“ ‘
LELLL_ S S :

0
ol H H

72
actual

values

tick
output 01/ 2/3/4 58 7/ & 9 101112/ 13 14/ 15|/ 1€ 17 18 19 20|21 22 23|24 35 26 27| 28|29 30 31 32|33 34 35|38 37 38 39 40|41 42 43 44|45
0 1/1/1411000001 1/ 0 0 0/0 0/0 O O0/1 0/0 0/ 0 0O/ 0 O0/010O0O0 0O0O0O0COC 0 T1T 000 O0 O
1 1114110090001 1 0 0 9 0 00091 9000090001900 9000009000000 0 0
2 1|1|1|1|1 0(0|0O(0jO|1|(1(0|/0Of(0D|O|OD|Of(D/Of(O|OD|OD|Of(D/OO(D|O|O(O|O/O(O|O|D|O|D(Of(O(D|D|D|D|O(D
3 1/1111000001 1/ 0 0 0/0 0/ 0000/ 1 11 11 1 0/00/ 011 1 11 11 000 11 1 1 11

Figure G.18 — ABN-BP output ticks — pattern 3

Evaluated output for hidden node!

Evaluated output for hidden node!

Evaluated output for hidden node!

Output 2

Output 1

Output 0

Output 2

Figure G.19, G.20, G.21 — ABNBP hidden nodes — patterns 1,2,3

Evaluated output for each node Summery Evaluated output for each node Summery

1 1

Pattern 1 Pattern 1
Cutput 0 Orrigional With 0% Noise Cutput 0 Crrigional With 5% Noise
” "u ” s
0 pulsss 4 o pulses &
1 1
Target Output Error Target Output Error
i a a 0 il]
Suipnil 1 08 04 Output 1 1 08 @
il 01 01 g a a

0 0.1
o 0 01 01 0 @

a pulses &

0 pulsas 4
1 ' tual val
actual values e e
pulse pulse
3 0|1(2|3|4|5
Output 2 output © 1 2 2 4 Qutput 2 output 2
- R e 0 (o502 0 0| 0|0
1 0.5/ 0.2/ 0.6 0.7|0.8| 0.8
o 1 05020609 09 1
a pulses & bl 05020101 0| 0
0 pulses 4 2 |05(02/01(/01|01
3 |05/ 02/ 01(0.1 01|01
: 3 |05/02 0101/ 01 1
Output 2
Output 3
0
0 a pulses &5
0 pulses 4

Figure G.22 — ABN-BP output pulse - targeigy 0.5 - noise 0%,5% - pattern 1

Evaluated output for each node Summery Evaluated output for each node Summery
1 1
Pattern 2 Pattern 2
Cutput D Orrigional With 0% Noise Cutput 0 Orrigional With 5% Noise
“ 2] 2] ; B &
0 pulses T a pulses &
1 1
Target Output Error Target Output Error
bl a a bl 0.1
Cutput 1 0 0 o Output 1 0 0.1
1 1 o 1 0.9
a 0 0 o 0 0 0 0
0 pulses T a pulses &
1 1
actual values actual values
pulse pulse
Output 2 output 0 1 2| 3| 4|5 |87 Output 2 output o 1 2 2 4 5
0 |05/0201/01/ 010100 0 0.5/0.2/ 01010101
o 1 0.5 020101/ 0 |0 0|0 0 1 0502010101 01
a pulses 7 2 |os/oz2(o7|(o902 1 [1[1 0 pulsss & 2 |05/02 08020508
1 3 |o5/02/0|0|0|0|0|0 1 3 |o5/02/0 |0 0|0
Output 3 Qutput 3
o bl
0 pulses T 0 pulses &

Figure G.23 — ABN-BP output pulse - targekg 0.5 - noise 0%,5% - pattern 2

Evaluated output for each node Summery Evaluated output for each node Summery
1 1
Pattern 3 Pattern 3
Cutput 0 Orrigional With 0% Noise Cutput 0 Orrigional With 5% Noise
; nn nn ” nnf
a pulses T] pulses &
1 1
Target Output Error Target Output Error
bl a 0 a a.1
Output 1 o 0 o Cutput 1 0 0.1
bl a 0 a a 0
o 1 0.9 0.1 0 1 0.2 @
o pulses T 0 pulses &
1 1
actual values actual values
pulse pulse
Output 2 output o | 1|2 2|4 5|8 Cutput 2 output 0 1 2 32 4 5§
0 0502 01/01/01/01| 0 0 0.5 0.2/0.1/0.1/0.1/0.1
o 1 05020101 0| 0|0 0 1 0502041010101
hi] pulses 7 > 05 02 0 o o 1] (1] 0 pulsas & 2 0502 0 o o o
1 3 |05/02/06/ 07/ 08090909 1 3 |05/02/05/ 0708|028
Output 3 Qutput 3
o a
a pulses T] pulses ©

Figure G.24 — ABN-BP output pulse - targekg 0.5 - noise 0%,5% - pattern 3

Evaluated output for each node Summery
1
Pattern 1
Cutput 0 Qrrigional With 0% Noise
; " o
o pulses [i]
1
Target Output Error
0 0 0
Output 1 1 1 a
bl o o
0 bl o o
o pulses [i]
1
actual values
pulse
Output 2 output 0 1 2 2 4 58
0 |05/02/ 0|00 0f0
0 1 050207 080911
0 pulses 6 2 |os5/02/01 0| 0|00
1 3 |05/02/01|01| 0 0|0
Output 3
a
o pulses [i]

Evaluated output for each node Summery

1
Pattern 1

Orrigional With 5% Noise

” Sy o
] pulses i1

Target Output Error

Output 0

a] a
Output 1 1 0.9 @
a] a
; o o1 @D
0 pulses g
1
actual values
pulse
Output 2 output o 1/2|3|4|5|6
] 0502 0| 0| 0|0 |0
2 1 0.5 020508 038 /09 09
o pulses & 2 0.5/02/01/01/ 0| 0|0
1 3 0.5 020101010101
Cutput 3
]
0 pulses 8

Figure G.25 — ABIN-BP output pulse - targeigy 0.05 - noise 0%,5% - pattern 1

Xi

Evaluated output for each node Summery Evaluated output for each node Summery
1 1
Pattern 2 Pattern 2
Output 0 Orrigional With 0% Noise Output 0 Orrigional With 5% Hoise
a J J 0
o pulses i] pulses 5
1 1
Target Output Error Target Output Error
0 0 0 bl 0.1
Output 1 [v] [v] [v] Output 1 0 0.1
1 1 0 1 0.2
o 0 0 0 0 bl 0 a
a pulses T] pulzes &
1 1
actual values actual values
pulse pulse
Output 2 output ¢ | 1| 2| 3 4|5 &7 Cutput 2 output ¢ 1 2 2 &4 &
0 (050201010101 /00 0 |05/0201(01/01/01
o 1 0502010101 0 00 0 1 0502 0.1/0.1/0.1/01
0 pulses 7 2 0.5 020708 090911 0 pulsss 5 2 0.5/ 0.2 05 08 0909
1 3 (0502 0 0|0|0|00 1 3 (0502 0 0 00
Output 3 Output 2
o a
0 pulses i 0 pulses &

Figure G.26 — ABIN-BP output pulse - targeigy 0.05 - noise 0%,5% - pattern 2

Evaluated output for each node Summery Evaluated output for each node Summery
1 1
Pattern 3 Pattern 3
Sutput 0 Orrigional With 0% Noise Cutput 0 Orrigional With 5% Noise
ﬂ mm nn ° nn o
a pulzes 7] pulses 5
1 1
Target Output Error Target Output Error
] o a] 0.1
Cutput 1 0 0 0 Output 1 0 0.1
0 0 a 0 0 0
0 : g L 0 1 0e (D
i) pulsss 7] pulses &
1 1
actual values actual values
pulse pulse
Output 2 output ¢ 1 2 3 45 87 Outout 2 output o 1 2 2 & s
0 05020101 0|0 00 0 (0502010101041
0 1 0502010101 0 00 0 1 05 0201 0101|041
0 pulses 7 2 |os5/02 0 0 0 0|00 0 pulses 5 2 |os5/02(0|0|0|0
1 3 05/02/07 080909 11 . 3 05 0205 0% 0909
Output 2 Output 3
a 0
a pulses 7 0 pulses 5

Figure G.27 — ABN-BP output pulse - targekg 0.05 - noise 0%,5% - pattern 3

Xii

From 8.5.2 Successful ABN— GA Implementation

a pulses 4
1}
Output 2 II
oMl ___
a pulses &

a pulses g 0 pulsss 5

Figure G.29, G.30 — ABNGA output pulse — patterns 2,3

Xiii

/] tigs 45

/] tigs 45

0 ticks s

tides T4

Dutput 1 ‘
ol

0

Dutput 2 ‘
ol

0

tides T4

61

tids 7 oH

Dutput 2 ‘
ol
o

ticks
tides T4

Figure G.32, G.33 — ABNGA output ticks — patterns 2,3

Xiv

From 8.5.8 ABN: — Trained using a GA - Noise Tolerance

Evaluated output for each node

a pulses 3
ik
Output 3 I
oMl
a pulses &

Figure G.34 — ABN-GA output pulse - targehey 0.5 - noise 0% - pattern 1

Evaluated output for each node Evaluated output for each node

Outputd I | Output 0 I
oM W __ U—I.I.
o

pulses & o pulses 5

pulses i) pulses 4

pulses

pulses &

Figure G.35, G.36 — ABNGA output pulse - targehen 0.5 - noise 0% - patterns 2,3

XV

Evaluated output for each node

1

‘Qutput 0 I
[-

]

Output 0 I
[

pulsas 3 a

1

‘Qutput 1 I
oMl
0

1
Qutput 2 I ||
oW
0

1
QOutput 2 I
o:._____
12]
1

1
DOutput 2 I Output 2 I |||
oMl -l
0 4l 1]

Figure G.37, G.38 — ABNGA output pul

1

Qutput 1 I
oMl
& a

pulsas

pulses

pulses

Evaluated output for each node
pulses
pulses

pulses 3

24

pulses

se - targetgn 0.5 - noise 15% - patterns 2,3

Evaluated output for each node

Output 1 I
0 II__I
0

Output 2 I
o i

]

pulses 13

Figure G.39 — ABN-GA output pulse - targehen 0.5 - noise 25% - pattern 0

XVi

Evaluated output for each node Evaluated output for each node

1 1

Cutput 0 I Qutput 0 I
o:l______ ol _W___

1] pulsas 4 1] pulses 7
1 1
o I I |||I ||| o I I II | |I| I
0 I_ - I 0 I_ ___ NN I
[} pulses 12 1] pulses 14

1 1

Output 2 I Output 2 I
o‘m___ ___ [—

0 pulses 4

1

0
1
Cutput 2 I Output 3 I || I
Q I———— 0 I I_I
a 0

Figure G.40, G.41 — ABNGA output pulse - targetagy 0.5 - noise 36% - patterns 2,3

pulsss 15

pulses 5

XVii

