
The Functionality of Spatial and Time Domain Artificial

Neural Models

A thesis submitted to

The Robert Gordon University

in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

Niccolo Francesco Capanni

School of Engineering

The Robert Gordon University

Aberdeen, Scotland, August 2006

Declaration

I hereby declare that this thesis is a record of work undertaken by myself. That it has not

been the subject of any previous application for a degree and that all sources of

information have been duly acknowledged.

Niccolo Francesco Capanni

2006

Abstract

This thesis investigates the functionality of the units used in connectionist Artificial

Intelligence systems. Artificial Neural Networks form the foundation of the research and

their units, Artificial Neurons, are first compared with alternative models. This initial

work is mainly in the spatial-domain and introduces a new neural model, termed a Taylor

Series neuron. This is designed to be flexible enough to assume most mathematical

functions. The unit is based on Power Series theory and a specifically implemented Taylor

Series neuron is demonstrated. These neurons are of particularly usefulness in

evolutionary networks as they allow the complexity to increase without adding units.

Training is achieved via various traditional and derived methods based on the Delta Rule,

Backpropagation, Genetic Algorithms and associated evolutionary techniques. This new

neural unit has been presented as a controllable and more highly functional alternative to

previous models.

The work on the Taylor Series neuron moved into time-domain behaviour and through the

investigation of neural oscillators led to an examination of single-celled intelligence from

which the later work developed.

Connectionist approaches to Artificial Intelligence are almost always based on Artificial

Neural Networks. However, another route towards Parallel Distributed Processing was

introduced. This was inspired by the intelligence displayed by single-celled creatures

called Protoctists (Protists). A new system based on networks of interacting proteins was

introduced. These networks were tested in pattern-recognition and control tasks in the

time-domain and proved more flexible than most neuron models. They were trained using

a Genetic Algorithm and a derived Backpropagation Algorithm. Termed “Artificial

BioChemical Networks” (ABN) they have been presented as an alternative approach to

connectionist systems.

Acknowledgements

I would like to thank my family and those friends whose assistance over the years has

allowed me to reach this level of academia. My parents continued faith in education has

encouraged me to attempt to improve my own knowledge.

There is a debt to my supervisor Dr Chris MacLeod which has accrued over the years and

will require considerable effort to repay. I am also grateful for the assistance provided by

my second supervisor Mr Grant Maxwell who has been an excellent source of advice and

stability during this time.

Various additional people have greatly assisted in proof reading and expert advice, their

corrections and alternative views have enriched my efforts. These are Miss Claire

Jamieson, Dr Stuart Watt, and Prof. Adam McBride (of Strathclyde University).

I would like to thank the other researchers who have permitted me to include details of

their work in this text; Dr Christopher MacLeod, Dr David McMinn, Dr Sethuraman

Muthuraman, and Mrs Ann B Reddipogu.

A consideration should also be shown to my examiners; Dr Tony Miller of The Robert

Gordon University, Professor C Tim Spracklen of the University of Aberdeen and

Professor Philippe De Wilde of Heriot-Watt University.

Finally I am grateful to those staff of the Schools of Computing and Engineering who have

provided encouragement and support.

N F Capanni 31:5:06

 Table of Contents

Declaration i

Abstract ii

Acknowledgments iii

Contents iv

Chapter 1 - Introduction to the Thesis

1.1 Introduction to the Chapter 1

1.2 The Nature of the Problem 1

1.3 Universality and Generalisation of Artificial Neuron Function 2

1.4 Aims and Objectives 3

1.5 Novel Aspects of this Research 6

1.6 Thesis Structure 7

Chapter 2 - Review of Previous Work

2.1 Introduction to the Chapter 9

2.2 Single String Evolutionary Techniques 10

2.3 Animat Nervous Systems 17

2.4 Using Evolutionary Artificial neural Networks to Design 18

Hierarchal Animat Nervous System

 2.5 Evolution of Functions within the Animat Nervous System 20

2.6 The Evolution of Modular Artificial Neural Networks 23

2.7 Conclusions Drawn from Previous Work 28

Chapter 3 - Universality and Generalisation in the Spatial Domain

3.1 Introduction to the Chapter 30

3.2 Universality 30

3.3 Generalisation 34

3.4 Universality and Generalisation trade-off 38

Chapter 4 - Power Series

4.1 Introduction to the Chapter 39

4.2 Evolution and Devolved Action 39

4.3 Power Series 40

4.4 Taylor and Maclaurin Series 41

4.5 Relevance of Taylor Series 42

4.6 Linear vs. Non-Linear Separability 43

4.7 Model Solution 44

Chapter 5 - Power Series Neuron

5.1 Introduction to the Chapter 49

5.2 Background to Chapter 49

5.3 Design and Implementation 51

5.4 Testing : Single Neuron Functionality 55

5.5 Taylor Series ANNs vs. McCulloch-Pitts ANNs 74

5.6 Comparison Parameters 75

5.7 Design and Implementation 76

5.8 First experiment : Comparing 81

 McCulloch-Pitts SLP and Taylor-Series SLT – 5x7 test

5.9 Second experiment : Comparing 91

 McCulloch-Pitts MLP and Taylor-Series MLT – 3x3 test

5.10 Third experiment : Comparing 94

 McCulloch-Pitts MLP and Taylor-Series MLT – 5x7 test

5.11 Summary of Network Comparisons 94

5.12 Time Domain Problems 96

5.13 Literature Search of Other Highly Functional Neuron Types 101

Chapter 6 - Artificial BioChemical Networks

6.1 Introduction to the Chapter 104

6.2 Spiking Neurons 104

6.3 Origins of Biological Intelligence 110

6.4 Single Celled Intelligence 110

6.5 A Framework for Artificial Cellular Intelligence 112

6.6 Artificial BioChemical Networks 113

6.7 Literature Review on Cellular Models 116

Chapter 7 - Artificial BioChemical Networks - Design and Function

7.1 Introduction to the Chapter 119

7.2 Pulse-Width Modulated ABNs 120

7.3 Pulse-Frequency Modulated ABNs 127

7.4 Universal-Pulse Modulated ABNs 131

Chapter 8 - Artificial BioChemical Networks - Experiments and Results

8.1 Introduction to the Chapter 135

8.2 Pulse-Width Modulated ABNw – Trained using a GA 136

8.3 Pulse-Width Modulated ABNw – Trained with BP 149

8.4 Multi-Layer Perceptron – Trained with BP 166

8.5 Pulse-Frequency Modulated ABNF – Trained using a GA 172

8.6 Universal-Pulsing ABN 160

8.7 Modular ABNs 186

8.8 Summary 188

Chapter 9 - Future Research

9.1 Introduction to the Chapter 190

9.2 Taylor-Series SLT and MLT 190

9.3 ANN Performance – Noise, Targets and Validation 191

9.4 Displaced Equilibrium – Memory in Connectionist Systems 191

9.5 ABN Design 193

9.6 Taylor-Series Functionality with ABNs 195

Chapter 10 - Conclusions

10.1 Introduction to the Chapter 196

10.2 Project Objectives Revisited 196

10.3 Novel Aspects of this Research 199

10.4 Summary of Further Work 200

10.5 Concluding Remarks 201

References 202

Appendix A - Papers Produced During Research

Appendix B - Evolution and Devolved Action

Appendix C - Backpropagation Algorithm, SLT Delta Rule

and Pulse-Width Backpropagation

Appendix D - Polynomial Over-Fitting

Appendix E – Methods

Appendix F - Taylor Series Neuron Results

Appendix G - Artificial BioChemical Networks Results

 1

Chapter 1

Introduction to the Thesis

1.1 Introduction to the Chapter

This chapter sets out the problems addressed by the project and explains their presentation

in this thesis. Firstly, the aim and objectives of the research are outlined and discussed,

next the original ideas that were discovered using the project are detailed. Finally, the

remaining chapters are listed and summarised.

1.2 The Nature of the Problem

This project contributes research into the building blocks of Artificial Neural Networks

(ANNs) - the Artificial Neurons (ANs) or Logic Units (LUs).

Currently, most research into the applications of Artificial Neural Networks falls into three

areas; pattern recognition, control and signal analysis. As most development of neural

networks is therefore focused on improvements in these abilities, it has resulted in the use

of one of several types of standard models.

The three main standard models are the McCulloch-Pitts (MP) used in Multi-Layer

Perceptrons (MLPs), the Radial Basis unit in networks of the same name and the Spiking

neurons of computational neuroscience. There are several lesser known models such as

Sigma-PI and Adeline units.

However such a focused, application led, approach is not suitable for all neural networks.

Consider, for example, evolutionary networks being used in robot control. In this case, the

networks need to be able to evolve to deal with different functions – for example, visual

processing or actuator control.

If a single type of unit is to perform these tasks, it must be flexible enough to evolve into a

form suitable for all of them. This is what is meant by the term “Universal Unit” in the

 2

context of this project. The object of the research presented here is to investigate the

functionality necessary to achieve this.

In other words, the project aims to investigate a neural model suitable for use in artificial

neural systems, where information may come from many data domains (both inputs and

outputs). Such systems include (but are not limited to) evolutionary networks and

applications such as robotics.

1.3 Universality and Generalisation of Artificial Neuron Function

The starting point for this research was a survey of artificial biological nervous systems.

When considering this, it should be noted that the nervous systems of animals are modular

– that is they are made up of several smaller networks, operating together as an ensemble.

Therefore, any investigation of functionality must bear this in mind.

Biological neurons exist in a variety of shapes, sizes and functions. They have also

evolved specialisation, on an operation level, depending on their role in the part of the

nervous system in which they reside. Disentangling such complexity is difficult and

therefore a more systematic, theoretical and mathematical approach was adopted in the

project. To this end, the research was split up into two sections.

The first investigation was into units that were designed to operate in a static abstract data

space. This visualisation approach was pioneered by Minsky and Papert [1969] who

represented the output from a McCulloch-Pitts based “Perceptron” type unit as a straight

line (sometimes known as a “Linear Separator”) in such a data space. In the research

presented here, this and subsequent work is contrasted and extended.

The second investigation was into units that code information in the time domain (that is,

by means of a varying waveform). An example of this is the biological neuron itself,

which encodes its level of stimulation as the period of a pulsing waveform. Such units are

important because system outputs (for example, the actuators of a legged robot) often need

a time varying waveform to drive them (because the sequence of events in the system is

important).

 3

A new theoretical framework was constructed around such Time Domain Units in order to

establish their limitations in a similar way to the static abstract data space of the non-time

varying neurons. Additionally, this investigation led to a new connectionist model, based

on the dynamics of biochemistry rather than neurons.

Finally, once these investigation were over, the units developed were integrated into a

simple evolutionary modular system (based on a legged robot) in order to test their

effectiveness.

1.4 Aims and Objectives

The overall aim of the research in this thesis is to investigate new “Integrated Neural

Models” that fulfils the evolvable functionality requirements discovered through previous

research in Artificial Neural Networks.

The primary aim is to investigate the School’s ideas of a “generalised neuron” based on the

Taylor Series (TS) [MacLeod et al., 2001] and to use this model to build a more

controllable neuron using Evolutionary Techniques. The system will be tested against

standard models to find how its generalisation abilities compared. Then, the unit

functionality will be expanded to incorporate time domain data. The goal of these stages is

to produce a neuron that can act as a building block for the next stage of the project.

The neural model investigated in the previous stages is to be integrated into routing and

learning algorithms to produce a working system. However, as explained below, this aim

altered during the course of the research and lead to the development of a new approach to

connectionism termed Artificial BioChemical Networks (ABNs).

To accomplish these aims, the following objectives were set out at the beginning of the

project.

 4

To review the literature on the subject of generalised Artificial Neural Networks.

A literature search into generalised Artificial Neural Networks will be undertaken. This

constitutes a portion of the background research of the project. Initially concentration is

placed on alternative neuron models and architectures. The field will then broaden to

include methods from associated fields in Artificial Intelligence. Both mathematical and

biological approaches are examined. The literature search will continue for the duration of

the project, and is included in each chapter as appropriate.

To review the biological relationship of the work, paying particular attention to the

cellular, embryological and evolutionary aspects.

Textbooks, documentaries, papers and web sites on cell biology, genetics, zoology,

nervous systems and evolution will be examined as directed. These will placed in context

with the appropriate research material obtained from the literature search. Such material

will concentrate on biologically inspired Artificial Intelligence implementations. This

background material is covered in Chapters 2, 3 and 6.

To develop an appropriate generalised neural model, based on the above, which can

assume any function (in combination with a genetic algorithm). It is anticipated that this

will rely on the polynomial models in which background research has been completed.

The purpose of this section is to produce an Artificial Neuron that will be flexible enough

to solve problems in the static mapped space that a single MP neuron cannot solve. This

will be accomplished by the problem being examined from a mathematical viewpoint and

implementing a solution based on the Taylor Polynomial. The neuron is reported as a

“Universal Neuron” in this thesis, with the requirements for it being identified in Chapter 2

and its capabilities being discussed in Chapter 3. Research into such a neuron is presented

in Chapters 4 and 5.

To extend the function of the above to time-domain behaviour.

The Artificial Neuron produced will be extended to the time domain so that it can produce

time varying behaviour such as waveforms. In previous projects, McMinn [2002] and

Muthuraman [2005], have shown that such behaviour was essential for controlling systems

like robot actuators. This also has a biological basis as such oscillators are known to exist

in all nervous systems. These investigation and results are presented in Chapters 5,6,7 and

8.

 5

To compare these results with published and standard data.

The results will be compared with standard ANN and data. A review is included in

Chapter 5.

To integrate these models into a complete neural system.

The neuron models and the placement algorithms will be integrated into a single neural

system, as described in Chapter 8. This system developed under investigation to become

of a biochemical rather than neural basis.

To apply this system to a standard problem such as the evolutionary walking robots which

exist within the School.

The integrated system will be used to recognise artificial visual stimuli, produce control

signals as a response to these and convert the control signals into a walking gait based on

the simulated robot models used by the other research projects in the group. This work is

described in Chapter 8.

To compare these results with previously published material.

These results were compared with other published results from within the group and the

approaches of external researchers, as described in the relevant sections.

1.4.1 Alteration to Objectives During the Project

As with all PhD projects, results from the early periods informed the direction of the later

research. In this case, the unexpected richness of the neuron models investigated inspired

the author to concentrate on these aspects of the project and to scale down the planned

research into learning algorithms. It was also decided that the routing and placement

algorithms was sufficiently complex to merit their own project and this was completed by

Muthuraman [2005].

To develop an adaptable learning algorithm, possibly based on the “neuron in a box”

concept, which can add a learning influence to the above.

As mentioned above, a review of the research of the project’s first eighteen months

suggested that more effort should be expended on research into neural functionality. To

 6

this end it was decided to undertake only preliminary work on learning. This research is

outlined in Chapter 9.

To develop a placement and routing algorithm for use with the system described above.

Again, as a result of early findings, as noted above, it was decided to make the initial

research into routing and placement a PhD project in its own right. Muthuraman [2005]

undertook this. The current author used the appropriate results of this work, developed it

and incorporated it into the current thesis. This is contributes to the work of Chapter 8.

1.5 Novel Aspects of this Research

These are some of the aspects of this research that contribute to the originality of the thesis.

• A highly functional advance to the neuron model based on the Taylor Series approach,

Chapters 4 and 5.

• A comprehensive theoretical and experimental consideration of the mapping abilities of

neurons in the spatial-domain, Chapter 5.

• A new approach to connectionism based on the biochemistry of single celled

organisms. This approach yielded insights into new time varying units and network

paradigms. This work is presented in Chapters 6, 7 and 8.

• The integration of the models produced into modular connectionist networks. This is

described in Chapter 8.

• A consideration and investigation of neural functionality in the context of robotic

systems, presented in Chapters 7 and 8.

• A basis for further research into learning, modular networks and time-domain

connectionism presented as part of the further work section in Chapter 9.

 7

1.6 Thesis Structure

An overview of the remaining chapters is given below.

Chapter 2 - Review of Previous Work

The work undertaken by previous researchers within the group is described and the

development and context of the current work is explained.

Chapter 3 - Universality and Generalisation in the Spatial Domain

In this chapter, the concept of universality is explained at the unit and network level.

Chapter 4 - Power Series

The mathematical basis of a new neural model is presented and compared to historically

similar and alternative approaches.

Chapter 5 - Power Series Neuron

This chapter demonstrates the implementation of the models developed in the previous

chapter.

Chapter 6 - Artificial BioChemical Networks

The chapter examines the environmental intelligence as expressed in single celled

organisms.

Chapter 7 - Artificial BioChemical Networks - Design and Function

The chapter extends the research to time varying systems and suggests a new model based

on biochemical pathways. This Connectionist model is implemented, compared with other

models and its limitations explored. The new unit is integrated into a modular network.

Chapter 8 - Artificial BioChemical Networks - Experiments and Results

Both new approaches are combined to produce an artificial node that is universal in both

the spatial and time domain, as defined in the previous chapters.

 8

Chapter 9 - Further Work

Suggestions are made for further work. These include improvements and extensions to the

work described in this thesis, as well as its combination with the other work from the

research group.

Chapter 10 - Conclusions

The main objectives of this research are revisited and critically appraised and the original

contribution of the work is discussed.

Published papers, extra results and reports produced during this research are included in

the appendices.

 9

Chapter 2

Review of Previous Work

2.1 Introduction to the Chapter

The Artificial Neural Networks group is based in the School of Engineering at the Robert

Gordon University. It was formed by MacLeod and Maxwell in 1994. At the time of

writing (October 2005), in the main research area alone, the group had published 16 papers

externally, 15 MSc, 1 MPhil and 3 PhD theses as well as contributing towards BSc and

BEng honours projects, and various press and magazine articles.

Since its establishment, the group’s main interests have been in Evolutionary Artificial

Neural Networks (EANNs). The ultimate purpose of the research is to achieve a viable

process by which real artificial intelligence can be instigated. Advancement occurs in

steps, not leaps and the group is working towards significantly improving Artificial Neural

Networks’ real world functionality as a means toward the greater purpose. Possibly due to

the strong engineering element in the group, the research has mainly used legged robots as

test beds.

Membership of the group has varied with staff and student progression. A core

composition of four full-time members of staff with a full academic workload and three

research students is indicative of the general size. The early work of the group was

broadly supported by Eident Ltd who contributed towards the first two PhDs, those of

MacLeod and McMinn. The later research has operated without external support.

This chapter shows the logical development of research from MacLeod [1999] through

McMinn [2002] and Reddipogu [2002] to Muthuraman [2005], in conjunction with this

thesis.

 10

2.2 Single String Evolutionary Techniques

The first thesis from the group by MacLeod [1999] sets out the initial concepts that have

been explored through later projects. These concepts focus on fundamental problems in

ANNs that have restricted their abilities. One of these restrictions is that artificial

networks are frequently highly designed. This limits their functionality and they are often

highly or fully-connected, small and highly task specific. The discoveries of subsequent

researchers support the observations in the paper “Evolution and Devolved Action”

[MacLeod et al., 2002] and this author’s basic assertion that:

“The greater the dependence on outside design, the more specific, inflexible or

restricted the network functionality will be.”

MacLeod’s major contribution was his Single String Evolutionary Technique, termed

“Incremental Evolution”. This concentrated on the optimisation of ANN topologies

through their synthesis by Embryological and Evolutionary Algorithms (EAs).

The importance of modularity was also discussed and a proposal for an artificial nervous

system for an animal-like robot called an Animat [Wilson, 1991] was made in the thesis as

a test bed for the development of modular networks. The significance of the failure of

current ANNs to address time series modelling was also observed.

Macleod’s second contribution was a clear list of problems or limitations of current ANNs.

The investigation of these problems, their solutions and that of subsequently uncovered

challenges, is the basis for all other research in the group.

2.2.1 Embryological Algorithm and Incremental Evolution

The terms “Embryological Algorithm” and “Incremental Evolution” are to an extent

interchangeable. The latter term is that which Macleod used and was also referred to as

“Incremental Growth”. However, different researchers use alternative terminology and a

proposal on this is given later in this chapter.

 11

As the author’s research group applies it, Incremental Evolution operates by increasing the

functionality of an individual through the addition of component parts. Layers or modules

of components are added onto a simpler but functional model and evolve together with its

ability to sense and respond to its environment. It is akin to foetal development, where the

embryo increases in complexity through a recognisable series of stages which mimic those

of its evolutionary ancestry.

The embryological development of a fish, chick, pig, rabbit and human at different stages

is shown in figure 2.1. Note the stage by stage similarities between different animals that

grow into very different individuals. The similarity goes deeper than physical

resemblances. The biochemistry and physiology of the organism may also have

similarities.

Figure 2.1 - After diagram in: ‘The penguin book of the Natural World”, edited Martin et

al., [1976],

The parity between embryology and evolutionary development is the inspiration behind

Incremental Growth. Existing EAs do not add new components to the structure of

previous individuals in an incremental manner. Instead, they create a new population of

more complex but completely re-wired individuals. This is a major difference between this

and previous methods and has important ramifications with respect to cost and

functionality. The exact nature of these are discussed later.

 12

The implication of embryological development is that a newly evolved individual is not

completely re-wired after the previous stage, rather that the new additions are layered

around the older ones. This is particularly apparent in the nervous system as shown by

MacLean’s [1990] Model of the Brain, figure 2.2.

Figure 2.2 – MacLean’s theory of brain organisation

In summary, MacLeod’s Incremental Evolution allows an ANN to grow from a simple to a

complex form, until it is able to perform its intended function.

2.2.2 Growth Strategies

Macleod presented six ways in which an Artificial Neural Network could increase in

functionality, to become capable of achieving a solution to a set problem. These “Growth

Strategies” are:

1. Change the number of neurons.

Increase or decrease the number of neurons in a layer.

2. Change the connectivity.

The number of active weights of the network may be altered.

3. Asymmetry.

More connectivity may be provided in parts of the network.

reptilian brain

mammal brain

rational brain

 13

4. Horizontal connections.

Synchronous networks may introduce connections between neurons in the same

layer.

5. Skipping layers.

A connection may omit the immediate subsequent layer and connect to one

deeper into the network.

6. Feedback.

Feedback may be allowed to any previous layer.

MacLeod applied these growth strategies successfully to demonstrate solutions to pattern

recognition problems. In doing this, four limitations were observed.

1. The whole network is retrained after each alteration to its topology.

MacLeod discusses this – and its significance is presented later in this chapter.

2. The network architecture is highly structured and simple.

3. The algorithm was only applied to simple tasks and would be more useful if applied

to other applications as well as pattern recognition.

MacLeod proposed further development with “A framework for evolution of an

Animat Nervous System” [MacLeod et al., 1998].

4. Only McCulloch-Pitts neurons were implemented.

The research that followed on from MacLeod’s work strove to overcome these limitations.

McMinn and Reddipogu developed the training with respect to topology alterations and

expanded the complexity and flexibility of the architecture in significantly different ways.

McMinn went on to advance the complexity of the algorithm and develop new neuron

models. Muthuraman presented a complete solution to retraining after topology alterations

and to the limitation of structure, both of which can be combined with work by this author.

McMinn’s advances on applications were superseded by modular implementation by

Muthuraman and this author. Finally, Muthuraman produced more flexible, elegant

models and showed the importance of this.

 14

2.2.3 Incremental Training

There is a quandary with the training of many ANNs which is applicable to several

standard types of network and those based on them, including Multi Layer Perceptrons and

their associated feed-forward networks as well as recurrent networks. Once such an ANN

has been trained, it cannot alter its abilities, e.g. recognise additional patterns, without

undergoing retraining with the new data set. This erases all the previous knowledge.

Additionally, if the network is to be retrained after it has increased in complexity, then

there is an increase in training cost. Such was the difficulty with the retraining

requirements that Grossberg [1976] introduced Adaptive Resonance Theory (ART) as an

alternative method. ART is a useful approach but is very limited in how it operates,

mainly by increasing network size when a new memory is required. Just how expensive

these retraining requirements actually are was observed by Muthuraman and is presented

later in this chapter.

The solution proposed by MacLeod is to train the initial ANN, then to allow it to undergo

Incremental Growth. Further training is only applied to the newly added parts of the

network. Proving the viability of this became the major objective of Muthuraman’s

research.

2.2.3.1 A Proposal on Terminology

Terminology is introduced as research uncovers innovations. Often these are shared across

different fields, occur in different contexts or are applied to concurrent discoveries, so that

to the reader they may have different meanings. As it is applied in the context of this

thesis, Macleod’s “Incremental Growth” refers to the addition of modules to an ANN or

comparative units to the sensory, control or output structures of a robot. Macleod’s

“Incremental Training” refers to the training of the newly added modules while leaving

previously trained modules unaltered. If both these Incremental Strategies are applied as

parts of the same algorithm then that algorithm is called “Incremental Evolution”.

 15

2.2.4 A Framework for Evolution of an Animat Nervous System

In his thesis, MacLeod explored the importance of the unconstrained environment, non-

specific problems and previous work on modular networks. He proposed work on the

animal-like robots called Animats, from MacLeod [1999] as a test-bed for Modular

Artificial Neural Networks (MANNs) which could be exposed to an unconstrained

environment. This proposal formed the basis for the research of McMinn and Reddipogu.

MacLeod’s discussions on MANN synthesis and functionality was the foundation of the

subsequent modular work of McMinn, Reddipogu and Muthuraman.

2.2.5 The Plasticity – Stability Dilemma

It should be mentioned that with the limited understanding of the operation of memory at a

cellular and sub-cellular level, in Biological Neural Networks (BNNs), any training

algorithm must overcome a lack of biological inspiration. These solutions rely on

increasing the number of units that compose the system and BNNs do not seem to operate

in this way.

The previously mentioned difficulties of standard Artificial Neural Network models to

retain their capabilities during the acquisition of new ones presents a dilemma. Most

ANNs initialise in an untrained state. They are considered trained when they have reached

a level of usefulness expressed by an arbitrarily low value of an error function. To achieve

this stability (the ability of a network to retain trained patterns) they sacrifice their

plasticity (the ability of a network to learn new patterns). This is expressed as the

Plasticity-Stability dilemma [Wasserman et al., 1989].

Muthuraman’s work on modularity may present methods by which this dilemma may be

overcome without specifically designing a training algorithm to counter it.

2.2.5.1 A Note on Modularity

The development in the previous sections relies on modular networks. These are not a new

concept in Artificial Neural Networks. Their importance is widely understood and they are

a popular research subject, this is well reported by Azam [2000]. However, just like fully

 16

connected global neural networks, modular networks are often application specific and on

examination their synthesis is designed and they are inflexible , as shown by McMinn

[2002].

From his work on modularity and functionality, MacLeod identifies the three growth

strategies of size, shape and configuration. These are investigated by Muthuraman [2005]

who adapts and develops these into his “Principles of Modularity”.

2.2.6 Time Series Modelling

The inability of many current ANNs to operate with time varying data is observed by

MacLeod. He examines attempts to solve the time-series modelling problem and suggests

how this may be investigated. Further, when the unconstrained environment expands to

include time-dependent data as well as spatial data then the magnitude of the non-specific

problem is greatly increased. There have been many previous attempts to address this

problem but they generally rely on complex models such as spiking neurons [Maas and

Bishop, 1999].

Biological Neural Networks have evolved in a time-dependent environment and so the

inclusion of time-series data in their processing ability has been natural. Most current

Artificial Neural Networks regard data as fixed and spatially observable. Even time series

data is often sampled or mapped into a spatial domain before it is presented to the network

[Bishop 1995].

An investigation into the time domain response of neurons became a major component of

this thesis to allow the possibility of real time autonomous robotics.

 17

2.3 Animat Nervous Systems

The Animat Nervous System (ANS) model suggested by MacLeod was proposed as an

initial concept. It is hierarchical and modular. It is therefore an incomplete solution to

non-specific problems as it does not operate in an unconstrained environment. It is,

however, a significant step towards this. A fully evolvable modular system was not the

initial intention of the project but was proposed and developed during work on the Animat.

The Animat model separates out component modules into hierarchical parts which each

have their own systems to control. The interaction of these modules combines the

solutions to separate problems and allows the Animat to function.

McMinn performed the work on the lower layers of this model. These produced the

reflexes and cyclic patterns the Animat required for mobility. Reddipogu worked on the

upper layers. These represent the sensory input and processing, which corresponded, in

this case, to visual stimulation.

 18

2.4 Using Evolutionary Artificial Neural Networks to Design

Hierarchal Animat Nervous System - Lower Layers

McMinn’s model is shown in figure 2.3. Multiple modules can exist in certain layers;

these are marked with an asterisk. The hierarchical structure is evident.

Figure 2.3 - McMinn’s Artificial Nervous System

Reproduced by permission of McMinn [2002]

 19

A detailed account of the operation of this structure will not be given here, as it is not

directly relevant to the current work and was superseded by the modular work of

Muthuraman. It is sufficient to report that McMinn used the model successfully. He

implemented EANNs which incorporated Central Pattern Generators (CPGs) as the action

layer and artificial reflexes in the reflex layer [McMinn, 2002]. The CPGs effected

appropriate walking gaits for the Animat. McMinn successfully evolved both biped and

quadruped gaits. The reflexes controlled the position of an actuator in a simulation of a

DC electric motor.

To develop the reflexes, the neuron model used was the McCulloch-Pitts with a sigmoid

(logistic) transfer function. Three main classical Evolutionary Algorithms: Evolutionary

Programming, Evolutionary Strategy and Genetic Algorithms (GAs) were applied to the

synthesis of simple feed-forward and recurrent ANNs. These provided good solutions.

McMinn constructed a new neural model to generate the specific timings required for

CPGs. The McCulloch-Pitts neurons initially used did not have time-domain behaviour

and so McMinn built in rigid time parameters. The intra-modular topology for the CPGs

was evolved; the topology of the inter-module connections was designed.

The conclusion of McMinn’s work was the combination of the reflexes with the CPGs.

The reflexes require a continuous input (from their McCulloch-Pitts heritage) while the

CPGs produce a pulsed time-domain output. McMinn therefore added a Leaky Integrator

(LI) as an interface between the modules.

McMinn also included an alternative investigation using the CPGs, operating as oscillators.

Biological neural oscillators [Lansner et al., 1998] are known to exist, so this was an

appropriate investigation. The oscillating output was produced in response to a specific

input. Pattern generators received this oscillating signal and produced the appropriate

quadruped gaits of gallop, trot, pronk, and walk. McMinn concluded that by making the

CPGs structures more modular the evolutionary process was simplified. This investigation

provided useful material for Muthuraman’s research.

The limitations of McMinn’s Animat are that the individual modules do not grow but are

fixed in size. These are placed within the ANN and are trained individually with

independent fitness functions. Additionally, the unit functionality is fixed and the different

 20

types of neurons are designed for specific tasks. This is a top down approach to creating

an artificial system, and requires designer knowledge of the modules required. The model

is an extremely useful model for robots, Remotely Operated Vehicles (ROVs),

Autonomously Operated Vehicles (AOVs) etc., which have a specific design and

functionality and operate in a known environment. For further explanation of this section

see [McMinn 2002]

2.5 Evolution of Functions within the Animat Nervous System - Upper

Layers

Reddipogu’s work has strongly biological influences. After considering several biological

vision systems, she researched the visual system of the toad, due to the structural similarity

between toad and human Central Nervous Systems (CNS) and that it was one of the few

vertebrate systems thoroughly researched by biologists, [Reddipogu, 2002].

When humans see an object such as a glass, they are able to identify it quickly. However,

glasses come in many different shapes, sizes and colours. Humans can still identify the

classification of the object even if they have never seen that exact type before. Neural

networks have difficulty in doing this. If presented with a different object from the same

domain there is no guarantee that the network will “work it out”. Even if the object is

known, it can be presented in a different orientation so that it is no longer recognised.

Other researchers such as Reid [1989] have worked on the problems of distinguishing

objects when presented in untrained size or translational positions. There has been much

less work done on distinguishing between objects which are trained sequentially but

presented simultaneously, such as a network being presented with two examples of a glass

at the same time. Add to this the requirement for differentiation, size and translation

capabilities and this is quite a challenging problem.

A novel visual system, based on the differentiation between prey and predator, was

constructed. This is of fundamental importance to the unconstrained environment as all

previous (simple type) ANNs cannot differentiate between two individually trained stimuli

if they are presented with both simultaneously [Reddipogu, 2002].

 21

Figure 2.4 - Reddipogu's Artificial Vision System,

reproduced by permission of Reddipogu [2002]

The above diagram, figure 2.4, shows the implemented modular assembly.

The system is based on a modified biological neural circuit proposed by Ewert [1987].

The components are McCulloch-Pitts neurons with sigmoid (logistic) outputs. Reddipogu

made use of an Evolutionary Algorithm employing Reinforcement Learning (EARL) to

train the system.

A robotic visual system was developed from the network’s ability to recognise

combinations of patterns trained separately. It was suspected that the modularity of the

system gave rise to these abilities. Useful lessons on modular placement were learned

from this and implemented by Muthuraman [2005]. For further explanation of this section

see [Reddipogu, 2002]

2.5.1 Summary of Animat Investigation

McMinn and Reddipogu produced interesting results in their investigation of the effects of

evolutionary modularity on the functionality of Artificial Neural Networks. There are two

other main areas noted by MacLeod that were, at the time, still to be incorporated.

Firstly, their systems had fixed modules that are placed in a hierarchical order based on

functionality. The systems do not grow and the separate modules are evolved individually.

 22

This means the Incremental Growth introduced by MacLeod was not incorporated into the

model. This is attended to in Muthuraman’s work.

Secondly, the unit functionality is limited and requires design based on what the parent

modular functionality is. The use of different types of Artificial Neuron was sufficient for

the purpose of this research but the authors were aware of and commented on the

limitations. The significance of this was reinforced and clarified by Muthuraman. The

solution to this problem is the subject of this thesis.

 23

2.6 The Evolution of Modular Artificial Neural Netw orks

The modular networks used by McMinn and Reddipogu still required a fixed hierarchical

design that represented a severe limitation in the unconstrained environment. The solution

to this was essentially to combine the work of MacLeod, McMinn and Reddipogu. This

was done by Muthuraman whose work was to focus on the evolution of the modular

aspects of the system. The evolution should be both unconstrained and open-ended. It

must therefore operate using an incremental adaptation to its environment. Such an

approach replaces the constraints required by design with interaction of environmental

parameters that are equivalent to evolution by natural selection in nature.

Figure 2.5 - Muthuraman's Robotic Body Plan Evolution,

reproduced by permission of Muthuraman [2005]

The system, invented by Muthuraman, began with a mechanically simple robot in a simple

environment (actually as simple as possible). The robot used was akin to an artificial mud-

skipper with simple single-jointed limbs. The environment is as complex as the robot’s

ability to sense it, so only factors that it can react to can be part of the fitness function. The

environment and the robot’s body plan become gradually more sophisticated. This

incremental change is expressed in the robot being able to sense different, or more detailed,

 24

environmental factors and react with more degrees of freedom. Its visual field also grows

and accommodates more patterns.

To allow the robot to take advantage of greater inputs and outputs, previously evolved

neural network modules are retained but not retrained. New modules are added and

adapted to the whole structure. They undergo training and evolutionary change until the

fitness function is satisfied. The process is an implementation of what MacLeod termed

“Incremental Evolution”.

The influence on this work is to make the focus and demonstration more robotic, which

ties in with the previous work by the group. The robot’s complexity can be varied as

required. It can have input sensors, pattern generation and control networks, rather like the

human body itself.

2.6.1 Principles of Modularity

There is a singular contribution from Muthuraman that is of fundamental importance to the

incremental evolution of modular networks. Muthuraman successfully produced an

algorithm that allows the MANNs to evolve in an unconstrained manner. Where previous

work had made use of some intra-modular evolution, the algorithm allows all inter and

intra-modular design to be evolved. This algorithm can be called the “Principles of

Modularity”. For a full explanation, see Muthuraman [2005].

The principles of modularity contain four components. The first is of primary importance

to the aim of this thesis, and the others are also relevant.

1. Functionality

The importance of the neuron’s functionality was observed and shown; restricted

functionality creates an over complexity of the modules in compensation. If the

unit functionality is not enough, then there can be functions which cannot be

evolved (even with larger networks). No solution to this was provided by

Muthuraman as it is the basis of work by this author.

 25

2. Wiring

Modules must be permitted to break connections between neurons and modules.

Even small residual weights on unwanted connections, that appear mathematically

to have no influence, do not permit the system to operate correctly.

3. Placement

The physical location of new modules within the system is essential to the success

of the system. Once this is known, it can be incorporated as part of the EA.

4. Size

There are a certain minimum number of neurons which each module must have in

order to evolve correctly. Over-connection of neurons causes the information to be

lost in the background noise of the network.

There is a complicated interaction between these principles. Module size and connections

are strongly linked to unit functionality. The growth of the modules must be balanced with

their training.

2.6.2 Complexity of Training

The increase in computational cost of retraining networks that increase in size to fulfil a

functional requirement was known to MacLeod. Just how important this is and how

debilitating to large systems was commented on by Muthuraman. It is demonstrated in the

following example.

If a module begins as a fully connected structure of 10 neurons, each having only one

connection to all other neurons and including a feedback to itself, then there are 102 = 100

weights that require training.

If a new module adds another 10 fully connected neurons, then the whole system must be

retrained with 202 = 400 weights. So, to reach this stage the module has undergone,

sequentially, training on 100 then 400 weights. This means 500 weights have undergone

training.

 26

If a small Artificial Neural Network is eventually evolved to a size equivalent to 100

modules, totalling 103 neurons, it will have 103 x 103 = 106, one million, weights that

require simultaneous training.

The total number of connections trained to reach this stage, is the sum of a sequence of

squares. (10,20,30,40,…1000).

The sum of n2 where n is the set of integers from 1 to x is given as follows;

xxxn
xn

n 6

1

2

1

3

1 23

1

2 ++=∑
=

=

 equation 2.1

In this case, x represents the effective number of modules; so, by the time the system is

composed of 100 modules, it will have undergone training on the sum of n2 for x = 100

modules. At 100 connections a module this means 33,835,000 total weights have been

trained.

If the system complies with Incremental Growth, each new module is probably not fully

connected to the previous modules. The entire system still requires to be retrained after

each addition. The cost is the sum of the sequence (100 + 200 + 300 + 400 +… + 10000).

This can be written as 100 x (1 + 2 + 3 + 4 + … + 100). This is expressed as the following

()x

xn

n

nn
n

nC +=⋅∑
=

=
1

1 2
 equation 2.2

This results in a total 505,000 trained connections by the same stage, 67 times less.

A fruit fly has around 103 times as many neurons as in this artificial example, about a

million, with vastly more connections. A human has around 107, “ten million” times as

many, with an average of 2x103 to 5x103 connections per neuron [Edelman, 1987]. If the

brain was rewired at every evolutionary junction, every one of these connections would

have to be re-evolved and re-trained. There is simply no possibility of a viable creature

being produced in such a staggering search space.

 27

If instead the training follows the principles of Incremental Evolution, then only the new

module requires to be trained. Following the same example, with the same 100

connections in the initial module, once these are trained, they are left alone. On the

addition of each new module, only the new connections are trained.

The total number of trained connections on the addition of the second module is 100 + 100

= 200.

If we expand this example to 100 modules, totalling 103 neurons, there are a resultant 104

connections. As only each new module is trained, each connection is only trained once,

therefore the Total Incremental Training cost gives a total training cost of 100 x 100 = 104

trained connections.

In this example Incremental Evolution has trained 1000 connections, while Incremental

Growth has 505,000 connections and Sequential Growth has trained 33,835,000

connections. The evolutionary advantage is 0.19801% and 0.00295% respectively of the

required training. In each of the non-iterative evolutionary methods a progressively larger

network has to be trained. In Artificial Neural Networks smaller networks train in fewer

epochs.

The costs (in terms of training requirement of connections) for each new stage of training

can be expressed as follows;

Sequential Growth (AxB)

Incremental Growth (A+B)

Incremental Evolution (B)

where A equals the complexity of the previous stage and B is the complexity of the newly

added stage.

 28

2.6.3 Functionality and Modularity in Artificial N eural Networks

As previously stated, the importance of functionality at a neuron level was already known

to the group even at the stage of MacLeod’s initial work. McMinn and Reddipogu had

implemented systems that were successful but relied on design at neuron level and again

unit functionality caused problems in their implementations. Muthuraman designed his

own neurons for specific tasks, and went on to establish the necessity for a highly

adaptable neuron that had been missing from the previous work. There was now a need for

a “Universal Neuron” that could take any position in any of the modules and evolve or

train to fit the desired functionality.

2.7 Conclusions Drawn from Previous Work

Early research targeted the growth of simple networks to solve uncomplicated functions.

This relied on the existing simple neuron structure and evolutionary techniques. The

limitations of these was observed, particularly with regard to intensive design by the user,

iterative training, modularity, time-domain performance and functionality. At an early

stage, research became focused on robotic development as a method for simulating an

unconstrained and challenging environment in which to develop advanced networks.

The ability of Artificial Neural Networks to perform a single well defined task but be poor

at solving non-specific problems or multiple tasks, led to the group’s work on communities

of cooperative neural networks. These developed into the fixed hierarchical modules of

the Animat nervous system.

An effort to overcome the restrictions of specific fixed operation and a designed hierarchy

gave rise to the combination of growth and modularity algorithms. The resultant Principles

of Modularity enabled the Evolutionary Algorithm for Modular Growth to be both open

ended and environmentally unconstrained.

During this research the limitations of the existing neurons became apparent at almost

every stage. These limitations resulted in specific neuron designs, dependent on the

network function. Pursuing these issues of functionality would have been a distraction

 29

from the research at hand - but there are two obvious limitations to the approach. Firstly,

there were no time-domain capabilities for the simpler neurons and no evidence that a

cluster could easily develop them. Secondly, increasing the number of neurons through

clustering into functional groups increases the complexity of the search space as previously

discussed, and makes a solution exponentially more difficult to find.

Work by other researchers has made clear that increasing the complexity of the system

cannot on its own provide a solution to the non-specific problem, [Potter et al., 1995],

[Thompson, 1996]. This is because the system does not laterally increase its abilities, and

perform different tasks, simply by increasing its size in units or connections. Increases in

the system’s size are restricted in terms of universality and generalisation as discussed in

this thesis.

This may seem to conflict with the accepted doctrine that an Artificial Neural Network is a

universal mapping function from problem domain to solutions space [Hornik, 1989],

[Barron, 1993] and [Sima and Orponen, 2003]. However, time-series problems are outside

the domain of the simple neurons based on the McCulloch-Pitts model.

All of this points to the requirement for some type of “Universal Neuron” as defined

earlier in this chapter. What is meant by “universal” will be discussed in the next chapter.

 30

Chapter 3

Universality and Generalisation in the Spatial Domain

3.1 Introduction to the Chapter

The terms “Universal” and “Generalisation” are central to this project and occur frequently

in Artificial Neural Network literature. This chapter explains what they mean in the

context of this thesis and the research of the group.

Definition of Universality :

The ability of an Artificial Neural Network to approximate any functional mapping

from its input (data) space to its output (solution) space.

Definition of Generalisation :

The ability of an Artificial Neural Network to correctly classify new data which

belongs to the same system as the training data with which it has been taught.

3.2 Universality

A universal approximator is one that can perform an arbitrary mapping from one multi-

dimensional data space to another. This is generally regarded as a mapping from an input

space to a output space. A universal optimiser is one that performs well on a large set of

optimisation problems within the same mapping from input space to output space. [Duch

and Jankowski, 1997], [Briggs, 2005]. An example is shown in figure 3.1, where different

representations of characters are recognised as one of 4 letters.

 31

Figure 3.1 – Text recognition mapping function

One of the factors that brought most neural network research to a halt in the 1970s was the

work by Minsky and Papert [1969]. Amongst other observations, they showed two major

weaknesses with Perceptron universality.

Firstly, as shown in figure 3.2, a single neuron of the McCulloch-Pitts type, which

accounted for almost all artificial neural units of the day, could not provide a solution to

the XOR problem. The XOR problem is a two dimensional example of the parity-check

problem and therefore easy to visualise, (see figure 3.3). It can be expanded into any

number of dimensions and is known as the “d-bit parity problem”.

Figure 3.2 – McCulloch-Pitts Neuron

Figure 3.3 – Exclusive-or (XOR) problem

i1 i2 Desired Output Class
0 0 0 1
0 1 1 2
1 0 1 2
1 1 0 1

C1

C1 C2

C2

i1

i2

A single linear decision
boundary cannot classify
the input vectors
i1 [(0,0),(1,1)] and
i2 [(0,1),(1,0)] correctly.

Input Space

A A A A A
B B B B B
C C C C C
D D D D D

mapping
function

Output Space

1000
0100
0010
0001

 32

Secondly, they demonstrated that a simple two-layer perceptron was not capable of

providing a useful function approximation outside a narrow class.

In hindsight, their work did ANN research a great service, because, through visualising the

problems, they allowed a greater understanding of network limitations. This focused

attention on solving these problems and a great deal of the subsequent work on universality

is based on their observations or in providing solutions to them. The second weakness

provided a solution to the first using Backpropagation training [Rumelhart, Hinton and

Williams, 1986], [Werbos, 1974], [Parker, 1985] as shown in figure 3.4.

Figure 3.4 – solution to the parity-check problem

The solution, of course lies in the use of networks rather than individual neurons as shown

in the diagram and it can be extended to any d-bit parity problem so that multi-layer

networks are universal approximators [Hornik, 1989]. This extension has a mathematical

basis as shown by Kolmogorov [1957], who disproved Hilbert’s famous 13th conjecture.

Flaws were pointed out and fixed by subsequent authors including Lorentz [1966] who

extended Kolmogorov’s work to show, in theory, that an approximation can be obtained

for any multi-variate function by a compositional network of univariate functions. The

specific function determines the accuracy of the approximation. Despite this, there are

many limitations and the specific size of the model cannot be determined from the function

itself. As Elder and Brown [1992] observed, “inducing such a model from sample data

remains a great challenge”.

Applications to neural networks have shown that Kolmogorov’s theorem could be

generalised for Multi-Layer Perceptrons (MLPs) or any multi-layer feed-forward neural

OUT = 1

i1

i2

ω11

ω22

ω12

ω21

S1

S2

OUT
C1

C1 C2

C2

i1

i2
S1 boundary

S2 boundary

 33

network, and so these could be considered to be universal approximators [De Figueiredo,

1980].

Hecht-Nielson noted that Kolmogorov’s superposition can be interpreted as a three-layer

neural network and any continuous function defined in (d) dimension unit hypercube could

be implemented exactly by a three layer network of (2d+1) hidden units and with a suitable

transfer function [Hecht-Nielsen, 1987].

A survey of universality [Tikk, Kóczy, and Gedeon, 2001] has shown that since then it has

been proved that different types of neural network possessed the universal approximation

property [Blum and Li, 1991], [Hornik, Stinchcombe and White, 1989], [Kurkov´a, 1992].

As noted above, the specific transfer function is of critical importance to a network’s

universality [Duch and Jankowski, 1997]. Extending the functionality of the unit can

reduce the dimensional requirement of the network and it has been shown that a single

hidden layer neural network can be a universal approximator [Hornik, Stinchcombe and

White, 1989].

Single-layer neural networks with sigmoidal functions have been demonstrated as

universal approximators. They can approximate an arbitrary continuous function, on a

compact domain, with arbitrary precision, given sufficient number of neurons [Cybenko,

1989].

This can be extended to a continuous function, that show a single unit of the correct type

can itself be a universal approximator [Capanni et al., 2003].

Polynomial networks (see next chapter) have been shown to have both universal

approximation abilities and good generalisation [Nikolaev, 2003]. Nikolaev notes that

problems in generalisation can, partially, be attributed to fixed network structure [Chang

and Cheung, 1992] and that this cannot be countered by restricting the polynomial

complexity or by their learning algorithms and therefore under-fitting or over-fitting occurs

[Heywood and Noakes, 1996].

 34

3.3 Generalisation

In many neural network applications generalisation is best explained by a pattern

recognition example. Once a network has been trained to recognise specific patterns from

a training set, it may be presented with patterns that were not members of that set. If the

network has learned the underlying structure of the problem domain, then it should be able

to correctly classify these new patterns. Such a network is said to have good

generalisation. If the network cannot generalise, then it is simply performing a one-to-one

mapping from the input space to the solution space as in figure 3.5a. This could be

achieved far more simply with a lookup table or template match [Gurney, 1997a], [Bishop,

1995a].

Figure 3.5a – A one-to-one mapping

Figure 3.5b – A many-to-one mapping

Output Space
Input Space

10000 all
characters

“A”

many-to-one
mapping

poor generalisation

A
A

A
A

A

Original trained character

Other versions of character

A

A

A

A

Output Space
Input Space

10000 “A”
0#### unknown “A”
0#### unknown “A”
0#### unknown “A”
0#### unknown “A”

one-to-one mapping
poor generalisation

A
A

A
A

A

Original trained character

Other versions of character

 35

Figure 3.5b shows the many-to-one mapping actually required. The new patterns or cases

that the network operates on must belong to the same system as the training set [Elder and

Brown, 1992]. Failure to generalise can be attributed to many different factors such as:

• The training set not being a true representation of the problem, perhaps because too

few examples are used or they cluster in areas and do not contain all the factors that

separate the cases.

• The network having too few neurons or weights, so that it may not be able to

differentiate between all the factors and will under-generalise. This will be observable

in training, as the network will have difficulty achieving (or fail to reach) an acceptable

target error.

• The network having too many neurons or weights. In this case, it may fit the training

set too well and suffer from what is termed over-training or over-fitting.

• If the search space is too big, the initial parameters may result in the network reaching

a sub-optimal minimum before it can find a good solution or the global minimum.

 36

3.3.1 Over-Fitting and Over-Training

Figure 3.6 – Generalisation and over-training – modified from Gurney [1997b]

Consider figure 3.6. There are two classes distinguished by open and closed symbols. The

training set is shown as circles and the untrained patterns are shown as squares.

In the first diagram-pair (a & b), the two lines represent the linear separation of a two

hidden neuron MLP. Initially, it appears that there is poor training as two open circles lie

directly on the linear separators. This will result in some residual error in training. The

network is then tested with the untrained data, represented by the squares, and correctly

classifies them. The network has therefore generalised well with the unseen data,

capturing its essential characteristics in pattern space.

e)

d) c)

b) a)

f)

 37

If the low error in training is not accepted and a lower error is sought by either continuing

to train (altering the hyperplanes), as in the second pair (c & d) or adding additional

separators, as in the third pair, figure (e & f) then a zero error can be found. However,

once the unseen data is added neither of these techniques manage to correctly classify the

new patterns. These networks have been over-trained and possess poor generalisation.

They have over-fitted the decision surface to accommodate all the noise and specifics of

the training data without learning the underlying trends [Gurney, 1997c], [Bishop, 1995b].

Networks that are too large for the problem domain are susceptible to learning without

good generalisation [Chen, 1991] and can result in a multi-dimensional Lagrange

interpolation [Steffensen, 1950] of the training data. This is expressed in very poor

recognition ability when presented with new patterns. However, the extent of the

performance is determined by the nuances of the pattern space.

Overtraining can be countered with testing called “cross-validation” [Gurney, 1997d] or

“holdout-validation” [Pednault, 2004]. In these, the error during training is tested on a

validation-set of untrained patterns that come from the same problem as the training-set.

As shown in figure 3.7, the error tends to follow that of the training-set but remains slightly

higher. As training continues, the training-set error will continue to decrease but at some

point the validation-set error will begin to rise. This is the point when the network is

starting to over-fit and is losing its ability to generalise.

Figure 3.7 – Training and validation error – modified from [Gurney, 1997e]

number of training epochs

error
training-set error

validation-set error

approximate region where
over-fitting occurs

 38

3.4 Universality and Generalisation Trade-Off

From the previous section, it can be seen that a balance must be found between

generalisation and universality. ANNs should be adaptable and therefore universal in their

environment and this can be done by increasing their size. However, we also know that as

the size increases, the network risks losing its generalisation abilities. So the solution to

this is to combine the lessons learned about training and growth with an increased

functionality of the basic unit, as in Chapter 4, that allows the use of fewer units in the

ANN construction. However, not just any unit can be used; it should be an improvement

over linear seperability but must have some constraints or the results may be polynomial

over-fitting, (see Appendix D). The investigation of such functionality is the purpose of

the next chapter.

 39

Chapter 4

Power Series

4.1 Introduction to the Chapter

This chapter outlines a neural model, which has been designed to be flexible enough to

assume most mathematical processes. It is particularly useful in evolutionary networks as

it allows the network complexity to increase without adding neurons. The theory is

presented in this chapter, this forms the base for the development of both time-series and

non time-dependent applications as the next chapter shows. This work was originally

published by Capanni [2003], see Appendix A.

4.2 Evolution by Devolved Action

The requirements that lead to the research covered in this chapter were introduced in the

paper “Evolution and Devolved Action” by MacLeod et al., [2002]. This paper identified

many of the problems with Artificial Intelligence (AI) development, among which was unit

functionality.

4.2.1 Unit Functionality

All neural biological systems have similar neurons. However all do not have exactly the

same unit functionality, even within one organism [Levitan and Kaczmarek, 2001].

Neurons have been categorised into general types, based on physical appearance, location

in the organism and perceived function but the subtle differences go deeper than these

broad categorisations and the operations of the more exotic types are not fully understood.

Also, as described in the last chapter, there are many different types of artificial unit, such

as, Perceptrons, Radial basis units, Sigma-Pi units, etc. “What is needed is an evolutionary

system which can evolve any reasonable neural function” [MacLeod et al., 2002].

 40

This is the basis of the Power Series research (and through its expansion from the static to

the time-domain, it also leads logically onto the Artificial BioChemical Networks

presented later in this thesis).

4.3 Power Series

Power expansions belong to a grouping of infinite sequences and series where the nth term

is a function un(x). The general power series is;

KK ++++++=∑ n
n

n
n xaxaxaxaaxa 3

3
2

210 equation 4.1

where the numbers na (n = 0,1,2,…) are constants independent of each other and of x.

They are used extensively in mathematical physics, allowing descriptions of various

phenomena including signals such as current and voltage, [Thomas and Finney, 1996a].

In a sequence un(x) = cxn, or un(x) = c(x-a)n, where a and c are non-zero constants, then the

sequence converges to zero if |x| < 1 or |(x-a)| < 1, and converges to c if x = 1 or (x-a) = 1

and otherwise it diverges.

If it converges, the sum to infinity of a formal power series can be expressed as;

n
n

n

n
n xaxaxaxaaxa +++++=∑

∞

=

K
3

3
2

210
0

 equation 4.2

These power series can be truncated to give polynomial approximations to standard

elementary functions such as ex and sin x. The range over which these approximations are

accurate is determined by the order of the polynomial used (and proximity to the radius of

convergence).

It is a specific type of polynomial expansion derived from power series that is of interest in

this thesis, namely the Taylor Polynomials.

 41

4.4 Taylor and Maclaurin Series

While not every function may be represented by a power series, every1 function f that is

defined in a neighbourhood of x = 0 and has finite derivatives f’ , f’’ , … ,fn at 0 generates

polynomials p0(x), p1(x), … , pn(x) that approximate f(x) successively more accurately for

values of x near 0, [Thomas and Finney, 1996b].

For any non-negative integer k, the polynomial pk(x) can be taken to be the terms up to and

including xk in the power series shown in equation 4.2 to give;

() k
kk xaxaxaxaaxp +++++= K

3
3

2
210 equation 4.3

The coefficients 0a , … , ka are determined as the derivatives of f(x) at x = 0, (the point (0,

f(0))). Thus, the polynomials p0(x), p1(x), … , pk(x) expressed as in equation 4.3 pass

through (0, f(0)). This is shown in equations 4.4(i to iv);

() 00 axp = where 0a = f(0) equation 4.4i

() xaaxp 101 += where 1a = f’ (0) equation 4.4ii

() 2
2102 xaxaaxp ++= where 2a =

!2

)0(''f
 equation 4.4iii

M

() k
kk xaxaxaxaaxp +++++= K

3
3

2
210

 where ka =
!

)0(

k

f k

 equation 4.4iv

Replacing the coefficients allows the expression to be re-written as shown;

() k
k

k x
k

f
x

f
x

f
xffxp

!

)0(

!3

)0('''

!2

)0(''
)0(')0(32 +++++= K equation 4.5

1 Actually, there are some exceptions - certain pathologic functions such as the function defined piecewise as
f(x) = e−1/x² if x ≠ 0 and f(0) = 0. All the derivatives of f(x) are zero at x = 0. Therefore the Taylor series of

 42

The specific Taylor series shown in equation 4.5 corresponds to expansion about x = 0 and

is called the Maclaurin series, [Thomas and Finney, 1996c]. If an approximation is

required near another point a, the powers can be re-written as (x-a) which results in the

following Taylor polynomial and series;

() () () () ()k
kk axaaxaaxaaxaaxp −++−+−+−+= K

3
3

2
210 equation 4.6

() () () () ()k
k

k ax
k

af
ax

af
ax

af
axafafxp −++−+−+−+=

!

)(

!3

)('''

!2

)(''
)(')(32

K

 equation 4.7

This results in the approximation ()xpk about x = a for any non-pathologic function f(x),

that has finite derivatives of all orders at a. As with the previous power series

approximations, the Taylor approximation can be improved by increasing the order.

4.5 Relevance of Taylor Series

The paper “Evolution by Devolved Action” [MacLeod et al., 2002] set out a biological

basis for exploring unit functionality. This was followed up by the current author Capanni

[2003] where a new neural model was presented, based on the idea that a neural unit

should be flexible enough to fulfil any differentiable mathematical function required of it.

The model is a logical extension of the Perceptron and the first advances mentioned by

Capanni in this paper were later developed to what is presented in this and the next

chapter.

Any lower unit number universality of a Taylor Series network compared to MLP comes at

a price, as polynomial over-fitting can develop, Appendix D. Taylor series networks are

vulnerable to the Plasticity-Stability dilemma, explained below, through what Bishop

[1995] calls the Bias-Variance trade-off.

f(x) is zero even though the function f(x) is not zero. So it is assumed that f is well approximated by its
Taylor polynomials.

 43

The Plasticity – Stability dilemma is as follows:

 Plasticity: The ability of a network to learn new patterns.

 Stability: The ability to retain previously trained patterns.

Dilemma: A fixed topology network cannot learn new patterns without

affecting the memory of old ones.

4.6 Linear vs. Non-Linear Separability

The previous chapter introduced linear separability and explained how this simple concept

was the basis for Artificial Neural Network functionality. The advantages and limitations

of this with respect to universality, generalisation and the famous parity-bit problem were

explored. In figure 4.1 it is shown visually how a single, second order TS neuron can

exactly map a non-linear boundary, whereas a McCulloch-Pitts Multi-Layer Perceptron

requires two layers and several neurons to approximate the same boundary (it cannot

match it exactly). A potential disadvantage of which, that will be explored later, is the

danger of exact matching, resulting in over-fitting and loss of generalisation.

0.4 0.2 0 0.2 0.4
0.5

0

0.5

Figure 4.1 - Comparison of McCulloch-Pitts MLP to single 2nd order TS neuron

A non-linear decision boundary can only ever by approximated by a set of linear

separators. While for generalisation purposes approximation may be desirable, a non-

linear separator can either exactly match the boundary or, if the training algorithm includes

an approximation element, provide such a level of approximation with a single unit of

sufficient power order.

 44

The universality of the TS neuron can be seen in that it reduces to a MP neuron as shown

in equations 4.8c and 4.9a and explained below.

4.7 Model Solution

The majority of ANNs currently use a neuron developed from the original McCulloch-Pitts

model, as shown in figure 4.2. Other types use a Euclidean difference formula S = (x – w).

Those that do not may still utilise the initial (input x weight) summation stage. The output

from this stage usually undergoes a transformation using a threshold or squashing function.

This function normalises the output, common examples being binary {0,1} or logistic

sigmoid (0,1). Without the use of the normalising function, the activity of this neuron is

given by;

i

n

i
i wxS ∑

=

=
1

 equation 4.8a

The variable S denotes the sum of each input xi multiplied by the strength of its connection

termed the weight wi and is known as the “activation” of the neuron. In the absence of a

normalising function the output of the neuron O is equal to S as shown in equation 4.8b.

i

n

i
i wxO ∑

=

=
1

 equation 4.8b

For a neuron of two inputs this can be given as the easily visualised equation 4.8c of a

straight line with respect to the variables x1, x2.

2211 wxwxO += equation 4.8c

 45

Figure 4.2 - McCulloch-Pitts neuron of n inputs

As discussed previously in this chapter continuous non-pathologic function can be

modelled using an infinite power series as shown in equation 4.2, specifically a Taylor

series as shown in equation 4.5. This can be implemented as a neuron using the output

function shown in equations 4.9 and figure 4.3.

A TS neuron of two inputs with a second order expansion can be expressed as in equation

4.9a. The variables x1, x2 are independent of each other in real terms and in the

mathematical sense. Therefore x1, x2 could be replaced by x, y.

2,2
2
22,1

2
11,2

1
21,1

1
1 wxwxwxwxO +++= equation 4.9a

For a TS neuron of two inputs, an order p expansion can be expressed as in equation 4.9b.

p
p

p
p wxwxwxwxwxwxO ,22,112,2

2
22,1

2
11,2

1
21,1

1
1 ++++++= K

 equation 4.9b

In its full expression, a TS neuron of n inputs expanded to an order of m can be expressed

as equation 4.9c.

∑∑
= =

==
m

p

n

i
pi

p
in wxOxxf

1 1
,1),,(K equation 4.9c

xn

x1
w1

wn

O S

Inputs {x1 … xn}

Weights {w1 … wn}

Output = f(S)

Sum= (x1.w1 + … + xn.wn)

 46

In all of equations 4.9, the derivatives of the time-series are replaced by the weights in a

like for like manner, so that;

piw , =
!

1
)0(

px

f
p
i

p

⋅
∂
∂

 for p = k and i is dependent on the input,

replacing
!

)0(

k

f k

 for f(x) as the function is now multi-variate in f(x1,…,xn).

The term f(0) can be replaced with the bias θi as in standard MP neuron operation to give

equation 4.10a.

()∑ ∑
= =








 +=
m

p

n

i
ipi

p
i wxO

1 1
, θ equation 4.10a

In an MP neuron, θ is a property of the neuron, not the connection. However, f(0) is a

constant and so the sum of all the θi can given as θ, a constant term without input, to give

equation 4.10b.

∑∑
= =

+=
m

p

n

i
pi

p
i wxO

1 1
,θ equation 4.10b

Figure 4.3 – Taylor series neuron of n inputs and order m

The factorial term p! is theoretically absorbed by the weight term and as the values for xi

should be constrained within the range [-1,1] or [0,1] then the powers of xi will not become

Xn

x1
w1,1 w1,2 … w1,m

O S

Inputs {x1 … xn}

Weights {w1,1 … wn,m}

Output = f(S)

Sum = θ + (x1.w1,1 + (x1)
2.w1,1 + …

+ (x1)
m.w1,m + … + (xn)

m.wn,m)

wn,1 wn,2 … wn,m

 47

uncontrollably large. However, some account of this must be taken when generating the

initial parameters for the neurons by dividing the initial range for each power by the

appropriate factorial or the factorial must be left in place to give equation 4.10c. If this is

not done then the higher powers will have a disproportionate significance than a Taylor

series would indicate and may result in high sensitivity to small changes in weights or

inputs that have a major effect on boundary conditions. As higher orders of power are

taken the weights may become so small that their effect is negligible (especially if the

implementation has a limited decimal accuracy). In the case of the weights, a well

structured training program may compensate for this but a significant point is that the

effect of noise would be magnified by these disproportionate values that could have a

significant effect on the generalisation abilities of the network.

∑∑
= =

+=
m

p

n

i

pip
i p

w
xO

1 1

,

!
θ equation 4.10c

Comparison of equations 4.8c and 4.9a shows that if the coefficients of the second order

terms of x1 and x2 reduce to zero then the TS neuron reverts back to a McCulloch-Pitts

performance. This remains true for any number of terms as a McCulloch-Pitts represents

the first order of a Taylor Series, or Power Series, neuron.

Note that each connection has a separate weight for each order of series used. It is not

practically possible to implement an infinite series without contributing to Bellman’s

[1961] “curse of dimensionality”. Therefore it is necessary to restrict the order of the

Taylor series, possibly to as much as a second or third order series. However it has already

been demonstrated that a second order series is many times more capable of approximating

a non-linear separator as it can follow the contour rather than exploiting tangents. Within

the following sections the specifics of restricting the orders are examined.

As each input undergoes a separate Taylor series expansion the operation of the neurons

does not represent a true multi-variable Taylor series. This is intentional as if it was

allowed to do so then the “curse of dimensionality” would apply and the implementation

would produce a variation of the Polynomial Neural Network (PNN) [Ivakhnenko, 1968].

This would have eight variables for a 2nd order 2 input neuron, and as such is frequently

 48

restricted to two inputs such as in the Group Method of Data Handling (GMDH),

[Ivakhnenko, 1971].

 49

Chapter 5

Taylor Series Neurons and Networks

5.1 Introduction to Chapter

This chapter demonstrates the implementation of the Taylor series neural model which was

presented in the previous chapter. The implementation is compared to equivalent Single

and Multi-Layer Perceptron and the results are shown. Significant operations are explored,

with specific attention being paid to universality and generalisation. Other major

polynomial type networks are also discussed. Finally, the relevance of time-domain

operation is introduced and the application of power series networks to this is illustrated

with an explanation of how this leads to the Artificial BioChemical Networks presented in

the next chapter. Additional results and expanded figures, denoted F.#, are included in

Appendix F.

5.2 Background to Chapter

As discussed in Chapter 4, the Taylor Series neuron differs from the McCulloch-Pitts

neuron in its connections and weights.

Both neuron types can utilise a range of output functions, common ones being the

piecewise linear, threshold (also called heaviside step) function, the logistic sigmoid and

the hyperbolic tangent functions. The combination of the summation function and the

output function is called the transfer function.

 50

5.2.1 Output Functions

To assist with visualisations the threshold and logistic sigmoid piecewise output functions

are illustrated below. The linear and hyperbolic tangent output functions are included in

Appendix F.

2 0 2

0.5

1

t x()

x

Figure 5.1 – Threshold function t(x)

 equation 5.1

A threshold function, sometimes called a “heaviside or step function”, usually operates

with output {min, max} values and a decision or threshold value. If the sum reaches the

threshold values, the output is set to max; otherwise, it is set to min.

The specific function shown here has an output set of {0,1} which are commonly used

values. The function may use any pair of values however, these and the set {-1,1} are the

most frequently implemented.

The step function produces the binary decision about a threshold point, often denoted by

the Greek lower-case theta θ. In the example shown in figure 5.1 and equation 5.1, the

theta value is 0.5.

t(x) = 1 if t ≥ 0.5
0 if t < 0.5

 51

A neuron using such a function is often called a Threshold Logic Unit (TLU). Theta is

usually set at the same value for all neurons in the network, often the mid-point between

the output max and min. Such a network can be denoted as TLU{θ, min, max} with

TLU{0.5,0,1} and TLU{0,-1,1} being typical values. In the perceptron training algorithm,

θ is a trainable parameter.

10 0 10

0.5

1

l x()

x

Figure 5.2 – Logistic sigmoid function l(x)

()xe
xl −+

=
1

1
)(equation 5.2

The sigmoid function is probably the most commonly used output function. The example

shown in figure 5.2 and equation 5.2 is the logistic sigmoid. This is a useful extension of

the step function that provides a continuous solution and overcomes the limitations of the

previous binary functions. It is symmetric through the range [0,1] about its output value of

0.5 and has a slope controllable by a parameter rho ρ and an intersect by the use of bias θ,

which is inherited from the threshold function. The effect of these is shown in figure 5.3 at

the end of this section.

5.3 Design and Implementation

In this section, the capabilities of the individual Taylor Series neuron are explored and

compared to the McCulloch-Pitts neuron in the same environment. It is intended that an

understanding of the operation of single neurons will assist in the understanding of the

operation of a network of neurons.

 52

5.3.1 Taylor Series Neuron Output Functions

Two inputs (x1,x2) are used so that the operation can be easily visualised. For the Taylor

series neuron, implementation proceeds in increasing order of powers while it is feasible to

analyse and represent the unit like this.

The output O and sum S values of the MP and the TS neurons are represented by equations

5.3 and equations 5.4, which are derived from the equations 4.8(a,b,c) and equations

4.10(a,b,c) respectively. This assumes no transfer function is used and represents a linear

output function with no amplification.

i
i

i wxSO ∑
=

+==
2

1

θ equation 5.3a

2211 wxwxSO ++== θ equation 5.3b

∑∑
= =

+==
m

p i

pip
i p

w
xSO

1

2

1

,

!
θ equation 5.4a

∑
=









++==

m

p

pppp

p

w
x

p

w
xSO

1

,2
2

,1
1 !!

θ equation 5.4b

Specifically for a 2nd order and a 3rd order expansion, equation 5.4b can be expressed as

5.4c and 5.4d respectively.









++++=

22
2,22

2
2,12

11,221,11

w
x

w
xwxwxO θ equation 5.4c









++++++=

6622
3,23

2
3,13

1
2,22

2
2,12

11,221,11

w
x

w
x

w
x

w
xwxwxO θ equation 5.4d

The terms in the square brackets represent the change from the previous order of power.

Notice that for equation 5.4c, this indicates the change from a 1st order neuron; comparing

this to equation 5.3b, shows that a 1st order TS neuron is a MP neuron. This means that if a

linear separator is required in a TS network then weights {wi,p} will train to 0 for all

powers p > 1.

 53

A logistic sigmoid output function, as in equation 5.5a, is applied to give the output values

of each as shown in equation 5.6 for a MP neurons and equation 5.7 for a TS neuron. This

function squashes the output to [0,1]. The maximum and minimum values are theoretically

reached when the sum value reaches ±∞. Practically, this occurs due to computational

rounding to prevent exponential overflow.

()Sume
Output −+

=
1

1
 equation 5.5a

() ρ/1

1
Sume

Output −+
= equation 5.5b

()








∑+−
=+

==
i

i
i wx

e

SfO
2

11

1

θ
 equation 5.6a

()22111

1
wxwxe

O ++−+
= θ equation 5.6b

()










∑ ∑+−
= =+

==
m

p i

pip
i p

w
x

e

SfO

1

2

1

,

!1

1

θ
 equation 5.7a














∑ 










++−

=+

=
m

p

pppp

p

w
x

p

w
x

e

O

1

,2
2

,1
1 !!

1

1

θ
 equation 5.7b

The equations for the logistic hyperbolic tangent output function are given in Appendix F.

These are no more complicated than those of the sigmoid function as it operates on

repeated terms.

As the logistic sigmoid function is the main output function used in this thesis, an

explanation is given. A logistic function has a range of [0,1], while a threshold function

forces a choice between the extreme values of {0,1}. This is not as unrelated as it appears;

it is attributable to the previously mentioned term sometimes used with the logistic

function, the slope, denoted by the Greek lower case rho ρ and affecting the sensitivity of

the function - the range of the sum over which the output produces its extreme values.

This is shown in equation 5.5b and figure 5.3. So the threshold replaces an extreme use of

ρ and is used to simulate a binary decision of the logistic function.

 54

5 2.5 0 2.5 5

0.2

0.4

0.6

0.8

Figure 5.3 – Affect of slope over logistic sigmoid

A neural network makes a decision on the inputs it receives. To do this mathematically, a

threshold function can be employed to give a binary response. However, not all decisions

are binary and so a continuous output can give a decision expressed in more detail or

confidence. If such an output is to be of value, it must be quantifiable. Therefore a

squashing function is used to constrain the outputs to a known range so each specific

output can be qualified and the values do not tend to such large numbers that the network

saturates and becomes untrainable.

In calculating the operations of the neurons, a classical matrix notation or an object model

can be used.

ρ = 1
ρ → 0

ρ → ∞

 55

5.4 Testing : Single Neuron Functionality

This section visualises the various separator functions in three dimensions. The x-axis and

y-axis represent the inputs (x1,x2) while the z-axis shows the output value.

5.4.1 McCulloch-Pitts Functions

The McCulloch-Pitts neuron is first examined as a benchmark. This is shown with two

different separators; threshold and logistic sigmoid. The piecewise linear and hyperbolic

tangent separators are shown in Appendix F.

The sum value of the neuron is calculated as in equation 5.3b. In the specific example

shown in equation 5.8, the value of 0.5 is assigned to w1, w2 and θ. This is chosen to scale

and shape the separator to the relevant axes so that its operation can be clearly shown.

5.05.05.0 21 +⋅+⋅= xxSum equation 5.8

Figure 5.4(a,b,c) – The Sum value expressed as a function of inputs

In figure 5.4a the resultant sum is visualised as a flat plane which can take any angle

between the output-axis and the input-plane (made from the input axes x1,x2). It can also

transect the input-plane in any straight line. The contours in the z-axis, including where it

meets the input-plane, represent any proportionality of decision. These contours are all

straight lines as shown in figure 5.4b by rotating the figure to view directly through the

input-plane. This plane extends to a hyper-plane in more than two input dimensions.

x2

x1

sum

x1 x2

sum x1

x2

 56

Viewing the gradient from directly into the input-plane shows the increase in output-axis

value symmetrically and uniformly with respect to the input-plane.

When a threshold, as in equation 5.1, is applied to the Sum values of equation 5.8 and

figure 5.4, the step can be seen. This is similar to the piecewise linear separator without

the incremental region. The McCulloch-Pitts neuron originally used this type of separator

and it remains popular.

Figure 5.5(a,b,c) – Threshold output functions

Figures 5.5 show the clear binary separation that is typical of the threshold function. As

figure 5.5b shows this is still a linear operation, with only one contour in the output, z-axis.

The result is obvious when viewed in terms of z-axis values of figure 5.5c.

The sigmoid output functions squash the output into a domain. In contrast to the

discontinuities of the piecewise linear and threshold functions. This means that any

measurable change in the sum has a distinct effect on the output although changes are not

linearly equitable.

In the next figures, the logistic sigmoid separator of equation 5.5 is applied to the values of

equation 5.8 and figure 5.4. The resultant figures 5.6 are obviously more complicated than

the previous separators. The output range is now squashed to (0,1) and the function is

continuous and differentiable over its entire range.

x2

x1

sum

x1 x2

sum x1

x2

 57

Figure 5.6(a,b,c) – Logistic sigmoid output functions

The sigmoid plane in figure 5.6a can be seen to be an extension of the two dimensional

sigmoid curve into three dimensions. This is verified by taking a cross section of the plane

in figure 5.6b. The effect on the decision surface is shown in figure 5.6c, where the

decision surface can be seen to be completely incremental in terms of output. However,

the gradient is non-uniform, which allows the amplification/squashing of data from the

input-plane. As before, the expansion into more dimensions results in hyperplanes

operating equivalently.

The sensitivity of the function can be tuned to the relevant area of the input plane by the

use of a slope parameter. The lineage of the function can be also observed through the

effect of ρ є {0.1,1,10}, although ρ can take any value.

Figure 5.7(a,b,c) – Logistic sigmoid output functions with ρ

As ρ → 0 the function approaches its equivalent step function, approximating a vertical

plane through the input-plane mid point, and becomes increasingly sensitive to changes in

the input-plane. As ρ → ∞, the function stretches out becoming less sensitive to changes

in the input-plane and approximates a horizontal plane through the Output-axis mid point.

x2

x1

sum

x1 x2

sum x1

x2

x2

x1

sum

x1 x2

sum x1

x2

 58

Figure 5.7a and figure 5.7b show all three values of ρ, the original value of 1 is retained

from the previous example is shown by the middle sigmoid. The z-axis decision is shown

in figure 5.7c for (ρ = 0.1), a comparison to figure 5.5c and figure 5.5c shows that a

decreasing value of ρ causes the output function to approximate the threshold output

function.

5.4.2 Taylor Series Functions

The Taylor Series neuron is examined with the same two output functions as the

McCulloch-Pitts neuron. These are; threshold and logistic sigmoid. The piecewise linear

and hyperbolic tangent are shown in Appendix F. The separators will be shown on a 2nd

order and 3rd order Taylor Series neuron. Parameter values will remain the same as before,

except when this places the observable region outside any decision boundary. Then

specific examples will be shown to demonstrate the full flexibility of the Taylor Series

neuron.

The sum values of the neurons are calculated using equation 5.4c for 2nd order and

equation 5.4d for 3rd order. These are compared directly to the previous calculation of

equation 5.3b, 1st order or MP.

In the specific example shown - a 2nd order Taylor Series neuron in equation 5.9 and a 3rd

order Taylor Series neuron in equation 5.10 - the terms in square brackets represent the

additional parameters required for the increase to the current order of power. Equation 5.8

and figures 5.4 which represent the McCulloch-Pitts neuron or a 1st order Taylor Series

neuron, are repeated for comparison purposes.

The value of 0.5 is assigned to w1,1, w2,1, w1,2, w2,2, w1,3, w2,3 and θ except when stated

otherwise. This is done to scale and shape the output function to the relevant axes so that

its operation can be clearly shown.

5.05.05.0 21 +⋅+⋅= xxSum equation 5.8








 ⋅+⋅
+⋅+⋅+=

2

5.05.0
5.05.05.0

2
2

2
1

21

xx
xxSum equation 5.9

 59








 ⋅+⋅
+

⋅+⋅
+⋅+⋅+=

6

5.05.0

2

5.05.0
5.05.05.0

3
2

3
1

2
2

2
1

21

xxxx
xxSum

equation 5.10

Figure 5.4(a,b,c) – The Sum value expressed as a function of inputs

Figure 5.8(a,b,c) – The Sum value of 2nd order Taylor Series neuron

Figure 5.9(a,b,c) – The Sum value of 3rd order Taylor Series neuron

As the Taylor Series neuron increases from a 1st to 3rd order it may immediately be

observed, through figures 5.8(a,b) and 5.9(a,b) that there is now a non-linear summation

function and this takes the form of a contoured-plane in the output-domain.

x2

x1

sum

x1 x2

sum x1

x2

x2

x1

sum

x1 x2

sum x1

x2

x2

x1

sum

x1 x2

sum x1

x2

 60

There does not initially appear to be much variation between the 2nd and 3rd order.

However, if figure 5.8c and figure 5.9c are examined, it may be observed that an

adaptability in dimensionality has occurred with the increase to 3rd order. The contours in

figure 5.8c show that a 2nd order power is all that is required for a non-linear separator;

however, observing the contours shows that there is an apparent symmetrical but non-

uniform (in the input-plane) relationship to the output-domain. So far, all examples have

used identical inputs in the dimensions of the input-domain and this gives rise to the

symmetry being equal in all input-plane dimensions. This is shown more clearly in figures

5.10. The introduction of the 3rd order terms allows an extra variation. The variation in the

input-plane is non-linear; however, it is also non-symmetrical in input-plane dimensions.

It can be surmised that extending the order to 4th and above will extend the variation

between the input-dimensions and the output-plane. What practical use this may have will

depend on the complexity of the input-domain. Any increase in order beyond the

requirements of the input-dimensions will simply increase the number of parameters that

the network has, beyond those required. This will result in reduced training performance

in terms of number of epochs and over-fitting. This is illustrated later in the experimental

section.








 ⋅+⋅
+⋅+⋅+=

2

0.10.1
05.005.05.0

2
2

2
1

21

xx
xxSum equation 5.11

Figure 5.10(a,b,c) – Sum value of 2nd order Taylor Series neuron focusing on decision

region

x2

x1

sum

x1 x2

sum x1

x2

 61

The non-linear symmetry of the input-plane (x1,x2) in the output-domain is clearly shown

in figures 5.10. This is a marked improvement over the linear-plane of the 1st order as it is

also capable of representing this. It is achieved by increasing the co-efficient of the 2nd

order terms; this corresponds to an increase in magnitude of weights as shown in equation

5.11.

The simple extension of the 1st to 2nd order allows output functions similar to the Sigma-Pi

neurons described by Rumelhart et al., [1986] but with a gradient expression and without

the restrictions on network topology and non-linearity. While the extension to 3rd order

gives the additional capabilities of non-symmetry in the 2nd dimension, this is achieved in

the same way as for the 2nd order, with the emphasis on 3rd order terms, shown in figures

5.11 and equation 5.12.








 ⋅+⋅
+

⋅+⋅
+⋅+⋅+=

6

5.15.1

2

05.005.0
05.005.05.0

3
2

3
1

2
2

2
1

21

xxxx
xxSum

equation 5.12

Figure 5.11(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on decision

region

The effect of each order of power can be shown through independently varying the

coefficient, or weight, affecting it. This is first shown in all orders with positive values of

the 1st, 2nd, and 3rd order Taylor Series neurons. Negative values simply invert the decision

surface of the output-axis.

x2

x1

sum

x1 x2

sum x1

x2

 62

Skewing the inputs in the 1st order neuron (McCulloch-Pitts) results in a tilt of the flat

plane towards the input-axis with the lower coefficient, shown in equation F.8 and through

comparison of figures 5.4 and figures F.7. This effect of skewing 1st order inputs is

inherited by the Taylor-Series neurons when the pairs of higher orders coefficient remain

equal. The 2nd order neuron is shown in equation F.9 and by comparison of figures 5.10

and figures F.8. For the 3rd order neuron equation F.9 and a comparison of figures 5.11

and figures F.12 apply.

Higher order terms can be examined by skewing individual orders, or combinations of

higher orders, while fixing the 1st order terms and remaining higher orders. The various

combinations of this are examined in Appendix F for 2nd and 3rd order neurons.

Skewing the 2nd order coefficients on their own causes the decision surface to stretch along

the input-axis with the lower coefficient. This is best visualised by comparing figure 5.10c

and figure F.9c although it is observable in the other relevant figures.

The effects of skewing the 1st or 2nd order terms individually on their own affect different

aspects of the decision surface. This implies an independence of operation. If both the 1st

and 2nd order terms are altered from equation 5.11 to give equation F.9 and equation F.10

and applied simultaneously, they give equation F.11. A comparison of figures F.8, figures

F.9 and figures F.10 shows the independence of the actions of the 1st and 2nd orders.

Figures F.10 shows a direct combination of both effects.

An effect of the results of this independence between the different orders mean that the

decision surface can be altered independently towards what is required. This is without an

interaction between the orders becoming reliant on parameter interaction and therefore

much more difficult to control than independent parameters.

Examining the effects of different input domain values with added 3rd order terms results in

figures F.12 to figures F.24. These show both the independence of the power terms and

the effect of each order on the separator. These are all created by modifying the terms of

equation 5.12 and can be compared to the symmetrical input-domain in figures 5.11.

 63

The above figures, and those in Appendix F, demonstrate the flexibility of the Taylor

Series neuron with respect to its inputs. In each case the variation in the coefficients is

seen to be independent, allowing an element of control of the neuron while being able to

exploit all the variation of the output-domain.

In the previous sections, the polarity of the coefficients has always been positive. The

input values have taken either positive and negative values. What follows are examples of

the coefficients taking different polarity, positive/negative values, for the same values of

inputs.

The combinations of possible values are enormous, so the following are examples of

interesting occurrences to show the flexibility of the error surface. If all values take the

opposite polarity then the error surface is inverse in the output-domain; therefore, any

combinations of values that produce valleys in the output-domain will produce peaks if the

polarities of all values are inverted.

McCulloch-Pitts neuron.

5.05.05.0 21 +⋅−⋅= xxSum equation 5.13

Figure 5.12(a,b,c) – The Sum value expressed as a function of inputs of McCulloch-Pitts

neuron with opposing polarity of coefficients

The sum values shown in equation 5.8 are altered to a negative coefficient for the second

input, to give equation 5.13. A resultant angular change occurs in the orientation of the

output-plane. This is manifested in the decision-surface as a rotation of 90° around the

x2

x1

sum

x1 x2

sum x1

x2

 64

decision-axis as shown in figure 5.14c. This alteration does not express any change to the

ability of the McCulloch-Pitts neuron to be a linear separator. If the other coefficient is

given a negative polarity, then the rotation occurs in the opposite direction. If both are

applied a 180° rotation occurs.

Taylor Series neuron - 2nd order.








 ⋅−⋅
+⋅+⋅+=

2

0.10.1
05.005.05.0

2
2

2
1

21

xx
xxSum equation 5.14

Figure 5.13(a,b,c) – Sum value of 2nd order Taylor Series neuron focusing on the decision

region with opposing polarity of 2nd order coefficients

The 2nd order Taylor Series neuron can partially invert its decision-surface by altering

equations 5.11, 5.12 and F.9 to F.25. These regions are only symmetrical as the opposing

coefficients of equation 5.14 have equal magnitude; the region can stretch and tilt just as in

the previous section. Once separators are applied later in this chapter, the importance of

this specific example is explored.

As before, when different orders of coefficients were skewed with respect to the input-axis,

the polarity of these coefficients can also be altered. The same rules apply, as shown in

figure 5.12. A 1st order swap in polarity causes a rotational effect in the McCulloch-Pitts

neurons. If applied to the 1st orders of a 2nd order or higher Taylor Series neuron, then the

decision-surface undergoes the same rotation. Likewise, the effects of other orders are

independent when applied to neurons of higher orders.

x2

x1

sum

x1 x2

sum x1

x2

 65

Taylor Series neuron - 3rd order.








 ⋅−⋅
+

⋅+⋅
+⋅+⋅+=

6

5.15.1

2

05.005.0
05.005.05.0

3
2

3
1

2
2

2
1

21

xxxx
xxSum

equation 5.15

Figure 5.14(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision

region with opposing polarity of 3rd order coefficients

The 3rd order Taylor Series neuron allows a decision boundary with more gradient changes,

which permits some interesting behaviour. This does not inhibit it from mimicking the

capabilities of the 2nd order neuron - it can utilise any of these and apply its own. Equation

5.15 is modified from equation 5.12 in the same way as before. The figures 5.14 can be

compared to figures 5.11 to demonstrate the decision-surface changes as can figures 5.15

and F.25 to F.27.

x2

x1

sum

x1 x2

sum x1

x2

 66

Taylor Series neuron - mixed orders.








 ⋅+⋅−
+

⋅−⋅
+⋅−⋅+=

6

0.10.1

2

05.05.0
5.05.05.0

3
2

3
1

2
2

2
1

21

xxxx
xxSum

equation 5.16

Figure 5.15(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision

region with opposing polarity of various coefficients

Despite the intricacies of the output-domain, it is when the output functions are applied

that the values become obvious. This is attended to next in this chapter.

Taylor Series neuron – output functions.

The output functions are applied to the 2nd order Taylor Series neuron as expressed in

equation 5.11 and shown in figures 5.10. The following figures 5.16, 5.17 and F.28, F.29

are all performed on the same 2nd order Taylor Series neuron which has parameters that

focus the figures on the decision region.

Figure 5.16(a,b,c) – Threshold output functions

x2

x1

sum

x1 x2

sum x1

x2

x2

x1

sum

x1 x2

sum x1

x2

 67

Figure 5.17(a,b,c) – Logistic sigmoid output functions

The same output functions are now applied to the 3rd order Taylor Series neuron as

expressed in equation 5.12 and shown in figures 5.11. The following figures 5.18, 5.19

and F.30, F.31 are all performed on the same 3rd order Taylor Series neuron which has

parameters that focus the figures on the decision region.

Figure 5.18(a,b,c) – Threshold output functions

Figure 5.19(a,b,c) – Logistic sigmoid output functions

x2

x1

sum

x1 x2

sum x1

x2

x2

x1

sum

x1 x2

sum x1

x2

x2

x1

sum

x1 x2

sum x1

x2

 68

From examining figures 5.16 to figures 5.19 and F.28 to F.31, it appears that there are

major differences between the 2nd and 3rd order Taylor Series neuron. This shows how the

addition of different power terms can dramatically change the operation of the neuron.

The 2nd order output functions have similarities which are in part due to the equal values

used for the coefficients of the input-axis, that give rise to a symmetrical decision-region in

both axes, essentially a circle in the decision-surface. What is obvious from comparing the

figures from each 2nd order and 3rd order set, is that the 3rd order neurons appears to retain

some symmetry, as would be expected given the parameters used; however, it is not the

same in every dimension. This is caused by odd powers operating on negative input

values. Increasing the order of power has a resultant increase in the degrees of freedom the

neuron can operate with.

In a comparison against the McCulloch-Pitts figures 5.5 to figures 5.7 and F.3 to F.6, it

may be seen that the Taylor Series neuron can act as a non-linear separator no matter

which output function is used. Equally importantly, they can enclose or isolate a complete

region of the decision surface and, if there is a continuous function applied to this, it can

return a continuous output, as in the sigmoid functions.

Taylor Series neuron - non-linear and isolating behaviours.

The capabilities that are permitted by the non-linear and isolating behaviours are of

significant importance to ANNs. A set of examples of what these can do is now presented.

The following shows a 2nd order Taylor Series neuron as in equation 5.17 and figures F.26.

The decision-surfaces shown are for the threshold in figures 5.20 and the logistic sigmoid

in figures 5.21. These should be compared with figures 5.16 and 5.17 respectively.








 ⋅+⋅
+⋅+⋅−=

2

0.35.0
15.195.05.0

2
2

2
1

21

xx
xxSum equation 5.17

 69

Figure 5.20(a,b,c) – Threshold output functions

Figure 5.21(a,b,c) – Logistic sigmoid output functions

If the 2nd order Taylor Series neuron has parameters that are allowed to become non-

symmetrical, its output functions can form an oval for threshold functions, as shown in

figures 5.20. It may also form a series of concentric ovals, for continuous or sigmoid

functions, as shown in figures 5.21. A piecewise linear function would show an oval

plateau bounded by a series of concentric oval contours and finishing with a second outer

oval plateau. These ovals can be larger than the decision region and so bisect it in curves

and curved hyper-planes. This is something a McCulloch-Pitts neuron is not capable of

and that a network of such neurons can only approximate.

If another case is examined, that of the 2nd order neuron shown in equation 5.14 and figures

5.13, then an even more important capability can be demonstrated.

x2

x1

sum

x1 x2

sum x1

x2

x2

x1

sum

x1 x2

sum x1

x2

 70

Figure 5.22(a,b,c) – Threshold output functions

Figure 5.23(a,b,c) – Logistic sigmoid output functions

Figure 5.23(d,e) – Rotations of logistic sigmoid output functions

It can be seen in figures 5.22 that a threshold function can separate non-continuous

regions; this shows that a 2nd order Taylor Series neuron can provide a solution to the XOR

(parity-bit) problem presented by Minsky and Papert [1969], which was a significant factor

in the downturn of research in ANNs until backpropagation became widely known in the

1980s as discussed in Chapter 3. The sigmoid functions produce a saddle or butterfly

shape which can be viewed in the various rotations of figures 5.23. For a MLP to perform

this solution to the XOR problem at least three McCulloch-Pitts neurons are required. As

x2

x1

sum

x1 x2

sum x1

x2

x2

x1

sum

x1 x2

sum x1

x2

sum

x1 x2

sum

x1 x2

 71

the MLP can only approximate a curve, it is a further order of dimension out in an attempt

to approximate a curved plane.

A 3rd order Taylor Series neuron can operate with even more flexibility than the 2nd order.

The examples shown are based on the 3rd order neuron of equation 5.16 and figures 5.15.

The decision-surfaces shown are for the threshold in figures 5.24 and the logistic sigmoid

in figures 5.25.

Figure 5.24(a,b,c) – Threshold output functions

Figure 5.25(a,b,c) – Logistic sigmoid output functions

The use of 3rd order terms allow the Taylor Series neuron to isolate a non-symmetrical

region and to divide up the remaining problem-domain. This is shown clearly in figures

5.24 and can be observed in the contours of figures 5.25. Behaviour like this is far beyond

the flexibility of McCulloch-Pitts neurons. However, the more flexible the behaviour, the

harder it is to control and therefore attention must be paid in the training method to this -

and subduing terms such as the factorial divisor are advisable. If the orders of power are

increased, then both the flexibility and difficulty in control will increase also.

x2

x1

sum

x1 x2

sum x1

x2

x2

x1

sum

x1 x2

sum x1

x2

 72

5.4.3 Universality and Robustness Trade-Off

The more universal a neuron becomes, the more functional it becomes. It is then capable

of performing mappings beyond those of other neurons. This appears to be a

straightforward benefit. The drawback is that as this results in a single neuron performing

complex functions, the system becomes dependant on individual neurons. A critical failure

may then occur if one neuron is damaged (as opposed to the gradual degradation of

performance which occurs in networks with many simpler neurons).

An overdependence on single components therefore creates a lack of redundancy which

can lead to a delicately balanced system where good noise tolerance is un-achievable. This

results in a trade off between universality and robustness.

This point does not reduce the requirement for a neuron to be universal, or at least more

universal than the models currently implemented. However it may be that such neuron

should be able to be implemented in instances that allows them to perform at different

levels of functionality.

5.4.4 Summary – Single Neuron Functionality

In a comparison of the Taylor Series neuron against the McCulloch-Pitts neuron, it can be

seen that the Taylor Series neuron is not bound by the linear separator properties of the

McCulloch-Pitts neuron - although it can, if necessary, adopt them. Clearly, the Taylor

Series neuron can adopt curved separators and through this solve problems like the parity

bit problem. The flexibility of the Taylor Series neuron must be controlled with a carefully

constructed training algorithm, as the addition of new orders of powers significantly

changes the error surface by introducing new degrees of freedom. However, all orders of

power operate independently and therefore, if there is an error-minimum-seeking training

method employed, these sudden changes are likely to be avoidable.

The Curse of Dimensionality [Bellman, 1961] associated with higher-order units that

prevents their use with many input parameters or orders of power is controllable and

limited in the Taylor Series neuron. The complexity increases in a Taylor Series neuron is

 73

in order of sums as new orders are added, rather than products. This is due to the lack of

interaction between the inputs, which is not the case in other Polynomial units.

The operation of Taylor Series neurons as part of a practical network is the subject of the

next section.

 74

5.5 Taylor Series ANNs vs. McCulloch-Pitts ANNs

In the previous section, the flexibility of Taylor Series neurons was explored. Their

abilities were examined and contrasted with those of McCulloch-Pitts neurons. This

section now considers networks of such neurons and how they perform against each other.

The networks used in these experiments are presented in two topologies. Each of these is

populated with MP neurons for benchmark testing and then TS neurons for comparison

testing. The topologies are a single-layer network and a two-layer network. When

populated with McCulloch-Pitts neurons these are referred to as a Single-Layer Perceptron

(SLP) and a Multi-Layer Perceptron. When populated with Taylor Series neurons they are

termed as a Single-Layer Taylor Series network (SLT) and a Multi-Layer Taylor Series

network (MLT). All of these networks have an additional layer of input nodes.

The networks implement a standard logistic sigmoid function as shown in equation 5.5.

The performance characteristics of the networks during and after training are compared.

These characteristics include training time, memory capacity, and pattern recognition

ability.

5.5.1 First Comparison

This is a comparison of a SLP and a SLT using the standard Delta Rule training for the

McCulloch-Pitts neurons and a derived Delta Rule for the Taylor Series neurons. There is

no variation in network topology as it is determined by the problem parameters; both

networks have 35 input nodes (one per pattern data unit) and 26 output neurons (one per

input pattern). The patterns presented are shown in the next section.

The purposes of this test are to examine training time of the networks and to assess their

noise tolerance capabilities.

 75

5.5.2 Second Comparison

The second comparison is of a MLP and a MLT using a modified Genetic Algorithm as the

training mechanism. A compact parameter problem is presented to compare network

training time on multiple layers, and test MLP and MLT topology requirements. The

purposes of this test are to examine training time of the multi-layer networks and to

determine the minimum network size.

5.5.3 Third Comparison

The third comparison uses the same MLP and MLT as the previous test but uses a larger

training set to ensure that the networks are capable of expanding their problem domains,

and to quantify any effect of this on network size.

5.6 Comparison Parameters

Three performance parameters are compared. These are: training time to achieve a target

error, minimum network size to achieve the target error (memory capacity) and noise

tolerance.

5.6.1 Training Time

Training times are quantified in terms of epochs. Consideration is also given to the

computational overheads, as different networks may have different lengths of epoch. In

addition to total training time, it is important to observe the error profile during training as

this can reflect on both possible improvements to the training algorithm and on the

performance of the trained network.

In general, a shorter training time is advantageous. However, most practical networks are

fully trained before their operational phase so in most cases only very significantly longer

training times, (to the extent that the network is impractical) are of importance.

 76

5.6.2 Minimum Network Size

The ability of one network to show the same memory capabilities as another with a

reduced network size is important. The smaller network demonstrates superior universality

- the ability to map from input to solution space.

5.6.3 Noise Tolerance

The network’s resistance to noise is a test of its ability to generalise. A network with a

higher noise tolerance is more capable of correctly classifying new or damaged inputs from

the data set.

5.7 Design and Implementation

The networks were tested with two different data sets. A [3x3] grid, related to robot

vision, was used for the MLP vs. MLT comparison. This allowed a simple network to be

set up for a direct comparison of the neuron types. A [7x5] pattern set, see figures 5.26,

was first used to test the noise performance of the neurons in the SLP and SLT. This was

also used on the MLP and MLT to confirm that the performance achieved using the

smaller grid was scalable.

5.7.1 Data Set

The first data set tests the network’s ability to recognise the 26 capital letters of the western

alphabet, figures 5.26a. This is a standard data set, used in the University research group

and many others. Each image is a [7x5] matrix (35 inputs). There are two sets, a binary

{0,1} and a continuous range [0,1]. These values were chosen as they represent the range

of the output function used, the logistic sigmoid . The second data set tests its ability to

recognise patterns on a [3x3] matrix, (9 inputs), see figures 5.26b.

 77

Figure 5.26a(i,ii) – Network training sets – 5x7 grids

Figure 5.26b – Network training set – 3x3 grid

5.7.2 Single-Layer Network Topologies

The network topologies are shown in a general format; the number of input nodes is

dictated by the number of parameters in the training patterns, and the number of output

neurons is dictated by the number of patterns the network is required to classify.

 78

Figure 5.27 – SLP – Single-Layer Perceptron

The single-layer network implementing McCulloch-Pitts neurons shown in figure 5.27 has

a topology determined by the problem parameters as mentioned above.

Figure 5.28 – SLT – Single-Layer Taylor Series network

 79

The single layer implementation using Taylor Series neurons, (figure 5.28), has the same

topology as the SLP. The difference is in the connections between the output neurons and

the input nodes. There are the same number of these however each one may have multiple

weights - one for each order of power that the neuron is implementing. The Taylor Series

neurons and weights are denoted with double borders.

The outputs, targets and errors are utilised by the Delta Rule by Widrow and Hoff [1960],

for the SLP and a derived Delta Rule by this author, that takes the powers into account, for

the SLT. It is not necessary to give a full expansion at this point. Appendix C on the

Backpropagation Algorithm includes the Delta Rule to train the output layer and the

derived Delta Rule for the SLT.

5.7.3 Multi-Layer Network Topologies

Figure 5.29 – MLP – Multi-Layer Perceptron

The multi-layer implementation of the Perceptron using McCulloch-Pitts neurons, see

figure 5.29, retains the same input node and output neuron structure as in the SLP;

 80

however it also has a hidden layer. The structure of the network shown is a standard and

well tested topology.

Figure 5.30 – MLT – Multi-Layer Taylor Series network

The network shown in figure 5.30 represents a multi-layer Taylor Series network. The

Taylor Series neuron operation is the same as in figure 5.61 and is denoted with double

borders.

In the multi-layer networks the hidden layer is placed between the inputs and outputs and

denoted as circles. The number of hidden neurons is not usually determined by exact

methods in neural networks but by trial and error.

Training on all multi-layer networks is via a modified Genetic Algorithm.

 81

5.8 First Experiment : Comparing

 McCulloch-Pitts SLP and Taylor Series SLT – 5x7 test

This experiment tests training times and noise tolerance. The McCulloch-Pitts based

network of figure 5.27 and the Taylor Series based network of figure 5.28 were trained on

the 26 patterns shown in figure 5.26a. Where it assist understanding, larger versions of all

multi-line graphs are supplied in Appendix F.

5.8.1 Training Time

The first set of information that was presented to the networks use the input values from

figure 5.26a(i); all inputs are from the set {0,1}. The output targets belong to the set {0,1}.

The target error was set at 0.125. The error used is the Least Mean Square calculation as

shown in Appendix C on Backpropagation.

Figure 5.31a – Comparison of error vs. epoch for SLP and SLT networks

The performances of the SLP appear similar to the SLT as the order of the Taylor Series is

increased. Only results from 29 epochs onwards and the first 3 orders are shown for

 82

clarity. Higher orders were tested, but these performed little differently from the 3rd order.

This is discussed later in the chapter.

Figure 5.31b – Comparison of error vs. epoch for SLP and SLT networks

epoch ≥ 99

The training performance becomes different at low errors. Due to the initial similarity, this

is not clear from figure 5.31a and so is shown by figure 5.31b. The graph focuses on the

epochs from 99 onwards, where the advantages of the SLT in achieving lower errors can

be seen. The time taken to reach the target error drops significantly from 150 epochs to

116 by adding a 2nd order term and then decreases slightly to 113 by adding higher terms.

 83

Figure 5.31c – Comparison of epoch vs. power for SLP and SLT networks

network targets є {0,1}

The experiment was repeated with a constrained input set of {0.1,0.9}. This both

increased the difficulty in separating the patterns, (as the previous input values of 0 have

no effect on weight calculations or training), and allows the different Taylor Series (orders

of power) non-linear operation. Training time increased to 207, 164 and 161 epochs

respectively. The performance in the experiments is summarised in figure 5.31c. The

order of power of 1 indicates the SLP, orders of 2 or greater indicate the SLT. The solid

line shows the initial data set of {0,1}, the dashed line the data set of {0.1,0.9}. Both

experiments were tested sequentially by increasing the SLT to the 10th order and then

progressively each 10th order to the 100th order and no further improvement was found.

A second set of experiments were then carried out. These involved setting the targets to

{0.1,0.9}. As the previous targets are at the extreme values of the output function, they

were achievable by allowing the network weights to tend to large magnitudes. These

targets require a “finer tuning” of the weights and have correspondingly longer training

times, as shown in figure 5.32.

 84

Figure 5.32 – Comparison of epoch vs. power for SLP and SLT networks

network targets є {0.1,0.9}

For inputs of {0.1,0.9} and {0,1} the training time has significantly increased; however,

the reduction is in line with increasing orders of power and follows the same profile as

before. There is little fluctuation as the orders are increased. This may be due to initial

starting values. Orders were not tested above the 5th power as there seemed little to

investigate.

Finally, the training pattern set of {0,1} values was replaced with the continuous values

[0,1], as shown in figure 5.26a(ii). This increases the problem difficulty and produced an

expected increase in training time, shown in figure 5.33. The targets were returned to

{0,1}.

 85

Figure 5.33 – Comparison of epoch vs. power for SLP and SLT networks

network targets є {0,1}

The additional complexity of the problem increases the network training time beyond that

for the input set of {0.1,0.9}, despite this set allowing some 0 value inputs. Even with the

continuous inputs, the problem is still 3rd order solvable.

 86

5.8.2 Noise Tolerance

Noise was tested at an increasing value from 0% to 24%, where 0% represents the original

patterns and 24% represents the addition of a randomly generated value between 0.00 and

0.24 to every input data unit.

The networks were presented with problems which were arranged into sets as;

• data patterns figure 5.26a(i) inputs {0,1} and targets {0,1}.

• data patterns figure 5.26a(i) inputs {0.1,0.9} and targets {0,1}.

• data patterns figure 5.26a(i) inputs {0,1} and targets {0.1,0.9}.

• data patterns figure 5.26a(ii) inputs [0,1] and targets {0,1}.

Other combinations were also tested to assess if there were any unusual behaviours;

however, these four tests proved sufficient for comparison.

The first pair of tests have similar results, but the alteration of the inputs from {0,1} to

{0.1,0.9} reduces the noise tolerance of the SLP and the SLT for most TS orders.

However, as there is a random element in the noise, anomalies do occur. The average error

level for the SLT has increased as it does for the SLP. These noise effects are shown in

figure 5.33a for the inputs {0,1} and figure 5.33b for the inputs {0.1,0.9}.

 87

Figure 5.33a – Comparison of error vs. noise% for SLP and SLT networks

network inputs є {0,1}

Figure 5.33b – Comparison of error vs. noise% for SLP and SLT networks

network inputs є {0.1,0.9}

 88

The experiments were run multiple times to ensure that typical performances was

represented. The mean value is not shown as this gives a smooth, misleading performance

which is of importance later. In figures 5.33, the highest, worst performance, belongs to

the SLP. The “mess” of other lines belongs to the SLT of orders 2nd to 10th. The

individual lines of the SLT are not as important as their communal location.

It is clear that the addition of orders of power to the units improves the noise tolerance of

the network. The lines represent the total error for all patterns at a particular noise level.

The SLP error can be seen to be clearly greater than the SLT error. The effect of this noise

is not evenly distributed and all orders of SLT and the SLP recognise roughly the same

number of patterns over all noise levels and only misrecognises between 4 and 6 patterns

out of 650 presentations. There is one exception; the SLT of 8th order recognised all

patterns. These occurrences are mainly due to the random element in the noise generation.

When the data set {0.1,0.9} is used, despite the slight rise in error, pattern recognition

improves significantly for the SLT, which reduces to 3 missed recognitions; however, the

SLP rises to 7 missed recognitions. This may be due to the effect of 0 and 1 inputs to the

TS neuron. As the TS neuron implements power terms, these values are non-applicable for

0 inputs and act as a second weight; however, they are still a linear operation for a 1.

The second test shows an unusual effect in SLPs and SLTs. The inputs are returned to

{0,1} and the targets are set to {0.1,0.9}. As previously reported, the training time

increases dramatically as the networks try to fine-tune the weights to these targets. In the

previous reported examples the average error across all added noise for the SLP was in the

region of 0.35 and 0.38 for the two data sets; it now rises to 0.43. For the SLT, the average

across all powers was 0.23 and 0.25 - it now rises to 0.41. This is what would be expected

for over-fitting. However, the error rise is smooth, as shown in figure 5.34.

 89

Figure 5.34 – Comparison of error vs. noise% for SLP and SLT networks

network inputs є {0,1} - targets є {0.1,0.9}

Comparing the smooth behaviour of this test to the erratic behaviour displayed previously

does not show any apparent advantage. If the number of patterns the SLP and the SLT are

able to recognise is tested, the result is that both networks recognise all patterns at all noise

levels. This is excellent for avoiding the effect of noise in networks in general, however, it

is so effective that it does not allow a direct comparison between the SLP and the SLT.

Due to this, the targets for the final test are returned to {0,1}. It should be noted that this

experimental performance contradicts much of the theory researched on polynomial over-

fitting. This is attached as Appendix D.

 90

Figure 5.35 – Comparison of error vs. noise% for SLP and SLT networks

network inputs є [0,1] - targets є {0,1}

The noise profiles of the SLP and the SLT appear similar whether using the data set with

continuous data [0,1] or the constrained data {0,1}. The SLP has an average error of 0.36,

(which is between the previous performances on data sets {0.1,0.9} and {0,1}) while the

SLT has an average of 0.24 (which is between its previous performances on the same

data). As regards the number of patterns recognised, the SLP performs slightly poorly

compared to the SLT, with 10 missed recognitions. The SLT has an average of 4 missed

recognitions.

The continuous data set [0,1] was examined with targets of {0.1,0.9} and showed similar

behaviour to the constrained data set {0,1}. However, there was a rise in average error

values. Although it was possible to generate misrecognitions in the SLT by testing with

noise, these occurred rarely and in general the SLP and SLT recognise all patterns.

 91

5.9 Second Experiment : Comparing

 McCulloch-Pitts MLP and Taylor Series MLT – 3x3 test

The McCulloch-Pitts based network of figure 5.29 and the Taylor Series based network of

figure 5.30 were trained on a 3x3 grid size.

The error, the number of hidden neurons required to achieve satisfactory performance, and

the associated number of training epochs were assessed. This was to confirm that the

performance of the TS neuron can be extended into a MLT. The number of problem

parameters is reduced to simplify the comparison, hence the smaller grid size used. The

only new assessment is in the number of hidden neurons required.

The training method employed is a Genetic Algorithm. Training time is measured in

number of generations required to reach a target error. The size of each individual in the

GA is determined by the number of parameters in the network. This means that a MLT

will require a larger GA than a MLP. The parameters of the GA are shown in figure 5.36.

Parameter Value

String size One floating point number per weight

Population size 100

Crossover Random 10 point max

Mutation rate Uniform random 1%

Mutation Uniform random ±5

Selection Roulette

Figure 5.36 – Genetic Algorithm - parameters

 92

5.9.1 Training Time

The MLP was of a fixed size. When the problem was consistently solvable by the MLP,

the MLT was used and various power orders were applied to the network. The effect of

this against training time is shown in figure 5.37.

Figure 5.37 – Comparison of generations vs. power for MLP and MLT networks

This network was three layered, consisting of 9 inputs and 11 neurons configured for

character recognition, as 5 hidden neurons and 3 output neurons. It can be seen that there

is little point in introducing orders above the 3rd. Although the training epochs decrease,

the computational power required for training increases - in the case of the 3rd order

neuron, by three times. However, there is still a net improvement in training time. These

results were reported by Capanni et al. [2003]

 93

5.9.2 Size of Network

When used in a standard pattern recognition system, the use of the higher order neurons

allow the system to operate with fewer units, as shown in figure 5.38.

Figure 5.38 – Comparison of size vs. power for MLP and MLT networks

It can be seen in both cases that above the 5th order, performance shows little improvement.

Indeed, there may be disadvantages in using too many orders, [Bishop, 1995a]. In this

case, the reduction in number of neurons is offset by the increase in the multiply and

accumulate instructions required for a more complex network. These results were also

reported by Capanni et al. [2003].

 94

5.10 Third Experiment : Comparing

 McCulloch-Pitts MLP and Taylor Series MLT – 5x7 test

The McCulloch-Pitts based network of figure 5.29 and the Taylor Series based network of

figure 5.30 were trained on the 26 patterns shown in figure 5.26a.

This was to confirm that the TS neurons operates as expected as the problem domain

becomes more complicated.

A MLP, shown in figure 5.29, was presented with the pattern in figure 5.26a(i). The

network trained sporadically with 5 hidden layer neurons. This is a well researched

network and it is known that the starting parameters can affect whether it successfully

trains with this size of hidden layer. If the size is increased to 6 neurons the training

becomes consistent.

From the experiments in the previous two sections, it appears that for this data set, using a

TS neuron of 3rd order achieves the maximum benefit in generalisation and training time.

This order of TS neuron is applied to the MLT network shown in figure 5.30 using the data

of figure 5.26a(i). The MLT successfully trains on this larger data set with only 4 hidden

layer neurons. This is a smaller network than was found for the MLP trained by either the

GA or with Backpropagation.

5.11 Summary of Network Comparisons

An examination of Taylor Series networks has produced some interesting results. When

compared against single-layer McCulloch-Pitts networks, using Delta Rule training, the

performance of the two networks follows a similar path of improving error verses epoch

count, as shown in figure 5.31a. Interestingly, increasing the order of the TS neuron has

little or no effect in the early stages of the error profile. The conclusion is that during this

time the network is improving its performance through the use of linear separators and the

higher orders are unable to present an advantage. Once training slows down for the MP

network it becomes progressively harder to solve the problem with linear separators, and

the TS higher orders show an advantage (figures 5.31b and 5.31c). This is why the SLT,

 95

2nd order, only shows an improvement over the SLP at low errors. Following the same

reasoning, the TS 3rd order shows no improvement over the 2nd order until the error is

further reduced and the problem becomes more difficult to solve with a combination of 1st

and 2nd order separators. The reason no improvement is shown by adding higher orders is

that the network does not require them to solve the problem and in this case, the transition

between 3rd and 4th order does not occur.

In the problem presented, increasing the order of power reduces the number of training

epochs required up to 3rd order, when no additional advantage is gained with further

increases, (see figure 5.31c).

If the SLT is implemented sequentially, in software, then there are calculations for each

increase in power and so the processing overload is greater for the higher order power even

given the reduced number of epochs. In a parallel hardware implementation this would not

be the case and the higher orders would have a speed advantage. It may be the case that a

gradient descent learning algorithm, specifically derived for a TS network, could impart an

advantage to the software implementation that reduces the training cost.

Adding TS powers improves noise tolerance, (see figure 5.33a). In the problem presented

there is little gain in increasing the power beyond the 2nd order. The SLT advantage in

noise tolerance occurs in terms of a lower error on all noise levels and a similar pattern

recognition capability to the SLP, as reported. Once the TS neurons are allowed to have

inputs which provide a non-linear function, (see figure 5.33b), the effect of the noise

tolerance results in better pattern recognition compared to the MP neurons SLP, as

reported. This is to be expected as a smooth separator provides a better optimal fit, in data

space, than the piecewise separator produced by a network of first order (perceptron) units.

Once the targets set for the networks were altered as in figure 5.34, it was observed that the

non binary targets resulted in the network better fitting the problem and producing a result

intrinsically more noise tolerant, without validation training. The conclusion is that this

may be due to the fine tuning of weights, giving a more robust network.

When a comparison of neurons is performed using a multi-layer network, the TS neuron

shows the same advantages as outlined above, in training time. Additionally, and

 96

importantly, the TS MLT can recognise the same number of patterns with fewer neurons

than the MP MLP. This shows an increase in universality of the TS neurons over the MP

neurons (it may be argued that this is due to the greater number of weights associated with

TS neurons). Some of this work has shown that with increasing pattern complexity, the TS

neurons retain this advantage over MP neurons. This work was done using a GA and the

development of a more appropriate gradient descent algorithm would allow greater

examination.

In summary, the Taylor Series neuron has demonstrated better generalisation abilities than

the McCulloch-Pitts neuron by consistently performing better in noise tolerance tests.

Additionally, it showed an advantage in the number of training epochs required. There is

the strong suggestion that these advantages can be improved through specific training

algorithm development.

5.12 Time Domain Problems

So far in this thesis discussion has centred around the use of neurons in the spatial domain

(for example the recognition of a stationary pattern). However, such abilities are not

sufficient in many applications. Consider, for example, a neural network which has to

produce an output which controls the legs of a robot. Such a neuron must have outputs

which vary with time (in order, for example, to raise or lower the legs in the correct

sequence). Of course, this is exactly analogous to the neurons that control leg movements

in animals. The neurons so far discussed can only produce such time-varying outputs if

part of a complex network with internal feedback paths. However, as is well known,

biological neurons themselves produce time varying outputs and therefore operate quite

differently from the artificial McCulloch-Pitts-derived models. This has spurred

researchers towards modelling such neurons (often called spiky neurons) as discussed in

the next chapter. Therefore, no thesis on neuron functionality could be complete without a

discussion on time-varying neuron models and this is the subject of the second half of this

thesis (from Chapter 6 onwards). However, before embarking on that route, first consider

whether the power series neurons that have been discussed in this chapter can serve as a

template for time-varying behaviour.

 97

5.12.1 Pulse Generators

To produce time-varying signals a small oscillatory network was employed. The network

used a pair of neurons arranged in a recurrent system, (see figure 5.39). The outputs from

each neuron, at time t, become the inputs to the cross-connected neurons at time t+1. The

TS produces an output based on incrementing the order of expansion terms, based on the

signal received at time tn. This results in a declining effect of signal over time, without the

requirement for a leaky-integration summing function.

Figure 5.39 – Neural Oscillator

The network was given the task of producing outputs that mimicked specific wave-forms.

The first experiments were based on producing simple exponential decay in the unit, (see

figure 5.40). This was chosen as it was simple, not cyclic, useful as a basis for other

functions, and as it was known that the output would initially have to rise to the peak value

and provide a rough approximation of a biological action potential.

 98

Figure 5.40 – Time-Series exponential decay – theoretical output

The units were altered incrementally based on the coefficients of their Taylor Series to give

the best performance of the network, (see figure 5.40), which shows the output from one of

the neurons. The desired exponential decay is shown with the actual best performance

neuron output. The action potential-like performance produces a resultant error in the first

time units that decays rapidly; any further improvement relies on reducing this time period.

The result of this experiment was then applied to the network using a GA, which evolved

to give the solutions in figure 5.41.

 99

Figure 5.41 – Time-Series exponential decay - achieved

The network can produce a reasonable approximation of the desired output (a single

neuron output is shown). However it was unclear as to how variation could be introduced

in to the system to allow different pulses to be generated or different wavelengths to be

produced, other than by training them into the network using a GA. However, such a

network still could not respond to changes in its input signal.

To test the flexibility of the system, various pulses were trained with different target sets.

The network topology and functionality were not altered. The performance was reasonable

in production of triangular, square and sinusoidal waves, all of which are useful in walking

gaits. The sinusoidal pulse is shown in figure 5.42.

 100

Figure 5.42 – Time-Series sinusoidal wave

Despite the reasonable performance, the evolution of such outputs required a considerable

training time and the network was only capable of producing a single output without being

retrained.

5.12.2 Summary of Time Domain Problems

The oscillators produced in these experiments were functional but limited. They lack

convergent control (the ability to respond to inputs and produce different outputs). They

can produce a time-varying signal, however they require to be reset each time they

complete a pulse or as the signal degrades.

In summary, the Taylor Series neuron has proved highly capable in the spatial domain, in

terms of generalisation and universality. Attempting to adapt it to time-domain behaviour

produces interesting effects but the behaviour had an artificial quality and lacked

adaptability. It may be possible to develop this with further work, although how to do this

was not readily apparent.

From the difficulties experienced with time-domain behaviour, a new approach was sought

and this led to the investigation into single-celled intelligence and the development of the

Artificial BioChemical Networks outlined in the next chapter.

 101

5.13 Literature Search of Other Highly Functional Neuron Types

There are many Artificial Neuron types that attempt to increase the unit functionality

through alternative mapping functions. These include: Polynomial Neurons (GMDH),

Product Units, Second-Order Neural Networks, Higher-Order Neural Networks, Sigma-Pi

Units, Functional Link Units and Radial Basis Function Units. Other types exist, but these

are the major units with some similarity in application or function to the approach

presented here.

These methods have similarities to that of the Taylor Series neuron presented in this

chapter. The similarities are mainly in the use of polynomial terms. The differences are

related to interaction between the inputs, which results in the Curse of Dimensionality and

restrictions on connectivity.

Polynomial approaches are based on the work of Ivakhnenko [1968], [1971], who

produced “The Group Method of Data Handling” (GMDH) as a rival to the method of

stochastic approximations. This was before Backpropagation had been introduced as a

method of training multi-layer networks, and caused a brief revival in specific ANN

research just before its decline due to Minsky and Papert [1969]. GMDH uses familiar

ANN terminology and topology but has many differences as its conception pre-dates the

modern expanse of research in ANNs. For example, each GMDH neuron has two inputs

and its output is a six weight quadratic combination.

Since that time the terms “polynomial neural networks” and “GMDH” have become

interchangeable. There have been several commercial applications, such as those of

Barron Associates Inc [2005]. Barron Associates Inc was founded by Roger L. Barron

who with his son Andrew R Barron contributed extensively to research on polynomial

networks.

“Product Units” were introduced by Durbin and Rumelhart [1989]. In a two layer

representation of this network, the hidden layer is usually replaced with product units and

 102

the output layer remains as a summation unit. This can be applied to most problems that

are solvable by Backpropagation trained feed-forward MLPs.

There are size advantages to this, as shown by Engelbrecht and Ismail [1999], who

demonstrate that a quadratic function of the form (ax2 + c) can be produced by a product

unit network of 1 hidden and 1 output unit, (a MLP requires 2 hidden units to do this).

They show this to be an increased “information storage capacity”, as was also

demonstrated with the TS MLT in this chapter. They also note the problems with gradient

descent algorithms, due to the “turbulent error surface”, and suggest algorithms including

Particle Swarm Optimisation, Leapfrog and Genetic Algorithms, as they are global

optimisers. This was found to be the case with the GA trained TS MLT.

Second Order neurons introduced by Giles & Maxwell [1987] allow a simple interaction

between inputs and do not necessarily express a power term. These can be regarded as a

type of polynomial neuron. An illustration of this can be shown by the summation

function y(x) = f(w1.x1 + w2.x2 +w3.x1.x2). The second order unit is not restricted to such

simple operations and can increase in complexity. It is used in applications such as Animat

control by Crabbe and Dyer [2001] and has attracted interest in specific training methods

that could assist other similar neurons, [Milenkovic et al., 1996].

There is a considerable difference in expert opinion on the uses of polynomial networks

compared to other advanced neuron types. For example, Duch and Jankowski [1999]

favour periodic and localised functions over polynomials, “For that reason we are quite

sceptical about the use of orthogonal polynomials as output functions [Qian et al., 1990],

[Chen, 1991], for high dimensional problems.”, citing Barron [1993], amongst others as

evidence. Barron, however is a strong proponent of polynomial networks and has

produced a great deal of work, much through the previously cited Barron Associates Inc.

The universality of polynomials is in far less dispute; Nikolave [2003] shows this, “These

PFNNs are … for their universal approximation abilities according to the Weierstrass

theorem”, citing Cotter [1990] who uses the well known Stone-Weierstrass theorem. This

is supported by Bishop [1996], “that it can approximate any continuous mapping to

arbitrary accuracy provided the number M of hidden units is sufficiently large.”

 103

Other related work has been investigated in the use of Higher Order, Sigma-Pi units which

are explained by Bishop [1995b], who generalises second order units as having interaction

between x1 and x2 but not having the power of either. As well as Functional-link networks

Pao [1989] who makes the distinction between higher order terms in those that represent

joint activations against those that, through functional expansion, increase the

dimensionality.

The Taylor Series neuron presented in this chapter can be used as a single type within a

network and it does not need supporting neuron types. There is no restriction on the

number of inputs each neuron takes in comparison with similar topology networks and this

reduces the design overheads of networks. This allows the TS neuron to be implemented

in a modular style where the inclusion of a unit or connection does not affect the network

as a whole. It also allows object style programming techniques to be more easily used and

results in simpler implementation.

There is no interaction between the inputs of a Taylor Series neuron as this would results in

the Curse of Dimensionality. Increase in orders of power have a summation increase in

weight requirements. This is in part the reason why other neurons types restrict the

number of inputs they take.

Taylor Series neuron coefficients can allow it to perform as a linear McCulloch-Pitts style

neuron if linear separation is required, and implement increasing orders of power as the

problem solution requires.

While some of the other neuron types are suited to global training algorithms, the SLT was

easy to train with a modified Delta Rule Algorithm.

 104

Chapter 6

Artificial BioChemical Networks

6.1 Introduction to the Chapter

This chapter considers the problem of producing time-varying behaviours in artificial

neurons. Following on from the previous work, existing artificial neurons designed for

time-domain behaviour are examined and their disadvantages highlighted. Then biological

sources are re-examined; these lead to a consideration of environmental intelligence as

expressed in single-celled organisms. From this initial inspiration, a new approach is

developed - this is called the Artificial BioChemical Network.

6.2 Spiking Neurons

The various models of spiking neurons are the obvious units to consider when trying to

produce an artificial time-dependent network. These attempt to emulate the signal spike or

action potential which occurs when a biological neuron fires. The original model and the

basis for many subsequent models is the “Hodgkin-Huxley Model” [1952]. The

publication of this model achieved a Noble Prize for its authors. These neurons may be

regarded as the third generation of neuron models. The first generation being the

McCulloch-Pitts threshold logic units, and the second being the models employing a

continuous activation function such as the sigmoid models. Many spiking neuron models

have been developed but there are two frequently implemented models, which have their

own sub-models based on the “formal spiking” or “general spike-response” model

proposed by Gerstner [1994]. They are called the “spike response” model [Gerstner, 1995]

and the “integrate-and-fire” model which incorporates the work of Stein [1967].

6.2.1 Biological Spiking Neurons

The original paper that began neural network research by McCulloch and Pitts [1943] was

an attempt to produce mathematical algorithms to model the activity of neurons. It

assumed that a neuron either fired or did not, and so the output was binary. Later

 105

developments allowed the use of continuous functions, some of which are described in

Chapter 4. Neither method took account of time as part of the encoding of information and

it was due to biological evidence that later spiking models were developed to model time

factors.

It is known that biological neurons fire at various rates, between their maximum and

minimum frequencies, depending on stimulation [Maass, 1997]. The stimulations may be

excitatory or inhibitory.

Figure 6.1 – Biological and Artificial Neurons

adapted from MacLeod [2004]

 106

6.2.2 Hodgkin-Huxley Model

The Hodgkin-Huxley model is the model on which many artificial spiking neurons are

based.

In this model, action potentials result from currents passing through ion channels in the

biological cell membrane. Hodgkin and Huxley performed a series of experiments on the

giant axon of the squid; they succeeded in measuring these currents and described their

dynamics in terms of non-linear ordinary differential equations. Good descriptions are

given by Vreeken [2003] and Gerstner and Kistler [2002a].

Hodgkin and Huxley’s model was based on these experiments. They found that three

different types of ion current were present in the axon; sodium (Na+), potassium (K+) and

chlorine (Cl-). The flow through the sodium and potassium ion channels is voltage-

dependant, while the chlorine leakage current is assigned for all non-specifically described

channels. These are represented as conductance-capacitance circuits in electronic

engineering and simulated as such in software. Figure 6.2 shows a representation of the

ion and circuit diagrams.

Figure 6.2 – Hodgkin-Huxley model

 107

The value Cm is the capacitance of the membrane, the ion channels are represented by K+

and Na+ and the total leakage attributed to all other ions is R. This is a simplified diagram

of a spiking model and is specific to the Hodgkin-Huxley approach. A full explanation is

beyond the requirements of this thesis; however, the basic operation and equations are

included below. In the model the ion flows are derived separately over time and the

channels are expressed as resistance or conductance and capacitance of the circuit. This

model has been pursued, and is in current use as a method of studying biological neurons.

It relies on equating a stimulus (introduced current) with its effect on the various ion flows.

A summary of the operation of the model is as follows;

• An input current I(t) is introduced in to the cell.

This current causes an increase in charge across the capacitor Cm, and can leak out,

through the channels in the cell membrane (represented by the channel resistances).

This gives a capacitor current IC and the current IK, the ion channels’ component. This is

expressed as;

() () ()∑+=
K

KC tItItI equation 6.1

In equation 6.1, ΣIK is the flow over all ion channels. As capacitance is the amount of

charge stored across an electrical potential, equation 6.2.

V

Q
C = equation 6.2

• The charging current IC can now be expressed as follows;

t

V
CI C ∂

∂= equation 6.3

• Combining this with equation 6.1 gives;

() ()tItI
t

V
C

K
K +−=

∂
∂

∑ equation 6.4

The voltage V is the membrane potential. The Hodgkin-Huxley model describes three

types of channel, which are characterised by their conductances (gL, gNa, gK) and reverse

potentials (EL, ENa, EK). The leakage conductance gL is voltage independent, while the

conductance of gNa and gK vary with voltage and time. The conductance and reverse

potential parameters are empirical parameters.

 108

The operation of the model is controlled by gating variables that represent the probability

that a channel is open. The (Na+) channel is controlled by the actions of m and h; the

potassium (K+) channel is controlled by n.

() ())(43
LLKK

K
NaNaK EVgEVngEVhmgI −+−+−=∑ equation 6.5

The function of the gating variables and the model require further calculus; however, it is

not necessary to elaborate further here. A good expansion can be found in Gerstner and

Kistler [2002b].

The gating variables can be expressed so that, for a fixed voltage V, the variable x є

{ n,m,h} approaches the value x0(V) with a time constant tx(V). These are shown in figures

6.3 and 6.4.

Figure 6.3 – Equilibrium function

 109

Figure 6.4 – Time constant

In the Hodgkin-Huxley model, the resting voltage was adjusted to V(0), figure 6.3. If a

sufficiently large current is introduced to the system in a sufficiently short time as I(t),

figure 6.2, then the a spike is produced, as in figure 6.5.

Figure 6.5 – Single spike

reproduced with permission from Gerstner and Kistler, [2002c]

It is the action potential-like spikes produced by these models that give them the name

“spiking neuron”.

It can be seen from these calculations that the computational resources required are large.

This requirement is similar for the alternative spiking models previously mentioned.

Although the signals produced by these models are biologically plausible, they lack

flexibility – they only produce spikes. It is considered that a more flexible approach would

be useful in engineering systems.

 110

Having observed the limitations in operation and the difficulties in implementation of the

present spiking neuron models, it was decided to look for a simpler and more flexible

approach. After considering the alternatives, a review of alternative biological systems

was undertaken. Only one other type of biological intelligence was obvious as a result of

this reassessment and, fortunately, this turned out to lead to both flexible and simple time-

varying models. This is the artificial biochemical approach described below.

6.3 Origins of Biological Intelligence

As presented by Hameroff et al., [1998], the majority of life on Earth is represented by

single celled organisms. During the 3.5 billion years of the pre-Cambrian period, life was

composed of only these organisms. Then, during the Cambrian period the first multi-

cellular life appeared and with it the first neurons.

Amongst the single-celled life forms are a group called the Protoctists, which live in a

variety of different environments including every environment that multi-celled life has

colonised. Those which display animal-like behaviour are usually called Protozoa. The

name literally means “first animals” and they evolved about 2.5 billion years ago.

The arrival of multi-cellular life did not render Protozoa extinct. They persisted and

colonised new biological environments.

6.4 Single Celled Intelligence

Despite their primitive reputation, protozoa display remarkable abilities and behaviours, as

documented by Alberts et al., [1994a]. Some have stinging darts with which they disable

their prey; others have sensory hairs to feel their way about and sense the vibration of prey

approaching and a few even have leg-like appendages for locomotion. They can avoid

light with their sensitive eyespots and actively hunt for their food. Some even build

shelters - shells with which to protect themselves from predators and the environment.

They display many of the traits of intelligence.

 111

As Protozoa have had the longest time of any non-bacterial cellular organism to evolve

[Curtis, 1982] they exhibit an enormous variety of forms and behaviours. They have a

range of relative sizes greater than that between a rabbit and a blue whale, even though

they are largely microscopic, (mainly ranging in size from 10-200µm), [Alberts et al.,

1994b] and include the most complex cells known, [Sleigh, 1989].

Protozoan anatomy can include structures that interact with the external cellular
environment, receiving information through sensory bristles or photoreceptors, and
moving via flagella, cilia and other appendages, absorbing food through mouth-like
parts and reacting with muscle-like contractile bundles. They are so divergent in
motility that this is the main method used to classify them.

All the similar actions performed by multi-cellular life-forms utilising dedicated
types of cells are performed in protozoa via dedicated sub-cellular structures
[Alberts et al., 1994c].

These animals exhibit intelligent behaviour in their reactions to the environment that

increase their survival chances; they do so as a single cell, with no neural network to

communicate. This has a significant influence on the later sections of this thesis.

6.4.1 Natural BioChemical Networks

Protozoa display the behaviours described above by means of interactions between

proteins in their cytoplasm. Proteins are the chemical workhorses of the cell [Alberts et al.,

1994d]. It is the cell proteins that the DNA genetic code specifies, as shown in figure 6.6.

This scheme is so fundamental that it is sometimes referred to as the “Central Dogma” of

biology.

 112

Figure 6.6 – Central Dogma

Proteins are the central part of cell biology, they mediate every biological action. As DNA

cannot directly affect the organism, it may be said that it exhibits devolved action through

the protein, [MacLeod et al., 2002]. Proteins are the biological Universal Machines, of the

cell; they are responsible for all elements of movement, structure, communication and

organisation; chemical activity is also under the control of proteins.

6.5 A Framework for Artificial Cellular Intelligenc e

Proteins perform all the important operations of the cell, from making new and destroying

old material, to sensing and signalling changes in the cell's environment. Proteins achieve

these operations through chemical interactions. All proteins bind to other chemicals; some

synthesise new molecules by joining bound component parts together, others break them

up - such chemically active proteins are called enzymes. Yet others use their ability to

bind by joining to other proteins, changing their behaviour and forming signalling

networks within the cell, as described by Alberts et al., [1994e]. Such a network is best

illustrated by a simplified theoretical example - see figure 6.7.

Figure 6.7 - Simplified signalling pathway

Figure 6.7 is a hypothetical example of a protein network. Molecules in the cell's external

environment “A” bind to receptor proteins “B”, which straddle the cell membrane. This

binding changes the shape of the receptor and causes a protein “C”, which was bound to

the receptor, to disassociate from it. Protein “C” then floats freely in the cell's cytoplasm

 113

and eventually binds with the protein “D” (chemicals in the cytoplasm are buffeted around

by thermo-dynamic forces, which act to mix the constituents). When “C” and “D” are

bound as shown at “E”, they can bind further to a motor protein “F”, a protein which can

change its shape by a large amount, allowing it to move quite large objects. The motor

protein is attached to the cell's outer membrane and this causes the cell to move towards or

away from the molecules “A” by changing its shape [Capanni et al., 2005].

6.6 Artificial BioChemical Networks

Given the system described above and shown in figure 6.7, it is fairly obvious that it is

possible to express such biochemical interactions as a network no different in appearance

from other connectionist networks, (see figure 6.8).

Figure 6.8 - ABN vs. ANN topology

Given this, one might present the signals in such a network as shown in figure 6.8. The lag

time at a node, until the presence of the signalling protein, is “A” and time “B” is

proportional to a node’s activity. Activity may be calculated using previously described

 114

time-series techniques or a simple leaky-integrator technique as reported by Gurney

[1997]. To create an Artificial BioChemical Network, “A”, “B” and the connection

pathway strengths may be set using a Genetic Algorithm.

Figure 6.9 - Basic unit cycle

A GA may also be implemented to choose which of the time periods “A” or “B” is

proportional (or inversely proportional) to the unit activity and which is fixed, as described

previously. This additional evolvable parameter, introduced by MacLeod, C. and Maxwell,

G., [2003] has been used in this thesis to produce pulse width or frequency modulated units

as shown in figure 6.10.

Such flexibility allows for the production of more universal units from this basic type and

it has been suggested that such dynamics may lead to the new perspectives on intelligence

as proposed by MacLeod and Maxwell, [1999].

 115

Figure 6.10 – Pulse modulated units

The units shown in figure 6.10 are an extension of the general behaviour shown in figure

6.9. If appropriate variations on this general behaviour can be produced by ABN units,

then small modules of these should in theory be able to produce any pulse sequence in the

binary time-domain; this would be a time-domain equivalent to the McCulloch-Pitts XOR

or parity-bit problem.

The capabilities of protozoa show clearly that there are creatures that exhibit intelligence

without neural pathways and it is from this observation that the ABN was developed.

This approach takes inspiration from the biochemical protein communications of the

protozoa, however, it does not try to recreate them artificially. This results in a flexible

approach which is far simpler to implement than spiking models. Future development can

build on this initial model to add functionality through additional biochemical activity.

6.7 Literature Review on Cellular Models

There are various other models inspired by intercellular processes in the literature. They

can be roughly divided into two classes, those that attempt to construct an Artificial

 116

Intelligence system by basing themselves on rules governing cellular interactions, and

those that attempt to model cellular biochemistry to better understand the operation of cells

from this viewpoint. The later is frequently used to model the effect of pharmacological

products or study biochemical pathways, as in Almogy et al., [2001], Hodgson et al.,

[2004], and Kiehl and Bonissone [2002].

The “standard Cellular Neural Network” (CNN) devised by Chua and Yang, [1988] at the

University of California at Berkeley was proposed as a practical alternative to Hopfield-

derived recurrent networks. It is a continuous time and state dynamical system, well suited

for analogue circuit implementation. The CNN was designed to be a useful signal

processing paradigm and was implemented in hardware with the advent of Very Large

Scale Integration electronics.

This type of system is a logical development of Cellular Automata (CA), which were

proposed by Stanislas Ulam in the 1940s and is related to Von Neumann's work dealing

with self-reproduction and artificial life. In fact, Ulam suggested this framework to Von

Neumann as a direction for his self-reproduction theories, [Von Neumann and Burks,

1997]. Nowadays, CAs are mainly used to prove theories or model physical processes,

[Dogaru, 2003].

In practical terms, the implementation of CNNs uses equations of non-linear functions

which define the cell function. Several developments have come from this work including

“reaction-diffusion cellular nonlinear networks”, [Chua et al., 1995] and Generalized

Cellular Automata, [Chua et al., 1998], which includes CAs as an extension of the CNN.

The approaches that have approximated cells at a biochemical level have produced some

interesting models and observations.

Elowitz and Leibler, [2000] propose a synthetic oscillatory network of transcriptional

regulators. They base their work on observations that networks of interacting bio-

molecules are responsible for the functions in living cells. However, they point out that

there is poor understanding of any “design principles” underlying how such intracellular

networks function. They propose examining a particular function and constructing a

synthetic network based on it. The interesting part of this work, is that they construct an

oscillating network, that over a period of hours, induces the synthesis of a specific protein.

 117

This produces a noisy “artificial clock” which it is proposed may lead to the engineering of

new cellular behaviours as well as a better understanding of naturally occurring networks.

Thattai and Oudenaarden, [2001] model specific stochastic biochemical reactions using

noise terms in deterministic dynamic equations. They see this as a method by which they

can implement threshold transfer and noise reduction simultaneously with the aim of

mediating signal transfer in both artificial and biological networks.

Gontar [2004], presents Discrete Chaotic Dynamics (DCD) as networks of interacting

agents capable of energy and information exchange. This appears as a biochemical

equivalent to cellular automata and results in pattern generation, which Gontar

characterises as emergent, self-organising behaviour. However;

“The mathematical structures of the difference equations we present do not include

any form of time, neither classical continuous astronomic time, nor the so-called

discrete time that has no clear meaning.”

The principles used are of discrete time and space difference, resulting in artificial life

systems.

The basis of much of the work outlined above is not to produce new AI models, but to

better understand the biochemistry of biological systems,

“ In the spirit of this analysis of the transcriptional regulatory networks, it is

becoming possible to design artificial biological networks to implement desired

functions, paving the way to new therapeutic approaches.”, [Vandenbunder, 2001].

A small amount of work uses biological inspiration for AI models which are mainly of the

CNN type. It is clear however that a consensus exists on the importance of protein

function and that much future research depends on a the ability to model this behaviour.

In comparison with the proposed approach on ABNs, the cellular models that attempt to

replicate cellular biochemistry are not in general concerned with Artificial Intelligence and

therefore do not use the appropriate biochemistry to simulate this. Instead they attempt to

 118

observe how the biochemistry reacts to proposed physical and chemical influences. The

models that attempt to construct an AI system use neighbourhood models, which differ

from previous ANN topologies by only having a multi-dimensional array layout. A variety

of these can be implemented using analogue processing with continuous signal values and

connecting only to neighbouring cells. They have a wide range of applications, in the

same areas as continuous type ANNs. However they retain the rigid topology and

connection as well as having an associated complexity of computation due to the

implementation of each cell.

 119

Chapter 7

Artificial BioChemical Networks - Design and Function

7.1 Introduction to the Chapter

This chapter presents the models of Artificial BioChemical Network units and the

networks developed from them. These networks are based on the recognition and control

tasks of previous research as detailed in Chapter 2.

7.1.1 Design

The artificial biochemical node is the equivalent of an artificial neuron. As described in the

previous chapter, its activation represents the occurrence of a protein or a similar bio-active

chemical.

The ABNs were all trained using a Genetic Algorithm. However, it should be noted that

because a GA relies on randomly generated parameter values with their attendant

quantisation, they have a poorer response to noise than those using a gradient descent

algorithm. To allow a more direct comparison, a Backpropagation Algorithm was

constructed for the pulse-width ABNs.

7.1.2 Experiments

The experiments below are presented in three main sections. They are accompanied by the

implementation of Backpropagation-SLP and a Backpropagation-MLP trained on a simple

pattern recognition problem - this provided a benchmark for comparison with the ABNs.

The first experimental section investigated an ABN sensitive to pulse duration (that is,

pulse width modulated) as described in the previous chapter, this is termed ABNw. The

second section considers an ABN sensitivity to pulse frequency, termed ABNF. The third

section combines the two pulse modulated unit types into a “Universal” pulse modulated

ABN, termed ABNU.

 120

Having demonstrated the network’s pattern recognition abilities, it was then used in robotic

control systems to produce different walking gaits. This, in conjunction with the previous

pattern-recognition experiments, demonstrates the ABNs’ universality. Finally, the

combination of two ABNs, where the pattern recognition outputs of the first are the inputs

to a second, gait-generating network, shows that the networks can be used in a modular

fashion.

7.2 Pulse-Width Modulated ABNs

The signal is propagated in a feed-forward manner in the pulse-width ABNw. This is

chosen as such a network is known to be intrinsically stable.

7.2.1 Time Concepts

The ABNw approach is based on time-dependent behaviour. As such, every node in the

ABNw is examined as if they all operate in a parallel manner. Their state at time (t) is

assessed and then time is incremented to (t+1).

For the purpose of visualising this and implementing the code, a tick is incremented in a

programme loop and is the smallest measure of time in the system. During a tick cycle, the

state of all the neurons is checked and incremented. In practical terms the time periods

used in tests was in the range from 10 to 100 ticks. One fundamental change to the way a

feed-forward ABNw is coded compared to an ANN is that in an ANN the neurons are

assessed starting with the inputs and progressing to the outputs, whereas in an ABNw, the

output nodes are assessed and then incremented and the program works back to the inputs

(as the information flows forward, this allows parallel implementation).

 121

7.2.2 Inputs and Interpretation of Patterns

The signals used in experiments (as inputs, outputs and between neurons) were digital

pulse trains of values 0 and +1 or, in some tests, +1 and -1. The inputs were repeating

waveforms of the type shown below.

Figure 7.1 – Transfer functions – pulse-width

The patterns were left on the inputs until the ABNw output was established.

7.2.3 Nature of the Pulse Dynamics

The pulse consists of an on time and an off time. As noted above, these have fixed

amplitudes. The amplitude during the time period ton is one unit, while during time period

toff it is 0 units.

When a constant pulse-width (PW) is implemented, it follows;

PWtt offon =+ equation 7.1

 122

Figure 7.2 – Pulse-width max and min profiles

The length ton encodes the information the node is sending. Minimum and maximum

values of this set the limits of the pulse, as shown in figure 7.2. The possible

interpretations are shown in pairs on each line. In the first set the entire pulse takes

maximum and minimum values. In the second set the minimal pulse starts with a single ton

tick while the maximum pulse finishes with a single toff tick.

The relationship between the time periods and the pulse width results in an automatic

synchronisation of all nodes in the ABNw that activate at initial time t (because, regardless

of ton, the cycle length ton + toff is constant). This can be of benefit in many situations but is

an obvious dynamic constraint. It is considered later in pulse frequency modulation

whether the nodes should be capable of synchronous or non-synchronous action.

The duration of a pulse is measured in ticks, a pulse being produced at one node at time t

cannot affect any other nodes until it reaches them at a later time. This means that it takes

the pulse a period of time to move from the outputs of one neuron to the inputs of the next

- this may be termed the “Propagation Delay”. In the initial implementation, this delay is a

constant for all distances between the communicating nodes in the ABNw. It is considered

that in a biological system, the variation in this delay may have significant effects. One

such effect, which is well documented, is that sound is localised by time differences

between signals arriving from both ears, see Palmer et al., [2002]. Given this, in future

research, this delay may be a system variable.

ou
tp

ut

time

ou
tp

ut

ou
tp

ut

ou
tp

ut

time

time

time

 123

The implications of the delay are that the leading edge of the pulse has arrived at its

destination before the firing node has finished generating it. In reality this is plausible in a

biochemical interaction within a cell and between cells, however it would not occur in

neurons, because of the time taken for an action potential to propagate down an axon. If

this delay is not implemented, then a signal beginning at the inputs of the ABNw would

instantly propagate to the next layer, and so on from layer to layer, restricting the

development of a pulse stream. The delay is further complicated in that a node completes

its pulse before acting on the signal it has received - the node can receive stimulation

during its pulse cycle and this contributes to the next pulse (due to the effect of the leaky

integrator).

The total time it takes for the effects of an input to be observed at the outputs is called the

“Reflex Time” of the network. This will equal ((propagation delay + PW) x number of

layers). Likewise, once the stimulus is removed there will be an equivalent “Decay Time”

for the stimulation at the ABNw inputs to stop producing a signal at the ABNw outputs.

7.2.4 Integration of Signals by the Node

The pulse duration is a representation of the strength of the weighted input signal to the

node. The first stage is the calculation of node activation. This is the process by which the

Sum (the node’s activation value) is calculated, the Sum is represented as S.

There are two methods to initially consider for the calculation of S at time t. These

incorporate the current weighted input values, the previous value and a leaky integration

(LI) factor alpha (α).

1−⋅+⋅=∑ tnnt SwiS α equation 7.2

()LISwiS tnnt α−+⋅= −∑ 1 equation 7.3

 124

These add a decayed version of the previous to the current activation, therefore they do not

model the biological neuron, which when firing completely depletes its S value. However,

they correspond more to biochemical signal integration. The equations show respectively

a non-linear and a linear decay in S in the absence of further stimulus.

The second stage is the calculation of pulse time. The S values calculated in the previous

section produce an output pulse of amplitude one unit and duration ton. The calculation of

this is the same for all nodes and utilises the logistic-sigmoid function, denoted (σ).

() PWSt ton ⋅= σ equation 7.4a

This S is acted on by a sigmoid function which normalises it. From equation 7.1, the

duration toff can be calculated.

onoff tPWt −= equation 7.4b

7.2.5 Outputs and Interpretation of Pulses

To understand what the outputs are, one has to think in terms of pulse time. First, consider

the inputs to the ABNw. When a pattern is presented to the network inputs at time t, the

input node immediately produces a repeating pulse based on the magnitude of this input.

Any subsequent node performs signal integration, as described in the previous section, and

so functions differently.

() PWSton ⋅= σ equation 7.8

In equation 7.8, S equals the value passed directly to the inputs from the data pattern,

normalised to the range of the amplitude of the outputs which are [0,+1] or [-1,+1].

In figure 7.3, the pulse produced at the input nodes for the maximum and minimum pattern

values is shown.

 125

Figure 7.3 - Arrival of pattern values

In this interpretation there is no accumulation of a S value, the input node reinitialises each

time it completes a pulse-width and reacts to the stimulus level it receives from the data

pattern, preventing signal saturation. This is the only way inputs differ from subsequent

nodes.

7.2.5.1 Synchronisation of Signals

The artificial mechanics in this stage results in synchronisation of the signals. All the input

neurons will fire immediately they are initialised and after each pulse cycle ends. The time

values for the (possibly zero) pulses, as shown in figure 7.2, correspond to the following

equations.

mintton = where []1,0min ∈t equation 7.9a

maxttoff = where []1,max −∈ PWPWt equation 7.9b

The implemented version is shown in figure 7.3.

7.2.5.2 Observation of the Pulse

If a node is observed to begin a pulse of duration PW at tn, this will finish at tn+PW-1. The

observation is broken down as follows; the first measurable increment lasts 1 tick, from t =

0 until t = 1. This means that the last measurable increment of the pulse starts when the

node is assessed at t = 0 + PW - 1. Although this lasts until t = 0 + PW, when the node is

assessed at t = PW the subsequent pulse has started.

 126

Figure 7.4 – Observation of pulse-width

7.2.5.3 Reflex and Decay Time of Network

In connectionist approaches to static-domain problems, the signal effectively propagates

instantly from the inputs to the outputs. In a MLP the signal progresses from one layer to

another in turn; however, there is usually no concept of the signal taking a time period to

progress through or between nodes. In an ABNw, there is a time period between the

application of a pattern to the input nodes, to when it results in an observable change from

the output nodes. This is the previously introduced reflex time of the network. This is of

importance in calculating when the ABNw has relaxed and a stable output has been

produced. Likewise once the pattern has been removed from the input nodes, there is a

delay until this no longer has an effect on the outputs. The delay time only has an effect

between different patterns being presented to the ABNw and has no other relevance here.

 127

7.3 Pulse-Frequency Modulated ABNs

The pulse-frequency ABNF topology was arranged in the same structure as the pulse-width

ABNw. As with the previous network this is intrinsically stable. However, in the case of a

pulse-frequency network the matter is not as straightforward, as the network may become

cyclically-stable with a repeating sequence of output values.

7.3.1 Nature of the Pulse Dynamics

As with the previous case, the pulse consists of an on time and an off time. Equation 7.10

gives the total signal duration; however, it is no longer constant.

PWtt offon =+ equation 7.10

In contrast with the previous case, the length toff encodes the information the node is

sending, see figure 7.5. Again the possible values are arranged in pairs, one on each line.

The calculations that determine the pulse-time set minimum and maximum values which

determine the total pulse cycle time. The relationship between the time periods and the

pulse cycle time results in the nodes of the ABNF being non-synchronised.

 128

Figure 7.5 – Pulse-frequency max and min profiles

The different nature of the ABNF dynamics results in various differences compared to the

ABNw. While a pulse-frequency node signal always begins with a measurable ton, a pulse-

width node can (in theory) have a minimum signal with no measurable ton; however, the

ABNw implemented here used a minimum ton signal of 1 tick. While a pulse-width node

operates with a signal pulse duration, the pulse-frequency node does not. Therefore, it is

necessary to note the ton that starts the pulse, then measure the toff that determines its value

and is completed by the arrival of the next ton.

As in the previous ABNw, it takes the pulse a period of time to move from the outputs of

one node to the inputs of the next, the propagation delay. Again, the total time it takes for

the effects of an input to reach the outputs of the ABNF is termed the reflex time.

 129

7.3.2 Calculation of Pulse Time

This is the first significant difference from the pulse-width node. As before, the

calculation is the same for all nodes. The start of a frequency pulse is signalled by an

output pulse of amplitude 1 and duration 1 tick, this is still called ton. The sum values S

now produce an output pulse of amplitude 0 and duration toff.

1=ont equation 7.11a

The sum S is acted on by a sigmoid function σ which is normalised to the duration of the

pulse to allow a constant pulse cycle time. From equation 7.10, the duration PF can be

calculated.

() max

1

PFS
t

t
off ⋅

=
σ

 equation 7.11b

With pulse-width nodes, limits were set by having a fixed pulse cycle time; in contrast,

with the pulse-frequency nodes, the maximum duration is set by toff.

The input nodes produce an equivalent continuous pulse, a zero pulse is used which has the

following values;

1=ont equation 7.12a

1max −= PFtoff equation 7.12b

This maximum is calculated to a number of ticks. The input neuron which presents this

value cannot re-fire until PF is completed.

 130

7.3.3 Observation of the Pulse

In the previous case, an ABNw, all outputs completed simultaneously. With pulse-

frequency nodes they are independent. The outputs are observed until all have relaxed, but

these must be assessed at each tick, not over each complete pulse-width cycle.

When a pulse-frequency node begins a pulse of duration 10 ticks (PF10) at t = n, then this

observation completes at tn+PF-1. In this case, this is t = 10. The second pulse begins; in

this example it is of duration PF3 and completes at t = 13, (see figure 7.6).

Figure 7.6 – Observation of pulse-frequency

With no constant cycle time, the ABNF cannot be assumed to be synchronised and a count

of the pulses has to be made.

7.3.4 Relaxation

The network does not relax in the same manner as the pulse-width network. The network

instead can either produce a constant repeating pulse or a wave-train that cyclically repeats.

The result of this behaviour is that each output node can relax at a different time and each

pulse in the cycle can take a different number of ticks. In comparison to other nodes there

may be a different number of such pulses in such a cycle and the starting tick of this may

be different for every output node.

 131

7.4 Universal-Pulse Modulated ABNs

With the implementation of an ABNU, there is a universality and robustness trade-off as

was previously explained in Chapter 5.

7.41 Production of Locomotive Gaits

A good example of a control signal is that which encodes a locomotive gait in a mobile

legged robot. This will be used to demonstrate the waveform producing capabilities of the

ABNU. Both McMinn [2002] and Muthuraman [2005] produced locomotive gaits for

legged robots, however they produced only the gait profile; that is the signal controlled the

timing of the limbs and the duration of each stride but it did not encode the speed of limb

movement.

To produce a walking gait there are three factors to consider. Firstly, each limb must

receive a separate signal that is in the correct phase with the other limbs. Secondly, the

signal each limb receives must be for the correct duration. Thirdly, each limb must receive

a signal which indicates how fast it is to move.

Receiving signals in the correct phase is a feature of the ABNU. To receive them for the

correct length of time, a variable pulse-width is biologically plausible and can be used for

stride duration. This leaves the third requirement, encoding speed.

Encoding amplitude within the pulse-width could accommodate speed, but as this is not

biologically plausible it was not attempted here (although the further work, Chapter 9,

gives more detail). It is more useful to regard the stride as a construction of smaller units

rather than a single unit attempting to carry more than one type of information. Therefore,

a combination of pulse-width to encode stride duration and pulse-frequency to encode limb

speed should suffice for a complete control signal for a locomotive gait; these are shown in

figure 7.7. The specific phase will be controlled by the ABNU.

 132

Figure 7.7 – Walking and running biped pulse

The importance of being able to combine pulse types is shown above. The combination of

pulse-width and pulse-frequency ABN nodes can produce different pulses to act as gait

generators. Any combination can use McCulloch-Pitts style nodes, which an ABN node

can simulate with the appropriate leaky integration parameters. The above diagram can be

expanded to other gait profiles or limb numbers. In the cases shown, the input data must

be produced by an ABN module, while the gaits can be produced by a variety of

topologies.

left limb

left limb

right limb

right limb

 133

7.42 Pulse Profiles

Each pulse-width and pulse-frequency waveform consists of several phases, which have

been shown in the previous diagrams. Let us now consider what is required of a universal

pulse.

Figure 7.8 – Pulse profiles for universal pulses

The pulse can be broken down into different periods as shown in figure 7.8. These consist

of a period “a” before the signal arrives (this, in biological terms, can be viewed as the

presence of an inhibitory protein, but is more likely to simply be the absence of a protein).

In the diagram, this is followed by the period “b” in which a signal is present. Then

follows a period “c” which is the phase following the active phase during which the node

does not produce any active signal.

From the two profiles shown it is clear that phase “a” may simple be the phase “c” from

the previous pulse.

Given that only the periods {a,b} are considered and the period d = a + b, then what is to

be determined is which of these periods are determined by the function of the node. Only

one of these can be controlled by the ABN nodes created in this thesis, future work,

Chapter 9, considers other cases. The activation of the node is a calculated variable and

this through an output function determines the duration of one of the periods.

 134

In the case of “a” the pulse width node previously discussed, period “d” is a constant,

period “b” has a duration determined by the stimulation of the node and has output

amplitude of 1, and period “a” is calculated as (d - b) and has output of 0.

In the case of “a” the pulse frequency node previously discussed, period “b” has fixed

duration of 1 and has output amplitude of 1, period “a” is determined by the stimulation of

the node and has output of 0, and period “d” is calculated as (a + b). In the computation of

this, a maximum value was set for period “d” and was used in determining period “a”.

There are two variations allowed for by the universal ABN, as follows: Firstly, when

period “d” is a constant or has a maximum value, this is now an evolvable attribute of the

node. Secondly, the pulses always begin with a leading 1 followed by a 0, and the node

may evolve to produce a leading 0 followed by a 1.

There are other variations to pulse profiles which may be considered, however these

require more than one degree of freedom to be implemented in the outputs of the node (not

currently practical) or produce no practical benefit. The pulse types presented above are

sufficient to encode the walking gaits as intended.

 135

Chapter 8

Artificial BioChemical Networks - Experiments and

Results

8.1 Introduction to the Chapter

This chapter presents the implementations of the Artificial BioChemical Networks with

tasks in pattern recognition and control and compares performance against specific Multi-

Layer Perceptrons. Each type of ABN is shown in turn, with its associated experiments.

Finally, these two tasks are combined into a modular system for robotic vision and

locomotion.

8.1.1 Credibility of Software

As the purpose of this chapter is to show the validity of new connectionism methods, only

simple tasks are performed. All patterns and control signals are recognised or produced in

response to an input set of four continuous parameters. These are represented using a 2x2

grid. To ensure credibility, these experiments were independently replicated. William

Clayton of Olin College was asked to validate the theory based on a requirements

description of the ABN. He did this using a much larger pattern set which consisted of a

5x5 grid. Equivalent performance to the systems presented in this chapter was reported

and this is included in Appendix A as a published paper.

 136

8.2 Pulse-Width Modulated ABNw – Trained using a GA

The first experiment set out to produce an ABN that was pulse-width modulated and

trained by a Genetic Algorithm (denoted ABNw-GA) for pattern recognition. The initial

setup consisted of four patterns with associated targets.

8.2.1 Program Implementation and Interface

The experiments were implemented in C++. However, C++ does not provide a good

graphical capability. Therefore, the programme’s progress was displayed through

command windows and by examining results in a text editor and a spreadsheet. Each

programme activation created separate “event” files. Once the ABNw was performing

correctly, a C++ generated graphical interface was constructed.

This graphical interface consists of a tag structure using Dynamic HyperText Markup

Language (DHTML) and follows from rules in an Interface Markup Language (IML). An

IML separates data from function and presentation so that these components can be built

up into a modular structure. Figure 8.1 shows the interface displaying the first successful

event.

 137

Figure 8.1 – Graphical Interface for ABNw-GA - using IML

The design is robust and efficient, so as not to distract from the research by attempting to

produce a higher quality GUI. Colour variations were implemented to display information

which may not be obvious in non-colour figures, therefore relevant incidents are verbally

explained.

 138

8.2.2 Successful ABNw – Trained using a GA - Success

The following figures 8.3 shows the results of the first successful event. Firstly, figure

8.3a shows the resolved ABNw output pulse for the first pattern, the remaining patterns are

included in Appendix G as figures G.1 to G.3. Secondly, figure 8.3b gives the individual

ticks that are the basis for the pulses of figure 8.3a; in this event maximum pulse duration

was set to 10 ticks, figures G.4 to G.6 show the ticks for the remaining patterns. Thirdly,

figures 8.3c(i,ii) show the GA population fitness and the fittest individual. Finally, figure

8.3d shows the evolved signal-pathway weights, rescaling the smaller values for the output

layer and comparing them to the original signal-pathway values.

The GA parameters used were as follows:

Parameter Value

String size One floating point number per signal-pathway

Population size 10

Crossover Random 50% parent choice

Mutation rate Uniform random 1%

Mutation Uniform random ±(original range)

Selection Roulette

Figure 8.2 – Genetic Algorithm - parameters

 139

Figure 8.3a – ABNw-GA output pulse – pattern 0

Figure 8.3b – ABNw-GA output ticks – pattern 0

 140

Figure 8.3c(i) – ABNw-GA population fitness

Figure 8.3c(ii) – ABNw-GA fittest individual

Figure 8.3d – ABNw-GA signal-pathway strengths

 141

It is shown in figures 8.3a and G.1 to G.3 that the first pulse of all nodes for all patterns is a

0.5 output. This represents the node output immediately on initialisation. The following

0.0 output is due to the resolution of the evolved signal-pathway parameters; hidden node

outputs (with an initialisation value of 0.5). This is a chance occurrence, based on the

signal-pathways and is different in later events.

Recognition time for pattern 2 is four pulses, the other patterns require three. An

additional pulse is generated for all node outputs to evaluate ABNw relaxation.

Overall the ABNw error (all nodes, all patterns), designated eABN, is 0.0 (the target was set

at 0.5). The nature of GA training can cause sudden individual improvements as indicated

in figures 8.3c. In other iterations of the experiment, the GA produced an eABN between 0

and 0.5.

Figures 8.3b and G.4 to G.6 show the ticks that construct each pulse. In this event most

patterns are rapidly recognised, with the exception of pattern 2 (figure G.5), which takes

slightly longer. This may be a result of over-training and is examined later in this chapter.

The GA takes 3262 generations to resolve, however most of these do not affect the fittest

individual, as shown in figures 8.3c. Due to the random nature of GA training there is

variation in this, and acceptable solutions are found in under 200 generations.

There are major differences in signal-pathway strengths, (see figure 8.3d). Hidden values

have a range of 117, outputs have a range of 26. These ranges vary over various events -

however hidden strengths always have a greater range than outputs.

Once successful, this experiment was repeated 50 times to validate the results and examine

specific functionality regarding pulse-duration and relaxation behaviour.

 142

8.2.3 ABNw – Trained using a GA - Relaxation Time

Over ten events the maximum number of pulses taken for a single pattern-node to relax

was 7, while the average (mean) of all pattern-nodes was 3.48125. This includes the

additional conformation pulse (on a basis of two identical pulses to indicate ABNw

relaxation). As expected, the node with a pulse-target of 1 usually has a longer relaxation

time than those with a pulse-target of 0.

Most events show a pulse value increasing or decreasing on each subsequent pulse towards

the target. Some exceptions are shown in figures 8.4.

Figure 8.4a – ABNw-GA output pulse – indirect target acquisition – pattern 2

Figures 8.4a shows outputs 1 and 2 for pattern 2. Output 1 rises to a maximum value of 1

before dropping to its target of 0. This results in a delay in the relaxation of the ABNw,

shown by the triple relaxation-pulse of output 2. Using the two pulse rule for relaxation

would have produced an error on output 1 if output 2 had not caused the next pulse to be

generated. While this shows a possible problem with only taking two pulses to show

relaxation, this technique is designed for a human to extract information out of the ABNw,

not as a component part of its operation. It also indicates a more dynamic nature than is

initially apparent, as shown in figure 8.5.

 143

Figure 8.5a – ABNw-GA output pulse – indirect target acquisition – pattern 2

8.2.4 ABNw – Trained using a GA - Minimum Error Achieved

The majority of events achieved an error of 0, despite a target error of 0.5. The nature of

the ABNw results in an error increment proportional to maximum pulse-duration. Figure

8.5a displays an error of 0.1 for output 1.

Similar to ANN error, total error (eABN) is the sum of pattern errors (ep) which are the sum

of node errors (en). The node errors are calculated (target – output). The values they can

take are increments of (1 / pulse-width), the total number of increments is (C), (see

equations 8.1). An LMS error is not required due to quantisation. In the cases when an

error remained, it was due to a single node and pattern.

PW

C
en = RC ∈ ticksPWC ≤ equation 8.1a

∑= np ee equation 8.1b

∑= pABN ee equation 8.1c

 144

Figure 8.6a – ABNw-GA output pulse –residual node error – pattern 0

ABNw behaviour is not straightforward and has been shown not to be simple or

unidirectional in changes in output values. In figure 8.6a, it can also be seen that the target

of a node can be achieved and then lost if another node forces it to continue pulsing. In

this example the relaxation time associated with node 0 causes the node 2 error. It is

possible that this is a result of the stop criterion of the GA and if the stop criterion was

altered, this type of error may not occur. This was not serious enough to investigate in

detail at this stage, but may merit attention in future work.

8.2.5 ABNw – Trained using a GA - Training Time

The training time (in generations) which produced an acceptable solution (eABN < 0.5)

varied greatly. It ranged from 53 to 3263 and averaged (mean) 553. Whether an eABN of 0

was achieved bore little relation to the training time. The system displayed a tendency to

achieve a low population average (mean) error; this fluctuated, with little change to the

fittest individual, then a sudden rapid improvement to that individual. This is presumably a

result of key values (in specific signal-pathways) evolving, this behaviour is shown in

figure 8.7d.

 145

Figure 8.7d – ABNw-GA population fitness – error vs. generation.

8.2.6 ABNw – Trained using a GA - Signal-Pathway Strength

The hidden signal-pathways’ range always exceeded that of the output signal-pathways.

No consistency could be found in the ratio of hidden to output values. This shows that

there are a great number of possible solutions to the problem presented. The average

(mean) range for the hidden signal-pathways was 123 (-60 to +63) while for the outputs a

range of 37.7 (-27.1 to 10.6) was evolved.

8.2.7 ABNw – Trained using a GA - Noise Tolerance

The performance of the evolved ABNw-GAs were tested with noise to assess their

generalisation ability. The type of noise used was proportional and exact as explained

below.

Proportional and exact noise was defined as damaging every data unit by the same

proportion of the possible range that unit can take, rather than a random value. For

example, a pattern with 5% noise would have a data unit showing a value of 0.95 instead

of 1.0 and a data unit of 0.05 instead of 0.0. If this is increased to 10%, the values would

become {0.9,0.1}.

This type of noise is used as different data units have different importance in the ABNs’

ability to recognise a pattern. If, for example, 10% random noise is applied to patterns this

may result in not affecting these data units and gives the network an appearance of noise

tolerance. Then if 5% random noise is applied and some critical data units are damaged,

the ABN cannot recognise the same pattern and so the comparison of noise tolerance

becomes redundant. Therefore noise proportionality and exactness allows a strict

 146

comparison of noise levels by avoiding different loading of critical and non critical data

units.

Examine the following diagram. The undamaged T and I are shown at the left and right.

Beside each is a damaged version of itself, but is the central pattern a T or an I?

Figure 8.8 - Progressive damage to patterns

8.2.8 ABNw – Trained using a GA - Results of Noise Tolerance

Like many experiments in this field, there is the potential to generate enormous quantities

of information, so the reporting is restricted to the important information from several new

events (only those where a specific % of noise had an effect on performance).

The first event (successful iteration of the program) examined noise from 0% to 50% and

reported noise at 0% (undamaged) then 45%, 46% and 50% (all data units identical).

The ABNw-GA showed very good noise tolerance. As the noise was increased (1% at a

time) to 45%, all patterns were still recognised and there was no increase in eABN (which

remained at 0.1). In practical terms, the ABNw-GA recognised all patterns and remained

confident in its outputs. At 50% noise all data units are identical, with values of 0.5

(effectively 100% damage). Therefore, a complete immunity to 90% damage is very good

performance.

When the noise is increased to 46% there is a critical failure, and eABN jumps to 6.0 (out of

a maximum 16.0). The effect of this is that only one pattern is recognised (this is

accidental, as at 50% noise the pattern remains recognised and is the default network

output).

 147

Critical failure is extremely poor in engineering terms as there is no warning of the

system’s performance degrading. A gradual degradation is a strength of connectionist

approaches. Figure 8.9a show the comparison between the 45% and 46% noise for pattern

0. Figures G7 to G9 show the comparison for the remaining patterns.

Figure 8.9a – ABNw-GA output pulse - noise 45%,46% – pattern 0

The patterns for 45% noise show how little information the ABNw-GA requires to

recognise them. Unfortunately there is no indication that failure is imminent and occurs at

46%.

A second event (complete implementation of the ABN) reported an eABN of 0.1 for noise of

0%. Noise tolerance remains unchanged until 15%, where the ABNw-GA fails on pattern

0, this shown in Appendix G, figure G.10.

Noise is increased, at 25% pattern 0 is misrecognised as pattern 2, and at 26% noise pattern

3 is miss-recognised as pattern 1; these are shown in figures G.11. Once the noise is

 148

increased to 36% pattern 3 changes to be misrecognised as pattern 2. Once noise reaches

46%, there is complete failure and all patterns are identified as pattern 2. The result of this

is that the ABNw-GA is still undergoing a critical failure; however it affects patterns

differently.

A third event is described to give an example of over-fitting. The previous two events took

646 and 1291 generations respectively to achieve an error of 0.1. This event took 2680

generations to achieve an error of 0. Once the noise was raised to 5%, there was a failure

to recognise pattern 1, (see figure G.12).

In ANNs, overtraining has a detrimental effect on noise tolerance. It appears that the

ABNw-GA suffers similarly. The work on McCulloch-Pitts and Taylor Series networks in

Chapter 5, examined overtraining and showed that amongst the affecting factors is training

time.

An examination of ABNw-GA parameters’ tolerance to noise was therefore undertaken,

and showed that the output function through the parameter ρ - had no effect; the variable of

leaky integration α –also showed no effect; finally the signal quantisation was examined -

once more no improvement was found.

The only difference between the ABNw-GAs which showed different noise tolerance was

their signal-pathways. Therefore the problem must be associated with these parameter

values. This leads to the next experiments where an ABNw was trained with a derived

Backpropagation Algorithm and compared against a similar ANN. This training was

chosen as the GA is a global search algorithm and can find local minima (which may be

very different solutions to the same problem), while the BP is a gradient descent algorithm

that seeks the globally minimum solution.

 149

8.3 Pulse-width modulated ABNw – Trained with BP

The pulse-width modulated ABN has been shown to work well in pattern recognition tasks.

The main remaining problem is its critical failure in some or all patterns when the noise

reaches a high enough level. A specifically derived Backpropagation Algorithm would

allow an examination of noise tolerance in a well documented environment and a

comparison against an equivalent ANN.

This next section presents the problems overcome in producing such an algorithm and the

algorithm used. The abilities of an ABNw, trained with such an algorithm, are then given.

8.3.1 Problems with ABNw Backpropagation

The two major problems with ABNw Backpropagation training concern quantisation and

credit assignment. In addition there is a minor performance restriction due to quantisation.

The first problem is related to quantisation that result in a high error, eABN. When the

algorithm was implemented, the ABNw appeared to train with a reducing eABN in a manner

which resembled gradient descent and indicated an attempt to fit the problem; however, the

initial eABN range of (8,12) reduces to a range of (2,4) and shows no further improvement.

From the previous section on ABNw-GA it is known that this is not the lower limit.

Through code and output analysis at each stage the problem was identified.

In Appendix C, the equations for backpropagation are given. These can be applied to

ABNw nodes in an appropriate manner. Equation 8.2 gives the standard delta calculation

for an output node “α”, designated δα. This factor is related to the node error en and node

target and node output, and allows appropriate changes in the connecting signal-pathways.

() ()αααααδ outettoutout −⋅−⋅= arg1 equation 8.2

 150

A similar term is required for the hidden node, in this case node “A” and this is given as

equation 8.3. This is the credit assignment portion of backpropagation.

() ()ββαα δδδ AAAAA wwoutout ⋅+⋅⋅−⋅= 1 equation 8.3

The problem noted as above regards the occurrence of 0 or 1 values. With the use of a

sigmoid type function, (equation 8.4a), these are unlikely to occur and will only do so if

the magnitude of the sum value gets so big that it has to be rounded to 0 or 1.

()Sume
Output −+

=
1

1
 equation 8.4a









−−= 1

1
ln

Output
Sum equation 8.4b

It can be seen from equations 8.2 and 8.3 that if the outputs outα or outA ever produce a 0

or 1 value, then the associated delta term δα or δA will also be 0 which results in a 0 change

in signal-pathway strengths. This usually occurs when the target has been achieved;

however, there are two situations that can cause a delta of 0 when training has not

completed.

Theoretically, a delta of 0 can occur in an ANN if a maximum en is produced; this is

usually extremely unlikely and should be resolved when different patterns are presented. If

it does occur, it may be due to computational rounding. In an ABNw-BP, maximum en

may be caused by quantisation. If this occurs, then eABN will not improve at all, but as it is

clear that it can with the GA, this can be ruled out.

A delta of 0 may also occur in the opposite situation, that is a minimum en falsely

occurring. In this case, the eABN will reduce prematurely and suddenly stop. This is the

problem that actually presented itself in ABNw-BP training. In an ANN, this will only

occur if the sigmoid value is rounded due to computational requirements. In an ABNw, it

may be caused by quantisation.

 151

The solution in an ANN is to use sufficient decimal places. An ABNw operates using a

different method; increasing accuracy can be achieved by increasing the number of ticks

that the pulse-width contains. So a pulse-width of 10 ticks can only produce values of one

decimal place. Obviously relying on large pulse-durations increases computational

complexity in the ABNw.

This hypothesis was tested by implementing a pulse-width of 100 ticks. The targets were

altered to {0.1,0.9}, (replacing {0,1}). The first attempt immediately produced a

successful result in 156 epochs. However, subsequent events were not always successful

and the ABNw-BP became stuck at unacceptable errors as before. This improvement

showed that the solution may have been found but was still suffering from the quantisation

effect. As this problem was solved with an ABNw-GA, of pulse-width 10 ticks and targets

{0,1}, these observations do not indicate that a viable solution has been found. When

tested on noise, the ABNw-BP showed no difference in performance to the ABNw-GA.

Given the improvement and conflicts explained above, a variety of pulse profiles were

assessed. As each was examined the sigmoid output was analysed graphically, (figure

5.7). This showed (due to quantisation) that the outputs {0,1} occur when the sum value

exceeds ±2.197 for a pulse-width of 10 ticks and when the sum exceeds ±4.596 for 100

ticks, (equation 8.4b). As the Sum in an ABN is an accumulation value, this is a very

small range of operation.

A solution was attempted that took into account the slope parameter ρ, (equation 8.5).

From figure 5.17 this can be seen to stretch the range of Sum S, over which an output

between (0,1) is produced. The ABNw-BP with a PW of 10 ticks and targets {0,1} trained

successfully (once the second problem was also solved).

() ρ/1

1
Sume

Output −+
= equation 8.5

As the quantisation effect of ticks causes a rounding to 1/PW decimal places, this resultes

in 0 delta values occurring when the node output comes within 1/PW of the target or (1 -

target) for targets {0,1}. The use of ρ allows the deltas to take smaller values.

 152

Various values for ρ were examined, both relating to pulse width and taking a constant

value. As a mathematical rule, ρ should be less than the pulse-width, to allow the full

range of outputs to be produced. For practical purposes, a value of 2.5 to 10 proved

successful.

The second problem with ABNw-BP is related to problems with credit assignment. The

credit assignment problem was first identified by Samuel [1951] and described as a

fundamental problem by Minsky [1961], to which a specific theoretical solution was

presented by Minsky and Papert [1969]. The training algorithm for this specific solution

was given by Rumelhart, Hinton and Williams, [1986], (see Appendix C). What must be

basically considered is;

In a multi-layer network, how much does each hidden unit contribute to the error of

each output unit (en) that it connects to.

In the system presented and solved by Rumelhart et al., [1986], the signal and error were in

the static domain; in an ABNw these are both multi-layer and multi-dimensional in the

time-domain.

In a MLP-BP, the pattern presented instantaneously produces the outputs and errors. All

the information required for each neuron is known, as there is a single (sum, output) pair to

assess. In an ABNw, the pulse from a node evaluated at time tn is the result of the inputs

accumulated over a time-period tn-m. Due to the effect of quantisation and leaky-

integration, as m increases the effect of the inputs at tn-m decreases. Therefore, the solution

considered the inputs from tn-1. (This is not the complete solution, but is sufficient at this

stage. This point is also addressed in further work).

 153

The solution is as follows:

1. The ABN has relaxed at time tn, when each output node has produced a pulsen, which is

the same as the previous pulsen-1. These values are used to calculate the relevant output

delta values.

2. The error share for the hidden nodes is calculated as the sum of the deltas for the output

nodes multiplied by their signal-pathway strengths (as in standard BP).

3. Then the delta values for the hidden nodes are calculated. However, the current output

from the hidden nodes, pulsen, has not yet reached the output nodes. It is the previous

pulsen-1 that must be used (this is the difference for the time-domain).

4. The output signal-pathways can be adjusted using the output deltas and the outputs

from the hidden layer at time tn-1.

5. The hidden signal-pathways are adjusted in the same manner as the outputs; however,

this depends on what type of unit connects to them. If there is a previous hidden layer,

then the pulsen-2 would be needed, if they are input nodes (which send a repeating

pulse) then any pulse values can be used. This latter option is far easier to implement.

 154

8.3.2 The ABNw Backpropagation Algorithm

The equations for the ABNw-BP algorithm are presented; they have the same layer

relationship as the equations given in Appendix C, and relate to an ABNw with equivalent

topology. This assumes that ABNw-BP nodes use a logistic sigmoid function, as

implemented in this thesis.

First, the deltas for the output nodes are calculated.

() ())()()(arg1 nnn outettoutout αααααδ −⋅−⋅= equation 8.6a

() ())()()(arg1 nnn outettoutout βαβββδ −⋅−⋅= equation 8.6b

These are used to calculate the new signal-pathway strengths s+.

)1(−
+ ⋅⋅+= nAAA outss ααα δη equation 8.7a

)1(−
+ ⋅⋅+= nBB outss Bααα δη equation 8.7b

)1(−
+ ⋅⋅+= nCCC outss ααα δη equation 8.7c

)1(−
+ ⋅⋅+= nAAA outss βββ δη equation 8.7d

)1(−
+ ⋅⋅+= nBB outss Bβββ δη equation 8.7e

)1(−
+ ⋅⋅+= nCCC outss βββ δη equation 8.7f

The deltas for the hidden layer are calculated.

() ()ββαα δδδ AAnAnAA wwoutout ⋅+⋅⋅−⋅= −−)1()1(1 equation 8.8a

() ()ββαα δδδ BBnBnBB wwoutout ⋅+⋅⋅−⋅= −−)1()1(1 equation 8.8b

() ()ββαα δδδ CCnCnCC wwoutout ⋅+⋅⋅−⋅= −−)1()1(1 equation 8.8c

These are used to calculate the strength of the hidden signal-pathways; however, as the

outputs from the input nodes remain constant while the data pattern is presented, there is

no need to calculate a pulse at tn-2.

 155

ΩΩ
+
Ω ⋅⋅+= outss AAA δη equation 8.9a

Boutss BB ⋅⋅+=+
ααα δη equation 8.9b

CCC outss ⋅⋅+=+
ααα δη equation 8.9c

λλλ δη outss AAA ⋅⋅+=+ equation 8.9d

λλλ δη outss BBB ⋅⋅+=+ equation 8.9e

λλλ δη outss CCC ⋅⋅+=+ equation 8.9f

This completes the training for one data pattern presented to the ABNw.

 156

8.3.3 Performance of ABNw - Trained with BP

The ABNw-BP was presented with the same problem and parameters as the ABNw-GA.

The interface was enhanced as shown in figure 8.12.

Figure 8.10 – Interface for ABNw-BP

The signal-pathway strengths (pre and post training) are recorded, in the ABNw-GA there

was a family of individuals and so pre-training values were omitted. The hidden node

outputs are included; they were examined for the formulation of the ABNw-BP algorithm.

The number of epochs to reach the target error replaced the number of generations. The

interface shows a successful training event output in figures 8.11 and G.13 to G.21, some

screens are cropped due to size.

 157

8.3.4 Comparison of ABNw – BP and ABNw – GA

This section refers to specific training events where examples are shown - many events

were assessed to ensure the ones reported accurately reflect system performance.

Figure 8.11a – ABNw-BP output pulse – pattern 0

 158

Figure 8.11b – ABNw-BP output ticks – pattern 0

An examination of the ABNw-BP output pulses, (figures 8.11a and G.13 to G.15), and their

associated output ticks, (figures 8.11b and G16 to G18), show two immediately obvious

differences to the ABNw-GA.

Firstly, the ABNw-BP takes more pulses to relax. This is a feature that can be reduced;

however, it may be evidence that the ABNw-BP is more robust. This theme is developed

later in noise tolerance analysis.

Secondly, the eABN is contributed to by multiple en values. Previously, all eABN were

loaded onto a single node and pattern. These differences are related, in that spreading the

error around the connections appears to give a higher noise tolerance, as was seen in

Chapter 5.

 159

The nature of BP is to implement small changes to signal-pathways, individually and

progressively moving the en for each node-pattern towards the target. This increases the

likelihood of achieving the target error without leaping past it, as a GA is prone to do. The

residual eABN is therefore spread around the ABNw-BP, not concentrated in one particular

area. This error distribution is a feature of good generalisation.

Figure 8.11c – ABNw-BP hidden nodes – pattern 0

In the hidden node outputs, (figures 8.11c and G.19 to G.21), the last pulse output does not

reach the output nodes before the ABNw relaxes. All the hidden nodes have relaxed to a

range of [0,1]. This indicates that the hidden nodes are performing a recognition function,

not just echoing the inputs, and that backpropagation is making use of these values.

 160

Figure 8.11d(i,ii) – ABNw-BP pre & post training signal-pathway strengths

The signal-pathway strengths, (figures 8.11c), account for the functional difference of the

ABNw-BP when compared to the ABNw-GA. Initial values and then the trained values are

shown. In contrast to the GA, the hidden values are smaller than the output values - this

was consistent over several events. Importantly, the trained values are far smaller than

those found by the GA.

Another observation is that if several ABNw-BP are trained to the same error, then they

always finds the same (or very similar) signal-pathway strengths; however, these are not

necessarily assigned to the same nodes. This implies that the ABNw-BP is finding the

global-minimum solution to the problem, while the ABN-GA is finding local-minima

(some of which may be magnifications of the global-minimum).

 161

Figure 8.11e – ABNw-BP – error vs. epoch

The improved error minimising of the ABNw-BP is shown in figure 8.11e. This emulates

the classical and gradual reduction in eABN of gradient descent. The spikes that occur

during the descent may be due to the approximations that are implemented, or may be an

exaggeration of known anomalies in BP (errors are capable of rising in adjacent epochs).

8.3.5 ABNw - Trained with BP - Noise Tolerance

This section reports on the noise tolerance of the ABNw-BP. Some comparisons with the

ABNw-GA are made, however the main comparison is with the MLP-BP in the next

section. Examples are used from different events, which were tested to confirm that they

are typical performances.

The ABNw-BP was trained on two target errors {0.5,0.05}. The ABNw-BP took 519

epochs to achieve an eABN of 0.4 with target 0.5, and 759 epochs to achieve an eABN of 0.0,

with target 0.05. The minimum eABN, due to quantisation, is 0.1 so the ABNw-BP is forced

to over-fit.

The effect of noise on the ABNw-BP trained to target eABN {0.5} appears at 5%, far lower

than in most of the ABNw-GA events; however, the error effect is dispersed amongst the

nodes and patterns, (figures 8.12 and G.22 to G.24). The rise in error from 0% to 5% noise

causes graceful degradation, (observed at the output nodes), as desired, while the hidden

nodes are similarly gradually affected.

e A
B

N

 162

Figure 8.12 – ABNw-BP output pulse - target eABN 0.5 - noise 0%,5% - pattern 0

An examination of noise across several events produced the results shown at figure 8.13,

where at specific noise there is an effect in eABN. The individual pattern errors ep are

shown.

Figure 8.13 - ABNw-BP - target eABN 0.5 - error vs. noise

 163

The trained ABNw-BP has an eABN of 0.4 at a noise of 0% (undamaged) and the error

increases progressively with rising noise. At 5% noise, three outputs ep {0,2,3} degrade

slightly but there is no more damage until 15% noise where ep {2} is affected, and then at

25% noise where ep {0,1} are affected. At 26% noise two patterns are affected; ep {0}

improves, ep {3} degrades. All ep then remain unchanged until 36% noise where all are

affected, and then until 46% where maximum eABN occurs.

Despite the rising eABN, the ABNw-BP can correctly identify its inputs, performing signal

separation, at 45% noise when the input domain is constrained to 10% of its original range.

The effect of noise on the ABNw-BP trained to target eABN {0.05} is shown in figures 8.14

and G.25 to G.27.

Figure 8.14 – ABNw-BP output pulse - target eABN 0.05 - noise 0%,5% - pattern 0

The same examination of the effect of noise for this ABNw-BP as the previous one is

shown in figure 8.15.

 164

Figure 8.15 - ABNw-BP - target eABN 0.05 - error vs. noise

The trained ABNw-BP has an eABN of 0.0 at a noise of 0% (undamaged). The effect of

noise appears at 5%, as it did in the previous example. The overall performance between

the ABNw-BP trained to eABN {0.05} and eABN {0.5} is so similar that a comparison of

eABN vs. noise, shown in figure 8.16, shows almost no difference.

Figure 8.16 - ABNw-BP - targets eABN 0.5, 0.05 - error vs. noise

The initial advantage of the ABNw-BP trained to eABN {0.05} over eABN {0.5} disappears at

5% noise and performance remains slightly worse as noise increases. This indicates that

 165

training to the lower error results in an over-fitting by the ABNw-BP. The network remains

highly noise tolerant with complete recognition at 45% noise.

Figure 8.17 - ABNw-BP - targets eABN 0.5, 0.05 - trained signal-pathways

If the signal-pathway strengths are compared, (figure 8.17), for the ABNw-BPs trained to

different targets, their values show similarities. The hidden signal-pathways are almost

identical, despite belonging to different nodes. They are matched between the ABNw-BPs

as nodes {0,1}, nodes {1,2} and nodes {2,0}. While the output signal-pathways appear

unrelated, if examined as properties of the hidden node from which they connect, then they

too are almost identical. This is shown for the first node, the others match in the same

way. The original random signal-pathway has no obvious correlation. Therefore, the

similar end point came from different starting points.

 166

These similarities in the pathway strengths are the result of the nature of the problem. This

is a simple problem domain and results in only one global-minimum solution local to the

initial random signal-pathway strengths. Networks trained to the same error are likely to

end up with the same weights, even if the starting values are different. The ABNw-GA

produces vastly different pathway strengths because the GA allows for a global search in

the problem domain.

In the comparison between the ABNw-BP and the ABNw-GA, training time is a factor;

however once these networks are trained, the only difference is in values of their signal-

pathway strengths. The result of the larger signal-pathways of the ABNw-GA is that the

ABNw-BP degrades gracefully with noise, while the ABNw-GA suffers critical failures.

The ABNw-GA’s larger signal-pathways amplify small changes caused by noise and have a

greater influence on network performance.

The ABNw-BP’s ability to achieve low target eABN while retaining noise tolerance and

graceful decay is compared with a standard MLP-BP in the next section, as these later two

effects are usually incompatible.

8.4 Multi-Layer Perceptron – Trained with BP

A MLP was constructed and trained with the Backpropagation Algorithm as shown in

Appendix C. The MLP is of equivalent topology to the ABNs; 4 input nodes, 3 hidden

neurons and 4 output neurons. The input range is normalised to [0,1], and the neurons use

a Sum activation and a logistic sigmoid output function.

The same patterns and target errors were presented to the MLP-BP and its noise tolerance

was tested with the same values as used before.

8.4.1 MLP – Trained with BP - Memory Capacity

The MLP-BP and the ABNw-BP achieve low errors (eMLP or eABN) with 3 hidden units

(nodes or neurons), producing a complete problem solution. Both recognise patterns with

2 hidden units; however, their confidence is low, these networks are unable to achieve a

 167

low error. On various events, a network error of approximately 2.0 was achieved. When

trained with a single hidden unit, neither MLP-BP nor ABNw-BP came close to a solution,

with an error of approximately 6.0. In both topologies, the ABNw-BP can achieve a

slightly lower error by adapting quantisation effects.

8.4.2 MLP – Trained with BP - Training Time

The MLP-BP requires many more training epochs to reach the same errors as the ABNw-

BP and takes progressively longer as the target is lowered. When a slope, ρ, is included in

the MLP-BP, training time increases further. This is to be expected, however it benefits

MLP-BP noise tolerance; this is addressed later.

network error target approximate

epochs to reach

ABN tick (10) 0.5 500

ABN tick (10) 0.05 750

MLP ρ (1) 0.5 1200

MLP ρ (10) 0.5 10000

MLP ρ (1) 0.05 90000

MLP ρ (10) 0.05 900000

Figure 8.18 - Epoch comparison

The advantage of the ABNw-BP increases as the target error is lowered. While the ABNw-

BP training time rose from 500 to 750 epochs, the MLP-BP ρ (1) rose from 1200 to 90,000

epochs. When a ρ of 10 is set for the MLP-BP, training time increases proportionally, as

expected.

 168

8.4.3 MLP – Trained with BP - Noise Tolerance

The MLP-BP and the ABNw-BP show high noise tolerance for this problem. The

differences are discussed on a case by case basis.

The ABNw-BP and the MLP-BP were trained with a target error of 0.5. The ABNw-BP

performance was shown in figure 8.13. For the MLP-BP 1 ≤ ρ ≤ 10, equivalent examples

are shown in figures 8.19.

Figure 8.19a – MLP-BP ρ (1) - target error 0.5 - error vs. noise

Figure 8.19b – MLP-BP ρ (10) - target error 0.5 - error vs. noise

 169

Comparing figures 8.13 and 8.19 shows that while at low noise the ABNw-BP produces on

average a higher error than both MLP-BP networks, as the noise rises the ABNw-BP

performance improves compared to the MLP-BP ρ (1). However, it remains poorer than

the MLP-BP ρ (10). Average errors are compared in figure 8.20.

Figure 8.20 - ABNw-BP and MLP-BP - target error 0.5 - error vs. noise

It appears that the ABNw-BP has a performance which is between the two MLP-BPs. This

is actually slightly more subtle, at 25% noise, the MLP-BP ρ (1) fails to recognise all

patterns, the MLP-BP ρ (10) recognises all patterns at up to 44% noise, the ABNw-BP

recognise all up to 45% noise.

The ABNw-BP performance when a target error of 0.05 was set is shown in figure 8.15.

Equivalent examples are shown for the MLP-BP 1 ≤ ρ ≤ 10, in figures 8.21.

 170

Figure 8.21a – MLP-BP ρ (1) - target error 0.05 - error vs. noise

Figure 8.21b – MLP-BP ρ (10) - target error 0.05 - error vs. noise

Comparing figures 8.15 and 8.21 shows that at low noise the ABNw-BP, similar to before,

produces an average error higher than both the MLP-BPs. As the noise rises, the ABNw-

BP and MLP-BPs behaviour is similar to that shown in the previous example. The error

changes in response to noise are more sudden for the MLP-BPs. Average errors are

compared in figure 8.22.

 171

Figure 8.22 - ABNw-BP and MLP-BP - target error 0.05 - error vs. noise

The ABNw-BP performance still lies somewhere between the two MLP-BPs. Again, the

actual performance on patterns recognised is more subtle. At a noise of only 23% the

MLP-BP ρ (1) fails to recognise all patterns, the MLP-BP ρ (10) recognises all up to 36%

noise, as does the ABNw-BP.

8.4.4 MLP – Trained with BP - Summary

The ABNw-BP and MLP-BPs suffer a generalisation depredation as target errors are

lowered indicating classic over-fitting. In training time and recognition tests the ABNw-BP

performs better than either MLP-BP and it is better at avoiding critical failures.

The ABNw-BP demonstrates excellent noise tolerance in tasks that MLP-BPs specialise in;

however, the MLP-BP can only be presented with an idealised signal (a snapshot of the

input data), while the ABNw-BP can receive a continuous signal that is required for

interacting with real world systems, for example artificial vision.

The comparison is also biased in favour of the MLP-BP, as it is allowed to operate

unrestrictedly while the ABNw-BP is restricted in decimal places by the pulse-width.

 172

8.5 Pulse-Frequency Modulated ABNF – Trained using a GA

A major change in the ABN was implemented for pulse-frequency modulation, (denoted

ABNF). The topology was the same as that of the ABNw, and the network was presented

with the same pattern. The network was trained by a Genetic Algorithm, ABNF-GA.

8.5.1 ABNF – Trained using a GA - Apparent Success

During the incremental changes in producing the ABNF performance was inconsistent with

apparently successful outputs changing to give errors. This was due to the more

complicated behaviour of the ABNF rendering the relaxation criteria used for the ABNw

unreliable.

The reason for inconsistent success was that the ABNF is capable of producing the same

type of relaxation output as the ABNw. However, in other events when the network

appeared to relax, the pulses were part of a cyclic-stability output.

An ABNF therefore has two relaxed states. When a constant repeating pulse was produced,

this was taken to be the node value. When there was cyclic-stability then the average value

of all pulses in the cycle was taken as the node’s output; in some cases this was not

detected and a relaxed value was assumed from the cycle.

8.5.2 Successful ABNF – GA Implementation

The following figures 8.23 and G.28 to G.33 show the first successful event with both

relaxed and cyclic behaviour. Firstly, figures 8.23a and G.28 to G.30 give the resolved

ABNF output pulses. Secondly, figures 8.23b and G.31 to G.33 show the individual ticks.

 173

Figure 8.23a – ABNF-GA output pulse – pattern 0

Figure 8.23b – ABNF-GA output ticks – pattern 0

 174

When presented with a pattern, the 4 output nodes produce different numbers of pulses.

This is a result of the ABNF having a variable pulse-duration. Examining the tick count

shows that each pattern presented undergoes the same tick count, as every node continues

to pulse until all nodes have relaxed.

One consequence of the nodes producing the same number of ticks, is that some nodes are

in mid-pulse when the last ABNF node relaxes, so that any partial pulse information is

discarded.

Cyclically-stable behaviour occurs in some of the nodes, see figure G.28 for node 1 and

figure G.29 for node 2. In the first case there is a clear 5 pulse cycle with one pulse of 0.4

followed by 4 pulses of 1.0. This should give an output average (mean) of 0.808, however

the value was taken as 1.0, the relaxed value of the last two pulses based on pulse-width

relax. The second case is different; the cyclic values are (0.3,0.7,0.5,0.7) and this gives an

average value of 0.55 which is the value reported. This averaged pulse is added onto the

end of the pulse output.

The relaxed evaluation takes priority over the cyclic-stability. The results of which is

longer cycles or, for those with little fluctuation, the average (mean) value is replaced by

average (mode) value.

8.5.3 Comparison of ABNF – GA and ABNw – GA

The pulse-width ABNF-GA was evaluated on four criteria; relaxation time, minimum error,

evolutionary time, and signal-pathway strength. All the relevant ABNF and ABNw

parameters were equivalent. These included 3 hidden nodes, an α of 0.9 and a ρ of 1.0.

The target eABN was {0.5}.

8.5.4 ABNF – Trained using a GA - Relaxation Time

The ABNF-GA continues to pulse until all output nodes have relaxed. To determine

whether the ABNF has relaxed, an extra pulse is required on single outputs and an extra

cycle for cyclic-stability. These are an observer requirement, not an ABNF requirement.

Given this, an observation of the ABNw showed a range of (3,7) pulses (equating to 30 to

 175

70 ticks) for an individual node and pattern, with an average in the range (3,4). The ABNF

had a range of (38,93) ticks with an average of 49. This shows that the ABNF performs in

a similar timescale to the ABNw.

8.5.5 ABNF – Trained using a GA - Minimum Error Achieved

The ABNw achieved an average eABN of 0.07 when pursuing a target of 0.5. The ABNF

achieved an average eABN of 0.195. Both of these networks show a tendency to over-fit the

problem.

8.5.6 ABNF – Trained using a GA - Training Time

The evolutionary training time for the ABNw had a range of (53,3262) generations with an

average (rounded mean) of 553. The ABNF range was (26,632) generations with an

average (rounded mean) of 305.

The ABNF trained in fewer generations when successful, however, while the ABNw always

found a solution, the ABNF occasionally reached the maximum permitted generation count.

8.5.7 ABNF – Trained using a GA - Signal-Pathway Strength

Recall that for the ABNw, the average ranges were;

• hidden pathways 123 (-60 to +63)

• output pathways 37.7 (-27.1 to 10.6)

The ABNF produces;

• hidden pathways 118.8 (-48.6 to +70.2)

• output pathways 28.3 (-19.3 to 9)

As both ABNs have a similar range of signal-pathway values, this indicates that a network

of mixed nodes may be possible.

 176

8.5.8 ABNF – Trained using a GA - Noise Tolerance

Noise has greater effect on ABNF performance than on the previous ABNw. Examples of

noise effects are shown and discussed, (see figures 8.24 and G.34 to G.41).

Figure 8.24a – ABNF-GA output pulse - target eABN 0.5 - noise 0% - pattern 0

The pulse outputs show relaxed values, having resolved all cyclic-stability behaviour. The

overall performance illustrated, in figures 8.24a and G.34 to G.36, shows an error of 0.1

for pattern 0 and pattern 3, indicating a relatively stable performance.

The pulses are resolved from the ticks shown in figure 8.24b. These are more difficult to

interpret than ABNw ticks and give an example of the differing pulse stream a node can

produce.

 177

Figure 8.24b - ABNF-GA output ticks - target eABN 0.5 - noise 0% - pattern 3

 178

The ABNF is affected by low levels of noise, beginning at 5%.

Figure 8.24c – ABNF-GA output pulse - target eABN 0.5 - noise 5% - pattern 0

The output from pattern 0 is shown in figure 8.24c. When compared with figure 8.24a, it

can be seen that the ABNF does not recognised it. All other patterns are recognised with

no eABN change. This is similar to the critical failure that occurred with the ABNw-GA,

however the noise tolerance is at a much lower level.

As noise increases to 15%, eABN reduces. The output for pattern 2, node 0 and 3, shows a

reduced time to relax. This is shown in figures G.37 and G.38 and is a result of converting

a cyclically-stable output to a relaxed output (on pattern 3), resulting in faster relaxation

for the ABNF as the other nodes relaxed in fewer ticks.

The ABNF is unaffected by increase in noise until 25%. A cyclic-stable output is produced

by a previously relaxed node, (node 1, pattern 0), as shown in figure G.39.

 179

Various increases in noise affect the eABN. At 46% noise, the network is unable to

differentiate between patterns; at 36% noise, cyclic behaviour occurs with extremely

variable in-cycle pulses, figures G.40 and G.41.

The effects of noise were tested on several events and showed that the ABNw is far more

tolerant of noise than the ABNF. This may be due to the instability of the ABNF’s cyclic-

behaviour.

The previous effect of the slope ρ was considered and tested. There was no notable effect

on the noise tolerance of the ABNF-GA, which is in keeping with ABNw-GA performance.

The maximum pulse-duration was examined to assess quantisation. This is more

detrimental to the ABNF’s training time, as it is assessed every tick, than to the ABNw’s

training time.

8.5.9 ABNF – Trained using a GA - Summary

In general the ABNF is capable of the same performance as the ABNw; however, as it

produces cyclically-stable as well as relaxed outputs, it produces greater variation in its

behaviour. As a consequence the ABNw has a higher noise tolerance and is

computationally less demanding than the ABNF. Training factors, such as number of

generations, favour the ABNF slightly. The similarity in signal-pathway behaviour

indicates that an ABN of combined node types is possible.

Both ABNs are viable alternative pattern recognition networks to the MLP. Their

advantage is that they can be used in time domain problems as well, while the MLP must

take a static view of time data.

 180

8.6 Universal-Pulsing ABN

ABN success in pulse width and frequency modulated pattern recognition is the first part

of a universal solution - ABNU - in addition the production of a time-domain signal is

desired. For this thesis, a robot walking gait time-domain signal was chosen, (in keeping

with the author’s research group’s area of expertise) and it represents a general wave-form

generation.

A walking gait is defined by the sequence of limb movements, the duration of each stride

and the speed of each limb movement. To do this a network must produce a number of

pulse-frequency “spikes” (amplitude 1 values) arriving in a time period.

A pulse-width signal could determine both limb sequence and stride duration; however, the

stride would move at constant (maximum) speed for the duration of the pulse as the

amplitude is constant.

A pulse-frequency consisting of the correct number of frequency pulses at the correct time

would produce the correct movement. From the previous sections it appears unlikely that

an ABNF node can be this responsive on its own.

The implementation co-ordinates a different pulse-width for each gait and an associated

pulse-frequency. The co-ordination of the different limbs is an effect of the ABNU which

consists of a mixture of the previous nodes and their variants.

 181

8.6.1 Walking Gait

In a quadruped walking gait, a single limb moves at a time. There are many possible

topologies for achieving any of the gaits, only one is required here. This gait is achievable

in a three layer ABNU. In the figure 8.25a, the limbs are shown as FR-front right, FL-front

left, RR-rear right, and RL-rear left.

Figure 8.25a – Walking-gait - layer 1 outputs

In this example the pulse-duration is 80 ticks. The 4 each nodes produce a control pulse-

width signal. If pattern value interpreted, from top to bottom, the nodes produce evaluated

outputs of (0.25, -0.5, -0.25, 0.5). The pulse can generate a leading 0 or 1 amplitude.

The second layer combines the layer 1 signals, allowing pulse separation. This permits

both a leading and trailing amplitude of 0.

Figure 8.25b – Walking-gait - layer 2 outputs

This allows both limb sequence and stride duration to be produced by the ABNU, while

stride speed is still required. For this a pace signal is required, (see figure 8.25c).

Figure 8.25c – Walking-gait - layer 3 outputs

 182

It does not really matter when the pulse-frequency (speed) signal is integrated with the

pulse-width (duration) signal. In this example, a third layer is used for a simpler

demonstration.

The walking gait is the most difficult to generate as it requires independent movement of

all limbs.

8.6.2 Trotting Gait

For a trotting gait, the limbs move in diagonally opposing pairs. Due to the limb pairing

and stride symmetry, this is a achievable in a two layer ABNU.

Figure 8.26a – Trotting-gait - layer 1 outputs

This example uses a pulse-duration of 30 ticks, (figure 8.26a). The nodes produce outputs

of (0.5, -0.5, -0.5, 0.5). The second layer provides the pace signal.

Figure 8.26b – Trotting-gait - layer 2 outputs

Limbs (FL,RR) move slower than the other pair, 7 pulses for every 8. This is caused when

there is an imbalance in pulse-width and pulse-frequency. Components of a biological

system would mask this with its more complex generation system (far more pulses and

using thousands of ticks per second). This is an example of the trade off between

universality and functionality, placing too much importance on single nodes. Increasing

the number of ticks in a pulse-width reduces the effect. An alternative is selecting an

 183

appropriate pulse-duration to include the missing 8th pulse, figure 8.26c. If more pulse

frequency nodes are included then the effect can be countered without having to adjust

pulse-duration, figure 8.26d.

Figure 8.26c – Trotting-gait pulse - duration 32 - layer 2 outputs

Figure 8.26d – Trotting-gait – additional pulse frequency nodes - layer 2 outputs

8.6.3 Gallop Gait

The galloping gait also pairs the limbs, front and rear. The only animal with a true gallop

is the salt water crocodile as all other creatures have a delay between the paired limbs.

This gait is of the same complexity as the trot, with different timings.

Figure 8.27a – galloping-gait - layer 1 outputs

This example uses a pulse-duration of 10 ticks, (figure 8.27a). The nodes produce outputs

(0.5, 0.5, -0.5, -0.5).

 184

Figure 8.27b – Galloping-gait - layer 2 outputs

The second layer provides the pace signal. The addition of this layer produces the outputs

in figure 8.27b. The same imbalance occurred with the trot recurs with the gallop; in this

case the front limbs move faster than the rear. It is possible that this is actually required by

a robot. All quadrupeds do not have a symmetric front rear body shape and therefore the

front or rear limbs may be more powerful/move at different speed to compensate. As

before this can be equalised with a change to pulse-duration or additional frequency nodes,

(see figures 8.27c and 8.27d).

Figure 8.27c – Galloping-gait pulse duration 12 - layer 2 outputs

Figure 8.27d – Galloping-gait – additional pulse frequency nodes - layer 2 outputs

 185

8.6.4 Universal-Pulsing ABN - Summary

All required locomotion gaits have been produced by the ABNU (using pulse-width, pulse-

frequency and their inverse pulse modulations).

The pattern recognition abilities of the ABNs are equivalent to that of the MLP; however,

MLP networks have difficulty producing suitable time-domain control outputs (for

example for pulse-width modulated motor control).

As Artificial BioChemical Networks can perform pattern recognition, they do not require

other devices to construct a complete recognition-control system. Artificial BioChemical

Networks have inherently time-domain functionality and do not have this disadvantage.

They may therefore be trained to control the gaits of a simulated quadruped robot. The

robot uses servo motors to control limb movement, (figure 8.28). These limbs have one

active and one passive degree of freedom.

Figure 8.28 – Robot leg layout

This simulation has been used and reported many times previously. The dynamics of the

legs and the robot are fully reported by Muthuraman et al., [2003] and McMinn [2002].

Figure 8.29 shows limb movements generated when the network was evolved to walk. The

result corresponds well with the perfect pattern (a perfect pattern would have a repeat time

of 60 time steps and a movement from position 80 to position 100).

 186

Figure 8.29 – Movement pattern of legs

8.7 Modular ABNs

The abilities of ABNs to perform pattern recognition and produce time-domain signals

show that they are as functional as ANNs. ABNs have the advantage of being able to use

both time-domain and spatial-domain data. This presents an alternative approach to

connectionism. In addition, these behaviours are performed by the same unit types and the

same topology type. ANN functionality typically comprises different units and topologies.

Modular ANNs have been extensively researched by the author’s group, as in McMinn

[2002] and Muthuraman [2005] and have demonstrated capabilities beyond that of

individual ANNs. ABN modules have been connected together to produce a control signal

response to a recognition data input.

The ABN modules can be connected in the same manner as ANN modules, which is

straightforward. Outputs of a pattern-recognition ABN are the inputs of the control signal

ABN, (figure 8.30a). If specific recognition outputs are suitable as control module inputs,

either the recognition module is trained with new targets or a translation module is placed

between them, (figure 8.30b).

 187

Figure 8.30a – Recognition - control modules ABN

In the two module ABNU system, the environment inputs are continuous signals of fixed

but different amplitude. The recognition module outputs are produced as time-domain

pulses. These are a combination of pulse-width and pulse-frequency, depending on the

nodes utilised. They arrive as control ABNU inputs with time-domain behaviour.

When the control ABN inputs are of fixed amplitude but time variable, they are normalised

by the input layer of the control ABN. Therefore second and later modules in the system

receive information in the format that their input layer would expect for environmental

inputs. This can cause problems with cyclic behaviour and so a translation module is used

which produces the control output values.

Figure 8.30b – Recognition - translation - control modules ABN

In the three module ABNU system the operation remains consistent, however the

recognition module output, with variable pulse-width and amplitude 1, is translated to a

constant output of amplitude (0,1).

 188

The difference between these module arrangements is that the first produces a signal that

was relaxed for the first module before it was permitted to progress, while the second

allows the ABNU system to relax as a whole. The second is preferred as it is unsupervised

free in determining signal progression; it is the method implemented in this thesis.

8.8 Summary

The ABN systems discussed in this chapter are a new and different approach to

connectionist AI. Instead of a neural networks basis, they model the chemical signalling

within cells. Of course, as observed, such signalling lies at the root of neuron functionality

also, as the neuron is itself a cell.

The retention of generalisation and universality as discussed by Capanni et al., [2003]

affects the ABN performance in pattern recognition and control systems, allowing for

graceful decay as noise increases. Such “fuzzy” uncertainty is far more stable than a

system that performs longer with higher accuracy then undergoes critical failure with little

warning.

With regards to mobile robot operation there is a functional advantage of ABN pattern

recognition. Most pattern recognition is achieved “in vitro” where time is not a

constraining factor; here “snapshot” pattern recognition can be utilised. In an artificial

organism that has to adapt to its environment “in vivo” then an ABN information flow

pattern system can assimilate information as it appears.

The implementation of universal ABNs allows a single type of intelligent unit to perform

all the operations of a modular AI used in robot control, and can be encoded as part of the

evolutionary algorithm. This can be achieved without an operator placing specific units as

shown in the systems presented by Muthuraman [2005]. In these he noted the importance

of unit functionality without which (depending on the module purpose), specific units are

required.

The ABN approach detailed here has several advantages. It simplifies the design of time

dependant outputs which, in turn, allows the straightforward implementation of Central

 189

Pattern Generator networks in robots, pulse-width modulation for motor control and other

similar systems. However, the ABN networks are equally at home in traditional pattern-

recognition tasks. They also allow systems to be developed which behave in many

respects like spiking neuron models, but without the associated complexity.

Finally, ABNs may be trained using traditional methods and are suited to the development

of new methods based on known training algorithms.

 190

Chapter 9

Further Work

9.1 Introduction to the Chapter

There are five main topics in this chapter. Firstly, areas of exploration from the

development of the Taylor Series networks. Secondly, investigations into Artificial Neural

Network functionalities that were observed during the TS research. Thirdly, memory in

connectionist networks. Fourthly, outstanding exploration in Artificial BioChemical

Networks. Finally, combinations of TS and ABN techniques.

9.2 Taylor Series SLT and MLT

The problems presented to the Single-Layer Taylor Series network were solved with 3rd

order TS neurons, and increasing the order beyond this gave no advantage. One direction

for further work would be an investigation into more difficult problems, to assess if 4th

order (or higher) terms can prove an advantage.

Firstly, the relationship of these results should be compared with the known advantages

that 3rd order SLT networks show over 2nd. If higher order terms continue to show little or

no effect until the network has achieved a low error, then an algorithm could be developed

to perform initial training on 1st order terms and only introduce the higher orders as

training improvements decrease. These higher order terms could be initialised with a

weights range based on observing the trained state of such networks (as they may have a

different profile).

Secondly, there is also the influence of the factorial divisor to consider. These factorial

divisors reduce the influence that their weights may have. As it is, a 4th order weight has ¼

the effect of a 3rd order weight of the same magnitude. Given the dynamics of ANN

training, it may be possible to discard this divisor and to allow the weights to accommodate

the effect, with an appropriate initialisation step.

 191

Thirdly, any advantage of a divisor could be assessed against the training overheads of the

additional computations entailed. This is based on the observation that once a network is

trained, any divisors could be incorporated into their associated weights before use. This

would remove any later computation on these divisors and network performance would be

identical.

The proposed research on increasing orders of power with regard to training time

improvements should also take into consideration the effect of noise tolerance given any

changes in network training performance.

9.3 ANN Performance – Noise, Targets and Validation

In general ANN performance, the advantages of noise tolerance, with regards to target

setting have been well demonstrated. These merit additional investigation. ANNs have

been extensively researched and there is considerable work by other authors in this area;

however, subject to a literature review, a close look at pattern-target relationships with

regards to noise tolerance and overtraining would be in order. This would be evaluated

against validation trained networks.

9.4 Displaced Equilibrium – Memory in Connectionist Systems

As part of the project work in the thesis, a system was investigated where an ANN was

evolved to achieve a partial success in a problem. The particular problem was to associate

different walking performance with input parameters. This evolutionary training was

equivalent to the hard-wired biological component referred to as “genetic memory”, which

allows organisms to survive in their initial environment.

The next phase was to introduce a learning algorithm that would minimise the error in the

environment to achieve efficiency in walking. This differed from most learning algorithms

in that the ANN learned while it performed.

The algorithm made use of several components that were evolved variables. A learning

rate amplified any changes. A Hebbian (and anti-Hebbian) variable affected any active

 192

connections. A synchronous variable affected any active connection when other

connections were also active while a mediated contribution affected a connection (active or

not) if associated connections were active. A bio-chemical feedback acted as an error to

the entire ANN.

When this was implemented, the ANN was able to function on introduction to the

environment and adapt to its maximum efficiency.

Once the input parameters were altered, to simulate a different walking environment, the

learning algorithm allowed the ANN to adapt to the new environment as well, through

altering its connection values. If the input change was too great (such as a radically

different environment) then the ANN was unable to adapt.

Once the ANN was returned to its original environment, the learning algorithm adapted the

ANN once more. This returned the connection values to the same as before, hence the

term “displaced equilibrium”.

There were two observations that prevented this work from being included in the thesis.

Firstly, a type of artificial amnesia developed. As the connection values shifted from one

environment to another, some were permitted to break (a feature of the algorithm). These

broken connections were never reformed and the ANN adapted by finding alternative

solutions to a retuned environment. Eventually, too many connections were lost and the

ANN could no longer adapt to changes. This is not an endpoint for this research, as

adaptations to the original algorithm or connection formation could be used. Although it

had been decided at this point that this was of no direct benefit to the project, future work

in the area was considered worthwhile.

Secondly, when compared to biological systems there remains a problem in that the entire

ANN is involved in all its activities. That a fully connected system is limited in

development was observed and supported by the ongoing work of the research group in

modular networks. It was therefore decided that this research should be later assigned to a

modular development.

 193

9.5 ABN Design

As the ABNs were introduced as a new concept, various opportunities for explorative

research presented themselves during their construction; while not an exhaustive list, those

that showed potential are included here.

9.5.1 Topology

To allow comparisons, the topologies of the ABNs were constructed in a similar manner to

ANNs. These ABN topologies are fixed structures and do not permit adaptable changes in

topology whereas biological systems do, both during initial development and through their

life span. The thesis introduced the ABN concept as an alternative AI technique and

accepted some initial restrictions to do so. It is intended that nodes may develop

peripatetic behaviour and a project examining a hybrid Swarm-ABN system is proposed to

this effect.

9.5.2 Pulse Time

The following method is suggested for future work and integrates the pulse information

Sum S into ton and incorporates the previous ton value and a leaky integration LI factor

alpha α.

()() ()LIPWSt ton ασβ −⋅⋅=+ equation 9.1

Previous nodes have not altered the pulse parameters after a pulse has commenced, this is

in keeping with biological neuron pulses. As biological neurons are pulse-frequency and

not pulse-width there is little to alter. This is not the case with biochemical signalling,

where the protein parameters are part of ongoing processes that may dynamically change.

Allowing the pulse-width to vary after it has commenced a cycle would result in a

variation in pulse-duration and introduce non-synchronisation in the ABNw.

 194

9.5.3 Amplitude Modulation

Biological neuron signals are not amplitude modulated but are time modulated, while

artificial neurons such as McCulloch-Pitts are amplitude modulated but not time

modulated. Biochemical signal-pathways can, in addition to time modulated signals,

produce an amplitude factor by increasing the quantities of protein in the system. Current

implementations of ABNs seek to model the time modulated signals but do not incorporate

amplitude modulation. This has been due to the problem domain, where only one degree

of freedom is incorporated into the input data and hence one type of signal modulation is

performed by the ABN. Amplitude modulation may be a property of the ABN rather than

the node, as adding such functionality contributes greater degrees of freedom to the output

than are supplied by the input. Changes in the problem domain may be required to

accommodate this.

Amplitude over time was a consideration when attempting to produce walking gaits. The

gait was achieved through combining pulse-width and pulse-frequency modulation. It may

be that gait transition, such as moving from a walk to a run, would benefit from such work.

However, it is suspected that it will be more important in allowing speed variable gaits.

For example, bipedal gaits are more similar in profile than those of quadrupeds; but for

each there must be some method of signalling the power behind the limb as creatures can

walk, trot, canter, pace and gallop at various speeds. This is the only way that creatures of

differing physical size keep pace with each other.

Different amplitudes allow the possibility of using a “0” as the “no signal” state, the “+1”

as the active move state - which lifts a limb forward and “-1” as the recovery state – which

returns a limb to the initial position. Although biological systems signals do not operate

this way, it may be conducive to artificial movement.

9.5.4 Improvements to ABNw Backpropagation

Although the method used proved successful for the ABNw there are some improvements

possible, especially with regard to the use of the relevant hidden pulses.

 195

The pulse from the hidden layer that was used to alter the weights for the output pulsen was

hidden pulsen-1. This is correct, but of limited accuracy.

The output pulsen is produced from Sumn at the output node, which has been accumulated

by the arriving of pulse0 to pulsen-1 from the hidden layer, the effect of each accumulated

value being diminished by the factor α at every tick.

engthPathwayStrtudePulseAmpliSumSum ticktick ⋅+⋅= == 12 α equation 9.2

• When pulsen-1 has fully arrived the effect of the leading edge has diminished by α10.

Given an α of 0.9, this is approximately 0.35.

• The effect on the trailing edge of the previous hidden pulse is diminished by α11 and

the leading edge by α20.

• This effect continues until the first pulse is computed.

As can be seen the more recent a pulse is the more significant its effect. A cumulative

term CT could therefore be used instead of the hidden pulsen-1.

Given this, it must be considered why Backpropagation works using hidden pulsen-1

instead of CT. This may be due to the error being moved in the correct direction, using a

reduced value, akin to implementing a learning rate < 1.0 (assuming CT is greater than

pulsen-1). There is also the consideration that the hidden pulsen-1 may actually approximate

CT. This is due to the leading edge of the pulse having an amplitude of “1” and the trailing

edge having the amplitude “0”.

9.6 Taylor-Series Functionality with ABNs

In this thesis there were two different approaches to unit functionality. Both were

successful, one in the static-domain and one in the time-domain. As the TS neuron

operated on the summation function and the ABN node operated on the output function,

there is the potential to combine both of these and assess how they work across both

domains. Although this is beyond the scope of this thesis, it is a logical next step.

 196

Chapter 10

Conclusions

10.1 Introduction to the Chapter

This chapter presents the conclusions of the project. The original objectives, as described

in Chapter 1, are revisited with reference to the work presented in this thesis. Then a

discussion of the original contributions follows. A summary of the main findings and

further work is made. Finally, some concluding remarks concerning the success of the

project are made.

10.2 Project Objectives Revisited

The objectives as stated in Chapter 1 were:

1. To review the literature on the subject of generalised Artificial Neural Networks

2. To review the biological relationship of the work

3. To develop an appropriate generalised neural model

4. To extend the function of the above to time domain behaviour

5. To compare these results with published and standard data

6. To integrate these models into a complete neural system

7. To apply this system to a standard problem

8. To compare these results with previously published material

These can now be considered in terms of what was achieved.

10.2.1 To Review the Literature

The initial background reading and study, that was necessary to understand the purpose of

the project, was undertaken at the beginning of the research. The main examination began

with the work which was later used in “Evolution and Devolved Action” [MacLeod et al.,

2002], (Appendix B), which this author contributed to. Study then centred on various

 197

recommended AI textbooks, included in the bibliography, and continued with a review of

the work of McMinn [2002]. As the project developed a continuous review of appropriate

literature, including Muthuraman [2005], contributed to the body of knowledge.

10.2.2 To Review the Biological Relationship of the Work

The author examined the biological basis of Artificial Intelligence and centred on genetics

and brain function. As the project developed away from traditional connectionism

approaches, a greater emphasis was placed on biochemistry and the intelligence expressed

by single-celled organisms.

10.2.3 To Develop an Appropriate Generalised Neural Model

An appropriate generalised neural model was developed, described in Chapters 4 and 5,

using a Taylor Series expansion. The generalisation capability of the TS neuron was

explored and an associated investigation on its universality was completed. These both

gave favourable results for the new model. Once the neuron had been fully investigated,

the model was integrated into network topologies and trained with a Genetic Algorithm.

Additionally, beyond the requirements, it was shown that the model could be used with a

standard learning algorithm, (see Appendix C). The functionality of the neuron was then

explored in the networks it was added to, which again resulted in a favourable

performance. This work led to a publication [Capanni et al., 2003], shown in Appendix A.

10.2.4 To extend the Function to Time-Domain Behaviour

The TS models were implemented as neural oscillators, which produced some interesting

results. Their limitations were noted and although they may merit further work, they did

not show sufficiently promising results to include a specific section. Instead, this

investigation inspired the later successful research into the alternative connectionist system

ABN.

 198

10.2.5 Compare Results with Published and Standard Data

A comparison of the results with standard data and ANNs was made. This included a

single neuron solution to the parity-bit problem [Minsky and Papert, 1969], which

demonstrated the improved functionality of the TS neuron over the McCulloch-Pitts

neuron. The generalisation and universality of the TS networks, single and multi-layer,

were compared with that of the Single-Layer Perceptron and the Multi-Layer Perceptron.

In these comparisons the new model showed several advantages, including training time,

network size and noise tolerance. This was presented in Chapter 5.

10.2.6 Integrate Models into a Complete Neural System

Due to the investigation into the time-domain behaviour, the integration instead led to the

investigation into alternative connectionist approaches. This resulted in the proposal of an

Artificial BioChemical Network, (Chapter 6), after extensive research into biological

intelligence.

This model was developed as a complete connectionist system for time-domain problems

and a series of experiments and comparisons were set out, (Chapter 7).

The functionality of this model was examined and compared against standard ANN types.

The same capabilities were examined in the spatial-domain as before and the new model

performed successfully. Then the same ABN models were tasked with the production of

time-domain behaviour that their ANN competitors found difficult or impossible to

produce, and once more produced successful results, (Chapter 8).

10.2.7 Apply this System to a Standard Problem

This new connectionist model was applied to the task of producing locomotion gaits for

robots, as had the previous models by McMinn [2002] and Muthuraman [2005]. It was not

necessary to compare against these previous approaches as the project had been developed

using the lessons learned from them as a direction for study. The model was able to

produce the required locomotion gaits and complete the objective requirements. This was

achieved with a single unit type (ABN) rather than designed neurons, (Chapter 8).

 199

10.2.8 Compare Results with Previously Published Material

The development and comparison of the new model’s capabilities was compared at the

appropriate stages throughout the thesis. This showed the various advantages of the new

model in its ability to interpret both spatial-domain data and time-domain data. This work

was completed by the model’s ability to process data across both domains, without the

requirement for a translation system. The results from the tests on the model’s

functionality and comparisons of data (sections 10.2.6 to 10.2.8) contributed to a

publication by Capanni et al., [2005].

10.3 Novel Aspects of this Research

The new contributions of this research are as follows:

• A new approach to connectionism based on the biochemistry of single celled

organisms.

This approach, Artificial BioChemical Networks, is the primary contribution in this

thesis. It has produced new time-domain units and network paradigms. These have

performed well when compared against standard, thoroughly researched and

developed, ANN models. The new models are in their infancy and they have

tremendous potential for further development. This work is presented in Chapters 6, 7

and 8.

• A highly functional advance to the neuron model based on the Taylor Series approach,

(Chapters 4 and 5).

A new model was introduced, based on mathematical theory, which was then shown to

be highly, but controllably, functional as a neuron when compared to the previous

model. This was demonstrated by a solution to the parity-bit problem which the

McCulloch-Pitts neuron is incapable of producing.

• A comprehensive theoretical and experimental consideration of the mapping abilities of

neurons in the spatial-domain, (Chapter 5).

 200

The integration of the new highly functional model into networks showed that the

neuron’s capabilities could be implemented using traditional learning algorithms, with

the potential for further improvement.

• Demonstrations of these models in modular connectionist networks.

As described in Chapter 8, the capabilities of the new models have been shown in

modular units which can produce the relevant outputs to communicate and build into a

modular connectionist system, processing both spatial and time-domain information.

• A consideration and investigation of neural functionality in the context of robotic

systems, presented in Chapters 7 and 8. As shown, the capabilities of the new models

have been shown to be of real value in practical implementations.

• A basis for further research into learning, modular networks and time-domain

connectionism, presented as part of the further work section, (Chapter 9).

10.4 Summary of Suggested Further Work

• Investigation of higher order problems solvable by the Taylor Series SLT and MLT.

• Production of order specific learning algorithms for the SLT and MLT.

• Investigation of specific target selection towards improvement in ANN noise tolerance.

• An investigation into adaptable memory in connectionist systems to produce AIs that

can adapt to changes in their environments.

• Further investigate memory in connectionist systems as a modular component

• Construct hybrid Swarm-ABN system.

• Investigate alternative methods of pulse timing in ABNs.

• Encode additional information through the inclusion of amplitude modulation in ABN

systems.

• Develop and improve the ABNw Backpropagation Algorithm.

• Combine the advanced in spatial-domain and time-domain functionality through the

development of a Taylor Series ABN.

 201

10.5 Concluding Remarks

The project has successfully incorporated and extended the findings of its own and

concurrent research, the management of which has introduced the author to a greater

understanding of research.

Although there have been difficulties to overcome in developing and complicating these

objectives, mainly in turning away from dead ends instead of forcing an ineffectual path

through, and in allowing new areas to be fully investigated by colleagues, the project has

found its own purpose and has contributed new knowledge to the field.

In particular it has provided a viable foundation for a new type of universal unit for use in

connectionist AI.

The author believes that the work in the areas of neural functionality and Artificial

BioChemical Networks are useful contributions to connectionist research.

This thesis joins a body of work which furthers the implementation of Evolutionary

Artificial Intelligence. It is hoped that the contributions of this research may be integrated

with those of associated researchers to provide innovative and exciting intelligence

capabilities in modular and diversely functional systems.

 202

References

Chapter 1

MacLeod, C., McMinn, D., Reddipogu, A., and Capanni, N., 2002. Evolution by Devolved

Action: Towards the Evolution of Systems. In Appendix B of McMinn, D., Using

Evolutionary Artificial Neural Networks to Design Hierarchical Animat Nervous Systems,

PhD thesis, The Robert Gordon University.

McMinn, D., 2002. Using Evolutionary Artificial Neural Networks to Design Hierarchical

Animat Nervous Systems. PhD thesis, The Robert Gordon University.

Minsky, M. L. and Papert, S. A., 1969. Perceptrons. expanded ed., 1990. Cambridge, MA:

MIT Press.

Muthuraman, S., 2005. The Evolution of Modular Artificial Neural Networks. PhD thesis,

The Robert Gordon University.

Chapter 2

Azam, F., 2000. Biologically Inspired Modular Neural Networks, PhD thesis, Virginia

Polytechnic Institute and State University.

Barron, A,. 1993. Universal Approximation Bounds for Superposition of a Sigmoidal

Function. IEEE Transactions of Information Theory. Vol. 39, No. 3, pp. 930-945.

Bishop, C. M., 1995. Neural Networks for Pattern Recognition, 1st edition. Oxford

University Press. pp 302-304.

Edelman, G. M., 1987. Neural Darwinism: The Theory of Neuronal Group Selection, 1st

edition. New York: Basic Books. pp. 213.

Ewart, J. P., 1987. Neuroethology of Releasing Mechanisms: Prey Catching in Toads.

Behavioral and Brain Sciences. Vol. 10, No. 3, pp. 337-367.

 203

Grossberg, S., 1976. Adaptive Pattern Classification and Universal Recoding, I: Parallel

Development and Coding of Neural Feature Detectors, Biological Cybernetics, Vol. 23, pp.

121-134.

Hornik, K., 1989. Multilayer Feedforward Networks are Universal Approximators, Neural

Networks, Vol. 2 pp 359-366.

Lansner A., Kotaleski J. H. and Grillner S., 1998. Modeling the spinal neuronal circuitry

underlying locomotion in a lower vertebrate. Annals of the New York Academy of

Sciences : Neuronal Mechanisms for Generating Locomotor Activity, Vol. 860 pp 239-

249.

Maas, W. and Bishop, C. M., 1999. Pulsed Neural Networks, 1st edition. Cambridge, MA:

MIT Press.

MacLean, P.D., 1990. The Triune Brain in Evolution : Role in Paleocerebral Functions,

1st edition. Springer.

MacLeod, C., Maxwell, G.M., McMinn, D., 1998. A Framework for Evolution of an

Animat Nervous System. In Proc. of EUREL European Advanced Robotics Systems

Development: Mobile Robots. 1-10 September 1998. Leiria, Portugal. VolumePart Paper

18.

MacLeod, C., 1999. The Synthesis of Artificial neural Networks using Single String

Evolutionary Techniques. PhD thesis, The Robert Gordon University.

MacLeod, C., McMinn, D., Reddipogu, A., and Capanni, N., 2002. Evolution by Devolved

Action: Towards the Evolution of Systems. In Appendix B of McMinn, D., Using

Evolutionary Artificial Neural Networks to Design Hierarchical Animat Nervous Systems,

PhD thesis, The Robert Gordon University.

Martin, E., ed., 1976. The Penguin Book of the Natural World. Middlesex UK. Penguin:

Harmondsworth.

 204

McMinn, D., 2002. Using Evolutionary Artificial Neural Networks to Design Hierarchical

Animat Nervous Systems. PhD thesis, The Robert Gordon University.

Muthuraman, S., 2005. The Evolution of Modular Artificial Neural Networks. PhD thesis,

The Robert Gordon University.

Potter, M. A., De Jong, K. A., and Grefenstette, J., J., 1995. A coevolutionary approach to

learning sequential decision rules. In Proc. of the Sixth International Conference on

Genetic Algorithms, July 1995, San Mateo,CA. pp. 366-372.

Reddipogu, A., Maxwell, G. and MacLeod, C., 2002. An Innovative Neural Network

Based on The Toad’s Visual System. In: Proc. of ACTIVS, Advanced Concepts for

Intelligent Vision Systems. 9-11 September 2002. Ghent, Belgium: Ghent University. pp.

144-149.

Reid, M. B., Spirkovska, L., Ochoa, E., 1989. Rapid Training of Higher-Order Neural

Networks for Invariant Pattern Recognition. In Proc. of IJCNN International Joint

Conference on Neural Networks, 4-9 May 1998, Anchorage, Alaska. Vol. 1 pp. 689–692.

Sima, J., Orponen, P., 2003. A taxonomy of neural network models - General Purpose

Computation with Neural Networks A Survey of Complexity Theoretic Results. Neural

Computation. Vol. 15, pp. 2727–2778

Thompson, A., 1996. Silicon evolution. In Proc. of Genetic Programming, 28-31 July

1996, Palo Alto. pp. 444-452.

Wasserman, P. D., 1989. Neural computing: Theory and Practice. New York: van

Nostrand Reinhold. pp. 127.

Wilson, S. W., 1991. The Animat Path to AI. Conferences in from animals to animats.

 205

Chapter 3

Bishop, C. M., 1995a. Neural Networks for Pattern Recognition, 1st edition. Oxford

University Press.

Bishop, C. M., 1995b. Neural Networks for Pattern Recognition, 1st edition. Oxford

University Press. pp. 11.

Blum, E. K. and Li, L. K., 1991. Approximation theory and feedforward networks. Neural

Networks, Vol. 4, No. 4, pp. 511–515.

Briggs, F., 2005. Universal Meta Optimization [online] Available from:

http://www.generation5.org/content/2004/UniversalMetaOptimization.asp, [Accessed 22

November 2005]

Capanni, N. F., MacLeod, C., Maxwell, G., 2003. An Approach to Evolvable Neural

Functionality. In Proc. of ICANN/ICONIP Joint International Conference on Artificial

Neural Networks and International Conference on Neural Information Processing. 26-29

June 2003. Istanbul, Turkey. Vol. 2, pp. 220-223.

Chang, C. and Cheung, J.Y., 1992. Backpropagation algorithm for higher order neural

network. In Proc. International Joint Conference Neural Networks. 7-11 June 1992.

Baltimore, MD. pp. 164–166.

Chen, M., 1991. Analyses and Design of Multi-Layer Perceptron Using Polynomial Basis

Functions. PhD thesis, The University of Texas at Arlington.

Cybenko, G., 1989. Approximation by superpositions of a sigmoidal function.

Mathematics of Control, Signals, and Systems. Vol. 2, No. 4, pp. 303-314.

De Figueiredo, R. J. P., 1980. Implications and applications of Kolmogorov’s

superposition theorem. IEEE Transactions . Automation and Control. pp 1227–1230.

 206

Duch, W. and Jankowski, N., 1997. New neural transfer functions. Applied Mathematics

and Computer Science. Vol. 7, pp. 639-658.

Elder IV, J. F., Brown, D. E., 1992. Induction and Polynomial Networks, IPC-TR-92-009,

Institute for Parallel Computation and Department of Systems Engineering, University of

Virginia, Charlottesville, VA. pp. 29.

Gurney, K., 1997a. An Introduction to Neural Networks. 1st edition. UCL Press.

Gurney, K., 1997b. An Introduction to Neural Networks. 1st edition. UCL Press. pp. 81.

Gurney, K., 1997c. An Introduction to Neural Networks. 1st edition. UCL Press. pp. 80.

Gurney, K., 1997d. An Introduction to Neural Networks. 1st edition. UCL Press. pp. 83-84.

Gurney, K., 1997e. An Introduction to Neural Networks. 1st edition. UCL Press. pp 84.

Hecht-Nielsen, R., 1987. Kolmogorov’s mapping neural network existence theorem. In

Proc. of the International Conference on Neural Networks. 1987. New York, Vol. III, pp.

11-14.

Heywood, M. and Noakes, P., 1996. A framework for improved training of Sigma-Pi

networks. IEEE Trans. Neural Networks. Vol. 6, pp. 893–903.

Hornik, K., Stinchcombe, M. and White, H., 1989. Multilayer Feedforward Networks are

Universal Approximators. Neural Networks. Vol. 2, pp. 359-366.

Kolmogorov, A.N., 1957. On the Representation of Continuous Functions of Several

Variables by Superpositions of Continuous Functions of One Variable and Addition.

Dokladi. Vol. 114. pp. 679-681.

Kurkov´a, V., 1992. Kolmogorov’s theorem and multilayer neural networks. Neural

Networks. Vol. 5, pp. 501-506.

 207

Lorentz, G. G., 1966. Approximation of Functions. New York : Holt, Rinehart, and

Winston.

Minsky, M. L. and Papert, S. A., 1969. Perceptrons. expanded ed., 1990. Cambridge, MA:

MIT Press.

Nikolaev, N. Y., 2003. Learning Polynomial Feedforward Neural Networks by Genetic

Programming and Backpropagation. IEEE Transactions on Neural Networks. Vol. 14,

No.2, pp. 337-350.

Parker, D. B., 1985. Learning logic. Technical Report TR-47, Cambridge, MA: MIT

Center for Research in Computational Economics and Management Science.

Pednault, E., 2004. Transform Regression and the Kolmogorov Superposition Theorem,

IBM T. J. Watson Research Center, New York.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J., 1986. Learning Internal

Representations by Error Propagation. Vol. 1 of Computational models of cognition and

perception. Cambridge, MA: MIT Press. Chap. 8, pp. 319-362.

Steffensen, J. F., 1950. Interpolation. New York: Chelsea Publishing Company.

Blum, E. K. and Li, L. K., 1991. Approximation theory and feedforward networks. Neural

Networks. Vol. 4(4), pp. 511–515.

Tikk, D., Kóczy, L. T. and Gedeon, T. D., 2001. A survey on the universal approximation

and its limits in soft computing techniques. Research Working Paper RWP-IT-02-2001,

School of Information Technology, Murdoch University, Perth, W.A. pp. 14.

Werbos, P. J., 1974. Beyond regression: New tools for prediction and analysis in the

behavioral sciences. PhD thesis, Harvard University, Cambridge, MA.

 208

Chapter 4

Bellman, R., 1961. Adaptive Control Processes: A Guided Tour. New Jersey: Princeton

University Press.

Bishop, C. M., 1995. Neural Networks for Pattern Recognition, 1st edition. Oxford

University Press. pp 333-338, 373-374.

Capanni, N. F., MacLeod, C., Maxwell, G., 2003. An Approach to Evolvable Neural

Functionality. In Proc. of ICANN/ICONIP Joint International Conference on Artificial

Neural Networks and International Conference on Neural Information Processing. 26-29

June 2003. Istanbul, Turkey. Vol. 2, pp. 220-223.

Ivakhnenko A.G., 1968. The Group Method of Data Handling – A rival of the Method of

Stochastic Approximation. Soviet Automatic Control. Vol. 13, No. 3.

Ivakhnenko, A.G., 1971. Polynomial Theory of Complex Systems. IEEE Transactions on

Systems, Man, Cybernetics. Vol. 1, No.4, pp. 364-378.

Levitan, I. B. and Kaczmarek, L. K., 2001. The Neuron: Cell and Molecular Biology, 2nd

edition. Oxford University Press Inc, USA. Chapter 2, pp. 23-41.

MacLeod, C., McMinn, D., Reddipogu, A., and Capanni, N., 2002. Evolution by Devolved

Action: Towards the Evolution of Systems. In Appendix B of McMinn, D., Using

Evolutionary Artificial Neural Networks to Design Hierarchical Animat Nervous Systems,

PhD thesis, The Robert Gordon University.

Thomas, G. B., Finney, R. L., 1996a. Calculus and Analytic Geometry, 9th edition.

Addison Wesley Publishing Company. Chapter 8, pp. 663.

Thomas, G. B., Finney, R. L., 1996b. Calculus and Analytic Geometry, 9th edition.

Addison Wesley Publishing Company. Chapter 8, pp. 672-673.

 209

Thomas, G. B., Finney, R. L., 1996c. Calculus and Analytic Geometry, 9th edition.

Addison Wesley Publishing Company. Chapter 8, pp. 672-673, 687.

Chapter 5

Barron, A. R., 1993. Universal approximation bounds for superpositions of a sigmoid

function. IEEE Transactions on Information Theory. Vol. 39, pp. 930–945.

Barron, 2005. pioneering and advancement of polynomial neural networks [online]

Available from: http://www.barron-associates.com, [Accessed 11 November 2005]

Bellman, R., 1961. Adaptive Control Processes: A Guided Tour. New Jersey: Princeton

University Press.

Bishop, C. M., 1995a. Neural Networks for Pattern Recognition, 1st edition. Oxford

University Press. pp. 9-14.

Bishop, C. M., 1995b. Neural Networks for Pattern Recognition, 1st edition. Oxford

University Press. pp. 134.

Bishop, C. M., 1996. Neural Networks: A Pattern Recognition Perspective. Technical

Report. NCRG. [online] Available from: http://www.ncrg.aston.ac.uk/ [Accessed 11

November 2005]

Capanni, N. F., MacLeod, C., Maxwell, G., 2003. An Approach to Evolvable Neural

Functionality. In Proc. of ICANN/ICONIP Joint International Conference on Artificial

Neural Networks and International Conference on Neural Information Processing. 26-29

June 2003. Istanbul, Turkey. Vol. 2, pp. 220-223.

Chen, M. S., 1991. Analyses and Design of Multi-Layer Perceptron Using Polynomial

Basis Functions. PhD thesis, The University of Texas at Arlington.

Cotter, N. E., 1990. The Stone-Weierstrass theorem and its application to neural networks.

IEEE Transactions on Neural Networks. Vol. 1, pp. 290-295.

 210

Pao, Y. H., 1989. Adaptive Pattern Recognition and Neural Networks, 1st edition.

Reading, MA: Addison-Wesley.

Crabbe, F., Dyer, M., 2001. Goal Directed Adaptive Behaviour in Second-Order Neural

Networks The MAXSON family of architectures. Artificial Intelligence Lab, Computer

Science Department, University of California, Los Angeles.

Duch, W. and Jankowski, N., 1999. Survey of Neural Output Functions. Neural Computing

Surveys. Vol.2, pp. 163-212.

Durbin, R. and Rumelhart, D., 1989. Product Units: A Computationally Powerful and

Biologically Plausible Extension to Backpropagation Networks. Neural Computation. Vol.

1, pp. 133–142.

Engelbrecht, A. P. and Ismail, A., 1999. Training product unit neural networks. Stability

and Control: Theory and Applications. Vol. 2, No. 1-2, pp. 59–74.

Giles, C. L., Maxwell, T., 1987. Learning, Invariance, and Generalization in High Order

Neural Networks. Applied Optics. Vol. 26, No. 23, pp. 4972.

Ivakhnenko A.G., 1968. The Group Method of Data Handling – A rival of the Method of

Stochastic Approximation. Soviet Automatic Control. Vol. 13, No. 3.

Ivakhnenko, A.G., 1971. Polynomial Theory of Complex Systems. IEEE Transactions on

Systems, Man, Cybernetics. Vol. 1, No.4, pp. 364-378.

Milenkovic, S., Obradovic, Z. and Litovski, V., 1996. Annealing Based Dynamic Learning

in Second-Order Neural Networks, Technical Report, Department of Electrical

Engineering, University of Nis, Yugoslavia.

Minsky, M. L. and Papert, S. A., 1969. Perceptrons. expanded ed., 1990. Cambridge, MA:

MIT Press.

 211

Nikolaev, N Y., 2003. Learning Polynomial Feedforward Neural Networks by Genetic

Programming and Backpropagation. IEEE Transactions on Neural Networks. Vol. 14 No.

2, pp.337-350

Qian, S., Lee, Y. C., Jones, R. D., Barnes, C. W., and Lee, K., 1990. Function

approximation with an orthogonal basis net. In Proc. of IJCNN International Joint

Conference on Neural Networks. Vol. 3, pp. 605–619.

Rumelhart, D. E., McClelland, J. L., et al., 1986. Parallel distributed processing :

explorations in the microstructure of cognition. Cambridge, MA. MIT Press.

Widrow, B. and Hoff, M., 1960. Adaptive switching circuits. In Proc. 1960 IRE WESCON

Convention Record. Vol. 4, pp. 96 - 104.

Chapter 6

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J. D., 1994a. Molecular

Biology of the Cell, 3rd edition. New York: Garland Publishing Inc. pp 24–25,. 111-135,

721-782.

Alberts, B., et al, 1994b. Molecular Biology of the Cell, 3rd edition. New York: Garland

Publishing Inc. pp 24.

Alberts, B., et al, 1994c. Molecular Biology of the Cell, 3rd edition. New York: Garland

Publishing Inc. pp 25.

Alberts, B., et al, 1994d. Molecular Biology of the Cell, 3rd edition. New York: Garland

Publishing Inc. pp 128-135, 211, 564-565.

Alberts, B., et al, 1994e. Molecular Biology of the Cell, 3rd edition. New York: Garland

Publishing Inc. pp 557-558.

Almogy, G., Stone, L., Ben-Tal, N., 2001. Multi-Stage Regulation, a Key to Reliable

Adaptive Biochemical Pathways, Biophysical Journal, Vol. 81, pp. 3016–3028.

 212

Capanni, N.F., Macleod, C., Maxwell, G., Clayton, W., 2005, Artificial BioChemical

Networks, CIMCA-IAWTIC, Joint International Conference on Computational

Intelligence for Modelling, Control and Automation and International Conference on

Intelligent Agents, Web Technologies & Internet Commerce, 28-30 November 2005.

Vienna, Austria. In Proc. IEEE special issue, Vol. 2, pp 98-102.

Chau, H. F., Yan, K. K., Wan, K. Y., and Siu, L. W. 1998. Classifying rational densities

using two one-dimensional cellular automata. The American Physical Society, Physics

Review. Vol. 57, pp. 1367–1369.

Chua, L. O., and Yang, L., 1988. Cellular neural networks: Theory and Applications. IEEE

Trans. Circuits and Systems. Vol. 35, pp. 1257-1290.

Chua, L. O., Hasler, M., Moschytz, G. S., Neirynck, J., 1995. Autonomous cellular neural

networks: A unified paradigm for pattern formation and active wave propagation. IEEE

Transactions on Circuits and Systems I: Fundamental Theory and Applications. Vol. 42,

No. 10, pp. 559-577.

Curtis, H., 1968. The Marvelous Animals: An Introduction to the Protozoa. Garden City,

N.Y., Published for the American Museum of Natural History [by] the Natural History

Press.

Dogaru, R., 2003. Universality and Emergent Computation in Cellular Neural Networks.

Cellular paradigms theory and simulation, chapter 2, World Scientific.

Elowitz, M. B., and Leibler, S., 2000. A synthetic oscillatory network of transcriptional

regulators. Letters, Nature. Vol. 403, pp. 335-338.

Gerstner, W. and Van Hemmen, J. L., 1994. How to describe neural activity - spikes, rates,

or assemblies? Advances in Neural Information Processing Systems 6. San Francisco, CA:

Morgan Kaufmann. pp. 463-470.

 213

Gerstner, W., 1995. Time structure of the activity in neural network models. Physics

Review. Vol. 51, pp. 738-758.

Gerstner, W. and Kistler, W. M., 2002a. Spiking Neuron Models. Single Neurons,

Populations, Plasticity. Cambridge University Press. Chapter 2.2.

Gerstner, W. and Kistler, W. M., 2002b. Spiking Neuron Models. Single Neurons,

Populations, Plasticity. Cambridge University Press. Chapter 2.2.1.

Gerstner, W. and Kistler, W. M., 2002c. Spiking Neuron Models. Single Neurons,

Populations, Plasticity. Cambridge University Press. Chapter 2.2.2.1.

Gontar, V., 2004. The dynamics of living and thinking systems, biological networks, and

the laws of physics. Discrete Dynamics in Nature and Society. Vol. 1, pp. 101–111.

Gurney, K., 1997. An Introduction to Neural Networks. 1st edition, UCL Press. pp. 116.

Hameroff, S., Kaszniak, A. and Scott, A., 1998. Toward a Science of Consciousness II:

The 1996 Tucson Discussions and Debates. Cambridge, MA: MIT Press. pp.421-437.

Hodgkin, A. L. and Huxley, A. F., 1952. A Quantitative Description of Membrane Current

and its Application to Conduction and Excitation in Nerve. Journal of Physiology. Vol.

117 pp 500-544.

Hodgson, B.J., Taylor, C.N., Ushio, M., Leigh, J.R., Kalganova, T., Baganz, F., 2004.

Intelligent modelling of bioprocesses: a comparison of structured and unstructured

approaches. Bioprocess Biosystems Engineering. Vol. 26, pp. 353-359.

Khiel, T. R., and Bonissone, P. P., 2003. Evolving Artificial Biochemical Reaction

Networks First Steps. In Proc. International Conference on Systems Biology. St Louis MO,

November 2003.

Maass, W., 1997. Networks of Spiking Neurons : The Third Generation of Neural Network

Models. Neural Networks. Vol. 10, pp. 1659-1671.

 214

MacLeod, C, 2004. Technical notes on spiking neurons, Technical report. The Robert

Gordon University.

MacLeod, C. and Maxwell, G., 1999. Intelligent Signal Processing. Electronics World.

Vol. 105, No. 1764, December 1999, pp. 978-981.

MacLeod, C. and Maxwell, G., 2003. Practical Neural Networks, part 4: Applications and

large Neural Nets, Elektor Electronics. Vol. 29, No. 320, April 2003, pp. 28-31.

MacLeod, C., McMinn, D., Reddipogu, A., and Capanni, N., 2002. Evolution by Devolved

Action: Towards the Evolution of Systems. In Appendix B of McMinn, D., Using

Evolutionary Artificial Neural Networks to Design Hierarchical Animat Nervous Systems,

PhD thesis, The Robert Gordon University.

McCulloch, W. S. and Pitts, W. H., 1943. A logical calculus of the ideas immanent in

nervous activity. Bulletin of Mathematical Biophysics. Vol. 5, pp. 115-133.

Sleigh, M. A., 1989. Protozoa and Other Protists. 1st edition, London: Edward Arnold.

Stein, R. B., 1967. Some models of neuronal variability. Biophysics. Journal. Vol. 7, pp.

37-68.

Thattai, M. and van Oudenaarden, A., 2002. Attenuation of Noise in Ultrasensitive

Signaling Cascades, Biophysics Journal. Vol. 82, No. 6, June 2002, pp. 2943-2950.

Vandenbunder, B., 2001. Genomics in the understanding of the mechanisms of

transcriptional regulation, Bulletin du cancer. Vol. 88, No. 3, pp. 253-60. Translated from

French.

Von Neumann, J. and Burks, A. ed., 1966. Theory of Self-Reproduction Automata,

University of Illinois Press, 1997 Translated from French.

 215

Vreeken, J., 2003. Spiking neural networks, an introduction, Technical report. Institute of

Information and Computing Sciences, Utrecht University.

Chapter 7

McMinn, D., Maxwell, G. and MacLeod, C., 2002. Evolutionary Artificial Neural

Networks for Quadruped Locomotion. In Proc. of ICANN the International Conference on

Neural Networks. 27-30 August 2002. Madrid, Spain, pp. 789 – 794.

Muthuraman, S., 2005. The Evolution of Modular Artificial Neural Networks, PhD Thesis,

The Robert Gordon University, 2004.

Palmer, A.R., Shackleton, T.M. and McAlpine D., 2002. Neural mechanisms of binaural

hearing. Tutorial, Acoustic Science & Technology. Vol. 23, No. 2.

Chapter 8

Capanni, N. F., MacLeod, C., Maxwell, G., 2003. An Approach to Evolvable Neural

Functionality. In Proc. of ICANN/ICONIP Joint International Conference on Artificial

Neural Networks and International Conference on Neural Information Processing. 26-29

June 2003. Istanbul, Turkey. Vol. 2, pp. 220-223.

McMinn, D., Maxwell, G. and MacLeod, C., 2002. Evolutionary Artificial Neural

Networks for Quadruped Locomotion. In Proc. of ICANN the International Conference on

Neural Networks. 27-30 August 2002. Madrid, Spain, pp. 789 – 794.

Minsky, M., 1961. Steps toward artificial intelligence. Proceedings Institute of Radio

Engineers. Vol. 49, pp. 8–30.

Minsky, M. L. and Papert, S. A., 1969. Perceptrons. expanded ed., 1990. Cambridge, MA:

MIT Press.

Muthuraman, S., Maxwell, G. and MacLeod, C., 2003. The Evolution of Modular

Artificial Neural Networks for Legged Robot Control. Artificial Neural Networks and

Neural Information Processing. Berlin: Springer. pp. 488-495.

 216

Muthuraman, S., 2005. The Evolution of Modular Artificial Neural Networks. PhD thesis,

The Robert Gordon University.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J., 1986. Learning Internal

Representations by Error Propagation, Vol. 1 of Computational models of cognition and

perception. Cambridge, MA: MIT Press. Chapter 8, pp. 319-362.

Samuel, A., 1957. Some studies in machine learning using the game of checkers. IBM

Journal of Research and Development. Vol. 3, pp. 210–229.

Chapter 10

Capanni, N. F., MacLeod, C., Maxwell, G., 2003. An Approach to Evolvable Neural

Functionality. In Proc. of ICANN/ICONIP Joint International Conference on Artificial

Neural Networks and International Conference on Neural Information Processing. 26-29

June 2003. Istanbul, Turkey. Vol. 2, pp. 220-223.

Capanni, N.F., Macleod, C., Maxwell, G., Clayton, W., 2005, Artificial BioChemical

Networks, CIMCA-IAWTIC, Joint International Conference on Computational

Intelligence for Modelling, Control and Automation and International Conference on

Intelligent Agents, Web Technologies & Internet Commerce, 28-30 November 2005.

Vienna, Austria. In Proc. IEEE special issue, Vol. 2, pp 98-102.

MacLeod, C., McMinn, D., Reddipogu, A., and Capanni, N., 2002. Evolution by Devolved

Action: Towards the Evolution of Systems. In Appendix B of McMinn, D., Using

Evolutionary Artificial Neural Networks to Design Hierarchical Animat Nervous Systems,

-PhD thesis, The Robert Gordon University.

McMinn, D., 2002. Using Evolutionary Artificial Neural Networks to Design Hierarchical

Animat Nervous Systems. PhD thesis, The Robert Gordon University.

Minsky, M. L. and Papert, S. A., 1969. Perceptrons. expanded ed., 1990. Cambridge, MA:

MIT Press.

 217

Muthuraman, S., 2005. The Evolution of Modular Artificial Neural Networks. PhD thesis,

The Robert Gordon University.

Appendices

Bishop, C. M., 1995. Neural Networks for Pattern Recognition, 1st edition. Oxford

University Press. pp 13-14.

Capanni, N. F., MacLeod, C., Maxwell, G., 2003. An Approach to Evolvable Neural

Functionality. In Proc. of ICANN/ICONIP Joint International Conference on Artificial

Neural Networks and International Conference on Neural Information Processing. 26-29

June 2003. Istanbul, Turkey. Vol. 2, pp. 220-223.

Chang, C. and Cheung, J. Y., 1992. Backpropagation algorithm for higher order neural

network. In Proc. International Joint Conference Neural Networks. Baltimore, MD. pp.

164–166.

Duch, W., and Jankowski, N., 1999. Survey of Neural Transfer Functions. Neural

Computing Surveys. Vol. 2, pp. 163-212.

Giles, C.L., Maxwell, T., 1987. Learning, Invariance, and Generalization in High Order

Neural Networks, Applied Optics, Vol. 26, No. 23, pp. 4972.

Haykin, S., 1999. Neural Networks, A Comprehensive Foundation, 2nd edition. Prentice

Hall. pp. 139.

Kim, D. W. and Park, G. T., 2003. A Design of EA-based Self-Organizing Polynomial

Neural Networks using Evolutionary Algorithm for Nonlinear System Modeling, Technical

report. Department of Electrical Engineering, Korea University.

Minsky, M., 1961. Steps toward artificial intelligence. Proceedings Institute of Radio

Engineers. Vol. 49, pp. 8–30.

 218

Nikolaev, N. Y., 2003. Learning Polynomial Feedforward Neural Networks by Genetic

Programming and Backpropagation. IEEE Transactions on Neural Networks. Vol. 14, No.

2, pp. 337-350.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J., 1986. Learning Internal

Representations by Error Propagation, Vol. 1 of Computational models of cognition and

perception. Cambridge, MA: MIT Press. Chapter 8, pp. 319-362.

 i

Appendix A

Papers Produced During the Research

A.1 Introduction to the Appendix

The following contains two papers:

Capanni, N.F., Macleod, C., Maxwell, G., 2003, An Approach to Evolvable Neural

Functionality, ICANN-ICONIP, Joint International Conference on Artificial Neural

Networks and International Conference on Neural Information Processing, Istanbul,

Turkey, Proc. supplementary volume for short papers, pp 220-223.

Capanni, N.F., Macleod, C., Maxwell, G., Clayton, W., 2005, Artificial BioChemical

Networks, CIMCA-IAWTIC, Joint International Conference on Computational

Intelligence for Modelling, Control and Automation and International Conference on

Intelligent Agents, Web Technologies & Internet Commerce, Vienna, Austria, Proc. IEEE

special issue, vol. 2, pp 98-102.

 ii

 iii

 iv

 v

 vi

 vii

 viii

 ix

 x

 i

Appendix B

Evolution and Devolved Action

B.1 Introduction to the Appendix

“Evolution and Devolved Action” examines the limitation of current Artificial Intelligence,

concentrating on connectionist models such as Artificial Neural Networks which are

created through Evolutionary Algorithms. The paper presents ideas on how these

limitations may be overcome and was the initial information source for this research.

 ii

 iii

 iv

 v

 vi

 vii

 viii

 ix

 x

 xi

 xii

 xiii

 xiv

 xv

 xvi

 xvii

 xviii

 xix

 xx

 xxi

 xxii

 xxiii

 xxiv

 xxv

 xxvi

 i

Appendix C

Backpropagation Algorithm, SLT Delta Rule and Pulse-
Width Backpropagation

C.1 Introduction to the Appendix

This appendix presents the Backpropagation Algorithm as used for static-domain training

of Multi-Layer Perceptrons in this thesis. A component of this algorithm is the Delta Rule,

which is used for training Single-Layer Perceptrons. A specifically derived Delta Rule is

presented; it was created and used for training Single-Layer Taylor Series networks. The

last algorithm presented is a derived version of Backpropagation, which suits the

requirements for the time-domain training of the pulse-width modulated Artificial

BioChemical Network.

C.2 The Backpropagation Algorithm

Backpropagation was introduced by Rumelhart, Hinton and Williams, [1986]. This

remains the most prevalent training method used in feed-forward networks. There have

been many improvements made to the initial method since its introduction, however the

algorithm was used in this thesis to compare the performance of different artificial units

and did not examine the assorted alternative versions of the algorithm.

Backpropagation is a gradient-following error-minimising algorithm. This means that as

the algorithm progresses the parameter alterations cause the error to follow the downwards

slope until a minimum level is reached. This error minimum is usually not encountered as

the stop criterion (a higher target error) should be found first.

()∑∑
= =

−=
m

i

n

j
ijijepoch ote

1 1

2

2
1 equation C.1

The epoch error (eepoch) is defined as in equation C.1 where there are m data-patterns. This

is called the Least Mean Square (LMS) error. Each pattern error (ep) is the sum of its

 ii

neuron errors where there are n output neurons. The neuron error is designated (en) where

n may be replaced by the specific neuron identifier.

• The epoch error is calculated each epoch and compared against the stop criterion.

• Only the neuron errors are used in the training algorithm.

Summary of the Backpropagation Algorithm operation:

Once a pattern has completed its forward pass of the MLP training begins. It is customary

to encompass all of the training from this point onwards as Backpropagation; however the

initial training on the output layer follows Perceptron training delta rules and was used

before Backpropagation was introduced.

Figure C.1 – Backpropagation of an MLP

Figure C.1 shows an MLP arrangement of nodes and neurons. Training proceeds as

follows:

• For each pattern in turn, the output neurons errors en are calculated. For the output

neurons;

 iii

()ααα outette −= arg equation C.2a

()βββ outette −= arg equation C.2b

• The errors en are used to calculate an associated parameter for each output neuron.

This assesses the change its connecting weights should undergo and incorporates the

first derivative of the output function used. In this case the logistic sigmoid. The

parameter is denoted by the lower case Greek letter delta (δ) - for the output neurons

this is;

() ααααδ eoutout ⋅−⋅= 1 equation C.3a

() ββββδ eoutout ⋅−⋅= 1 equation C.3b

• The deltas are used to calculate the new values of each connecting weight using the

Delta Rule. Weight values are designated wij where i is the connecting unit in the

previous layer and j is the current neuron. The new weight is indicated as w+. For the

above network the calculations are as follows;

AAA outww ⋅⋅+=+
ααα δη equation C.4a

Boutww BB ⋅⋅+=+
ααα δη equation C.4b

CCC outww ⋅⋅+=+
ααα δη equation C.4c

AAA outww ⋅⋅+=+
βββ δη equation C.4d

Boutww BB ⋅⋅+=+
βββ δη equation C.4e

CCC outww ⋅⋅+=+
βββ δη equation C.4f

In equations C.4 the term η is the Greek lower case eta and is a constant called the learning

rate. Usually a η ≤ 1. At this stage the weights for the output layer have been altered;

however, as indicated, Backpropagation has not been implemented.

Backpropagation refers to the method by which the error at each output node is back-

propagated to the hidden nodes so that the correct share of responsibility for this error can

 iv

be allocated and the hidden weights adjusted. This is the “credit assignment” problem

defined by Minsky [1961].

• As with the output layer the first stage in any hidden layer is to calculate the delta

values for each neuron, as follows;

() ()ββαα δδδ AAAAA wwoutout ⋅+⋅⋅−⋅= 1 equation C.5a

() ()ββαα δδδ BBBBB wwoutout ⋅+⋅⋅−⋅= 1 equation C.5b

() ()ββαα δδδ CCCCC wwoutout ⋅+⋅⋅−⋅= 1 equation C.5c

In equations C.5 the neuron error en of (targetn – outputn) is replaced by the credit

assignment term. This is the delta value of each neuron in the subsequent layer multiplied

by the strength of the connection. Using their delta terms, the new weights for each hidden

neuron are found in exactly the same method as for the output neurons.

ΩΩ
+
Ω ⋅⋅+= outww AAA δη equation C.6a

ΩΩ
+
Ω ⋅⋅+= outww BBB δη equation C.6b

ΩΩ
+
Ω ⋅⋅+= outww CCC δη equation C.6c

λλλ δη outww AAA ⋅⋅+=+ equation C.6d

λλλ δη outww BBB ⋅⋅+=+ equation C.6e

λλλ δη outww CCC ⋅⋅+=+ equation C.6f

Once these calculations are completed, exactly one pattern has been passed forward

through the network to find its outputs, and using the error calculation this pattern error has

been passed back through the network to calculate the training. After this has been done

for all patterns an epoch has occurred.

 v

C.3 SLT Delta Rule

The delta rule for a Single-Layer Taylor Series network must take into account the multiple

weights for each connection and their associated factorial and power terms.

Figure C.2 – Delta Rule of an SLT

The Delta Rule is only concerned with training an output layer. The rule used is based on

the version implemented in Backpropagation and proceeds as follows;

• For each pattern in turn, the output neurons’ errors en are calculated. For the output

neurons;

()ααα outette −= arg equation C.7a

()βββ outette −= arg equation C.7b

This is the same as for a McCulloch-Pitts neuron. This is a property of the neuron, related

to its output, and as such it is not affected by the connections to the neuron.

• The errors en are used to calculate the deltas δn for the output neurons - this is;

() ααααδ eoutout ⋅−⋅= 1 equation C.8a

() ββββδ eoutout ⋅−⋅= 1 equation C.8b

 vi

Once more as a property of the neuron this is the same as in the MP neuron.

The deltas are used to calculate the new values of each connecting weight using the Delta

Rule. This is different to the MP neuron as there are now multiple weights connecting

each neuron and node. Weight values are designated wijp where i is the connecting unit in

the previous layer, j is the current neuron and p is the order of power the weight is

connected via.

• For the above network, assuming a 2rd order implementation, the calculations are as

follows;

!1

1

11
Ω

Ω
+
Ω ⋅⋅+=

out
ww ααα δη equation C.9a

!2

2

22
Ω

Ω
+
Ω ⋅⋅+=

out
ww ααα δη equation C.9b

!1

1

11
Ω

Ω
+
Ω ⋅⋅+=

out
ww βββ δη equation C.9c

!2

2

22
Ω

Ω
+
Ω ⋅⋅+=

out
ww βββ δη equation C.9d

!1

1

11
λ

αλαλα δη out
ww ⋅⋅+=+ equation C.9e

!2

2

22
λ

αλαλα δη out
ww ⋅⋅+=+ equation C.9f

!1

1

11
λ

βλβλβ δη out
ww ⋅⋅+=+ equation C.9g

!2

2

22
λ

βλβλβ δη out
ww ⋅⋅+=+ equation C.9h

• For any weight designated wijp, the new weight can be calculated as follows;

!p

out
ww

p
i

jijpijp ⋅⋅+=+ δη equation C.10b

Once completed for every pattern, an epoch has occurred.

 vii

C.4 Pulse-Width Backpropagation

For an ABNw the Backpropagation Algorithm must consider the time-domain parameters

that accumulate the Sum value for each node. The algorithm and its derivation was

presented in Chapter 8 with future considerations presented in Chapter 9. Given an ABN

of equivalent topology to the ANN shown in figure C.1, the algorithm is summarised for

nodes α and A, all other nodes in the same layers having equivalent operation.

• The output node error en is calculated for time ti;

() ()()ii outette ααα −= arg equation C.11a

This is the same calculation as used for an Artificial Neuron once output at ti is evaluated.

• The associated delta term is calculated;

()() ()ii eoutout ααααδ ⋅−⋅= 1 equation C.12a

This is also the same as for an AN.

• The delta values are used to calculated the new signal-pathway strengths s+.

)1(−
+ ⋅⋅+= iAAA outss ααα δη equation C.13a

)1(−
+ ⋅⋅+= iBB outss Bααα δη equation C.13b

)1(−
+ ⋅⋅+= iCCC outss ααα δη equation C.13c

These calculations take into consideration that the most recent output from the previous

layer is not the correct one to use, as it was in an AN. Instead the output at the previous

time t(i-1) must be used.

At this point the output layer has been trained and the credit assignment must be made for

the hidden nodes.

 viii

• The delta for the hidden layer node A is;

() ()ββαα δδδ AAnAnAA wwoutout ⋅+⋅⋅−⋅= −−)1()1(1 equation C.14a

This delta value is used to calculate the strength of the hidden signal-pathways. In this

example the outputs from the input nodes remain constant while the data pattern is

presented. Therefore there is no need to calculate a pulse at t(i-2).

• The new hidden signal-pathway strengths s+ are;

ΩΩ
+
Ω ⋅⋅+= outss AAA δη equation C.15a

λλλ δη outss AAA ⋅⋅+=+ equation C.15b

If the previous layer was also a layer of hidden node rather than input nodes then time-

domain again becomes important.

• In this case the calculations are;

()2−ΩΩ
+
Ω ⋅⋅+= iAAA outss δη equation C.16a

()2−
+ ⋅⋅+= iAAA outss λλλ δη equation C.16b

Once completed, the ABN has relaxed for one pattern and had its signal-pathways

adjusted. After this has been done for all patterns an epoch has occurred.

 i

Appendix D

Polynomial Over-Fitting

D.1 Introduction to the Appendix

Networks composed of polynomial-type neurons have remarkable pattern recognition

abilities. These abilities may be due to their capacity to follow a decision boundary

contour far more accurately than McCulloch-Pitts neurons Duch and Jankowski, [1999].

This is attributed by Giles and Maxwell, [1987] to their modelling of the high-order

structure of the environment in which they operate. These authors also give a useful and

detailed definition of generalisation in neural networks.

D.2 Polynomial Over-Fitting

A network composed of linear separators requires an infinite number of them to exactly

map any smooth curve, whereas a polynomial may be able to follow it perfectly. Herein

lies both a functional advantage and a potential weakness.

Figure D.1 – Polynomial over-fitting

modified from [Bishop 1995]

Figure D.1(a) shows an attempt by a singe linear separator to distinguish between the

classes of open and closed circles. This results in many errors in the training-set. Figure

D.1(b) shows a single polynomial separator. This approximates the decision boundary

much better and accounts for fewer errors. If the single polynomial separator is allowed to

increase its order until it reaches a zero error, (see Figure D.1(c)), it can classify all the

training-set correctly. This shows the ability of the polynomial compared to the linear-

(a) (b) (c)

 ii

separator. It may be more apparent if the linear separator is viewed as a polynomial of first

order terms Capanni et al., [2003].

Figure D.2 – Polynomial over-fitting of smooth curve

A single polynomial is used to approximate a decision boundary such as shown in figure

D.2, and allowed to increase in order to improve its fit. This may then become prone to

over-fitting as it attempts to intersect with every training-data point and makes abrupt

changes to do so. In the example shown, the decision boundary is closely approximated by

a 2nd order polynomial. Then the order of the polynomial is increased, shown as 6th order,

until there is an exact mapping, 8th order. The neuron does exactly what it is asked to do

by the training algorithm and finds an exact solution to the training-set. The extreme

differences in the decision boundary show the inherent danger of over-fitting through the

pattern matching abilities of polynomial neurons.

There are many approaches to avoid over-fitting with higher-order networks. One method

is to evolve the order of the polynomial with an Evolutionary Algorithm while training the

EA’s parameters with another approach, such as a separate EA or a derived gradient

descent algorithm. If the fitness takes account of over-fitting then a fitness function with a

weighting factor can be used [Kim and Park, 2003]. Methods can be derived from linear

separation training to utilise error feedback, such as Backpropagation Nikolaev [2003]. In

a known problem, where there is no set formula for determining the size of the hidden

layer in a MLP, these methods can be extended to polynomial networks. If the network

size is incorrectly set and the algorithm does not allow the network to alter its size, then

over-fitting or under-fitting will occur Chang and Cheung, [1992].

actual boundary

six order approximation

eight order approximation

 iii

It is a prime requirement of networks to have good generalisation, that is to be tolerant of

noise in the training patterns. Therefore the network must either be very problem-specific

or be flexible enough to include generalisation within its training algorithm.

 i

Appendix E

Methods

E.1 Introduction to the Appendix

The experiments in this thesis used a variety of software. The main software used was

Borland C++ version 5.02. Minor simulations were assessed through Visual Basic (VB)

within Microsoft Excel 2003. Additional visual functionality was achieved with Microsoft

HTA interfaces which used HTML, CSS, JavaScript and VB. Visualisation was achieved

through Mathcad 11 Enterprise Edition and user- constructed Graphical Interfaces in

DHTML.

The algorithms used or derived have been supplied appropriately in Chapters 5 and 8 and

in Appendix C.

All the different systems required individual programmes, however the inclusion of all of

these would not benefit the thesis. As an example, supplied below are the flow charts for

the programme design of an Evolutionary Algorithm used to evolve the connectionist

networks.

 i

Start main_program

This function controls the

flow of the program. It is sub

divided into sections of

requirement specific code.

Data Format

- Parameters for the format
of the input data

Evolutionary System
Format

- The dimentions of the
Evolutionary System

setup_evolutionary_system

Initialises a random value for the
genes of the evolutionary system.

load_data

Loads the data from a file into the appropriate array.
This is a multi use function and may be overloaded.

assign_targets

Assigns a desired network output for each training pattern.
Uses separate columns binary 1 with binary 0 separators.
The number of columns = number of training patterns

darwin

Copies the fittest individual from the population to an array.

Begin Evolution Loop

matrix_produc_t3

Assigns a desired network output for each training pattern.

matrix_product_3c2v1

Assigns a desired network output for each training pattern.

test_darwin

Tests the surviving individual against test data
Displays output to screen.

c_results

Saves the population data for the current generation into a
“csv” file.

matrix functions

load_data

Recall of previously called function

next
page

next
page

next
page

next
page

 ii

test_fitness

Finds the fitness of each member of the population.
Achieved by passing each pattern through the neural
network which the evolutionary system codes and
calculating the error.

The error is measure of actual output against desired output.

Unlike backpropagation the error is calculated exclusively
on desired output minus actual output.

selection

selection returns a value for the fittest individual “minimum
error”. If sufficiently fit the break out of loop is performed.

The individuals are then reordered in decreasing fitness

crossover

The fittest 50% of individuals breed.
Each breads once with a randomly selected mate.
Self breeding is not permitted.
Crossover occurs a random (1 to 10) of times for each
mating.
No parents survive into the next generation.

mutation

Each gene in each individual is checked for mutation which
occurs at a set % chance.
Mutation changes the value of the gene by a random
amount with a set range.

Decision

Has a sufficient fitness

No

previous
page

previous
page

previous
page

previous
page

 iii

no return

(&ReD[0], &TD[0],

(&Wm0[0], &Wm1[0],

no return

(&Wm0[0], &Wm1[0],

load_data
void load_data (int a, char *fname, int b, int *matrix)

Variables
- counter (c1) int
- input file pointer FILE (*ifp)

// check file exists
// load data from file to array
for (c1 = 0; c1 < size of matrix ; c1++)
fscanf (ifp, “%1d”, &array_addr[c1])

no return

no return

(“TrData.dat”, TPn,

(“TrData.dat”, TPn,

no return

main

Data Format
- No. Training Patterns (TPn)
- No. Testing Patterns (TePn)

- No. Rows in Data
Patterns (p_r)
- No. Columns in Data
Patterns (p_c)
- No. Elements in Data
Patterns (p_e)

Network Topology
- No. Hidden Layer
Neurons (hl)
- No. Output Layer Neurons
(ol) ol = TPn

Network Operation
- Maximum no. training
cycles (max)
- Training Rate Hidden
Layer (eta_h)
- Training Rate Output
Layer (eta_o)
- Target Error (target_error)
- Bias of Neurons (bia)

Matrices

test

Variables
- counters (c1) int
- current training pattern being used (TPc) int

Matrices
- output values for hidden layer (outputs_h) [hl] double
- output values for output layer (outputs_o) [ol] double

// loop for each pattern until all patterns are tested.
while (sum_error > target_error && count < max)
// loop for each pattern
for (TPc = 0; TPc < TPn; TPc++)
// calculate output for network
// calculate output for hidden layer
net = (TD_addr[p_e]*Wm0_addr[p_e*hl])
outputs_h[hl] = 1/(1+(exp(-net)))
// calculate output for output layer
net = (outputs_h[hl]*Wm1_addr[hl*o])
outputs_o[ol] = 1/(1+(exp(-net)))
// apply binary activation
if (outputs_o[ol] > 0.5) outputs_o[ol] = 1
else outputs_o[ol] =0
// read outputs into results matrix

Functions
- void matrix_product (int, double*, int, int, int*, double*)

results

Variables
- counters (c1, c2) int
- pattern match (check) int
- no. patterns recognised (rec) int

// display results on screen
// save results to file

(&Wm0[0],
&Wm1[0]) no return

setup_matrix
void setup_matrix (int a , int b, int c,
double *matrix_0, double *matrix_1)

Variables
- counter (c1) int

// seed weights matrices with random numbers < 1.
for (c1 = 0; c1 < size of matrix ; c1++)
Wm_addr[c1] = random(100 / 100.00)

next
page

 iv

matrix_product_3c2v1
void matrix_product (double *Wm0_addr, double *Wm1_addr, int
*TD_addr)

Variables
- counters (c1, c2) int
- counter, no. training cycles (count_cycles) int
- current training pattern being used (TPc) int
- sum of errors for all patterns (sum_error = 1.0) double
- combined error for propagating error to hidden layer (c_error = 0.0)
double
- sum of weights*inputs for each neuron (net) double

Matrices
- output values for hidden layer (outputs_h) [hl] double
- output values for output layer (outputs_o) [ol] double
- error values for hidden layer (delta_h) [hl] double
- error values for output layer (delta_o) [ol] double
- change in weights for hidden layer (DELTA_h) [p_e*hl] double
- change in weights for output layer (DELTA_o) [hl*ol] double

train
void train (double *Wm0_addr, double *Wm1_addr, int *TD_addr)

Variables
- counters (c1, c2) int
- counter, no. training cycles (count_cycles) int
- current training pattern being used (TPc) int
- sum of errors for all patterns (sum_error = 1.0) double
- combined error for propagating error to hidden layer (c_error = 0.0) double

Matrices
- output values for hidden layer (outputs_h) [hl] double
- output values for output layer (outputs_o) [ol] double
- error values for hidden layer (delta_h) [hl] double
- error values for output layer (delta_o) [ol] double
- change in weights for hidden layer (DELTA_h) [p_e*hl] double
- change in weights for output layer (DELTA_o) [hl*ol] double

// loop for each pattern until error has reached target or maximum cycles have occurred.
while (sum_error > target_error && count < max)
// loop for each pattern
for (TPc = 0; TPc < TPn; TPc++)
// calculate output for network
// calculate output for hidden layer
matrix_product_3c2v1(1, p_e, hl, TPc, &outputs_h[0], &TD_addr[0], &Wm0_addr[0])
outputs_h[hl] = 1/(1+(exp(-outputs_h[hl])))
// calculate output for output layer
matrix_product_3(1, hl, ol, &outputs_o[0], &outputs_h[0], &Wm1_addr[0])
outputs_o[ol] = 1/(1+(exp(-outputs_o[ol])))
// calculate error for output layer
delta_o[o1] = outputs_o[o1]*(1-outputs_o[o1])*(Target – Output)
// calculate sum_error for network
sum_error += delta_o[o1]
// calculate change in weights for output layer
DELTA_o[hl*ol] = eta_o*delta_o[ol]*outputs_h[hl]
// calculate new weights for output layer
Wm1_addr[hl*ol] += DELTA_o[hl*ol]
// calculate error for hidden layer
c_error =+ (delta_o[ol]*Wm1_addr[hl*ol])
delta_h[hl] = outputs_h[hl]*(1-outputs_h[hl]*c_error)
// calculate change in weights for hidden layer
DELTA_h[p_e*hl] = eta_h*delta_h[hl]*TD_addr[p_e]
// calculate new weights for hidden layer
Wm0_addr[p_e*hl] += DELTA_h[p_e*hl]

Functions
- void matrix_product_3 (int, double*, int, int, int*, double*)
- void matrix_product_3c2v1(int, double*, int, int, double*, double*)

matrix_product_3
void matrix_product (double *Wm0_addr, double *Wm1_addr, int *TD_addr)

Variables
- counters (c1, c2) int
- counter, no. training cycles (count_cycles) int
- current training pattern being used (TPc) int
- sum of errors for all patterns (sum_error = 1.0) double
- combined error for propagating error to hidden layer (c_error = 0.0) double
- sum of weights*inputs for each neuron (net) double

Matrices
- output values for hidden layer (outputs_h) [hl] double
- output values for output layer (outputs_o) [ol] double
- error values for hidden layer (delta_h) [hl] double
- error values for output layer (delta_o) [ol] double
- change in weights for hidden layer (DELTA_h) [p_e*hl] double
- change in weights for output layer (DELTA_o) [hl*ol] double

previous
page

 i

Appendix F

Taylor Series Neuron Results

F.1 Introduction to the Appendix

Additional results and enlarged figures from chapter 5 are included in this appendix for

fullness and clarification. Each is placed under the title of the section which they relate

too.

From 5.2.1 Output Functions

The linear and hyperbolic tangent output functions are illustrated below.

2 1 0 1 2

0.5

1

pl x()

x

Figure F.1 – Piecewise linear function pl(x)

 equation F.1

A linear function is termed “piecewise linear” when the output is constrained to linear

operation within a region. In the example shown in figure F.1 and equation F.1, the

function is linear in the region (-0.5,0.5). Outside this region, it operates a threshold

function. Without the linear region, the function collapses to a threshold function.

This function is useful for directly reflecting the input values while preventing saturation

when very large values occur.

pl(x)=
1 if x ≥ 0.5
x if -0.5 < x < 0.5
0 if x ≤ -0.5

 ii

10 5 0 5 10

1

1

tanh x()

x

Figure F.2 – Hyperbolic tangent function tanh(x)

() ()

() ()xx

xx

ee

ee
x −

−

+
−=)tanh(equation F.2

The hyperbolic tangent is probably the second most common function. It is similar to the

logistic function with the range anti-symmetrical about the origin. The function, shown in

figure F.2 and equation F.2, has a range [-1,1]. There are some advantages to this which

are associated with training parameters. The specifics of these are reasonably well known,

[Haykin, 1999], and are not discussed further here.

The last two functions to consider are the step-logistic and step-hyperbolic tangent

functions. These take a threshold on the functions shown in figure 5.2 (logistic sigmoid

function l(x)) and figure F.2 (hyperbolic tangent function tanh(x)). The output becomes

that of figure 5.1, threshold t(x), for the sets {0,1} and {-1,1} respectively.

These functions are not usually considered as part of the training process of any network.

They are only of use if a decision output is required from a network and decimal values

provide more information than needed. These are rounded to the nearest integer output

from the relevant set.

From 5.3.1 Taylor Series Neuron Output Functions

The equations for the logistic hyperbolic tangent output function shown below, equation

F3. The range of the output is [-1,+1]. This gives output values in equation F.4 for MP

and equation F.5 for TS.

 iii

() ()

() ()SumSum

SumSum

ee

ee
Output −

−

+
−= equation F.3

()








∑+−








∑+









∑+−








∑+

==

==

+

−==
i

i
ii

i
i

i
i

ii
i

i

wxwx

wxwx

ee

ee
SfO

2

1

2

1

2

1

2

1

θθ

θθ

 equation F.4a

() ()

() ()22112211

22112211

wxwxwxwx

wxwxwxwx

ee

ee
O ++−++

++−++

+
−= θθ

θθ

 equation F.4b

()










∑ ∑+−










∑ ∑+











∑ ∑+−










∑ ∑+

= == =

= == =

+

−==
m

p i

pip
i

m

p i

pip
i

m

p i

pip
i

m

p i

pip
i

p

w
x

p

w
x

p

w
x

p

w
x

ee

ee
SfO

1

2

1

,

1

2

1

,

1

2

1

,

1

2

1

,

!!

!!

θθ

θθ

 equation F.5a














∑ 










++−














∑ 










++














∑ 










++−














∑ 










++

==

==

+

−=
m

p

ppppm

p

pppp

m

p

ppppm

p

pppp

p

w
x

p

w
x

p

w
x

p

w
x

p

w
x

p

w
x

p

w
x

p

w
x

ee

ee
O

1

,2
2

,1
1

1

,2
2

,1
1

1

,2
2

,1
1

1

,2
2

,1
1

!!!!

!!!!

θθ

θθ

 equation F.5b

From 5.4 Testing : Single Neuron Functionality

This section visualises the various separator functions in three dimensions. The x-axis and

y-axis represent the inputs (x1,x2) while the z-axis shows the output value.

From 5.4.1 McCulloch-Pitts Functions

The first simple operator is the piecewise linear separator as shown in equation F.1. The

output range is constrained in [0,1] as shown in equation F.6 and limits any values from the

input range of sum ≥ 1 or sum ≤ 0. The obvious drawback of this strategy is that a sum can

greatly exceed these values, resulting in an output value that does not directly equate to the

sum. This may result in saturation of network parameters with no direct proportional

effect on the output.

 iv

 equation F.6

Figure F.3(a,b,c) – Piecewise linear output functions

A comparison of figure F.3a with figure 5.4a shows a similar profile with a maximum and

minimum output. Figure 5.4b shows that the output separator remains linear within its

range. Figure F.3c now shows the two extreme values the outputs can take with a uniform

gradient connecting them.

The values assigned to the piecewise linear separator are critical and unexpected operation

can result in discontinuities. Such an example is shown in equation F.7.

 equation F.7

Figure F.4(a,b,c) – Piecewise linear output functions

O =
1 if S ≥ 0.5
S if S > -0.5
0 if S ≤ -0.5

O =
1 if S ≥ 1.0
S if S > 0.0
0 if S ≤ 0.0

 v

Figures F.4 show the effect of incorrect assignment of parameters. This can be utilised if

there is a purpose to it; however, the drop below the minimum value and the sudden step to

the maximum value can make behaviour erratic.

When the hyperbolic tangent sigmoid is examined, it can be seen that it is very similar to

the logistic sigmoid except that the output-plane is squashed in (-1,1).

Figure F.5(a,b,c) – Hyperbolic tangent output function

The hyperbolic tangent plane in figure F.5 is visually very similar to the logistic sigmoid.

Comparing equations 5.5 and F.3 shows similar derivation. In fact, the logistic sigmoid’s

major advantage is in calculation time, while the hyperbolic tangent’s is its anti-

symmetrical output-plane about the origin. This symmetry may assists in training. The

mathematical implication of multiplying by numbers close to 0 in the logistic sigmoid,

compared with number close to -1 in the hyperbolic tangent sigmoid, affect the rate of

convergence. Its sensitivity is as adaptable as the logistic sigmoid, figures 5.7.

Figure F.6(a,b,c) – Hyperbolic tangent output functions with ρ

As ρ → 0 or as ρ → ∞, equivalent effects occur as, seen in the logistic sigmoid function.

 vi

From 5.4.2 Taylor Series Functions

The dramatic effects produced by using input values of differing polarity are examined

below.

5.05.15.0 21 +⋅+⋅= xxSum equation F.8

Figure F.7(a,b,c) – The Sum value expressed as a skewed function of inputs

The effect of skewing the inputs in the 1st order neuron (McCulloch-Pitts) is simply to tilt

the flat plane towards the input-axis with the lower coefficient. This can be seen in

equation F.8 and as a comparison between figures 5.4 and figures F.7.








 ⋅+⋅
+⋅+⋅+=

2

0.10.1
05.105.05.0

2
2

2
1

21

xx
xxSum equation F.9

Figure F.8(a,b,c) – Sum value of 2nd order Taylor Series neuron focusing on decision

region – skewed on 1st order

 vii

In equation F.9 the 1st order terms are skewed, while the coefficients of the 2nd order terms

remain equal, the equivalent of what occurred in figures F.7. The curved plane of figures

5.10 is tilted in the same manner to give the figures F.8 and results in moving the output-

domain decision centre towards the input-axis with the lower coefficient.








 ⋅+⋅
+⋅+⋅+=

2

0.30.1
05.005.05.0

2
2

2
1

21

xx
xxSum equation F.10

Figure F.9(a,b,c) – Sum value of 2nd order Taylor Series neuron focusing on decision

region – skewed on 2nd order

Skewing 2nd order terms while keeping equal 1st order term coefficients, stretches the

decision surface along the lower coefficient input-axis, shown by figures 5.10c to F.9c.








 ⋅+⋅
+⋅+⋅+=

2

0.30.1
05.105.05.0

2
2

2
1

21

xx
xxSum equation F.11

Figure F.10(a,b,c) – Sum value of 2nd order Taylor Series neuron focusing on decision

region – skewed on same input for 1st and 2nd order

 viii

The independence of operation of the order terms is shown through skewing the 1st or 2nd

order terms on their own. The altered 1st and 2nd order terms from equation F.9 and

equation F.10 are applied simultaneously to give equation F.11. A comparison of figures

F.8, figures F.9 and figures F.10 shows the independence of the actions of the 1st and 2nd

orders. The combination of these effects are shown in Figures F.10.








 ⋅+⋅
+⋅+⋅+=

2

0.30.1
05.005.15.0

2
2

2
1

21

xx
xxSum equation F.12

Figure F.11(a,b,c) – Sum value of 2nd order Taylor Series neuron focusing on the decision

region – skewed on different inputs for 1st and 2nd order

The independence of the 1st and 2nd orders can be confirmed through figures F.11, where

the effect of the 1st order shows a movement towards the other input-axis while the effect

of the 2nd order remains the same. As the 1st order coefficients are swapped, but the 2nd

order terms remain the same, this is consistent with what is expected.

Figures F.12 to figures F.24 examining the effects of different input domain values with

added 3rd order terms. These show both the independence of the power terms and the

effect of each order on the separator.

 ix








 ⋅+⋅
+

⋅+⋅
+⋅+⋅+=

6

0.30.3

2

05.005.0
05.105.05.0

3
2

3
1

2
2

2
1

21

xxxx
xxSum

equation F.13

Figure F.12(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision

region – skewed on 1st order

In equations F.13, the 1st order terms are skewed, while the coefficients of the 2nd and 3rd

order terms remain equal. As expected, the curved plane of figures 5.11 tilts towards the

input-axis with the lower coefficient, in the same manner as before, to give the figures

F.12.








 ⋅+⋅
+

⋅+⋅
+⋅+⋅+=

6

0.30.3

2

05.105.0
05.005.05.0

3
2

3
1

2
2

2
1

21

xxxx
xxSum

 equation F.13

Figure F.13(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision

region – skewed on 2nd order

 x

When the 2nd order terms are skewed, while the coefficients of the 1st and 3rd order terms

remain equal, the decision surface is once more stretched along the input-axis with the

lower coefficient.








 ⋅+⋅
+

⋅+⋅
+⋅+⋅+=

6

0.90.3

2

05.005.0
05.005.05.0

3
2

3
1

2
2

2
1

21

xxxx
xxSum

equation F.15

Figure F.14(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision

region – skewed on 3rd order

From the effect of skewing the 1st or 2nd order terms on their own, it is observable that they

affect different aspects of the 3rd order decision surface in the same manner as they did for

the 2nd order Taylor Series neuron. When the 3rd order is skewed the effect is to stretch the

decision surface in the manner of the 2nd order; however, it is stretched with respect to the

underlying 1st and 2nd order curved-plane, so the gradient of the 3rd order curve is affected

as is its proximity to the axis along which it is stretched.

Equations F.16 to F.25 and their accompanying figures F.15 to F.24 show all the variation

of skewing the coefficients of the orders 1st, 2nd, 3rd of powers with respect to the input

terms (x1,x2).

 xi








 ⋅+⋅
+

⋅+⋅
+⋅+⋅+=

6

0.30.3

2

05.105.0
05.105.05.0

3
2

3
1

2
2

2
1

21

xxxx
xxSum

equation F.16

Figure F.15(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision

region – skewed on same inputs for 1st and 2nd order








 ⋅+⋅
+

⋅+⋅
+⋅+⋅+=

6

0.90.3

2

05.005.0
05.105.05.0

3
2

3
1

2
2

2
1

21

xxxx
xxSum

equation F.17

Figure F.16(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision

region – skewed on same inputs for 1st and 3rd order

 xii








 ⋅+⋅
+

⋅+⋅
+⋅+⋅+=

6

0.90.3

2

05.105.0
05.005.05.0

3
2

3
1

2
2

2
1

21

xxxx
xxSum

equation F.18

Figure F.17(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision

region – skewed on same inputs for 2nd and 3rd order








 ⋅+⋅
+

⋅+⋅
+⋅+⋅+=

6

0.90.3

2

05.105.0
05.105.05.0

3
2

3
1

2
2

2
1

21

xxxx
xxSum

equation F.19

Figure F.18(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision

region – skewed on same inputs for 1st and 2nd and 3rd order

 xiii








 ⋅+⋅
+

⋅+⋅
+⋅+⋅+=

6

0.30.3

2

05.005.1
05.105.05.0

3
2

3
1

2
2

2
1

21

xxxx
xxSum

equation F.20

Figure F.19(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision

region – skewed on different inputs for 1st and 2nd order








 ⋅+⋅
+

⋅+⋅
+⋅+⋅+=

6

0.30.9

2

05.005.0
05.105.05.0

3
2

3
1

2
2

2
1

21

xxxx
xxSum

equation F.21

Figure F.20(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision

region – skewed on different inputs for 1st and 3rd order

 xiv








 ⋅+⋅
+

⋅+⋅
+⋅+⋅+=

6

0.30.9

2

05.105.0
05.005.05.0

3
2

3
1

2
2

2
1

21

xxxx
xxSum

equation F.22

Figure F.21(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision

region – skewed on different inputs for 2nd and 3rd order








 ⋅+⋅
+

⋅+⋅
+⋅+⋅+=

6

0.30.9

2

05.005.1
05.105.05.0

3
2

3
1

2
2

2
1

21

xxxx
xxSum

equation F.23

Figure F.22(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision

region – skewed on different inputs for 1st and same 2nd and 3rd order

 xv








 ⋅+⋅
+

⋅+⋅
+⋅+⋅+=

6

0.90.3

2

05.005.1
05.105.05.0

3
2

3
1

2
2

2
1

21

xxxx
xxSum

equation F.24

Figure F.23(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on decision

region – skewed on inputs for same 1st and 3rd and different 2nd order








 ⋅+⋅
+

⋅+⋅
+⋅+⋅+=

6

0.30.9

2

05.105.0
05.105.05.0

3
2

3
1

2
2

2
1

21

xxxx
xxSum

equation F.25

Figure F.24(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on decision

region – skewed on inputs for same 1st and 2nd and different 3rd order

The above figures demonstrate the flexibility of the Taylor Series neuron, showing that the

variation in the coefficients is independent. Thus allowing control of the neuron while

permitting exploitation all the variation of the output-domain.

 xvi

From Taylor Series neuron - mixed orders.








 ⋅+⋅−
+

⋅−⋅
+⋅−⋅+=

6

5.15.1

2

005.005.0
05.005.05.0

3
2

3
1

2
2

2
1

21

xxxx
xxSum

equation F.26

Figure F.25(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision

region with opposing polarity of various coefficients








 ⋅+⋅
+⋅+⋅−=

2

0.35.0
15.195.05.0

2
2

2
1

21

xx
xxSum equation F.27

Figure F.26(a,b,c) – Sum value of 2nd order Taylor Series neuron focusing on the decision

region with opposing polarity of 1st order coefficients

 xvii








 ⋅+⋅
+

⋅+⋅
+⋅−⋅−=

6

79.526.4

2

70.122.1
06.011.05.0

3
2

3
1

2
2

2
1

21

xxxx
xxSum

equation F.28

Figure F.27(a,b,c) – Sum value of 3rd order Taylor Series neuron focusing on the decision

region with negative polarity of 1st order coefficients

 xviii

From Taylor Series neuron –output functions.

The output functions are applied to the 2nd order Taylor Series neuron as expressed in

equation 5.11 and shown in figures 5.10.

Figure F.28(a,b,c) – Piecewise linear output functions

Figure F.29(a,b,c) – Hyperbolic tangent output functions

The same output functions are now applied to the 3rd order Taylor Series neuron as

expressed in equation 5.12 and shown in figures 5.11.

Figure F.30(a,b,c) – Piecewise linear output functions

 xix

Figure F.31(a,b,c) – Hyperbolic tangent output functions

 xx

Figure 5.31a – Comparison of error vs. epoch for SLP and SLT networks

 xxi

Figure 5.31b – Comparison of error vs. epoch for SLP and SLT networks

epoch ≥ 99

 xxii

Figure 5.33a – Comparison of error vs. noise% for SLP and SLT networks

network inputs є {0,1}

 xxiii

Figure 5.33b – Comparison of error vs. noise% for SLP and SLT networks

network inputs є {0.1,0.9}

 xxiv

Figure 5.34 – Comparison of error vs. noise% for SLP and SLT networks

network inputs є {0,1} - targets є {0.1,0.9}

 xxv

Figure 5.35 – Comparison of error vs. noise% for SLP and SLT networks

network inputs є [0,1] - targets є {0,1}

 xxvi

Figure 5.40 – Time-Series exponential decay – theoretical output

 xxvii

Figure 5.41 – Time-Series exponential decay - achieved

 i

Appendix G

Artificial BioChemical Networks Results

G.1 Introduction to the Appendix

Additional results and enlarged figures from chapter 8 are included in this appendix for

fullness and clarification. Each is placed under the title of the section which they relate

too.

From 8.2.2 Successful ABNw – Trained using a GA – Success

Figure G.1 – ABNw-GA output pulse – pattern 1

 ii

Figure G.2 G.3 – ABNw-GA output pulse – pattern 2,3

Figure G.4 – ABNw-GA output ticks – pattern 1

 iii

Figure G.5 – ABNw-GA output ticks – pattern 2

Figure G.6 – ABNw-GA output ticks – pattern 3

 iv

From 8.2.8 ABNw – Trained using a GA - Results of Noise Tolerance

Figure G.7 – ABNw-GA output pulse - noise 45%,46% – pattern 1

Figure G.8 – ABNw-GA output pulse - noise 45%,46% – pattern 2

 v

Figure G.9 – ABNw-GA output pulse - noise 45%,46% – pattern 3

Figure G.10 – ABNw-GA output pulse - noise 14%,15% - pattern 0

 vi

Figure G.11 – ABNw-GA output pulse - noise 25%,26% - patterns 0,3

Figure G.12 – ABNw-GA output pulse - noise 0%,5% - pattern 1

 vii

From 8.3.4 Comparison of ABNw – BP and ABNw – GA

Figure G.13 – ABNw-BP output pulse – pattern 1

Figure G.14, G.15 – ABNw-BP output pulse – patterns 2,3

 viii

Figure G.16 – ABNw-BP output ticks – pattern 1

Figure G.17 – ABNw-BP output ticks – pattern 2

 ix

Figure G.18 – ABNw-BP output ticks – pattern 3

Figure G.19, G.20, G.21 – ABNw-BP hidden nodes – patterns 1,2,3

 x

Figure G.22 – ABNw-BP output pulse - target eABN 0.5 - noise 0%,5% - pattern 1

Figure G.23 – ABNw-BP output pulse - target eABN 0.5 - noise 0%,5% - pattern 2

 xi

Figure G.24 – ABNw-BP output pulse - target eABN 0.5 - noise 0%,5% - pattern 3

Figure G.25 – ABNw-BP output pulse - target eABN 0.05 - noise 0%,5% - pattern 1

 xii

Figure G.26 – ABNw-BP output pulse - target eABN 0.05 - noise 0%,5% - pattern 2

Figure G.27 – ABNw-BP output pulse - target eABN 0.05 - noise 0%,5% - pattern 3

 xiii

From 8.5.2 Successful ABNF – GA Implementation

Figure G.28 – ABNF-GA output pulse – pattern 1

Figure G.29, G.30 – ABNF-GA output pulse – patterns 2,3

 xiv

Figure G.31 – ABNF-GA output ticks – pattern 1

Figure G.32, G.33 – ABNF-GA output ticks – patterns 2,3

 xv

From 8.5.8 ABNF – Trained using a GA - Noise Tolerance

Figure G.34 – ABNF-GA output pulse - target eABN 0.5 - noise 0% - pattern 1

Figure G.35, G.36 – ABNF-GA output pulse - target eABN 0.5 - noise 0% - patterns 2,3

 xvi

Figure G.37, G.38 – ABNF-GA output pulse - target eABN 0.5 - noise 15% - patterns 2,3

Figure G.39 – ABNF-GA output pulse - target eABN 0.5 - noise 25% - pattern 0

 xvii

Figure G.40, G.41 – ABNF-GA output pulse - target eABN 0.5 - noise 36% - patterns 2,3

