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Abstract

In numerous applications and especially in the life science domain, examples

are labelled at a higher level of granularity. For example, binary classifica-

tion is dominant in many of these datasets, with the positive class denoting

the existence of a particular disease in medical diagnosis applications. Such

labelling does not depict the reality of having different categories of the same

disease; a fact evidenced in the continuous research in root causes and varia-

tions of symptoms in a number of diseases. In a quest to enhance such diagnosis,

datasests were decomposed using clustering of each class to reveal hidden cat-

egories. We then apply the widely adopted ensemble classification technique

Random Forests. Such class decomposition has two advantages: (1) diversifica-

tion of the input that enhances the ensemble classification; and (2) improving

class separability, easing the follow-up classification process. However, to be able

to apply Random Forests on such class decomposed data, three main parame-

ters need to be set: number of trees forming the ensemble, number of features to

split on at each node, and a vector representing the number of clusters in each

class. The large search space for tuning these parameters has motivated the use

of Genetic Algorithm to optimise the solution. A thorough experimental study

on 22 real datasets was conducted, predominantly in a variety of life science

applications. To prove the applicability of the method to other areas of appli-

cation, the proposed method was tested on a number of datasets from other
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domains. Three variations of Random Forests including the proposed method

as well as a boosting ensemble classifier were used in the experimental study.

The results prove the superiority of the proposed method in boosting up the

accuracy.

Keywords: Random Forests, Genetic Algorithm, Class Decomposition, Life

Science

1. Introduction

Class decomposition is the process breaking down labelled datasets to a

larger number of subclasses by means of applying clustering to the instances

that belong to one class at a time. As such, the decomposition can be applied

to one or more classe(s) in the data set. A typical scenario is illustrated in5

Figure 1 where a binary dataset S has been decomposed into multiple class

problem (S’ ). Class decomposition can be traced back to 2003 when suggested

to mitigate the issue of low variance classification methods [37]. However, it

has been proposed in the context of biomedical data mining, as a data pre-

processing phase for supervised learning. The motive is that genuine subclasses10

can be detected, and as such the accuracy of the classification process can be

enhanced. Taking two stages of development in this area of application, the work

reported in [31] represents the first stage, it has bee applied to the positive class

only of a number of biomedical datasets. In [18], the second stage is represented

by generalising the class decomposition to all the classes in medical diagnosis15

data sets.

In [18], Random Forests over class decomposed medical diagnosis data sets

has been adopted as recent experimental studies showed its favourable results

over other state-of-the-art methods [20]. In addition to the motive of finding

genuine subclasses, the diversification of the data set originated from the pro-20

cess of class decomposition can further enhance the performance of ensemble

classification methods, which in this case are represented by Random Forests.

As such, it is desirable to apply class decomposition to all classes, even if the

2
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cluster separation is not maximised with the decomposition process. However,

class decomposition adds up a number of parameter settings that are equiva-25

lent to the number of classes. Each decomposed class can be clustered in one

(the special case of not applying class decomposition to a particular class) or

more subclasses. In [18], a simple setting where all classes are decomposed to

the same number of clusters was used. A typical settings is shown in Figure 1

where each class (A and B) in the data set S has been decomposed into two30

subclasses (Ac1, Ac2, andBc1, Bc2) resulting in a new decomposed data set S’.

Although this simplifies the setting, it is unlikely that this would yield the best

possible results. Additionally Random Forests comes with its own parameters.

Mainly the two effective settings of Random Forests is the number of trees in

the ensemble, and the number of features to be assessed for goodness at each35

split point of any tree. More details about Random Forests and its parameters

are covered in the background section of this paper.

Figure 1: Class decomposition

Realising that setting the parameters for Random Forests over class decom-

posed datasets with its settings of number of clusters is an optimisation problem

with a large search space, Genetic Algorithm is adopted to set all the parame-40

ters. Genetic Algorithm is superior to other optimisation methods when there

3
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are a relatively large number of local optima, which is the case in this problem.

The search space is exponential in the number of classes available in the data

set. If the range of setting the number of subclasses is r, where r ∈ N, the

number of classes in the data set is nClasses, the |mtry| is the range for the45

number of features to use to split on at each node, and |ntree| is the range

of the number of trees in the Random Forests ensemble, the search space is in

O(rnClasses|mtry||ntree|). For example, for a modest classification problem, if

r = 10 (the number of subclasses attempted for each class ranges from 1 to 10),

c = 5 (the number of classes is 5), |mtry| = 10 (the range of the number of50

features used to split on at each node), |ntree| = 100 (the range of the number

of trees that form the ensemble), the search space is 105 × 10 × 100, resulting

in a large search space of 108 solutions. The contributions of this paper can be

summarised as follows.

• Optimisation of Random Forests parameters applied to class decomposed55

datasets using Genetic Algorithm. These are the number of trees and the

number of features;

• optimisation of the class decomposition parameters by varying the setting

of number of classes; and

• experimental validation of the proposed technique when applied to 2260

datasets, mostly in the area of life sciences with emphasis on biomedical

datasets, with exception of a number of datasets from other domains to

prove the general applicability of the method.

The paper is organised as follows. Section 2 gives the necessary background

of the computational intelligence and machine learning methods adopted in this65

research, namely, Random Forests and Genetic Algorithm. Section 3 reviews

related work and contextualise the research accordingly. The proposed methods

used in conducting the work have been detailed in Section 4. Section 5 provides

a presentation of the experimental work and the results. Finally, the paper is

concluded in Section 6 with a summary and possible directions for future work.70
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2. Background

2.1. Random Forests

Ensemble classification methods have passed the test of time, and proved to

be highly accurate prediction and classification techniques. According to the

winning solutions in Kaggle1, the state-of-the-art ensemble methods are Ran-75

dom Forests [11, 13] and Gradient Boosting trees [22]. Random Forests has

proved superiority experimentally when compared with all widely adopted clas-

sifiers including Gradient Boosting trees [20]. As an ensemble method, Random

Forests adopts two methods for model diversification: (1) bootstrap sampling

that applies sampling with replacement generating what is known as data repli-80

cas; and (2) each tree in the random forests chooses its node splits from a subset

of the total number of features. The bootstrap sampling in the context of en-

semble classification is referred to as Bagging [10]. Typically Random Forests

would need two parameters to set, namely, the number of trees and number

of features assessed for goodness of split at each node in the tree. As a rule85

of thumb, the number of trees is set between 100 and 500, and the number of

features is set
√
n or log2(n) where n is the total number of features in a data

set.

A number of extensions have been proposed to further enhance the perfor-

mance of Random Forests [19]. In [15], the authors addressed a number of90

Big Data problems adopting Random Forests arguing for its robustness as a

classifier. Problems addressed are oversampling, undersampling, cost sensitiv-

ity resulting, in class imbalancing. MapReduce was used varying a number of

settings. None of the adopted methods has shown superiority out of the exten-

sive experimental study conduced in this work. In [39], the authors reported an95

improvement in the accuracy of going-concern prediction by using a hybrid Ran-

dom Forests and rough set theory approach. Random Forests is used for feature

1Kaggle is a platform that hosts and runs machine learning competitions (https://www.

kaggle.com/)
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selection, before the rough set method generates meaningful rules. However,

none of these methods prevailed to the point to replace the original technique,

despite the slightly enhanced results reported in various papers. In a recent100

publication it has been reported that Random Forest outperformed most of

the state-of-the-art machine learning techniques in security related-application.

The authors in [33] used Random Forest with weighted voting scheme along

with Principle Component Analysis (PCA) to detect database access anoma-

lies, results showed that the proposed method improved false positive and false105

negative rates and the overall accuracy of the classifier.

More recently, Random Forest gained more popularity in machine vision and

visual classification tasks classification tasks [28], [32] and [25]. For example in

[25] the authors proposed to decompose the multi-class classification problem

into a binary classification problem in order to be solved by standard binary110

classifiers. Evaluation on visual classification related tasks showed improvement

in the accuracy.

2.2. Genetic Algorithm

Genetic Algorithm (GA) is the most widely used meta-heuristic approach

for hard optimisation problems [9, 38, 16]. As the name suggests, GA tries to115

emulate the genetic evolutionary process. It starts by an initial population with

each individual solution is represented by a chromosome. The chromosome

is decoded in most cases as a fixed-length binary string. Each chromosome

is evaluated using a fitness function designed to measure the goodness of the

solution. The value of this fitness function identifies the survivors of the current120

population, that represent the parents for the following population. Two basic

operations are usually adopted as the solution strategy to generate the new

population, namely, crossover and mutation.

Crossover is applied on two chromosomes at a time from the parents. Mainly

a point in the binary string is identified randomly cutting the two chromosomes,125

each into two pieces, and a swap between the chromosomes is applied with

crossing (i.e., the first part of one chromosome is used as the second part in the

6
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other one). After crossover is applied, mutation is used to generate randomness

in the solution space. It is used on one chromosome at a time flipping one of its

bits. As such, the (healthy) parents generate a new population. The process is130

then repeated for a pre-set number of populations. Numerous variants of this

process have been proposed in the literature [14].

3. Related Work

Class decomposition was first proposed as a way to reduce bias in classi-

fiers with high bias and low variance [37]. Noting that such classifiers cannot135

draw boundaries among complex class structures. Clustering is applied to ease

such complexity. The technique is applied only on single classifier systems,

namely, Naive Bayes, and Support Vector Machine (SVM). Clustering was ap-

plied with a process that allows possible merging of the generated clusters, such

that boundaries can be easily drawn among the new classes. This allows high140

bias classifiers to perform better. As such the quality of the clustering process in

terms of cluster separation is not the ultimate goal for this research. However,

more recently, in [31], the notion of class decomposition applied to biomedical

datasets was proposed. The motivation in this case was that the intuition that

genuine subclasses can be found in positive classes in binary biomedical datasets145

(medical diagnosis). As such, the work in [31] used class separation as the main

criteria for determining the value of the class decomposed clusters. Also it was

assumed that genuine subclasses can only be found in positive classes. Those

two arguments were debated in [18]. Applying class decomposition to only the

positive class does not address the problem of false alarms, when a negative150

example is classified as positive. Although finding clusters with a good sepa-

ration can enhance the classification process, it is not always desirable as the

performance relies on the adopted classifier. As it is shown in [37], high bias

classifiers can perform better if the decomposed clusters are re-merged. In [18],

it has also been argued that class decomposition coupled with Random Forests155

can give the advantage of enhancing the diversification of the data set. Thus,

7
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cluster separation was deemed insignificant. Favourable results were reported

for applying class decomposition on medical diagnosis datasets in [18, 31]. How-

ever, the issue of optimal setting of class decomposition and Random Forests

parameters remains an open research question. This issue is addressed in this160

paper by adopting Genetic Algorithm.

Class decomposition was also reported in [23] by a means of a very fast neural

network based method. Applying this technique, neurons adjust themselves

with each incoming observation, allowing classification of non-linearly separable

classes through incremental adjustment and addition of neurons. Although the165

method needs only one pass over the data set, it can be easily affected by

noise and may lead to overfitting. The model itself can decompose classes to its

components, but as noise is modelled, the number of subclasses is not optimised.

Furthermore, decoupling of decomposition and classification processes as applied

in this paper allows only genuine clusters to be detected.170

Genetic Algorithm has been used in different ways for optimising Random

Forests. For example, in [8], each chromosome was a Random Forests solu-

tion with a variety of trees. Applying the solution strategy described in the

background section of this paper, different solutions are generated and assessed.

However, the optimisation of the number of features was not addressed. Also175

the number of trees was not optimised directly, but a variable length chromo-

some was used allowing navigation in this solution space. Favourable results

were reported. Another example is reported in [6], where Genetic Algorithm

was used as a feature selection phase to find the optimal set of features before

applying Random Forests on the reduced feature space. The proposed method180

was applied to a lymph disease data set. The method has proved its applica-

bility with a clear boost in accuracy over a number of other feature selection

methods.

Applying machine learning in medical diagnosis has been widely reported in

the literature. Recently, Azar et al [5] have thoroughly experimented a number185

of support vector machines (SVM) classifiers applied to breast cancer mammog-

raphy data. It was concluded from this study that linear programming support

8
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vector machines (LPSVM) is superior in diagnosis aid. Results of adopting deci-

sion trees and ensemble of trees on the same data set have been reported in [4].

The study concluded that Random Forests is the most accurate method when190

compared with single tree classifiers and ensemble of boosted trees. In this pa-

per, it is argued that we can further boost the accuracy of Random Forests when

an optimised setting of class decomposition is applied. As aforementioned, class

decomposition can detect subclasses, resulting in better organisation of class

separability.195

4. Methods

The two most critical parameters that define the performances of Random

Forests are the number of trees (ntrees) used in each forest, and the number

of features used at each split (mtry). In this paper, it is aimed to optimise

(ntrees,mtry) along with the parameter k which defines the number of clusters200

per class in the data set. The hypothesis deriving the work reported in the

paper is that by decomposing the observations within each class of a particular

data set, the structure of non-linearly separable data is eased, and hence the

predictive accuracy of Random Forests is boosted up.

4.1. Class Decomposition205

Decomposing the classes of a particular data set into subclasses will be achieved

by means of k-means clustering algorithm. Here, clustering will be used to de-

compose a particular class into a set of k -subclasses. By decomposing the class

into a set of subclasses (clusters), the aim is to find the within-class similarities

between different instances/observations of a data set and group them accord-210

ingly. With this approach, diversity is enhanced in the data set, and thereby

the classification accuracy is improved.

To illustrate the idea of diversifying a search space by decomposing class

labels within a particular data set, consider the classical hand-written digit

recognition set. In such a data set, a digit 8 could be written in so many215
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different ways, which may or may not share common characteristics, hence de-

composing the set of instances that are labelled as 8 into a set of clusters that

share certain characteristics may certainly improve diversity and consequently

improve classification accuracy. Similarly, in a medical data set with hundreds

or thousands of observations, assume that each of these observations is labelled220

to indicate whether a disease is present or not (i.e. 1 or 0 respectively). Further

class decomposition could be applied and may lead to better representation of

the data (i.e. a disease is present and mild, present and severe, etc).

Formally, consider the scenario depicted in Equation 1, where X represents

a set of observations, each is defined by a set of n features, and Y is the class225

labels set

X =




x11 x12 ..., x1n

... x22 ..., ...

... ... ... ...

xm1 ... ..., xmn



, Y =




y1

..

..

ym



, (1)

Now, for simplicity, lets assume that this is a binary classification that rep-

resents a medical data set and that Y ∈ {1, 0}, which respectively represents

the presence or absence of a certain type of cancerous disease. Clearly, decom-

posing the set Y into Y
′

will result in a larger set of classes that captures more230

variations within classes, i.e. |Y ′ | > |Y | (where |Y ′ |, |Y | represent the number of

unique class labels in the sets Y
′
, Y respectively) and hence more diverse search

space. Some techniques reported in the literature have already shown some

improvement in classification accuracy when applying class-decomposition to

datasets, such as [18] and [31], however, one of the main unanswered questions235

in this respect, is which class to decompose, and the number of subclasses in

the decomposed class. For example in [31] only positive classes were considered,

while in [18] all classes were decomposed using a fixed number of clusters that

was experimentally set, as previously discussed in the related work section. To

answer the aforementioned questions, in this paper, the well-known stochastic240

meta-heuristic algorithm, namely Genetic Algorithm (GA) is utilised.

10
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Consider Equation 1, for any machine learning algorithm, the objective is

to find a function h(x), that maps each instance in X to its label in the set Y

correctly. The ultimate aim is to maximise the accuracy of h(x) by optimising

a set of parameters. Among these parameters are the k values that will define245

the new class set (Y
′
),

Y
′

= (ykvalue1 , .., ykvaluei , ...ykvaluem , ..., ykvalueL ) (2)

Where L represents the number of discrete classes in the data set and ykvaluei

implies that the ith class in the set Y will be decomposed into kvalue subclasses

and kvalue is defined as in Equation 3

1 ≤ kvalue ≤ max, kvalue ∈ N (3)

Notice that kvalue here could take any value that ranges from 1 which250

means apply no decomposition (i.e. clustering) to this class, all the way up to a

maxK as will be defined in the following sections. It is worth pointing out that

with such an arrangement, for any classifier h(x) where x belongs to class yi ,

h(x) = yij is considered as a correct classification ∀j ∈ yi subclasses. For further

illustration, lets consider a binary classification problem (i.e. X in Equation 1)255

and suppose that X contains 100 observation with a label set Y ∈ {a, b}, and

suppose that we decomposed its first class label into two subclasses, and the 2nd

class label into 3 subclasses. In addition, let’s assume that a machine learning

algorithm φ is applied which resulted in a classifier hc with a 100% accuracy

represented in the form of a confusion matrix as can be seen in Equation 4.260

hc =




a1 a2 b1 b2 b3

a1 10 5 0 0 0

a2 4 31 0 0 0

b1 0 0 8 6 10

b2 0 0 9 1 16

b3 0 0 2 17 7




(4)
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Notice that, the confusion matrix shown in Equation 4 is often used to

compute the accuracy of a classifier by summing all elements at the diagonal

and dividing it by the total number of observations (i.e.
∑n

i=1 hii

M ). However,

the accuracy of hc denoted by Accuracy(hc)is computed in a slightly different

way to account for the decomposition of the classes in the data set (Equation5).265

Accuracy(h) =

∑nClasses
i=0

∑ki

j=0 hc(i, j + [ki−1 ∗ i])
m

(5)

Where m is the number of observations (i.e. 100), and nClasses represents

the number of discrete classes in the data set, while ki represents the number of

clusters applied to each class as will be discussed in the next section. In short,

Equation 5 will result in summing all the bold elements of the confusion matrix

in Equation 4.270

4.2. Optimised Random Forests

As discussed earlier the two most critical parameters that define the performance

of Random Forests are the number of trees (ntrees) used in each forest, and the

number features used at each split (mtry). Recall that the aim is to optimise

these two parameters along with the set of clusters to be applied at each class275

label in a particular data set (i.e. the kvalue/s as formulated in Equation 2).

In doing so, Genetic Algorithm is adopted to optimise these parameters.

4.2.1. Chromosome representation

For any particular data set X with a set of observations and a set of classes

Y that defines these observations (see Equation 1), and assuming that Y has

m unique classes, then a real-valued feature vector V that represents the set

of parameters to be optimised in order to maximise the accuracy of Random

Forests is as shown in Equation 6.

V =
[
yk11 yk22 . . ykLm−1 ykLm mtry ntrees

]
(6)

where yi ∈ Y and ki represents the k value that will be set to cluster the ith

class into k subsets. It is clear that by this arrangement, we are not only deciding280

12
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the optimal k value for each class, but also which class will be decomposed. For

example, if k was set to be equal to 1, then this simply means that no class

decomposition will be applied to this particular class.

4.2.2. Solution Population

Equation 6 represents the solution representation that will be used to popu-285

late the GA population. In other words, an initial random set of solutions will be

generated to represent different settings in order to optimise Random Forests,

this population of solutions will then be evolved over a set of generations to

improve and optimise the parameters and reach near-optimal settings.

Let’s consider the Parkinson data set [27], which contains a set of obser-290

vations about people, each of them is defined by a set of attributes (23) and

labelled as either healthy or having a Parkinson Disease (PD). A typical initial

populations of solution may look like the one in Table 2.

Table 1: Typical Solutions in a GA population

No Healthykvalue PDkvalue nTrees MTRY

1 1 2 390 5

2 5 1 450 12

3 3 2 350 7

.. . . ... .

size . . ... .

As can be seen in Table 3 Healthykvalue column represents the kvalues that

the first class in the data set may take. Similarly, PDkvalue denotes the kvalues295

that may be applied to the second class in the data set (PD). It is also clear that

the solution space will depend on the total number of classes that represents the

data set. It is important to stress out here that a set of constraints are applied for

the values that can appear within the solution representations. These include,

the range of values that kvalue can take, which was constrained as follows:300

1 ≤ kvalue ≤ 10 (7)

13
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According to Equation 7 The max k value has been set to equal 10, because

conducted experiments in this work in addition to previous work (i.e [18] and

[31]) have shown that increasing the k value beyond 10 will not have significant

impact on improving the results.

The number of trees has been set to range between 100 and 1000 (i.e. 100 ≤305

ntrees ≤ 1000). It was proven experimentally that the accuracy of the Random

Forests do not significantly improve when increasing the number of trees beyond

500 to 1000 trees [11] therefore we set the maximum number of trees to be 1000.

At the same time we set the minimum number of trees to 100.

Finally, in Equation 8, the set of values that can be assigned to mtry is set

as follows:

d0.2× ne ≤ mtry ≤ d0.8× ne (8)

where n is the total number of attributes in the data set. Notice that this range310

will include the default settings for the Random Forests (i.e.
√
n, or log2(n))

all the way up to 80% of the total number of attributes.

4.2.3. Fitness Function

GA evolves the solutions iteratively and often starts with a randomly gen-

erated set of solutions (population), as aforementioned. Then, this population315

is evolved over a set of iterations, where at each of them the fitness (quality)

of each solution is evaluated. The design of the fitness function is critical to

the success and convergence of the GA to a good solution. In this paper, this

function (Algorithm 1) is designed to compute the classification accuracy of the

Random Forests.320
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Algorithm 1 Compute the fitness of a solution

Data: Dataset, Chromosome

Result: Accuracy of the Random Forests

begin
A←− Dataset;

/* Decode the chromosome solution */

kvalues, ntrees,mtry ←− decode(Chromosome);
Ac ←− decomposeSet(A, kvalues);
model←− fitRF (Ac, ntrees,mtry);

Accuracy ←− evaluate(model)
return(accuracy);

end

The fitness function outlined in Algorithm 1 simply decodes the chromosome

solution (decode(Chromosome)) to extract the set of kvalues along with the

ntrees and mtry values. Following the decoding and as outlined in Algorithm 1

class decomposition (decomposeSet(.., kvalues)) is applied to the data set ac-

cording to the solution’s genes kvalues, then a Random Forests model will be fit325

(fitRF (...)) on the new clustered data set and subject to the optimised number

of trees of the forest and the number of features used at each split (ntrees and

mtry).

4.3. Algorithm

To wrap up this section, and before discussing our experimental setup and330

results, we briefly outline the GA workflow given the above arrangements as can

be seen in Algorithm 2.
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Algorithm 2 Genetic Algorithm

GA (iterations, n, GA Parameters )

begin
c← 0 ;

i← 0 ;

Generationc ← generate random n solutions ;

fitness← computeF itness(s) ∀s ∈ Generationc ;

while fitness not reached and i ≤ iterations do

Generationc+1 ← evolve(Generationc) ;

fitness← computeF itness(s) ∀s ∈ Generationc;
i← i+ 1;

end

return (fittest solution)

end

The evolve(population) outlined in Algorithm 2 refers to the application of

the GA operators on the individuals (solutions) of a particular generation. This

means the selection mechanism of solutions in the current generation, and the335

application of crossover and mutation. The parameter settings of the GA will

be discussed in the following section. Notice that given Algorithm 2, the aim is

to obtain the solution that yields the most accurate classification results (fittest

solution).

5. Experiments340

This section provides details about the different experiments that have been

carried out to evaluate the proposed method. In the following sections, RF

will be used to refer to the classical Random Forests model while the proposed

method will be referred to by RFGA. Secondly, RFTuned will be used to refer

to the method of tuning the RF parameters using Genetic Algorithm without345

class decomposition. Finally, Adaboost will be used to refer to the AdaBoost

Ensemble classifier which was compared against the proposed method (RFGA).

16



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The extensive experimental study reported in this section aims at establishing

the following:

• Class decomposition leads to a more accurate Random Forests classifier.350

• Optimising class decomposition and Random Forests parameters is a key

factor to a successful class-decomposed Random Forests.

• Affirming that class decomposition coupled with Genetic Algorithm as

an optimiser is the best performing classifier among possible variations

of solutions (i.e., variations of enabling or disabling decomposition, and355

enabling or disabling parameter optimisation using Genetic Algorithm).

• The proposed method is superior when compared with state-of-the-art

classifiers.

In order to establish the validity and stability of the proposed method, all

experiments discussed below have been replicated 10 times. Details of the av-360

erage classification accuracy along with standard deviation are detailed in the

following sections.

5.1. Datasets

In total, 22 datasets from the UCI repository have been used in this paper [7].

As can be seen in Table 2, these sets vary in terms of number of observations365

(from 150 to 7200 instances), number of attributes (from 3 to 34 attribute) and

number of class labels (from 2 to 7).

The sets shown in Table 2 have been selected from different domains includ-

ing 14 set from the life science domain. These are mostly medical and include the

followings: Breast Cancer Wisconsin (Diagnostic) [30], Contraceptive Method370

Choice [7], Dermatology [7], Diabetic Retinopathy Debrecen [3], Haberman’s

Survival set [7], Statlog (Heart) Data Set [7], Indian Liver Patient set (ILPD)

[7], Mammographic Mass [17], Parkinsons [27], Pima Indians Diabetes Data Set

(PID) [7], Thoracic Surgery [41], Thyrodid [7], Seeds [12] and Iris set [7]. The

remaining sets have been selected from other categories including: Computer375
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Table 2: Details of the datasets used in the experiments

Dataset Size Attributes No Classes No

Balance 625 4 3

Bank Notes 1372 5 2

Blood Transfusion 748 5 2

Breast Cancer 569 32 2

Climate Model 540 18 2

Contraceptive 1473 9 3

Dermatology 366 33 6

Diabetic Retinopathy 1151 20 2

Haberman’s 306 3 2

Heart 270 13 2

Liver 583 10 2

Ionosphere 351 34 2

Iris 150 4 3

Mammographic 961 6 2

Page Blocks 5473 10 5

Parkinsons 197 23 2

Pima Indians Diabetes (PID) 768 8 2

Seeds 210 7 3

Statlog 2310 19 7

Thoracic 470 17 2

Thyrodid 7200 21 3

User Knowledge 403 5 4

Science and Engineering (User Knowledge Modelling [24], Statlog, Page Blocks

Classification and Bank Notes Authentication sets [7]), Physical and Social Sci-

ence (Ionosphere Data Set [7] , Climate Model Simulation Crashes [29], Balance

Scale Data Set [7]) and one set from business category (Blood Transfusion Ser-

vice Center [40]).380

5.2. Pre-processing & Experiments Setup

The main objective of this experiment is to establish the importance of de-

composing class labels in improving the performance of Random Forests. Every
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set used in this experiment was subject to pre-processing where appropriate,

in particular handling missing values in some sets using [35]and normalisation385

where feature’s values are standardised in the range of 0 to 1 as can be seen in

Equation 9

zi =
xi −min(x)

max(x)−min(x)
(9)

Where xi represents the ith value of feature/attribute x in the set, and

max(x),min(x) represent the maximum and minimum values in feature x, re-

spectively. This step was necessary to suppress the sensitivity of k-means al-390

gorithms to outliers [18]. Once sets were pre-processed, each set has been split

into two subsets, training and testing sets. The size of the training set is set to

equal 80% of the original set and was divided into further two subsets (training

and validation, with the validation set size set to be 20% of the original training

set).395

Figure 2 depicts the workflow of the proposed method RFGA. Notice that

the training set has been used during the optimisation process (i.e. applying

GA to optimise RF) while the validation set has been used to test the optimised

RF during the training process. The testing set in turn has only been used to

asses the resulting model (i.e. RFGA). In other words the testing set was only400

used upon the conclusions of the training and optimisation processes, mainly to

test the resulting optimised RF model.

Genetic Algorithm (GA) was implemented using [34]. GA settings used in

this experiment are outlined in Table 3. No other settings have been used in

this paper as the optimisation of GA settings is beyond the scope of this work.405

In order to asses the benefits of decomposing class labels on Random Forest

performance, three different sets of experiments have been carried out on each

set. Each of these experiments apply different methods and were replicated 10

times:

• First, RF with the default settings was applied on each set,410

• in the second experiment, RFGA was applied on the same sets,
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Figure 2: RFGA Workflow

Table 3: GA Parameters Settings

GA Parameter Value

Population Size 500.00

Crossover 0.80

Mutation 0.10

Elitism 0.05

Max Iterations 500.00

• and finally, RFTuned was applied which includes disabling class decompo-

sition (i.e. setting the kvalue to 1) and optimising RF parameters (mtrees,

mtry) using GA.

These experimental settings are depicted in Figure 3 which shows the results415

of the replicated experiments across the three different methods. Notice that

for RF, the default parameters were held constant and no decomposition was

applied. It is also worth noting that the ten runs in case of the RF is repre-

sented by seven red dots in Figure 3 instead of ten, this is because some runs

have produced the same results. . In RFGA however, the proposed method420

was applied, and it can be noticed from the solution chromosomes (shown in
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the y − axis of the plot) that class decomposition have been applied to both

classes in this case (Breast Cancer set). In the third experiment RFTuned, the

optimisation was only applied to the mtry and ntrees while kvalue was set to

equal 1 (no decomposition).425

The following two sections discuss and compare the results of RFGA (the

proposed method) against RF and RFTuned, where results are reported by

means of average and standard deviation of the 10 replications on each set.

RFAvg, RFGAAvg and RFTunedavg denote the average runs of RF , RFGA

and RFTuned respectively, while XSD denotes the respective method standard430

deviation.

The experiments will be finally concluded by comparing the performance

of the RFGA against a different and rival ensemble classifier. In particular,

Adaboost was used for this purposed because it proves to be one of the state-

of-the-art methods in achieving high predictive accuracy [21].435

5.3. RFGA Versus RF

Comparing the predictive accuracy of both the proposed method (RFGA)

and the traditional Random Forests (RF ), the results are presented in Table 4.

The table reports the optimal setting of the parameters that achieved the best440

predictive accuracy for the proposed method using Genetic Algorithm. It also

reports the average and standard deviation in predictive accuracy of all the 10

runs for the traditional Random Forests and the proposed method. For a fair

comparison, the average predictive accuracy is used in the discussion.

It can be shown that consistent boost in the accuracy has been achieved by445

the proposed method. In 18 out of the 22 datasets used in the experiment, the

proposed method outperformed the traditional Random Forests. It can also be

shown that class decomposition has been applied to the majority of classes in

all datasets. In fact, all datasets have had at least one class decomposed to its

subclasses. We have also measured the statistical significance of the results using450
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Figure 3: Breast Cancer set

the paired t-test technique. With 95% confidence, the p-value for paired t-test is

0.003331, showing clear statistical significance. Accounting for the possibility of

the results not following the normal distribution, we also computed the Wilcoxon

Signed-Rank test adopting the 95% confidence. The p-value for this test is

0.001455. This also confirmed the statistical significance of the achieved results.455

As the proposed method is composed of a number components including

Genetic Algorithm and class decomposition over Random Forests, it is impor-

tant to establish whether only Genetic Algorithm has the main effect, or in fact,

coupling class decomposition with Genetic Algorithm is the optimal solution.

This is tested in the following subsection of this experimental study.460
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Table 4: Experiments Results

Dataset Kvalues ntrees mtry RFAvg RFGAAvg RFSD RFGASD

Balance [2,3,1,1] 520 1 85.25 86.01 1.71 1.49

BankNotes [6,6] 608 2 99.27 100.00 0.33 0.00

Blood Transfusion [2,6] 549 1 74.16 77.69 1.87 1.51

Breast Cancer [6,4] 555 19 95.31 98.14 1.88 1.74

Contraceptive [2,4,5] 492 3 53.21 52.05 1.44 1.95

Dermatology [2,2,2,2,2,1] 768 11 97.66 98.36 0.74 1.13

Diabetic Retinopathy [3,2] 619 9 67.39 68.26 1.31 1.80

Haberman [3,5] 645 1 72.78 72.63 3.29 3.02

Heart [7,3] 768 4 80.08 82.83 4.18 4.74

Ionosphere [1,8] 841 14 92.86 93.73 1.35 1.42

IRIS [4,7,2] 792 1 95.19 97.04 1.56 1.56

Liver [3,2] 679 6 72.76 74.66 2.76 3.71

Mammographic [3,5] 817 2 83.07 83.39 2.04 2.36

Page Blocks [5,1,5,2,2] 696 7 97.34 97.34 0.27 0.30

PARKINSONS [3,5] 700 12 91.32 96.32 4.12 3.55

PID [7,5] 556 3 75.75 74.05 2.29 1.82

Seeds [2,4,3] 616 3 91.07 94.13 3.88 2.28

Simulated Climate [1,7] 776 7 91.71 92.40 0.00 0.97

Statlog [9,6,3,6,6,7,7] 881 9 97.88 97.93 0.48 0.29

Thoratic [[5,4] 664 6 84.61 84.67 0.56 1.49

Thyroid [3,3,3] 651 9 99.55 99.56 0.12 0.15

User knowledge [3,2,1,1] 746 3 92.44 94.00 2.21 2.68

5.4. RFGA Versus RFTuned

In this set of experiments, the class decomposition is disabled allowing Ge-

netic Algorithm to tune only RF’s two main parameters, namely, the number

of features to split on at each node and the number of trees. This method is

compared with the proposed method of applying class decomposition with Ge-465

netic Algorithm used to optimise all the parameters (i.e., RF parameters, and

number of subclasses in each class). Table 5 reports the average of 10 runs for

both methods. In 12 out of the 22 datasets, the proposed method outperformed
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the alternative one. Using the paired t-test with 95% confidence, the p-value

is 0.9328, and for the Wilcoxon signed rank test (also 95% confidence), the p-470

value is 0.8736, the results are not statistically significant. However, the results

suggest that it is recommended to run the optimised RF without class decom-

position as the first step before decomposing the classes in the data set. Then

the results can be compared. This can then lead to the best possible predictive

accuracy. This suggested procedure aims at distilling the cases when optimising475

the Random Forests parameters can yield the best performance. Collectively

both methods were the best performer among all the variations. As such, the

practice of running both and select the best outcome has the potential of pro-

ducing the strongest classifier in this family of methods. As the results show,

over 3% accuracy boost can be achieved when applying class decomposition480

(e.g., the Parkinsons set). In life science related applications, this can be an im-

portant achievement, especially those related to medical diagnosis as reported

in the Parkinsons set when the optimal setting suggested a class decomposition

of both the positive and the negative classes of 3 and 5 respectively.

The results reported so far assert the positive impact of class decomposition485

on predictive accuracy of Random Forests. To establish the superiority of the

proposed method over state-of-the-art ensemble methods, represented by Ad-

aBoost, the following subsection discusses this comparative experimental study.

5.5. RFGA Versus AdaBoost

AdaBoost is an ensemble learning method that uses boosting of classifiers,490

having each classifier modelled to focus on examples misclassified by previously

constructed classifiers in the sequence [21]. It is among the state-of-the-art

methods in achieving a high predictive accuracy. To validate the proposed

method in this paper, a comparison between the two methods is conducted.

Using the average of 10 runs for both methods the results are reported in Table495

6. The results clearly suggest the superiority of the proposed method over

AdaBoost. In 17 out of the 22 datasets, the proposed method outperformed

AdaBoost. With 95% confidence, the p-value for both the paired t-test and the
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Table 5: Tuned RF versus RFGA Performance

Dataset RFTunedavg RFGAavg RFTunedSD RFGASD

Balance 89.24 86.01 0.87 1.49

Bank Notes 99.75 100.00 0.46 0.00

Blood Transfusion 76.80 77.69 1.61 1.51

Breast Cancer 95.88 98.14 1.06 1.74

Contraceptive 54.34 52.05 1.48 1.95

Dermatology 97.89 98.36 2.13 1.13

Diabetic Retinopathy 69.35 68.26 2.22 1.80

Haberman 72.82 72.63 2.76 3.02

Heart 83.96 82.83 3.58 4.74

Ionosphere 93.33 93.73 3.02 1.42

IRIS 95.56 97.04 1.56 1.56

Liver 72.11 74.66 2.89 3.71

Mammographic 82.19 83.39 3.43 2.36

Page Blocks 97.31 97.34 0.00 0.30

PARKINSONS 92.89 96.32 3.93 3.55

PID 76.96 74.05 1.59 1.82

Seeds 93.33 94.13 3.13 2.28

Climate Model 93.83 92.40 1.60 0.97

Statlog 97.65 97.93 0.00 0.29

Thoratic 85.21 84.67 1.62 1.49

Thyroid 99.64 99.56 0.13 0.15

User Knowledge 94.49 94.00 2.16 2.68

Wilcoxon signed rank test are 0.07397 and 0.03289, respectively. This shows

satisfactory statistical significance of the results. The AdaBoost classifier used500

in this experiment was set to iterate 100 times generating the same number of

trees, avoiding overfitting when a large number of trees are generated.

5.6. Results Discussion

Concluding this experimental study, after analysing all the results of the

three comparisons between the proposed method, and its three identified com-505

petitors, it is found that only the proposed method is able to consistently out-
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Table 6: Adaboost versus RFGA Performance

Dataset AdaBoostavg RFGAavg AdaBoostSD RFGASD

Balance 84.40 86.01 2.45 1.49

Bank Notes 99.68 100.00 0.33 0.00

Blood Transfusion 74.02 77.69 2.50 1.51

Breast Cancer 96.38 98.14 0.86 1.74

Contraceptive 56.00 52.05 1.90 1.95

Dermatology 96.41 98.36 1.54 1.13

Diabetic Retinopathy 67.27 68.26 1.48 1.80

Haberman 66.54 72.63 3.21 3.02

Heart 80.71 82.83 3.34 4.74

Ionosphere 93.65 93.73 1.99 1.42

IRIS 94.98 97.04 2.15 1.56

Liver 70.81 74.66 3.09 3.71

Mammographic 79.69 83.39 2.04 2.36

Page Blocks 97.29 97.34 0.25 0.30

PARKINSONS 92.63 96.32 2.41 3.55

PID 73.66 74.05 1.85 1.82

Seeds 93.99 94.13 3.08 2.28

Climate Model 94.42 92.40 1.28 0.97

Statlog 98.11 97.93 0.43 0.29

Thoratic 81.90 84.67 1.26 1.49

Thyroid 99.66 99.56 0.07 0.15

User Knowledge 99.66 94.00 1.94 2.68

perform the other methods. As shown in Table 7, in 11 datasets, the proposed

method achieved the highest predictive accuracy. It is worth noting that the

next best method found to be the optimised Random Forests (RFTuned) with

a superior performance in only 4 datasets. All the results for the three varia-510

tions of Random Forests and AdaBoost experimented in this project are sum-

marised in Figures 4 and 5 by categorising the datasets to life science datasets,

and non-life science datasets. It is clear that the proposed method is superior

than its competitors in both categories. Our method has shown particular high

predictive accuracy over medical diagnosis datasets like Parkinsons and Liver.515
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This can be attributed to the complexity of the problem, and that indeed these

datasets can be naturally decomposed to its subclasses, that in turn facilitates

classification using Random Forests.

Table 7: Winning sets across all experiments

Dataset RFGAavg RFavg RFTunedavg AdaBoostavg

Bank Notes 100.00 99.27 99.75 99.68

Blood Transfusion 77.69 74.16 76.80 74.02

Breast Cancer 98.14 95.31 95.88 96.38

Dermatology 98.36 97.66 97.89 96.41

Ionosphere 93.73 92.86 93.33 93.65

IRIS 97.04 95.19 95.56 94.98

Liver 74.66 72.76 72.11 70.81

Mammographic 83.39 83.07 82.19 79.69

Page Blocks 97.34 97.34 97.31 97.29

PARKINSONS 96.32 91.32 92.89 92.63

Seeds 94.13 91.07 93.33 93.99

5.7. Implementation

A framework was implemented using R where several packages have been520

utilised. These include amongst other libraries: randomForest package [26]

which implements Brieman and Cutler Random Forests for Classification and

Regression, and the GA package [34] which allows parallel implementation of

the Genetic Algorithm. Table 3 shows the parameters settings that have been

used for this experiment. AdaBoost package [1] which has been used to build525

the AdaBoost ensemble. For handling missing values [35] and [36] were used to

impute missing values.

The framework was designed to make use of the multicore facilities by util-

ising R packages that enable parallel execution of the code (i.e. [2]). It is

worth noting that the proposed method is scalable, as individual chromosomes530

(Random Forests solutions) in each generation is constructed in parallel. Fur-

thermore, each tree in any single Random Forests grows in parallel with all

27



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T●

●●
●

●

●
●
● ●

●

●

● ●

●

●

●●

●●

●

●

●

●
●

●
● ●

●

Breast Cancer Contraceptive Dermatology Diabetes PID

Diabetic Haberman Heart IRIS

Liver Mamographic Parkinsons Seeds

Thoratic Thyroid

50
60
70
80
90

100

50
60
70
80
90

100

50
60
70
80
90

100

50
60
70
80
90

100

R
F

R
F

Tu
ne

d

R
F

G
A

A
da

B
oo

st R
F

R
F

Tu
ne

d

R
F

G
A

A
da

B
oo

st

Experiment

A
cc

ur
ac

y

Experiment RF RFTuned RFGA AdaBoost

Figure 4: Life science Datasets Results

other trees. Consequently, only the number of iterations of the Genetic Algo-

rithm is the main factor in the time needed to find the final solution. This is the

case with all evolutionary optimisation methods, that are built in a sequence of535

generations.

Dell Poweredge R730 running 56 Intel Xeon Processors E5-2695 v3 @ 2.30Ghz

with 255Gb RAM connected to a tier 3 4Tb datastore (SATA Disk) was used to

run the experiments reported in this paper. TThese experiments were carried
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Figure 5: Non-Life science Datasets Results

out on 24 core VMWare Virtual Server with 48GB of RAM.540

6. Conclusion and Future Work

The paper proposed a three-component system for enhancing the classifica-

tion accuracy in Random Forests. The first component is the class decomposi-

tion where clustering is applied to examples that belong to each class, resulting

in a number of clustering sessions which is equal to the number of classes in the545
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data set. Setting the number of clusters for each class has its own effect on the

predictive accuracy. Random Forests which is a highly accurate classification

method is the second component of the proposed system. It requires two main

parameters to be set: (1) number of trees in the ensemble, and (2) the number

of features sampled randomly at each node split of each tree. Collectively the550

number of parameters to set is equal to number of classes in the data set, in ad-

dition to the two Random Forests parameters. Realising the large search space

generated from setting all these parameters which is exponential in the number

of classes in a a data set, there is a clear need for an effective optimisation

method. Thus, Genetic Algorithm is used as our third component. The system555

was applied to 22 datasets predominantly in the area of life sciences, and the re-

sults proved the effectiveness of the proposed hybrid machine learning technique

in enhancing the predictive accuracy.

We can identify a number of future directions for this research as follows.

Experimenting the hybrid method to other application domains in life sciences560

such as gene expression datasets is one direction. The optimisation of GA pa-

rameters is another direction which may lead to further improvements of the

RF performance. Also the adoption of other population-based meta-heuristic

methods can be used to compare the effectiveness of a number of optimisation

techniques . Finally, the use of other high performing machine learning algo-565

rithms like Gradient Boosting trees, or Support Vector Machines (SVM) can be

explored instead of Random Forests.
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