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ABSTRACT 

Wind is becoming an increasingly important source of energy for countries that 

ratify to reduce the emission of greenhouse gases and mitigate the effects of global 

warming. Investments in wind farms are affected by inter-related assets and 

stakeholders’ requirements. These requirements demand a well-founded Asset 

Management (AM) frame-work which is currently lacking in the wind industry. 

Drawing from processes, tools and techniques of AM in other industries, a 

structured model for AM in the wind industry is developed. The model divulges that 

maintenance is indispensable to the core business objectives of the wind industry. 

However, the common maintenance strategies applied to wind turbines are 

inadequate to support the current commercial drivers of the wind industry. 

Consequently, a hybrid approach to the selection of a suitable maintenance strategy 

is developed. The approach is used in a case study to demonstrate its practical 

application. Suitable Condition-Based Maintenance activities for wind turbines are 

determined.  

 

Maintenance optimisation is a means to determine the most cost-effective 

maintenance strategy. Field failure and maintenance data of wind turbines are 

collected and analysed using two quantitative maintenance optimisation techniques; 

Modelling System Failures (MSF) and Delay-Time Maintenance Model (DTMM). 

The MSF permits the evaluation of life-data samples and enables the design and 

simulation of a system’s model to determine optimum maintenance activities. 

Maximum Likelihood Estimation is used to estimate the shape (β) and scale (η) 

parameters of the Weibull distribution for critical components and subsystems of the 

wind turbines. Reliability Block Diagrams are designed using the estimated β and η 

to model the failures of the wind turbines and of a selected wind farm. The models 

are simulated to assess and optimise the reliability, availability and maintainability 

of the wind turbine and the farm. The DTMM examines equipment failure patterns 

by taking into account failure consequences, inspection time and cost in order to 

determine optimum inspection intervals. Defects rate (α) and mean delay-time (1/γ) 

of components and subsystems within the wind turbine are estimated. Optimal 

inspection intervals for critical subsystems of the wind turbine are then determined.
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

Global warming is increasingly becoming a crucial issue in the contemporary world. 

The seriousness of the issue is reflected through the recent commitment of corporate 

organisations and individuals to combat the effects of global warming. In 1997 the 

United Nations adopted the Kyoto Protocol as an amendment to the Framework 

Convention on Climate Change (FCCC). The Protocol is a legally binding 

agreement under which industrialised countries are obliged to reduce collective 

emissions of greenhouse gases (Kyoto Protocol to the United Nations Framework 

Convention on Climate Change, 1997). Countries which ratify the protocol commit 

to reduce their emissions of carbon dioxide and five other greenhouse gases, or 

engage in emissions trading if they maintain or increase emissions of these gases. 

However, many countries including the United State of America (USA) who 

contribute a significant percentage of the total global pollution are yet to ratify the 

Kyoto protocol.  

 

There has been rising concern about the finiteness of the earth’s fossil fuel reserves 

(Manwell et al. 2002). The global demand for energy is increasing with population 

growth. The normal human daily life such as communication, transportation, health-

care, etc is becoming more and more dependent on energy. Nations are currently 

challenged to find proactive measures to comply with the global policies on climatic 

change and respond effectively to the finiteness of the earth’s fossil fuel reserves.  

 

Accordingly, the UK government in 2002 introduced the Renewable Obligation 

Order (RO). The RO requires electricity suppliers to prove that they are generating a 

specified proportion of their power from renewable energy sources. A target was set 

to increase the current level of 2% to 10% by 2010 (Department of Trade and 

Industry, 2002). Electricity suppliers that meet the terms of the RO are issued a 

Renewable Obligation Certificate (ROC). This has compelled the electricity 

suppliers in the UK to generate energy from alternative sources which are naturally 
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replenished, and do not release carbon dioxide as a by-product into the atmosphere. 

These alternative sources of energy are referred to as Renewable Energy. 

 

1.2 RENEWABLE ENERGY  

Renewable energy is obtained from natural sources that are essentially inexhaustible 

(Energy Information Administration, 2005). Basically, there are seven (7) common 

types of renewable energy; wind, solar, hydroelectric, tidal, wave, geothermal and 

bio-fuels (Cresswell et al. 2002). Each of these energy sources can be converted 

from their original form to produce electricity without depleting or distorting the 

natural characteristics of the resources. Energy generated from wind is fast 

becoming one of the most utilised renewable energy sources in the world (Pellerin, 

2005). Improvements in the design of wind turbines (Marsh, 2005) and the ready 

availability of wind resources in most parts of the world are contributing to the rapid 

development of the industry.  

 

1.3 WIND ENERGY GENERATION 

Wind energy generation refers to the conversion of air movement into electrical 

energy by using a wind turbine. Wind moves around the earth as a result of 

temperature and pressure differences. The wind movement is harnessed by the 

blades of a wind turbine to generate electricity. The blades are connected to a shaft 

and often times a gearbox to convert the rotational speed of the blades into 

mechanical energy. This is converted into electrical energy by an electrical generator 

connected to the gearbox or shaft as required. Wind turbines are often installed 

onshore but in recent years, the wind industry has experienced a significant shift in 

the development of wind farms from onshore to offshore locations (Gaudiosi, 1999). 

It is worth noting that the availability of wind resources in a specific location 

depends on the nature of the landscape, altitude. Indeed, the European Wind Energy 

Association (2003) claims that the North Sea area allocated to offshore wind energy 

generation could provide enough power to satisfy all of Europe’s electricity demand. 

These factors have increased significantly the potential for investment in the wind 

energy industry as well as the range of possible stakeholders. However, caution must 
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be exercised in evaluating the business climate of the wind energy industry to ensure 

the return on investments in wind farms is maximised. 

 

1.4 CHALLENGES OF INVESTMENT IN THE WIND ENERGY 

INDUSTRY 

The UK government’s target to generate 10% of the national electricity from 

renewable sources by 2010 would require an investment of about £10 billion; given 

that the current level of renewable energy generation is only 2% (Department of 

Trade and Industry, 2002). The current priority of the wind energy industry is to 

expand by developing more wind farms using turbines of high capacity ratings. 

Globally, very significant financial investments have been made in developing wind 

farms with a wide range of stakeholders. Indeed, the wind energy industry in 2005 

spent more than US$14 billion on installing new generating equipment 

(Environment News Service, 2006). Progressively, the world generated wind energy 

has now increased to about 59,322 MW (Environment News Service, 2006) from 

2,000 MW in 1990 (Marafia and Ashour, 2003) with an annual average growth rate 

of about 26 percent (Junginger et al. 2005). However, with this huge investment 

potential and significant increase in generation capacity comes an additional and 

often overlooked responsibility; the management of wind farms to ensure the lowest 

total Life Cycle Cost (LCC). 

  

Learney et al. (1999) states that the “...net revenue from a wind farm is the revenue 

from sale of electricity less operation and maintenance (O&M) expenditure”. Thus, 

to increase the productivity and profitability of the existing wind farms, and to 

ensure the lowest total LCC for successful future developments will require 

maintenance strategies that are appropriate (technically feasible and economically 

viable) over the life-cycle of wind turbines. 

 

1.5 COMMON MAINTENANCE STRATEGIES APPLIED TO WIND 

TURBINES 

The term maintenance is sometimes referred to as asset care or asset preservation. It 

involves activities like inspection, repair, overhaul and/or replacement of parts of the 
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asset. British Standard (BS) 3811 defines maintenance as “…the combination of all 

technical and associated administrative actions intended to retain an item or system 

in, or restore it to, a state in which it can perform its required function”. Dunn 

(2005) defines maintenance as “…any activity carried out on an asset in order to 

ensure that the asset continues to perform its intended functions”. Where as 

Moubray (1997) defines maintenance as “…ensuring that physical assets continue 

to do what their users want them to do”.  

 

Wind turbines are often purchased with a 2-5 years all-in-service contract, which 

includes warranties, and corrective and preventative maintenance strategies 

(Verbruggen 2003; Conover et al. 2000; Rademakers & Verbruggen 2002). These 

maintenance strategies (corrective and preventative) are usually adopted by wind 

farm operators at the expiration of the contract period to continue the maintenance of 

wind turbines (Rademakers & Verbruggen 2002). 

 

1.5.1 Preventative Maintenance 

The preventative tasks are planned to include routine checks, testing and 

maintenance. The tasks are aimed to determine whether any major maintenance 

work is required so that corrective maintenance is reduced to a minimal level. Full 

servicing of wind turbines is often carried out twice a year (Verbruggen, 2003; 

Conover et al. 2000; Rademakers & Verbruggen, 2002). This bi-annual servicing is 

carried out with the aid of a checklist to verify the current status, and update the 

maintenance record, of each turbine.  

 

The checklists are turbine specific and activities include a check of the gearbox and 

the hydraulic system oil levels, inspection of oil leaks, inspection of the cables 

running down the tower and their supporting systems, observation of the machine 

while running to check for any unusual drive train vibrations, inspection of the brake 

disc, and inspection of the emergency escape equipment. Other activities include 

checking the security of fixings (e.g. blade attachment, gearbox hold down, jaw 

bearing attachment, tower base-bolt), the high speed shaft alignment, the brake 

adjustment and brake pad wear, the performance of yaw drive and brake, bearing 
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greasing, the security of cable terminations, pitch calibration (for pitch regulated 

machines), oil filters, etc. 

 

1.5.2 Corrective Maintenance 

Corrective maintenance of wind turbines include tasks carried out in response to 

components’ wear and tear, human errors, design faults and operational factors such 

as over speeding, excessive vibration, low gearbox oil pressure, yaw error, pitch 

error, premature activation of brakes, synchronisation failure, loss of grid 

connection, etc. The operators become aware of corrective tasks either during 

routine inspection or when the protection system shuts down the turbines in response 

to an incipient fault. 

  

In the final report of the Concerted Action on offshore Wind Energy in Europe 

(Garrad Hassan & Partners, et al. 2001), four maintenance strategies are proposed 

for European offshore wind farms. These include: (i) No maintenance; where neither 

preventive nor corrective maintenance are executed but major overhauls are to be 

performed every five years. (ii) Corrective maintenance only; where a certain 

number of wind turbines are allowed to fail before repairs are carried out, and no 

permanent maintenance crew is required. (iii) Opportunity maintenance; where 

maintenance activities are executed on demand and taking the opportunity to 

perform preventive maintenance at the same time. Maintenance crew is not required. 

(iv) Periodic maintenance; this includes schedule visits to perform preventative 

maintenance and corrective actions using permanently dedicated maintenance crew.  

 

1.6 PROBLEMS ASSOCIATED WITH THE CURRENT MAINTENANCE       

PRACTICES OF WIND TURBINES  

The no-maintenance and corrective maintenance-only strategies commonly known 

as Failure-Based Maintenance (FBM) strategy involve using a wind turbine or any 

of its components until it fails. This strategy is usually implemented where failure 

consequences will not result in revenue losses, customer dissatisfaction or health and 

safety impact. However, critical component failures within a wind turbine can be 

catastrophic with severe operational and Health, Safety and Environmental (HSE) 
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consequences. Thus, the viability of FBM strategy is averted by the consequences of 

failures on electricity network and revenue generation. 

 

The preventative maintenance strategy commonly referred to as Time-Based 

Maintenance (TBM) involves carrying out maintenance tasks at predetermined 

regular-intervals. This strategy is often implemented to avoid invalidating the 

Original Equipment Manufacturers’ (OEM) warranty and to maintain sub-critical 

machines where patterns of failure are well known. However, the choice of the 

correct interval poses a problem as too frequent an interval increases operational 

costs, wastes production time and unnecessary replacements of components in good 

condition, whereas, unexpected failures frequently occur between TBM intervals 

which are too long (Thorpe, 2005). Thus, time and resources are usually wasted on 

maintenance with little knowledge of the current condition of the equipment. This 

thwarts the adequacy of the periodic and opportunity maintenance strategies to 

support the current commercial drivers of wind farms.  

 

A detailed assessment of failure characteristics of 15,500 grid-connected wind 

turbines were carried out in Germany. The aim was to identify all possible causes of 

failures of horizontal axis wind turbines. It was found that forty two (42) percent of 

the total failures were caused by components breakdown while twenty one (21) 

percent were caused by control system failures (Windstats Newsletter, 2004). 

Similar studies were undertaken at the Centre for Renewable Energy Systems 

Technology (CREST) and the Energy Centre Netherlands (ECN). The results show 

components’ breakdown was responsible for most of the wind turbines’ failure. 

Rademakers & Verbruggen (2002) observed that the failure rate of an onshore wind 

turbine was about 1.5 to 4 times per year while an offshore wind turbine was said to 

require about 5 service visits per year (Garrad Hassan & Partners et al, 2001). This 

implies that huge amount of money and effort are required annually to fix failed 

wind turbines’ components in addition to the severe economic, operational, health, 

safety and environmental consequences.  
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Thus, owing to the current maintenance practises and failure characteristics of wind 

turbines, there exists a need to determine an appropriate maintenance strategy that 

will effectively reduce the total LCC of wind turbines and maximise the return on 

capital investment in wind farms. Such a strategy must comprise maintenance 

activities that are technically feasible and economically viable over the life-cycle of 

wind turbines.  

 

1.7 ASSET MANAGEMENT 

The Chambers Dictionary defines asset as “…any thing of value to the owner”. 

Eyre-Jackson and Winstone (1999) classified assets into 5 major groups; physical, 

human, financial, intellectual and intangible. As a result, the term ‘Asset 

Management’ has been used widely across several industrial sectors. For example, 

the financial services and banking sectors have applied the term to the management 

of investment funds, financial assets, credit and equity (Woodhouse, 2002). The Oil 

and Gas industry uses the phrase to describe a more comprehensive approach to 

getting the best value out of hydrocarbon reserves and production infrastructure 

(PAS 55- Asset management view, 2004). In spite of the numerous areas of 

application, Asset Management (AM) has evolved from many industrial sectors as a 

means to describe a holistic application of business best practices in order to satisfy 

all stakeholders’ requirements.  

 

The Institute of Asset Management (IAM) defines Asset Management as “…the 

systematic and coordinated activities and practises through which an organisation 

optimally manages its physical assets, and their associated performance, risks and 

expenditure over their lifecycle for the purpose of achieving its organisational 

strategic plan”.  

 

The processes, tools and techniques of Asset Management have historically been 

developed by industries to improve their overall business performance. Nowadays, 

AM is becoming a major issue in many organisations wishing to redefine business 

performance and get the best value for money.  
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1.7.1 Asset Management in other Industrial Sectors 

A brief overview of the experiences of some industries that adopted AM 

methodologies to manage day-to-day business activities give insight into the 

potential benefits of AM. 

     

1.7.1.1 The Oil and Gas Sector 

The first UK’s oil was produced from the Argyll field in 1975 (Institute of 

Petroleum, 2005). A huge financial investment was made in the sector due to the 

government’s commitment to make UK self sufficient in oil production. As a result, 

the sector experienced rapid infrastructural developments. Moreover, there was a 

steady increase in the profit margins to a climax of US$20 per barrel (operating 

expenditure was approximately $15 with a crude oil market value at about $35 per 

barrel). Subsequently, the oil market price crashed in 1986 to about $9 per barrel 

(Woodhouse, 2002) resulting in a loss of about $6 per barrel. Production became 

unprofitable and ownership of physical infrastructure such as production platforms, 

underwater pipelines, etc became uneconomical. Also in 1988, the sector suffered 

another business dilemma; the destruction of the Piper Alpha platform killing 167 

persons (The History of the oil industry in UK). These economic and safety factors 

necessitated the development and application of some AM processes, tools and 

techniques to maximise the return on investment in hydrocarbon reserves and 

production infrastructure while ensuring a safe working environment.  

 

1.7.1.2 The Electricity Supply Industry 

In 1980 the UK started restructuring its Electricity Supply Industry (ESI) through 

privatisation. A substantial part of the privatisation took place between 1990 and 

1993. It concluded with the sale of the newer nuclear power stations in 1996 (Pollitt, 

1999). The privatisation brought to the sector new and crucial challenges such as 

improving the efficiency and quality of services to meet the increasing public 

demand, lower prices to gain a larger market share, reducing operating expenditure 

to increase overall profitability of the sector, etc. The ESI adopted AM processes, 

tools and techniques to improve equipment reliability, plant integrity and overall 



                                                                         Maintenance Optimisation for Wind Turbines 

PhD Thesis, The Robert Gordon University Aberdeen, 2008.                                                  9                                               

network performance to eliminate intermittent supplies. Regulatory requirements 

were reviewed. Measures for proactive and total compliance were initiated. 

 

1.7.1.3 The Water Supply Industry 

The privatisation of the Water Supply Industry (WSI) in the UK had three key 

objectives; increase efficiency, lower prices and increase quality of services. 

However, as Hall (2001) pointed out, a constant tension exists between public 

service objectives and profit-seeking behaviour of a privatised sector. The sector 

was faced with incompatible objectives of lower prices and profit maximisation. 

Consequently, WSI prioritised the maintenance of pump stations and the control of 

leakages in pipes and storage facilities by adopting AM methodologies to ensure the 

reliability of water supply. 

 

1.7.1.4 Transport Services 

AM is gaining popularity in the UK transport services due to the privatisation of the 

sector. The overall business objectives as well as methods of getting the best value 

for money are re-defined through the application of AM methodologies. 

 

1.7.2 Processes of Asset Management 

A generic business model outlining the fundamental issues involved in the 

management of any physical asset is presented in figure 1.1. A high level of 

performance is required in terms of compliance with health, safety and 

environmental requirements as well as improving the quality of products and 

services while ensuring cost effectiveness. Equipment reliability needs to be 

assessed and optimised through the application of appropriate asset management 

tools and techniques. People and operational requirements for effective and efficient 

performance should be identified and aligned with equipment reliability 

requirements. Performance measurement frame-works need to be designed to ensure 

periodic evaluation of actual performance against intended targets and goals. Where 

deviations are identified, corrective measures are initiated to ensure continuous 

performance improvements. Therefore, it is absolutely necessary to review the 
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various tools and techniques used in AM with a view to understand their area of 

application. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Generic Model showing key Business Issues 

 

1.8 ASSET MANAGEMENT AND THE WIND ENERGY INDUSTRY 

The offshore Oil and Gas (O & G) sector in the UK reactively adopted AM 

methodologies to maximise the return on investment in hydrocarbon reserves and 

production infrastructures when production became unprofitable and ownership of 

physical infrastructures such as production platforms became uneconomical. There 

is a clear corollary of the current status of the wind energy industry with that of the 

O & G industry of 30 years ago; the O & G in the UK increased in size dramatically 

over one to two decades, with little consideration of the impact that appropriate 

maintenance might have in terms of reducing total life-cycle costs (LCC). 

Subsequently, the O& G industry has historically suffered from ineffective and 
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inefficient maintenance practices and the impact on productivity has been 

significant. It is estimated that an optimal maintenance regime reduces direct 

maintenance cost by 40-70% and can improve availability by up to 7% (Arthur, 

2005). The O& G industry has perpetually been reactively attempting to address 

these issues by re-engineering design, installation, etc for effective maintenance.  

 

The wind energy industry has a clear opportunity to consider the strategic 

importance of maintenance now, and to proactively realise the benefits that are 

available over the life of wind farm installations. This is especially important when 

it is considered that planning regulations for wind farms currently do not relate to 

maintenance and no regulations pertinent to maintenance exist (Melford 2004). The 

processes, tools and techniques of AM are currently well-established in the mature 

industries most especially in the area of maintenance optimisation but the 

application to the wind energy sector has historically been poor. 

 

1.9 TOOLS AND TECHNIQUES OF ASSET MANAGEMENT 

 A number of quality tools and techniques exist in the field of asset management to 

effectively and efficiently manage the ownership of physical assets; taking into 

account economic, health, safety and environmental issues. These tools and 

techniques include the Reliability-Centred Maintenance (RCM), Failure Mode and 

Effect Analysis (FMEA), Hazard and Operatibility studies (HAZOP), Hazard 

Analysis (HAZAN), Fault Tree Analysis (FTA), Event Tree Analysis (ETA), Critical 

Task Analysis (CTA), Quantified Risk Analysis (QRA), Total Productive 

Maintenance (TPM), Risk Based Inspection (RBI), Root Cause Analysis (RCA), 

Structured What-if Technique (SWIFT), etc. 

 

Reliability-Centred Maintenance, Risk Based Inspection and Total Productive 

Maintenance are techniques commonly used to determine appropriate maintenance 

strategies for physical assets. Moubray (2000) explains that no comparable 

technique exists for identifying the true, safe minimum of what must be done to 

preserve the functions of physical assets in the way that RCM does. RCM was 

introduced in the air craft industry by Nowlan and Heap (1978). Since its inception, 
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the approach has been applied in several industrial sectors with considerable success 

(Rausand, 1998) for example, the railway (Rasmussen et al. 2004), offshore Oil & 

Gas (Arthur & Dunn 2001; Hokstad et al. 1998), manufacturing (Deshpande & 

Modak 2003).  

 

1.9.1 Reliability-Centred Maintenance 

RCM is a technique used to determine what must be done to ensure that any physical 

asset or system continues to do whatever its users want it to do (Moubray 1991). The 

process predicts how a system’s failures can occur and the potential consequences 

on the system operation. The technique further assesses failure consequences and the 

probability of occurrence to provide a basis upon which to decide an appropriate 

maintenance action for each failure mode (Latino 1997). Fundamentally, there are 

three (3) factors that must be considered to select an appropriate maintenance 

strategy for any physical asset. These factors include failure consequences, 

predictability of reasonable asset life, and the possibility of installing condition 

monitoring systems on the asset. A suitable maintenance strategy could include one 

or a combination of the following; failure-based, time-based and/or condition-based 

maintenance activities. 

 

1.10 CONDITION-BASED MAINTENANCE STRATEGY 

Condition-Based Maintenance (CBM) is one of the possible strategies that can be 

determined through the application of an RCM technique. CBM constitutes 

maintenance tasks carried out in response to deterioration in the condition or 

performance of an asset or component as indicated by condition monitoring 

processes (Moubray 1991). Saranga & Knezevic (2001), Arthur & Dunn (2001) 

stated that CBM is the “…most cost-effective means of maintaining critical 

equipment”. The broad research area of CBM applied to wind energy conversion has 

largely been ignored, although limited work has been undertaken in the areas of 

monitoring the structural integrity of turbine blades using thermal imaging and 

acoustic emission (Clayton et al. 1990; Dutton et al. 1991), the use of performance 

monitoring (Learney et al. 1999), lubricant analysis, temperature monitoring and on-

line analysis systems (Philippidis & Vassilopoulos 2004). Generally, as reported, 
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these works exist in isolation, and are not considered with the wider context of a 

maintenance, integrity and asset management strategy. For example, the intervals at 

which these activities should be carried out (if at all) have not been assessed in terms 

of cost-benefit. Determining an appropriate maintenance strategy for a piece of 

equipment is not in itself a means to an end, but the maintenance activities ought to 

be optimised on a continuous basis. 

 

1.11 MAINTENANCE OPTIMISATION 

Maintenance optimisation is “…a process that attempts to balance the maintenance 

requirements (legislative, economic, technical, etc.) and the resources used to carry 

out the maintenance program (people, spares, consumables, equipment, facilities, 

etc.)” (Systems Reliability Centre, 2003). A maintenance strategy that is appropriate 

and optimal now may not be optimal in the very near future due the erratic nature of 

the input variables such as interest rate, components cost, failure behaviour, etc. 

Thus, maintenance optimisation is not a one-off procedure but a continuous process 

which requires periodic evaluation of performance and improving on the successes 

of the past. 

 

Essentially, there are 2 approaches to maintenance optimisation; qualitative and 

quantitative. Arthur (2005) and Scarf (1997) observed that qualitative maintenance 

optimisation is often clouded with subjective opinion and experience, and further 

suggest the utilisation of quantitative methods to optimise the maintenance activities 

of physical assets. Quantitative maintenance optimisation (QMO) techniques employ 

a mathematical model in which both the cost and benefits of maintenance are 

quantified and an optimum balance between both is obtained (Dekker, 1996).  

 

There are a number of QMO techniques in the field of Applied Mathematics and 

Operational Research (AMOR), for example, Markov Chains and Analytical 

hierarchy processes (Chiang et al. 2001); Genetic Algorithms (Tsai et al. 2001), etc. 

However, most of the approaches are criticised for being developed for 

mathematical purposes only and are seldom used in practical asset management to 

solve real-life maintenance problems (Dekker, 1996). Modelling System Failures 
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(MSF) has been recommended as the best approach to assess the reliability and 

optimise the maintenance of mechanical systems (Davidson and Hunsley 1994). The 

Delay-Time Maintenance Model (DTMM) (Scarf, 1997) is well-known for its 

simplistic mathematical modelling and has been applied practically to optimise the 

inspection intervals of some physical assets with considerable success. Andrawus et 

al (2007a) discussed the concept and relevance of the two quantitative maintenance 

optimisation techniques and highlighted their applicability to the wind energy 

industry. 

 

1.11.1 Benefits of maintenance optimisation for wind turbines 

Maintenance is based on observed conditions which reduces components’ damage 

and prevents catastrophic failures of wind turbines. Thus, costs associated with 

longer downtimes are reduced by ensuring minor failures are resolved before they 

escalate to major ones. Replacements or overhauls of components in good operating 

conditions are avoided completely.  

 

The overall availability of wind turbines is increased by maximising the time 

interval between repairs and overhauls. Furthermore, suitable maintenance intervals, 

logistics, spare parts and associated man-hours are planned ahead, adding up to 

greater turbine availability. Consequently, the number of access and logistic costs 

are reduced significantly.  

 

The conditions of turbines can be monitored remotely in real-time without personnel 

having to travel to sites which pose serious safety treats. The lead time given by 

monitoring systems will enable stoppage of a turbine before it reaches a critical 

condition. Extreme external conditions such as wave-induced oscillation of towers in 

remote locations can be detected. This prevents damage to components of turbines. 

The overall result is improved reliability/availability of wind turbines, and 

significant reduction in downtimes and net maintenance costs. 
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1.12 RESEARCH AIM AND OBJECTIVES 

This section elaborates the aim and objectives of the undertaken research work 

reported in this thesis. 

 

1.12.1 Research Aim 

The overall aim of the research work was to determine and optimise appropriate 

maintenance tasks for wind turbines. 

 

1.12.2 Research Objectives 

Specifically, seven research objectives were logically outlined and addressed:- 

1. Assess the current maintenance of wind turbine equipment. 

2. Develop a structured model for asset management in the wind energy industry. 

3. Critically evaluate wind turbines to determine likely failure characteristics. 

4. Assess the technical and commercial feasibility of maintenance strategies 

taking into account commercial drivers such as warranty issues, geographical 

location, intermittent operation and the value of generation. 

5. Optimise maintenance activities using Modelling System Failures based on 

Monte Carlo Simulation Techniques. 

6. Optimise maintenance activities using Delay-time mathematical maintenance 

model. 

7. Compare the results of the Modelling System Failures and the Delay-time 

mathematical maintenance model. 

 

1.13 THESIS OVERVIEW 

The thesis determines and optimises appropriate maintenance tasks for wind 

turbines. Field failure and maintenance data of wind turbines are collected and 

analysed using the Modelling System Failures and Delay-Time Maintenance Model 

optimisation techniques. Failures of the wind turbines are modelled and simulated to 

assess and optimise the reliability, availability and maintainability of a selected wind 

farm. Defects rate and mean delay-time of components and subsystems within the 

wind turbine are estimated to determine optimal inspection intervals for critical 

subsystems of the wind turbine. 
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Chapter 2 reviews the renewable energy sector with a particular focus on the wind 

energy industry. It discusses the failure characteristics and cost significant items of 

horizontal axis wind turbines. The subject of Asset management is reviewed to 

understand its concept and processes applied in other industries. Existing asset 

management tools and techniques which can be deployed to improve assets’ 

performance are identified and discussed.  

 

Chapter 3 presents the approaches and methodologies adopted to achieve the stated 

objectives of the research work reported in this thesis. Field failure data of wind 

turbines were collected from 27 wind farms (comprising turbines of different 

capacity ratings) located within the same geographical region. Failure data pertinent 

to the critical components and subsystems of wind turbines were extracted from the 

Supervisory Control and Data Acquisition (SCADA) system of wind farms. The 

SCADA system records failures and the date and time of occurrence; these were 

used in conjunction with maintenance Work Orders (WOs) of the same period to 

ascertain the specific type of failure and the components involved. The collected 

data were organised in accordance with the type, design and capacity of the wind 

turbines. A total of seventy seven 600 kW wind turbines of a particular type have 

been used to carry out the objectives of the research work reported in this thesis. The 

600 kW wind turbines rating were of particular interest to the collaborating wind 

farm operator in regard to optimising maintenance on their wind farm. Therefore 

maintenance optimisation of 600 kW wind turbine is the focus of this thesis. 

 

The methodology presented in the thesis can be applied to offshore wind farms. 

However, additional models are required to include the cost of various possible 

access systems to carry out maintenance works on offshore wind turbines. Hostile 

weather conditions that can delay the maintenance activities on offshore wind 

turbines are other factors to be considered 

 

In Chapter 4 we design a structured model for asset management in the wind energy 

industry. Chapter 5 critically evaluates a generic horizontal axis wind turbine to 
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determine its likely failure characteristics and suitable maintenance activities. The 

technical and commercial feasibility of the maintenance activities on a 26 x 600 kW 

wind farm are assessed. In Chapter 6 we analyse collected field failure data of wind 

turbines to estimate shape (β) and scale (η) parameters of critical components and 

subsystems. Chapter 7 models the failures of the 600 kW wind turbine and the 26 x 

600 kW wind farm. The models are simulated to assess and optimise the reliability, 

availability and maintainability of the wind turbine and the farm. In Chapter 8 we 

determine optimal inspection intervals for critical subsystems of the 600 kW wind 

turbine. Chapter 9 compares the results of the modelling system failures and the 

delay-time mathematical maintenance model. In Chapter 10 we summarise the 

study, then presents conclusions drawn from the research work and 

recommendations for further study.  
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CHAPTER 2 

LITERATURE REVIEW  

2.1 INTRODUCTION 

This chapter critically reviews literature pertinent to Wind Energy Industry and the 

field of Asset Management. The wind energy industry is discussed in section 2.2 

where we expound on the potentials of onshore and offshore wind energy 

generation. In section 2.3, the common types of wind turbine design as well as 

component functionalities and design materials were discussed. The section reviews 

failure characteristics of horizontal axis wind turbines and, identifies some common 

causes of failure in wind turbines. A review of the cost significant items within a 

wind turbine is presented in section 2.4. 

 

Asset management tools and techniques existing in other industries are identified 

and their applicability, strengths and weaknesses are discussed in section 2.5. 

Condition monitoring techniques that are applicable to wind turbines are discussed 

in section 2.6. 

 

2.2 THE WIND ENERGY INDUSTRY 

Wind turbines are stand-alone machines which are often installed and net-worked in 

a place referred to as a Wind Farm or Wind Park. Wind farms can be located either 

onshore or offshore.  

 

2.2.1 Onshore and Offshore Wind Energy Generation 

Onshore and offshore wind energy generation differs not only in the geographical 

location but also in some vital technical and economic issues as discussed in the 

following:  

 

� Wind resources 

The offshore wind resources are often significantly higher than onshore, even 

though wind resources at a specific site depend on the nature of the landscape, 

altitudes, shapes of hills, etc (Department of Trade and Industry, 2005). The 

temperature difference between the sea surface and the air above it is far smaller 
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than the corresponding difference onshore. This means turbulence tends to be lower 

offshore than onshore (World Energy Council, 2005).  Consequently, offshore wind 

turbines suffer less dynamic operating stress.  

 

� Capital cost 

Another significant difference between onshore and offshore wind energy generation 

is the installed cost. The foundation structures of an onshore wind farm cost about 

6% of the total project cost while grid connection facilities cost about 3% (World 

Energy Council, 2005). On the other hand, the foundation structures of an offshore 

wind farm need to ensure the turbines are connected to the seabed and are able to 

cope with additional factors such as loading from waves, currents and ice. Thus, the 

cost is about 23% of the total project cost while the cost of grid connection facilities 

is about 14% (World Energy Council, 2005). These costs are significantly higher 

than onshore wind farm costs. 

 

� Technology  

The technology of the wind turbines used in onshore and offshore wind farms is 

very similar. The main difference is in the size and the power rating of the turbines. 

Onshore farms often utilise turbines with capacities of up to 2 MW while offshore 

farms use multi-mega watt turbines (Department of Trade and Industry, 2005). 

Offshore wind farms are usually connected to a sub-station located onshore by using 

submarine cables. The substation is connected to an electricity grid using overhead 

cables in similar manner to onshore wind farms. Offshore wind farms usually 

require higher voltage transmission systems and technical equipment such as 

transformers and switch-gear. The significant wind resources offshore and the 

possibility to install multi-mega watt turbines are some of the major drivers of the 

recent shift in development of wind farms from onshore to offshore locations.  

 

2.3 WIND TURBINES 

This section discusses some common design types of wind turbines. It reviews 

components’ functionalities, design materials as well as their failure characteristics. 
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2.3.1 Design Types 

The design of a wind turbine is usually specified according to the following six basic 

criteria; hub height, rotor diameter or swept area, blade solidity1, tip speed ratio2, 

rated power and rated wind speed (Walker & Jenkins 1997). These criteria are 

designed to suit a specific orientation or topology (Manwell et al. 2002). Table 2.1 

summarises some common design topology of wind turbines. Note there are designs 

that are not commercially available are not included in the table. HAWT have been 

popularised by designers because they offer the possibility of using towers to raise 

the blades to a position of maximum wind resources.  

 

Table 2.1 Common Design Orientation of Wind Turbines 

Sub-system            Design options

1 Rotor axis orientation a. Horizontal axis wind turbine (HAWT)
b. Vertical axis wind turbine (VAWT)

2 Rotor power control a. Stall control
b. Variable pitch control
c. Aerodynamic control
d. Yaw control

3 Rotor position a. Down wind rotor
b. Up wind rotor

4 Yaw control a. Free control
b. Active control

5 Rotational speed a. Constant speed
b. Variable speed

6 Tip speed ratios a. High speed
b. Low speed

7 Hub a. Rigid
b. Teetering
c. Hinged or gimballed 

8 Rigidity a. Stiff
b. Flexible

9 Number of blades a. Three blades
b. Two blades

10 Tower structure a. Tubular
b. Pipe-type
c. Trusses

11 Foundations a. Concrete caissons foundation
b. Steel gravitational foundation
c. Tripod foundation
d. Mono piles foundation  

 

212                                                 
1 The ratio of the area of blades to the swept area. 
2 Ratio of the speed of the blade tip to the wind speed. 
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A horizontal axis wind turbine comprise 3-blades, up-wind, pitch control, a 3-stage 

planetary gearbox, 4-pole asynchronous generator, and a tubular tower, is chosen to 

pursue the objectives of the research work reported in this thesis. The subsystems 

and components of a typical horizontal axis wind turbine are shown in figure 2.1.  

 

 

Figure 2.1 Components and Subsystems of a typical HAWT wind turbine 

 

2.3.2 Components Functionality, Design Materials and Failure characteristics  

This subsection discusses the functions as well as the design materials of the various 

subsystems and components of a horizontal axis wind turbine. It further identify 

from the literature, the possible causes of a wind turbine’s components and 

subsystems failure.  

 

Basically, there are 4 main causes of failure of equipment or physical assets; human 

error3, Acts-of-God4, design faults and components related failure5. The 

International Electro-technical Commission on Wind Turbine Standards [IEC 

61400-22] and, the European Wind Turbine Certification Guidelines [EWTC, 2001] 
212                                                 
3 The gap between what is done and what should have been done such as wrong installation of 
components, etc. 
4 Refers to natural events which the occurrence can not be reasonably foreseen or avoided e.g. 
lightening, etc. 
5 Deterioration of equipment in its normal operating context such as fatigue, wear-out, etc. 
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require comprehensive design tests for the various components of a wind turbine. 

However, these design tests cannot accurately predict all the actual environmental 

factors which vary from site to site (Dutton A.G., et al 1999) or all possible causes 

of failure that may occur during the operating life of the wind turbine. Thus 

assessing field failure characteristics of wind turbines is essential to understanding 

the likely failure behaviour of the turbines when they are exposed to the natural 

environment.  

 

In Germany, field failure behaviour of 15,500 grid connected wind turbines were 

assessed to determine all causes of failure. The result presented in figure 2.2 shows 

that 42% of the total failure was caused by component breakdown while 21% was 

caused by control system failure (Windstats Newsletter, 2004).  

 

 

Figure 2.2 Causes of wind turbines failure- The German experience 
(Source: Windstats Newsletter, 2004) 

 

Similar studies on failure behaviour of wind turbines in the UK and the Netherlands 

were undertaken at the Centre for Renewable Energy Systems Technology (CREST) 

and the Energy Centre Netherlands (ECN) respectively. The results are presented in 

figures 2.3 and 2.4 respectively.  
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Figure 2.3 Wind turbine component failures in the UK 
(Source: CREST Loughborough University- http://www.hie.co.uk/Renewables-

seminar-04-presentations/crest-david-infield.pdf ) 
 
 

 

Figure 2.4 causes of offshore wind turbines failure in the Netherlands 
(Source: ECN- http://www.ecn.nl/docs/dowec/2003-EWEC-O_M.pdf ) 

 

2.3.2.1 Blades 

Wind turbine blades are designed to harness wind movement and then transmit the 

rotational energy to the gearbox via the hub and main shaft. The blades of a wind 

turbine are usually made from composite6 materials. Composite materials are often 

preferred because of the possibility of achieving high strength and stiffness-to-

weight ratio (Manwell et al. 2002). They are also corrosion resistant and good 

212                                                 
6 Items made from combining at least two completely different materials 
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electrical insulators. These properties are advantageous in an offshore environment 

where corrosion is a critical factor to be considered. Table 2.2 shows some 

composite materials and their corresponding binders commonly used in the 

production of wind turbine blades. 

 

Table 2.2 Composites and binders used in manufacturing wind turbine blades 

Composites Binders or Resins 

Fibreglass Polyester (unsaturated) 

Carbon fibre Vinyl ester 

Wood Epoxy 

 

Wind turbine composite blades can be described as Carbon fibre reinforcing or 

Wood-epoxy laminates or fibreglass reinforced plastic (GRP). GRP is the most 

commonly used blade because it is cheaper than other composite materials (Burton 

et al. 2001). Furthermore, fibre glass has good tensile strength while the binder 

(polyester resins) has a short cure time and low cost.  

 

A wind turbine blade consists of two main parts; the spar which gives the structural 

stiffness and the skin which provides the air foil shape as required by a specific 

design.  Basically, there are three common shapes of a wind turbine’s blade. The 

shapes are determined by the overall topology of a wind turbine and the 

aerodynamic considerations. These common shapes are; near optimum, linear taper 

and constant chord (Manwell et al. 2002). Table 2.3 shows an example of a 

specification for a wind turbine blade. 

 

Table 2.3 Technical specification of a typical blade of a wind turbine 

Type Self supporting – constant chord 

Material Fibre glass reinforced plastic (GRP) 

Length 30 metres 
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� Connecting blades to the hub 

The blade is connected to the turbine’s hub through the blade’s root. The root is 

usually made thicker to cope with the high dynamic loading it will experience in its 

operating life. The blades, hubs and the fasteners are made from different materials. 

Thus, interactions between these 3 components in terms of stiffness during variable 

loading constitute huge operating problems. Modern wind turbine blades have 

threaded bushes glued into their roots, and are connected to the hub by using bolts. 

 

2.3.2.2 Causes of Fibreglass reinforced plastic (GRP) blades Failure 

Interaction between wind turbine blades’ centrifugal and gravitational force as well 

as varying wind thrust and turbulence induce the blades to a cyclic and flap-wise 

loading. As a result, the IEC TS 61400-23 requires full-scale blade test for strength, 

static and dynamic fatigue, stability and critical deflection to validate design 

certification. GRP blades in normal operating conditions are known to fail as a result 

of cracks arising from fatigue (Philippidis T.P and Vassilopoulos A.P. 2004; Infield 

D. 2003; Dutton A.G., et al. 1990), defects in materials accumulating to critical 

cracks (Jorgensen E.R., et al 2004) (Anastassopoulos A.A., et al 2002) and 

lightening strikes (Conover K., et al. 2000). Ice build-up is also known to cause 

failure of GRP blades.  

 

2.3.2.3 Hub 

The hub of a wind turbine connects the blades to the main-shaft, and transmits 

rotational force generated by the blades. Hubs are generally made from steel which 

can be welded or cast (Manwell et al. 2002). Essentially, there are three common 

designs of wind turbine hubs; rigid, teetering and hinged. The topology of a wind 

turbine determines the specific type of hub design to be used on the wind turbine. 

Table 2.4 shows an example of a wind turbine hub specification. 

Table 2.4 Technical specification of a typical hub of a wind turbine 

Design Rigid 

Material SG cast iron 

Others Contains the equipment to alter 

pitch of blades 
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2.3.2.4 Main Shaft 

The main or low-speed shaft of a wind turbine connects and transmits rotational 

force from the hub to the gearbox. Wind turbines’ main shafts are usually of forged 

alloy steel (Burton et al. 2001).  

 

2.3.2.5 Main Bearing 

The main bearing of a wind turbine reduces the frictional resistance between the 

blades, the main-shaft and the gearbox while undergoing relative motion. The main 

bearings of a wind turbine are usually of the self-aligning spherical roller type 

designed specifically for wind turbines. The spherical bearing has two sets of rollers 

which allow the absorption of radial loads (across the shaft) and axial forces (along 

the shaft). The uniqueness of these bearings is associated with the spherical shape 

which allows the bearing’s inner and outer rings to be slightly slanted and out-of-

track in relation to each other. The out-of-track can be up to a maximum of a half 

degree without damaging the bearing while it is operating (Manwell et al. 2002).  

 

� Main bearing installation 

The main bearing is mounted in the bearing housing and bolted to the main frame of 

the turbine while the pitching bearing uses the hub as housing. 

 

2.3.2.6 Causes of Main Bearings Failure 

The main bearings are usually designed to specifically ensure that wind turbines 

withstand high loads during gusts and braking. However, poor lubrication (Molinas 

M. 2004), wear, pitting, deformation of outer race and rolling elements (Caselitz P., 

et al. 2004) are known to cause main bearing failures. Other causes of failure of a 

generic bearing are identified by Smith and Mobley (2003).  

 

2.3.2.7 Gearbox 

The gearbox of a wind turbine increases the rotational speed of the main shaft from 

very low revolutions per minute (rpm) to a higher rpm required to drive a generator 

of the wind turbine. The gearbox often has a constant speed increasing ratio, that is, 

it does not change speed by changing gears like conventional gearboxes. It is worth 



                                                                         Maintenance Optimisation for Wind Turbines 

PhD Thesis, The Robert Gordon University Aberdeen, 2008.                                                  27                                               

noting that it is not uncommon to have a wind turbine operating at different 

operational speeds. This is possible by having two different sized generators in a 

wind turbine; each generator unit with a distinctive speed of rotation or alternatively 

having one generator with two different stator windings (Burton et al. 2001).  

 

The gearbox is one of the heaviest and most expensive components of a wind 

turbine. A three-stage planetary gearbox is usually utilised in wind turbines 

(Manwell, 2002). The three-stage planetary gearbox consists of a planetary gear and 

a three-stage gear as shown conceptually in figure 2.5. The planetary gear 

comprises an interior toothed gear-wheel known as a ring wheel (see ‘a’ in figure 2.5 

), three smaller toothed gear wheels known as planet wheels (b1, b2 and b3) which 

are carried on a common carrier arm known as the planet carrier ‘c’, and a centrally 

placed toothed gear wheel known as the sun gear wheel ‘d’.  

 

The ring wheel is usually stationary while the planet carrier is mounted on the 

hollow shaft. The planet carrier rotates with the same rotational speed as the rotor 

blades. The three planet wheels (b1, b2 and b3) revolve around the inner 

circumference of the ring wheel ‘a’ thereby increasing the speed of the sun-gear 

wheel ‘d’. The sun-gear wheel is fixed to a shaft driving the three-stage gear.  

 

The three-stage gear has three sets of toothed gear wheels i.e. slow speed stage 

(5&6), intermediate stage (7&8) and the high speed stage (9&10). In the low speed 

stage, the larger gear wheel (5) is mounted directly on the hollow-shaft (1) driven by 

the sun gear wheel. The smaller gear (6) is machined directly onto the intermediate 

shaft (2). This drives the larger gear wheel (7) in the intermediate stage. The small 

intermediate gear wheel (8) is mounted on the intermediate shaft (3). This drives the 

larger gear wheel (9) in the high speed stage.  The small gear wheel (10) in the high 

speed stage is attached to the high speed shaft (4) which is connected to a generator.  

 

� Connecting the gearbox to the generator 

The high speed shaft from the gearbox is connected to the generator by means of a 

coupling. The coupling is a flexible unit made from pieces of rubber which allow 
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some slight difference in alignment between the gearbox and the generator during 

normal operation. 

 

 

 

 

 

 

 

Figure 2.5 components of a 3-stage planetary gearbox  

 
2.3.2.8 Causes of Planetary Gearbox Failure 

Some major causes of failure in a wind turbine planetary gearbox include poor 

lubrication, bearings and gear teeth failures (Rasmussen F., et al. 2004) (Molinas M. 

2004), (Caselitz P., et al. 2004) (Niederstucke B., et al. 2000). Polak (1999) carried 

out a detailed research on gearbox problems, and enumerated some generic causes of 

their failure. Also, Smith and Mobley (2003) listed some common failure modes of 

gearbox and gear-sets. 

 

2.3.2.9 Generator 

The generator within a wind turbine converts the mechanical rotational energy from 

the gearbox into electrical energy. The generator is slightly different from other 

generating units connected to the electric grid because it works with a power source 

(the wind turbine rotor) that supplies fluctuating mechanical power (torque). 

Essentially, there are two types of generators commonly used in wind turbines; 

synchronous and asynchronous.  

 

� Synchronous generator 

A generator is synchronous when its rotor rotates at a constant speed which is 

synchronous7 with the rotation of the magnetic field (stator). Wind turbines which 

use this type of generator normally use electromagnets in the rotor which are fed by 
212                                                 
7 Running exactly like the cycle. 
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direct current from the electric grid. Note that the grid supplies alternating current; 

this is converted to direct current before sending it into the coil-winding around the 

electromagnets in the rotor. The rotor electromagnets are connected to the current by 

using brushes and slip rings on the shaft of the generator. 

 

� Asynchronous generator 

This is also known as an induction generator. It is referred to as asynchronous 

because the rotor has no torque (power) at the precise synchronous rotational speed. 

The generator consists of two main parts, the stator and the rotor. The stator contains 

a series of coils placed in slots forming a cylindrical assembly of thin iron plates.  

The rotor is also assembled of thin iron plates forming rows of thick aluminium bars 

joined at each end with an aluminium ring. These are fitted in key ways on the outer 

surface of the rotor which looks like a squirrel cage. The rotor sits on a shaft placed 

inside the stator.  

 

2.3.2.10 Causes of  Squirrel Cage Induction Generator failure  

Bearings are known to be the major cause of failure of a squirrel cage induction 

generator (Hansen L.H, 2001). Thus, maintenance of a SCIG is mainly restricted to 

bearing lubrication. Muljadi et al. (1999) observed that at power frequencies, SCIG 

is inherently stable, but when connected to a weak grid with an unbalanced three-

phase load, overheating and torque pulsations may occur. Machelor (1998 & 1999) 

listed some generic causes of failure in an AC induction motor.  

 

2.3.2.11 Blade Pitching System  

Wind turbines are generally designed to operate within specified wind speed limits; 

cut-in and cut-out limits. To maximise energy conversion and avoid components’ 

stress or damage due to strong wind, some form of power control are installed in 

wind turbines. One of these power control systems is the blade pitching system. The 

pitching system serves a dual purpose; aerodynamic power control and aerodynamic 

braking. The electronic controller of a wind turbine supervises wind-speed in 

relation to power out put by measuring the wind-speed and the power out put as 
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analogue signals. The controller decides which operations are to be carried out while 

the hydraulic system operates the pitching mechanism. 

 

2.3.2.12 Causes of Pitch System Failure 

Each blade has a separate pitching activator which comprises a hydraulic cylinder, 

piston rod etc. The pitch bearings are generally four-point bearings. Some causes of 

pitch system failure are listed in the European Wind Turbine Certification 

Guidelines (2001). 

 

2.3.2.13 Mechanical Brake  

The mechanical braking system in a wind turbine serves a dual purpose. First as a 

back-up system to prevent the rotational speed of the drive train from escalating to 

an unacceptable level in the event the aerodynamic braking system (pitching system) 

fails to operate. Secondly as a packing brake when wind turbine is not in operation. 

The mechanical braking system is usually located on the high speed shaft (HSS) 

between the gearbox and the generator. The brake system consists of a brake disc, 

brake pads and callipers. 

 

� Mechanical Brake Activation 

 In the event that the aerodynamic braking system fails to operate, the electronic 

controller of a wind turbine sends an action message to the hydraulic system to 

operate the mechanical braking system. During braking, pressure is released by the 

hydraulic system which actuates the brake callipers. These push the brake pads 

against the brake disc which is fixed on the rotating high speed shaft. The braking is 

a result of friction between the brake pads and the disc. Similar operation takes place 

during parking of the wind turbine. The hydraulic system of the mechanical brake is 

fail safe i.e. the required hydraulic pressure must be reached before the wind turbine 

can start operating. 

 

2.3.2.14 Causes of Mechanical Brake Failure 

Excessive wear on brake linings may cause brake failure or even fire EWTCG 

(2001) pp22.  
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Rademakers et al (2002) listed some common failure modes and causes of a typical 

wind turbine mechanical brake.  

 

2.3.2.15 Hydraulic System 

The hydraulic system operates the mechanical braking system, the pitching system 

and the yaw control system. It also operates the on-board cranes and locking systems 

for canopies and spinners in larger wind turbines. Main components of the hydraulic 

system include pumps, drives, oil tanks, filters and pressure valves. The hydraulic 

system contains hydraulic oil which is put under pressure to move pistons in 

hydraulic cylinders. This system ensures that pressure is established when the wind 

turbine starts and also releases the pressure when the turbine stops. The pump builds 

up the pressure which is controlled by a pressure sensitive valve to ensure safe 

attainment of the required pressure level. For effective operation, a reserve pressure 

steel tank is often included in the system. The tank contains a rubber membrane 

which separates the hydraulic oil from the enclosed body of air. When the hydraulic 

oil is under pressure, it pushes the rubber membrane against the enclosed body of 

air, this in turn act as a cushion to give a counter pressure that enable the pressure in 

the system to be maintained. 

 

2.3.2.16 Causes of Hydraulic System Failure 

Hydraulic pump failures are often caused by contamination of hydraulic fluid, 

wrong oil viscosity, premature failure of cylinders as a result of high hydraulic fluid 

temperature, hydraulic valve failure caused by cavitations, faulty circuit protection 

devices (Casey B. 2005), and seal failure (Whitlock J. 2003).  

 

2.3.2.17 Yaw Drive 

The yaw system is used to continuously align the rotor of a horizontal axis wind 

turbine with the changing wind directions for maximum energy extraction. 

Basically, there are two types of yawing systems; active and free. The topology of 

the rotor determines the specific type of yaw system to be incorporated. Upwind 

turbines use active yaw which consists of a motor to actively align the turbine with 
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wind direction. Downwind turbines usually use the free yaw which depends on the 

aerodynamics of the rotor to align the turbine with the wind direction. 

 

� Operation of the active yaw system 

The active yaw system comprises a four-geared drive motor, yaw bearing and a 

bull-gear attached to its circumference, drive pinion gear, pinion shaft and housing, 

gear reducer, brake disc, brake callipers, etc. When wind changes direction, the 

meteorological sensors of the wind turbine send a message to the electronic 

controller. This in turn sends a control message to the yaw system which operates by 

using power supply from slip rings to the electric drive motor. The motor converts 

the electrical energy into mechanical energy required to drive the pinion gear. The 

pinion gear engages the bull gear mounted on the yaw bearing there-by turning the 

whole nacelle to align with wind direction. As soon as yawing is completed, the 

electronic controller sends a control message to activate the yaw braking system to 

stop the turbine from turning further. Conversely, brakes are released just before 

yawing begins. 

 

2.3.2.18 Causes of Yaw System Failure 

The major causes of failure of a yaw system include bearing failures, pinion and bull 

gear teeth pitting, yaw brake failure (Verbruggen T.W. 2003; Manwell J.F., et al. 

2002), pinion and bull gear teeth wear-out (Burton T., et al. 2001).  

 

2.3.2.19 Electronic Controller 

The electronic controller of a wind turbine basically serves two purposes. First it 

oversees the normal operation of the turbine by measuring and storing statistical data 

such that faults are registered and retrieved as required. Secondly, it is responsible 

for most decision-making processes in the safety system of a wind turbine. The 

controller uses a micro-computer designed for industrial use. It has a large storage 

capacity and the control program is stored in a microchip. The microchip, electro-

technical equipment, contactors, switches, fuses are placed in the control cabinet of 

the nacelle. To prevent internal errors by the electronic controller, an internal 

automatic self-supervision is built-in to allow the controller to check and control its 
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own systems. Usually a back-up system is installed having the same function as the 

controller but assembled with different types of components. 

 

� The Control System 

The IEC 612400-2 defines the control system as “…a sub-system of wind turbine 

that receives information about the condition of the wind turbine and/or its 

environment and adjusts the turbine in order to maintain it within its operating 

limit”. The basic design requirement for a control system is defined in IEC 61400-1 

section 8. However, Stiesdal H (1998) explained that there are possibilities of error 

no matter how high the quality of installed sensors, cables, software and hardware. 

Indeed, the National Renewable Energy Laboratory (2004) states that the 

“… reliability of software is not readily calculated and its failure modes are not 

predictable, even though a watch-dog timer is a prudent mechanism for monitoring 

and detecting some software faults. There are large numbers of potentially unsafe 

software faults that will not be detected as it is not possible to test all in-put 

sequences”. Some causes of control system failure are listed in the European Wind 

Turbine Certification Guidelines (2001).  

 

� The Protection System 

The protective system also known as the safety system comprises the hydraulic 

system, the mechanical brakes and the pitch system. The European Wind Turbine 

Certification Guidelines (EWTCG-2001) states that “…where the pitch system is 

used as part of the braking system it shall be considered as part of the protecting 

system and evaluated as such” (Page 21 of the EWTCG). 

 

2.3.2.20 Nacelle Canopies and Spinners 

The canopy covers and protects the wind turbine’s components from weather 

elements. The spinner covers the hub and the pitch assembly. Nacelle canopies and 

spinners are usually made from composite materials (light weight) such as fibreglass 

reinforced plastic (GRP). This is to reduce the overall imposed load of the wind 

turbine, and ensure high strength and stiffness to weight ratio. Composite materials 

are corrosion resistant and good electrical insulators. 
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2.3.2.21 Tower 

The tower of a wind turbine raises the main parts of the turbine to a height where 

conversion of energy from the wind can be optimised. The tower transmits self and 

imposed loads of the turbine to the foundation.  Wind turbine towers can be made 

from reinforced concrete and painted or galvanised steel. Some common tower 

designs include; free-standing lattice (truss), guyed-lattice (pole) and tubular towers 

(Manwell et al. 2002). Tubular towers are commonly used in offshore wind turbines 

because they are fabricated in sections of significant lengths and erected on site with 

less bolted connections. Tubular towers require less periodic inspection for loose 

torque. The tower also provides a safe climbing access to nacelle, and is 

aesthetically better than the other types of towers afore mentioned. 

 

2.3.2.22 Foundation 

The foundation of a wind turbine keeps it in an upright and stable position even 

under extreme weather conditions. The foundation transfers the weight of all 

imposed loads to the surrounding soil. Two common materials used in the 

construction of wind turbine’s foundations are concrete and steel. Common designs 

include pad foundation often used onshore while concrete caissons, steel 

gravitational, tripod and mono piles foundations are usually used offshore. 

 

2.4 COST SIGNIFICANT ITEMS WITHIN A WIND TURBINE 

This section identifies cost significant items within a wind turbine i.e. where 

consequences of failure will result in significant financial loss. Figure 2.6 presents a 

cost breakdown of a typical wind turbine. The nacelle which contains the main-drive 

and the generator is about 56% of the total cost of a wind turbine. The rotor which 

comprises the blades, the hub and associated components is about 29%, and the 

tower is approximately 15%. 

 

A further breakdown of cost of components/subsystems within a nacelle of a wind 

turbine is shown in figure 2.7. The gearbox, converter and the generator have 33%, 

17% and 13% respectively of the total cost of a nacelle. Thus, the gearbox, converter 

and the generator are the cost significant items within a nacelle of a wind turbine. 
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Figure 2.6 cost significant items of a typical 600 kW wind turbine  

 

 

 

Figure 2.7 Percentage costs of components within a Nacelle of 600 kW Turbine 

 

Figures 2.2-2.4 have shown the blades, gearbox, generator, yaw system, hydraulic 

system, electrical and control system are the major causes of failure of wind 

turbines. Coincidentally, the blades, gearbox, generator, electrical and control 

system are cost significant items within a wind turbine (figures 2.6 and 2.7). 

Therefore, it is crucial to improve the performance of wind turbines by 

implementing suitable maintenance tasks aimed at meeting equipment specific 

needs. 

 

2.5 TOOLS AND TECHNIQUES OF ASSET MANAGEMENT  

This section gives a brief description as well as the uses of some tools and 

techniques used in asset management. 
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2.5.1 Hazard and Operatibility Study  

Hazard and Operatibility Study (HAZOP) is a Bottom-Up detailed hazard 

identification technique that examines processes, procedures and organisational 

change to identify critical deviations in process units. It identifies all possible 

hazards associated with the deviations and determines the resultant effects. The 

effects are analysed so that the risk of the events can be quantified in tangible terms 

(Smith D.J., 2001). HAZOP is used in organisations where micro details are 

required to address both hard-ware and people-ware systems. It reduces or removes 

hazards that can cause process interruption or production losses due to mistakes 

made by operators, and to some limited extent equipment breakdown (Smith D.J., 

2001). 

 

2.5.2 Fault Tree Analysis 

Fault Tree Analysis (FTA) is a frequency and probability analysis technique that 

permits the assessment of an undesirable event or accident. It starts with a major 

‘Top’ event and works its way down, in a bid to investigate and identify possible 

combinations of factors that can lead to the occurrence of the event (Huggett, J. et al. 

2003). FTA is used to find the root-causes of an undesirable event in order to 

determine a solution. It can also be used to estimate consequences and probabilities 

of occurrence of a top-event (Huggett, J. et al. 2003). 

 

2.5.3 Event Tree Analysis 

Event Tree Analysis (ETA) is a technique which permits sequential assessment of an 

initiating event to identify and quantify all possible effects of the event. It identifies 

remedies for minimising the consequences of the event (Huggett, J. et al. 2003). 

ETA is often used during the design phase of an equipment to assess potential 

accidents resulting from a postulated initiating event. It is also used on operating 

facilities to assess the adequacy of existing safety features or to examine the 

potential out comes of equipment failures (Huggett, J. et al. 2003). 
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2.5.4 Critical Task Analysis  

Critical Task Analysis (CTA) is a Top-Down hazard identification technique that 

analyses work in terms of the tasks performed to determine criticality rating of all 

possible risks associated with the tasks that are not performed properly. CTA is used 

in task-based activities to highlight critical tasks that need to be carried out correctly. 

It outlines appropriate procedures and indicates actions and precautions that will 

prevent or minimise potential losses. CTA is used to structure working procedures 

(Huggett, J. et al. 2003). 

 

2.5.5 Quantified Risk Analysis 

Quantified Risk Analysis (QRA) is a technique that analyses risks associated with a 

particular event. It assesses the nature of the risks and the probability of occurrence. 

The impact of various available options to attenuate the risks is assessed. Financial 

values are assigned to each of the identified options (Kolluru, 1996). QRA is used to 

establish a priority ranking for risk reduction, so that management can prioritise their 

expenditure to get the best HSE benefit for the least cost (Kolluru, 1996). 

 

2.5.6 Root Cause Analysis  

Root Cause Analysis (RCA) is a technique that conducts a full-blown analysis to 

identify the latent root causes of ‘Why’ any undesirable event occurred. It identifies 

necessary steps to eliminate the event in its entirety and prevent reoccurrence 

(Reliability Center Inc, 2000). RCA finds and corrects the causes of a problem, 

hence it is used where solutions are sought to stop problems from happening again 

(Reliability Center Inc, 2000) 

 

2.5.7 Structured What-if Technique 

Structured What-if Technique (SWIFT) is a high level Top-Down system-oriented 

hazard identification method. It examines the whole system or subsystem to identify 

all possible hazards, causes and frequency of occurrence to produce risk priority 

ranking. The technique is based on structured brain storming efforts by a team of 

experienced process experts with supplemental questions from a structured what-if 

check list (Cox and Tait, 1998). SWIFT is often used in hazard based operations as 
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an indicator of the seriousness of risks and how quickly actions must be taken by 

management to remove or mitigate the hazards based on the causes (Cox and Tait, 

1998). 

 

Other AM tools and techniques include the Reliability-Centred Maintenance (RCM), 

Failure Modes and Effects Analysis (FMEA), Risk Based Inspection (RBI) and 

Total Productive Maintenance (TPM). These are discussed in chapter 3. 

 

2.6 CONDITION MONITORING TECHNIQUES AND WIND TURBIN ES 

Condition-Based Maintenance (CBM) strategy depends on the utilisation of 

appropriate condition monitoring techniques. Condition monitoring is "…extracting 

information from machines to indicate their condition and to enable them be 

operated and maintained with safety and economy” (Moubray, 1991). Verbruggen 

(2003) and Infield (2004) listed some condition monitoring techniques that are 

potentially applicable to wind turbines. Some of these techniques are discussed 

below. 

 

2.6.1 Strain Measurement  

Strain-gauges attached to the surfaces of a wind turbine’s blades are used to measure 

strain in the blades. This is done by measuring changes in electrical resistance in the 

strain gauge. The technique is used for laboratory life-time prediction and 

safeguarding of the stress level of blades (Verbruggen T. W. 2003).  

 

2.6.2 Acoustic Analysis Technique 

Acoustic monitoring involves attaching acoustic sensors to wind turbine blades, and 

then listening to the sounds generated by the blades. The sensors are attached to the 

blades by using flexible glue with low attenuation. Abnormal sounds which are not 

related to the dynamic loading of the turbine are indicators of possible blade failure. 

The variability of wind speed, wave, turbulence as well as the dynamic operating 

nature of wind turbines can limit the use of acoustic analyses technique.  
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2.6.3 Vibration Analysis Technique 

Vibration monitoring involves the use of vibration sensors mounted rigidly on 

equipment to register its local motion. The technique is used to monitor the 

condition of rotating components of a wind turbine such as the blades, main 

bearings, main shaft, gearbox and associated components (gearwheels, shafts, 

bearings), generator and associated components (bearings, rotor, stator) (Infield, 

2004). There are 3 sensors commonly used in vibration monitoring; transducers, 

displacement and acceleration (Mitchell, 1993). Wind turbines, unlike other 

equipment, operate on both steady and dynamic loads as well as high and low 

rotational speeds. These make signal analysis and diagnosis difficult (Verbruggen T. 

W. 2003). Vibration analysis of wind turbines components and subsystems are 

expounded upon in chapter 8. 

 

2.6.4 Performance/ Process Parameter Technique 

A wind turbine is designed to operate within a defined wind speed limit. The 

controller of a wind turbine measures the wind speed and the main-shaft rotational 

speed as analogue signals. The main-shaft rotational speed is supposed to be directly 

proportional to the wind speed. Any significant variation in the measured parameters 

indicates possible failure of the rotor (Infield, 2004). However, the variation does 

not precisely indicate the equipment associated with the failure; hence failure 

detection using parameter/process technique leaves the specific causes of failure and 

the extent unknown.  

 

In addition to the wind and main-shaft rotational speed, the controller measures the 

high-speed-shaft rotational speed as an analogue signal. For every in-put speed of 

the main shaft, there is a predetermined corresponding speed of the high-speed-shaft 

as an out-put from the gearbox. Variation between the actual and the predetermined 

rotational speed of the high-speed-shaft is an indication of failure of the gearbox. 

Also, the bearings and gear-oil temperatures are measured as analogue signals. 

Excessive bearing temperature is an indication of bearing failure or insufficient 

lubrication.  
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Furthermore, the controller of the wind turbine measures wind speed, generator 

temperature, high-speed-shaft rotational speed, voltage, current, all as analogue 

signals. The voltage and current are used to calculate the actual power out-put. For a 

given high-speed-shaft rotational speed, there is a corresponding expected power out 

put. Significant variations between the expected and calculated power is indicative 

of generator failure. 

 

The performance/process parameter technique lacks real-time fault diagnosis. Its 

effectiveness depends on the mode of calculation and comparison. Measurement 

errors may indicate failure which will invariably affect the operation of the wind 

turbine. Robust application will involve developments of algorithms such that 

measurements and comparisons can be generated automatically. Another draw back 

is the dependence of the monitoring system on the controller. This means that a fault 

on the controller could affect the monitoring process.  

 

2.6.5 Visual Examination 

One of the reasons for installing condition monitoring systems on wind turbines is to 

reduce the number of maintenance activities which could be very expensive and 

sometimes restricted by weather conditions. Visual examination involves physical 

examination of the condition of wind turbine’s components and subsystems such as 

detection of cracks in blades, etc. The technique may require the deployment of 

cranes and crane-vessels in onshore and offshore wind farms respectively. In 

addition to the access costs, invisible failures are not be detectable by using this 

technique. 

 

2.6.6 Fibre Optics Measurement 

Optical fibre sensors can be embedded in the blade structure to enable the 

measurement of five parameters which are critical to blade failure. The five 

parameters include; strain measurement which monitors the blade loading and 

vibration level, temperature measurement for likely over-heating, acceleration 

measurement to monitor pitch angle and rotor position, crack detection 

measurements, and lightning detection which measures front steepness, maximum 



                                                                         Maintenance Optimisation for Wind Turbines 

PhD Thesis, The Robert Gordon University Aberdeen, 2008.                                                  41                                               

current and specific energy.  The loading data from blades sensors can be used for 

real-time pitch control. This reduces significantly the out-of balance loading on the 

tower and foundation. 

 

2.6.7 Oil Analysis Technique 

This technique serves a dual-function; first to safeguard the quality of lubrication oil 

(contamination by parts, moisture) and secondly, to safeguard the components 

involved (characterisation of parts). In order to safeguard the oil quality, on-line 

sensors are used for part-counting and moisture detection. The oil analyses are done 

off-line by taking samples at prescribed intervals.  The majority of maintenance 

activities require climbing the turbine’s tower, and working either within the 

confines of the nacelle or outside by using the platform below the nacelle. Thus the 

remoteness of work place and accessibility for sample taking are factors to be 

considered. 

 

For safeguarding components, samples are taken at intervals for off-line analysis. 

The interval for sample taking constitutes a problem with the technical applicability 

of the technique. For instance, if the level of deterioration is not identified, then it is 

difficult to determine whether the component or equipment will not fail before the 

next sample taking.  The technique is best used as a supporting test to indicate 

components with excessive wear.  
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CHAPTER 3 

APPROACH AND METHODOLOGY 

 

3.1 INTRODUCTION 

This chapter presents and discusses the approach and methodology adopted to 

achieve the research aim and objectives stated in Chapter 1. The methodology to 

design a framework for re-organising the wind energy industry into an asset 

management-based industry is presented in section 3.2. Section 3.3 presents the 

methodology for the selection of a suitable maintenance strategy for wind turbines. 

Sections 3.4 and 3.5 present the approach and methodology for quantitative 

maintenance optimisation; Modelling System Failures and Delay-time Mathematical 

Maintenance model respectively. Data requirements for the optimisation processes 

and the collection technique are discussed in section 3.6. Finally, section 3.7 

presents the summary of the chapter. 

  

3.2 DESIGN OF A STRUCTURED ASSET MANAGEMENT MODEL 

Asset Management (AM) has evolved as a means to describe a holistic application 

of business best practices in order to satisfy all stakeholders’ requirements. 

Successful AM organisations utilise a framework or a model (Holland, 2002) to link 

all the vital requirements for effective management of assets (Townsend, 1998). AM 

models are not information management systems but a method or process through 

which valid decisions can be made in the wider context of external business 

expectations (Gyimothy and Dunay, 2004). In the past, generic business models 

were used for management of assets but these fail to consider and align assets 

specific needs with corporate business values. Levery (2004) for example observed 

that there is a need to develop an industry-specific AM model to incorporate suitable 

maintenance management strategies that will maximise the return on investments in 

physical assets.      

 

The AM process commences by identifying business values which control the 

industry’s performance (Liyanage and Kumar, 2001) and the assets that are 

indispensable to drive and sustain the future of these values (Woodhouse, 2000). 
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These ensure that the “strategic and tactical decisions that are required to deliver 

the asset management mission are clearly driven by the asset itself rather than any 

activity” (Townsend, 1998). Appropriate Key Performance Indicators (KPI) and Key 

Performance Measurement (KPM) frameworks are formulated (Liyanage and 

Kumar, 2001) to allow effective evaluation of actual performance in comparison to 

intended targets. This sets continuous performance improvements in motion by 

identifying gaps and opportunities so that appropriate strategies for harnessing the 

benefits can be determined and implemented. 

 

The subject of Asset Management has been addressed by Townsend (1998) using a 

three-tiered model (i.e. Business Values, Asset Management Life-Cycle Phases, and 

Asset Management Processes). The first tier identifies strategic business values 

which the asset manager is seeking to contribute. The second tier identifies the phase 

of asset management life-cycle that must be managed in order to deliver these 

values. Finally, the third tier identifies the process in which the asset manager will 

be engaged as the life-cycle phases are managed. Similar philosophical thinking is 

presented by Woodhouse (2000), Hammond and Jones (2000).  

 

The wind industry currently lacks a holistic framework to combine and rationalise 

opposing stakeholders’ demands, and to also ensure that assets remain in a 

satisfactory condition over the life-cycle of wind farms. A methodology to design a 

structured model for asset management in the wind energy industry is outlined in the 

following six (6) key steps: 

� Review of literature pertinent to AM to understand the generic concept of AM 

processes, models, tools and techniques existing in other industries. 

� Critical assessment of the wind energy industry to identify business values and 

assets that drive the long-term survival and profit generation of wind farms. 

� Identification of crucial requirements for effective management of the 

identified business values and assets of the wind farms. 

� Designing a frame-work to harness and transform the crucial requirements for 

the effective management of wind farms into AM processes for the wind 

industry.  
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� A detailed design of each AM process with an explicit explanation including 

the incorporated AM tools and techniques.  

� Logical integration of all the designed process by using a unique process 

modelling technique to form a robust structured model for AM in the wind 

energy industry. 

 

These six (6) key steps are followed logically in chapter 4 to design a structured 

model for asset management in the wind energy industry. 

 

3.3 THE SELECTION OF A SUITABLE MAINTENANCE STRATEG Y 

One of the fundamental issues raised in chapter 2 was the common maintenance 

strategies applied to wind turbines are inadequate to meet the current commercial 

drivers of the wind industry. Consequently, a need exists to determine an 

appropriate8 maintenance strategy for wind turbines within the wider context of asset 

management methodology. A number of approaches to determine appropriate 

maintenance strategies for physical assets exist in the field of asset management, 

these include: 

 

3.3.1  Total Productive Maintenance 

This approach evaluates potential causes of asset failure by focusing on the machine, 

methods of operation, measurement styles, manpower error and materials. Total 

Productive Maintenance (TPM) assesses a failure mode by asking ‘Why’ up to five 

times, in a bid to trace the problem to its root cause. The approach is used often in 

the manufacturing sector to treat, tolerate, transfer or terminate a problem (DeHaas, 

1997). However, TPM is constrained on the specific tools needed to determine 

which tasks are worth doing in terms of risk consideration and equipment life 

expectancy (Woodhouse, 2002).  

 

3.3.2  Risk Based Inspection 

Risk Based Inspection (RBI) systematically assesses static-equipment to determine 

appropriate condition monitoring methods for equipment with high likelihood and 

212                                                 
8 technically feasible and economically viable over the life-cycle of wind turbines 
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consequence of failure. It uses risk as a basis for prioritising and managing 

inspection programs of static-equipment. The approach allows development of 

equipment-specific inspection plans as well as optimising inspection methods and 

intervals (Wintle et al. 2001; Favvennec, 2001). However RBI is notably weak in 

determining how much to spend on inspections and condition monitoring systems 

and also in pointing to alternative risk-treatment options (Woodhouse, 2002). 

 

3.3.3  Reliability-Centred Maintenance 

Reliability-Centred Maintenance (RCM) identifies ways in which components or 

systems at the design stage or already in operation can fail to perform their intended 

design functions. The approach focuses on the functions of equipment in order to 

predict failure modes and the resultant consequences so that suitable maintenance 

actions can be determined (Moubray, 1991; Latino, 1997). This makes RCM unique 

from the other approaches. Moubray (2000) explains that no comparable technique 

exists for identifying the true, safe minimum of what must be done to preserve the 

functions of physical assets in the way that RCM does. RCM originated in the 

aircraft industry and has been applied with considerable success in several industrial 

sectors, for example, Railways (Marquez et al. 2003); Offshore Oil & Gas (Arthur 

and Dunn, 2001); Manufacturing sector (Decade and Modak, 2003) etc.  

 

The entire purpose of maintenance is to ensure that machines continue to do what 

their users want of them. Therefore the first step to determine a suitable maintenance 

strategy is to understand what is required of an asset, how this can be affected and 

the consequences. RCM which is defined as “….a systematic consideration of 

system functions, the way functions can fail, and a priority-based consideration of 

safety and economics that identifies applicable and effective preventive maintenance 

tasks” (Rausand, 1998), provides the necessary underlying concepts to do this by 

asking and building upon seven basic questions (Moubray, 1991) in the sequence 

shown below:  

� What are the functions and associated desired standards of performance of the 

asset in its present operating context (functions)? 

� In what ways can it fail to fulfil its functions (functional failures)? 
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� What causes each functional failure (failure modes)? 

� What happens when each failure occurs (failure effects)? 

� In what way does each failure matter (failure consequences)? 

� What should be done to predict or prevent each failure (proactive tasks and task 

intervals)? 

� What should be done if a suitable proactive task cannot be found (default 

actions)? 

 

Answering the 7 basic RCM questions about a wind turbine will identify ways in 

which a wind turbine already in operation can fail to perform its design intentions 

and the resultant consequences. However, RCM alone is limited in determining 

which maintenance strategies are the most cost effective options available 

(Woodhouse, 2002).  

 

3.3.4 A Hybrid Approach (RCM plus ALCA) 

Given the limitation of RCM to assess the economic viability of selected options, a 

very strong economic assessment technique known as the Asset Life-Cycle Analysis 

is in this thesis integrated into the RCM to form a hybrid approach. Asset Life-Cycle 

Analysis (ALCA) is defined as “…the combined evaluation of capital costs with 

future performance, operating and maintenance implications, life expectancies and 

eventual disposal or replacement of an asset” (Woodhouse, 2002).  

 

In the hybrid approach, RCM approach is used to determine possible failure modes, 

causes and the resultant effects on system operation. Failure consequences of critical 

components and subsystems are evaluated and expressed in financial terms. Then, 

the ALCA technique is used to assess the commercial viability of selected 

maintenance activities; taking into account geographical location, intermittent 

operation and value of generation. Uncertainties in the financial calculations are 

identified and risk assessed using a probabilistic technique of the Crystal Ball Monte 

Carlo simulation software. The Crystal Ball Monte Carlo simulation software is 

commercially available (http://www.decisioneering.com/crystal_ball/index.html). It 

is a leading software suite for financial and economic risk assessment. Non-financial 
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aspects of the selected activities are identified and assessed using a Weighted 

Evaluation (WE) technique and Benefit-to-cost ratio. This hybrid approach is 

applied in chapter 5 to select a suitable maintenance strategy for wind turbines. 

 

3.4 MAINTENANCE OPTIMISATION 

Maintenance optimisation is “…a process that attempts to balance the maintenance 

requirements (legislative, economic, technical, etc.) and the resources used to carry 

out the maintenance program (people, spares, consumables, equipment, facilities, 

etc.)”(Systems Reliability Centre). In chapter 2, we explained that determining and 

implementing suitable maintenance strategies for physical assets is not in itself a 

means to an end, but that maintenance activities ought to be optimised. It was further 

explained that maintenance optimisation is not a one-off procedure but a continuous 

process which requires periodic evaluation of performance and improving on the 

successes of the past.  

 

The main purpose of maintenance optimisation is to determine the most cost-

effective maintenance strategy. This strategy should provide the best possible 

balance between direct maintenance costs (labour, materials, administration) and the 

consequences or penalty of not performing maintenance as required (i.e. labour, 

materials, administration, loss of production and anticipated profit, etc) without 

prejudice to Health, Safety and Environmental (HSE) factors. The concept of 

maintenance optimisation is illustrated conceptually in Figure 3.1.  

 

Evidently, carrying out maintenance activities such as inspection, preventative 

maintenance, and replacement of components more frequently, increases the direct 

cost of maintenance. Thus, the risk exposure or the consequences of not performing 

maintenance activities as required, reduces. However, the less frequent the 

maintenance activities, the lower the maintenance cost, and the higher the risk 

exposure. Optimisation deals with the interaction between these factors and aims to 

determine the optimum level. This is usually obtained at the lowest point on the total 

combination of the key variables, where maintenance activities are carried out at the 

lowest total impact (optimal cost and interval) as shown in Figure 3.1. 
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Figure 3.1 Maintenance Optimisation Concept 

 

3.4.1 Types of Maintenance Optimisation 

There are two common approaches to maintenance optimisation; qualitative and 

quantitative. Arthur (2005) and Scarf (1997) observed that qualitative maintenance 

optimisation is often clouded with subjective opinion and experience, and further 

suggest the utilisation of quantitative methods to optimise the maintenance activities 

of physical assets. 

 

3.4.1.1 Quantitative Maintenance Optimisation 

Quantitative maintenance optimisation (QMO) techniques employ a mathematical 

model in which both costs and benefits of maintenance are quantified and an 

optimum balance between both is obtained (Dekker, 1996). There are a number of 

QMO techniques in the field of Applied Mathematics and Operational Research, for 

example, Markov Chains and Analytical hierarchy processes (Chiang and Yuan, 

2001); Genetic Algorithms (Tsai et al. 2001), etc. However, most of the approaches 

are criticised by Scarf (1997), Dekker (1996), and Arthur (2005) for being 

developed for mathematical purposes only and are seldom used in practical asset 

management to solve real-life maintenance problems. Furthermore, Arthur (2005) 

observed that, “…quantitative maintenance optimisation can be clouded through the 

rigorous data demands of mathematical modelling and these same models require 

data that is often unavailable”.  
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Modelling System Failures (MSF) is a QMO technique that has been recommended 

as the best approach to assess the reliability and optimise the maintenance of 

mechanical systems (Davidson and Hunsley, 1994). Delay-Time Maintenance 

Model (DTMM) (Scarf, 1997) is attractive for its simplified mathematical modelling 

and has been applied practically to optimise the inspection intervals of some 

physical assets with considerable success. For example, Arthur (2005) has employed 

it to optimise inspection intervals for an Oil and Gas water injection pumping 

system. The approaches of the two QMO are now discussed in more detail.  

 

3.5 MODELLING SYSTEM FAILURES  

The modelling System Failures (MSF) technique enables the investigation of 

operations and failure patterns of equipment by taking into account failure 

distribution, repair delays, spare-holding, and resource availability to determine 

optimum maintenance requirements (Davidson and Hunsley, 1994). The first step in 

the approach is to identify a suitable statistical distribution that will best fit the 

assessed failure characteristics of the physical asset. Secondly, a suitable parameter 

estimation method is selected to calculate the parameters of the identified statistical 

distribution. Then, the calculated parameters are used to design Reliability Block 

Diagrams (RBD) to model the failures of the asset. The RBD permits the use of 

Monte Carlo simulations software to assess and determine the optimal levels of key 

maintenance variables such as costs, spare holdings, the level of reliability and 

availability required, etc. 

 

3.5.1 Statistical Distributions 

Fundamentally, there are three patterns of failure that describe the failure 

characteristics of mechanical systems (Davidson and Hunsley, 1994). These include 

reducing, constant and increasing failure patterns as illustrated in Figure 3.2. The 

figure displays a curve usually referred to as a hazard rate or most commonly a 

bath-tub curve. The reducing failure pattern usually known as the infant mortality 

denotes failures that occur at the early-life of equipment and the likelihood of 

occurrence reduces as the age of the equipment increases. The constant failure 

pattern represents failures that are independent of equipment age, that is, the 
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likelihood of occurrence is invariable through out the life-cycle of the equipment. 

Lastly, the increasing failure pattern commonly referred to as wear-out symbolises 

failures that occur at the later life of equipment, that is, the likelihood of occurrence 

increases with the age of the equipment. It is worth noting, that the bath-tub curves 

differ for different pieces of equipment in the wind turbine. The reader is referred to 

(Moubray, 1991) for a more detailed study on types of failure pattern. 

 

 

 

 

 

  

 

 

 

 
 

Figure 3.2 ‘Bath-Tub’ curve showing failure patterns 

 

A number of statistical distributions exist to fit the failure patterns described. The 

Exponential distribution describes a constant hazard rate while Normal and 

Lognormal describe effectively the period of increasing hazard rate (Davidson and 

Hunsley, 1994). However, the most commonly used distribution is the Weibull, 

named after a Swedish engineer Waloddi Weibull (1887-1979) who formulated and 

popularised the use of the distribution for reliability analysis. The distribution is 

very versatile as it fits all the three basic patterns of failure. Note that the Weibull 

distribution is also employed in the analysis of wind speed distribution but this is 

outside the scope of this research work. 

 

3.5.2 The Weibull Distribution  

The Weibull distribution can be represented in 3 different forms; 3-parameter, 2-

parameter and 1-parameter. The 3-parameter and 1-parameter Weibull distribution 

probability density function is given in Equations 3.1 and 3.2 respectively. 
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The one parameter Weibull pdf is obtained by setting γ = 0 in the equation 3.1, and 

assuming β = C or assumed value from past experience on identical or similar 

products. The only unknown parameter is the scale parameter (η ). 

 

The 2-parameter Weibull distribution denoted by a probability density function (pdf) 

and cumulative distribution function (cdf) given in Equations 3.3 and 3.4 

respectively is considered exclusively due to its broad acceptability.  
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Where β  and η  represent the shape and scale parameter respectively. The value of 

β  describes the failure pattern of the equipment. As a general rule, (β < 1) means a 

reducing failure pattern, (β =1) signifies a constant failure pattern and (β >1) 

indicates an increasing failure pattern, as depicted in Figure 3.2. Conversely, the 

scale parameter denotes the characteristic life of the equipment; the time at which 

there is an approximately 0.632 probability that the equipment will have failed 

(Davidson and Hunsley, 1994). Estimating the parameters requires a suitable method 

that will best fit the characteristics of the collected data. 

  

3.5.3 Parameter Estimation Methods 

Common parameter estimation methods include probability plot, regression analysis 

and Maximum Likelihood Estimation (MLE). The characteristics of collected data 
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influence the estimation method to be used. The regression analysis is suitable for a 

complete data sample, that is, all the equipment under assessment has failed within 

the period under consideration. Field or life failure data are seldom complete as they 

are often subjected to suspensions or censorings. An item could have been 

temporarily removed from the test during the test interval or the test interval could 

elapse before an item fails. The probability plot and the regression analysis are 

limited in dealing with data sets containing a relatively large number of suspensions 

or censorings (Cohen, 1965). 

 

3.5.4 Maximum Likelihood Estimation 

The Maximum Likelihood Estimation (MLE) takes into account the times-to-

suspension or censoring in the estimation process which makes it a more robust and 

rigorous estimation method. The process of using the maximum likelihood to 

estimate the parameters of the Weibull distribution when data are censored or 

suspended is now discussed. 

 

Consider a random failure sample consisting of multiple censoring or suspension. 

Suppose that censoring occurs progressively in k  stages at times iT  where 1−> ii TT , 

ki ......2,1=  and that at the ith  stage of censoring ir  sample specimens selected 

randomly from the survivors at time iT  are removed from further observation. If N  

designates the total sample size and n  the number of specimens which fail at times 

jT  and therefore provide completely determined life spans (Cohen, 1965), it follows 

that 
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 The likelihood function is 
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Where C  is a constant, ( )Tf  is the pdf, and  ( )TF  is the cdf. 
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Note: Harris and Stocker (1998) defined a likelihood function L (α) as “the 

probability or probability density for the occurrence of a sample configuration x1, 

…,  xn given that the probability density f(x; α) with parameter α is unknown i.e. L 

(α) = f(x1; α)… f(xn; α)” . Substituting equations 3.3 and 3.4 in 3.17, then taking the 

natural logarithm and partial derivative of the equation with respect β and η will 

result in Equations that can be used to estimate the values of β and η respectively. 

 

ReliaSoft Weibull ++7 software (http://www.ReliaSoft.com ) which is based on the 

fundamental mathematical principles of the MLE discussed above will be used to 

analyse field failure data of wind turbines. The software package is commercially 

available, and robust in life data analysis. It calculates automatically the β and η 

parameters of the Weibull distribution and allows a number of graphs such as the 

Weibull probability plots, reliability graphs, failure verses time plots, probability 

density function graphs, etc to be generated.  In chapter 6, MLE in the Weibull 

distribution is used to analyse collected field failure data of wind turbines.  

 

The estimated values of  β  and η   of each component within a subsystem will be 

used to design Reliability Block Diagrams (RBD) to model the failures of the 

subsystem. The β  and η  values for each subsystem within a system are estimated 

to model the failures of the system. For example, consider a wind turbine as a 

system and the gearbox of the turbine as a subsystem with the following 

components; shafts, intermediary speed shaft (IMS) bearings, high speed shaft 

(HSS) bearings, key ways, gear-teeth etc. The β and η of each of the components are 

estimated to model the failure behaviour of the gearbox. Similarly, the β and η of 

each subsystem of the turbine such as the generator, yaw, hub etc are estimated to 

model the failures of the wind turbine.  

 

In the modelling, Reliability Block Diagrams (RBD) are designed for the 

subsystems to incorporate the failure characteristics of the components. Then, the 

RBD of the subsystems are used to model the failures of the wind turbine as 

illustrated conceptually in figure 3.3. Thus, the failure behaviour of the wind turbine 

can be used in modelling the failure characteristics of a selected wind farm. It is 
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worth noting however, that the modelling processes depend on the availability of 

failure data to estimate the β and η values for the components and subsystems of the 

wind turbine. The models are simulated to assess and optimise the reliability, 

availability and maintainability of the wind turbine as well as the wind farm; taking 

into account the costs and availability of maintenance crew and spare holdings. 

‘ReliaSoft BlockSim-7’ software (http://www.ReliaSoft.com ) will be used in 

chapter 7 to model and assess the reliability, availability and maintainability of a 

selected wind turbine and a wind farm, the software uses Monte Carlo simulation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Modelling wind turbine failures 

 

3.6 DELAY-TIME MAINTENANCE MATHEMATICAL MODEL 

The delay-time mathematical model examines equipment failure patterns by taking 

into account failure consequences, inspection costs and intervals to determine an 

optimal inspection interval. The time taken by an incipient failure to deteriorate from 

inception to catastrophic event is fundamental to determining maintenance intervals. 

This is illustrated in Figure 3.4. 

 

In an RCM approach, P-F intervals are determined subjectively on the basis of 

engineering judgement and experience (Rausand, 1998). The P-F interval determines 

the frequency of CBM activities and is usually carried out at a 

time 2IntervalFP−≤ . Moubray (1991) although questionable suggested five ways 
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to determine P-F intervals for equipment but concludes: “it is either impossible, 

impracticable or too expensive to try to determine P-F intervals on an empirical 

basis”. A simple quantitative mathematical model known as the delay-time 

maintenance model (Scarf, 1998) allows the determination of optimal inspection 

interval by taking into account costs, risks and performance. The delay-time is the 

time between a defect becoming apparent and functional failure actually occurring. 

This is synonymous to the P-F interval. The concept of the delay-time model is 

discussed in the next subsection. 

 

 

 

 

 

 

 

 

Figure 3.4 Potential-to-Functional failure intervals 
 

 

3.5.1 Concept of the Delay-time Maintenance Mathematical Model 
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Figure 3.5 delay-time concept 

 

Thus, for a component observed over a period of T days with inspections equally 

spaced at intervals of ∆ days, the maximum likelihood estimates satisfy the 

expressions; 

                                           
T

n=α)  [Baker et al. 1997]                                    (3.7) 

Where; α)  = defect rate, n = total number of defects observed (i.e. the sum of failed 

and repaired equipments), and T = period under consideration. Also 
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Where k  failures are observed at times it  ( ).....,,.........1 ki =  from the last 

inspection, and kn − defects are found at inspections. αγ ))
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Where 1c  is the cost of inspection and repair, and 2c   the cost or consequences of 

failure (Baker et al. 1997). Equations 3.8 and 3.9 can be solved by amending them to 

equations 3.10 and 3.11 respectively, and using an iterative procedure or trial and 

error approach to find the values of γ and ∆ for which )(γf  and *)(∆f  are zero. 
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The reader is referred to [Baker et al. 1997; Baker and Christer, 1994; Baker and 

Wang, 1991] for a detailed study on the concept and derivation of the delay-time 

maintenance mathematical model. 

 

3.7 DATA REQUIREMENT AND COLLECTION 

Historical failure data pertinent to the critical components and subsystems of wind 

turbines will be extracted from the Supervisory Control and Data Acquisition 

(SCADA) system of wind farms. The SCADA system records failures and the date 

and time of occurrence; this will be used in conjunction with maintenance Work 

Orders (WOs) of the same period to ascertain the specific type of failure and the 

components involved.  Information will be sourced from wind farms (comprising 

turbines of different capacity ratings) located within the same geographical region. 

The collected data will be organised in accordance with the type, design and 

capacity of the wind turbines. For example, failure data of all 600 kW horizontal 

axis turbines will be extracted and collated. This will further re-grouped according to 

subsystems and components of the wind turbine and then re-arranged in order of 

failure modes and dates. The asset identification number and the serial numbers for 

the subsystems and the components are essential for a very detailed analysis. 

 

3.8 SUMMARY 

The outlined methodology for designing a structured model for asset management in 

the wind energy industry will be applied in chapter 4. The hybrid approach to 

selection of a suitable maintenance strategy will be used in chapter 5 to determine an 

appropriate maintenance strategy for wind turbines. The modelling system failures 

maintenance optimisation technique will be applied in chapters 6 and 7 to assess and 

optimise the reliability, availability and maintainability of wind turbines on a 

selected wind farm. The delay-time maintenance mathematical model will be used in 

chapter 8 to optimise the inspection intervals of critical subsystems of wind turbines 
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on a selected wind farm. A number of case studies will be used to demonstrate the 

practical application of the discussed methodologies. 
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CHAPTER 4 
 

A STRUCTURED MODEL FOR ASSET  

MANAGEMENT IN THE WIND INDUSTRY 

 

4.1 INTRODUCTION 

In chapter 2 it was explained that achieving a return on investment in wind farms is 

affected by inter-related stakeholders’ requirements as well as technical issues 

associated with the assets. It was further explained that inter-related issues require a 

holistic framework to combine and rationalise stakeholders’ demands, and ensure 

assets remain in a satisfactory condition over the life-cycle of wind farms. 

Consequently, six (6) key steps were outlined in chapter 3 to re-organise the wind 

energy industry to support the applicability of asset management methodologies.  

 

This chapter applies the outlined steps to design a structured model for asset 

management in the wind energy industry. Asset management processes in the wind 

energy industry are identified and arranged in a logical framework in section 4.2. 

Detailed design of each of the identified structured AM processes is presented in 

section 4.3. The overall picture of the structured model, highlighting the need to pull 

them together into a more coherent and effectively focused whole is presented in 

section 4.4. The potential benefits of the model are outlined in section 4.5. 

Institutional barriers in the way of practical implementation as well as individual 

responsibilities are discussed in sections 4.6. Finally, the summary of the chapter is 

presented in section 4.7. 

 

4.2 ASSET MANAGEMENT PROCESSES IN THE WIND ENERGY 

INDUSTRY 

Literature pertinent to Asset Management was reviewed in chapter 2 to understand 

its processes, tools and techniques existing in other industries. Andrawus et al. 

(2006a) critically assessed the wind energy industry and identified business values 

and assets which drive the long-term survival and profit generation of wind farms. 

Crucial requirements for the effective management of wind farms were also 
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identified. The business values, assets and the crucial requirements are logically 

harnessed and rationalised into a 3-level AM model as shown conceptually in Figure 

4.1 and described as follows. Level 1 comprises “stakeholders’ requirements” 

(process A-B) and “Mission and vision statements” (process B-C). This is similar to 

the ‘Business Values’ in the AM model described in Chapter 3 section 3.2. Level 2 

consist of “Assets classification and maintenance management” (process C-F) which 

is synonymous to the 2nd and 3rd tier in the model previously described. Finally, 

level 3 comprise of “Overall continuous performance improvements” (process F-A 

or F-G). The detailed design of these processes is reported in the next section. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 an outline framework for the Asset Management process 

 

4.3 DETAILED DESIGN OF THE MODEL 

This section presents a detailed design of each of the asset management processes 

shown in figure 4.1. 

 

4.3.1  Stakeholders’ Requirements 

The first stage involves recognising and assembling all stakeholders’ requirements 

which are often incompatible, and to unveil fundamental business values that will 

drive the performance and long-term survival of the wind farms. This process will 
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facilitate negotiation with appropriate parties and permit a rational trade-off between 

conflicting priorities. 

  

In the wind industry, the government creates a business-enabling environment 

through appropriate laws and also regulates the activities of the industry through 

regulatory bodies. Non-compliance with these laws and regulations will result in 

penalties and subsequent withdrawal of operating licenses. Investors in the wind 

energy sector desire a long-term business survival, increased profitability as well as 

enlarged market share in the global energy market. The end users expect lower 

prices of energy in comparison to other sources. The public expect absolute 

protection of the environment. These varying and opposing requirements need to be 

harnessed and balanced for a sustainable future of the wind energy industry. Figure 

4.2 shows the stakeholders’ requirements flow process. 

 

 

 

 

 

 

 

                                       

 

 

 

Figure 4.2 stakeholders’ requirements flow process 
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business values of the wind industry. The overall business objectives to uphold these 

values should be defined to satisfy all the stakeholders’ requirements. This often 
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results in contradicting objectives and it is imperative therefore to minimise the 

variability in the objectives by translating the objectives into concise and well 

communicated functions. Thus it is crucial the overall strategies align the 

departmental and individual responsibilities. An overall Key Performance 

Measurement (KPM) system should be designed to reflect the requirements of the 

stakeholders. Figure 4.3 shows the mission and vision statements flow process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                         

 

 

Figure 4.3 Mission and Vision statement flow process 
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attention to assets that are indispensable to the long-term survival of the wind 

industry and also elucidate boundaries and inter-dependencies of the assets.  Figure 

4.4 shows the asset classification flow process. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Figure 4.4 asset categorisation flow process 
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has been applied in several industrial sectors with considerable success. The wind 

industry is yet to explore the full potentials of RCM to determine appropriate 

maintenance strategies for wind turbines and the associated grid connection 

facilities. RCM alone is limited in determining which maintenance strategies are the 

most cost effective options available. Therefore, an ALCA technique which is 

defined as “…the combined evaluation of capital costs with future performance, 

operating and maintenance implications, life expectancies and eventual disposal or 

replacement of an asset” (Woodhouse, 2000) should be incorporated into RCM to 

assess the commercial viability of maintenance activities over the life-cycle of wind 

turbines. The integration of RCM and ALCA will provide a sustainable method of 

determining appropriate (technically feasible and economically viable) maintenance 

strategies for wind turbines and the associated grid connection facilities to maximise 

the return on investment in wind farms (Andrawus et al. 2006b & c).   

 

Appropriate Key Performance Indicators (KPI) and the measurement systems should 

be designed (Liyanage and Kumar, 2001) to align the maintenance activities and the 

overall strategic business values. Actual performance should be evaluated 

periodically and checked against intended targets. This will provide a baseline for 

maintenance optimisation to achieve the best combination of costs, risks and 

performances. Gaps and opportunities should be identified continuously and 

appropriate strategies to harvest the benefits should be determined and implemented.  

Figure 4.5 shows the flow process of primary assets. 

 

4.3.5  Secondary Assets 

This section discusses the secondary assets which facilitate the performance of the 

primary assets discussed in subsection 4.3.4. 

 

4.3.5.1 Data 

The significance of collecting and storing the correct type of data from the 

commencement of the AM process has been emphasised by Townsend (1998), 

Hammond and Jones (2000), Sherwin (2005). Improving the reliability, availability 

and maintainability of wind turbines and the associated grid connection facilities 
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will depend on the availability of useful historical failure and maintenance data. It is 

imperative therefore to have a comprehensive inventory (including specific location) 

of all wind turbines and grid connection facilities in an integrated asset register and 

data management system. The system should be robust to accommodate sequential 

recording of maintenance and failure data in an RCM format. This will keep the 

maintenance track record of each asset in a meaningful format that can be used for 

optimisation processes and for an informed decision making process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 primary asset flow process 
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4.3.5.2 Workforce 

The work force ensures effective operation and maintenance (O&M) of wind 

turbines and the associated grid connection facilities to achieve the expected level of 

performance. The quest for excellent performance revolves around a competent 

workforce with the right people on the right jobs, having manageable work backlogs 

and zero human error. Achieving this level of excellence will require an effective 

training and communication scheme, clear work procedures, team work and 

effective shift and reward systems. The performance of individuals should be 

evaluated periodically to identify training needs for the purposes of continuous staff 

development. Figure 4.6 shows the flow process of the work force. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                              

Figure 4.6 secondary assets flow process 
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implement appropriate strategies that will bridge the identified gaps and to explore 

new opportunities. Nonetheless, if no significant improvements are achieved by 

applying the appropriate strategies and the root-causes cannot be identified, then 

benchmarking (Benson and McGregor, 2005) against pace-setters within or across 

the industry should be used to yield useful success factors that will drive the 

continuous performance improvement process. Figure 4.7 shows the process flow of 

the overall continuous performance improvement. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 continuous performance improvement flow process 

 

4.4 THE OVERALL PICTURE 

The overall picture showing the holistic interaction and interdependencies of the 

asset management processes is shown in figure 4.8. This represents the structured 
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Figure 4.8 the overall flow process of AM in the wind industry 
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� The system will preserve knowledge and improve the quality of decision making 

on crucial issues such as the Health, Safety and Environment (HSE), Operational 

& Maintenance etc through out the life-cycle of wind farms. 

 

� The system will improve the ability to trace causes of incidents by providing a 

specific operation and maintenance diagnosis of equipment to the end user. This 

will reduce the number of operational incidents such as emergency shutdowns. 

 

� Maintenance will be based on observed conditions. This will reduce the number 

of down-times due to breakdowns, defects or damage, thus improving the 

productivity of wind turbines and also reducing the cost of energy generation.   

 

� Replacements or overhauls of components in good operating condition will be 

avoided. 

 

� The time interval between repairs and overhauls will be maximised through an 

optimisation process. This will allow better planning of suitable maintenance 

periods, logistics, spare holding and the associated man-hours. 

� Access and logistic costs will be reduced significantly.  

� The overall return on the investments in wind farms will be maximised. 

 

4.6 PRACTICAL IMPLEMENTATION  

This section discusses some institutional barriers in the way of practical 

implementation of the AM model as well as individual responsibilities to make it 

happen. 

 

4.6.1 Institutional barriers  

One key barrier to the practical implementation of the model is getting all the 

stakeholders to recognise and accept the strategic importance of AM, and to be fully 

and visibly committed to its implementation. Also, confidentiality among wind farm 

operators can limit data and information sharing. This will affect the update of the 

data base which is fundamental to long-term sustenance of the system.  
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4.6.2 Responsibilities 

The right climate and a mechanism to make known the strategic importance of AM 

to the wind industry are fundamental to successful implementation. It is imperative 

that all the key stakeholders should take responsibilities as discussed below: 

 

� National  

Government should, through appropriate policies and bye-laws, ensure that the wind 

farm operators take full responsibility of maintaining assets within the wind industry 

in the wider context of asset management methodology. 

 

� Company  

The establishment of a policy at the national level to ensure practical 

implementation of AM in the wind industry must be supported with a significant 

allocation of human, material and financial resources. To this end, wind farm 

management must be fully and visibly committed before the system can yield its rich 

dividends. The management must be committed to initiating the required 

expenditure as rapidly as possible at the start of the programme and maintaining it 

while the programme continues. It is important to state that the wind farm operators 

should strive to be the primary custodian of the model, even if government is 

reluctant to support the system. 

 

� Workforce 

The commitment of the entire personnel to the implementation of AM will be the 

driving force to ensure success. The degree of benefit will be directly proportional to 

the level of commitment of the personnel. It is paramount that the entire workforce 

accepts the change and to be fully committed to the implementation so that the full 

benefits of the system can be harvested. 

 

4.7  SUMMARY 

The wind energy industry is face with incompatible stakeholders’ requirements and 

the lack of a holistic framework to harness stakeholders’ needs with assets technical 

issues. A structured model for asset management in the wind industry was 
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developed. In the development of the model, AM processes, tools and techniques 

existing in other industries were drawn down and integrated for the effective 

management of wind farms. Crucial requirements for effective management of wind 

farms have been identified and transformed into AM processes. These processes 

were logically arranged to form the structure of the model. Each process was 

subsequently discussed and appropriately represented in a flowchart. Finally, the 

overall flow process indicating a holistic interaction of decision making and asset 

interdependence has been outlined by integrating the individual process chart.   

 

The model coherently harnesses and rationalises stakeholders’ requirements and 

ensures that assets remain in a satisfactory condition over the life cycle of wind 

farms. Such a model initiates the basic concept of AM in the wind industry as a 

prelude to developing dedicated AM software for the industry. The activities 

presented in the “primary asset flow process” (figure 4.5) will be carried out in 

chapters 5-8 due to its strategic function in the overall model.  
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CHAPTER 5  

SELECTION OF A SUITABLE MAINTENANCE  

STRATEGY FOR WIND TURBINES  

 

5.1 INTRODUCTION 

The previous chapters had explained that the common maintenance strategies 

applied to wind turbines are inadequate to meet the current maintenance demands of 

the wind energy industry. Chapter 2 highlighted the need to determine an 

appropriate maintenance strategy for wind turbines using asset management tools 

and techniques. In chapter 3, section 3.3, a hybrid approach comprising Reliability 

Centred Maintenance (RCM) and Asset Life-Cycle Analysis (ALCA) techniques 

was developed to select an appropriate maintenance strategy for wind turbines. 

 

This chapter presents and discusses the practical application of the hybrid approach 

to determine a suitable maintenance strategy for wind turbines. A generic horizontal 

axis wind turbine is critically assessed in section 5.2 to determine its failure 

characteristics by using the Reliability-Centred Maintenance approach. A case study 

is presented in section 5.3 to demonstrate the practical application of the hybrid 

RCM and ALCA to determine suitable maintenance activities for critical 

components and subsystems of a 600 kW wind turbine on a 26 x 600kW wind farm. 

The commercial viability of CBM activities is assessed using the ALCA technique; 

taking into account geographical location, intermittent operation and value of 

generation. Uncertainties in the financial calculations are risk assessed using a 

probabilistic technique of the Crystal Ball Monte Carlo simulation software. Non-

financial factors are identified and assessed using a Weighted Evaluation (WE) 

technique and Benefit-To-Cost ratio. Finally, the summary of the chapter is 

presented in section 5.4. 

 

5.2  APPLICATION OF RCM TO A GENERIC HORIZONTAL AXI S 

WIND TURBINE 

The first four RCM questions, listed in chapter 3, subsection 3.3.3, identify ways in 
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which a wind turbine already in operation can fail to perform its design intentions 

and the resultant effects on the components and systems of the turbine. This is 

usually referred to as a Failure Mode and Effect Analysis (FMEA). 

 

5.2.1  Functions and performance standards of a wind turbine  

The primary function of a wind turbine is to convert wind kinetic energy into 

electrical energy within a defined speed limit (cut-in and cut-out wind speed). This 

function is solely considered to minimise complexity in the analysis. The reader is 

referred to Wind Turbine Standards IEC 61400-22 for other functions and standards 

of performance. 

 

5.2.2  Functional failures 

Three functional failures are defined in view of the primary function stated in 

subsection 5.2.1; these include (i) Complete loss of energy conversion capability (ii) 

Partial loss of energy conversion capability and (iii) Over speeding. This broad 

classification permits the analysis of critical components and subsystems that are 

indispensable to the normal operation of a wind turbine. 

 

5.2.3  Failure Mode and Effect Analysis 

Failure modes for the defined functional failures are presented logically in Table 5.1. 

These were further scrutinised sequentially to identify possible causes up to a third 

level as shown in Appendixes A1, A2 and A3. The result of this analysis can be 

applied to a generic horizontal axis wind turbine. 

 

5.3 A CASE STUDY 

 In this section, a case study is presented to demonstrate the practical applicability of 

the approach. The last three RCM questions determine failure consequences and 

suitable maintenance tasks to mitigate the penalties. Data from a 26 x 600 kW 

onshore wind farm (total capacity of 15.6 MW) operating at an average capacity 

factor of 33% is used to answer the last three questions. The selection of this 

category of wind farm and turbine is deliberate for a number of reasons; first, 

onshore wind farms have ease of access for maintenance activities; secondly, it has 
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been suggested (Verbruggen, 2003) that the failure of a low-rated-power wind 

turbine such as 600 kW does not greatly affect the revenue generation of a wind 

farm because wind turbines operate stand-alone and the financial margins in the 

wind industry is relatively small.  

 

Table 5.1 Functional Failure and Failure Modes for Horizontal Axis Wind Turbines 
 
Function              Functional failure                 Failure modes   
 
WT to covert     WT-1 Complete loss        WT-1-1 Catastrophic blade failure   
wind kinetic        of energy conversion     WT-1-2 Catastrophic hub failure 
energy into              capability                  WT-1-3 Main bearing failure 
electrical                                                   WT-1-4 Main shaft failure 
 energy                                                      WT-1-5 Shaft-gearbox coupling failure 
 within                                                       WT-1-6 Gearbox failure 
 defined                                                     WT-1-7 Gearbox-generator coupling failure 
speed limit                                                WT-1-8 Generator failure 
(cut-in and                                                WT-1-9 Meteorological system failure 
cut-out)                                                     WT-1-10 Premature brake activation 
                                                                  WT-1-11 Electrical system failure 

                                  WT-1-12 Tower failure 
                                                                  WT-1-13 Foundation failure 
 
                            WT-2 Partial loss of      WT-2-1 Crack in blade 
                            energy conversion         WT-2-2 Deteriorating blade root stiffness 
                            capability                      WT-2-3 Blades at different pitches 
                                                                  WT-2-4 Dirt build-up on blades 
                                                                 WT-2-5 Ice build-up on blades 
                                                                  WT-2-6 Damping in blades 
                                                                  WT-2-7 Hub spins on shaft 
                                                                  WT-2-8 Low speed shaft misalignment 
                                                                  WT-2-9 Nacelle not yawing 
                                                                  WT-2-10 Nacelle yaws too slowly 
                                                                  WT-2-11 Nacelle yaws too fast 
                                                                  WT-2-12 Large yaw angle 
                                                                  WT-2-13 Cable twist 
                                                                  WT-2-14 Wind speed measurement error 
                                                                 WT-2-15 Wind direction measurement error 
                                                                              
                            WT-3 Over speeding     WT-3-1 Controller failure 
                                                                  WT-3-2 Hydraulic system failure 
                                                                  WT-3-3 Pitching system failure 
                                                                  WT-3-4 Mechanical brake failure 
                                                                  WT-3-5 Grid connection failure 
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5.3.1  Data Collection  

Current market prices of major components of a 600kW wind turbine, including 

transportation cost to site, were obtained from manufacturers. Labour requirements 

for replacements of these components as well as the access costs were obtained from 

the collaborating wind farm operator (see table 5.2). Historical failure data pertinent 

to failure modes WT-1-1, WT-1-2, WT-1-3, WT-1-4, WT-1-6 and WT-1-8 of the 

600kW turbine were extracted from the SCADA (i.e. Supervisory Control and Data 

Acquisition) system for a period of 6 years. The SCADA system records failures and 

the date and time of occurrence; this was used in conjunction with maintenance 

Work Orders (WOs) of the same period to ascertain the specific type of failure and 

the components involved. Over this period, the catastrophic failure (by 

“catastrophic” in this case, we mean failures beyond repair which require 

replacement of the system) of a gearbox (failure mode WT-1-6) occurred twice, 

while the catastrophic failure of a generator (failure mode WT-1-8) occurred on one 

occasion. Activities for inspection of wind turbines drive trains were obtained from 

the collaborating wind farm operator (see table 4.3) while current market prices of 

vibration monitoring systems for failure modes WT-1-3, WT-1-4, WT-1-5, WT-1-6 

WT-1-7 and WT-1-8 were obtained from vendors of condition monitoring system 

(see table 5.4). 

 

5.3.2  Failure Consequences 

Our analysis is based on the following equations, using functions given in the 

Glossary (Appendix B): 
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Table 5.2 Data for calculating failure consequences 

                                          Materials       Blade Main-bearingsMain shaft Gearbox Generator
Cost of item (£) 28,000.00  7,985.00        9,024.00    50,000.00   19,000.00  
Cost of transportation (£) at 4% of material cost 1,120.00    319.40           360.96       2,000.00     760.00       
Cost of Loading (£) at 0.5% of material cost 140.00 39.93 45.12 250.00 95.00
Cost of off loading (£) at 0.5% of material cost 140.00 39.93 45.12 250.00 95.00
Value Added Tax (%) 17.5 17.5 17.5 17.5 17.5
                                          Labour
Number of person to replace components 3 3 3 3 3
Number of days required to replace components 2 2 4 3 2
Work hours per day 8 8 8 8 8
Skilled labour rate per hour (£) 50.00 50.00 50.00 50.00 50.00
                                          Access costs
Cost of crane hire per hour including driver (£) 100.00       100.00           100.00       100.00        100.00       
Number of hours per day 24 24 24 24 24
Cost of crane hire/day including Mob & Demob (£) 2,400.00    2,400.00        2,400.00    2,400.00     2,400.00    
Number of days 3 3 4 4 3
Value Added Tax (%) 17.5 17.5 17.5 17.5 17.5
                                          Production loss
Lead time to supply material (days) 180 21 30 120 60
Lead time to hire a crane (days) 4 4 4 4 4
Number of repair days including travel time 3 3 4 4 3
Hours per day 24 24 24 24 24
Wind turbine power rating (kW) 600 600 600 600 600
Capacity factor (%) 33 33 33 33 33
Cost of energy per MWh (£) 50 50 50 50 50  

 

 

 

Table 5.3 Inspection activities of 26 x 600 kW wind turbine drive trains  

Number of wind turbines in wind farm (NTWF) 26

Rated power per wind turbine 600 kW
Capacity factor 33 %

                                        6-monthly service inspection of drive train

Number of turbines serviced/day/ 2 personnel (NTSD) 1 turbine

Number of  full-service per year (NFS) 2

Number of full service days/year = (NTWF / NTSD) NFS 52 days

Number of personnel (NPn) 2

Work hours per day (Whr) 6 hours

Labour rate per hour (LRT) 17 pounds

Annual cost of 6-monthly inspection = 52 x Npn x Whr x LRT 10,608.00       Pounds

                                       Annual gearbox inspection

Number of gearbox inspected/day/2 personnel (NGB) 6

Number of inspection per year (NI) 1

Number of days = (NTWF / NGB) NI 4.333 days

Number of personnel (NPn) 2

Work hours per day (Whr) 6 hours

Labour rate per hour (LRT) 50 pounds

Annual cost of gearbox inspection = 4.33 x NPn x Whr x LRT 2,600.00         pounds

Total Annual Cost of Inspection ( 10,608.00 + 2,600.00) 13,208.00       Pounds  
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Table 5.4 CBM tasks of 26 x 600 kW wind turbine drive trains 

Number of wind turbines (NTWF) 26

Rated power per wind turbine 600 kW
IMU 16 channel H/W & S/W D5DA3/turbine (CIMU) 7,300 pounds

Park server/ wind farm (PSF) 2,500 pounds

Maintenance spares/ wind farm (MSF) 7,300 pounds

WEBCON/turbine/annum (WEBCON) 294 pounds

Diagonostic support vibration analysis consultancy/ wind farm/annum (DSV) 1,800 pounds

Application engineering & bearing inspection/wind farm/inspection/report (AEBI) 600 pounds

Aptitude exchange licence/wind farm/annum (AELF) 696 pounds

                                    Annual condition based servicing of drive trains

Number of turbines serviced/day/ 2 personnel (NTSD) 6 turbine

Number of  full-service per year (NFS) 1

Number of full service days/year = (NTWF / NTSD) NFS 4.33 days

Number of personnel (NPn) 2

Work hours per day (Whr) 6 hours

Labour rate per hour (LRT) 17 pounds

                                       Costs of CBM activities

Capital Cost of Condition Monitoring (CM) System = (NTWF x CIMU)+ PSF+MSF 199,600.00  pounds

Annual maintenance cost of CM = WEBCON + DSV + AEBI + AELF 3,390.00      pounds

Annual cost of condition-based servicing of drive trains  = 4.33 x NPn x Whr x LRT 884.00         pounds  
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Table 5.5 shows the failure consequences of critical components of a 600kW wind 

turbine expressed in financial terms. These were determined by using equation 5.5 

and the data in Table 5.2, taking into account cost of material (Equation 5.1), cost of 

labour (Equation 5.2), cost of access (Equation 5.3) and production losses (Equation 

5.4).  
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A single day outage of a 600kW wind turbine (at 33% capacity factor and ₤50/MWh 

energy value) would result to a revenue loss of about ₤237/day.  Moreover onshore 

wind farms have the potential to operate at higher average capacity factors which 

results to a greater loss of revenue. Figure 5.1 shows the effect of capacity factors 

and down times on revenue generation of a 600kW wind turbine. A month down 

time at 33% and 36% capacity factors will result to a revenue loss of ₤7,128 and 

₤7,776 respectively, approximately 8% of the total annual revenue. Furthermore, the 

effects of two or more turbines failure on revenue generation are significantly higher 

(see figure 5.2). A month outage of seven 600kW wind turbines at 33% capacity 

factor will result to a revenue loss of about ₤49,896. Hence, implementing a Failure 

Based Maintenance strategy only, where a certain number of wind turbines are 

allowed to fail before repairs are carried out will result in a significant loss of 

revenue in addition to the effect on the electricity network and cost of component 

replacement, given that, the lead time to supply most of the critical components 

ranges between 3-4 months. 

 

Table 5.5 Failure consequences of critical components of a 600kW wind turbine 

Failure Modes Failure consequences FC (£)
TCMT TCLB TCAS PLS Total

WT-1-1 Catastrophic blade failure 34,545.00 2,400.00   8,460.00   1,663.20   47,068.20    
WT-1-3 Catastrophic main bearings failure 9,851.49   2,400.00   8,460.00   1,663.20   22,374.69    
WT-1-4 Catastrophic main shaft failure 11,133.36 4,800.00   11,280.00 1,900.80   29,114.16    
WT-1-6 Catastrophic gearbox failure 61,687.50 3,600.00   11,280.00 1,900.80   78,468.30    
WT-1-8 Catastrophic generator failure 23,441.25 2,400.00   8,460.00   1,663.20   35,964.45     

 

5.3.3 Selection of CBM tasks  

The diagram in figure 5.4 was designed to select suitable on-condition tasks also 

known as the Condition-Based Maintenance activities. These were selected on the 

basis that an appropriate condition monitoring task is available to detect incipient 

dominant failure modes (that occur gradually with warning signs and are 

independent of age) so that actions can be taken to avoid the resultant consequences 

(Wiggelinkhuizen E, et al 2006; Infield D, 2004; Verbruggen T 2003; Caselitz, P et 

al 1997). Condition Monitoring Systems for Wind Turbines are now commercially 

available, and have been installed on wind turbines in many wind farms around the 
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world, for example; the Enertrag Wind farm in Germany (see reference page), the 

Cathedral Rocks wind farm in South Australia (see reference page), etc. The 

collaborating wind farm operator has installed a vibrations monitoring system on the 

drive train of one of the 600 kW wind turbines as a pilot project. Indeed, installation 

of vibration monitoring system on the drive train of wind turbines is now becoming 

a requirement for insurance purposes. 

 

Vibration analysis was identified as the suitable condition based maintenance 

technique to mitigate dominant causes of failure modes WT-1-3, WT-1-4, WT-1-5, 

WT-1-6, WT-1-7, WT-1-8, WT-1-12, WT-2-7 and WT-2-8 while strain gauge 

measurements were employed for dominant causes of failure modes; WT-1-1, WT-1-

2, WT-2-1, WT-2-2, WT-2-4, WT-2-5, and WT-2-6. Catastrophic failures of critical 

components such as the blades, main bearings and shaft, gearbox and associated 

components, the generator and associated components, towers and foundations can 

be prevented through the application of appropriate CBM activities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 5.1 Effect of capacity factor and down time on revenue generation 
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Figure 5.2 the effects of two or more turbines failure on revenue generation 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Failure consequences of critical components of a 600kW wind 

turbine 
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Figure 5.4 Maintenance Selection Model 

 

5.3.4 Economic Analysis of CBM and comparison with TBM 

The economic life of a wind turbine is 20 years (Lenzen and Munksgaard, 2002), 

(Kaldellis and Gavras, 2000) but an analysis period of 18 years is used in this paper 

to account for the 2 years all-in-service contract and obsolescence with changing 

technology. The corporate organisation of the collaborating wind farm operator 

utilises a discount rate of 8.2% for all financial analysis. Also, a spare pool of 1 

gearbox, 1 generator, 3 blades etc is held by the wind farm under the TBM strategy. 

If any of these systems fail and it can not be repaired in-situ, the failed system is 

replaced with a spare before repairs are carried out and then transferred into the 

spare pool (note; the maximum number of spares that can possibly be in the re-

supply chain of the wind farm at one time is beyond the scope of this paper). Using 

this information and the data in tables 5.3 and 5.4, the economics of TBM and CBM 

are evaluated and compared.   

 

The Present worth (PW) and Present Worth per Annum (PWA), which is used for 

discounting initial non-recurring costs and annual recurring costs respectively, are 

determined by using equations 5.6 and 5.7 to obtain the values of 0.24 and 9.24 
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respectively. Then, the Net Present Value (NPV) of TBM and CBM, are calculated 

by using equations 5.8 and 5.9 respectively to obtain the values of £122,085 and 

£239,105 respectively. The results show that scheduled inspection of the drive trains 

of wind turbines is the most cost effective option over the 18 year life-cycle with a 

total savings of about £117,020. Indeed, the NPV of inspection (£122,085) is less 

than the initial capital cost of installing condition monitoring systems (£199,600).  

 

5.3.5  Uncertainties and Risks Assessment 

The NPV analysis deals with future costs which invariably contain uncertainties and 

risks that require critical assessments to ensure the accuracy of results for valid 

decision making. A probabilistic approach of ‘Crystal Ball Monte Carlo’ simulation 

was used to assess the risks and uncertainties of the key variables in the Net Present 

Value calculations. After a 10,000 trials, the result of the TBM simulation is 

presented in table 5.6. The mean Net Present Value of the TBM is £122,407. This is 

slightly greater than the calculated NPV of the TBM (subsection 5.3.4) with about 

£322. The standard deviation is about £12,487 and the mean standard error is £125. 

The skewness and coefficient of variability are 0.21 and 0.10 respectively. 

 

Table 5.6 TBM Simulation Result   

Statistics Forecast values
Trials 10,000
Mean  122,407.55 
Median  121,936.82 
Mode ---
Standard Deviation  12,487.39 
Variance  155,934,950.27 
Skewness 0.21
Kurtosis 3.04
Coeff. of Variability 0.10
Minimum  80,113.10 
Maximum  172,893.77 
Range Width  92,780.67 
Mean Std. Error  124.87  

The result of the CBM simulation after a 10,000 trials is presented in table 5.7. The 

mean Net Present Value of the CBM is £239,070. In this case, the mean Net Present 

Value of the CBM is less than its calculated NPV with about £35. The standard 
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deviation is about £19,202 and the mean standard error is about £192. The skewness 

and coefficient of variability are almost zero. 

 

Table 5.7 CBM Simulation Result   

Statistics Forecast values
Trials 10,000
Mean  239,070.30 
Median  238,856.63 
Mode ---
Standard Deviation  19,201.98 
Variance  368,715,966.09 
Skewness 0.04
Kurtosis 3.02
Coeff. of Variability 0.08
Minimum  162,846.43 
Maximum  309,711.35 
Range Width  146,864.92 
Mean Std. Error  192.02  

 

Figures 5.5 and 5.6 show the overlay and trend chart of the NPVs of the TBM and 

the CBM.  The overlay chart shows no significant effect of uncertainties on the 

NPVs as the two forecast are widely apart. Similarly, the trend chart clearly shows a 

constant increasing NPV from TBM to CBM as shown in the figure 5.6. The trend 

chart data at various percentiles are shown in table 5.8. Note the median NPV of the 

TBM and CBM are £121,937 and £238,857 respectively. 
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Figure 5.5 NPV overlay chart 
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Trend Chart 1
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Figure 5.6 NPV trend chart 

 

 

Table 5.8 The trend Chart data at various percentages 

Trend Chart Data NPV of TBM NPV of CBM
90.0% 102,658.44 207,669.46
50.0% 113,685.65 226,151.86
25.0% 118,031.91 232,918.82
10.0% 120,402.80 236,493.54
Median 121,936.82 238,856.63
10.0% 123,556.95 241,231.86
25.0% 126,164.56 244,886.78
50.0% 130,498.37 251,734.79
90.0% 143,609.60 270,970.68  

 

The sensitivity report of the TBM and CBM Net Present Value calculation are 

presented in figures 5.7 and 5.8 respectively. Labour cost per hour is found to be the 

most sensitive variable in the TBM Net Present Value calculation with about 64.3% 

sensitivity. On the other hand, the discount rate is found to be the most insensitive 

variable with about minus 31.7% sensitivity. 
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Sensitivity: Net Present Value (NPV) of inspection
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Figure 5.7 TBM sensitivity report  

 

The initial cost of the condition monitoring systems (i.e. IMU 16 channel H/W & 

S/W D5DA3/ turbine) is found to be the most sensitive variable in the CBM Net 

Present Value calculation with about 93.3% sensitivity as shown in the figure 5.8. 

Diagnostic support vibration analysis consultancy has sensitivity of about 1.1%. 

Also the discount rate is found to be insensitive variable with sensitivity value of 

about minus 1.1%. 
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Figure 5.8 CBM sensitivity report  
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5.3.6 Evaluation of Non-financial Factors  

An economic analysis based on purely financial criteria is not in itself adequate for 

valid decision making (Kirk and Dell’lsola, 1995). Non-financial factors, which are 

not reducible to monetary values should be identified and incorporated into the 

overall economic analysis (Kishk, 2002). A maintenance strategy that is appropriate 

for a specific physical asset should be reliable to uphold the integrity of the asset and 

also to fulfil all statutory and health and safety requirements. These non-financial 

factors are fundamental and can not be compromised in the selection of a suitable 

maintenance strategy. In figure 5.9, a screening model (Kishk and Pollock, 2004) for 

maintenance strategies is presented and a weight of 3 (i.e. good) was established as 

the minimum standard requirement for each of the decisive criteria.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.9 Model for screening options and criteria 
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In addition to the crucial factors, five other criteria were identified. These includes 

‘ fault detection’ which is the ability to discover faults at an early stage so that 

appropriate actions can be taken to avoid the consequences; ‘fault identification’  

which is the ability to identify the subsystem or component most relevant to 

diagnosing the fault within the shortest time possible; ‘fault diagnosis’ is the ability 

to determine the cause of the fault within the shortest time possible; ‘process 

recovery’ is the ease of rectifying the fault in good time and ‘Efficiency’ is the 

effectiveness of restoring the asset to a normal operating condition.  These were 

assessed using the Weighted Evaluation (WE) technique (Kirk and Dell’lsola, 1995); 

(Kishk, 2002) and the result is presented in figure 5.10. It is worth noting however, 

that the non-financial factors can be subjective and figure 5.10 was established 

through discussion with wind farm operators. 

 

The WE approach consists of two processes; first, assessment criteria are identified 

and the weights of their relative importance are established. These are sequentially 

compared in pairs and the most vital criterion is scored according to its comparative 

preference of scale 1 to 4, for example in figure 5.10, criterion ‘A’ (fault detection) 

is compared with criterion ‘E’ (health and safety), E is found to be more important 

than A and it is a major preference, hence the value ‘E-4’ was recorded.  

 

The scores of each criterion are summed up (Raw Score in figure 5.10) and the final 

weights jW  are determined such that the maximum weight is assigned a value of 10 

(Weight of importance in figure 5.10). Secondly, the rating ijS  of each strategy 

(TBM and CBM) in terms of each criterion is determined on a scale of 1 to 5 (i.e. 

poor to excellent), for instance, the performance of CBM in terms of criterion ‘A’ 

(fault detection) was found to be ‘good’ (i.e. 3). These values were then multiplied 

by the corresponding criterion final weights jW  and the summation gives the total 

score of the strategy (equation 5.11). As a rule, the best alternative A* should have 

the highest total score (Kishk, 2002). In figure 5.10, the total scores of TBM and 

CBM are 105 and 142 respectively; this suggests that the CBM strategy is the best 

alternative.  
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Figure 5.10 Weighted Evaluation of non-financial factors of TBM and CBM 

 

5.3.7 Benefit-To-Cost Ratio Evaluation  

The benefit-to-cost (BTC) ratio evaluation combines the results of the financial and 

the non-financial calculations to determine and compare the benefits derived from 

the competing options. The higher the ratio the better the benefit derived from the 

alternative. Equation 5.12 was used to determine the BTC ratio of TBM and CBM to 

obtain the values of 0.000860 and 0.000594 respectively (figure 5.10). This indicates 

that the BTC ratio of CBM strategy is very low in comparison to TBM because of 

the high initial capital investments required for installing condition monitoring 

systems.  However, the life-cycle analysis is not complete unless the effect of failure 

rate of the critical components is assessed and incorporated into the overall analysis 

(Andrawus et al. 2006c). 

 

Criteria

A. Fault detection

B. Fault identification

C. Fault diagnosis  

D. Process recovery

E. Health & safety

F. Reliability

G. Efficiency

Criteria Importance
4-Major preference
3-Medium preference
2-Minor preference
1-(letter/letter)-no preference

Each scores one point

Raw Score

Weight of importance

A
N

A
LY

S
IS

 M
A

T
R

IX

2.     Condition Based
Maintenance

A/B
A -4

D/F
F -4

F -4
F -4

D -3
C -3

B -3
A -4

D -4

E-4

E/F
E -4

F -4

D -4
B -4

E-4
E -4

D -4
E -4

AG F E D C B

90 20 21 17 3 8

41* 10 10 8 2 4

33 4 3 1 2 2
123 40 30 8 4 8

Total

105

142

NPV

£122,085.03 

£239,105.71

C
R

IT
E

R
IA

 S
C

O
R

IN
G

 M
A

T
R

IX
A

lte
rn

at
iv

es 0.000860

0.000594

BTC Ratio

Excellent - 5; Very good -4; Good -3; Fair -2; Poor -1

33 3 5 4 3 3
123 30 50 32 6 12

1. Time Based 
Maintenance 

Criteria

A. Fault detection

B. Fault identification

C. Fault diagnosis  

D. Process recovery

E. Health & safety

F. Reliability

G. Efficiency

Criteria Importance
4-Major preference
3-Medium preference
2-Minor preference
1-(letter/letter)-no preference

Each scores one point

Raw Score

Weight of importance

A
N

A
LY

S
IS

 M
A

T
R

IX

2.     Condition Based
Maintenance

A/B
A -4

D/F
F -4

F -4
F -4

D -3
C -3

B -3
A -4

D -4

E-4

E/F
E -4

F -4

D -4
B -4

E-4
E -4

D -4
E -4

A/B
A -4

D/F
F -4

F -4
F -4

D -3
C -3

B -3
A -4

D -4

E-4

E/F
E -4

F -4

D -4
B -4

E-4
E -4

D -4
E -4

AG F E D C B

90 20 21 17 3 8

AG F E D C B AG F E D C B

90 20 21 17 3 8 90 20 21 17 3 8

41* 10 10 8 2 4 41* 10 10 8 2 4

33 4 3 1 2 2 33 4 3 1 2 2
123 40 30 8 4 8 123 40 30 8 4 8

Total

105

Total

105

142

NPV

£122,085.03 

£239,105.71

C
R

IT
E

R
IA

 S
C

O
R

IN
G

 M
A

T
R

IX
A

lte
rn

at
iv

es 0.000860

0.000594

BTC Ratio

Excellent - 5; Very good -4; Good -3; Fair -2; Poor -1

33 3 5 4 3 3 33 3 5 4 3 3
123 30 50 32 6 12 123 30 50 32 6 12

1. Time Based 
Maintenance 



                                                                         Maintenance Optimisation for Wind Turbines 

PhD Thesis, The Robert Gordon University Aberdeen, 2008.                                                  89                                               

5.3.8  Effect of Failure Rate 

The failure rate (φ) of failure modes WT-1-3, WT-1-4, WT-1-6 and WT-1-8 were 

estimated by determining firstly ‘wind turbine operational years’ which is the 

product of the number of turbines in a wind farm (26) and the period under 

consideration (6 years) to obtain 156 operational years. The number of events for 

each failure mode is then divided by the wind turbine operational years to get the 

failure rate of the components.  For example, 2 catastrophic failures of a gearbox 

occurred in the period under consideration to give φ = 0.01282 per year. These were 

further converted into annual cash reservations using equation 5.10; the summation 

(£32,150 per annum) is discounted by PWA to get a Net Present Value of £297,172.   

 

The actual NPV of TBM is established by summing the NPV of inspection and NPV 

of annual cost reservation to get £419,257.59. Using this value to repeat the WE and 

BTC ratios shows CBM is the most cost effective strategy with a total savings of 

£180,151 over the 18 year life cycle. 

 

Table 5.6 Effect of failure characteristics on maintenance strategy. 

Number of turbines 26

Number of failure years 6

Number of Failure rate Failure consequences Annual cost reservation
                  Failure Modes Event α FC ACR

WT-1-3 Catastrophic bearings failure 0 0 22,374.69 0
WT-1-4 Catastrophic mainshaft failure 0 0 29,114.16 0
WT-1-6 Catastrophic gearbox failure 2 0.01282 78,468.30 26,156.10                          

WT-1-8 Catastrophic generator failure 1 0.00641 35,964.45 5,994.08                            

Total ACR 32,150.18                          
NPV of ACR 297,172.56                        

NPV of TBM (Inspection + ACR) 419,257.59                        

                         

 

5.4 SUMMARY 

This chapter has presented a methodology for selecting suitable maintenance 

strategies for wind turbines using a hybrid of RCM and ALCA techniques, and has 

used the methodology to determine an appropriate CBM strategy for a 26 x 600 kW 

wind farm. Industrial data pertaining to the wind farm has been sourced from the 

farm operator and have been collated to determine inspection activities and failure 
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history of the wind turbines. Current market prices of critical components of the 

wind turbines as well as the condition monitoring systems have been sourced from 

manufactures and vendors. The RCM approach has been used to determine wind 

turbines failure modes, causes and effects. Failure consequences of critical 

components have been determined and expressed in financial terms.  

 

Suitable CBM tasks have been determined and compared with TBM activities using 

the ALCA technique. In the comparison, the NPV of TBM and CBM has been 

calculated. It has been shown that comparison of the NPV of the two strategies is not 

absolute for a valid decision making since the NPV considers only financial criteria. 

The non-financial aspects of the two strategies have been identified and assessed 

using the ‘WE technique’ and ‘benefit-to-cost ratio’. Failure data was extracted from 

the SCADA system of the wind farm, and was validated by the maintenance work 

orders of the same period. The failure rate of the critical components was calculated 

and included in the analysis since the selection of a suitable maintenance strategy 

depends upon the failure characteristics of the wind turbines. The overall result 

shows CBM is the most cost effective option with a total savings of about £180,152 

over 18 year life-cycle.   
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CHAPTER 6 

ASSESSMENT OF WIND TURBINES  

FIELD FAILURE DATA  

 

6.1 INTRODUCTION  

This chapter and the next, will demonstrate the practical application of one the 

quantitative maintenance optimisation approach known as the Modelling System 

Failures (MSF). This chapter focuses on the analyses of field failure and 

maintenance data of horizontal axis wind turbines collected from wind farms. The 

characteristics of the collected data are discussed in section 6.2. The data are 

analysed in section 6.3 using Maximum Likelihood Estimation (MLE) to estimate 

the shape (β) and scale (η) parameters of the Weibull distribution for critical 

components and subsystems of a particular type of 600 kW wind turbine. Weibull 

probability plots, reliability graphs, failure verses time plots, and probability density 

function graphs for the components and subsystems are presented along side the 

estimated shape (β) and scale (η) parameters. A case study of the 26 x 600 kW wind 

farm is presented in section 6.4 to demonstrate the practical application of the 

estimated β and η values to determine and optimise maintenance activities for the 

critical components and subsystems of the wind turbine. The summary of the chapter 

is presented in section 6.5. 

 

6.2 DATA COLLECTION  

In addition to the failure data collected from the 26 x 600 kW wind farm, more data 

were sourced from 26 wind farms (comprising turbines of different capacity ratings) 

located within the same geographical region. The collected data was first organised 

in accordance with the type, design and capacity of the wind turbines. This was 

further re-grouped according to subsystems and components of the wind turbine and 

then re-arranged in order of failure modes and dates. Tables 6.1, 6.2, 6.3 and 6.4 

contain the field failure data for the main shaft, main bearings, gearbox and the 

generator respectively of 600 kW wind turbines.  
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In order to evaluate the wind farms in confidentiality, they were labelled 

alphabetically (A to Z; AB); WF-C in column 1 of Table 6.1 denotes Wind Farm C. 

The wind turbines were named according to their respective wind farms; WF-A-WT-

10 (Table 6.2, column 2) denotes Wind Farm A-Wind Turbine number 10. The 

manufacturers of the failed components were numbered and recorded in column 3 of 

tables 6.1-6.4. The fail-date and fail-time from the base-date as well as the causes of 

failure are recorded in the same tables. Note that table 6.4 shows additional 

information about the serial numbers of the failed generators. This information is 

essential to identify re-occurring failure modes and to effectively trace the failure 

history of each component or subsystem of the wind turbine.  

 

Table 6.1 Failure Data for the Main Shafts of 600 kW Wind Turbine 

 Wind Farm 
(WF )

Wind Turbine 
(WT )

Component 
Manufacturer

Fail date 
dd/mm/yyyy Fail time (days) Main shaft

Causes of 
failure

WF-C WF-C-WT-13 2  "19/11/2003" 315 F Other

WF-K WF-K-WT-7 5  "01/03/2004" 424 F Poor design

WF-F WF-F-WT-16 1  "07/05/2004" 492 F Unknown

WF-A WF-A-WT-27 1  "13/06/2004" 529 F Fatigue

WF-L WF-L-WT-3 7  "29/12/2004" 698 F Fatigue

WF-N WF-N-WT-3 2  "25/07/2005" 936 F Fatigue

WF-M WF-M-WT-3 7  "14/06/2006" 1233 F Fatigue  

 

Table 6.2 Failure Data for the Main Bearings of 600 kW Wind Turbine 

 Wind Farm 
(WF )

Wind Turbine 
(WT) 

Component 
Manufacturer

Fail date 
dd/mm/yyyy

Fail time 
(days) Main Bearings

Causes of 
failure

WF-A WF-A-WT-10 1  "29/01/2003" 29 F Poor design

WF-B WF-B-WT-4 2  "09/05/2003" 129 F Poor design

WF-A WF-A-WT-13 1  "19/05/2003" 139 F Poor design

WF-A WF-A-WT-3 1  "27/06/2003" 178 F Poor design

WF-C WF-C-WT-4 2  "31/07/2003" 212 F Unknown

WF-D WF-D-WT-13 1  "05/11/2003" 309 F Unknown

WF-A WF-A-WT-34 4  "10/02/2004" 406 F Fatigue

WF-E WF-E-WT-2 3  "15/05/2004" 500 F Poor design

WF-A WF-A-WT-22 1  "15/12/2004" 714 F Fatigue

WF-D WF-D-WT-13 1  "27/12/2004" 726 F Fatigue

WF-A WF-A-WT-26 1  "17/01/2005" 747 F Fatigue

WF-A WF-A-WT-34 3  "18/01/2005" 748 F Fatigue  
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Table 6.3 Failure Data for the Gearboxes of 600 kW Wind Turbine 

 Wind Farm 
(WF )

Wind Turbine 
(WT)

Component 
Manufacturer

Fail date 
dd/mm/yyyy

Fail time 
(days)

HSS 
bearing

IMS 
bearing 

Gear 
wheels 

 Key 
way 

 Gearbox 
catastrophic  

Causes of 
failure

WT-F WF-F-WT-1 8 "24/11/1999" 329 F S S S F "Unknown"

WT-F WF-F-WT-18 8 "13/01/2000" 378 F S F F F  "Fatigue"
WT-F WF-F-WT-24 8 "26/03/2001" 815 F S S F F  "Fatigue"
WT-F WF-F-WT-07 8 "23/07/2001" 934 F S S F S  "Fatigue"
WT-F WF-F-WT-15 8 "19/11/2001" 1043 F S F S S  "Fatigue"

WF-A WF-A-WT-8 9  "05/05/2003" 1585 F F S S S  "Fatigue"
WF-A WF-A-WT-14 9  "06/06/2003" 1649 F F S S S  "Fatigue"
WF-A WF-A-WT-23 9  "04/08/2003" 1676 F S S S S  "Fatigue"
WF-A WF-A-WT-9 9  "27/08/2003" 1699 F F S S S  "Fatigue"
WF-B WF-B-WT-6 9  "11/09/2003" 1714 F F S S S  "Fatigue"

WF-B WF-B-WT-10 9  "04/11/2003" 1768 S S S S S  "Fatigue"

WF-B WF-B-WT-6 10  "04/11/2003" 1768 S S S S S  "Fatigue"
WF-B WF-B-WT-14 9  "22/11/2003" 1786 S S S S S  "Fatigue"
WF-F WF-F-WT-19 9  "18/06/2004" 1985 S S F S S  "Fatigue"

WF-G WF-G-WT-9 9  "30/06/2004" 2006 F F S S F  "Unknown"
WF-A WF-A-WT-33 8  "09/10/2004" 2107 S S F S F  "Fatigue"
WF-A WF-A-WT-1 8  "18/10/2004" 2116 S S S S S  "Fatigue"

WF-A WF-A-WT-19 8  "30/10/2004" 2128 S S S S S  "Fatigue"
WF-C WF-C-WT-7 11  "01/11/2004" 2130 F S F S S  "Fatigue"
WF-D WF-D-WT-20 10  "04/02/2005" 2225 S S F S S  "Poor design"
WF-A WF-A-WT-19 10  "02/04/2005" 2282 S S F S S  "Poor design"
WF-D WF-D-WT-2 8  "11/05/2005" 2321 S S S S S  "Poor design"  

 

To illustrate the importance of the additional information in the table 6.4, consider 

the failure data recorded in row 3 of the table. A generator with a serial number 

GSN-2 failed in wind turbine 22 of wind farm F. Also in row 4 of the table, another 

generator failure is recorded with a serial number GSN-2 but this time in wind 

turbine 15 of the same wind farm. It will be noticed that the serial numbers of the 

generators are the same, indeed, it is the same generator. The first failure of the 

generator in wind turbine 22 was due to bearing failure, it was removed for repairs 

and the turbine was fitted with a spare. The failed generator (GSN-2) was repaired 

and transferred into the spare pool.  

 

The generator in wind turbine 15 failed and it was fitted with the GSN-2 from the 

spare pool. The generator (GSN-2) eventually failed catastrophically as a result of a 

stator winding failure. A similar failure event is recorded in rows 9-11 of the table. It 
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is worth noting that this type of detailed recording of failure data was found only in 

wind farm F and is specific to the generators. 

 

Table 6.4 Failure Data for the Generators of 600 kW Wind Turbine 
Wind 
Farm 
(WF )

Wind Turbine 
(WT)

Serial  
number

Component 
Manufacturer

Fail date 
dd/mm/yyyy

Fail time 
(days)

 
Windings Bearings

 Generator 
catastrophic 

Causes of 
failure

WF-F WF-F-WT-1  GSN-1 4 "24/02/1997" 55 S S F  Fatigue
WF-F WF-F-WT-22 GSN-2 4 "15/02/1998" 411 S F S  Fatigue
WF-F WF-F-WT-15  GSN-2 4 "01/06/2000" 424 F S F  Fatigue
WF-F WF-F-WT-15 GSN-3 4 "01/03/1999" 789 S F S  Fatigue
WF-F WF-F-WT-18 GSN-4 4 "01/06/1999" 881 S F S  Other
WF-F WF-F-WT-12  GSN-5 4 "01/12/2000" 548 S S F  Other
WF-F WF-F-WT-12  GSN-6 4 "01/10/1999" 1003 F S S  Poor Design
WF-F WF-F-WT-17 GSN-7 4 "15/12/1999" 1080 F S S  Unknown
WF-F WF-F-WT-15 GSN-7 4 "01/01/2002" 746 F S S  Poor Design
WF-F WF-F-WT-15  GSN-7 4 "01/07/2002" 181 F S S  Poor Design
WF-F WF-F-WT-5  GSN-8 4 "08/01/2000" 1307 S F S  Fatigue
WF-F WF-F-WT-24  GSN-9 4 "08/01/2000" 1307 S S F  Poor Design
WF-F WF-F-WT-16 GSN-10 4 "01/11/2000" 1399 S F S  Poor Design
WF-F WF-F-WT-7  GSN-11 4 "01/06/2002" 1977 S F S  Poor Design
WF-D WF-D-WT-26 GSN-12 4  "21/01/2003" 2211 S F S  Fatigue
WF-A WF-A-WT-29 GSN-13 4  "29/01/2003" 2219 S F S  Fatigue
WF-A WF-A-WT-20 GSN-14 4  "09/04/2003" 2289 S F S  Fatigue
WF-C WF-C-WT-11 GSN-15 4  "09/05/2003" 2319 S F S  Fatigue
WF-A WF-A-WT-18 GSN-16 4  "09/06/2003" 2349 F S S  Fatigue
WF-A WF-A-WT-8 GSN-17 4  "24/06/2003" 2364 S F S  Fatigue
WF-D WF-D-WT-4 GSN-18 4  "07/08/2003" 2409 S F S  Fatigue
WF-D WF-D-WT-2 GSN-19 4  "28/08/2003" 2430 F S S  Fatigue
WF-D WF-D-WT-27 GSN-20 4  "15/09/2003" 2445 S F S  Fatigue
WF-A WF-A-WT-21 GSN-21 4  "11/11/2003" 2535 F F F  Fatigue
WF-H WF-H-WT-11 GSN-22 4  "13/11/2003" 2537 S F S  Fatigue
WF-A WF-A-WT-7 GSN-23 4  "29/12/2003" 2553 S F S  Fatigue
WF-A WF-A-WT-20 GSN-24 4  "29/01/2004" 2584 S F S  Other
WF-C WF-C-WT-8 GSN-25 4  "04/03/2004" 2618 S F S  Other
WF-E WF-E-WT-20 GSN-26 4  "25/03/2004" 2639 F S S  Poor Design
WF-F WF-F-WT-20 GSN-27 4  "25/03/2004" 2639 S S S  Unknown
WF-I WF-I-WT-1 GSN-28 4  "20/04/2004" 2665 S F S  Poor Design
WF-D WF-D-WT-15 GSN-29 4  "23/04/2004" 2668 S S S  Fatigue
WF-A WF-A-WT-1 GSN-30 4  "04/05/2004" 2679 F F F  Poor Design
WF-D WF-D-WT-27 GSN-31 4  "07/05/2004" 2682 S F S  Poor Design
WF-E WF-E-WT-4 GSN-32 4  "18/06/2004" 2724 S F S  Poor Design
WF-I WF-I-WT-6 GSN-33 4  "26/06/2004" 2732 S F S  Poor Design
WF-G WF-G-WT-9 GSN-34 4  "08/07/2004" 2744 S S S  Other
WF-A WF-A-WT-29 GSN-35 4  "13/07/2004" 2749 S F S  Poor Design
WF-A WF-A-WT-17 GSN-36 4  "16/07/2004" 2752 S F F  Poor Design
WF-C WF-C-WT-19 GSN-37 4  "30/07/2004" 2766 S S S  Poor Design
WF-C WF-C-WT-10 GSN-38 4  "12/08/2004" 2779 S S F  Poor Design
WF-E WF-E-WT-11 GSN-39 4  "17/09/2004" 2815 S F S  Poor Design
WF-D WF-D-WT-28 GSN-40 4  "21/09/2004" 2819 S F S  Poor Design
WF-E WF-E-WT-16 GSN-41 4  "25/10/2004" 2853 F S S  Fatigue
WF-E WF-E-WT-13 GSN-42 4  "07/11/2004" 2866 F S S  Fatigue
WF-I WF-I-WT-7 GSN-43 4  "29/12/2004" 2918 F S S  Poor Design
WF-A WF-A-WT-24 GSN-44 4  "02/01/2005" 2922 F S S  Poor Design
WF-A WF-A-WT-6 GSN-45 4  "28/02/2005" 2969 F F F  Poor Design
WF-I WF-I-WT-13 GSN-46 4  "07/04/2005" 3007 S F S  Poor Design
WF-A WF-A-WT-19 GSN-47 4  "26/04/2005" 3026 S F S  Poor Design
WF-J WF-J-WT-9 GSN-48 4  "12/09/2005" 3165 S F S  Poor Design  

 



                                                                         Maintenance Optimisation for Wind Turbines 

PhD Thesis, The Robert Gordon University Aberdeen, 2008.                                                  95                                               

6.3 SHAPE AND SCALE PARAMETERS OF COMPONENTS AND 

SUBSYSTEMS OF  600 kW WIND TURBINE 

The shape and scale parameters for components and subsystems of the various types 

of wind turbines are estimated in this section. It was mentioned previously that the 

value of β  describes the failure pattern of the equipment, that is, β <1 means a 

reducing failure pattern, β =1 signifies a constant failure pattern and β >1 indicates 

an increasing failure pattern. The scale parameter (η) denotes the characteristic life 

of the equipment; the time at which there is probability of approximately 0.632 that 

the equipment will have failed.  

 

The reducing failure pattern (β <1) usually known as the infant mortality denotes 

failures that occur at the early-life of equipment and the likelihood of occurrence 

reduces as the age of the equipment increases. The constant failure pattern (β =1) 

represents failures that are independent of equipment age, that is, the likelihood of 

occurrence is invariable through out the life-cycle of the equipment. Lastly, the 

increasing failure pattern (β >1) commonly referred to as wear-out symbolises 

failures that occur at the later life of equipment, that is, the likelihood of occurrence 

increases with the age of the equipment. 

 

The shape (β) and scale (η) parameters of critical components and subsystems of the 

600 kW wind turbine are estimated using the ReliaSoft Weibull ++7 software. The 

results are presented in table 6.5. The probability distribution and the parameter 

estimation technique are shown in columns 3 and 4 of the table respectively. In the 

analysis, the Fisher Matrix (FM) confidence bound method and median (MED) 

ranking was used to underpin the statistical evaluation. The Mean Life or Mean Time 

Between Failures (MTBF) of each of the critical components and subsystems are 

presented in column 10 of the same table. Note that the scale parameters and the 

mean time between failures are in days. 
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Table 6.5 Shape and Scale parameters for critical components of 600 kW wind 

turbine  

Sub-system Components Distribution Analysis 
Shape 

(β)
Scale  
(η)

Likeli- 
hood Failed Suspended

Mean Life 
(MTBF)

Blade
Main shaft Weibull-2P MLE 1.43 6389 -72.90 7 70 5807

Main bearing Weibull-2P MLE 1.09 3835 -112.79 12 65 3711

Gearbox Weibull-2P MLE 1.05 29051 -56.99 5 72 28521

Gears Weibull-2P MLE 2.50 5715 -75.10 7 70 5070

HSS bearings Weibull-2P MLE 1.52 7244 -125.00 12 64 6528

IMS bearings Weibull-2P MLE 3.63 4694 -53.99 5 72 4232

Key way Weibull-2P MLE 0.84 101790 -35.69 3 74 111720

Generator Weibull-2P MLE 1.11 17541 -98.70 9 68 16888

Bearings Weibull-2P MLE 1.39 4956 -300.00 31 46 4524

Windings Weibull-2P MLE 1.62 7158 -155.00 15 62 6412  

 

6.3.1 The Main Shaft 

The estimated values of β  and η  for the main shaft are 1.43 and 6389 respectively. 

The β  value of 1.43 indicate a wear out failure pattern while the η  value of 6389 

implies that there is a probability of approximately 0.632 that all the main shafts in a 

wind farm of 600 kW turbine would have failed within 6389 days or approximately 

18 years, given the assessed failure behaviour of the main shafts and the current 

maintenance strategy employed. The Weibull plot (graphical data analysis) for the 

main shafts failure data is shown in figure 6.1.  

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 6.1 Main Shaft Weibull Plot 
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The probability density function (pdf) plot for the main shaft is presented in figure 

6.2. The plot is skewed to the left showing that bulk of the failure modes occur 

between 0 and 4000 days even though the estimated MTBF is 5807 days. 

 
 

 

 

 

 

 

 

 

 

 

Figure 6.2 Main Shaft pdf plot 

 

The main shaft failure rate plot is presented in figure 6.3. The plot shows a 

constantly increasing failure rate and not a clear wear out even though the value of 

β  is greater 1. This demonstrates the significance of the plots to provide more 

information to support the calculated values. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Main Shaft Failure Rate Plot 
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6.3.2 The Main Bearing 

The estimated β  and η  values for the main bearing are 1.09 and 3835 respectively. 

The 1.09 value of β  indicates a random failure pattern. The Weibull plot is shown 

in figure 6.4.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Main Bearing Weibull plot 
 

The pdf plot of the main bearings is shown in Figure 6.5. The plot is also skewed to 

the left and the right side of the pdf steeply drops down before 1300 days; this 

means that that most of the failures will occur before this time. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Main Bearing pdf plot 
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The main bearing failure rate plot in figure 6.6 shows the randomness of the failure 

pattern.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Main Bearing Failure Rate Plot 

6.3.3 The Gearbox 

The estimated values of β  and η  for the gearbox are 1.05 and 29051 respectively. 

The β  value of 1.05 indicate a random failure pattern while the η  value of 29051 

implies that there is an approximately 0.632 probability that all the gearboxes in a 

wind farm of 600 kW turbine would have failed within 29051 days or approximately 

79 years, given the assessed failure behaviour of the gearbox and the current 

maintenance strategy employed. The Weibull probability plot of the failure 

characteristic is shown in Figure 6.7.  

 

The probability density function (pdf) and the failure rate plots are shown in Figures 

6.8 and 6.9 respectively. The pdf plot is skewed to the left; it shows a classic failure 

characteristic of the gearboxes as a result of many failure modes. Unfortunately, the 

assessed failure data did not capture the exact failure modes due poor recording of 

failure information. The failure rate plot shows a horizontal line which explains the 

randomness of the failure pattern of the gearboxes. The gear-wheels and the 

intermediate stage (IMS) bearing of the gearbox have β  values of 2.50 and 3.63 

respectively. These indicate a wear-out failure pattern. The key-way of the gearbox 

has a β  value of 0.8 which denotes an in-born failure pattern or infant mortality. 
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The MTBF for the gearbox is about 28521 days. The gear-wheels, HSS bearing, 

IMS bearing and the key ways have MTBF of 5070, 6528, 4232 and 111720 days 

respectively.  

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 6.7 Gearbox Weibull Plot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 Gearbox pdf plot 
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Figure 6.9 Gearbox failure rate plot  

 

6.3.4 Generator 

The estimated values of β  and η  for the generator are 1.107 and 17541 

respectively. The β  value of 1.11 indicates a random failure pattern. The Weibull 

plot is shown in figure 6.10. The pdf and failure rate plots are shown in figures 6.11 

and 6.12 respectively. The pdf plot of the generator is slightly skewed to the left. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10 Generator Weibull Plot 
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Figure 6.11 Generator pdf plot 

 

The failure rate plot of the generator in figure 6.12 shows a horizontal line which 

explains the randomness of the failure characteristics of the generator. Note that the 

estimated mean time between failures of the generator is 16888 days. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12 Generator failure rate plot 
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6.4 A CASE STUDY  

This section presents a case study to demonstrate the practical application of the 

estimated β and η values to determine and optimise maintenance activities for the 

critical components and subsystems of the 600 kW wind turbine. 

 

6.4.1 Reliability Trend of Critical Components of the 600 kW Wind Turbine 

Table 6.12 presents the reliability trend of the critical components of the 600 kW 

wind turbine over a period of 20 years. The table shows the upper and the lower 

limits of the reliabilities at 95% confidence bound. The reliability of the main-shaft 

reduces from 0.98 in the first year to about 0.30 at the end of the 20 years life-cycle. 

The lower limit of the reliability reduces significantly from 0.93 in the first year to 

0.25 in the 9th year and subsequently to about 0.01 at the end of the 15th year.  

 

On the other hand, the reliability of the main bearing reduces from 0.93 in the first 

year to about 0.53 in the 7th year and further degenerates to about 0.13 at the end of 

the 20 years life-cycle. The lower limit reduces from 0.86 in the first year to 0.00 at 

end of the 15th year. The gearbox appears to be more reliable than any of the other 

subsystems in the first year with a reliability of 1. However, this reduces drastically 

to about 0.66 at the end of the 7th year and further degenerates to 0.29 and 0.00 in 

the 11th and the 20th year respectively. The lower limit of the reliability reduces to 

0.15 and 0.00 in year 10 and 14 respectively.  The reliability of the generator 

reduces from 0.99 in the first year to 0.35 and 0.01 in the 9th and 18th year 

respectively. The lower limit deteriorates to 0.00 in the 16th year from 0.97 in the 

first year. 

 

Figure 6.13 shows the reliability trend of the critical components. Assuming a 

reliability of 0.95 is desired as a minimum threshold, it is worth noting that the 

components (main bearing, main shaft, gearbox and the generator) will fall below 

this target in year 3, 1, 4 and 3 respectively, given the current failure behaviour and 

the maintenance strategy employed. 
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Table 6.6 Reliability trend for critical subsystems of a 600 kW wind turbine 

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Reliability 0.98 0.96 0.92 0.89 0.85 0.80 0.76 0.72 0.68 0.64 0.60 0.56 0.52 0.48 0.45 0.41 0.38 0.35 0.33 0.30

Upper 1.00 0.98 0.96 0.94 0.93 0.92 0.91 0.90 0.90 0.89 0.89 0.88 0.88 0.87 0.87 0.86 0.86 0.86 0.85 0.85

Lower 0.93 0.89 0.84 0.77 0.67 0.57 0.45 0.35 0.25 0.17 0.11 0.07 0.04 0.02 0.01 0.01 0.00 0.00 0.00 0.00

Reliability 0.93 0.85 0.78 0.71 0.64 0.58 0.53 0.48 0.43 0.39 0.35 0.31 0.28 0.25 0.23 0.21 0.18 0.17 0.15 0.13

Upper 0.96 0.91 0.87 0.84 0.82 0.80 0.78 0.76 0.75 0.74 0.72 0.71 0.70 0.69 0.68 0.67 0.66 0.65 0.65 0.64

Lower 0.86 0.75 0.62 0.49 0.37 0.27 0.19 0.13 0.08 0.05 0.03 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Reliability 1.00 0.98 0.95 0.90 0.83 0.75 0.66 0.56 0.46 0.37 0.29 0.21 0.15 0.11 0.07 0.04 0.03 0.02 0.01 0.00

Upper 1.00 0.99 0.98 0.94 0.89 0.83 0.76 0.70 0.64 0.59 0.54 0.49 0.45 0.40 0.36 0.33 0.29 0.26 0.24 0.21

Lower 0.98 0.94 0.89 0.82 0.75 0.65 0.52 0.39 0.26 0.15 0.08 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Reliability 0.99 0.96 0.91 0.83 0.75 0.65 0.54 0.44 0.35 0.27 0.20 0.14 0.10 0.07 0.04 0.03 0.02 0.01 0.01 0.00

Upper 1.00 0.98 0.95 0.89 0.82 0.73 0.63 0.54 0.46 0.38 0.32 0.26 0.21 0.17 0.14 0.11 0.08 0.07 0.05 0.04

Lower 0.97 0.91 0.84 0.75 0.65 0.55 0.45 0.34 0.25 0.17 0.11 0.06 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00
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Figure 6.13 Reliability Trends of Critical Components over a 20 year Life-Cycle 

 

6.4.2 Maintenance Optimisation 

A Condition-based maintenance (CBM) strategy is suitable for components or 

subsystems with a random failure pattern (β=1) if identifiable and measurable 

warning signs exist to assess the actual conditions of incipient failures, and the 

availability of reasonable time to take proactive action to prevent the failures from 
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escalating to catastrophic events. Therefore, where there are no identifiable and/or 

measurable warning signs, and/or the lack of reasonable time to take proactive 

action such as components with very short P-F interval, CBM will not apply. 

Moreover, CBM is not applied to components or subsystems with a random failure 

pattern if failure consequences will not result in revenue losses, customer’s 

dissatisfaction or health, safety and environmental impact. Time-based (TBM) is 

suitable for components or subsystems exhibiting wear-out failure pattern (i.e. β>1) 

while Failure-based (FBM) (corrective actions performed upon failure of the 

component or subsystems) is appropriate for components and subsystems with 

negligible failure consequences.  

 

Thus, given the failure patterns of the components and subsystems of the 600 kW 

wind turbine in table 6.5, and their failure consequences in table 5.5, Condition-

Based Maintenance is the most suitable strategy to maintain the main bearing, 

gearbox and the generator. The strategy enables early detection of incipient failures 

that can potentially cause catastrophic failure of the subsystems. Time-based as well 

as corrective actions based on unanticipated failures are suitable for the gear wheels 

and the main shaft.  

 

Recall that Time-Based and Failure-Based Maintenance are the strategies commonly 

adopted by wind farm operators to maintain wind turbines. In chapter 5, we 

established that these strategies are not adequate to meet the current maintenance 

requirement of the wind industry. In the next subsection we will re-assess the 

suitability of the TBM tasks using quantitative optimisation technique. 

 

6.4.3 Optimisation of Time-Based Maintenance Tasks 

We have seen in the previous section that the gearwheels and the IMS bearing of the 

gearbox exhibit a wear out failure pattern, and that time-based maintenance is 

appropriate for these components. In this subsection we will determine the optimum 

cost and time to carry out the TBM task. Furthermore, the suitability of TBM tasks 

for the other components and subsystems will be assessed. 
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6.4.3.1 The Gear Wheels 

In chapter 3, we had explained the concept of maintenance optimisation to denote 

the best possible balance between costs/risks/performance (figure 3.1). In chapter 5, 

the failure consequences or unplanned replacement of critical components and 

subsystems of the 600 kW wind turbine were determined and presented in table 5.5. 

The cost of planned replacement of gear wheels is given in chapter 8, table 8.2. 

Using this information the optimal time and cost are determine and the result is 

presented in figure 6.14.  

Start Time: 365  Cost for planned  replacement: £8,182  
Increment: 365  Cost for unplanned replacement: £78,468  

Time Units 
Cost/Unit 

Time 
 

   

365 22.62287     

730 11.79035     

1095 8.53828     

1460 7.23868     

1825 6.75484     

2190 6.70032     

2555 6.90344     

2920 7.27316     

3285 7.75424     

3650 8.30936     

4015 8.91100     

4380 9.53755     

4745 10.17125     

5110 10.79719     

5475 11.40279     

5840 11.97761     

6205 12.51323     

6570 13.00333     

6935 13.44363     

7300 13.83189      

7665 14.16780   Minimum point = 6.7003   

      

 
Figure 6.14 Gearwheels Optimum Replacement 

 

The minimum point on the curve is at 6.7003, this represents the optimal point. The 

optimal cost per unit time is £6.7003 and the optimal interval is at 2190 days i.e. 6 

years. For the purposes of comparison, the cost of PM must be reduced to a common 

unit such as cost/year. Thus, the PM cost/year at the optimal point is the product of 

the cost per unit time (i.e. 6.7003) and the number of days in a year (i.e. 365) to give 

£2,445.61 as the optimum cost/year of the PM task. In table 6.5, the estimated Mean 
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Time Between Failures (MTBF) for the gearwheels is 5070 days. The PM tasks are 

often scheduled at the MTBF, however we need to determine the cost/year at this 

period and compare it with the optimal point. Measuring from figure 6.14, the unit 

cost at 5070 days is about £10.8679. Thus, the PM cost/year at the MTBF is about 

£3,966.78. This is about 62% higher than the cost/year at the optimum interval. 

Alternatively, about £1,521.17 will be saved per PM task if it is carried out at the 

optimum interval.  

 
6.4.3.2 The Intermediary Speed Shaft Bearing 

Figure 6.15 shows the optimised Time-Based Maintenance task for the intermediary 

Speed Shaft Bearing of the gearbox. The cost of planed replacement of the IMS 

bearing is about £2,742 (Chapter 8, Table 8.2) and the failure consequences is about 

£78,468 (Chapter 5, Table 5.5).  

 

Start Time: 365  Cost for planned replacement: £2,742  
Increment: 365  Cost for unplanned replacement: £78,468  

Time Units 
Cost/Unit 
Time     

365 7.53192     

730 3.87734     

1095 2.85601     

1460 2.62649     

1825 2.84222     

2190 3.39856     

2555 4.25152     

2920 5.36996     

3285 6.71743     

3650 8.24388     

4015 9.88252     

4380 11.55136     

4745 13.15962     

5110 14.61889     

5475 15.85715     

5840 16.83193     

6205 17.53757     

6570 18.00296     

6935 18.28003     

7300 18.42757     

7665 18.49720  Minimum point = 2.62649   

      

 

Figure 6.15 IMS Bearings Optimum Replacement  
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The minimum value on the curve in figure 6.15 is about 2.62649; this represents the 

optimal replacement cost per unit time. The optimum time is about 1460 days i.e. 4 

years. Thus, the optimal PM cost/year is the product of the optimal cost i.e. 

£2.62649 and the number of days in a year (365) to give £958.69. The estimated 

MTBF of the IMS bearing is 4232 days (Table 6.5). The cost per unit time at the 

MTBF is about 10.42156, thus the cost/year of PM at the MTBF is about £3,803.87. 

Carrying out the PM task at the optimum time will save about £2,845.18 per PM 

task. 

 

6.4.3.3 The Main Shaft 

Figure 6.16 shows no optimum cost and interval for performing PM task on the 

main shaft.  

 

Start Time: 365  Cost for planned replacement: £12,885   
Increment: 365  Cost for unplanned replacement: £29,114   

       

Time Units 
Cost/Unit 
Time      

365 36.29810      

730 18.98762      

1095 13.35339      

1460 10.61503      

1825 9.02437      

2190 8.00153      

2555 7.29934      

2920 6.79491      

3285 6.42041      

3650 6.13540      

4015 5.91432      

4380 5.74026      

4745 5.60160      

5110 5.49013      

5475 5.39985      

5840 5.32632      

6205 5.26618      

6570 5.21684      

6935 5.17627      

7300 5.14288      

7665 5.11540      

       
       

       

Figure 6.16 Main Shaft Optimum Replacement 
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The shape parameter (β) for the main bearing in table 6.5 and the failure rate plot in 

figure 6.3 show that the main shaft failure characteristic is neither a complete 

random failure pattern nor a complete wear out as indicated by the constantly 

increasing failure pattern. The cost for planned replacement of the main shaft is 

about £12,885 (Chapter 8, Table 8.2) while the cost for unplanned replacement or 

the consequences of failure is £29,114 (Chapter 5, Table 5.6). The cost per unit time 

decreases continuously as time increases. This means that PM task is not suitable for 

maintaining the main shaft of the 600 kW wind turbine. 

 

6.4.3.4 The Main Bearing 

Figure 6.17 shows no optimum cost and interval for performing PM task on the 

main bearing.  

 

Start Time: 365  Cost for planned replacement: £10,763   
Increment: 365  Cost for unplanned replacement: £22,374   

       

Time Units 
Cost/Unit 

Time      

365 33.02744      

730 18.52287      

1095 13.76032      

1460 11.41797      

1825 10.03768      

2190 9.13540      

2555 8.50448      

2920 8.04203      

3285 7.69109      

3650 7.41764      

4015 7.20008      

4380 7.02410      

4745 6.87980      

5110 6.76016      

5475 6.66002      

5840 6.57556      

6205 6.50384      

6570 6.44259      

6935 6.39004      

7300 6.34475      

7665 6.30558      

       

 
Figure 6.17 Main Bearing Optimum Replacement 

 

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000 7000 8000

PM Time

Cost Per Unit Time vs. Replacement Time

No Optimal Cost 



                                                                         Maintenance Optimisation for Wind Turbines 

PhD Thesis, The Robert Gordon University Aberdeen, 2008.                                                  110                                               

The shape parameter of the main bearings in table 6.5 and the failure rate plot in 

figure 6.6 show the random failure pattern of the main bearing. Recall that PM tasks 

are not suitable for components or subsystems which exhibits random failure pattern 

if there is an identifiable warning signs that can be measured to assess the actual 

condition of incipient failures and the availability of reasonable time to take 

proactive action to prevent the failures from escalating to catastrophic events. The 

cost for planned replacement of the main bearing is 10,763 (Chapter 8, Table 8.2) 

while the cost for unplanned replacement or the consequences of failure is £22,374 

(Chapter 5, Table 5.6). The cost per unit time decreases continuously as the time 

increases. This means that PM task is not suitable for maintaining the main bearing 

of the 600 kW wind turbine. 

 
6.4.3.5 The Gearbox HSS Bearing 

The estimated shape parameter (β) of the gearbox high speed shaft bearing is 1.52. 

This is neither a complete random nor a wear out failure pattern but a constant 

increasing failure rate plot. The cost for planned replacement of the HSS bearing is 

given in chapter 8, table 8.2 and the cost for unplanned replacement or consequences 

of failure of the bearing in chapter 5, table 5.6. Using this information the 

optimisation graph is plotted as shown in figure 6.18.  

 

The minimum point on the graph in the figure is 5.9834474. This represents the 

optimal cost per unit time, and the optimal interval is at 1095 days (3 years). The 

optimal cost/year is determined by multiplying the optimal cost per unit time 

(5.9834) and the number of days in a year (365) to obtain £2,183.94. In table 6.5, the 

estimated MTBF of the HSS bearing is 6,528 days.  

 

Thus, the cost per unit time at the MTBF is 9.9009.  Multiplying the cost per unit 

time at the MTBF and the number of days in a year (365) will give £3,613.83 

cost/year at MTBF. By carrying out the PM task at the optimal interval will save the 

sum £1,429.89/PM task. 
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Start Time: 365  Cost for planned replacement: £2,230    
Increment: 365  Cost for unplanned replacement: £78,468    

        

Time Units 

Cost/ 
Unit 
Time       

365 8.344       

730 6.257       

1095 5.983       

1460 6.099       

1825 6.340       

2190 6.625       

2555 6.923       

2920 7.220       

3285 7.510       

3650 7.790       

4015 8.058       

4380 8.314       

4745 8.557       

5110 8.788       

5475 9.007       

5840 9.215       

6205 9.411       

6570 9.596       

6935 9.771       

7300 9.935       

7665 10.09  Minimum = 5.9834474     

        
        
        

Figure 6.18 Gearbox HSS Bearing Optimum Replacement 

 

It is worth noting however, that the gearwheels, the IMS and HSS bearings are 

components within a gearbox, and the gearbox failure is characterised by a random 

failure pattern as indicated by the estimated shape parameter and the failure rate plot 

in table 6.5 and figure 6.9 respectively. The gearbox is a repairable subsystem with a 

number of components, thus the failure characteristic of the subsystem in this case 

will override the PM tasks for the individual components because of the random 

pattern of failure.  

 

6.4.3.6 The Generator bearing 

Figure 6.19 shows the optimisation plot for the generator bearing. The minimum 

point on the curve in the figure is 5.89848 which represent the optimal cost per unit 

time. The optimal interval for performing the PM task is 1460 days (4 years). The 
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optimal cost/year is £2,152.77. The estimated MTBF of the generator bearing is 

4524 days (table 6.5); the cost per unit time at the MTBF is 6.9936. The cost/year 

for doing the PM task at the MTBF is £2552.67.  

 

Start Time: 365  Cost for planned replacement: £2,332    
Increment: 365  Cost for unplanned replacement: £35,964    

        

Time Units 

Cost/
Unit 
Time       

365 8.941       

730 6.51       

1095 5.997       

1460 5.898       

1825 5.941       

2190 6.039       

2555 6.160       

2920 6.288       

3285 6.416       

3650 6.541       

4015 6.659       

4380 6.771       

4745 6.876       

5110 6.974       

5475 7.065       

5840 7.149       

6205 7.226       

6570 7.298       

6935 7.363       

7300 7.423       

7665 7.478  Minimum = 5.89848     

        
        

        

Figure 6.19 Generator Bearing Optimum Replacement 

 

6.5 SUMMARY 

This chapter has analysed the collected field failure and maintenance data of 600 kW 

wind turbines. The failure and maintenance data was collected from 27 wind farms 

located in the same geographical region. The Maximum Likelihood Estimation 

(MLE) was used to determine the shape and scale parameters of the Weibull 

distribution for critical components and subsystems of the wind turbines. ReliaSoft 

Weibull ++7 software was used in the analyses. The Weibull probability plots, 
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probability density function (pdf) plots and the failure rate plots were generated for 

the critical components and subsystems of the wind turbines. 

 

A case study was undertaken to demonstrate the practical application of the 

estimated β and η values to determine and optimise maintenance activities for the 

critical components and subsystems of the 600 kW wind turbine. The main bearing 

and shaft of the wind turbine have no optimal cost and interval to carry out PM 

tasks. The optimal interval for performing PM task on the gearwheels, IMS bearing 

and the HSS bearing of the gearbox of the 600 kW wind turbine are 2190, 1460 and 

1095 days respectively while the optimal cost/year are £2,445, £958 and £2,183 

respectively. Similarly, the optimal interval and cost/year for performing PM task on 

the bearing of the generator are 1460 days and £2152 respectively. The gearbox and 

the generator are repairable subsystems of the wind turbine with estimated shape 

parameters of 1.09 and 1.11 respectively. Thus the random pattern of failures of the 

subsystems will not allow effective implementation of the PM tasks for the 

components as PM will not be suitable for the subsystems. 
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CHAPTER 7 

MODELLING WIND TURBINE FAILURES  

TO OPTIMISE MAINTENANCE  

 

7.1 INTRODUCTION 

The shape and scale parameters of critical components and subsystems of the 600 

kW wind turbines were estimated in chapter 6. The parameters were further used to 

determine appropriate maintenance tasks for the components and subsystems of the 

turbine. This chapter present a case study to model and assess the Reliability, 

Availability and Maintainability (RAM) of the 600 kW wind turbine and the 26 x 

600 kW wind farm. The estimated values of β and η (chapter 6, table 6.5) of each 

component within a subsystem of the 600 kW wind turbine will be used to populate 

the BlockSim of the ‘ReliaSoft BlockSim-7’ simulation software to model the 

failures of the subsystem. The β and η values of each subsystem of the 600 kW wind 

turbine will be used to populate the BlockSim to model the failures of the wind 

turbine. The model of the wind turbine is then used to model the failure 

characteristics of the wind farm. Monte Carlo simulation is used by the ‘ReliaSoft 

BlockSim-7’ software to assess the RAM of the wind turbine and the wind farm; 

taking into account the costs and availability of maintenance crew and spare 

holdings.    

 

7.2 Modelling Failures of the 600 kW Wind Turbine 

A failure model of a typical gearbox in the 600 kW horizontal axis wind turbine is 

shown in Figure 7.1. The components (represented by Reliability Block Diagrams) 

are connected in series, that is, the function of each component is dependent on the 

functionality of the other components. Conversely, failure of a component within the 

subsystem will result to the subsystem’s breakdown. The estimated β  and η  values 

of each component are incorporated into the Reliability Block diagrams (RBD).  

 

Note that any component which failure data was not available has been set to ‘block 

cannot fail’ in the models. This is to avoid subjective and illogical assumptions 
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about the components, and to ensure the modelling is based solely on field failure 

data. The incorporated β  and η  values of the gear wheels, key ways, intermediary 

speed shaft (IMS) and high speed shaft (HSS) bearings are shown in the figure. The 

complete reliability equation of the gearbox model is shown in Equation 7.1. 

 

 

 

 

 

 

 

 Figure 7.1 Gearbox Failure Model 

     RGearbox= RShaft.RIMS Bearings.RKey Ways.RHSS Bearing.RGears …                                        (7.1) 

Where, R= Reliability 

 

Failure model of generators within the 600 kW wind turbines is shown in Figure 7.2. 

The components; stator winding, bearing, rotor, etc are connected in series. The 

incorporated β  and η  values of the stator windings and the bearings are shown in 

the figure. The complete reliability equation of the generator’s model is presented in 

Equation 7.2. 

 

 

 

             

 

 

 

Figure 7.2 Generator Failure Model 

        RGenerator= RWindings .RBearings. RRotor …                                                                                (7.2) 

Where, R= Reliability. 
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Figure 7.3 shows the failure model of the 600 kW wind turbine. The figure shows 

the RBD of key subsystems and their estimated values of β  andη . The blades of 

the turbine are connected in parallel as they operate independently. However, all the 

blades must be in good operating condition before the wind turbine can function. 

This operating condition is depicted in the 3-out of-3 node (3oo3) shown in the 

figure 7.3. Similar condition applies to the main bearings which require a 2-out of-2. 

The operating condition of the mechanical and aerodynamic brakes are however 

different, one of the brake is enough to stop the turbine (i.e. 1-out of-2). Safety 

requirements demand a 2-out of-2 to avoid failures related to over speeding of the 

turbine. These parallel arrangements are connected in series to the other subsystems 

of the wind turbine. The appropriate β  and η  values of each component and 

subsystem are incorporated in the model. The start and end blocks as well as the 

connecting nodes are set to ‘block cannot fail’.  

 

The gearbox and the generator models in figures 7.1 and 7.2 respectively are 

incorporated to represent the gearbox and the generator in the wind turbine’s failure 

model shown in the figure 7.3. The incorporated values of β  and η  of each 

subsystem are shown in the figure. The complete reliability equation of the wind 

turbine’s model is presented in Equation 7.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 Failure Model of 600 kW Wind Turbine 
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RTurbine = (RMian Shaft.RGearbox.RFlexible coupling.RTower.RFoundation (R3oo3 (RBlade 1
3)) (R2oo2 

(RBearing A
2)) (RGenerator.R1oo2 (2RMechanical Brake-RMechanical Brake

2)))…                (7.3)                     

Where,   
R= Reliability 

RBlade 1=RBlade 2=RBlade 3 

RBearing A=RBearing B 

RAerodynamic brake =RMechanical Brake 

 

The failure model of the 26 x 600 kW wind farm is shown in Figure 7.4. Each of the 

Reliability Blocks (numbered 1-26) represent one of the 26 wind turbines in the 

farm. All the 26 turbines are a replica of the 600 kW wind turbine failure model 

presented in figure 7.3. Generally, wind turbines operate independently in a wind 

farm, that is, failure of a wind turbine on a wind farm does not affect the operation 

of the other turbines on the farm. This operational independency of the wind 

turbines is depicted in the parallel connection of the blocks in the wind farm model 

as shown in the figure 7.4. The 1-out of-26 (i.e. 1oo26) operating condition 

represents the autonomy of each wind turbine on the wind farm.  

 

7.3 600 kW Wind Turbine Model Assessment 

The reliability, availability and maintainability (RAM) of the wind turbine is 

assessed over a period of 4 years; taking into account the costs and availability of 

maintenance crew and spares holding. The ‘4 years’ is a short term economic 

analysis period required by the collaborating wind farm operator. Recall that CBM 

strategy (i.e. corrective maintenance based on inspection) is suitable for components 

or subsystems with a random failure pattern (i.e. β=1) if there is an identifiable and 

measurable warning signs that permit the assessment of the actual conditions of 

incipient failures and the availability of reasonable time to take proactive action to 

prevent the failures from escalating to catastrophic events.  

 

Tables 7.1, 7.2 and 7.3 show the current spare pool policy, corrective maintenance 

crew policy, and inspection and preventative maintenance (PM) crew policy 

respectively. Note that tables 7.2 and 7.3 are developed based on a discussion with 

the collaborating wind farm operators to initiate the process of quantitative 

maintenance optimisation. The detailed breakdown of the direct cost per item in 
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table 7.1 and the failure consequences in table 7.2 are given in Chapter 5, Section 

5.3.2. The current spare pool policy and the maintenance crew policies were used to 

populate the appropriate RBD of the wind turbine’s model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

                                                                           

 

Figure 7.4 Failure Model of the 26 x 600 kW Wind Farm 

 

Table 7.1 Current Spare Pool Policy 

Subsystem

Direct cost 

per item (£)
Indirect 

cost (£)
Initial 

stock level

Restock when 

stock level 

drops to

Number of 

stock to be 

added

Total Initial 

stock cost (£)

Mean bearings 9,851 100 4 2 2 39804

Main shaft 11,133 100 2 1 1 22466

Gear box 61,687 100 1 0 1 61787

Generator 23,441 100 2 1 1 47082  

 

Note the indirect cost in the Table 7.1 is the cost of keeping an item in a spare pool 

measured per annum.  
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Table 7.2 Crew Policy for Corrective Maintenance  

Subsystem

Repair 

Distribution 

Parameters 

(days)

Crew          

A      

(Person)

Labour 

cost/ 

hour 

(£)

Work 

hours/ 

day

Tasks crew 

can 

perform at 

the same 

time

Labour 

Cost 

per 

incident 

(£)

Failure 

Consequence

(£)  

Mean bearings Normal µ = 2
σ = 1 3 50 8 1 2,400 22,375

Main shaft Normal µ = 4
σ = 1 3 50 8 1 4,800 29,114

Gear box Normal µ = 3
σ = 1 3 50 8 1 3,600 78,468

Generator Normal µ = 2
σ = 1 3 50 8 1 2,400 35,964  

 

 

Table 7.3 Crew Policy for Inspection and Preventative Maintenance 

Subsystem Task

Fixed 

interval 

(days)

Crew    

A 

(Person) 

Labour 

cost/ 

hour 

(£)

Task 

duration 

(hours)

Tasks crew 

can 

perform at 

the same 

time

Labour 

Cost per 

incident 

(£)

Cost of 

crane 

per 

hour 

(£)

Direct 

cost of 

crane 

(£)

Total 

cost 

of 

task 

(£)
CBM

Mean bearings (Inspection) 180 3 50 1.33 1 200 300 399 599

TBM

Main shaft (PM) 365 3 50 1.33 1 200 300 399 599

CBM

Gearbox (Inspection) 180 3 50 2 1 300 300 600 900

CBM

Generator (Inspection) 180 3 50 1.6 1 240 300 480 720  

 

The wind turbine model is populated with the information in the tables, and then 

simulated over a period of fours years. The simulations start from 0 to 365, 730, 

1095 and 1460 days respectively. The wind turbine and its subsystems up/downtime 

trend are shown in Figure 7.5. The subsystems uptime is relatively consistent over 

the 4 year period; given the defined maintenance strategy, crew and spare pool 

availability. The overview result and the cost summary are shown in Tables 7.4 and 

7.5 respectively. The mean availability (all events) of the wind turbine in the first 

and the fourth year are 97% and 98% respectively. The total down time increases 

from about 10 days in the first year to about 27 days in the fourth year. The total 

costs increases from £180,912 in the first year to about £208,758 in the fourth year. 

The break down of the total cost is shown in table 7.5. It is evident that the spare 

pool costs constitute the greater percentage of the total costs. 
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Figure 7.5 Wind Turbine and Subsystems up/down 
 
 
Table 7.4 Wind Turbine Overview result 

System Overview Year 1 Year 2 Year 3 Year 4

General

Mean Availability (All Events): 0.97 0.98 0.98 0.98

Std Deviation (Mean Availability): 0.09 0.06 0.04 0.04

Mean Availability (w/o PM & Inspection): 0.97 0.98 0.98 0.98

Point Availability (All Events): 1 1 1 1

Reliability: 0.88 0.79 0.74 0.67

Expected Number of Failures: 0.13 0.23 0.29 0.39

Std Deviation (Number of Failures): 0.35 0.47 0.52 0.60

MTTFF: 2787 3134 3615 3640

System Uptime/Downtime

Uptime: 355 713 1075 1433

CM Downtime: 0 1 1 1

Inspection Downtime: 0 0 0 1

PM Downtime: 0 0 0 0

Total Downtime: 10 17 20 27

System Downing Events

Number of Failures: 0 0 0 1

Number of CMs: 0 1 1 1

Number of Inspections: 2 4 6 8

Number of PMs: 0 0 0 0

Total Events: 2 5 7 10

Costs

Total Costs: 180,912.16 191,029.01 199,886.83 208,758.54     

 

7.4 Wind Farm Model Assessment 

The wind farm’s up/downtime trend is shown in Figure 7.6. At 44 days, some wind 

turbines failed which brought the wind farm into a non-full operating time. The non-

full operating time is as a result of repairs of failed turbines and/or delays waiting for 
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crew/spare parts. In this case, the maintenance crew can only perform one task at a 

time, hence resulting in the long delay. Similar non-full operating times are recorded 

at 308, 902 and 1099 days respectively. 

 

 

 

 

 

 

 

 

 

 
Figure 7.6 Wind Farm up/downtime trend 

 

Tables 7.5, 7.6, 7.7 and 7.8 show the overview result, cost summary, crew costs 

summary and spare pool cost summary of the wind farm respectively. The mean 

availability A (t) of the farm at the end of the first and the fourth year are 46% and 

40% respectively. The reliability of the wind farm in the first and the fourth year are 

0.02 and 0 respectively. The mean time to functional failure (MTTFF) decreases 

from 90 days in the first year to about 87 days in the 4th year. The total down time 

increases from 196 days in the first year to about 877 days in the 4th year. 

 

The number of failure resulting to downing of the wind farm increases from 2 events 

in the first year to about 7 events in the 4th year. The total cost of managing the farm 

as the results the maintenance strategies in the first and the 4th year are £376,246 and 

£1,006,068 respectively. The spare pool costs (i.e. overall costs of keeping the 

spares in the pool) are added to the total corrective maintenance (CM) costs and 

inspection costs to obtain the total costs of the strategies in each year (see table 7.6). 
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Table 7.5 Wind Farm Overview Result 

System Overview Year 1 Year 2 Year 3 Year 4

General

Mean Availability (All Events): 0.46 0.43 0.42 0.40

Std Deviation (Mean Availability): 0.25 0.20 0.17 0.16

Mean Availability (w/o PM & Inspection): 0.46 0.43 0.42 0.40

Point Availability (All Events): 0.90 0.78 0.68 0.57

Reliability: 0.02 0.00 0.00 0.00

Expected Number of Failures: 2 4 5 7

Std Deviation (Number of Failures): 1 1 1 2

MTTFF: 90 90 90 87

System Uptime/Downtime

Uptime: 169 316 457 583

CM Downtime: 4 7 11 14

Inspection Downtime: 0.16 0.31 0.45 0.57

PM Downtime: 0 0 0 0

Total Downtime: 196 414 638 877

System Downing Events

Number of Failures: 2 4 5 7

Number of CMs: 2 3 5 6

Number of Inspections: 3 6 10 12

Number of PMs: 0 0 0 0

Total Events: 7 13 20 25

Costs

Total Costs: 376,246.42  592,209.73  809,132.55 1,006,068.97   

 

Table 7.6 Wind Farm Cost summary 

System Cost Summary Year 1 Year 2 Year 3 Year 4

Misc. Corrective Costs: 46,985.86     89,071.99   131,930.76    170,188.67    

Costs for Parts (CM): 24,095.69     45,245.73   66,223.59      85,569.96     

Costs for Crews (CM): 4,248.77       8,155.32    12,152.62      15,599.70     

Total CM Costs: 75,330.33     142,473.05 210,306.97    271,358.33    

Misc. Preventive Costs: 0 0 0 0

Costs for Parts (PM): 0 0 0 0

Costs for Crews (PM): 0 0 0 0

Total PM Costs: 0 0 0 0

Misc. Inspection Costs & 129,777.10    257,595.69 384,000.58    508,334.64    

Costs for Crews (IN):

Total Inspection Costs: 129,777.10    257,595.69 384,000.58    508,334.64    

Spare Pool Costs: 171,139.00    192,141.00 214,825.00    226,376.00    

Total Costs: 376,246.42    592,209.73 809,132.55    1,006,068.97  

 

Table 7.7 shows the maintenance crew summary. The numbers of calls made to the 

crew in each year, the accepted and rejected calls, the time used to repair the failures 
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as well as the total costs of the crew are shown in the table. For example, a total of 

15 and 31 calls were made to the crew in the 1st and the 4th year out of which 6 and 

12 calls were accepted and, 9 and 19 calls were rejected respectively, given that, the 

crews can only work on one job at a time. A total of about 4 and 14 days were used 

to attend to the calls at the cost of £4,248 and £15,599 respectively.  

 

Table 7.7 Wind Farm Crew summary 

Maintenance Crew Summary

Period Crew Policy Calls Accepted Rejected Time Used Cost

Year 1 Crew A 15 6 9 3.86 4,248.77   

Year 2 Crew A 18 13 5 7.44 8,155.32   

Year 3 Crew A 23 10 13 11.16 12,152.62 

Year 4 Crew A 31 12 19 14.39 15,599.70  

 

The summary of the spare parts re-supplied to the pools of each subsystem 

consumed are shown in Table 7.8. Average Stock Level (ASL) and item dispensed 

of each of the subsystems are indicated in columns 3 and 4 of the table respectively. 

For example, 1 bearing was dispensed to carry out repairs in the first year, reducing 

the ASL in spare pool of bearings to 3. The indirect cost of spares (the cost of 

keeping the item in the spare pool per annum) is added to the direct cost per item to 

obtain the total cost of each spare. 

 

Table 7.8 Wind Farm Spare Pool Summary 

Period Pool ASL

Items 

Dispensed

Cost Per    

Item

Total         

Cost

Total 

Annual      

Cost

Spare Pool gearbox 1 0 61,687 61,787.00 

Spare Pool Shaft 2 0 11,133 22,466.00 

365 Spare Pool Bearings 3 1 9,851 39,804.00 

Spare Pool Generator 2 0 23,441 47,082.00 171,139.00 

Spare Pool gearbox 1 0 61,687 61,887.00 

Spare Pool Shaft 2 0 11,133 22,666.00 

730 Spare Pool Bearings 3 3 9,851 60,306.00 

Spare Pool Generator 2 0 23,441 47,282.00 192,141.00 

Spare Pool gearbox 1 0 61,687 61,987.00 

Spare Pool Shaft 2 1 11,133 34,299.00 

1095 Spare Pool Bearings 3 4 9,851 71,057.00 

Spare Pool Generator 2 0 23,441 47,482.00 214,825.00 

Spare Pool gearbox 1 0 61,687 62,087.00 

Spare Pool Shaft 2 1 11,133 34,599.00 

1460 Spare Pool Bearings 3 5 9,851 82,008.00 

Spare Pool Generator 2 0 23,441 47,682.00 226,376.00  
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7.5 RELIABILITY, AVAILABILITY & MAINTAINABILITY 

OPTIMISATION 

The fixed CBM and TBM task intervals in table 7.3 are responsible for the very long 

downtime of the wind farm shown in figure 7.6. The intervals are rather ambitious, 

thus not ideal for the subsystems because their PF-intervals are far less than the tasks 

interval (see chapter 5). Furthermore, TBM task is not suitable for the maintenance 

of the main shaft due the constant increasing pattern of failure. Thus, we recommend 

a monthly inspection interval for the gearbox, generator, main bearing and shaft; 

taking into account their P-F intervals. Table 7.9 shows the adjusted the tasks 

intervals for the subsystems. 

 

Table 7.9 Optimised Task Intervals for the Subsystems 

Subsystem Task

Fixed 

interval 

(days)

Crew    

A 

(Person) 

Labour 

cost/ 

hour 

(£)

Task 

duration 

(hours)

Tasks crew 

can 

perform at 

the same 

time

Labour 

Cost per 

incident 

(£)

Cost of 

crane 

per 

hour (£)

Direct 

cost of 

crane 

(£)

Total 

cost 

of 

task 

(£)
CBM

Mean bearings (Inspection) 30 3 50 1.33 1 200 300 399 599

CBM

Main shaft (Inspection) 30 3 50 1.33 1 200 300 399 599

CBM

Gearbox (Inspection) 30 3 50 2 1 300 300 600 900

CBM

Generator (Inspection) 30 3 50 1.6 1 240 300 480 720  

 

7.5.1 The Wind Turbine  

Using the adjusted information and then repeating the simulations described in 

section 7.3, the overview results and up/down trend for the wind turbine are shown 

in table 7.10 and figure 7.7 respectively. Note the improvement in the mean 

availability, reliability and the total downtime of the wind turbine recorded in table 

7.10 when compared to the result in table 7.4.  

 

Table 7.10 shows the mean availability of the wind turbine in the first 3 years is 

100%; this reduces to about 98% in the fourth year as a result of the failure shown in 

figure 7.7. Also, the reliability of the wind turbine in the first 3 years is 1 which 

reduces to about 0.79 in the fourth year. The optimisation reduces drastically the 

total downtime of the wind turbine from 74 days as recorded in table 7.4 to 19 days 
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in table 7.10. The total downing events in the first three years is zero (0); this 

increases to 2 events in the fourth year. This shows a great improvement in the 

operating time of the turbine when compared to the initial total downing events of  

2, 5, 7 and 10 events in the first, second, third and fourth year respectively (see table 

7.4). 

 

 

 

 

 

 

 

 

 

 

Figure 7.7 Optimised Wind Turbine’s up/down trend 

 

Table 7.10 Optimised Wind Turbine’s overview result 

System Overview Year 1 Year 2 Year 3 Year 4

General

Mean Availability (All Events): 1 1 1 0.99

Std Deviation (Mean Availability): 0 0 0 0

Mean Availability (w/o PM & Inspection): 1 1 1 0.99

Point Availability (All Events): 1 1 1 1

Reliability: 1 1 1 0.79

Expected Number of Failures: 0 0 0 1

Std Deviation (Number of Failures): 0 0 0 0

MTTFF: 527 1053 1580 944

System Uptime/Downtime

Uptime: 365 730 1095 1441

CM Downtime: 0 0 0 3

Inspection Downtime: 0 0 0 0

PM Downtime: 0 0 0 0

Total Downtime: 0 0 0 19

System Downing Events

Number of Failures: 0 0 0 1

Number of CMs: 0 0 0 1

Number of Inspections: 0 0 0 0

Number of PMs: 0 0 0 0

Total Events: 0 0 0 2  
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7.5.2 The Wind Farm 

The wind farm’s up/down trend, overview result, cost summary, crew summary and 

spare pool summary are shown in figure 7.8, tables 7.11, 7.12, 7.13 and 7.14 

respectively. These are compared with the initial wind farm up/down trend, 

overview result, cost summary, crew summary and spare pool summary presented in 

figure 7.6, tables 7.5, 7.6, 7.7 and 7.8 respectively. The optimised up/down trend in 

figure 7.8 shows a significant improvement in the wind farms operating time in 

comparison to the initial up/down trend presented in figure 7.6. The monthly 

inspection permits the rectification of incipient failures before they escalate to 

catastrophic events. This reduces significantly the wind farm’s total downtime.  

 

Table 7.11 shows the mean availability of the wind farm remained consistently at 

about 99% over the four year period. This is a great improvement over the mean 

availability of 46%, 43%, 42% and 40% in year 1, 2, 3 and 4 respectively as 

reported in the initial overview result presented in table 7.5. Also, the reliability of 

the wind farm is significantly improved to 1 from 0 over the four year period. The 

total downtime of the wind farm is reduced to 2 days as against the initial 196, 414, 

638 and 877 days in the first, second, third and fourth year respectively. The number 

of unexpected failures is reduced to zero (0) from 2, 4, 5 and 7 in the first, second, 

third and the fourth year respectively as reported in the initial overview result 

recorded in table 7.5.  

 

 

 

 

 

 

 

 

 

 

Figure 7.8 Optimised wind farms’ up/down trend 
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Table 7.12 shows a significant reduction in the cost of corrective maintenance of the 

wind farm over the four year period as a result of the optimisation. The initial 

corrective maintenance costs ranged between £75, 330.33 in the first year and £271, 

358.33 in the fourth year (see table 7.6). However, table 7.13 shows the reduction of 

the corrective maintenance costs to about £34,711.13. Also, the miscellaneous 

inspection and crew costs were significantly reduced from the second year. It is 

worth noting that the initial result presented in table 7.6 shows a better 

miscellaneous inspection and crew costs in the first year than the optimised result in 

table 7.12. Similarly, the spare pool costs for the wind farm starts reducing in the 

second year due to the lower number of unexpected failures when compared with the 

initial result presented in table 7.6. Thus, the total costs of the optimised wind farm 

starts reducing drastically in the second year as shown in table 7.12 when compared 

to the initial result presented in table 7.6. 

 

Table 7.11 Optimised Wind Farm Overview result 

System Overview Year 1 Year 2 Year 3 Year 4

General

Mean Availability (All Events): 0.9953 0.9977 0.9984 0.9988

Std Deviation (Mean Availability): 0 0 0 0

Mean Availability (w/o PM & Inspection): 0.9953 0.9977 0.9984 0.9988

Point Availability (All Events): 1 1 1 1

Reliability: 1 1 1 1

Expected Number of Failures: 0 0 0 0

Std Deviation (Number of Failures): 0 0 0 0

MTTFF: 527 1053 1580 2106

System Uptime/Downtime

Uptime: 363 728 1093 1458

CM Downtime: 1.703 1.703 1.703 1.703

Inspection Downtime: 0 0 0 0

PM Downtime: 0 0 0 0

Total Downtime: 2 2 2 2

System Downing Events

Number of Failures: 0 0 0 0

Number of CMs: 1 1 1 1

Number of Inspections: 0 0 0 0

Number of PMs: 0 0 0 0

Total Events: 1 1 1 1

Costs

Total Costs: 382,336 383,236 384,136 384,735  
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Table 7.12 Optimised Wind Farm Cost Summary 

System Cost Summary Year 1 Year 2 Year 3 Year 4

Misc. Corrective Costs: 22,375.00    22,375.00   22,375.00   22,375.00    

Costs for Parts (CM): 9,851.00     9,851.00    9,851.00    9,851.00     

Costs for Crews (CM): 2,485.13     2,485.13    2,485.13    2,485.13     

Total CM Costs: 34,711.13    34,711.13   34,711.13   34,711.13    

Misc. Preventive Costs: 0 0 0 0

Costs for Parts (PM): 0 0 0 0

Costs for Crews (PM): 0 0 0 0

Total PM Costs: 0 0 0 0

Misc. Inspection Costs & 176,486.00  176,486.00 176,486.00 176,185.00  

Costs for Crews (IN):

Total Inspection Costs: 176,486.00  176,486.00 176,486.00 176,185.00  

Spare Pool Costs: 171,139.00  172,039.00 172,939.00 173,839.00  

Total Costs: 382,336.13  383,236.13 384,136.13 384,735.13   

 

Table 7.13 shows the summary of the wind farm’s crew cost as a result of the 

optimisation. The number of calls made to maintenance crew as presented in table 

7.7, ranged between 15 calls in the first year and 31 calls in the fourth year. These 

calls are reduced significantly to 1 call over the 4 year period. All calls under the 

optimised wind farm were accepted (see table 7.13) as against the high number of 

rejected calls in the initial crew summary shown in table 7.7. Also, the total time 

used to repair failures have been reduced to an average of 2 days over the four year 

period as against the 4, 7, 11 and 14 days for the first, second, third and the fourth 

year respectively as shown in table 7.7. 

 

Table 7.13 Optimised wind farms crew cost summary 

Period Crew Policy Calls Accepted Rejected Time Used Cost

Year 1 Crew A 1 1 0 1.7026 2485.13

Year 2 Crew A 1 1 0 1.7026 2485.13

Year 3 Crew A 1 1 0 1.7026 2485.13

Year 4 Crew A 1 1 0 1.7026 2485.13  

 

Table 7.14 shows the spare pool cost summary after the optimisation. Note the 

significant difference between the spare pool cost summary presented in table 7.8 

and table 7.14. The items dispensed for maintenance purposes are reduced in table 
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7.14 which resulted in the lower total cost of spare pool starting from the second 

year. 

 

Table 7.14 Optimised Spare Pool cost summary 

Period Spare Pool ASL

Items 

Dispensed

Cost Per 

Item

Total Cost/ 

Item

Total Cost 

of Spares

Main Bearings 3 1 9,851 39,804.00   

Year 1 Main Shaft 2 0 11,133 22,466.00   

Gearbox 1 0 61,687 61,787.00   171,139.00 

Generator 2 0 23,441 47,082.00   

Main Bearings 3 1 9,851 40,204.00   

Year 2 Main Shaft 2 0 11,133 22,666.00   

Gearbox 1 0 61,687 61,887.00   172,039.00 

Generator 2 0 23,441 47,282.00   

Main Bearings 3 1 9,851 40,604.00   

Year 3 Main Shaft 2 0 11,133 22,866.00   

Gearbox 1 0 61,687 61,987.00   172,939.00 

Generator 2 0 23,441 47,482.00   

Main Bearings 3 1 9,851 41,004.00   

Year 4 Main Shaft 2 0 11,133 23,066.00   

Gearbox 1 0 61,687 62,087.00   173,839.00 

Generator 2 0 23,441 47,682.00    

 

7.6 SUMMARY 

This chapter has modelled the failure characteristics of the 600 kW wind turbine and 

the 26 x 600 kW wind farm. The estimated values of β and η of critical components 

and subsystems of the wind turbine were used to populate Reliability Block 

Diagrams of the models. ReliaSoft BlockSim software which uses Monte Carlo 

simulation was used to assess the reliability, availability and maintainability of the 

wind turbine and the wind farm over a period of 4 years; taking into account the cost 

and availability of maintenance crew and spare-holding of the critical components.  

 

Initial fixed maintenance task intervals were defined for the subsystems of the wind 

turbine. These intervals were meant to reduce access and crew costs associated with 

shorter maintenance tasks intervals. The models were simulated based on the initial 

information and the results were discussed.  However, the intervals were ambitious, 

resulting to a very long downtime of the wind farm. The P-F intervals of the critical 

components range between 1 and 2 months. Thus, the maintenance task intervals 

were reduced to 30 days from 180.2 days. Then, the models were re-simulated over 

the same period; incorporating the same number of crew and spare holding.  
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The results of the re-simulation (i.e. optimised) were compared with the results of 

the initial simulation. In the comparison, the optimised result showed an initial 

increase in the cost of inspection due to shorter interval. The result further shows 

that adopting the shorter maintenance interval increases the overall availability and 

reliability of the wind turbine as well as the wind farm. The total downtime and the 

overall cost of the wind farm were drastically reduced through the optimisation. For 

instance, the total costs of maintaining the wind farm based on the initial interval are 

about £376,246 and £1,006,068 in the first and the fourth year respectively while the 

total costs of maintaining the wind farm based on the shorter (optimised) interval are 

about £382,336 and £384735 in the first and the fourth year respectively. 

 



                                                                         Maintenance Optimisation for Wind Turbines 

PhD Thesis, The Robert Gordon University Aberdeen, 2008.                                                  131                                               

CHAPTER 8 

DELAY-TIME APPROACH TO 

MAINTENANCE OPTIMISATION 

  
 

8.1 INTRODUCTION 

The last two chapters had assessed the failure characteristics of wind turbines, and 

optimised the reliability, availability and maintainability of a 26 x 600 kW wind 

farm using the modelling system failures approach. This chapter will examine the 

failure characteristics of the 600 kW horizontal axis wind turbine using the Delay-

Time Maintenance Mathematical Model (DTMM). The concept and relevance of 

DTMM have been discussed in chapter 3, section 3.6. Also, the failure modes of 

critical components and subsystems of the wind turbine were identified using the 

Reliability Centred Maintenance approach (see chapter 5). The failure consequences 

of the critical subsystems was determined and expressed in financial terms. Section 

8.2 of this chapter will present a case study to demonstrate the practical application 

of the delay-time maintenance model to optimise the inspection intervals of the 

critical subsystems of the wind turbine. Cost of inspections and repairs of 

components within the subsystems will be calculated. The defect rate for each 

component of the subsystems will be evaluated. Optimal inspection intervals for the 

subsystems will be determined.  The summary of the chapter is presented in section 

8.3. 

 

8.2 A CASE STUDY 

This section presents a case study to demonstrate the practical application of the 

DTMM techniques to optimise the inspection intervals of critical subsystems of the 

600 kW wind turbine. 

 

8.2.1  Failure Mode Effect and Criticality Analysis 

The Failure Mode and Effect Criticality Analysis (FMECA) technique has been used 

to predict the failure modes of the 600 kW horizontal axis wind turbine. The result is 

logically presented in table 5.1 of chapter 5.  
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Suitable Condition-Based Maintenance tasks to mitigate the effects of the identified 

failure modes were identified and presented in subsection 5.3.3 of chapter 5. Recall 

that vibration analysis was identified as the suitable condition based maintenance 

task to mitigate dominant causes of failure modes WT-1-3, WT-1-4, WT-1-5, WT-1-

6, WT-1-7, WT-1-8, WT-1-12, WT-2-7 and WT-2-8 while strain gauge measurements 

were employed for dominant causes of failure modes; WT-1-1, WT-1-2, WT-2-1, 

WT-2-2, WT-2-4, WT-2-5, and WT-2-6. Catastrophic failures of critical components 

of the wind turbine such as the blades, main bearings and shaft, gearbox and 

associated components, the generator and associated components, towers and 

foundations should therefore be detectable and prevented through the application of 

the appropriate CBM activities. 

 

8.2.2 Vibration Analysis 

All rotating equipment produces ultrasonic or acoustic vibration regardless of the 

state of lubrication (Smith, 1989). Vibration analysis (VA) is used for monitoring 

the failure behaviour of rotating equipment such as the wheels and bearings of the 

gearbox, generator bearings, main shaft and bearings of the wind turbine. The 

principle of vibration monitoring to detect incipient faults is illustrated in Figure 8.1. 

Vibration monitoring involves using sensors. The sensors employed depend on the 

frequency range of the equipment to be monitored. Low frequency range equipment 

requires position transducers (Mitchell, 1993), middle frequencies require velocity 

sensors (Mitchell, 1993) and high frequency requires accelerometers (Mitchell, 

1993). Appropriate vibration sensors are mounted rigidly on the components to 

register the local motion.  

 

 

 

 

 

 

 

Figure 8.1 Fault detection model 
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Accelerometers are commonly used to monitor the rotating equipment of the wind 

turbine (Caselitz et al. 1997). Although displacement sensors seem more appropriate 

for monitoring the performance of the main bearings and shaft since they operate at 

a low speed. However, wind turbines differ from other mechanical equipment 

because it operates on both steady and dynamic loads, high and low rotational 

speeds which make signal analysis and diagnostic difficult (Caselitz et al. 1997). 

This requires a specialised knowledge which the suppliers of the system often 

execute in addition to the maintenance of the monitoring system. 

 

The cost of installing condition monitoring system on a wind turbine is expected to 

be covered by the benefits of preventing the consequences of catastrophic failures. 

The trade-off between the cost of installing vibration monitoring system on the drive 

train of the 600 kW wind turbines and the benefits of preventing the consequences 

of failure of critical subsystems in the 26 x 600 kW wind farm has been carried out 

in chapter 5.  

 

Vibration information of the wind turbine’s drive train is collected on a monthly 

basis by a trained employee. A portable device is utilised to register the vibration 

characteristics of the components from the mounted sensors. These are downloaded 

to a system and the results are compared with the threshold and previous results, to 

determine if there are deviations.  

 

 8.2.3  Failure Consequences of Subsystems 

The failure consequences (2C ) of critical subsystems of the 600 kW wind turbine 

represented by failure modes WT-1-1, WT-1-3, WT-1-4, WT-1-6 and WT-1-8 (table 

5.1) were determined and expressed in financial terms. The result is presented in 

Table 5.5. The 2C  were calculated by taking into account total cost of material 

( MTTC ), total cost of labour ( LBTC ), total cost of access ( ASTC ) and production 

losses ( LSP ). The consequence of catastrophic9 failure of a gearbox is about 

£78,468. The generator, main bearings and the main shaft have failure consequences 

212                                                 
9 We use “catastrophic” to refer to failures beyond repair which require replacement of the system. 
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of £35,964, £22,374 and £29,114 respectively. The reader is referred to chapter 5 for 

a detailed calculation of the failure consequences of critical subsystem of the 600 

kW wind turbine. 

 

8.2.4 Cost of Inspection and Repair of Components 

The cost of inspection and repair of components of the subsystems are present in 

Table 8.1. The cost per hour and the time required to repair each component were 

estimated from the information obtained from collaborating wind farm operators. 

The cost and time needed to inspect the components of the subsystems are estimated 

from the information obtained from the vendors of condition monitoring system. In 

the table, the total cost of labour (LBTC ) is obtained by multiplying repair time, cost 

of labour per hour and the number of repair crew. Also, the cost of inspection per 

hour is multiplied by the inspection duration and the number of inspection crew to 

obtain the total cost of inspection ( INPTC ). The total cost of material ( MTTC ) 

includes the cost of loading and off-loading, cost of transportation to site, and a 

value added tax (VAT) at 17.50% (see chapter 5). Thus, the cost of inspection and 

repair ( 1C ) is the summation of INPTC , LBTC  and MTTC . For example, the 1C  of high 

speed shaft (HSS) bearings and intermediary shaft (IMS) bearings of the gearbox are 

£2,230 and £2,742 respectively.  

 

Table 8.1 Cost of inspection and repair of critical components 

Repair Inspection Cost of Cost of Inspection
Sub-system Activity &  duration duration inspection repair per & Repair TC INP TCLB TCMT Total

 Component  (hrs)  (hrs) per hour(£) hour (£) crew (£) (£) (£)  (C1)
Blade Replace blade 

Main Shaft Replace shaft 32 2 12 17.5 3 72.0    1,680.0 11,133.4 12,885.4 

Main Bearing Replace bearing 16 2 12 17.5 3 72.0    840.0    9,851.5   10,763.5 

Gearbox Replace gear wheels 16 2 12 17.5 3 72.0    840.0    7,270.0   8,182.0   

Replace HSS bearing 16 2 12 17.5 3 72.0    840.0    1,318.0   2,230.0   

Replace IMS bearing 16 2 12 17.5 3 72.0    840.0    1,830.0   2,742.0   

Generator Replace bearing 16 2 12 17.5 3 72.0    840.0    1,420.0   2,332.0    
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8.2.5 Defects Rate 

The defects rate (α) of each component of the critical subsystems of the 600 kW 

wind turbine is presented in Table 8.2. The (α) were estimated by determining firstly 

the ‘wind turbine operational years’ which is the product of the number of wind 

turbine assessed (i.e. 77 turbines) and the period under consideration. From tables 

6.1-6.4, the period under consideration for the main-shaft, main-bearings, gearbox 

and the generator are 4, 3, 7 and 8 years respectively. These result to ‘wind turbine 

operational years’ of 539, 616, 308 and 231 for the gearbox, generator, main shaft 

and bearings respectively. The (α) of each component is obtained by dividing the 

total defects observed (i.e. the sum of number of defects failed and defects repaired) 

of the component by the corresponding ‘wind turbine operational years’. For 

example, twelve (12) HSS bearings of the gearbox failed and replaced, while 5 

gearboxes failed catastrophically (table 6.3). Thus, the total number of defects 

observed for the HSS bearing is 17 in the 7 years under consideration. Similarly, 

thirty one (31) bearings of the generator failed and replaced while 9 generators failed 

catastrophically (see table 6.4). Therefore, the total number of defects observed for 

the bearing of the generator is 40 in the 8 years under consideration. Hence, the 

defects rate (α) of the HSS bearing of the gearbox and the bearing of the generator 

are 0.0315 and 0.0649 respectively. The components defects rates were further 

converted to Mean-Time-Between-Failures (MTBF). The MTBF are obtained by 

determining the inverse value of (α). For example, the MTBF of the main bearings is 

21019.5

1
−x

 to give 19.25 wind turbine years as shown in the table 8.2.  

 

Table 8.2 Defects Rate of Critical Components 

Sub-system Components
Equipment-
years

No of 
defects 

repaired

No of 
defects 
failed

Total 
defects 

observed 

Defects 
rate (α) x 

10-2

MTBF 
(Equipment-

years)
Blade Blade
Main shaft Shafts 308 0 7 7 2.27 44
Main bearing Bearings 231 0 12 12 5.19 19.25
Gearbox Gears 539 7 5 12 2.22 44.92

HSS bearings 539 12 5 17 3.15 31.71
IMS bearings 539 5 5 10 1.86 53.9

Generator Bearings 616 31 9 40 6.49 15.4  
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8.2.6 Delay-Time 

As mentioned in chapter 3, section 3.6 that the P-F interval of a component is 

synonymous to its delay-time. Historical maintenance data were sourced from 

collaborating wind farm operators to calculate the mean delay-time ( γ
1 ) of the 

components of the subsystems. The γ
1  will be used in conjunction with the 

calculated consequences of failure (2C ), cost of inspection and repair (1C ), and the 

defects rate (α) to determine optimal inspection interval (*∆ ) for the subsystems.  

 

Table 8.3 contains the estimated times to failures ( iT ) for the components of the 

critical subsystems. The lower, most-likely and the upper values of the times to 

failure are presented in the table. Ideally, if inspection intervals are equally spaced 

and failure occurs between the inspections, then the period from the date of last 

inspection to the time failure actually occurred is the delay-time of the component as 

shown conceptually in figure 3.5 of chapter 3. This type of data is seldom available 

in the wind energy industry due to poor recording of maintenance and failure data. 

Furthermore, vibration monitoring is not well established in the wind energy 

industry. It is worth noting however, that table 8.3 was established through 

discussion with wind farm engineers. The current inspection intervals for the 

subsystems are also presented in the same table. 

 

Table 8.3 Mean time to failures 

Inspection         Time to failure Ti   (months) Mean (µ)
Sub-system Components interval ∆ (Months) Lower Most likely Upper T i

Blade Blade
Main shaft Shafts 1 0.93 0.95 0.97 0.95
Main bearing Bearings 1 0.85 0.90 0.95 0.90
Gearbox Gears 1 0.70 0.80 0.90 0.80

HSS bearings 1 0.85 0.90 0.95 0.90
IMS bearings 1 0.75 0.85 0.95 0.85

Generator Bearings 1 0.70 0.80 0.90 0.80 
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The total numbers of defects observed (n ) and the defects repaired (k ) presented in 

table 8.2, the times-to-failure (iT ) and the current inspection intervals (∆ ) presented 

in table 8.3 were assessed using Equation 3.46 to determine the mean delay-time 

( γ
1 ) of the components. The result is presented in Table 8.4. Note that each of the 

defects repaired were assumed to have failed at the estimated mean time to failures 

in table 8.3. The mean delay-time for the gear wheels, HSS and IMS bearings of the 

gearbox are 0.918, 1.469 and 0.735 respectively. 

 

Table 8.4 Mean delay-time for critical components 

Sub-system Components Mean delay-time 1/γ (months) 
Blade Blade
Main shaft Shafts 0.038
Main bearing Bearings 0.038
Gearbox Gears 0.918

HSS bearings 1.469
IMS bearings 0.735

Generator Bearings 1.948  

 

Optimal inspection intervals for the critical subsystems are determined by using 

Equation 3.47. The failure consequences of the subsystems ( 2c ) in table 5.5, the cost 

of the inspection and repair (1c ) in table 8.1, the components defects rates (α) in 

table 8.2, and the mean delay-time (γ
1 ) in table 8.5 were substituted in the 

equation 3.46. The result of optimal inspection intervals for the subsystems is 

presented in table 8.5. Recall, the prerequisite to determining the optimal inspection 

intervals using the delay-time mathematical model is 21 CC αγ <  (see chapter 3). 

Thus, the result in the table 8.5 shows that the main bearing and shaft, the 

gearwheels and IMS of the gearbox have no optimal inspection interval as the pre-

condition is not satisfied.  
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Table 8.5 Optimal inspection interval of the critical components 

Sub-system Components

Total 
number 

of 
defects

Defects 
rate α

Mean 
delay-
time 
(1/γ) 

(months)

Inspec- 
tion Cost 

C1 (£)
Failure 

Cost C2 (£) γ*C 1 α*C 2

Optimal 
inspection 
interval ∆* 
(months)

Blade Blade
Main shaft Shaft 5 0.0227 0.038 12,885.00 29,114.00 338,012.12  661.68      No optimal
Main bearing Bearings 12 0.0519 0.038 10,763.00 22,374.00 282,345.78  1,162.28   No optimal
Gearbox Gears 12 0.0222 0.918 8,182.00   78,468.00 8,913.07      1,746.97   No optimal

HSS bearings 17 0.0315 1.469 2,230.00   78,468.00 1,517.77      2,474.87   3.045
IMS bearings 10 0.0185 0.735 2,742.00   78,468.00 3,731.79      1,455.81   No optimal

Generator Bearings 40 0.0649 1.948 2,332.00   35,964.00 1,196.98      2,335.32   3.349  

 

The HSS bearing of the gearbox and the bearing of the generator have optimal 

inspection intervals of 3.035 and 3.349 months respectively; given the assessed 

failure data. 

 

8.3 SUMMARY 

This chapter has presented a quantitative optimisation of condition-based 

maintenance inspection intervals for critical subsystems of 600 kW wind turbine 

using the delay-time mathematical maintenance model (DTMM). Industrial data 

pertaining to the wind turbine has been sourced from wind farm operator and have 

been collated to determine inspection activities and failure history of the wind 

turbines. Current market prices of critical components of the wind turbines as well 

as the activities of condition monitoring have been sourced from manufactures and 

vendors. The FMECA approach has been used to determine failure modes of the 

wind turbines. Failure consequences of critical subsystems have been determined 

and expressed in financial terms. The costs of inspection and repair as well as the 

failure rate of the components of the subsystems have been calculated. The DTMM 

has been used to determine mean delay-time and optimal inspection intervals for the 

critical subsystems of the wind turbine. The optimal inspection interval for the HSS 

bearing of the gearbox and the bearings of the generator, are 3.045 and 3.349 months 

respectively. The main shaft and bearings, the gearwheels and the IMS bearing of 

the gearbox have no optimal inspection; given the assessed failure data and the 

methodology applied.  
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Comparative studies between the result of the modelling system failures as presented 

in chapters 7 and 8, and the result of the delay-time maintenance mathematical 

model will be carried out in the next chapter.  
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CHAPTER 9 

COMPARISON OF THE MODELLING SYSTEM FAILURES 

 AND DELAY-TIME MAINTENANCE MODEL 

 

9.1 INTRODUCTION 

The Modelling System Failures approach to quantitative maintenance optimisation 

was used in chapters 6 and 7 to assess the collected field failure data of wind 

turbines. The reliability, availability and maintainability of the 600 kW wind 

turbines on a 26 x 600 kW wind farm were optimised. The delay-time maintenance 

mathematical model was used in chapter 8 to assess the failure data. Optimal 

inspection intervals for critical subsystems of the 600 kW wind turbine were 

determined. 

 

This chapter will compare the two approaches to quantitative maintenance 

optimisation by taking into account the results of the assessments presented in 

chapters 6, 7 and 8. The overview results of the MSF and DTMM are presented in 

sections 9.2 and 9.3 respectively. Detailed comparison of the two approaches in 

terms of data requirements, analysis robustness, practical implementation and the 

potential benefits are presented in section 9.4. The summary of the chapter is 

presented in section 9.5. 

 

9.2 OVERVIEW OF THE MODELLING SYSTEM FAILURES 

The estimated shape (β) and scale (η) parameters of the Weibull distribution, the 

probability density function and failure rate plots revealed the failure characteristic 

of each of the components and subsystems of the 600 kW wind turbine. The failure 

attributes of the components and subsystems were described by one of the three 

basic failure patterns of the bath-tub curve. The gearbox and the generator consist of 

a number of components. Each component had a distinctive shape parameter which 

described its pattern of failure. Similarly, each subsystem within the wind turbine; 

the main bearing, main shaft, gearbox, generator, etc had individual patterns of 

failure. The failure characteristics were used to determine a suitable maintenance 

task for each of the components and subsystems of the wind turbine. Optimal 
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replacement intervals for components with β > 1 were determined. The optimal 

replacement interval for the gear-wheels, IMS bearings and HSS bearings of the 

gearbox are 6, 4 and 3 years respectively. The optimal replacement interval for the 

bearings of the generator is 4 years. 

 

Failure models were designed for the wind turbine and the wind farm to forecast 

their future performance over a defined period of time. Optimum maintenance tasks 

for effective future operational performance were determined. The initial assessment 

of the wind turbine and the wind farm models in sections 7.3 and 7.4 respectively, 

showed poor levels of reliability and availability. The wind turbine and the wind 

farm’s mean availability after the 4 year period were 98% and 42% while their 

reliabilities were 0.67 and 0 respectively. The total costs of managing the wind 

turbine and the wind farm over the 4 year period were £208,758 and £1,006,068 

respectively. Significant amount of resources (direct costs) are expended on fixing 

failed wind turbines in addition to the huge down-time (indirect) costs.  

 

In sections 7.5 and 7.6, the models were re-simulated to explore all possible options 

to improve their overall performance. The optimum maintenance tasks were selected 

to improve future performance of the wind turbines and maximise the return on 

investment in wind farm. The availability of the wind turbine and the wind farm in 

the 4th year were 99% and 100% and their reliabilities were 0.79 and 1 respectively. 

The total cost of managing the wind farm was reduced from £1,006,068 to about 

£384,735. 

 

9.3 OVERVIEW OF THE DELAY-TIME MODEL 

The delay-time maintenance mathematical model considered the failure history of 

components of repairable subsystems within the 600 kW wind turbine. It assessed 

the field failure data of each component in relation to its subsystem. It took into 

cognisance the diverse failure behaviour of components within a subsystem. The 

defects rate and mean delay-time of each component within a repairable subsystem 

were determined. For instance subsections 8.2.5 and 8.2.6 contain the assessment of 

a typical gearbox. Each of the components of the gearbox had individual defects rate 
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and mean delay-time. The defects rate of the gearwheels, HSS bearings, IMS 

bearings are 0.022, 0.0315 and 0.0185 respectively while the mean delay-times are 

0.918, 1.469 and 0.735 respectively. These influenced the inspection intervals for 

the gearbox. Similarly, the inspection interval for the generator is dependent on the 

defects rate and mean-delay-time of its components.  

 

The optimal inspection intervals for the components of the gearbox and generator 

were determined based on; the estimated defects rate and mean delay-time of each 

component within a subsystem, the failure consequences of the subsystem and, the 

cost of inspection and repair of each component within the subsystem. These 

provided a good compromise between costs, risks and performance. The optimal 

inspection intervals for the HSS bearings of the gearbox and the bearings of the 

generator were 3.045 and 3.349 respectively.   

 

9.4 COMPARISION OF THE MSF AND DTMM  

This section will compare and contrast the two quantitative approaches to 

maintenance optimisation; taking into account data requirements, analysis 

robustness, practical implementation and the potential benefits. 

  

9.4.1 Practical Implementation 

The results of both the MSF and DTMM can be implemented in practical terms, 

provided the analyses are not clouded with illogical and subjective assumptions. 

Thus, for practical implementation purposes, analyses should consider field failure 

and maintenance data wherever possible, and minimise all forms of assumption.  

 

9.4.2 Potential Benefits 

The potential benefits of the MSF include:-  

� identification of components and subsystems susceptible to failure; 

� identification of dominant failure modes of critical components and 

subsystems; 

� identification of root causes of failure modes such as poor design, human error, 

wear-out and fatigue; 
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� ability to improve the reliability and availability of systems to reduce failure 

rates and the overall cost of maintenance; 

� determination and optimisation of appropriate maintenance strategy for 

systems, subsystems and components; and 

� optimisation of spare-holding, and maintenance crew.  

 

The potential benefits of the DTMM include:- 

� ability to determine defects rate for components and subsystems; 

� ability to determine in real terms, mean delay-time which is synonymous with 

P-F intervals for components and subsystems; 

� ability to determine optimum balance between risks, costs and performance; 

and  

� optimisation of inspection intervals for repairable systems. 

 

9.5 SUMMARY  

This chapter has reviewed the result of the MSF and the DTMM. It has compared 

and contrasted the two approaches to quantitative maintenance optimisation. The 

data requirements, analyses robustness, ease of practical implementation and 

potential benefits of the approaches were compared and discussed. 

 

The two approaches emerged to be complimentary in contrast with the earlier 

assertion made in chapter 3 that there are independent techniques to maintenance 

optimisation. Hence, where field failure data exist to carry out quantitative analyses, 

the MSF technique should be used first to assess the collected data. Thereafter, the 

components and subsystems with random failure patterns (β=1) should further be 

assessed using the DTMM technique to determine optimal inspection intervals. If 

the result of the DTTM shows no optimal inspection intervals for the components, 

then the calculated failure consequences should be used to determine the most 

appropriate maintenance strategy. The strategy can be condition monitoring, run-to-

failure or predetermined replacements. The DTMM result presented in table 8.5 

showed no optimal inspection intervals for the gearwheels, IMS bearings, main 

shafts and main bearings. This implies that there are no conclusive optimal 
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inspection intervals for the gearbox, generator, main shaft and main bearing. Thus, 

condition monitoring can be used since the consequences of failure will not permit 

the use of run-to-failure strategy as shown in chapter 5. The MSF result presented in 

table 6.5 shows that main bearing exhibits a random failure pattern while the 

gearwheels, IMS bearing and the main shaft exhibit a wear-out failure pattern.  

  

The DTMM technique can be incorporated into an RCM process as presented in 

chapter 8. RCM is a qualitative technique for maintenance optimisation while 

DTMM is quantitative. This blend provides a good balance between the qualitative 

which is often clouded with subjective assumptions and the quantitative which 

usually require rigorous data sets that are difficult to obtain. 
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CHAPTER 10 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS  

FOR FURTHER RESEARCH 

 

10.1 SUMMARY 

Wind is fast becoming one of the most utilised renewable energy sources to reduce 

the emission of greenhouse gases and mitigate the effects of global warming. 

Improvement in the design of wind turbines and the availability of wind resources in 

most parts of the world are contributing to the rapid development of the wind energy 

industry. In recent years, the wind industry has experienced a shift in the 

development of wind farms to offshore from onshore locations due to more 

favourable wind resources and the possibility of installing higher power turbines. 

These factors have increased significantly the potential for investment in the 

industry as well as the range of possible stakeholders. A clear corollary exists 

between the current status of the wind energy industry and that of the Oil and Gas 

(O & G) industry of 30 years ago: the O & G industry in the UK increased in size 

dramatically over one to two decades, with little consideration of the impact that 

Asset Management might have in terms of reducing total Asset Life-Cycle Costs 

(LCC). Subsequently, the O & G industry has historically suffered from ineffective 

and inefficient maintenance practices with significant impact on productivity and 

Health, Safety and Environment. As a result, the sector has perpetually been 

reactively attempting to address these issues by re-engineering maintenance through 

application of Asset Management methodologies.  

 

Thus, the wind energy industry and the field of Asset Management were reviewed 

critically. The main findings from the review are summarised in the following: 

 

� The wind energy industry has a clear opportunity to consider the strategic 

importance of Asset Management, and implement its methodologies to 

effectively manage assets over their life-cycle.  
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� Achieving return on investment in wind farms is affected by inter-related 

stakeholders’ requirements and technical issues associated with the assets. 

These issues require a holistic frame-work currently not applied consistently 

across the wind industry to combine and rationalise stakeholders’ demands, and 

ensure assets remain in a satisfactory condition over the life-cycle of wind 

farms. 

 

� Asset Management processes, tools and techniques exist in other industries. 

These processes, tools and techniques can be assessed and adopted for effective 

management of wind farms.  

 

� Effective maintenance of wind turbines is indispensable to the core business 

objectives of the wind energy industry, and crucial to maximising the return on 

investment in wind farms. 

 

� Wind turbines are often purchased with a 2-5 years all-in-service contract, 

which includes warranties, and corrective (failure-based) and preventive (time-

based) maintenance strategies. These strategies are usually adopted by wind 

farm operators at the expiration of the contract period to continue the 

maintenance of wind turbines.  

 

� Failure Based Maintenance (FBM) involves using a wind turbine or any of its 

components until it fails. The strategy is usually implemented where failure 

consequences will not result in revenue losses, customers’ dissatisfaction or 

health and safety impact. However, critical component failures within a wind 

turbine can be catastrophic with severe operational and Health, Safety and 

Environmental (HSE) consequences.  

 

� Time Based Maintenance (TBM) involves carrying out maintenance tasks at 

predetermined regular-intervals. TBM strategy is often implemented to avoid 

invalidating the Original Equipment Manufacturers’ (OEM) warranty, and to 

maintain sub-critical machines where the pattern of failure is well known. 
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However, the choice of the correct TBM interval poses a problem as too 

frequent an interval increases operational costs, wastes production time and 

unnecessary replacements of components in good condition, whereas, 

unexpected failures frequently occur between TBM intervals which are too 

long. Thus, time and resources are usually wasted on maintenance with little 

knowledge of the current condition of the equipment.  

 

� Condition-Based Maintenance (CBM) strategy which constitutes maintenance 

tasks being carried out in response to the deterioration in the condition or 

performance of an asset or component as indicated by a condition monitoring 

process, has largely been ignored in the wind energy industry. Limited work 

has been undertaken in monitoring the structural integrity of turbine blades 

using thermal imaging and acoustic emission; the use of performance 

monitoring and temperature monitoring and on-line analysis systems. 

Generally, as reported, this work is considered in isolation, and is not 

considered within the wider context of a maintenance, integrity and asset 

management strategy. 

 

� Optimisation of wind turbines’ maintenance strategies is crucial to the long 

term survival of the wind energy industry. 

 

Based on the findings, three vital research areas were identified. These included the 

need to; (i) develop a structured model for asset management in the wind energy 

industry (objective 2), (ii)  select a suitable maintenance strategy for wind turbines 

that is technically feasible and economically viable over the life-cycle of wind 

turbines (objectives 3 and 4), (iii)  optimise the maintenance of wind turbines to 

determine the most cost effective strategy (objectives 5, 6 and 7). 

 

10.1.1 A structured model for asset management in the wind energy industry  

Asset management models existing in other industries were reviewed. Key steps to 

design a structured model for asset management in the wind energy industry were 

outlined in chapter 3, section 3.2. The key steps were applied in chapter 4 to design a 
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structured model for asset management in the wind industry. The main points are 

summarised in the following: 

� Crucial requirements for the effective management of wind farms were 

identified. The requirements were transformed into Asset Management 

processes which are specific to the wind energy industry.  

 

� Stakeholders’ requirements which are often opposing were outlined and 

harnessed. The fundamental business values that drive the performance and 

long-term survival of the wind farms were identified. 

 

� The strategic importance of unambiguous mission and vision statements and 

the need to outline them to reflect the stakeholders’ requirement were 

highlighted and discussed. 

 

� Assets within the wind energy industry were categorised into primary and 

secondary. Wind turbine and associated grid connection facilities were found 

to be primary because they drive and sustain the future of the wind energy 

industry. The workforce, assets’ failure and maintenance data were found to be 

secondary because they facilitate the performance of the primary assets. 

 

� Appropriate asset management tools and techniques necessary for the effective 

management of the various assets were identified and integrated into the 

model. 

 

� A structured model showing a holistic interaction of decision making processes 

as well as assets requirements and management was designed for the wind 

industry. 

 

� Institutional barriers in the way of practical implementations of the model as 

well as individual responsibilities to make it happen were highlighted and 

discussed. 
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10.1.2 Suitable maintenance strategies for wind turbines 

 Suitable maintenance tasks that are technically feasible and economically viable 

over the life-cycle of wind turbines were selected. A number of asset management 

approaches to the selection of appropriate maintenance strategies for physical assets 

were reviewed. Total Productive Maintenance (TPM), Risk Based Inspection (RBI) 

and Reliability-Centred Maintenance (RCM) were critically evaluated in chapter 3, 

section 3.3. RCM was found to be unique from the other approaches to the selection 

of a suitable maintenance strategy. It was also found that RCM is limited in 

determining which maintenance strategy is the most cost effective option available. 

Thus, a hybrid approach comprising RCM and Asset Life-Cycle Analysis technique 

was developed in chapter 3, subsection 3.3.4. The hybrid approach was used in 

chapter 5 to select a suitable maintenance strategy for wind turbines. The main 

points are summarised in the following:  

 

� A generic horizontal axis wind turbine was critically assessed. Possible failure 

modes, causes and the resultant effects on the wind turbine’s operation were 

determined. Failure consequences of critical subsystems were evaluated and 

expressed in financial terms. 

 

� The failure consequences of critical subsystems of the wind turbine were found 

to limit the common maintenance strategies (failure-based and time-based) to 

support the current commercial drivers of the wind energy industry. 

 

� Appropriate Condition-Based Maintenance (CBM) tasks for critical subsystems 

of a 600 kW wind turbine on a 26 x 600 kW wind farm were determined. 

Vibration analysis was identified as the suitable condition based maintenance 

task to mitigate the dominant causes of failure of the main bearings, main shaft, 

gearbox and associated components, the generator and associated components, 

towers and foundations. Strain gauge measurements were employed for 

dominant causes of failure of blades. 
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� The CBM task for drive-trains of the wind turbines on the 26x600 kW wind 

farm were compared with Time-Based Maintenance (TBM) activities using the 

Asset Life-Cycle Analysis technique. The Net Present Value (NPV) of the 

TBM and CBM were calculated and compared. It was shown that comparison 

of the Net Present Values is not absolute for a valid decision making since it 

considers only financial criteria.  

 

�  Non-financial factors of the CBM and TBM strategies were identified and 

assessed using the Weighted Evaluation technique. Benefit-To-Cost ratio of 

each of the option was calculated and the values were compared.  

 

� The overall result showed Condition-Based Maintenance is the most cost 

effective option over 18 year life-cycle.   

 

10.1.3 Optimise maintenance of wind turbines 

Approaches to maintenance optimisation; qualitative and quantitative were reviewed 

and discussed in chapter 3, section 3.4. Two quantitative maintenance optimisation 

(QMO) techniques; Modelling System Failures (MSF) and Delay-time Maintenance 

Mathematical model (DTMM) were recommended for the optimisation of wind 

turbine maintenance. The concept, relevance and applicability of the two QMO 

techniques to the wind industry were discussed in chapter 3, sections 3.5 and 3.6 

respectively. The MFS technique was used in chapters 6 and 7 while the DTMM 

was applied in chapter 8 to assess the collected field failure data of wind turbines.  

 

The results from the application of the modelling system failures approach to 

quantitative maintenance optimisation are summarised in the following: 

  

� The shape and scale parameters of the Weibull distribution for critical 

components and subsystems of the 600 kW wind turbines were determined 

from the collected field failure data. The Weibull probability plots, failure rate 

plots and probability density function plots were generated for the components 

and subsystems of the wind turbines. 
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� The estimated shape parameters for the critical components and subsystems 

were described by one of the three basic failure patterns of the bath-tub curve. 

 

� A case study of a 26 x 600 kW wind farm was undertaken. The estimated β and 

η values for the critical components and subsystems of the 600 kW wind 

turbine were used to optimise their Preventative Maintenance (PM) tasks. It 

was found that the main bearing and shaft of the wind turbine have no optimal 

cost and interval for carrying out Preventative Maintenance tasks. The optimal 

interval for performing PM task on the gearwheels, IMS bearing and the HSS 

bearing of the gearbox of the 600 kW wind turbine are 2190, 1460 and 1095 

days respectively while the optimal cost/year are £2,445, £958 and £2,183 

respectively. Similarly, the optimal interval and cost/year for performing PM 

task on the bearing of the generator are 1460 days and £2152 respectively. The 

gearbox and the generator are repairable subsystems of the wind turbine with 

estimated shape parameters of 1.09 and 1.11 respectively. Thus the random 

pattern of failures of the subsystems will not allow effective implementation of 

the PM tasks for their components. Hence, the PM tasks were not suitable for 

the subsystems. 

 

� The failure characteristics of the 600 kW wind turbine and the 26 x 600 kW 

wind farm were modelled; cost and availability of maintenance crew and spare-

holding of the critical components were taken into account. The models were 

simulated to assess the reliability, availability and maintainability of the wind 

turbine and the wind farm over a period of 4 years. Initial inspection interval of 

180.2 days was defined for the components and subsystems with β=1. The 

interval was meant to reduce failure frequency, access and crew costs. The 

models were simulated based on the initial information. The interval was found 

to be inappropriate due to long and frequent downtime of the wind farm as 

shown in figure 7.6. The Potential-to-Functional failure intervals of the critical 

components were found to range between 1-2 months. Thus, interval was 

reduced to 30 days from the 180.2 days. The models were then re-simulated 
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over the same period; taking into account the same numbers of crew and spare 

holding. The results of the re-simulation (i.e. optimised) were compared with 

the results of the initial simulation. In the comparison, the optimised result 

showed an initial increase in the cost of inspection due to shorter interval. The 

result further showed the shorter interval increases the overall availability and 

reliability of the wind turbine and the wind farm. Furthermore, the total 

downtime and the overall cost of the wind farm were drastically reduced 

through the optimisation. The total costs of maintaining the wind farm in the 

first and the fourth year based on the initial interval were £376,246 and 

£1,006,068 respectively. Conversely, the total costs of maintaining the wind 

farm in the first and the fourth year based on the shorter (optimised) interval 

were £382,336 and £384,735 respectively. 

 

The findings from the application of the delay-time mathematical maintenance 

model (DTMM) approach to quantitative maintenance optimisation are summarised 

in the following: 

 

� A case study of a 26 x 600 kW wind farm was undertaken to determine optimal 

inspection intervals for critical subsystems of the 600 kW wind turbine. The 

costs of inspection and repair as well as the defects rate of the components 

within the subsystems of the wind turbine were calculated from the collected 

field failure data.  

 

� The mean delay-time for the critical components and subsystems of the wind 

turbine were determined. The mean delay-time of the main bearing, main 

shafts, gearwheels, IMS bearing, HSS bearing, and the bearing of the generator 

are 0.038, 0.038, 0.918, 0.735, 1.469 and 1.948 respectively. 

 

� The optimal inspection interval for the HSS bearing of the gearbox and the 

bearings of the generator, were 3.045 and 3.349 months respectively. The main 

shaft and bearings, the gearwheels and the IMS bearing of the gearbox had no 

optimal inspection intervals; given the assessed failure data.  
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10.2 CONCLUSIONS 

The following key conclusions can be drawn from the research work reported in this 

thesis: 

 

� Achieving the return on investments in wind farms is affected by inter-related 

stakeholders’ requirements and technical issues associated with the assets. 

These issues require a well-founded Asset Management frame-work to deal 

with the inter-related complexities. 

 

� The common maintenance strategies applied to wind turbines are not the most 

effective to support the current commercial drivers of the wind energy industry. 

A hybrid approach to the selection of a suitable maintenance strategy for wind 

turbines was developed. Practical application of the hybrid approach was 

demonstrated and validated through a case study.  

 

� Suitable Condition-Based Maintenance activities for critical subsystems of 600 

kW wind turbine on a 26 x 600 kW wind farm were determined. Catastrophic 

failures of critical components and subsystems of a wind turbine such as the 

blades, main bearings and shaft, gearbox and associated components, the 

generator and associated components, towers and foundations are detectable 

and can be prevented through the application of the appropriate CBM 

activities.  

 

� The technical feasibility and economic viability of the selected Condition-

Based Maintenance strategy was assessed and compared with Time-Based 

maintenance strategy. The overall result showed CBM is the most cost 

effective option over 18 year life-cycle. 

 

� Maintenance optimisation is fundamental to profit maximisation of the wind 

energy industry due to its impact on costs, risks and performance.  

 



                                                                         Maintenance Optimisation for Wind Turbines 

PhD Thesis, The Robert Gordon University Aberdeen, 2008.                                                  154                                               

� Optimisation of the maintenance of wind turbines is a promising way to 

maximise the return on investment in wind farms over a defined period. The 

process of maintenance optimisation is not a one-off procedure but a 

continuous process which requires periodic evaluation of performance and 

improving on the successes of the past.  

 

� Two quantitative maintenance optimisation techniques; MSF and DTMM were 

recommended for practical application in the wind energy industry due to their 

simplicity and robustness in solving real life maintenance problems. 

 

� Practical application of the MSF approach was demonstrated through the 

assessment of the field failure and maintenance data collected from 27 wind 

farms. The MSF and DTMM approaches were validated through a case study 

of 600 kW wind turbines on a 26 x 600 kW wind farm.  

 

10.3 RECOMMENDATIONS FOR FURTHER RESEARCH 

The research work reported in this thesis has clearly identified critical parameters 

pertinent to the development of optimal maintenance and spares for the wind 

industry. It has clearly addressed key maintenance challenges of the wind energy 

industry such as; minimisation of the direct and indirect maintenance costs 

associated with wind energy generation, optimisation of wind turbines’ reliability 

and availability in order to maximise the return on investment in wind farms. In spite 

of the critical assessment and the designed methodologies to tackle the key 

challenges of the wind energy industry, there exist some areas which requires further 

research work. These areas include: 

 

10.3.1 Modelling Wind Turbine Failures 

The RAM assessment in chapters 6 and 7 did not incorporate all components and 

subsystems of the wind turbine. Some field failure data of the components and 

subsystems were not available as at the time of data collection. The unexplored 

subsystems include: 
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� Fatigue and reliability modelling of the wind turbine blades. This will require a 

concerted effort to engage willing collaborating wind farm operators to initiate 

and measure degradation in the blades of wind turbines and other composite 

materials. Data measurement and collection procedure needs to be design to 

suit the methodology described in chapter 3, section 3.5. 

 

� Structural modelling of towers to assess their failure characteristic. The 

structural integrity of wind turbine towers is crucial to the reliability modelling 

of wind turbines. Tower failure can be catastrophic with a huge economic, 

health, safety and environmental consequences. 

 

It is essential therefore to collect and analyse field failure and maintenance data of 

the blades and towers. Then incorporating the result into the models presented in 

chapters 6 and 7. These will give more detailed failure behaviour of the wind turbine 

and the wind farm. The reliability, availability, maintainability, spares-holding, crew 

requirements, etc can then be assessed in more detail. 

  

10.3.2 Development of a Novel Web-Based Software 

A need also exists to develop an online software tool that can determine optimal 

maintenance and spares holding for wind farms based on critical, site-specific 

criteria. This will involve development of algorithms specifically for the wind farm 

environment. First, a robust financial algorithm to integrate all the financial models 

such as the failure consequences of subsystems, cost of repair and inspection of 

components, cost of crew and spares will be developed. Secondly, mathematical 

maintenance optimisation algorithms will be developed from the combination of the 

two quantitative maintenance optimisation techniques discussed in chapter 3. 

Optimised spares inventory algorithms will be developed for planed and unplanned 

maintenance activities.  

 

The algorithms will then be embodied in a web-based software tool that will provide 

wind farm operators/engineers with an optimal maintenance program for wind farms 

based on specific criteria entered by the user. The tool will be able to be used for the 
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development of maintenance and spares program for new wind farms, and can act as 

an audit/benchmark for existing facilities. Online help will be provided and 

individual applications will be able to be customised to suit specific requirements. 
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APPENDIX A1 
Functional Failure A: Complete Loss of Energy Conversion Capability 

System No: 1 Facilitator:  
SYSTEM: Horizontal Axis Wind Turbine (HAWT) comprising of 3 blades up wind and pitch controlled, 3 -
stage planetary gearbox, 4-poles asynchronous generator, etc. Sub-system No  Auditor: 

Function: To convert wind kinetic energy into electrical energy 
within defined speed limit.  

Consequence 
 Evaluation 

 
Default action 

 
Functional failures 

 
Failure modes 

 
Failure causes 

 
H 

 
S 

 
E 

 
O 

H1 
S1 
O1 
N1 

H2 
S2 
O2 
N2 

H3 
S3 
O3 
N3 

 
H4 

 
H5 

 
S4 

 
 
Proposed Tasks  

a. Lightening  
 

 
Y 

 
Y 

   
N 

 
N 

 
N 

 
Y 

  Inspect blades lightening 
protection devices 

b. Loose  blades-hub 
joint 

 
Y 

 
Y 

   
Y 

      
Vibration monitoring of blades 

c. Cracks Y Y   Y      Fibre optic measurement 

 
1. Catastrophic 
blade failure 

d. Fatigue Y Y   N N Y    Replace blades of wind turbine 

1a. Lightening  a. Damaged 
lightening receptor 

 
Y 

 
Y 

   
N 

 
N 

 
N 

 
Y 

  Inspect blades lightening 
protection devices 

a. Damaged shrink 
disc 

 
Y 

 
Y 

   
Y 

      
Vibration monitoring of blades 

b. Broken or loose 
bolts 

 
Y 

 
Y 

   
Y 

      
Vibration monitoring of blades 

 
1b. Loose  blade-
hub joint  

c. Improper fitting Y Y   Y      Vibration monitoring of blades 
a. Matrix or resin 
crack 

 
Y 

 
Y 

   
Y 

   
 

   
Fibre optics measurement 

b. De-bonding of 
matrix and fibre 

 
Y 

 
Y 

   
Y 

   
 

   
Fibre optics measurement 

c. De-lamination of 
composite materials 

 
Y 

 
Y 

   
Y 

   
 

   
Fibre optics measurement 

 
1c. Cracks 

 
d. Fatigue 

 
Y 

 
Y 

   
N 

 
N 

 
Y 

   Replace blades at end of life-
cycle 

 
1d. Fatigue 

 
a. Wear and tear 

 
Y 

 
Y 

   
N 

 
N 

 
Y 

   Replace blades at end of life-
cycle 

a. Loose hub – main 
shaft connection 

 
Y 

 
Y 

   
Y 

     Variation in performance 
parameter of the blades and 
the main shaft 

 
A. COMPLETE LOSS 
OF ENERGY 
CONVERSION 
CAPABILITY 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.  Catastrophic 
hub failure 
 
 
 
 

b. Slip or spin on 
shaft 

Y Y   Y      Variation in performance 
parameter of the blades and 
the main shaft 
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c. Fatigue 

 
Y 

 
Y 

   
N 

 
N 

 
Y 

   Replace blades at end of life-
cycle 

 

 
d. Improper fitting 

 
Y 

 
Y 

   
Y 

     Variation in performance 
parameter of the blades and 
the main shaft  

 
a. Inadequate 
lubrication 

 
Y 

   
Y 

 
Y 

      
Vibration monitoring of the 
main bearing 

 
b. Use of wrong 
lubricant 

 
Y 

   
Y 

 
Y 

      
Lubrication oil analysis 

 
c. Lubricant 
breakdown 

 
 

Y 

   
 
Y 

 
 

Y 

      
Lubrication oil analysis 

 
d. Bearing binding on 
shaft 

 
Y 

   
Y 

 
Y 

      
Vibration monitoring of the 
main bearing 

 
e. Bearing turning on 
shaft 

 
Y 

   
Y 

 
Y 

      
Vibration monitoring of the 
main bearing 

 
f. Excessive vibration  

 
Y 

   
Y 

 
Y 

      
Vibration monitoring of the 
main bearing 

g. Overheating  
Y 

 
Y 

   
Y 

     Temperature measurement of 
the main bearing 

 
h. Normal wear and 
tear 

 
Y 

   
Y 

 
N 

 
N 

 
Y 

    
Replace main bearing at end 
of life-cycle  

i. False brinelling10  
Y 

   
Y 

 
Y 

     Vibration monitoring of the 
main bearing 

 
3. Main bearing 
failure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

j. Corrosion due to 
water ingression 

 
Y 

   
Y 

 
N 

 
N 

 
Y 

   Inspect main bearing for 
corrosion creep 

a. Lubricant churning 
due to too soft a 
consistency 

 
 

N 

   
 
Y 

 
 

Y 

      
Lubrication oil analysis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3c. Lubricant 
breakdown 

b. Lubricant 
deterioration due to 
excessive operating 
temperature 

 
 

N 

   
 
Y 

 
 

Y 

      
Temperature monitoring of the 
main bearing 

212                                                 
10 False brinelling occurs when a non-rotating bearing is subjected to external vibration e.g. during transportation, storage etc (Machelor J.M. 1999) (Moubray J. 1997) 
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c. Operating 
beyond lubricant 
life 

 
N 

   
Y 

 
N 

 
N 

 
Y 

   Lubrication oil analysis  

d.  Lubricant 
foaming due to air 
flow through 
housing 

 
 
N 

   
 
Y 

 
 
Y 

     Lubrication oil analysis 

a. Lack of 
lubricant 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
main bearing 

b. Contaminated 
lubricant 

 
N 

   
Y 

 
Y 

     Lubrication oil analysis 

c. Housing 
distortion 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
main bearing 

d. Preload build 
up 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
main bearing 

e. Loss of 
clearance due to 
excessive adapter 
tightening 

 
 
 

N 

   
 
 
Y 

 
 
 
Y 

      
Vibration monitoring of the 
main bearing 

 
3d. Bearing 
binding on shaft 

f. Thermal shaft 
expansion 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
main bearing 

a. Growth of race 
due to over 
heating 

 
 

N 

   
 
Y 

 
 

Y 

      
Temperature monitoring of the 
main bearing 

b. Normal wear 
and tear of 
bearing 

 
 

N 

   
 
Y 

 
 
N 

 
 
N 

 
 

Y 

    
Replace main bearing at end 
of life 

c. Fitting error 
 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
main bearing 

 
3e. Bearing 
turning on shaft 
 
 

d. Excessive shaft 
deflection 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
main bearing 

a. Dirt or chips in 
bearing 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
main bearing 

b. Pitting or crack 
on outer race  

N   Y  Y      Vibration monitoring of the 
main bearing 

c. Pitting or crack 
on rolling 
elements 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
main bearing 

 

3f. Abnormal 
vibration 

d. Rotor 
unbalance 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
main bearing 
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e. Out of round 
shaft 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
main bearing 

 
f. Race 
misalignment 

 
N 

   
Y 

 
Y 

      
Vibration monitoring of the 
main bearing 

 
g. Housing 
resonance 

 
N 

   
Y 

 
Y 

      
Vibration monitoring of the 
main bearing 

h. Bearing  
housing normal 
wear and tear 

 
 

N 

  
 
 

 
 

Y 

 
 

N 

 
 

N 

 
 

Y 

    
Replace bearing housing at 
end of life 

i. Mixed rolling 
element diameters 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
main bearing 

 

j. Race turning 
due to excessive 
clearance during 
initial fit  

 
 

N 

  
 
 

 
 

Y 

 
 

Y 

      
Vibration monitoring of the 
main bearing 

 
a. Inadequate  
lubrication 

 
N 

   
Y 

 
Y 

      
Vibration monitoring of the 
main bearing 
 

b. Excessive 
lubrication 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
main bearing 

c. Lubricant 
liquefaction or 
aeration 

 
 
N 

   
 
Y 

 
 
Y 

     Vibration monitoring of the 
main bearing 

 
d. Housing 
distortion due to 
warping or out-of- 
round 

 
 
N 

   
 
Y 

 
 
Y 

      
Vibration monitoring of the 
main bearing 

 
e. Abrasion or 
corrosion due to 
contaminants 

 
 
N 

   
Y 

 
Y 

      
Vibration monitoring of the 
main bearing 

 
f. Housing wear 

 
N 

   
Y 

 
Y 

      
Vibration monitoring of the 
main bearing 

 

 
3g. Bearing over 
heating 
 
 
 
 
 
 
 
 

g. Inadequate 
bearing clearance 
or bearing preload 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
main bearing 
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h. Race turning 

 
N 

   
Y 

 
Y 

      
Vibration monitoring of the 
main bearing 

 
a. Fitting error 

           

 
b. Elastic 
deflection under 
load 

           

 
c. Thermal 
expansion  

           

 
4. Main shaft 
failure  

 
d. Wear and tear 

           

 
a. Damaged 
shrink disc 

 
 

Y 

   
 

Y 

 
 
Y 

      
Vibration monitoring of the 
main shaft 

 
b. Broken or loose 
bolts 

 
Y 

   
Y 

 
Y 

   
 

   
Vibration monitoring of the 
main shaft 

 
c. Improper fitting 

 
Y 

   
Y 

 
Y 

      
Vibration monitoring of the 
main shaft 

 
5. Main shaft - 
gearbox 
coupling  failure 
 

 
d. Grease in 
coupling 

 
Y 

   
Y 

 
Y 

      
Vibration monitoring of the 
main shaft  
 

  
a. Bearing seizes 

 
Y 

   
Y 

 
Y 

      
Vibration monitoring of the 
gearbox 
 

 
b. Gear teeth 
pitting 

 
Y 

   
Y 

 
Y 

      
Vibration monitoring of the 
gearbox 

 
c.  Misalignments 

 
Y 

   
Y 

 
Y 

     Vibration monitoring of the 
gearbox 
 

 

 
6. Gearbox 
failure 
 
 
 
 
 
 
 

d. Thermal 
instability 

 
Y 

   
Y 

 
Y 

     Vibration monitoring of the 
gearbox 
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e. Torsional and 
lateral vibration 

 
Y 

   
Y 

 
Y 

     Vibration monitoring of the 
gearbox 

f. Unexpected 
load 

 
Y 

   
Y 

 
Y 

     Vibration monitoring of the 
gearbox 

g. Lubrication 
failure 

 
Y 

   
Y 

 
Y 

     Vibration monitoring of the 
gearbox 

h. Foreign object 
in gearbox 

 
Y 

   
Y 

 
Y 

     Vibration monitoring of the 
gearbox 

i. Manufacturing 
error 

 
Y 

   
Y 

 
Y 

     Vibration monitoring of the 
gearbox 

j. Corrosion due to 
water ingression 

 
Y 

   
Y 

 
N 

 
N 

 
N 

 
Y 

  Strip gearbox to inspect for 
corrosion creep 

 

 
k.  Wear and tear 

 
Y 

   
Y 

 
N 

 
N 

 
Y 

    
Replace gearbox at end of life  

a. Lack of   
lubricant 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
gearbox 

b. Lubrication 
deficiencies 

 
N 

   
Y 

 
Y 

      
Gearbox oil analysis  

c. Operating 
beyond lubricant 
life 

 
 
N 

   
 
Y 

 
 
N 

 
 
N 

 
 
Y 

    
Gearbox oil analysis 

d. Debris in 
gearbox 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
gearbox 

 
e. Misalignment 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
gearbox 

 
f. Vibration and 
shock 

 
N 

   
Y 

 
Y 

      
Vibration monitoring of the 
gearbox 

 
6a.  Gearbox 
bearings seizes 

 
g. Excessive force 
used during fitting 
of couplings 

 
 

N 

   
 

Y 

 
 

Y 

      
Vibration monitoring of the 
gearbox 

a. Wheels 
misalignments 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
gearbox 

b. Shafts 
misalignments 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
gearbox 

c. Particles in 
lubricant 

 
N 

   
Y 

 
Y 

      
Gearbox oil analysis  
 

 

6b. Gear teeth  
pitting and wear 
 
 
 

 
 
 
 

d. Vibration and 
shock 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
gearbox 
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e. Eccentricity11 of 
tooth wheels 

 
N 

   
Y 
 

 
Y 

     Vibration monitoring of the 
gearbox 

f. Excessive 
backlash12 of 
teeth 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
gearbox 

 

g. Normal wear 
and tear 

 
N 

   
Y 

 
N 

 
N 

 
Y 

    
Replace gear wheels 

a. Setting-up 
errors 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
gearbox 

b. Elastic 
deflection of 
components under 
load 

 
 

N 

   
 

Y 

 
 

Y 

      
Vibration monitoring of the 
gearbox 

 
6c. Misalignment 

c. Thermal 
expansion of 
components 

 
N 

   
Y 

 
Y 

      
Vibration monitoring of the 
gearbox 

 
a. Failed cooling 
system 

 
N 

   
Y 

 
Y 

      
Temperature monitoring of the 
gearbox 

 
b. High operating 
speed 

 
 

N 

   
 

Y 

 
 
Y 

      
Temperature monitoring of the 
gearbox 

 
6d. Thermal 
instability 

c. External heat 
conducted into 
shaft 

 
 

N 

   
 
Y 

 
 

Y 

      
Temperature monitoring of the 
gearbox 

a. Interaction 
between gearbox 
components 
masses, inertias 
and stiffness 

 
 
 

N 

   
 
 
Y 

 
 
 

Y 

      
Vibration monitoring of the 
gearbox 

 
6e. Torsional and 
lateral vibrations 

b. Interaction 
between gearbox, 
mounting and 
supporting 
structures 

 
 
 

N 

   
 
 
Y 

 
 
 

Y 

      
Vibration monitoring of the 
gearbox 

 

6f. Unexpected 
load 

a. Worn  out 
couplings 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
gearbox 

212                                                 
11 Eccentricity: defects caused by a high point, tooth or oval casting (Murphy T.J. 2004) 
12 Backlash – gear teeth cut a little smaller to allow free space between teeth when they mesh (Manwell J.F et al. 2002) 
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b. Worn  out 
bearings 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
gearbox 

 

c. Shafts tortional 
deflection 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
gearbox 

a. Shearing of oil 
molecules 

 
N 

   
Y 

 
Y 

      
On-line oil analysis of gearbox 

b. oxidation of 
base oil 

 
N 

   
Y 

 
Y 

      
On-line oil analysis of gearbox 

c. additive 
depletion 

 
N 

   
Y 

 
Y 

      
On-line oil analysis of gearbox 

d. moisture 
sucked in through 
breathers and 
vent or missing lip 
seals 

 
 

N 

   
 

Y 

 
 

Y 

      
On-line oil analysis of gearbox 

e. build up of 
sludge 

 
N 

   
Y 

 
Y 

     On-line oil analysis of gearbox 

 
f. Use of wrong 
lubricant 

 
N 

   
Y 

 
Y 

      
On-line oil analysis of gearbox 

 
g. Lubricant 
deterioration due 
to excessive 
operating 
temperature 

 
 

N 

   
 

Y 

 
 

Y 

      
 
 
Temperature monitoring of the 
gearbox 

 
6g. Lubrication 
failure 
 
 
 
 
 
 
 
 
 
 
 
 

h. Operating 
beyond lubricant 
life 

 
 

N 

   
 
Y 

 
 

N 

 
 
N 

 
 

Y 

    
Change lubrication oil of the 
gearbox 

 
a. Left-in objects 

 
N 

   
Y 

 
Y 

     Vibration monitoring of the 
gearbox 

 
6h. Foreign 
object in gearbox  

b. Loose parts 
 

N 
   

Y 
 

Y 
     Vibration monitoring of the 

gearbox 
a. Damaged 
flexible coupler 

 
 

Y 

   
 

Y 

 
 

Y 

     Variation in process parameter 
measurements of high speed 
shaft out put and generator 
rotor input 

 

7. Gearbox – 
generator 
coupling failure   

b. Broken or loose 
bolts 

 
Y 

   
Y 

 
Y 

     Variation in process parameter 
measurements of high speed 
shaft out put and generator 
rotor input 
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c. Improper fitting 

 
Y 

   
Y 

 
Y 

      
Variation in process parameter 
measurements of high speed 
shaft out put and generator 
rotor input 

 

 
d. Excessive 
operating torque 

 
 
Y 

   
 
Y 

 
 
Y 

      
Variation in process parameter 
measurements of high speed 
shaft out put and generator 
rotor input 

 
a. Loose rotor on 
shaft 

 
Y 

 
Y 

  
Y 

 
 

      
Vibration monitoring of 
generator shaft 

 
b. Rolling bearing 
seizes 

 
Y 

   
Y 

 
Y 

      
Vibration monitoring of bearing 
of the generator  
 

 
c. Stator insulation 
breakdown 

 
 
Y 

 
 
 

 
 
 

 
 

Y 

 
 

Y 

      
Variation in performance 
parameter of the generator 

 
d. Broken rotor 
bar  

 
Y 

   
Y 

 
Y 

      
Variation in performance 
parameter of the generator 

 
e. Crack between 
rotor bars and 
rings 

 
 
Y 

   
 
Y 

 
 
Y 

      
Variation in performance 
parameter of the generator 

 
f. Overheating 

 
Y 

 
Y 

 
 

 
Y 

      Temperature monitoring of the 
generator 

 
8. Generator 
failure 

g. Torsional and 
lateral vibrations 

 
Y 

   
Y 

 
Y 

     Vibration monitoring of 
generator  

a. Loose 
couplings 

 
Y 

   
Y 

 
Y 

     Vibration monitoring of 
generator  

8a. Loose rotor 
on shafts 
 b.  Setting up 

errors 
 

Y 
   

Y 
 

Y 
     Vibration monitoring of 

generator  
 
a. Lack of 
lubricant 

 
N 

   
Y 

 
Y 

      
Vibration monitoring of bearing  
of the generator 

 

 
8b. Rolling 
bearing seizes 

 
b. Contaminated 
lubricant 

 
N 

   
Y 

 
Y 

      
Oil analysis of generator 
bearing 
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c. Operating 
beyond lubricant 
life 

 
 

N 

   
 
N 

 
 
N 

 
 
N 

 
 

Y 

    
Clean and apply lubricant to 
bearing of the generator 

  
d. Misalignment 

 
N 

   
Y 

 
Y 

      
Vibration monitoring of bearing  
of the generator 

 
e. Vibration and 
shock 

 
N 

   
Y 

 
Y 

      
Vibration monitoring of bearing  
of the generator 

f. Excessive force 
used during fitting 
of couplings 

 
 

N 

   
 

Y 

 
 

Y 

      
Vibration monitoring of bearing  
of the generator 

 
g. False brinelling 

 
N 

   
Y 

 
Y 

      
Vibration monitoring of bearing  
of the generator 

h. Corrosion due 
to water 
ingression 

 
 

N 

   
 

Y 

 
 

N 

 
 
N 

 
 
N 

 
 
Y 

   
Inspect generator for corrosion 
creep 

 

 
i. Normal wear 
and tear 

 
N 

   
Y 

   
Y 

    
Replace bearing of the 
generator 

 
a. Excessive heat 
within 
windings/core iron 

 
 
 

N 

 
 
 

Y 

   
 
 

Y 

      
Temperature monitoring of the 
generator 

b. Partially or 
totally blocked 
ventilation 
passages 

 
 

N 

 
 

Y 

   
 

Y 

      
Temperature monitoring of the 
generator 

c. Damaged or 
destroyed  
external cooling 
fan 

 
 

N 

 
 

Y 

   
 

Y 

      
Temperature monitoring of the 
generator 
 
 

 

 
8c. Stator 
insulation 
breakdown 
 
 
 
 
 
 
 
 
 

 
d. Foreign 
substance build- 
up on generator 
surface 

 
 

N 

 
 

Y 

   
 

Y 

      
Temperature monitoring of the 
generator 
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e. Generator 
operating in direct 
sunlight for long 
periods of time. 

 
 

N 

 
 

Y 

   
 

Y 

      
Temperature monitoring of the 
generator 

 
f. High humidity  

 
N 

 
Y 

   
Y 

      
Variation in process parameter  
of the generator 

 

 
g. Normal wear 
and tear 

 
N 

 
Y 

   
N 

 
N 

 
Y 

    
Replace generator at end of 
life 

 
a. Worn bearings 

 
N 

 
Y 

   
Y 

      
Vibration monitoring of bearing 
of the generator  

 
8c. Rotor bar 
breaks 

 
b. Excessive 
operating torque 

 
N 

 
Y 

   
Y 

      
Vibration monitoring of bearing 
of the generator  

 
a. Fatigue 

 
 

N 

 
 

Y 

   
 

Y 

      
Variation in performance 
parameter technique 

 
8d. Cracks 
between rotor 
bars and rings  

b. Manufacturing 
defects 

 
N 

 
Y 

   
Y 

      
Variation in performance 
parameter technique 

 
a. Overloading 

 
N 

 
Y 

   
Y 

     Temperature monitoring of the 
generator 

b. Damaged or 
destroyed  
external cooling 
fan 

 
 

N 

 
 

Y 

   
 

Y 

      
Temperature monitoring of the 
generator 

c. Eddy current 
losses 

 
N 

 
Y 

   
Y 

      
Temperature monitoring of the 
generator 

d. Unbalanced 
voltage 

 
N 

 
Y 

   
Y 

      
Temperature monitoring of the 
generator 
 

 

 
8f. Overheating 

 
e. High ambient 
temperature 
 
 

 
N 

 
Y 

   
Y 

      
Temperature monitoring of the 
generator 
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a. Interaction 
between 
generator 
components 
masses, inertias 
and stiffness 

 
 
 

N 

   
 
 
Y 

 
 
 

Y 

      
 
Vibration monitoring of the 
generator 

 
b. Interaction 
between 
generator 
mounting and 
supporting 
structures 

 
 
 

N 

   
 
 
Y 

 
 
 

Y 

      
 
Vibration monitoring of the 
generator 

 
c. Worn couplings 

 
N 

   
Y 

 
Y 

      
Vibration monitoring of bearing 
of the generator 

 
8g. Torsional and 
lateral vibrations 

 
d. Worn out 
bearing 

 
N 

   
Y 

 
Y 

      
Vibration monitoring of bearing  
of the generator 

 
a. Anemometer 
seizes 

 
N 

   
Y 

 
Y 

      
Variation in wind speed at 
main mast and wind turbine 

 
b. Potentiometer 
wind vane seizes 

 
N 

   
Y 

 
Y 

      
Variation in wind direction at 
main mast and wind turbine 

 
9. 
Meteorological 
system failure 

 
c. Barometric 
pressure sensor 
seizes 

 
N 

   
Y 

 
Y 

      
Variation in pressure at main 
mast and wind turbine 

a. Meteorological 
measurement 
error 

 
 

Y 

   
 

Y 

 
 

Y 

      
Variation in process 
parameters 

b. System 
controller error 

 
Y 

   
Y 

 
Y 

     Variation in process parameter 

c. Mechanical 
brake shoes stuck 

 
Y 

   
Y 

 
N 

 
N 

 
N 

 
Y 

  Inspect braking system for 
insipient fault 

 

 
10. Premature 
brake activation 
 
 
 
 

d. Too much 
pretension of 
spring in calliper 

 
Y 
 

 
 

 
 

 
Y 

 
N 

 
N 

 
N 

 
Y 

 
 
 

 Inspect braking system for 
insipient fault 
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a. Buckling  

 
Y 

 
Y 

   
Y 

      
Vibration monitoring of tower 

b. Cracks Y Y   N N N Y   Inspection of towers for cracks 
 

c. Fatigue Y Y   Y      Strain measurement 

 
11. Tower 
failure 

 
d. Corrosion 

 
Y 

 
Y 

   
N 

 
N 

 
N 

 
Y 

    
Inspection of towers for 
corrosion creep 

a. Loose or 
broken bolts at 
joints 

 
 

N 

 
 

Y 

   
 

Y 

      
Vibration monitoring of tower 

b. Corrosion creep N Y   Y      Corrosion monitoring 
 
c. Erecting error 

 
N 

 
Y 

  
 

 
Y 

      
Vibration monitoring of tower 

d. Poor material 
design 

 
N 

 
Y 

  
 
 

 
Y 

     Vibration monitoring of tower 

e. Unbalanced 
interface between 
tower and nacelle 

 
 

N 

 
 
Y 

   
 

Y 

     Vibration monitoring of tower 

 
10a. Buckling 

f. Loose 
connection 
between 
foundation and 
towers 

 
 
 

N 

 
 
 
Y 

   
 
 

Y 

      
Vibration monitoring of tower 

a. Inappropriate 
foundation type 

 
Y 

 
Y 

   
Y 

      
Vibration monitoring of tower 

b. Insufficient 
distance into 
subsoil 

 
 
Y 

 
 
Y 

   
 
Y 

      
 
Vibration monitoring of tower 

c. Defects in 
workmanship 

 
Y 

 
Y 

   
Y 

      
Vibration monitoring of tower 

d. Corrosion creep Y Y   Y      Corrosion monitoring 

 

 
12. Foundation 
failure 

e. Deterioration 
due to long term 
exposure to 
climatic extremes 

 
Y 

 
Y 

   
Y 

 
N 

 
N 

 
Y 

   
Inspect foundation for fault 
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APPENDIX A2 
Functional Failure B: Partial Loss of Energy Conversion Capability 

 
System No 1 

 
Facilitator: 

 
SYSTEM: Horizontal Axis Wind Turbine (HAWT) comprising of 3 blades up wind and pitch controlled, 3-
stage planetary gearbox, 4-poles asynchronous generator, etc. 
 

 
Sub-system No  

 
Auditor: 

Function: To convert wind kinetic energy into electrical energy 
within defined speed limit. 

Consequence 
 Evaluation  

 
Default action  

 
Functional failures 

 
Failure modes 

 
Failure causes 

   
 H 

 
S 

 
E 

 
O 

H1 
S1 
O1 
N1 

H2 
S2 
O2 
N2 

H3 
S3 
O3 
N3 

 
H4 

 
H5 

 
S4 

 
Proposed Task  

 
a. Excessive cyclic 
loading 

 
N 

   
Y 

 
Y 

      
Strain measurement for load 
monitoring and vibration 

 
b. Excessive flap-
wise loading 

 
N 

   
Y 

 
Y 

      
Strain measurement for load 
monitoring and vibration  

c. Bad cohesion 
between skin 
laminate and matrix 

 
N 

   
Y 

 
Y 

      
Fibre optics measurement 

d. No cohesion 
between main spar 
and matrix 

 
 

N 

   
 

Y 

 
 

Y 

     Fibre optics measurement 

e. Delamination  
between plies 

 
N 

   
Y 

 
Y 

      
Fibre optics measurement 

 
f. Porosities in skin 

 
 

N 

   
 

Y 

 
 

Y 

      
Fibre optics measurement 

 
1.  Crack in 
blades 

g. damaged gel coat            
 
a. Fatigue 
 

 
N 

   
Y 

 
Y 

      
Fibre optics measurement 

b. Delamination N   Y Y      Fibre optics measurement 

2. Deteriorating 
blade root 
stiffness 

 
c. Poor design 

 
N 

   
Y 

 
Y 

      
Fibre optics measurement 

 
B. PARTIAL LOSS 
OF ENERGY 
CONVERSION 
CAPABILITY 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Blades 
imbalance 

a. Blades at different 
pitches 

 
N 

   
Y 

 
Y 

     Variation in performance: 
acceleration measurement 
with relation to pitch angle and 
rotor position 
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a. Insects 

 
N 

   
Y 

 
N 

 
Y 

     
Clean blades 

 
4. Dirt build-up 
on blades  

b. Debris from 
surrounding  

 
N 

   
Y 

 
N 

 
Y 

     
Clean blades 

 
5. Ice build-up 
on blades 

 
a. Weather 
elements 

 
N 

   
Y 

 
N 

 
Y 

     
Clean blades 

 
6. Damping in 
blades 

 
a. Porous blade 
finishing 

 
N 

   
Y 

 
Y 

      
Fibre optics measurement 

 
a. Broken or 
loose bolts 

 
N 

   
Y 

 
Y 

      
Variation in performance 
parameter of blades speed 
and the low-speed shaft 

 
7. Hub slip or 
spin on shaft 

 
b. Fitting error 

 
N 

   
Y 

 
Y 

      
Variation in performance 
parameter of blades speed 
and the low-speed shaft 

 
a. Blade 
imbalance 

 
 
N 

   
 
Y 

 
 
Y 

      
Acceleration measurement 
with relation to pitch angle and 
rotor position 

 
b. Deflection 
under load 

 
N 

   
Y 

 
Y 

      
Vibration monitoring of low 
speed shaft 

 
8. Low speed 
shaft 
misalignment 
 
 

 
c. Fitting error 

 
N 

   
Y 

 
Y 

      
Vibration monitoring of low 
speed shaft 

 
a. Yaw electric 
drive motor 
seizes 

 
 
Y 

   
 
Y 

 
 
Y 

      
Variation in process parameter 
of wind vane and yaw direction 

 
b. Yaw bearing 
seizes 

 
Y 

   
Y 

 
Y 

      
Variation in process parameter 
of wind vane and yaw direction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
9. Nacelle  not 
yawing  
 
 
 
 
 
 
 
 

c.  Foreign object 
between bull 
gear and drive 
pinion gear 

 
 
Y 

   
 
Y 

 
 
Y 

      
Variation in process parameter 
of wind vane and yaw direction 
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d. Premature 
activation of yaw 
brake 

 
 
Y 

   
Y 

 
Y 

      
Variation in process parameter 
of wind vane and yaw direction 

 
e. Drive pinion 
gear teeth wear 

 
Y 

   
Y 

 
Y 

      
Variation in process parameter 
of wind vane and yaw direction 

 
 
 
 
 

 
f. Bull gear teeth 
wear 

 
Y 

   
Y 

 
Y 

      
Variation in process parameter 
of wind vane and yaw direction 

 
10. Nacelle yaw 
too slow 

 
a. Misalignment 
of drive pinion 
gear and bull 
gear 

 
 
N 

   
 
Y 

 
 
Y 

      
Variation in process parameter 
of wind vane and yaw direction 

 
a. Yaw gear 
reducer seizes 

 
N 

   
Y 

 
Y 

      
Variation in process parameter 
of wind vane and yaw direction 

 
11. Nacelle yaw 
too fast 

 
b. Insufficient 
brake friction 

 
N 

   
Y 

 
Y 

      
Variation in process parameter 
of wind vane and yaw direction 

 
12. Large yaw 
angle 

 
a. Yaw error 

 
N 

   
Y 

 
Y 

      
Variation in process parameter 
technique 

 
a. Failed cable 
twist sensor 

 
N 

    
N 

 
N 

 
N 

 
Y 

   
Inspect  cable twist sensors  

 
b. Disconnection 
of signal cables 
from the 
controller 

 
 
N 

   
 
Y 

 
 
Y 

      
 
Electrical effects 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
13. Cable twist 

 
c. cable short 
circuit of signals 
to the controller 
 
 
 
 
 

 
 
N 

   
 
Y 

 
 
Y 

      
 
Electrical effects 
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a. Faulty 
electrical wiring 
in anemometer 
 

 
 
N 

   
 
Y 

 
 
Y 

      
Variation in process parameter 
technique 

 
b. Defective 
bearing in 
anemometer 

 
 
N 

   
 
Y 

 
 
Y 

      
Variation in process parameter 
technique 

 
c. Anemometer 
deteriorating due 
to long term 
exposure to 
climatic extremes  

 
 
 
N 

   
 
 
Y 

 
 
 
Y 

      
 
Variation in process parameter 
technique 

 
14.  Wind speed 
measurement 
error 

d. Anemometer 
not suitable for 
application 

 
N 

   
Y 

 
Y 

      
Variation in process parameter 
technique 

 
a. Potentiometer 
wind vane 
deteriorating due 
to long term 
exposure to 
climatic extremes 

 
 
 
N 

   
 
 
Y 

 
 
 
Y 

      
 
Variation in process parameter 
technique 

 
15. Wind 
direction 
measurement 
error 

 
b. Potentiometer 
wind vane not 
suitable for 
application 

 
 
N 

   
 
Y 

 
 
Y 

      
Variation in process parameter 
technique 

 
a. Barometric 
pressure sensor 
deteriorating due 
to long term 
exposure to 
climatic extremes 

 
 
 
N 

   
 
 
Y 

 
 
 
Y 

      
 
 
Variation in process parameter 
technique 

 

 
16. Air density 
measurement 
error 

b. Barometric 
pressure sensor 
not suitable for 
application 

 
 
N 

   
 
Y 

 
 
Y 

      
Variation in process parameter 
technique 
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APPENDIX A3 
Functional failure C: Over Speeding 

 
System No 1 

 
Facilitator: 

 
SYSTEM: Horizontal Axis Wind Turbine (HAWT) comprising of 3 blades up wind and pitch controlled, 3-
stage planetary gearbox, 4-poles asynchronous generator, etc. 
 

 
Sub-system No  

 
Auditor: 

Function:  To convert wind kinetic energy into electrical energy 
within defined speed limit. 

Consequence 
 Evaluation 

 
Default action  

 
Functional failures 

 
Failure modes 

 
Failure causes 

   
 H 

 
S 

 
E 

 
O 

H1 
S1 
O1 
N1 

H2 
S2 
O2 
N2 

H3 
S3 
O3 
N3 

 
H4 

 
H5 

 
S4 

 
 
Proposed Task  

 
a. Failed sensors  

 
Y 

 
Y 

   
N 

 
N 

 
N 

 
Y 

   
Inspect controller for failed 
sensors 

 
b. Disconnection of 
signal cables to the 
controller 

 
 
Y 

 
 
Y 

   
Y 

      
Thermography 

 
c. Cable short circuit 
of signals to the 
controller 

 
 
Y 

 
 
Y 

   
 
Y 

      
 
Thermography 

 
d.  Failed contactors 

 
Y 

 
Y 

   
N 

 
N 

 
N 

 
Y 

   
Inspect controller for failed 
contactors 

 
e. failed switching 
relays 

 
Y 

 
Y 

   
N 

 
N 

 
N 

 
Y 

   
Inspect controller for failed 
switching relays 

 
f. failed fuses 

 
Y 

 
Y 

   
N 

 
N 

 
N 

 
Y 

   
Inspect controller for failed 
fuses 

 
g. Software design 
error 

 
Y 

 
Y 

   
Y 

      
Variation in process parameter 
technique 

 
h. Measurement error 
 

 
Y 

 
Y 

   
Y 

      
Variation in process parameter 
technique 

 
C. OVER SPEEDING 

 
1. Controller 
failure 

 
i. Lightening strike 

 
Y 

 
Y 

   
N 

 
N 

 
N 

 
Y 

   
Inspect lightening protection 
devices 
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a. Contaminated 
hydraulic oil13 

 
N 

 
Y 

   
Y 

      
Hydraulic oil analysis 

 
b. Wrong oil viscosity 

 
N 

 
Y 

   
Y 

      
Hydraulic oil analysis 

 
c. High hydraulic fluid 
temperature 

 
N 

 
Y 

   
Y 

      
Temperature measurement of 
hydraulic oil 

 
d. Hydraulic pump 
failure 

 
N 

 
Y 

   
Y 

      
Variation in process parameter 
technique- pressure 
measurement 

 
e. Hydraulic cylinder 
failure 

 
N 

 
Y 

   
Y 

      
Variation in process parameter 
technique- pressure 
measurement 

 
f. Hydraulic valve 
failure 

 
N 

 
Y 

   
Y 

     Variation in process parameter 
technique- pressure 
measurement 

 
g. Faulty circuit 
protection devices. 

 
 

N 

 
 

Y 

   
 

Y 

      
Tribology 

 
h. Hydraulic seal 
failure 

 
N 

 
Y 

   
Y 

      
Tribology 

 
i. Hydraulic hose 
failure 

 
N 

 
Y 

   
Y 

      
Tribology 

 
2. Hydraulic 
system failure 

 
j. Operating beyond  
filters life 

 
N 

 
Y 

   
N 

 
N 

 
Y 

    
Replace filters 

2c. High 
hydraulic fluid 
temperature 

 
a. Failed cooling 
system 

 
 

N 

 
 

Y 

   
 

Y 

      
Temperature measurement of 
hydraulic oil 

 

 
2f.Hydraulic 
valve failure   

 
a. Cavitations14 

 
N 

 
Y 

   
Y 

      
Variation in process parameter 
– pressure measurement 

212                                                 
13 Contaminants include solid particles, air, water or any matter that impairs the function of the fluid 
14 Cavitations occur when the volume of hydraulic fluid demanded by any part of a hydraulic circuit exceeds the volume of fluid being supplied. 
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b. High temperature 

 
N 

 
Y 

   
Y 

     Temperature measurement of 
hydraulic oil 
 

 
a. Improper 
installation 

 
N 

 
Y 

   
Y 

      
Tribology 

 
b. Hydraulic system 

contamination 

 
 

N 

 
 

Y 

   
 

Y 

      
Tribology 
 
 

 
c. chemical break 
down of the seal 

 
N 

 
Y 

   
Y 

      
Tribology 

 
2h. Hydraulic 
seal failure 

 
d. Heat degradation 

 
N 

 
Y 

   
N 

 
N 

 
Y 

    
Replace seal 

 
a. External damage 
through pulling, 
kinking, crushing or 
abrasion of the hose. 

 
 
 
N 

 
 
 
Y 

   
 
 
N 

 
 
 
N 

 
 
 
N 

 
 
 
Y 

   
 
Inspect hydraulic hoses for 
damages 

 
b. Multi plane bending 

 

 
 

N 

 
 

Y 

   
 

N 

 
 

N 

 
 

N 

 
 

Y 

   
Inspect hoses for damages 

 
2j Hydraulic hose 
failure 

 
c. Temperature 
extremes 

 
N 

 
Y 

   
Y 

      
Temperature measurement of 
hydraulic oil 

 
a. Pitching bearings 
seizes 

 
Y 

 
Y 

   
Y 

      
Acceleration measurement in 
relation to pitch angle and rotor 
position  

b. Disconnection of 
pitch angle signal to 
the controller 

 
 
Y 

 
 
Y 

   
 
Y 

     Acceleration measurement in 
relation to pitch angle and rotor 
position 

c. Disconnection of 
hydraulic pump signal 
cables from the 
controller 

 
 
Y 

 
 
Y 

   
 
Y 

      
Acceleration measurement in 
relation to pitch angle and rotor 
position 

 

 
3. Pitching 
system failure 

 
d. Cable short circuit 
of signals to the 
controller 

 
Y 

 
Y 

   
Y 

      
Acceleration measurement in 
relation to pitch angle and rotor 
position 
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e. Slip-ring fails 
 

 
Y 

 
Y 

 
 
 

  
Y 

     Acceleration measurement in 
relation to pitch angle and rotor 
position 

 
a. Fatigue 
deterioration 

 
N 

 
Y 

   
Y 

      
Vibration monitoring of pitch 
bearing 

 
b. Misalignment 

 
N 

 
Y 

   
Y 

      
Vibration monitoring of pitch 
bearing 

 
c. Lack of lubricant 

 
N 

 
 
Y 

   
Y 

      
Vibration monitoring of pitch 
bearing 

 
d. Contaminated 
lubricant 
 

 
 
N 

 
 
 
Y 

   
 
Y 

      
Vibration monitoring of pitch 
bearing 

 
e. wrong lubricant 

 
N 

 
 
Y 

   
Y 

      
Vibration monitoring of pitch 
bearing 

 
3a. Pitching 
bearing seizes 

 
f.  Fitting error 

 
N 

 
Y 

   
Y 

      
Vibration monitoring of pitch 
bearing 

 
a. Insufficient friction 

 
N 

 
Y 

   
N 

 
N 

 
N 

 
Y 

   
Inspect mechanical braking 
system 

 
4. Mechanical 
brake failure 

 
b. Too much friction 

 
N 

 
Y 

   
N 

 
N 

 
N 

 
Y 

   
Inspect mechanical braking 
system 

 
a.  Too much wear of 
brake pads and 
shoes  

 
 
N 

 
 
Y 

   
 
N 

 
 
N 

 
 
Y 

    
Change mechanical brake pad 
and shoes 

 

 
b. Too little 
pretension of spring 
in calliper 

 
 
N 

 
 
Y 

   
 
Y 

      
Variation in performance 
parameter technique 

 
c. Spring in calliper 
broken 

 
N 

 
Y 

   
Y 

      
Variation in performance 
parameter technique 

 

 
4a. Insufficient 
mechanical 
brake friction 
 
 
 
 
 
 
 
 
 

d. Degraded hydraulic 
oil  

 
N 

 
Y 

   
N 

 
N 

 
Y 

    
Change hydraulic oil 
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e. Too much wear of 
brake disc  

 
N 

 
Y 

   
N 

 
N 

 
Y 
 

    
Replace mechanical brake 
disc 
 

 
f. Malfunctioning of  
combination valve 

 
N 

 
Y 

   
Y 

      
Variation in performance 
parameter technique 

 
 
 
 
 
 
 

 
g. Leakage in the 
brake system 

 
N 

 
Y 

   
N 

 
N 

 
N 

 
Y 

   
Inspect braking system for 
leakage 

 
a. Brake shoes stuck 

 
N 

 
Y 

   
Y 

      
Variation in performance 
parameter technique 

 
4b. Too much 
friction 

 
b. Too much 
pretension of spring 
in calliper 

 
 
N 

 
 
Y 

   
 
Y 

      
Variation in performance 
parameter technique 

 
a. Power line fails 

 
Y 

 
Y 

   
Y 

      
Controller fail safe 

 

 
5. Grid 
connection 
failure 

 
b. Disconnection of 
generator while 
turbine is in operation 

 
 
Y 

 
 
Y 

   
 
Y 

      
Controller fail safe 

 
 



                                                                         Maintenance Optimisation for Wind Turbines 

PhD Thesis, The Robert Gordon University Aberdeen, 2008.                                                  189                                               

APPENDIX B 
 

GLOSSARY 
 

*A = Best alternatives 

CRA  = Annual cost reservation 

CBMAC =Annual condition based 

servicing of drive train 
ALCA= Asset Life Cycle Analysis 

cmAM  =Annual maintenance cost of 

condition monitoring 
AM  =Asset Management 
AMOR= Applied Mathematics & 
Operational Research 
BTC= Benefit- to-cost ratio 
BS= British Standard 
CBM = Condition Based Maintenance 

MTC = Cost of material 

LdC = Cost of loading 

OldC  = Cost of offloading 

TPC  = Cost of transportation 

CRC  = Cost of crane hire per day 

(including cost of driver, mobilisation 
and demobilisation fee) 

EHC = Cost of energy per kWh 

fC = Capacity factor 

cmC = Capital cost of condition 

monitoring system 
CBM = Condition Based Maintenance 
CREST= Centre for Renewable Energy 
Systems Technology 
CTA= Critical Task Analysis 
DTMM = Delay Time Maintenance 
Model 
d = Discount rate (% /100) 
ECN = Energy Centre Netherlands 
ETA= Event Tree Analysis 
ESI = Electricity Supply Industry 
 

EWTCG= European Wind Turbine 
Certification Guidelines 
F =Failure 

cF = Failure consequences 

FBM = Failure Based Maintenance 
FMEA= Failure Mode and Effect 
Analysis 
FTA=Fault Tree Analysis 

( )TF =Cumulative Distribution 
Function 

)(Tf = Probability Density Function 
GRP= Glass fibre Reinforced Plastic 
GSN = Generator Serial Number 
HAZAN= HAZard ANalysis 
HAZOP= HAZard OPeratibility 
HSE= Health, Safety and Environment 
HSS =High Speed Shaft 
i= Alternative 
IAM  =Institute of Asset Management 
IMS  =InterMediary speed Shaft 
IEC = International Electro-Technical 
Commission 
KPM = Key Performance Measurement 
KPI = Key Performance Indicator 
LCC = Life Cycle Cost 

RTL = Labour rate per hour 

hcL = Lead time to hire a crane 

m= Decision criteria 
MTBF =Mean Time Between Failure 
MTTF =Mean Time To Failure 
MTTR=Mean Time To Repair 
MLE = Maximum Likelihood 
Estimation 
MSF= Modelling Systems Failure 
MW = Mega Watt 
n= Number of competing alternatives 

PnN  = Number of person 
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dyN  = Number of working days 

TN = Number of turbines in a wind 
farm 

CBMNPV = Net present Value of 

Condition Based Maintenance 

TBMNPV = Net present Value of Time 
Based Maintenance 
OEM = Original Equipment 
Manufacturer 

GO & = Oil &Gas 
MO & = Operation &Maintenance 

IntervalFP −  =P is point where defect 
can be identified and F point where 
component fails 
PM =Preventive Maintenance 
PW = Present worth        
PWA= Present worth per annum 
QRA= Quantified Risk Assessment 
QMO= Quantitative Maintenance 
Optimisation 

dyR  = Replacement days including 

travel time 
RAM = Reliability Availability and 
Maintainability  
RBI = Risk Based Inspection 
RBD= Reliability Block Diagram 
RCM  = Reliability Centred 
Maintenance 
RCA= Root Cause Analysis 
RPM = Revolution Per Minute 
RO  = Renewable Obligation order 
ROC  = Renewable Obligation 
Certificate 
S = Suspension 

iS = Total score of alternative 

ijS = Alternative ratings 

SCADA = Supervisory Control and 
Data Acquisition 
SCIG= Squirrel Cage Induction 
Generator 
SWIFT= Structured What IF 
Technique 

T = Time 

CITA  = Total annual cost of inspection 

TBM  = Time Based Maintenance 
TPM = Total Productive Maintenance 

PLT  = Total Production loss 

LBTC = Total cost of labour 

ASTC = Total cost of access 

MTTC = Total cost of material 
T = Analysis period 

ATV = Value added tax 

jW = Criterion weight 

hrW  = Work hours per day 

WE= Weighted Evaluation 
WSI= Water Supply Industry 
WT = Wind Turbine 
WF = Wind Farm 

PRWT  = Wind turbine power rating in 
kilowatt (kW) 
α = Defects rate  
β = Shape Parameter of the Weibull 
distribution 
η = Scale Parameter of the Weibull 
distribution 
ϕ = Failure rate 

γ
1

= Delay time 

∆ = Inspection Interval 
∗∆ = Optimal Inspection Interval 
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APPENDIX C 
 

ABSTRACTS OF PUBLISHED PAPERS 
Three (3) journal and three (3) conference papers have been published as a result of the 

research work that underpins this thesis. Also, two (2) additional papers have been 

written and are currently under review for journals publication. Abstracts of the six (6) 

published papers are presented as follows: 

 

C.1 ASSET MANAGEMENT PROCESSES IN THE WIND   
           ENERGY INDUSTRY 
 

Jesse A Andrawus, John Watson and Mohammed Kishk 

 
Proceedings of the 2nd Joint International Conference on “Sustainable Energy and 

Environment (SEE 2006)” 21-23 November 2006, Bangkok, Thailand, 269-274. 

Asset management (AM) has evolved from several industrial sectors to 

describe holistic application of business best practices to satisfy all 

stakeholders’ requirements. The processes, tools and techniques of AM 

are currently well-established in the mature industries.  On the other 

hand, wind is becoming an increasingly important source of energy for 

countries that ratify to reduce emission of greenhouse gases and mitigate 

global warming. This creates a huge investment potential for the wind 

energy industry with a wide range of possible stakeholders. However, 

achieving return on investment in wind farms is affected by interrelated 

stakeholders’ requirements and assets technical issues. These require a 

well-founded Asset Management (AM) frame-work currently lacking in 

the wind industry. The main objective of this paper is to identify and 

transform crucial requirements for effective management of wind farms 

into AM processes as a first step towards developing a structured model 

for AM in the wind energy industry. Six fundamental processes are 

determined and presented with a detailed explanation. 
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Keywords: Asset Management, Wind Energy, Business Values, Process 

modelling. 

C.2 DETERMINING AN APPROPRIATE CONDITION-BASED  
          MAINTENANCE STRATEGY FOR WIND TURBINES  

 
Jesse A Andrawus, John Watson, Mohammed Kishk and Allan Adam 

 
Proceedings of the 2nd Joint International Conference on “Sustainable Energy and 

Environment (SEE 2006)” 21-23 November 2006, Bangkok, Thailand, 275-280. 

Maintenance is fundamental to effective management of wind farms due 

to its impact on productivity of wind turbines, operational costs and 

hence revenue generation. Essentially, there are two common 

maintenance strategies applied to wind turbines; Time-Based 

Maintenance (TBM) which involves carrying out tasks at predetermined 

regular-intervals and Failure-Based Maintenance (FBM) which involves 

using a wind turbine until it fails. However, the impact of failure 

consequences on revenue generation and electricity network limit the 

adequacy of these strategies to support the current commercial drivers of 

the wind industry. Reliability-Centred Maintenance (RCM) is a technique 

mostly used to select suitable maintenance strategies for physical assets. 

In this paper, the approach of RCM is applied to Horizontal Axis Wind 

Turbines to identify possible failure modes, causes and the resultant 

effects on system operation. Suitable Conditioned Based Maintenance 

(CBM) activities are identified. 

Keywords:  Wind turbines, Reliability-Centred Maintenance, Condition-

Based Maintenance. 
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C.3 THE SELECTION OF A SUITABLE MAINTENANCE  

          STRATEGY FOR WIND TURBINES  

Jesse A. Andrawus, John Watson, Mohammed Kishk and Allan Adam 

International Journal of Wind Engineering, 2006, Vol 30 No 6, pp. 471-486. 

Common maintenance strategies applied to wind turbines include ‘Time-

Based’ which involves carrying out maintenance tasks at predetermined 

regular-intervals and ‘Failure-Based’ which entails using a wind turbine 

until it fails. However, the consequence of failure of critical components 

limits the adequacy of these strategies to support the current commercial 

drivers of the wind industry. Reliability-Centred Maintenance (RCM) is a 

technique used mostly to select appropriate maintenance strategies for 

physical assets. In this paper, a hybrid of an RCM approach and Asset 

Life-Cycle Analysis technique is applied to Horizontal-Axis Wind 

Turbines to identify possible failure modes, causes and the resultant 

effects on system operation. The failure consequences of critical 

components are evaluated and expressed in financial terms. Suitable 

Condition-Based Maintenance activities are identified and assessed over 

the life-cycle of wind turbines to maximise the return on investment in 

wind farms. 

Keywords: Wind turbines, Reliability-Centred Maintenance, Failure 

Mode and Effect Analysis, Asset Life-cycle Analysis, Condition-Based 

Maintenance. 
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C.4 WIND TURBINE MAINTENANCE OPTIMISATION: 

PRINCIPLES OF QUANTITATIVE MAINTENANCE 

OPTIMISATION 

Jesse A. Andrawus, John Watson and Mohammed Kishk 
 
International Journal of Wind Engineering, 2007, Vol 31 No 2, pp. 101-110. 

Maintenance optimisation is a crucial issue for industries that utilise 

physical assets due to its impact on costs, risks and performance. Current 

quantitative maintenance optimisation techniques include Modelling 

System Failures MSF (using Monte Carlo simulation) and Delay-Time 

Maintenance Model (DTMM). The MSF investigates equipment failure 

patterns by using failure distribution, resource availability and spare-

holdings to determine optimum maintenance requirements. The DTMM 

approach examines equipment failure patterns by considering failure 

consequences, inspection costs and the period to determine optimum 

inspection intervals. This paper discusses the concept, relevance and 

applicability of the MSF and DTMM techniques to the wind energy 

industry. Institutional consideration as well as the benefits of practical 

implementation of the techniques are highlighted and discussed. 

Keywords: Wind turbine, Maintenance optimisation, Modelling System 

Failures, Monte Carlo Simulation, Delay-time maintenance model. 
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C.5 MAINTENANCE OPTIMISATION OF WIND TURBINES: 

LESSONS FOR THE BUILT ENVIRONMENT 

Jesse A. Andrawus, John Watson and Mohammed Kishk 

Proceedings 23rd Annual ARCOM Conference, 3-5 September 2007, Belfast, UK, 

Association of Researchers in Construction Management, 893-902.   

Maintenance optimisation is indispensable to the core business objectives 

of industries that utilises physical assets. A quantitative maintenance 

optimisation technique known as the Modelling System Failures (MSF) 

is critically reviewed to identify its relevance to industries that employs 

physical assets. Practical application of the approach to optimise the 

maintenance activities of wind turbines is explored and discussed in a 

case study. The analysis is based maximum likelihood parameter 

estimation in the Weibull distribution. Shape and scale parameters for a 

gearbox and its components are estimated. The estimated parameters are 

used to design Reliability Block Diagrams to model the failures of the 

gearbox of a selected wind turbine. The models are simulated using 

Monte Carlo simulation software to assess the reliability, availability and 

maintainability of the gearbox, and the resultant effects on the wind 

turbine operation. The methodology presented in the paper is sufficiently 

generic to any mechanical system in the Built Environment/Construction 

Industry.  

Keywords: Wind Turbine, Maintenance Optimisation, Monte Carlo 

Simulation, Reliability Block Diagrams.  
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C.6  MODELLING SYSTEM FAILURES TO OPTIMISE WIND 

TURBINE MAINTENANCE 

Jesse A. Andrawus, John Watson and Mohammed Kishk 
 
International Journal of Wind Engineering, 2007, Vol 31 No 6, pp. 503-522. 

 

Modelling System Failures (MSF) is a unique quantitative maintenance 

optimisation technique which permits the evaluation of life-data samples and 

enables the design and simulation of the system’s model to determine optimum 

maintenance activities. In this paper, the approach of MSF is used to assess the 

failure characteristics of a horizontal axis wind turbine. Field failure data are 

collated and analysed using the Maximum Likelihood Estimation in the Weibull 

Distribution; hence shape (β) and scale (η) parameters are estimated for critical 

components and subsystems of the wind turbine. Reliability Block Diagrams are 

designed to model the failures of the wind turbine and of a selected wind farm. 

The models are simulated to assess the reliability, availability and 

maintainability of the wind turbine and the farm; taking into account the costs 

and availability of maintenance crew and spares holding. Optimal maintenance 

activities are determined to minimise the total life-cycle cost of the wind farm. 

 

Key words: Wind turbine, Failure Modelling, Reliability, Availability and 

Maintenance Optimisation  

 

 

 

 


