
DisBO-wd: a Distributed Constraint
Satisfaction Algorithm for Coarse-Grained

Distributed Problems

Muhammed Basharu1, Inés Arana2, and Hatem Ahriz2

1 4C, University College
Cork, Ireland

2 School of Computing
The Robert Gordon University

Aberdeen, UK
mb@4c.ucc.ie, {ia,ha}@comp.rgu.ac.uk

Abstract. We present a distributed iterative improvement algorithm for solv-
ing coarse-grained distributed constraint satisfaction problems (DisCSPs). Our
algorithm is inspired by the Distributed Breakout for coarse-grained DisCSPs
where we introduce a constraint weight decay and a constraint weight learning
mechanism in order to escape local optima. We also introduce some randomi-
sation in order to give the search a better chance of finding the right path to a
solution. We show that these mechanisms improve the performance of the algo-
rithm considerably and make it competitive with respect to other algorithms.

1 Introduction
The recent growth of distributed computing has created more opportunities for col-
laboration between agents (individuals, organisations and computer programs) where
there is a shared objective but, at the same time, there is also a competition for re-
sources. Hence, participants make compromises in order to reach agreement - a pro-
cess which can be automated if the situation is modelled as a Distributed Constraint
Satisfaction Problem (DisCSP) [12]. DisCSPs formally describe distributed problems
where each participant in the problem is represented by an agent, and the collection of
agents have to collaborate in order to reach a satisfactory agreement (or find a solution)
for a problem. Research in this emerging field includes problem solving techniques
which are classified as constructive search or iterative improvement search. Iterative
improvement search is normally able to converge quicker than constructive search on
large problems, but it has a propensity to converge to local optima. Previous work
on iterative improvement search has considered a variety of techniques for dealing
with local optima. Prominent amongst these is the breakout, which attaches weights
to constraints which are difficult to satisfy [13].

Distributed iterative improvement algorithms for DisCSPs such as DisPeL[1] and
DBA[13] assume that each agent is responsible for one variable only and knows its
domain, the constraints which apply to the variable, the agents whose variables are
constrained with its variable and the current value for any varible directly related to



its own variable. In other words, agents are not allowed to be responsible for whole
subproblems, but just a single variable and the problem is said to be fine-grained.
As a result, there is a very limited amount of computation that agents can perform
locally and all the search effort is focused on the distributed collaborative activity
which is expensive. In constrast, if agents are allowed to own whole subproblems (i.e.
the problem is coarse-grained) agents are able to carry out a substantial amount of
computation locally.

This paper presents DisBO-wd, an iterative distributed algorithm for solving coarse-
grained DisCSPs which uses weights on constraints in order to escape local optima.
These weights are continuously decayed throughout the problem solving and increased
whenever constraints are not satisfied. Empirical results show that DisBO-wd is effec-
tive, solving most problems in reasonable time and at a lower cost than other algo-
rithms.

The remainder of this paper is structured as follows. Section 2 gives some def-
initions and explains related research. Next, DisBO-wd is introduced in Section 3.
Finally, in Section 4, we present the results of empirical evaluations of DisBO-wd
along with comparisons with other similar algorithms.

2 Background

A constraint satisfaction problem (CSP) is a triple < V, D,C > where V is a set of
variables, D is a set of domains (one per variable) and C is a set of constraints which
restrict the values that variables can take simultaneously. Two variables are said to be
neighbours if they both participate in the same constraint. Some algorithms for solving
CSPs attach a priority to each variable in order to rank the variables from high to low
priority.

A DisCSP is a CSP where the variables, domains and constraints are distributed
over a number of agents and whose details cannot be centralised for a number of
reasons such as privacy, security and cost. These problems are, therefore, solved by
agent-based distributed algorithms which collaborate in order to find a solution. Some
algorithms for solving CSPs attach a priority to each agent in order to rank the agents
from high to low priority, eg. [14].

When DisCSPs are made up of interconnected subproblems which are naturally
distinct from other subproblems, each individual subproblem is a CSP with its own set
of variables and constraints between those variables, as well as constraints between
some variables in the local CSP and variables in other sub-problems (as illustrated in
Figure 1). Therefore, rather than representing one variable, each agent in the DisCSP
represents a sub-problem, i.e the DisCSP is coarse-grained. For example, distributed
university timetabling is a coarse grained DisCSP, where agents represent lecturers
and each sub-problem is the set of courses taught by an individual. The constraints
in the local subproblems (CSPs) include that an individual cannot teach two different
courses at the same time (intra-agent constraints), as well as constraints to prevent
some clashes with courses taught by other lecturers (inter-agent constraints) either
because of student course registrations or resource availability.



Fig. 1. An illustrative example of a coarse-grained DisCSP, with 3 inter-connected sub-
problems/agents.

Agents in coarse-grained DisCSPs (with more than one variable per agent) are
more complex than fine-grained DisCSP agents (with only one varible per agent since
they have much more problem information available and, therefore, can carry out more
local inference in the search for a solution. The amount of local computation (and the
level of granularity) required by complex agents can vary along two extremes [14],
ranging from fine-grained to coarse-grained DisCSPs. If a problem is implemented
as a fine-grained DisCSP, each of its subproblems acts as a variable. Therefore, each
agent does all its local computation before hand by finding all possible solutions for its
subproblem which are taken as the “domain values” of subproblem variable, e.g. [11].
Unfortunately, when local sub-problems are large and complex, it may be impossible
or impractical to find all local solutions.

At the other extreme, each variable in a subproblem can be seen as a virtual agent,
i.e. a single variable per agent and, therefore, local computation is minimal and all ef-
fort is expended on the distributed search. Agents simulate all activities of these virtual
agents including communications between them and other real agents. This approach
does not take full advantage of local knowledge and, therefore, it is costly since the
expense of local computation is significantly lower than that of communications be-
tween virtual agents. It appears that an approach where there is a balance between the
two extremes could be beneficial, so that agents can enjoy the flexibility of the finest
level of granularity and at same time exploit the clustering of local variables to speed
up the search.



In distributed backtracking algorithms for DisCSPs with complex agents, most
prominently Asynchronous Backtracking [6, 8] and Asynchronous Weak Commitment
Search [14], the granularity of the single variable per agent case is still maintained and,
therefore, variables are inadvertently treated as virtual agents; especially since these
algorithms are direct extensions of earlier versions for fine grained DisCSPs. By taking
each variable as a virtual agent, agents in those algorithms use a single strategy to deal
with both inter-agent and intra-agent constraints as there is typically no distinction
between the constraints. As such, deadlocks (local optima) are still detected (and no-
goods generated) from each variable rather than from entire sub-problems. At the same
time, the amount of computation done locally within agents is still significant. Each
agent will typically try, exhaustively in the worst case, to find a local solution that is
consistent with higher priority external variables before either extending the partial
solution or requesting revision of earlier choices by other agents.

3 DisBO-wd

3.1 DBA, Multi-DB and DisBO
The distributed breakout algorithm (DBA) [13] is an iterative improvement DisCSP al-
gorithm which uses a single variable per agent. In DBA, agents carry out a distributed
steepest descent search by exchanging possible improvements to a candidate solution
and implementing the best improvements that do not conflict with each other. Agents
act concurrently alternating between the improve and ok? cycles. In the improve cy-
cle, each agent finds the value in its domain that minimises its weighted constraint
violations and computes the improvement to its current assignment. These improve-
ments are exchanged between the agents. In the ok? cycle the agents with the best
improvements are allowed to change their values. Ties are broken with the agents lexi-
cographic IDs in the case that two or more neighbouring agents have the same possible
improvement.

In order to escape local optima, DBA attaches a weight to each constraint which is
increased whenever the constraint is violated at a quasi-local-optimum, i.e. a state in
which a subset of connected agents cannot find any improvements to their local eval-
uations. Empirical evaluation of DBA showed that it outperformed the Asynchronous
Weak Commitment Search on difficult problem instances; DBA solved more problems
and it did so in less time [13].

Multi-DB [4, 5] is an extension of DBA for coarse-grained distributed SAT prob-
lems. DisBO [2] is another extension for coarse-grained distributed project scheduling
and graph colouring. This version was largely based on DBA’s framework but dif-
fered in its emphasis on increasing weights only at real local optima. DisBO differs
from Multi-DB in that it has an additional third cycle for global state detection, since
weights are only increased when the search is stuck at real local optima and not at
quasi-local-optima. Therefore, in addition to the improve and ok? cycles, there is a
detect-global-state cycle, which is used to determine that either a solution has been
found, that the maximum number of cycles has been reached, or that the search is
stuck at a real local optimum. But, the detect-global-state cycle is expensive, in terms
of messages sent, because it requires agents to continuously exchange state messages



until they have determined that all messages have reached all agents in the network.
This was needed to get a snapshot of the state of the entire network without resorting
to a global broadcast mechanism where each agent is assumed to know every other
agent in the network.

DisBO limits the amount of computation done locally within each agent to allow
agents to focus on the collaborative aspect of the problem solving activity. In DisBO,
each agent’s variables are partitioned into two sets, private and public variables. The
private variables are those variables that have no inter-agent constraints attached to
them. The bulk of the local computation done by agents in DisBO are with these pri-
vate variables, where in each improvement phase the agents repeatedly select values
for these variables that minimise the weighted constraint violations until no further
improvements are possible. The public variables, on the other hand, are treated like
virtual agents and DBA’s coordination heuristic is used to prevent any two public vari-
ables (even those within one agent) from changing their values simultaneously unless
the concurrent changes do not cause the constraints between them to be violated.

3.2 DisBO-wd
DisBO-wd is our DisCSP algorithm for coarse-grained CSPs based on DisBO where
the weight update scheme is replaced with a weight decay scheme inspired on Frank’s
work on SAT solving with local search [3]. Instead of modifying weights only when
a search is stuck at local optima, weights on violated constraints are continuously
updated after each move. At the same time, weights are also decayed at a fixed rate
during the updates to allow the algorithm focus on recent increments. Frank argues that
this strategy allows weights to provide immediate feedback to the variable selection
heuristic and hence emphasise those variables in unsatisfied clauses. We modified the
update rule further, so that weights on satisfied constraints are continuously decayed
as well. Therefore, before computing possible improvements, in DisBO-wd, agents
update their constraint weights as follows:

Weights on violated constraints at time t are computed as

Wi,t = (dr ∗Wi,t−1) + lr

Weights on satisfied constraints at time t are decayed as

Wi,t = max((dr ∗Wi,t−1), 1)

where:
dr is the decay rate (dr < 1).
lr is the learning rate (lr > 0).

From empirical investigations (see section 3.4), we found that DisBO-wd’s per-
formance was optimal with the parameters set to dr = 0.99 and lr = 8. With the
new weight update scheme, we were able to reduce the number of DisBO’s cycles
from three to two, since it was no longer necessary to determine if the search was
stuck at real local optima - a big cost saving. We also moved the termination detection



mechanism into the ok? cycle, as in the original distributed breakout framework. Other
modifications such as probabilistic weight resets and probabilistic weight smoothing
[7] were considered, but found to be weaker than our new weight decay mechanishm.

In DisBO when two neighbouring variables have the same improvement, the vari-
able with the lower lexicographic ID is deterministically given priority to make its
change. We have replaced this coordination heuristic with a random break [10] so in
each improvement cycle agents select and communicate random tie-breaking numbers
for each variable, and when there is a tie the variable with the lower number is given
priority.

3.3 Creating coarse-grained DisCSPs
In order to obtain coarse-grained DisCSPs, publicly available problem instances from
CSPLib1 and SATLib2, as well as randomly generated problems, were partitioned
into evenly sized inter-connected sub-problems using a simple partitioning algorithm
which ensured that the cluster of variables within each agent were meaningful, i.e.
there are constraints between the variables belonging to an agent. For each agent (ai)
its subproblem was created as follows:

1. A randomly selected variable (xi) that is not already allocated to another agent is
allocated to ai.

2. A variable constrained with xi is randomly selected and allocated to ai.
3. The process of randomly selecting one of the variables already allocated to ai and

selecting a random neighbour of the variable for allocation to ai is repeated until
the number of required variables for ai have been found.

4. With a small probability (p), a randomly selected variable is allocated to ai, even
if it is not connected with any of ai’s existing variables.

3.4 Determining optimal parameter values for DisBO-wd
We have replaced the weight update mechanism of DisBO with the scheme for contin-
uous weight updates proposed in [3]. This new scheme introduces two new parameters
into DisBO-wd i.e. the learning rate (lr) and the decay rate (dr). The learning rate
controls how fast weights on violated constraints grow in DisBO-wd, while the decay
rate biases the search towards the most recent weight increases.

In his work on SAT solving with a modified GSAT [9] algorithm, Frank [3] found
that the decay rate was optimal at dr = 0.999, more problems were solved within
an allotted time than with the value set to 0.95 and 0.99. He also found that the
learning rate was optimal at lr = 1 compared to runs with the values 8, 16, and
24. However, DisBO-wd differs from GSAT in many respects especially given the
amount concurrent changes that take place in distributed search. Therefore, we had
to carry out an experiment to determine optimal values for the parameters in the dis-
tributed algorithm. We used distributed SAT instances and random DisCSPs, evalu-
ating DisBOs performance on 100 instances in each case, with the parameters set to

1 www.csplib.org [accessed 26 March 2007].
2 www.satlib.org [accessed 26 March 2007].



lr ∈ {1, 2, 3, 5, 8, 10, 12, 16} and dr ∈ {0.9, 0.95, 0.98, 0.99}. In Tables 1 and 2,
we summarise the results from this experiment, showing the percentage of problems
solved, the average and the median search costs incurred where we limited DisBO-wd
to 10,000 iterations on each attempt on the SAT problems and 12,000 iterations on
each attempt on the random DisCSPs.

SAT Problems Random Problems
% average median % average median

dr lr solved cost cost solved cost cost
0.9 1 60 85 28 29 1598 462

2 82 178 90 79 1160 550
3 84 151 108 95 2298 1458
5 94 303 141 99 2412 1648
8 88 273 139 100 2416 1658

10 92 300 129 96 2472 1876.5
12 92 233 176 93 2080 1606
16 88 314 145 94 2260 1286.5

0.95 1 88 208 111 87 1304 663
2 98 304 144 100 1986 1030.5
3 100 303 130 100 2226 1414.5
5 100 329 195 98 1952 1114
8 100 259 161 93 1922 1238

10 98 338 181 95 1876 1104
12 100 314 136 96 2048 1232
16 100 358 233 100 2050 1182.5

Table 1. Performance of DisBO-wd on Distributed SAT problems and Distributed Random
problems for dr ∈ {0.9, 0.95} and variable lr.

The results in Tables 1 and 2 summarise attempts to solve 50-literal SAT instances
from the SATLib problem set. As dr increases, DisBO-wd solved more problems but
there is no clear relationship between the search costs and the decay rate. Given these
results we chose dr = 0.99 and lr = 1.

Tables 1 and 2 also show the results of 100 runs for random problems with <number
of variables n = 60, number of values in a domain d = 10, constraint density
p1 = 0.1, constraint tightness p2 = 0.5 >. The search cost is better for high val-
ues of dr, suggesting that the search benefits from retaining some information of not
too recent weight increases for as long as possible and they are not quickly dominated
by newer weight increases. However, it appears that the learning rate lr has a different
effect on performance in this domain. The algorithm generally does not fare too well
with the smallest and largest values for this parameter. The results, although not clear
cut, show that DisBO-wd is optimal with the values 3,8, or 10 (at dr = 0.99), where
the average search costs are minimal and the percentage of problems solved are sig-
nificantly high. But, we arbitrarily chose lr = 8 and dr = 0.99 for the experiments



SAT Problems Random Problems
% average median % average median

dr lr solved cost cost solved cost cost
0.98 1 100 236 119 95 1834 1163

2 100 375 198 98 1590 1050
3 100 247 174 96 1568 916
5 100 263 213 99 1822 1024
8 100 286 202 99 2114 1038

10 100 439 176 96 1476 984
12 100 380 219 100 1752 1082.5
16 100 386 174 98 2018 1152

0.99 1 100 186 130 97 1668 978
2 100 252 127 97 1748 1120
3 100 243 189 97 1506 832
5 100 235 139 93 1528 826
8 100 373 235 99 1554 858

10 100 312 213 100 1682 828.5
12 100 318 207 96 2152 1432.5
16 100 269 213 97 2454 1376

Table 2. Performance of DisBO-wd on Distributed SAT problems and Distributed Random
problems for dr ∈ {0.98, 0.99} and variable lr.

with the algorithm because it solved slightly more problems than with lr = 3 and the
search costs were lower than with lr = 10.

3.5 DisBO vs. DisBO-wd

A series of experiments were conducted in order to analyse the effect of the various
modifications to DisBO. Thus, DisBO and DisBO-wd were compared by evaluating
the results of running them on the same problems. Table 3 summarises results from ex-
periments on critically difficult distributed graph colouring problems with 10 variables
per agent and < number of colours k = 3, degree = 4.7 > - for an explanation of
how these problems were generated see section 3.3. The results show that DisBO-wd
solved more problems than DisBO, especially on the larger problems. Furthermore,
DisBO-wd required fewer cycles to solve the problems.

Table 4 contains results of experiments on randomly generated problems with
< domain size = 10, density (p1) = 3n, tightness (p2) = 0.5, number of
iterations = 100 ∗ n > where n is the number of variables. The results show that,
like with graph colouring problems, DisBO-wd solved substantially more problems
than DisBO and required fewer cycles.



% solved median cost
num. vars. DisBO DisBO-wd DisBO DisBO-wd

50 100 100 222 115
60 100 100 366 199
70 98 100 480 249
80 98 100 741 27
90 99 100 1095 536
100 95 100 2121 723
110 92 100 1257 655
120 86 100 2214 1011
130 79 98 2400 1354
140 78 100 3755 1534
150 78 100 4929 2086

Table 3. DisBO vs. DisBO-wd on random distributed graph colouring problems of various sizes.
Each point represents attempts on 100 problems.

% solved median cost
num. vars. num. agents DisBO DisBO-wd DisBO DisBO-wd

50 5 61 100 474 402
10 66 100 466 512

100 5 56 100 476 563
10 58 100 975 569

Table 4. DisBO vs. DisBO-wd on random problems of various sizes. Each point represents
attempts on 100 problems.

4 Empirical Evaluation

An experimental evaluation of DisBO-wd was carried out using coarse grained ver-
sions of several DisCSPs including boolean satisfiability formulae (SAT) and ran-
domly generated DisCSPs. In each case, the algorithm’s performance was compared
to the Asynchronous Weak Commitment Search algorithm (Multi-AWCS)[14] and, in
the case of SAT problems, to Multi-DB. These two algorithms were selected because
they are, to our knowledge, the only distributed local search algorithms which allow
more than one variable per agent. Note that Multi-DB was not used with random prob-
lems since it was not designed to solve these. The algorithms were compared on the
percentage of problems solved within a maximum number of iterations (or cycles)3.
The number of iterations (cycles) was used as the measure of efficiency - a widely used
measure for distributed iterative improvement algorithms since it is machine indepen-
dent and, in the case of synchronous algorithms, the number of messages exchanged
between agents and the number of constraint checks can be inferred or approximated
with this metric.

3 Given its completeness and unlimited time, Multi-AWCS is guaranteed to solve all problems used since
they all have solutions. But, in this case we are interested in its performance in bounded time.



Unlike the breakout-based algorithms, Multi-AWCS is a complete algorithm and
is not built around the idea of resolving deadlocks by increasing constraint weights.
Rather, it combines backtracking and iterative improvement search and deals with
local optima through a combination of variable re-ordering and storage of explicit
no-goods. Although this algorithm has been shown to outperform other distributed
backtracking algorithms [14], it can require an exponential amount of memory to store
no-goods.

4.1 Distributed SAT problems
We evaluated the performance of DisBO-wd and the benchmark algorithms on dis-
tributed SAT problems. Satisfiable 3-SAT instances from the SATLib dataset made up
of formulae with 100, 125 and 150 literals were used for the experiments. These were
transformed into coarse-grained DisCSPs with the technique specified in Section 3.3.
We did not run any experiments with Multi-DB and Multi-AWCS, rather we used re-
sults on experiments with the same instances from [4], published by the algorithms’
authors, as benchmarks4. Note that the results for Multi-DB are for a version with
periodic random restarts, which its authors found solved more problems than the orig-
inal version [4] and that the version of Multi-AWCS which they used has no no-good
learning to keep their comparisons with Multi-DB fair. DisBO-wd was run once on
each instance, and was limited to 100n iterations (where n is the number of literals
in a formulae) before attempts were recorded as unsuccessful. Note that in the exper-
iments reported in [4], Multi-DB and Multi-AWCS were limited to a maximum of
250n iterations on their runs and, therefore, we are giving our own algorithm less time
to attempt to solve the problem. The results in Tables 5, 6, and 7 show the percentage
of problems solved and the average and median search costs for the problems which
were successfully solved.

It can be seen from the results that DisBO-wd generally performed substantially
better than the other 2 algorithms. Its average and median costs are significantly better
than those of Multi-DB and its performance is at least as good with the following two
exceptions: (i) SAT problems with 100 literals where the algorithm has only 2 agents -
DisBO-wd’s cost was higher; (ii) SAT problems with 150 literals where the algorithm
has 3 or 5 agents - the percentage of problems solved by DisBO-wd was marginally
lower and the median cost with 3 agents was higher. Also note that DisBO-wd has
a consistency in its search costs that Multi-DB does not match. For example, aver-
age search costs in the 150 literal problems increase by about 350% as the number of
agents increase for Multi-DB while DisBO-wd’s average search cost remains within
a 20% range of the minimum average without a clear degradation in performance as
the number of agents increase. While both DisBO-wd and Multi-DB, rely on mod-
ifying constraint weights to deal with deadlocks, DisBO-wd is less affected by the
distribution of variables to agents.

With respect to Multi-AWCS, DisBO’s performance was significantly better in all
cases. Multi-AWCS solved the least number of problems and it had the highest search
costs.
4 Variables are randomly distributed amongst agents in [4], so from each agent’s perspective the problems

may not be exactly the same.



algorithm agents % solved average cost median cost
Multi-DB 2 99.9 886 346

4 100 1390 510
5 100 1640 570

10 99.6 3230 1150
20 99.7 3480 1390

Multi-AWCS 2 99.9 1390 436
4 98.7 4690 1330
5 97.6 6100 1730

10 96.8 7630 2270
20 95.0 8490 2680

DisBO-wd 2 100 923 515
4 100 948 495
5 100 984 490

10 99.9 1003 516
20 99.8 993 510

Table 5. Performance of DisBO-wd and other algorithms on 1000 random distributed SAT
problems with 100 literals distributed evenly amongst different numbers of agents.

algorithm agents % solved average cost median cost
Multi-DB 5 100 2540 816

25 100 6300 2330
Multi-AWCS 5 87 19200 9290

25 80 25500 15800
DisBO-wd 5 100 1727 725

25 100 1686 921

Table 6. Performance of DisBO-wd and other algorithms on 100 random distributed 125 literal
SAT problems.

4.2 Random distributed constraint satisfaction problems

We evaluated the algorithms performance on random DisCSPs. In this experiment
Multi-AWCS only produces results in the runs with the smallest sized problems. It is
well documented (for example in [8]) that Multi-AWCS can require an exponential
amount of memory to store no-goods during an attempt to solve a problem. The num-
ber of no-goods generated can increase exponentially on large problems, and since
each no-good may be evaluated at least once in each iteration, the length of time to
complete each iteration increases dramatically as the search progresses. In our expe-
rience with Multi-AWCS, we found that it typically ran out of memory on runs with
large problems, especially for DisCSPs with 60 or more variables and the algorithm
sometimes required considerable amounts of time to solve even a single instance. We
used three groups of problems with varying sizes and 100 problems in each group. The
results of these experiments are summarised in Table 8 where we show the percentage



algorithm agents % solved average cost median cost
Multi-DB 3 100 2180 608

5 100 3230 1200
10 96 9030 2090
15 98 9850 3850

Multi-AWCS 3 81 24300 11100
5 67 37100 26100

10 61 39400 36000
15 61 42300 41700

DisBO-wd 3 99 2078 874
5 99 2186 910

10 99 2054 1012
15 98 1893 898

Table 7. Performance of DisBO-wd and other algorithms on 100 random distributed 150 literal
SAT problems.

of problems solved, and the average and the median iterations from successful runs on
attempts on 100 instances for each problem size.

Multi-AWCS has lower search costs than DisBO-wd for problems with 50 vari-
ables when 5 or 10 agents are employed. It also solves slightly more problems when
5 agents are used. However, Multi-AWCS was unable to return results for problems
with 100 and 200 variables, regardless of the number of agents used. DisBO-wd gave
results for all problem sizes, although its performance degraded considerably on the
largest problems.

algorithm n agents % solved average cost median cost.
Multi- 50 5 100 738 288
AWCS 10 98 995 527

100 5 out of memory
10 out of memory

200 5 out of memory
10 out of memory
20 out of memory

DisBO- 50 5 94 1927 1336
wd 10 99 1855 1104

100 5 83 4996 2922
10 88 4695 3065

200 5 62 13454 8060
10 65 16832 14432
20 57 13289 9544

Table 8. Performance of algorithms on random DisCSPs (< n, domain size d = 10, constraint
density p1 ≈ 0.1, constraint tightness p2 = 0.5 >).



5 Discussion and conclusions

We have presented DisBO-wd, a distributed iterative improvement algorithm for solv-
ing coarse-grained DisCSPs which employs the breakout technique in order to escape
local optima. Unlike other similar algorithms, DisBO-wd uses a weight decay and a
learning rate in order to control constraint weights. In addition, its agent coordination
strategy is non-deterministic, since it contains a stochastic mechanism for tie-breaking
when more than one agent offers the best improvement.

DisBO-wd is competitive with respect to Multi-DB, which is the other algorithm
that relies on constraint weights to deal with local optima; but unlike DisBO-wd,
weights in Multi-DB are allowed to grow unbounded. DisBO-wd’s search costs were
generally substantially lower than those for Multi-DB in the SAT problems. DisBO-wd
was also significantly better than Multi-AWCS in all the experiments with SAT prob-
lems. With random problems, Multi-AWCS produced better results for small problems
with 50 variables but DisBO-wd was able to return results for large problems (with
100 and 200 problems) which Multi-AWCS was unable to solve due to its memory
requirements.

References
1. Muhammed Basharu, Inés Arana, and Hatem Ahriz. Solving DisCSPs with penalty-driven

search. In Proceedings of AAAI 2005 - the Twentieth National Conference of Artificial
Intelligence, pages 47–52. AAAI, 2005.

2. Carlos Eisenberg. Distributed Constraint Satisfaction For Coordinating And Integrating A
Large-Scale, Heterogeneous Enterprise. PhD thesis, Swiss Federal Institute of Technology
(EPFL), Lausanne (Switzerland), September 2003.

3. Jeremy Frank. Learning short-term weights for GSAT. In Martha Pollack, editor, Proceed-
ings of the 15th International Joint Conference on Artificial Intelligence (IJCAI97), pages
384–391, San Francisco, August 1997. Morgan Kaufmann.

4. Katsutoshi Hirayama and Makoto Yokoo. Local search for distributed SAT with complex
local problems. In Proceedings of the first international joint conference on Autonomous
agents and multiagent systems, AAMAS 2002, pages 1199 – 1206, New York, NY, USA,
2002. ACM Press.

5. Katsutoshi Hirayama and Makoto Yokoo. The distributed breakout algorithms. Artificial
Intelligence, 161(1–2):89–115, January 2005.

6. Katsutoshi Hirayama, Makoto Yokoo, and Kaita Sycara. The phase transition in distributed
constraint satisfaction problems: firstresults. In Proceedings of the International Workshop
on Distributed Constraint Satisfaction, 2000.

7. Frank Hutter, Dave A. D. Tompkins, and Holger H. Hoos. Scaling and probabilistic smooth-
ing: Efficient dynamic local search for SAT. In P. Van Hentenryck, editor, Proceedings of
the 8th International Conference on Principles and Practice of Constraint Programming
(CP02), volume 2470 of LNCS, pages 233–248, London, UK, September 2002. Springer-
Verlag.

8. Arnold Maestre and Christian Bessiere. Improving asychronous backtracking for dealing
with complex local problems. In Ramon Lpez de Mntaras and Lorenza Saitta, editors, Pro-
ceedings of the 16th Eureopean Conference on Artificial Intelligence (ECAI 2004), pages
206–210. IOS Press, August 2004.



9. Bart Selman and Henry A. Kautz. Domain-independent extensions to GSAT: solving large
structured satisfiability problems. In Ruzena Bajcsy, editor, Proceedings of the Thirteenth
International Joint Conference on Principles on Artificial Intelligent (IJCAI’93), pages
290–294, August 1993.

10. Lars Wittenburg. Distributed constraint solving and optimizing for micro-electro-
mechanical systems. Master’s thesis, Technical University of Berlin, December 2002.

11. Xiaolong Jin Yi Tang, Jiming Liu. Adaptive compromises in distributed problem solving.
In Proceedings of the 4th International Conference on Intelligent Data Engineeringand
Automated Learning IDEAL 2003, March 2003.

12. Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro Kuwabara. Distributed
constraint satisfaction for formalizing distributed problem solving. In 12th International
Conference on Distributed Computing Systems (ICDCS-92), pages 614–621, 1992.

13. Makoto Yokoo and Katsutoshi Hirayama. Distributed breakout algorithm for solving dis-
tributed constraint satisfaction problems. In Proceedings of the Second International Con-
ference on Multi-Agent Systems, pages 401–408. MIT Press, 1996.

14. Makoto Yokoo and Katsutoshi Hirayama. Distributed constraint satisfaction algorithm for
complex local problems. In ICMAS ’98: Proceedings of the 3rd International Conference
on Multi Agent Systems, pages 372–379, Washington, DC, USA, July 1998. IEEE Computer
Society.


