Building models through formal specification

Gerrit Renker, Hatem Ahriz

School of Computing
The Robert Gordon University, Aberdeen. Scotland, UK.
{gr,ha}@comp.rgu.ac.uk

Abstract. Over the past years, a number of increasingly expressive lan-
guages for modelling constraint and optimisation problems have evolved.
In developing a strategy to ease the complexity of building models for
constraint and optimisation problems, we have asked ourselves whether,
for modelling purposes, it is really necessary to introduce more new lan-
guages and notations. We have analyzed several emerging languages and
formal notations and found (to our surprise) that the already existing Z
notation, although not previously used in this context, proves to a high
degree expressive, adaptable, and useful for the construction of problem
models. To substantiate these claims, we have both compiled a large
number of constraint and optimisation problems as formal Z specifica-
tions and translated models from a variety of constraint languages into
Z. The results are available as an online library of model specifications,
which we make openly available to the modelling community.

1 DMotivation

Formal methods and notations are most commonly associated with software
development in procedural and object-oriented implementation languages. We
are developing a strategic software engineering approach for modelling constraint
and optimisation problems (CSOPs); one of the main underlying objectives is to
integrate the notion of such problems into the standard software design cycle
[8]. For this purpose, we have been investigating the use of formal notation in
general and of Z in particular, coming to the conclusion that advantages are to
be had in at least four areas.

The first concerns the inception phase of building an initial or conceptual
model. A modeller must first come up with an understanding of the problem
requirements before being able to exploit its specific features. Quoting Smith,
a recognized expert in the area of modelling: “Hence, although constraint pro-
gramming does require an understanding of search and constraint propagation,
it is by understanding the problem and building in that understanding that we
can develop a successful model.” [9, sec. 13]

Secondly, as larger-scale software is mostly developed in a (possibly dis-
tributed) team context and problem-solving strategies are shared across the
modelling community, we see the importance of formal notation as a means
of communication which is not constrained by and tied to the specifics of a



particular implementation language. Specifications of constraint and optimisa-
tion problems in the scientific literature are often either based on the use of
non-standardized (sometimes informal) mathematical notation, or in form of
source-code descriptions at implementation level. The importance of not com-
mitting to a certain implementation format was also one of the crucial insights
realized by the founders of CSPLib,! as “representation remains a major issue
in the success or failure to solve constraint satisfaction problems. All problems
are therefore specified in natural language . ..” [3]

The third aspect lies in proving and verifying that a constraint problem at
hand is indeed syntactically and semantically covered by a given model. Formal
specification languages here allow the interaction with computer tools (figure
1) for simplifying, reducing and rewriting statements, thus allowing to generate
(canonical) forms of expressions which are either more general or more suitable
for the problem at hand. The notion of debugging in constraint programming
fundamentally differs from that in procedural programming, a verified model
specification reduces the need for debugging by highlighting conceptual errors
at an early stage of development. We support the argumentation of Law and
Lee in [6] in that we would like to reason about properties of CSP models
without actually having to solve these. Modelling in constraint programming
is further, like mathematical modelling, a rather abstract mental activity, and
so the verification? of a model can provide concrete evidence, reassuring the
modeller that a chosen concept is indeed correct.

Finally, and in keeping with evolving concepts of constraint problem mod-
elling, formal specifications allow higher-level abstractions of model formula-
tions. Over the past years increasingly more expressive and abstract modelling
languages have evolved. OPL [4] innovated a uniform abstraction to deal with
both CP and OR problems at the same language level. The F language [5] in-
troduced useful model abstractions based on function variables, which is being
developed further in the ESRA language for relational modelling of constraint
problems [2]. Work on automated model refinement [1] has provided substantial
support for the conjecture that constraint problem models can be constructed
by compositional refinement of abstract specifications. Such compositionality is
also at the heart of introducing algebraic CSP model operators to support a
modular design of constraint problem formulations [6]. Furthermore, Law and
Lee speak in that study of “reusable model components” and “model patterns”
[6, sec. 5]. The latter recently stirred interest in form of an invited lecture [12].

From the above considerations we have chosen Z [10,11], due to the fact that
its style is generic and not geared towards a certain programming paradigm. The
schema format, as introduced in section 2, proved a natural match for express-
ing the main bodies of constraint and optimisation problems. To substantiate
our claims and to evaluate Z, we have compiled a large number of well-known
constraint and optimisation problems, which we make openly available as online
library of specifications to the modelling community (cf. section 5). The remain-

! http://www.csplib.org
2 A formal specification can also prototypically be verified through animation.



C Z Specification )

syntax type - theorem
Fig. 1. Further processing of model specifications

der of this document is structured as follows. After a brief summary of relevant
7Z features in section 2, we show how to use Z for the specification of CSOPs in
section 3, followed by an example in section 4 and conclusions in section 5.

2 A brief recapitulation of Z features

Z is a typed formal specification language based on first-order logic and Zermelo-
Fraenkel set theory. It provides a precise syntax and a semantics based on clas-
sical mathematics for the abstract specification of systems in a model-oriented
way. The language has been standardized as ISO/IEC standard 13568:2002,
and its reference manual [11] comes with a mathematical toolkit of common
operations on sets and numbers. Main elements of a Z specification are given
sets, axiomatic definitions and schemas. Given sets are introduced as further
unspecified global names within square brackets, e.g.

[Warehouses|

This allows to reference the set Warehouses as type throughout the specification.
Axiomatic definitions also have global scope and are often used to introduce
constants or constant mappings. An axiomatic definition consists of a declaration
part and an optional predicate part, separated by a horizontal line.

square : N— N

Vn:Ne square(n) =nxn

The example? introduces a total function square on N. Several type constructors,
e.g. tuples, Cartesian product and (finite) power-sets, are provided by default,
as well as common mathematical data types such as relations, functions, se-
quences and bags. Composite and heterogeneous data types can be introduced
using schemas, which are one of the most powerful features of Z. A schema is
an elementary building block of a Z specification. Like axiomatic definitions,
schemas divide into a declaration and optional predicate part, the difference
being that all declared constants and variables are locally-scoped. For example,

% this example first appeared in [10, pp. 123/24].



_ SQPAIR
z,y: N

y = square(z)

Here, z, y are local to SQPAIR and y is assigned the value of applying the global
function square. The elements in the declaration part are called components of
the schema. A schema can therefore be viewed as a set of named components that
are constrained by predicates. Schemas can be combined into new ones using
the operations of the schema calculus such as inclusion, composition, projection,
conjunction, disjunction, negation and hiding. A schema can also be seen as a
mere abbreviation for the text it contains. Instead of
Jz,y:Ney=square(z) Az > 100

we can equivalently write 3 SQPAIR e x > 100. The type of a schema is the
signature of its components, where the order of appearances is irrelevant. The
type of the above schema is {z : N; y : N). Likewise, the term {SQPAIR} is the
set of all schema bindings which have the type {z,y : N) and contain exactly
those values for z,y such that y = square(z). More sophisticated variants of
schemas in Z allow generic and parameterised definitions that specify entire
families of schemas rather than sets of complying objects [11].

3 Adapting Z for constraint and optimisation problems

Constraint satisfaction problems are usually defined as a triple (X, D, C) of
variables X, domains D and constraints C' formulated over X. In the majority
of constraint (logic) programming languages, the constraints in C' can be ex-
pressed as quantified formulae of first-order logic. This allows a representation
of constraint satisfaction problems in Z by single schemata, named e.g. CSP,*
where the elements of X and D are contained in the declaration part and the
constraints in C' in the predicate part. In cases of complex domains d;, the base
type (e.g. Z) appears in the declaration part in combination with additional
unary constraints on x; in the predicate block. These concepts are illustrated by
the example in section 4. Following the semantics of Z [10], the solution set of
constraint problems defined in the aforementioned way is simply the set { CSP}
(wrt. the above schema name), since it is the set containing all objects of type
{z1 : di..., 3, : dp) such that the constraints C of the predicate block hold.
This permits the definition of a template for specifying optimisation problems.
In constrained optimisation problems, we are interested in selecting the ‘best’
out of a set of solutions to a problem, where the evaluation criterion is deter-
mined by an objective function mapping solutions into numerical values. As is
customary in IP and many CP languages, we will here assume that objective
functions range over Z. Using the above format for expressing constraint satis-
faction problems, let the constraints of the problem be given as a schema CSOP.

4 Besides, we can also make modular use of other and auxiliary schemata.



We can then define the objective function in a separate schema, as a function
from CSOP to Z, and express the solution of the problem in terms of optimising
the value of this function. This is also illustrated in section 4. The procedure for
unconstrained optimisation problems is the same as for the constrained variants,
the difference being that the predicate block of the main constraint schema re-
mains empty. As Z itself does not make restrictions on the domains to use, we
can in principle extend the concept also to the domain of Real (or even complex)
numbers, although we would need to supply an appropriate toolkit.

4 An example specification

We now illustrate the main concepts of the last section on a small example,’® the
bus driver scheduling problem (prob022 in CSPLib). We are a given set of tasks
(pieces of work) and a set of shifts, each covering a subset of the tasks and each
with an associated, uniform cost. The shifts need to be partitioned such that
each task is covered exactly once, the objective is to minimise the total number
of shifts required to cover the tasks. The sets of interest are pieces and shifts,

| pieces, shifts : PN

defined here as sets of natural numbers. The function coverage is part of the
instance data and denotes the possible subsets of pieces. The only decision

_ Driver_Schedule
coverage : shifts — F pieces
allocate : iseq shifts

coverage o allocate partition pieces

variable is allocate, an injective® sequence of shifts. Composition of allocate with
coverage yields a sequence of subsets of pieces. The built-in partition operator of
Z [11, p. 122] asserts that this sequence of subsets is a partition of the set pieces.
We continue with the optimisation part, which illustrates the template format
for modelling optimisation problems we mentioned in section 3. The objective
function maps each element from the solution set Driver_Schedule into a natural
number, in this case the number of shifts represented as the cardinality of the
allocate variable.

__ Optimisation_Part
objective : Driver_Schedule — N
solution : Driver_Schedule

Y ds : Driver_Schedule ® objective(ds) = #(ds.allocate)
objective(solution) = min(objective(|Driver_Schedule))

5 as one reviewer rightly pointed out, the set-based nature of this small example is
not very indicative of Z’s abstraction facilities, but this example shows how succinct
a formulation is possible. We refer to the more than 50 online examples.

5 shifts can appear at most once.



The last expression states that the element solution of the solution set must have
a minimal value of the objective function. For this purpose, we use relational
image of the entire solution set Driver_Schedule through objective.

5 Conclusion and further work

In this paper we have summarized the successful use of Z as a precise modelling
notation for csops. With regards to expressivity, we had positive results in
mapping constructs and models from OPL, ESRA and F [7]. We initially wrote
the specifications without any tool support, subsequent verification (using the
fuzz type checker” and the Z-Eves® prover) however proved so helpful in ironing
out inconsistencies and improving the understanding of the problems that now
all models are electronically verified prior to documentation. Our main focus at
the moment is the modelling strategy and formal analysis of models. Aspects
of further investigation are the translation of Z models into an implementation
language, model animation and further tool support. The online repository is
at http://www.comp.rgu.ac.uk/staff/gr/ZCSP/.

Acknowledgment. We kindly thank the reviewers for their constructive criticism.

References

1. A. Bakewell, A. M. Frisch, and I. Miguel. Towards Automatic Modelling of Con-
straint Satisfaction Problems: A System Based on Compositional Refinement. In
Proceedings of the Reform-03 workshop, co-located with CP-03, pages 2—17, 2003.

2. P. Flener, J. Pearson, and M. Agren, Introducing ESRA, a Relational Language
for Modelling Combinatorial Problems. In Proc. Reform-03, pages 63-77, 2003.

3. I. P. Gent and T. Walsh. CSPLib: A Benchmark Library for Constraints. In
J. Jaffar, editor, Proceedings of CP’99, pages 480—-481. Springer, 1999.

4. P. V. Hentenryck. The OPL Optimization Programming Language. MIT, 1999.

5. B. Hnich. Function Variables for Constraint Programming. PhD thesis, Depart-
ment of Information Science, Uppsala University, Sweden, 2003.

6. Y. C. Law and J. H. M. Lee. Algebraic Properties of CSP Model Operators. In
Proceedings of Reform-02, co-located with CP’02, pages pp. 57—71, 2002.

7. G. Renker. A comparison between the F language and the Z notation. Technical
report, Constraints Group, Robert Gordon University, Aberdeen, November 2003.

8. G. Renker, H. Ahriz, and I. Arana. A Synergy of Modelling for Constraint Prob-
lems. In Proc. KES’03, volume 2773 of LNAI, pages 1030-1038. Springer, 2003.

9. B. Smith. Constraint Programming in Practice: Scheduling a Rehearsal. Technical
Report APES-67-2003, APES Research Group, September 2003.

10. J. M. Spivey. Understanding Z: A specification language and its formal semantics,
volume 3 of Cambridge tracts in theoretical computer science. CUP, 1988.

11. J. M. Spivey. The Z Notation: A Reference Manual. Oriel College, Oxford, 1998.

12. T. Walsh. Constraint Patterns. In Proc. CP’03, pages 53—64. Springer, 2003.

" http://spivey.oriel.ox.ac.uk/mike/fuzz/
8 http://www.ora.on.ca/z-eves/



