A Hybrid Approach to Distributed Constraint
Satisfaction

David Lee, Inés Arana, Hatem Ahriz and Kit-Ying Hui

School of Computing,
The Robert Gordon University,
Aberdeen, United Kingdom
{dl, ia, ha, khui} @conp.rgu.ac.uk

Abstract. We present a hybrid approach to Distributed Constraints&etiion

which combines incomplete, fast, penalty-based localcbearith complete,

slower systematic search. Thus, we propose the hybridigigpPenDHyb where
the distributed local search algorithm DisPeL is run for syv@mall amount of
time in order to learn about the difficult areas of the probfeom the penalty
counts imposed during its problem-solving. This knowledgden used to guide
the systematic search algorithm SynCBJ. Extensive enapirgsults in several
problem classes indicate that PenDHyb is effective fordgmgpblems.

Key words: Constraint Satisfaction, Distributed Al, Hybrid Systems.

1 Introduction

Constraint satisfaction is an increasingly important gayen for the resolution of com-
binatorial problems. A Constraint Satisfaction Probler8RJ[1] is a triple(X, D, C)
whereX = {z1,...,z,} is a set of variables) = {D,,..., D, } is a set of domains
and C is a set of constraints which restrict the values thaabtes can take simulta-
neously. A solution to a CSP is an assignment of values tabkes which satisfies all
constraints.

A Distributed Constraint Satisfaction Problem (DisCSH) [a CSP where the
problem (variables, domains and constraints) is disteitb@imongst a number of agents
each of which has only a partial view of the problem due togmyissues, communica-
tion costs or security concerns. Thus, in order to solve thblpm, agents must com-
municate and cooperate whilst disclosing as little infaioraas possible. Assumptions
commonly shared by researchers in the field [2] are: (i) nyEssizlays are finite and
for any pair of agents, messages are received in the ordethinaare sent; (ii) each
agent is responsible for one variable.

Existing solution methods for DisSCSPs can be classified steByatic search and
local search methods. In systematic algorithms, orderedtagsequentially instanti-
ate their variable, backtracking to the previous agent itapsistent value is found.
Zivan and Meisels [3] devised SynCBJ, a distributed versibconflict-directed back-
jumping [4] combined with dynamic backtracking [5]. Systgin search algorithms
are completk

! They either find a solution to a problem or detect that the leralis unsolvable.

Consequently, distributed local search algorithms havenlaevised which, for
large problems, converge quicker to a solution but are gdigéncomplete. Distributed
local search approaches iteratively improve an initialodefalues until a set of values
which is a solution is found. However, it may find one set of fomimal values (local
optima) always appears more promising than moving to otberbinations of values
(the neighbourhood) and get stuck. Therefore, local sespphoaches rely heavily on
strategies for escaping local optima, e.g. weights on caims$ [2] or penalties on val-
ues [6]. For large problems, they are faster than the systeaproaches.

There are only two distributed hybrid approaches which domiboth types of
search to produce hybrid algorithms which are ‘fast’ and pl@te. DisBOBT [7] uses
Distributed Breakout [2] as its main problem-solver andi$tributed Breakout fails
to solve the problem, its weight information orders the agéor an SBT [3] search.
LSDPOP [8] is an optimisation algorithm running the systaaagorithm DPOP [9],
until the maximum inference limit is exceeded when locarsleguided by DPOP is
run to find the best solution to the problem.

We introduce a hybrid approach, PenDHyb, combining perzdised local search,
DisPeL [6], with systematic search, SynCBJ, for distributenstraint satisfaction.

The remainder of this paper is structured as follows. Ourridydpproach, PenD-
Hyb, is explained in Section 2; Section 3 presents empirieslilts on both solvable
and unsolvable problems. Finally, Section 4 concludes &pep

2 PenDHyb: Penalty-based Distributed Hybrid Algorithm

We propose a new approach, PenDHyb, for Distributed Cansteatisfaction which
combines penalty-driven local search (DisPeL) with systiersearch (SynCBJ) in or-
der to speed-up the latter. In the former type of search, veéhgoasi-local optimum
is reached, penalties are imposed on ‘current’ variableesatausing constraint viola-
tions. Penalties therefore indicate values that, thougkitay promising, fail to lead to a
solution. The higher the penalties accumulated by a vahedess desirable it becomes.
The penalty and value information learnt during penaltiyeatr problem solving can be
used to guide systematic search as follows:

— Difficult variables: Penalties on values are used to learn which variables dre dif
cult to assign during problem solving. A variable which haswheavily penalised
values is seen as more troublesome than a variable whosesvahve few or no
penalties. Variables are ordered according to their degmdaifficulty (penalties)
and this order is used to drive the systematic search afgorit

— Best variable valuesthe best solution found (the one with the least constragit vi
lations) in the penalty-based algorithm, is used for valakeong in the systematic
search.

DisPeL [6] is an iterative improvement algorithm where ageake turns to im-
prove a random initialisation in a fixed order. In order tootes deadlocks (quasi-
local-optima where an agentisEw remains unchanged for 2 iterations), DisPeL applies
penalties to variable values which are used in a 2-phasatgir as follows: (i) First
the values are penalised withemnporary penalty in order to encourage agents to assign

other values and; (ii) If the temporary penalties fail toolgs a deadlockncremental
penalties are imposed on the culprit values. In the more efficient SoPel [6],
agents decide randomly to either impose a temporary peoatty increase the incre-
mental penalty. In the remainder of this paper we refer talsisPel as DisPel.

SynCBJ is a synchronous systematic search algorithm wheteagent keeps track
of the reasons why values have been eliminated from theiala’s domain. When a
bactrack step is required, the agent is able to determinesatti@ble responsible for the
conflict and backjumps to the agent holding that variables Tircreases the perfor-
mance of the algorithm very substantially when compared®. S

In order to learn penalty information we modified DisPeL bdiad:

— A penalty counter pc; for each variabley;. pc; is incremented whenever a penalty
is imposed on any of;’s values. Unlike penalties on values, penalty counters are
never reset and, therefore, highlight repeated penalisafivariables, i.etrouble-
some variables.

— A best value bu; store for each variable; which keeps the value participating in
the best solution found by DisPeL so far

Our hybrid algorithm, PenDHyb, combines DisPelL and Syn@&&r agent initial-
isation, a standard DisPeL search runs (as described foh-&sPel in [6]) but only
for a very small number of cycles e.g. 21 cycles for randomelyayated problems with
40 variables. We ran a series of experiments and determiiged tvery small number
which steadily increases as the number of variables inereas optimal. If the prob-
lem is solved, the solution is returned. Otherwise, vagalre arranged, in descending
order, according to their degree and penalty count befon€€8Y is run. In addition to
the variable ordering information, SynCBJ makes use ofevahdering information as
follows: for each variable;, the first value to be tried is the best valug found by
DisPeL, i.e. the one participating in the best instantrafaund.

PenDHyb is complete since either DisPel reports a solutitimmthe small num-
ber of cycles (typically DisPeL solves 5% of problems) or Sd runs. Since SynCBJ
is complete, completeness of PenDHyb is guaranteed. Pelmdgound since both
DisPeL and SynCBJ are sound [6, 3].

3 Empirical Evaluation

Our SynCBJ implementation was verified with the distributaddomly generated
problems described in [3] with the results at least as goodhase reported by
SynCBJ’s authors. We use SynCBJ with max-degree variablerimg which obtains
substantially better results than lexicographic ordering

We evaluated PenDHyb on solvable and unsolvable distidbnatedomly generated
problems measuring the two established costs for DisC§RBe(hnumber of messages
sent; (i) the number of constraint checks performed. Algiio CPU time is not an
established measure for DisCSPs [10], we also measured ithenresults obtained
were consistent with the other measures used.

2 Note that determining the best solution does not incur adjtiadal messages.

Table 1. Performance of SynCBJ and PenDHyb on randomly generatédxiepns.

N. messages solvable problems unsolvable problems
n 30 40 50 60 30 40 50 60
SynCBJ 2301 | 22590 262178| 1897645| 5307 | 55692 | 557359| 3069301
PenDHyb 2115 | 18566 |100417 | 486301 | 5546 | 51916 | 451218 | 2686295
N. cnstr. checkg solvable problems unsolvable problems
n 30 40 50 60 30 40 50 60
SynCBJ 11489 |11920913449411042151024790 | 285591 2924331 17153383
PenDHyb 12041|116573 | 714961 | 2975784 | 27913|284847 |2424052 |15077229

Table 2. SynCBJ and PenDHyb on graph colouring problemsitayree = 5.

N. messages solvable problems unsolvable problems
n 125 | 150 175 200 125 150 175 200
SynCBJ |18781] 75778|191988 722256|127054 660334 |1957622 6793331
PenDHyb |18577 | 60005 (161213 | 463601 |113590 | 557434 |1849564 | 5357801
N. cnstr. checky solvable problems unsolvable problems
n 125 | 150 175 200 125 150 175 200
SynCBJ 46234 1178942 4777131750199309383 1587410 4518670 15694031
PenDHyb 52534]162748 |416520 | 463601 [281142 [1327274 |4498886 [12527968

We evaluated PenDHyb against SynCBJ on a wide variety oformhdgenerated
problems ¢ € {30,40,50,60},d € {8,9,10,11,12}, p1 € {0.1,0.15,0.2,0.25,0.3}
andp2 € {0.1,0.15,...,0.95}) wheren is the number of variableg, is the domain
size,pl is the constraint density an is the constraint tightness. We present the re-
sults at the phase transition point which represents harblgms for SynCBJ. Other
tightness values showed similar performance for both &lgyos. The results, shown
in Table 1 for problems withi{ € {30, 40, 50,60}, d = 10, pl = 0.15 andp2 =
0.6(30),0.5(40), 0.45(50), 0.4(60)), are median values over 100 problems. For solv-
able problems, PenDHyb is significantly more efficient thgn@BJ with performance
difference increasing with the number of variables. Foiolvable problems SynCBJ is
marginally better on problems with 30 variables but PenDIdydubstantially better on
problems with 40 or more variables.

We also evaluated the performance of PenDHyb against Syrm@Bdistributed
graph colouring problemsnipdes € {125,150,175,200}, domain sized = 3 and
degreek € {4.6,...,5.3}). These problems are of similar size to the ones used for the
experiment on randomly generated problems above. Mediaeyaver 100 solvable
problems and 100 unsolvable problems are shown in Table grédrlems with a de-
gree of 5. The results showed that PenDHyb is significantlyenasficient for both
solvable and unsolvable problems. This efficiency beconwre profound as the num-
ber of nodes increase and thereby mirrors the performanemHyb with randomly
generated problems namely that PenDHyb is substantialle refficient on medium
to large-sized problems. Experiments for other degreeissmowvn here) gave similar
results, i.e. PenDHyb performed better, especially foplgsawith a large number of
nodes.

4 Conclusions

We have presented, PenDHyb, a hybrid approach to DistddDasstraint Satisfaction
using penalty-based local search algorithm, DisPeL, tmlabout the problem with the
knowledge gained guiding a systematic search algorithmC8y.

We also evaluated other methods of exploiting the knowleggeed from running
DisPeL to provide variable and value ordering for SynCBJ. fdlend that the best
performing method was the one used in PenDHyb, where vagadnle sorted using
max-degree and penalties and values are prioritised usakig values.

We have shown that PenDHyb’s performance is significantiiebéhan systematic
search for large, difficult problems in two problem classaadomly-generated prob-
lems and graph colouring problems.

Our future work with PenDHyb will investigate the effecthass of our approach
on non-binary problems and the approach’s applicabilitgdarse-grained problems,
where agents are responsible for more than one variable.

References

[EnY

. Rossi, F., van Beek, P., Walsh, T.: Handbook of ConstRiiagramming. Elsevier (2006)

2. Yokoo, M., Hirayama, K.: Algorithms for Distributed Cdnaint Satisfaction: A Review.
Autonomous Agents and Multi-Agent SysteB(g) (2000) 185-207

3. Zivan, R., Meisels, A.: Synchronous vs asynchronousckeaar DisCSPs. In: Proceedings of
the First European Workshop on Multi-Agent Systems (EUM2jford (December 2003)

4. Prosser, P.: Hybrid Algorithms for the Constraint Satitbn Problem. Computational
Intelligence9(3) (1993) 268—299

5. Ginsberg, M.L.: Dynamic backtracking. Journal of Ariiiidntelligence Research(1993)
25-46

6. Basharu, M., Arana, |., Ahriz, H.: Stoch-DisPeL: Explogt randomisation in DisPeL. In:
Proceedings of 7th International Workshop on Distributesh&€raint Reasoning, Hakodate,
Japan (May 2006)

7. Eisenberg, C.: Distributed Constraint SatisfactionGoprdinating and Integrating a Large-
Scale Heterogeneous Enterprise. PhD thesis, Ecole Pohjteee Federale De Lausanne
(2003)

8. Petcu, A., Faltings, B.: A hybrid of inference and locahraf for distributed combinato-
rial optimization. In: Proceedings of 2007 IEEE/WIC/ACMtdnnational Conference on
Intelligent Agent Technology, IEEE Computer Society (20842—-348

9. Petcu, A., Faltings, B.: A scalable method for multiagemstraint optimization. In: Pro-
ceedings of the 19th International Joint Conference onfididl Intelligence (IJCAI-05),
Edinburgh, Scotland (August 2005)

10. Meisels, A., Kaplansky, E., Razgon, I., Zivan, R.: Conrgaperformance of distributed
constraints processing algorithms. In: Proceedings oAtKIAS-2002 Workshop on Dis-
tributed Constraint Reasoning, Bologna (July 2002) 86—93

