

AUTHOR:

TITLE:

YEAR:

OpenAIR citation:

OpenAIR takedown statement:

 This work is made freely
available under open
access.

This ǘƘŜǎƛǎ is distributed under a CC ____________ license.

__

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

This work was submitted to- and approved by Robert Gordon University in partial fulfilment of the following degree:

The Evolution of Modular Artificial Neural Networks

A thesis submitted to

The Robert Gordon University

in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

Sethuraman Muthuraman

School of Engineering

The Robert Gordon University

Aberdeen, Scotland, 2005

Acknowledgements

Firstly, I would like to thank my mother, Mrs Ramayee Muthuraman, for the love and

encouragement she has given me. Her faith has been a great inspiration in compilation

of this thesis. I would like to express gratitude to my younger brother Mr Valliappan

Muthuraman who assists my mother in every respect while I am away from home.

Secondly, I am indebted to both my supervisors Mr Grant Maxwell and Dr

Christopher MacLeod for their assistance and advice over the duration of the project.

Without their supervision skills, the project would have been much more difficult and

not nearly as enjoyable.

Thirdly, I am indebted to The Robert Gordon University for the award of a Research

Studentship.

A special note of thanks is due to Mr Matthew G Crowley, who assisted in proof

reading the thesis and made many valuable suggestions during the project and for his

friendship.

Thanks to Dr Christopher MacLeod, Dr David McMinn and Mrs Ann B Reddipogu

for their permission to include details of their work in the text.

Finally, I am also grateful for the encouragement during this project from The Robert

Gordon University, School of Engineering staff, particularly Mr Kenneth S Gow and

Mrs Ann B Reddipogu.

Sethuraman Muthuraman

 iii

ABSTRACT

This thesis describes a novel approach to the evolution of Modular Artificial Neural

Networks. Standard Evolutionary Algorithms, used in this application include: Genetic

Algorithms, Evolutionary Strategies, Evolutionary Programming and Genetic

Programming; however, these often fail in the evolution of complex systems, particularly

when such systems involve multi-domain sensory information which interacts in complex

ways with system outputs. The aim in this work is to produce an evolutionary method

that allows the structure of the network to evolve from simple to complex as it interacts

with a dynamic environment. This new algorithm is therefore based on Incremental

Evolution. A simulated model of a legged robot was used as a test-bed for the approach.

The algorithm starts with a simple robotic body plan. This then grows incrementally in

complexity along with its controlling neural network and the environment it reacts with.

The network grows by adding modules to its structure – so the technique may also be

termed a Growth Algorithm. Experiments are presented showing the successful evolution

of multi-legged gaits and a simple vision system. These are then integrated together to

form a complete robotic system. The possibility of the evolution of complex systems is

one advantage of the algorithm and it is argued that it represents a possible path towards

more advanced artificial intelligence. Applications in Electronics, Computer Science,

Mechanical Engineering, and Aerospace are also discussed.

 ii

Contents

Declaration i

Abstract ii

Acknowledgements iii

Contents iv

Chapter 1. Introduction
1.1 Introduction to Chapter 1

1.2 The Nature of the Problem 1

1.3 Modularity 2

1.4 Aim and Objectives 3

1.5 Novel Aspects of this Research 5

1.6 Thesis Structure 6

Chapter 2. Review of Previous work within the Research Group
2.1 Introduction to Chapter 9

2.2 Single String Evolutionary Techniques 9

2.3 Evolution of Functions within the Animat Nervous System (ANS) 12

− Lower Layers

2.4 Evolution of Functions within the Animat Nervous System (ANS) 17

 − Upper Layers

2.5 Conclusions Drawn from the Group’s Previous Work 19

2.6 Summary 20

Chapter 3. Evolution and Devolved Action (page numbers)
3.1 Introduction to Chapter 21

3.2 Biological Evolution 22

 3.2.1 Organism at the Cellular Level 25

3.3 Organisation Methods 26

 3.3.1 Modelling Biology 26

 iv

 3.3.2 Production Trees 28

 3.3.3 Fractals 29

 3.3.4 Altering Existing Evolutionary Algorithms 29

 3.3.5 Direct Growth 31

 3.3.6 The Role of Incremental Change 32

 3.3.7 The Final System 35

 3.3.8 Amalgamating the Function Method 39

3.4 Summary 40

Chapter 4. Literature Review
4.1 Introduction to Chapter 42

4.2 Multilayer Perceptrons 42

4.3 Evolutionary Artificial Neural Network (EANNs) 42

4.4 Growing ANNs 45

4.5 Modular Neural Networks 46

4.6 Simple Incremental Learning of ANNs 51

4.7 Evolving More Complex Systems 54

4.8 Body-Brain Evolution 55

4.9 Context of the Current Research 56

4.10 Summary 58

Chapter 5. Components for Evolution of Modular

Artificial Neural Networks
5.1 Introduction 59

5.2 Neuron Models 59

5.3 Evolutionary Algorithm 64

5.4 Actuator Models 65

5.5 Robot Development Morphology 69

5.6 The Principal of the Artificial Evolutionary System 70

5.7 Implementation of the Evolutionary System Technique 72

Chapter 6. Initial Results

 v

6.1 Introduction 73

6.2 Results from Single Functions 73

6.3 Quadruped 91

6.4 Permissible Module Connections 93

6.5 Discussion 98

Chapter 7. Results from Multiple Functions
7.1 Introduction 101

7.2 Evolution of the Body-Plan 101

7.3 Results from Further Degrees of Freedom 102

7.4 Copy And Paste Technique 112

7.5 Dual-Gait Network 114

7.6 Discussion 116

Chapter 8. System Integration
8.1 Introduction 118

8.2 Vision System 118

8.3 Integration of Locomotive with Vision Networks 127

8.4 Discussion 132

Chapter 9. Suggestions for Further Work
9.1 Introduction to Chapter 134

9.2 Other Applications of the Growth Method 134

9.3 Investigations of Further Network Parameters 136

9.4 Other Ideas for Further Work 139

Chapter 10. Conclusions
10.1 Introduction to Chapter 140

10.2 The Project Objectives Revisited 140

10.3 Novel Aspects of this Research 144

10.4 Summary of Suggestions for Further Work 145

10.5 Concluding Remarks 145

 vi

References 146

Appendix A
Papers produced during research A1

1.1 The Evolution of Modular Artificial Neural Networks A2

 for Legged Robot Control

1.2 The Development of Modular Evolutionary Networks for A11

 Quadrupedal Locomotion

1.3 Unconstrained Incremental Evolution of Neural Networks A18

 for Robot Control

Appendix B
Evolution and Devolved Action B1

Appendix C
Further Results C1

Appendix D
Evolutionary Technique flowchart D1

Appendix E
Description of the Evolutionary ANN E1

 vii

Chapter 1

Introduction

1.1

1.2

Introduction to Chapter

This chapter starts by describing the problems addressed by the project. The aims and

objectives of the research are outlined and novel ideas discovered during the work are

listed. A chapter by chapter breakdown of the thesis is also included.

The Nature of the Problem

The quest for Artificial Intelligence (AI) is one of the most exciting challenges that

mankind has ever undertaken. The real promise of AI research is to study intelligent

behaviour in humans and animals and attempt to engineer such behaviour in a

computer or other machine. Biologically inspired Artificial Neural Networks (ANNs)

are one of the tools used to achieve this.

At the present time, most of the research into ANNs which is not focused on

Computational Neuroscience, is aimed at engineering applications. Examples of such

applications include Pattern Recognition, Control Systems and Signal Processing.

These usually involve fairly small networks with fixed topologies, unit functionality

and training methods. This has led to the adoption of popular and simple “off the

shelf” networks such as Back Propagation trained Multilayer Perceptrons, Radial

Basis Networks and others.

This focus contrasts with the early expectations of connectionism, before the

publication of “Perceptrons” [Minsky 1969]. Today, only a few researchers carry the

flag for large general purpose networks as a route towards genuine intelligence in an

unconstrained environment [de Garis 1995]. Most research towards this end has

shifted away from neural nets and towards Robotic, Agent or Animat based routes

such as Swarm Intelligence [Bonaneau 1999] and Interaction Based Systems

[Warwick 1997].

 1

The research presented in this thesis outlines a technique which draws on many of

these strands of previous work.

The basis of this project is an evolutionary technique that allows an Artificial Neural

Network to evolve in an unconstrained and open-ended manner. The method is

demonstrated by using it to develop locomotive gaits for legged robots. The system

works by starting with a mechanically simple robot, operating in a primitive

environment. It then allows the environment and the robot’s body plan, actuators and

sensors to gradually become more sophisticated, while adding modules to the

controlling neural network. In this way the controlling network grows in complexity

along with the robot. As this development takes place, ANN modules (small

networks) are added to the control system. During the process, previously evolved

network structures are not retrained but retained. Since both the system and the

network grow incrementally in complexity, this may be referred to as ‘Incremental

Evolution’. The final intention of the research (beyond this thesis) is that, as the

network develops, intelligence will eventually emerge.

A detailed explanation of the technique is given in Chapter 5. The method is based on

computer modelling of an approach to biological evolution in an engineering context

suggested by MacLeod et al in the PhD thesis of McMinn [McMinn 2002] - a

previous researcher in the author’s research group.

1.3 Modularity

The human brain has developed into a very complex structure through million of

years of evolution. One of the great scientific challenges of this century will be to

understand the code which lies behind its development. It is well known that the

structure of the brain is modular [Arbib 1995]; that is, different parts specialize in

different tasks (such as vision, taste, sound, touch, smell and language) and groups of

neurons interact in complex ways. The modularity of the brain can also be illustrated

by another example. When a person loses his vision as a result of brain damage, he is

still able to smell, taste, or speak; if the brain were not modular, then all the

processing capabilities would be affected when an area was damaged. Another

advantage is that, in a modular system, individual functions are broken up into

subprocesses that can be executed in separate modules without mutual interference

 2

[Happ 1994]. One can even see this at a gross level in the human body, where

different functions (for example, digestion and circulation) are carried out in different

‘modules’ (in this case the stomach and heart) in order to avoid interference between

them.

1.4 Aim and Objectives:

The aim of this research was to develop an Evolutionary Algorithm (EA) to evolve

ANNs in an open-ended way, without the need to artificially constrain them, so that

they could automatically grow to an arbitrary level of complexity, without the need

for human design or intervention. The EA should be able to automatically and

naturally evolve a “system”. A system in this context is defined as a group of fully

interconnected ANN structures for multiple different, but related, functions; a good

example of this is a robot where a “community” of ANNs may be associated with

various sensory and motor functions. It is hoped that, by allowing ANN structures to

evolve in this modular and incremental fashion, real “intelligence” would emerge.

To accomplish the aims, the following objectives were set out at the beginning of the

project.

Background Reading and Appropriate Directed Study

Appropriate directed studies were undertaken at the beginning of the research. These

included attending seminars and lectures in the field of study, understanding and

reproducing work done by McMinn [McMinn 2002] and understanding the

evolutionary method described in the paper “Evolution and Devolved Action” (EDA)

[MacLeod 2002].

Literature Search in Field

A literature search into the development of ANN architectures was undertaken. The

initial search concentrated on understanding the need for ANN architectures which

can grow. Then, the concept of Modularity in ANNs was investigated. The search

covered both the fixed and growing Modular ANNs (MANNs).

 3

Later the concept of evolution of the Body-Brain system was studied. This type of

evolution is applicable to robotic control systems. The growth of the robot’s body

plan and the ANNs controlling it was investigated. Finally, a search on Artificial Life

was conducted to understand the effect of environment on the growth of ANNs.

Development of a Basic Central Pattern Generator (CPG) Network in a suitable

format for Modular Evolution

The primary aim here was to investigate the development of a CPG which produces

movement patterns for Legged Robots using the EA. This involved evolving both the

body plan of the robot in terms of its actuators and sensors, and the environment it

was interacting with. This was accomplished by allowing the robot’s body plan and

environment to start from a simple form and become more complex as it develops,

while simultaneously adding ANNs to the structure of the controlling network.

Initial experiments were concerned with finding out whether it is possible to grow a

modular neural network to control single functions, such as a simple leg. After

evolving the control system for legs with a single degree of freedom, a second degree

of mechanical freedom was added to the existing robot structure. In this case the

previously evolved network structures are retained and new ANN structures were

evolved as separate modules (but connected to existing modules by the EA) to control

the new mechanical degree of freedom.

The EA under investigation was used to evolve CPGs for bipedal (walking and

jumping) and quadrupedal (trotting) motions. The evolution of the ANNs, robot’s

body plan and environment (fitness function) was studied as the system evolved.

The Setting Up of an Experimental Framework for the Evolution of a Sensory System

The purpose of these experiments was to demonstrate the universality of the technique

by applying it to a radically different type of network. The work outlined above was

based on networks which mainly control outputs (producing walking patterns). On the

other hand, a vision system processes inputs. Such a system allows investigations to

be carried out to determine whether the technique can be applied more generally. To

do this we allowed the sensor and the range of patterns to which it was exposed

 4

started with a 1 by 1 grid (1 pixel) and evolved into a 5 by 5 (25 pixels) sensory

system.

The application of the Previous Work to Such a Sensory System

The input sensor and the range of patterns to which it was exposed were allowed to

grow from simple to complex as the environment changed and the ANNs controlling

the behaviour were grown as described in the previous paragraph.

The Integration of these Techniques into an Overall Algorithm which Random

capitalisation Deals with the Evolution of Systems

The issue of systems evolution, integrating both the locomotive and vision networks

was considered. This included a consideration of the evolvability of networks in this

domain and the neural functionality necessary to integrate these networks. Both the

vision and locomotion networks were integrated by growing neural networks to map

the different data sets into a single domain. Again, the ANNs have been grown using

the method described previously.

Comparison with Previously Published Results from other Researchers

The results obtained in this research were compared with previously published results.

Results were presented and discussed in detail to illustrate the technique in operation.

All the objectives mentioned in this section have been met.

1.5 Novel Aspects of this Research

Although researchers have used Evolutionary Algorithms (EAs) and Incremental

Growth Algorithms (IGAs) for synthesising neural networks before, there are many

unique aspects to the approach presented here. The most important of these are listed

below.

• It was shown that, if the system is carefully set up (each module have a

minimum number of neurons), the fitness can increase to a maximum as new

ANN modules are added to previously evolved structures. This is an important

result of the research.

 5

• Experiments showed that the neuron model used was critical and should be as

flexible as possible as it is required to perform many difficult mappings in

both amplitude and time domains. This finding is core to the success of

Incremental Growth of MANNs using EAs.

• Another significant finding was that the connections between modules as well

as their weights have to be chosen by the EA. Fully connected networks are

less successful in such Systems.

• Networks have been grown to integrate different networks to form a working

system. This include the use of “Copy and Paste” methods, permissible

connections for a particular module (especially in large networks; modules are

added at the end or before of the previously evolved network) and finally

network which produce several gaits and can switch between them.

• It was also shown that ANN modules can be added incrementally to the

controlling network as the robot’s body plan and the environment it interacts

with evolves from simple to complex.

• Finally, in summary, the research has led to the discovery of a comprehensive

method which allows the ANNs to grow incrementally to form a system.

1.6 Thesis Structure

Given below is an overview of each chapter.

Chapter 2: Review of Previous Work within the Department

This chapter describes the work undertaken by previous researchers within the

research group and shows the development and context of the current work.

Chapter 3: Evolution by Devolved Action

In this chapter, the original proposal for the research is discussed and the five

different practical approaches to the evolution of MANNs it contains are considered.

A review of biological evolution and development which led to these approaches is

presented.

 6

Chapter 4: Literature Review

This chapter gives a review of other important work that relates to the research. In this

chapter a separate section is devoted to describe the differences between the research

work with other related investigations. It is hoped that this chapter will give a clear

indication of the originality of this research.

Chapter 5: Growth Components for Evolution of Modular Artificial Neural Networks

The different types of simulated neurons and actuator models used in the research are

discussed in this chapter. Both the robot’s body plan and vision system framework are

also presented. Finally, the growth algorithm is illustrated.

Chapter 6: Results Obtained from Application of Growth Strategies for a Single

Function

The results obtained for fully and sparsely connected network modules to control

single functions using two different types of neuron models for bipedal and

quadrupedal locomotion are presented in this chapter. The result of localising the

neural module’s connections are also presented.

Chapter 7: Results Obtained from the Application of Growth Strategies to Multiple

Related Functions

In this chapter, the results of network modules used to control further degrees of

freedom for bipedal walking and quadruped trotting are presented. Results also

illustrate the universality of the growth strategies for “copy and paste” and multiple

gait networks.

Chapter 8: Results Obtained from the Application of Growth Strategies to Vision

System and Integration of Vision and Locomotive Networks

The responses obtained from the sensory system are given in this section. The

outcomes of systems integration the locomotive and vision networks are also

demonstrated.

 7

Chapter 9: Further Work

In this chapter suggestions are made for further work. Different application areas for

the technique are described. Improvements that can be made with the growth

technique are described. Methods to apply the growth technique to achieve the

eventual goal of the research, beyond this thesis (emergence of complex and

intelligent behaviours) are presented.

Chapter 10: Conclusions

The final chapter revisits the objectives outlined in the first chapter and critically

assesses the success of the project.

Published papers and reports produced during the course of the research, and further

results are included in appendices.

 8

Chapter 2

Review of Previous work within the Research Group

2.1

2.2

Introduction to Chapter

The Artificial Neural Networks group in the School of Engineering at The Robert

Gordon University was formed in 1994. Since then it has built up a considerable

amount of knowledge and practical experience with Evolutionary Artificial Neural

Networks. This work started with the PhD project of MacLeod [MacLeod 1999] and

was continued by McMinn [McMinn 2002], Reddipogu [Reddipogu 2002] and others.

The current research has evolved from work undertaken by researchers within this

group. In this chapter, the previous research of the group and its development into the

project work presented here is discussed.

Single String Evolutionary Techniques

During the early stages of research into Evolutionary Artificial Neural Networks

(EANNs), the architecture of each network was predefined and fixed for a given task

(the architecture of an EANN includes its topological structure and the connectivity of

each node in the network). This has a significant impact on the network’s information

processing abilities. Unfortunately, the architectural design was heavily dependent on

a human expert and involved much trial and error.

The group’s first project [MacLeod 1999], concentrated on the optimisation of ANN

topologies using Incremental Evolution (IE) - that is, allowing the network to expand

by adding to its structure. This method allows the network to grow from a simple to a

complex form, until it is capable of fulfilling its intended function. The approach is

sometimes thought of as being somewhat analogous to the growth of an embryo and is

therefore also called Incremental Growth or occasionally Embryology or an

Embryological Algorithm (EA).

 9

To illustrate the technique, let us first consider a fully connected, three layer standard

network, as shown in Figure 1.

 Hidden Layer

Input Layer

Output Layer

Figure 1 A fully connected network

This network will be used as a reference when describing the growth strategies. There

are six different growth strategies which can be considered. These are:

1. Change the number of neurons

• The number of neurons in a layer may be increased or decreased while

maintaining a fully connected network.

2. Change the connectivity

• The number of connections (active weights) in the network may be

reduced or increased.

3. Asymmetry

• Asymmetry may be introduced by providing more connectivity in part

of the network

4. Horizontal connection

• In synchronous networks (those which operate with a clock signal)

horizontal connections may be introduced between neurons in the

same layer.

5. Skipping layers

• Rather than connecting to the layer directly below, a connection may

skip a layer.

 10

6. Feedback

• Feedback may be added to the network. A connection is allowed to

any previous layers.

To illustrate the operation of incremental growth, MacLeod applied the growth

strategies to a simple two layer network designed for a character recognition problem.

A basic example of the technique’s operation is a network which adds neurons to its

hidden layer, one by one, until the network is capable of fulfilling its intended

functionality. The idea of the growth strategy is that the network changes in a

predictable way and grows by adding incrementally to its structure [MacLeod 1999].

Figure 2 shows how the network’s performance changes as neurons are added to its

hidden layer.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

6 8 10 12 14 16 18 20

Training epochs

x axis = Number of neurons
y axis = Training epochs to
reduce SSE to 0.1
SSE = Sum Squared Error

Figure 2 Network performance changes as hidden layer neurons are added to a pattern

recognition network (Reproduced by permission of MacLeod)

The performance measure used was the number of training cycles required to train to

a Sum Squared Error (SSE) of 0.1. Notice from Figure 2, that the network cannot

solve the problem with fewer than six neurons but the performance increases as the

number of neurons increases. 16 neurons is the optimal number for fastest training

and by 20 neurons the network starts over-fitting.

MacLeod successfully used these growth strategies together with an encoding

scheme, in a unified algorithmic framework to illustrate network growth for simple

pattern recognition problems.

 11

We may summarize MacLeod’s work by noting that, although the network expands as

the algorithm runs, the system is limited in that:

1) It is applied only to simple tasks.

2) It uses only the basic McCulloch-Pitts neuron model.

3) The whole network must be retrained after each alteration to its topology.

4) The network architectures used are essentially structured (layered) and simple.

At the end of this initial stage of research, a model of an Artificial Nervous System

[MacLeod 1999] (ANS) was proposed by MacLeod as a suitable test-bed for further

research into more complex network problems and, in particular, those involved in

defining complex ANNs in a system context. It was suggested that this model could

be used to construct a control system for an animal-like robot (an animat).

2.3 Evolution of Functions within the Animat Nervous System

(ANS) – Lower Layers

The ANS model suggested by MacLeod is both hierarchical and modular; it consists

of smaller individual networks operating together. The model allows us to understand

the working principles of the nervous system’s component modules, their interaction,

connectivity and organisation. McMinn and Reddipogu implemented some aspects of

the nervous system and insights into their work are described in the following

sections. The ANS model enabled them to create a community of networks for a

particular task. The networks were evolved based on a simulated robot.

It is necessary to first consider the ANS model as this forms the basis for the structure

of later work and for a comparison of the results, as well as being an inspiration for

the current research. The ANS is shown in Figure 3. Multiple modules can exist in

certain layers marked with an asterisk.

 12

Actuator

Priority resolution

Sensors* Drives*

Reflexes* (provide direct

control over hardware-wheel,

leg, thrusters, etc)

Action modules*

(rhythmic patterns of

movement)

Behaviours* (produce

sequences of actions and

reflexes to perform some

useful task)

Sensory processing* (detects the

animat’s environment)

Higher functions Intelligent processing systems.
Biological brains are not
completely understood.

Prioritises what to do depending
on the situation of the animat.

Sensory systems, e.g. sound,
vision, smell, etc.

Brain

Spinal cord

Body

One reflex for each controllable
actuator.

Examples include walking,
running, swimming, flying,

respiration, chewing.

Behaviours (both innate and
learned) for performing sequences

of movements

Figure 3 Animat Nervous System (ANS) (Reproduced by permission of McMinn)

 13

The highest layer, labelled “higher functions”, in Figure 3, represents the intelligence

layer, where higher levels of brain activity (like reasoned thought) reside. This is

connected to the priority layer; here behaviours or actions are given a priority

depending on the condition of the system. The sensory processing layer gathers

information from the system environment using, for example, vision, sound and/or

other sensors. This then triggers the appropriate behavioural modules for the current

state. In turn, these initiate a sequence of actions from the action layer. The action

layer uses the reflex layer to produce repetitive or rhythmic actions such as running or

walking and corresponds to the Central Pattern Generator (CPG) in animals. Reflexes

are used to control the physical movements of the system. Feedback from the

actuators and sensors is fed to the reflex layer in order to make any movements

precise and efficient in the form of a feedback control system.

The original ANS [MacLeod 1999] represented the flow of information in one

direction, from the upper layer to the bottom layer. In later versions of the ANS

structure [McMinn 2002], there were interactions among modules starting from the

action module moving upwards on the ANS, as shown. If the system senses a change

in its environment, it uses the higher functions to evaluate and prioritise the conditions

before initiating any behaviour to produce a sequence of actions.

McMinn used this structure successfully as a basis to develop Evolutionary ANNs

implementing Central Pattern Generators (Action Layer) and Reflexes (Reflex Layer)

for robot locomotion [McMinn 2002]. Figure 4 shows the block diagram of the

functionality of McMinn’s artificial reflex. The reflex ANN circuitry controls the

position of the actuator. The actuator sensor in turn provides an additional input to the

reflex on the status of the actuator. The artificial reflexes were created using a

simulation of a DC electric motor as the system actuators.

 14

Control signal
from higher layer

Actuator sensors (spindles,
Golgi)

Actuator, e.g. motor (muscle)

Reflex ANN (neuronal
circuitry, alpha/gamma
motor neurons)

Mechanical
Output

Figure 4 Functional block diagram of artificial stretch reflex, with biological equivalent parts

marked (Reproduced by permission of McMinn)

Simple feed-forward and recurrent networks were used. The type of neuron was

limited to a McCulloch-Pitts model with a sigmoid transfer function. The three main

EAs (GA, EP, and ES) were used to train the reflex ANNs and their performance was

compared. The ANN weights were trained until a good solution was found.

After creating the lowest layer of the ANS (the reflex), McMinn constructed the

action layer. This layer was built on the functions provided by the modules in the

reflex layer. The neural circuits responsible for generating rhythmic patterns (for

locomotion) in the biological nervous system are called Central Pattern Generators

(CPGs). McMinn successfully evolved CPGs for biped and quadruped gaits.

A new neuron model was developed specifically to simulate the timings required for

the CPGs. The simple McCulloh-Pitts neuron does not produce time varying outputs

and therefore the synapse model used in the artificial CPG networks was designed to

include features which made it more suitable for simple implementation of time

dependant parameters. More information about the neuron and synapse model can be

found in [McMinn 2002].

The neurons in the network were randomly connected; there was no imposed layered

structure in the network. The artificial CPG networks were created using an

Evolutionary Strategy (ES). Again, the entire network’s connections were retrained

until a good solution was found.

 15

Finally, McMinn combined the evolved CPGs with the reflexes as shown in Figure 5.

Since the CPG neurons produce pulsed outputs in the time domain and the reflexes

require a continuous input value, a “leaky integrator” was added to convert from

discrete pulses to an average firing frequency. For further information on leaky

integrators refer to [McMinn 2002].

Actuator Reflex
Leaky

Integrator

Outputs

CPG

Figure 5 Chain of connections from CPG to robot actuator (Reproduced by permission of McMinn)

An alternate strategy for structuring the network was also investigated. The CPG

evolved for the biped walking pattern was used as an oscillator. The pattern generator

took the oscillating inputs from this and produced the appropriate gait patterns as

outputs. The connection between the two units is shown in Figure 6.

Tonic
Input

Oscillating
Input

Correctly
Patterned
Outputs

CPG

Oscillator

Pattern

Generator

Figure 6 Connectivity of the functional units in alternate CPG strategy (Reproduced by permission of

McMinn)

Quadruped Gallop, Trot, Pronk, and walking gaits were successfully evolved using

this alternative method. An example result for a quadruped gallop is shown in Figure

7. The conclusion of these experiments was that by making the structure of the CPGs

as modular as possible, they can be evolved more easily.

 16

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
a

Time (s)

Le
b
po
si
tio
n

Le
g

po
si

tio
ns

 (s
ol

id
 =

 L
F,

 d
as

he
d

=
R

F,

do
tte

d
=

LB
, d

ot
-d

as
h

=
R

B
)

Figure 7 Robot leg positions for Quadruped gallop with split CPG (Reproduced by permission of McMinn)

2.4 Evolution of Functions within the Animat Nervous System

(ANS) – Upper Layers

Reddipogu looked at the upper layers of the ANS. The work mainly concentrated on

the sensory layer and particularly the processing of visual information. A careful

search of the various options was undertaken to find a suitable neural network which

combined simplicity and functionality. Eventually, it was found that the visual system

of toads was interesting since their brains are structurally simpler then the human

brain, and this offered a good model to build a novel visual system upon.

A biologically inspired vision system, based on the toad’s ability to differentiate

between prey and predator, was then developed. This work is described below.

Firstly, the visual field was spilt into a grid (for example, 10 x 10), which forms the

front view of the toad, as shown in Figure 8. The various patterns that best represent

the prey and predator configuration are presented within the visual field at various

locations. For example, if a worm configuration (a long horizontal line) is presented

in the snapping region, the expected behavior would to be for the toad to snap.

 17

 Fixate

Snap

Approach

Orient

x

Predator Configuration

Prey
Configuration

y

Figure 8 Toad's View (Reproduced by permission of Reddipogu)

A modified biological neural circuit based on a toad’s vision system, proposed by

Ewert [Ewert 1987], was used for testing the system’s suitability for simple pattern

recognition tasks, as shown in Figure 9 (the network has been reduced in size for

simplicity). All the neurons in the network are McCulloch-Pitts type with a sigmoid

logistic. An Evolutionary Algorithm, using Reinforcement Learning (EARL) was

used to train the network. The network connection weights are trained until a good

solution is found, incorporating all different input patterns.

Output Neurons

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Retinal Cells

Inhibitory Input Excitatory Input

Prey and Snap Prey and Orient

Predator Neurons

Figure 9 The network of the vision system based on the toad (Reproduced by permission of Reddipogu)

 18

The network was then tested with new patterns to check its ability to generalize. A

typical output of the network is shown in Figure 10. The horizontal axis represents the

classes of outputs and the vertical axis corresponds to activation level of each predator

and prey output neurons.

Prey Predator

Pattern 3

Pattern 2

Pattern 1

A
c
t
i
v
a
t
i
o
n

1

0.8

0.6

0.4

0.2

0

Orient Snap Run Away
Figure 10 Output for Prey and Orient input pattern (Reproduced by permission of Reddipogu)

The artificial vision system was trained using inputs that best represented prey and

predator patterns in various positions in space. Later, the network successfully

recognised the combination of patterns which were not part of the training set and

developed into a Robotic Vision System. The capabilities of the network are thought

to arise from its modularity. Further detailed analysis of this network can be found in

[Reddipogu 2002].

McMinn and Reddipogu’s work was aimed at investigating the effect of modularity

on the network and its evolution. However, it should be noted that the arrangements

of the modules within the system is fixed and that the structured growth aspect

introduced by MacLeod had been lost.

2.5 Conclusions Drawn from the Group’s Previous Work

Although interesting conclusions were drawn from the work described in the previous

sections, it became apparent, over the course of these projects, that a network which

can evolve into a modular structure without the need for designed partitioning would

be the next stage in the research. This would represent the most general Evolutionary

Networks. The EA should allow the network to develop naturally and in an open-

ended way without the need to artificially constrain or design it. Such an approach

needed an EA that could automatically and naturally evolve a “system”- that is, a

 19

modular network which could operate in different sensory domains rather than a fully

interconnected homogenous structure. No existing Genetic Algorithms or EAs were

available to do this. Therefore the group looked to nature to discover the reasons why

natural systems allowed such modularity to evolve and how it might be exploited.

This search for a more general and sophisticated algorithm resulted in the paper

“Evolution and devolved action” which is discussed in Chapter 3. The paper

concluded that the growth aspect of evolution in MacLeod’s work needed to be

integrated with the modular networks of McMinn and Reddipogu to produce a more

general system.

2.6 Summary

Initial research within the RGU group focused on the growth of simple networks to

fulfil relatively straightforward functions, using simple neurons. From this an interest

in “Communities” of networks working together as a system developed. Research in

this area was undertaken using an ‘Artificial Nervous System’ as an experimental

framework with particular reference to robotics.

It became apparent, during this research, that the most general system would be a

combination of the two techniques above (growth and modularity), resulting in a

system which could evolve or grow modular neural networks. However, suitable

theoretical frameworks and algorithms for this purpose were lacking and this forced

the group to look back to biology for inspiration. This resulted in the paper “Evolution

and devolved action” which is the foundation stone upon which this current research

is built. The next chapter gives a review of the paper, its conclusions and

developments into the current work.

 20

Chapter 3

Evolution and Devolved Action

3.1 Introduction to the Chapter

As explained at the end of the previous chapter, the paper “Evolution and Devolved

Action” formed the starting point of the research reported here; the paper is attached

in Appendix A.

“Evolution and Devolved Action” examines the limitations of present Artificial

Evolutionary Algorithms from a biological perspective and looks at how these

limitations might be overcome. A central theme of the paper is a view of genetics as a

system of Evolutionary Automata. The paper is wide ranging and contains several

other important topics, including Evolutionary Cellular Automata and Learning and

Functionality in Neural Networks. This thesis, however, only deals with the evolution

of network topology (other researchers within the group are examining other issues).

This chapter describes how the reconsideration of evolutionary algorithms, mentioned

above, led to five different suggested approaches to the evolution of network topology

and how these were, in turn, amalgamated into one “universal” approach. The chapter

is designed to provide a brief summary and commentary on the important points of

the paper and for more details the reader is referred to the original in the appendix.

The previous work of the group, explained in Chapter 2, may be summarised as:

Initial work by MacLeod concentrated on growing simple ANN topologies using

Incremental Growth. Later, McMinn and Reddipogu investigated the effect of

modularity on the network and its evolution, using the ANS model. The conclusions

of these research projects were:

1) Simple Evolutionary Algorithms were not flexible enough to allow the

sophisticated development seen in biology.

 21

2) An Evolutionary Algorithm was required to allow the network to combine the

two previous approaches – that is, allow the network to grow, but also

incorporate a modular aspect (which McMinn had shown was important) into

its development. Such a modular approach should allow different sets of

sensors and actuators to be integrated into the system - that is, it should allow

a complete system to develop naturally.

None of the available algorithms allowed the network topology to evolve in this way.

In the next sections, the approach of the paper to these problems will be examined,

starting, as the paper does, with a review of biology.

3.2 Biological Evolution

Chemical analysis shows that the genetic information or blueprint of an organism is

encoded by deoxyribonucleic acid (DNA). DNA is a very long molecule which

encodes this information as a unique sequence of four chemicals called ‘bases’. The

bases are: Adenine (A), cytosine (C), guanine (G), and thymine (T). In humans the

DNA is a linear arrangement of 3.1 x 109 bases.

The information stored in DNA is read and used by other molecules. Each short

portion of the DNA string directs the synthesis of specific amino acid molecules.

Chains of amino acids are joined together by peptide bonds to form a protein. There

are twenty amino acids found in proteins and the number of different ways that they

can be combined is very large. The process is summarised in Figure 3-1.

DNA - code

Amino acids (polymers) means of action Protein (Universal Machines)

Amino acids

Figure 3-1 How DNA codes proteins

 22

Proteins are the universal machines of biology. They play a predominant role in most

biological processes. Proteins determine the shape and structure of cells and provide

their functionality.

Biological engines like the brain or liver are manufactured by the assembly of large

amounts of proteins. These protein machines can react chemically, form rigid

structures, react mechanically or perform a multitude of other tasks. Critically, they

can also self-organise like pieces of a jigsaw puzzle into a greater and more complex

system.

Proteins can therefore perform an impressive array of tasks. In fact, it could be said

that they are the ‘Universal Machines’ of the cell. Figure 3-2 shows a tentative

classification.

Mechanical
Movement

Organisational

Structural Electrical Chemical

Protein

Figure 3-2 Proteins as Universal Machines

Proteins can also lock to each other or to the parent DNA and stop it producing more

of the protein (or a different protein), so parts of the code can be switched on or off.

During to the foetal development of an organism, released proteins set up “gradients”,

which in turn inhibit or excite other proteins building up patterns of material. In this

way smaller and smaller details can be built as one protein triggers another. One result

of this activity is that the physical structure produced is not homogenous but modular,

with delineated identifiable regions that perform specific tasks. This is important

because structures like the brain have been shown to be modular and this modularity

is essential to functionality.

 23

The rules governing proteins and their structure are determined during evolution. So,

over time, natural selection and mutation produces particular proteins which interact

with others in a beneficial way.

We may summarize all this by saying that the biological system has two components,

as shown in Figure 3-3.

• Firstly, a code (the DNA) which can be mutated and exchanged through

breeding.

• Secondly, the universal machines (proteins) which the code specifies and

which can assemble into complex structures and build biological engines.

 Biological

System

Universal
Machines

DNA
Code

Figure 3-3 Biological components

The biological system is therefore not directly coded into the genome as in most of

the current artificial EAs.

ANNs are usually directly coded into a Genetic Algorithm (GA) [Schaffer 1992], if

such is to be used for topology evolution. Each node or connection will be a

parameter of the chromosome. However, the entire human genome does not contain

enough space to directly code even a small part of an actual biological brain.

The conclusion of the review from biology contained in ‘devolved evolution’ is that

the biological system is encoded quite differently to the artificial techniques. An in-

depth discussion on this aspect of biological evolution can be found in [McMinn

2002].

 24

3.2.1 Organism at the Cellular Level

Having established some of the reasons why biology is different to artificial

evolution, the paper concludes that the implementation of an artificial system

mimicking biology at the molecular level would be very difficult (because of the

difficulty of mimicking the wide ranging behaviour of proteins). It then goes on to

discuss how the lessons learnt from molecular behaviour might be applied to

structural evolution in neural networks by considering the process of structure

formation at the cellular level.

At the cellular level there are four main processes in the development of an organism.

These are cell differentiation, proliferation, migration and patterning. Consider these

aspects.

A single fertilised cell produces many cells by means of cell division. Specialised cell

types are created in a process known as differentiation. As the cells receive different

protein combinations and concentrations from other cells in the environment

according to their location, different genes are expressed within them. When they

divide, their offspring are different from the parent cell, and cells become specialised

for different tasks, for example, bone, muscle or neurons.

Differentiated cells have to generate many new offspring that will form the bulk of the

brain and similar structures. This process is known as proliferation. The specialised

cells divide until there are enough of them to build the structure of the organism.

For various reasons after differentiation and proliferation cells might not be at their

final destination. Clusters of cells will then migrate to their ultimate home. Finally, in

the case of neurons, connections are established within the clusters (locally) and

between clusters of cells (globally). More information on biological pattern formation

can be found in [Bentley 2001].

 25

3.3 Organisation Methods

Although it is difficult to mimic and model the biological system exactly, an

engineering standpoint can be taken to extract the essence of what is required to

produce a working network then code this from a purely pragmatic point of view.

However, there are certain obvious aspects that the algorithm will have to

accommodate.

The four elements of network organisation as outlined above are position, quantity,

function and connection of units. These are the key aspects of the network.

Although positional (migration) organisation plays an important role in the

development of human and higher primates, as will be shown, it plays a lesser role

compared to the other elements.

Outlined below are five different methods for creating networks as described in
Evolution and Devolved Action [McMinn 2002],

1) Modelling Biology

2) Production Trees

3) Fractals

4) Revising Traditional Evolutionary Algorithms

5) Direct Growth.

Consider these.

3.3.1 Modelling Biology

The first method is to simulate biological development closely using a computer

model, as shown below.

Firstly, an evolution space is defined as shown in Figure 3-4 a).

 26

 e) Seeds are wired up

d) Seeds are proliferated c) Seed cells are placed

a) Evolution Space set-up

(W) (E)

(S)

(W) (E)

(S)

(W) (E)

(S)

(N)

West (W)

 N-S Gradient

 E-W Gradient

North (N)

East (E)

South (S)
b) Gradients are set-up

(N)

(N)

Figure 3-4 Modelling biology

The evolution space acts rather like the body of an organism and allows the set up the

conditions necessary for development. The evolution space has a North-South and

East-West gradient as shown in Figure 3-4 b) (in biology these gradients are set up by

chemical diffusion of proteins within the organism). A number of seed cells are

released into the evolution space, Figure 3-4 c). These are pre-programmed (by the

EA) to migrate to fixed positions within the space defined by the gradient. Once the

seed cells are in position they proliferate.

 27

Again, this is controlled by an EA determined parameter pre-programmed into each

seed. The result of this is that modules or clusters of cells now exist centred at the

seed-cell positions as shown in Figure 3-4 d). Finally, these clusters are wired up,

Figure 3-4 e). To follow the biological example through, this can be done using

cellular adhesion markers (again chosen by the EA) which control which cells should

be attached to which others.

3.3.2 Production Trees

Another approach that captures the essence of the biological approach but at simpler

level is to use production trees to evolve ANNs. A typical tree for encoding a network

is shown below in Figure 3-5.

`

etcConnectionsConnections

etcOffspring
Neurons

Offspring
Neurons

Offspring
Neurons

Offspring
Neurons

Seed Neuron 3Seed Neuron 2Seed Neuron 1

Network

Figure 3-5 A production trees encoding method (Reproduced by permission of McMinn)

The rules for the encoding method are as follows:

I. Start with a network

II. Create multiple seeds

III. Create offspring for each of the seed cells

IV. Connect the offspring

 28

The tree structure comes under the control of the EA. A system like this has the

advantage of swapping or mutating the individual braches of the tree when crossover

and mutation operators in GP are applied. In this way, important sections of the

network can be re-used without the need to be re-evolved. The connections may be

part of the production rules or evolved using genetic coding. The genetic coding

should include the number of seeds, number of offspring and connection information.

One can readily see that this produces a similar result to the previous biological

method, but is simpler, more stylised and more suitable for a computational

implementation because of its structure.

3.3.3 Fractals

The complex repeating patterns produced by plants, for example ferns, are known as

‘fractals’ and provide a means to evolve ANN topology. Biological systems in higher

animals also display such symmetry (as, for example, does the biological nervous

system). The idea that fractals could be used in defining ANN topologies has been

suggested before [MacLeod 1999], but researchers have yet to take it seriously

enough to produce a working system and therefore very little work has been done in

this area. There are two obvious ways to use the fractals as described in [McMinn

2002]. Firstly, the nodes of the fractal could be used as placement points for neurons

and the branches for their connections. This is illustrated in Figure 3-6 a) below.

Alternately, the nodes could be placement points for network modules, Figure 3-6 b).

a) Black circles represent neurons

b) Black circles represent modules

Figure 3-6 Fractal Method (Reproduced by permission of McMinn)

3.3.4 Altering Existing Evolutionary Algorithms

Another approach is to modify the standard EAs (GA, GP, EP, and ES) to produce a

modular result in an ANN. There are several possible ways to do this − for example:

 29

1) Define each module by a section of chromosome within the population of the

GA, as shown in Figure 3-7. Each section of the module is divided to code the

number of neurons in the module, the respective weight for every neuron

connection in the module, the neuron functionality parameters and the

information on the wiring topology. The wiring topology section could be

further sub-divided to represent the information on which neurons act as

inputs and outputs. These allow connections to be established to other

modules. As modules are added, the string is allowed to grow.

N is an integer.

Inputs/Outputs

Number of
neurons

Wiring
Topology

Neuron
functionality
parameters

Weights for
neuron

connections

Module N Module 3 Module 2 Module 1

Figure 3-7 An internal representation of a chromosome

2) An extension to the method above is to have a fixed string length for each

module. This is an attempt to get around the problem of strings having to grow

if modules become bigger or, alternatively, have an independent GA for each

module. A new module could be created when the GA string reaches a certain

fixed size or when the network had fulfilled its function (once the fitness of

the network is as high as possible). At this point the algorithm automatically

creates a sub-network which is independent of the parent network.

 30

3.3.5 Direct Growth

The final technique presented in the paper is termed Direct Modular Growth. The

method works as follows: consider the concept of an “evolution space” where the

network will develop as shown in Figure 3-8.

Evolution Space

Inputs & Outputs

Inputs & Outputs

Inputs: These are connections from sensors

Outputs: These are connections to actuators

Figure 3-8 An "Evolution Space" (Reproduced by permission of McMinn)

In the traditional approach, a fixed network of neurons is placed in the evolution

space and its connection weights are evolved as shown in Figure 3-9.

Inputs & Outputs

Inputs & Outputs

Inputs: These are connections from sensors

Outputs: These are connections to actuators

Figure 3-9 Evolution space for traditional ANN (Reproduced by permission of McMinn)

However, this concept can be easily adopted to serve modular neural networks. This

is achieved by replacing individual neurons in the diagram above by networks, as in

Figure 3-10.

An evolutionary algorithm determines the wiring between the networks and

inputs/outputs. This evolutionary algorithm also decides which connections should be

present within each network.

 31

Inputs & Outputs

Inputs & Outputs

Network
‘A’

Network
‘B’

Inputs: These are connections from sensors

Outputs: These are connections to actuators

Figure 3-10 Evolution space for modular networks

3.3.6 The Role of Incremental Change

The approach outlined above has several unresolved issues. These includes how many

modules should there be in the system, and how should they be placed with regard to

the system sensors and actuators.

These considerations resulted in Incremental Evolution becoming a central part of the

system. After all, if an animal had to go through a series of gradual changes from

simple to complex as part of its evolution, why shouldn’t a robot? Gradual change

also offered a solution to two other problems:

a) Searching a large solution space is much easier if it can be broken down into a

much smaller one that grows.

b) It also allows the gradual integration of sensors and actuators into the scheme

by incrementally introducing them.

The theory behind the enlarged importance of Incremental Evolution is given below.

The complex organisms which surround us today are the result of over three billion

years of evolutionary development, starting from simple initial life forms. The

argument in the previous section is best illustrated by example. The first fossils

evident in Precambrian rocks are those of simple, single-celled organisms.

 32

Early multicellular animals, exemplified today by sponges, were amorphous creatures

lacking the cellular specialization of later animals – for example, recognizable

muscles, nervous system, gut and sensory organs. They lived in a simple environment

leading a sessile existence, typically attached to a rock.

Jellyfish and their kin appear next in the fossil record. They can actively move and

had simple sensory and nervous systems. Many also lived in a more complex

environment (the open ocean), albeit simpler than later environments to come (with

no need for even basic obstacle avoidance, for example).

One particular route of developments can be traced through various worms,

echinoderms and simple chordates to fish, amphibians, reptiles and mammals as

shown in simplified form in Figure 3-11. Four aspects of the organisms develop:

• Their body plan

• Their sensors and actuators

• The environment (at least as the organisms perceive it).

• The nervous system

 Brain - vertebrate No true brain - invertebrate

Single Celled Animal (from Bacteria to Protozoa)

Chordate (lamprey, Hagfish)

Sponges (Porifera) Fish

 Jellies (Coelenterates) Amphibians

Flat Worms Birds Reptiles

 Other Worms and Molluscs Mammals

Arthropods Echinoderms Primates

Chordate (lancelet) Apes - Man

Figure 3-11 Evolutionary development

 33

If one gives careful consideration to what is happening, one is drawn to the

conclusion that, only through this process of gradual incremental change from one

form to another (simple to complex), can the complexity inherent in biology build up.

Otherwise the initial evolutionary search space would simply be too complex. It

represents a march of progress, from simple forms to complex. It should be noted that

this process is similar to the development of the human embryo in the womb leading

to the term “embryology” which is sometimes applied to similar systems [MacLeod

1997]. However, although embryology is an interesting analogy to evolution, it is

evolution itself which is important.

It is true that at each stage of this process, species have radiated and proliferated in

form and function to fill available ecological niches; this happened most famously in

the “Cambrian Explosion” [Gould 2000]. However, these early creatures, for all their

variety and ingenuity of design, were simpler organisms than those which came later.

Perhaps this is because, at any point of evolutionary time, organisms explore their

genomic search space through mutation whereas the addition of truly new genes is a

rarer occurrence, opening up new developmental possibilities.

One thing is clear. As an organism develops, it becomes impossibly complex to

rearrange potentially billions neurons and trillions of connections in its network with

each evolutionary step; the network must grow incrementally, building new layers

upon old. This is the basis of Paul McLean’s Triune theory of brain evolution [Restak

1979] and is illustrated in Figure 3-12. The deepest layers of the brain, located at its

base, deal with the basic reflexes necessary for survival, such as breathing and heart

beat. Higher functions, for example, basic intelligence are contained in upper layers.

The top layer contains functions only found in humans and higher primates. This

model is consistent with the neural network building up new structures upon old over

aeons of evolutionary time following a path from simple to complex forms.

 34

Limbic or mammalian brain

Primitive or reptilian
brain

Neocortex or intelligent brain

Figure 3-12 Triune theory of brain structure

Although this process has not been fully investigated from a biological point of view,

it is clear that mutation does allow new and unassigned groups of neurons to appear

from time to time. If these neurons are fortunate enough to be placed appropriately,

they may become integrated into the network as a whole, so allowing it to grow and

extending its capabilities. Fritzsch [Fritzsch 1998] discusses one such instance.

3.3.7 The Final System

Having covered the main biological arguments which are relevant to the approach

adopted here, it is useful to briefly summarise them before continuing to consider how

they are applied to the artificial system.

1. As an organism develops, its body plan, sensory system and interactive system

(actuators) become progressively more complex.

2. This development is spurred by, and interacts with, an increase in environmental

complexity, which in turn makes the evolution of intelligence and advanced

behaviour more likely.

3. Both of these factors are facilitated by the gradual growth in the neural network

due to small groups of new neurons becoming available from time to time through

mutation. These new additions must add to the network without substantially

changing previously evolved structures.

 35

As discussed above, it was felt that a technique based on the ‘direct growth method’

was the best way to approach the project. Consider now how such a system might

operate in a practical sense.

Starting with a simple evolution space (Figure 3-13) the system can grow by adding

neural network modules.

Evolution Space

Network module
(two neurons)

Second module added Original modules

New module

Figure 3-13 An evolutionary algorithm using direct modular growth (Reproduced by permission of McMinn)

At the start of the algorithm, for example, a minimum of two neurons could be used.

These two neurons are considered a module (Figure 3-14). Each neuron in this

module is connected to an actuator. As explained above, such an approach requires

that the input sensors and actuators increase in complexity along with the network - in

effect evolving the body plan of the robot. For example, a legged robot might start off

with simple single active degree of freedom legs, each with a single sensor input

perhaps measuring leg position and a single actuator output to move the leg as shown

in Figure 3-15. Each neuron in the module is again connected to an actuator of the

robot. The neuron connections and their respective weights are determined by an EA.

Each module is trained until the maximum fitness is reached for that module, then

another module is added. In this approach, previously trained modules are not

retrained but retained (the weights of the connections and other neuron parameters are

frozen). The fitness function used is a measure of the performance of the module or

network based on the distance moved for a particular locomotion gait, within a

specified time frame. Modules of neurons are added until the maximum possible

fitness is reached for a particular function.

 36

Figure 3-14 Initial module

Evolution Space

Actuator output to leg

Sensor input from leg

Active degree of freedom

Passive degree of freedom

Network
‘A’

Figure 3-15 Robot's initial body plan

Once the system can control its simple legs, a new network (network ‘B’) is added

incrementally (as shown in Figure 3-16) and evolved to control the extra degrees of

freedom. The control system for a prosthetic limb might also proceed along similar

lines, starting with gross movements and working down, finally, to digits. Likewise, a

sensory system like vision would start, perhaps with a single detector cell (an eyespot)

– only able to perceive light and dark and evolve in complexity from there.

Obviously, any complex artificial organism would start life (as with both evolutionary

and developmental biology) as a simple group of cells and then develop in a similar

manner.

 37

Evolution Space

Network
‘A’

Network
‘B’

Figure 3-16 Evolution of more complex
"body plan"

To further illustrate the technique, consider the situation shown below. The leg has

two degrees of freedom A and B, Figure 3-17 a).

AA

B

a)

B

b)

A

B

Figure 3-17 Interaction between modules

Assume segment B starts moving after A has fully moved backwards. To do this,

assuming there are two networks (Figure 3-17 b), network B needs inputs from

network A because it needs to know when Leg A has moved to one extreme. Again,

in biology there is nothing stopping any neuron being connected to any other. It is not

feasible to forecast which neurons in module A are needed by B. So, the connections

and their respective weights from A to B need to evolve.

Therefore, in the system used here, the evolutionary algorithm chooses the

connections and the weights for the connections. The evolutionary algorithm should

be able to make the weight for a particular connection zero in order to improve the

fitness. Once the fitness has reached its peak value for this configuration, the initial

module weights are stored and other modules are added.

 38

Having “wired the simple system up”, the algorithm next adds another module and

more inputs and outputs to the outside world. The process is then repeated, except that

the previously wired modules are retained and only the connection weights of the

newly wired module are changed.

An absolutely critical aspect of this approach is that the algorithm starts with only a

few inputs and outputs and builds up by adding to these as well as growing the

modular network and so the whole robot develops as a system. As this happens, the

robot’s environment may also become more complex and challenging. Therefore, not

only does the network grow, but so does the robot’s body plan, its access to sensors

and actuators and the environment in which it finds itself.

3.3.8 Amalgamating the Function Methods

It should be noted that the five methods described in the paper were simply

suggestions for further research and had not been implemented in reality. As such, a

detailed description of the operation of each was not presented. This was to be the

purpose of this project.

At the start of the present project, all the strategies described above were considered

and reviewed. The idea was to compare them. However, some, like the cellular coding

and altering existing algorithms, had already been investigated by other researchers.

The fractal method, although suggested by other workers was not thought practical - it

was difficult to see how a working system could operate.

This left the ‘Direct Growth Method’ and the ‘Biologically Inspired’ method. Careful

consideration indicated that both these methods achieved the same ends. They placed

small clusters of neurons (modules) in an evolution space and then connected the

clusters internally and externally using an EA. All the connections are trained when a

new module is added. This is very similar to the existing methods (GA, Back

Propagation, GP and others) used for training neural networks. The extended Direct

Growth Method offers an alternative training scheme, in which previously trained

networks are retained and not retrained. This method supports Triune’s theory on

brain structure and evolutionary development of complex organism.

 39

It was felt that investigating all of these methods separately was a waste of effort.

Given this, it was decided to choose the ‘Direct Growth’ method, as this appeared to

be the more realistic and simpler of the two to implement.

3.4 Summary

Initial work concentrated on growing ANNs and investigating the effect of modularity

on the network and its evolution based on an ANS model. It was discovered the

available EAs were not capable of evolving a system which mimicked some important

points in the biology. Therefore, a review of biology was undertaken to discover the

reasons why biological systems allow such complexity to evolve.

The conclusion of the review was that the biological evolutionary system is quite

different from current artificial evolution. In biological evolution, DNA rather than

coding the network, codes the building blocks which fit together rather like a jig-saw

puzzle. These building blocks interact to form a system. There are no simple ways to

simulate this process in a computer; therefore, a way of growing practical neural

networks was needed. The other important point about biological evolution is the

development of the organism itself. The biological justification in Section 3.3.6 shows

that the organisms start from simple forms and become more complex as the

environment becomes more challenging.

The conclusion from biology was that, as the organism evolves from simple to

complex, previously evolved structures are retained and not retrained. This process is

similar to adding layers on top of others like onions (as described in the Triune brain

theory). Lessons from biology can be used in the artificial system.

Five different methods for creating modular networks were proposed in the

“Evolution and Devolved Action” paper, but there were no technical details on how to

implement these methods. Some of the suggested techniques are easier to implement

than others. By looking closely at all five methods, one can see that, in essence, they

are almost the same. All the algorithms concern the evolution of modular neural

networks. The problem of evolving large ANNs in a modular fashion still remains

difficult because of the huge search space involved. Incremental Evolution seems to

offer a ready answer. The biological justification is described in the development of

 40

animal kingdom and the Triune brain theory (Section 3.3.6). Development of the body

plan (sensors and actuators), nervous system, and the environment the organism is

interacting with are the key factors in determining the growth of the organism.

The extended Direct Modular Growth method was chosen to be implemented for the

purposes of this research. The technical operation of the algorithm is discussed in

more detail in Chapter 5.

 41

Chapter 4

Literature Review

4.1

4.2

4.3

Introduction to the Chapter

In this chapter, previous work related to this research is reviewed. The chapter will

begin with a brief review of the problem in context and then discuss related research

in the field. Finally, a summary will put the research presented here into context with

the reviewed work.

Multilayer Perceptrons

Artificial Neural Networks (ANNs) have been used widely in research and for

practical applications since the early 80’s. Most of the work used fixed ANN

topologies and standard off the shelf learning algorithms like Back Propagation (BP)

[Yao 1997]. The learning algorithm generally only trains the connection weights and

unit bias. The problem of designing a near optimal ANN architecture for an

application is still largely done on a trial and error basis. However, it is an interesting

issue because there is strong biological evidence that the information processing

capabilities of an ANN are determined by its architecture [Happel 1994].

Evolutionary Artificial Neural Network (EANNs)

The evolution of ANN connection weights and architecture using Evolutionary

Algorithms (EAs) (Genetic Programming (GP) [Holland 1992], Genetic Algorithm

(GA) [Goldberg 1989], Evolutionary Strategy (ES) [Back 1991], and Evolutionary

Programming (EP) [Fogel 1966]) provides an alternative approach to a fixed size

ANN and the drawbacks of the ‘standard’ training algorithms mainly due to their

gradient descent nature [Sutton 1986].

The first suggestion that simulated evolution could be used to design and train ANNs

was described by [Bremermann 1968]. The real potential of using an EA to enhance

the design of ANNs was not revealed until late 1980’s and early 1990’s because of a

lack of computer processing power [Fogel 1994].

 42

EAs can be used to search for an optimal architecture in a topological search space.

Because of the problems of searching a large space, much research has been carried

out into this aspect [Koza 1991] [Miller 1989] [Kitano 1990] [Harp 1989], which

concentrates on the evolution of ANN architecture (the number of nodes in the

network, the number of layers and the connection topology).

A key issue in evolving an ANN is to decide how much information about the

architecture should be encoded into the genetic representation. There are two broad

types of encoding scheme.

Firstly, in the Direct Encoding Scheme, the entire neural network structure is directly

represented by a string (chromosome). In this scheme, each connection of an EANN

is specified directly by a binary representation [Oliker 1991] [Alba 1993]. For

example: a ‘1’ for the existence of a connection and ‘0’ for no connection. The

resulting string has a one-to-one mapping of the corresponding architecture. Direct

encoding is often represented by a connectivity matrix [Vonk 1997]. This matrix has

size N x N, where N is the maximum number of neurons in the network. Figure 4-1

shows the direct encoding scheme for a feedforward network. This method can also

be applied to recurrent networks.

 1 2 3 4 5 (FROM NODE)
1 0 0 1 1 1
2 0 0 1 1 0
3 0 0 0 0 1
4 0 0 0 0 1
5 0 0 0 0 0

21

43 T
O
N
O
D
E

5

Figure 4-1 Direct encoding of a feed forward network, its connectivity matrix and its binary
representation

 43

In the Direct Encoding Scheme, the string grows longer with increasing size of the

network. Therefore, direct encoding is only suitable for handling small networks. In

order to reduce the length of the chromosome, the Indirect Encoding Scheme has also

been used by many researchers [Kitano 1990] [Harp 1989] [Harp 1990]. Here only the

important parameters of the ANN are encoded in the chromosome. In this method,

detail about the architecture is either specified by a Parameter or a Grammar

Encoding Scheme.

The Direct Encoding Method is sometimes called a low-level representation, because

the entire architecture is encoded into a chromosome. When high level representations

are used, the chromosomes do not contain a complete network mapping. This is often

called a Parameterised Encoding Scheme. The information being encoded into the

chromosome is more abstract; for example, the number of hidden layers, the number

of neurons in each layer, number of connections between two layers, the type of node

transfer function, etc. [Alba 1993] made a distinction between structure, connectivity

and weight optimisation. The network structure is defined in terms of the number of

layers and the number of neurons in each layer.

Grammar Based Encoding schemes are often used to encode large neural networks.

Kitano [Kitano 1990] used a modified version of the graph generation system [Doi

1988], which includes a set of graph generation rules that construct connection

matrices - each connection matrix corresponding to a directed graph. The graph

generation rule consists of a left-hand side (LHS) and a right-hand side (RHS)

element. Each rule on the LHS rewrites a character into a 2 x 2 matrix of characters

on the RHS. The LHS can be presented implicitly by the rule’s position in the

chromosome. Each position in a chromosome can take one of many different values,

depending on how many nonterminal elements (symbols) are used in the rule set. For

example, the nonterminals may range from “A” to “Z” and “a” to “z”. Since there are

26 different rules, whose LHS is “A,” “B,”…,”Z” respectively, a chromosome

encoding all of them would need 26 x 4 = 104 alleles, four per rule. Figure 4.2

summarizes this method.

 44

Kitano demonstrated better results with this scheme than direct encoding when

evolving simple ANNs (such as XOR and simple encoders). Given a set of

developmental rules, an ANN architecture can be generated by applying the rules in

three steps as shown in Figure 4-2. Other types of Indirect Encoding Scheme include

Gruau’s Cellular Encoding [Gruau 1992][Gruau 1994], Boers and Kuiper’s L-systems

[Boers 1992] and Merrill and Port’s Fractal representation [Merrill 1991].

Left Hand Side
S = A B
 C D

Right Hand Side
A = a a B = a i C = i a D = a a …
 a a , i a , i c, i e

a = 0 1 c = 1 0 e = 1 1 i = 1 0 …
 1 0 , 1 0 , 0 0, 0 1

Figure 4-2 Example of some development rules used to construct a connectivity matrix. S is the
initial element.

4.4 Growing ANNs

Advanced Competitive Networks such as Adaptive Resonance Theory (ART)

[Carpenter 1986; Carpenter 1987] and Grow and Learn (GAL) [Alpayin 1994]

networks are interesting because they solve some of the fundamental ANN

architecture problems and also represent and early attempt at network growth

[MacLeod 2001].

The more general papers on ANNs which grow fall into three categories:

I. Network which grow by adding layers

II. Network which grow by adding neurons

III. Network which alter by changing their connections

Many papers in this area refer back to work by [Ash 1989] who outlines a network,

with one hidden layer, which grows by adding another neuron to that layer when

necessary.

 45

[Chakraborthy 1995] takes this idea further. His network grows by adding units to its

hidden layer. This is accomplished by starting with two networks and combining

them.

[Vinod 1996] outlines an algorithm which grows one neuron at a time. A unique

aspect of his approach is that the neuron is not added in an arbitrary position, but in

the position calculated to give the maximum reduction of error.

[Ferran 1991] investigates different sizes of networks and their capabilities by adding

layers and neurons to the network structure. His paper provides an extensive account

of the performance of different network architectures. Although he does not

demonstrate an actual growth algorithm, the paper presents many ideas on the subject.

[Kozma 1995] looked at the reduction of connectivity in the network by allowing

weights, that are not being reinforced through BP weight changes, to decay to zero.

This produces a skeleton network. Other similar work is by [Mozer 1989].

One, very interesting paper comes from [Anderle 1995]. The importance of his

contribution is that he considers recurrent networks which are inherently stable and

grow in such a way that their stability remains assured. Anderle’s method starts with

an unconnected network and grows connections, one by one, until the desired result is

achieved.

4.5 Modular Neural Networks

When dealing with a complex problem, a monolithic neural network often becomes

too large and complex to design and manage. One way around this problem is to

design a Modular Artificial Neural Network (MANN) system consisting of multiple

simple networks [Yao 1996]. According to Gruau’s [Gruau 1992] definition, an

encoding scheme is modular if the genotype can be decomposed into some parts that

specify the organizations of sub-networks, and other parts that describe how to

interconnect these sub-networks. Thus, this allows the same pattern of connectivity to

be expressed several times within the network. Gruau demonstrated this by evolving a

 46

sub-ANN for controlling one leg of an 8-legged robot and put together 7 copies of the

module to control the other legs.

There are many ways to design Modular ANNs [Jacobs 1991a] [Jacobs 1991b],

[Battiti 1994], [Hansen 1990]. Most of them follow a two-stage design process.

Firstly, the individual modules are generated; secondly they are integrated. In most of

the applications the modules are simple Multilayer Perceptrons. The number of

modules and ANN architectures within each module is determined by the designer or

by a trial and error process. There is no interaction between the modules until they are

integrated together.

A system with a complex input/output relationship can be decomposed into simpler

systems in several ways. There are four common methods of putting modules together

to form a modular neural network.

Firstly, we will look at input decomposition. A system with multiple inputs can be

decomposed into subset of modules and inputs. This is illustrated in Figure 4-3.

Output Module

Module n

Module 2

Module 1

 Inputs

Figure 4-3 Input modularity

This approach is considered to be modular because a large input array is decomposed

into several small arrays. Information from smaller arrays is easier to understand and

to process. This is the essential feature of the Neocognition, developed by Fukushima

for visual pattern recognition [Fukushima 1980, 1987, 1988, 1993].

The second approach is called output decomposition. A neural network can be

designed for each subtask and the overall result is a collection of the results of smaller

neural network modules. The basic idea is illustrated in Figure 4-4.

 47

Rueckl [Rueckl 1989] found that training time was shorter when separate networks

were used to identify the location of and provide recognition of an object in an image.

 Inputs

Outputs

Module n

Module 2

Module 1

Figure 4-4 Output Modularity

[Waibel 1989] has devised a technique called connectionist glue to train modules for

different tasks and then combine them as shown in Figure 4-5. He found that

performance improved in the network’s capabilities using this approach.

H1 I O1

First Module Second Module

O2 I H2

H1 O1

H2

I

O2

Connectionist Glue

I = Input, Hn = Hidden Layer, On

Figure 4

The third approach is term

outputs and inputs can som

modules arranged in a h

illustrates this concept.

Fixed wts.
Fixed wts.
 = Output Layer, wts. = connection weights, n = integer

-5 Waibel's connectionist modular network

ed hierarchical decomposition. A system with multiple

etimes be decomposed into simpler multi-input and output

ierarchy, as illustrated in Figure 4-6. [Schmidt 1998]

48

Class 1
Class 2
Class 3

Inputs

Inputs

Inputs

Decision (MLP)

Module n (MLP)

Module 2 (MLP)

Module 1(MLP)

MLP = Multi Layer Perceptron

Figure 4-6 Hierarchical organization

[Happel 1994] attempted to introduce modularity into the network based on a special

neural network called CALM and is very similar to the third approach described

above. CALM stands for Categorization And Learning Module. CALM has been

especially developed as a building block for modular interactive neural networks. All

the connections inside the CALM modules are non-modifiable (the architecture of the

module itself remains fixed). A CALM module consists of a number of representation

modules (R-nodes) which are fully connected to inputs through modifiable

connections. The inputs to the CALM module are from another CALM module or

from an activation pattern. When a number of CALM modules are used in a network,

it is said to be modular.

Another simple kind of modularity involves pipelining, shown in Figure 4-7. This is

useful when the task requires different types of neural network modules at various

stages of processing. [Yang 1992] presents an illustrative example of the hierarchical

approach. Outputs from one module are fed into the next module. The whole

network’s connections are retrained until a solution is found.

Module n Module 3Module 2 Module 1

Figure 4-7 Pipelining architecture

n = an integer for module number

 49

The fourth approach is called Combining Outputs of Expert Modules. Figure 4-8

illustrates the basic idea of this approach. Expert Networks are trained and combined

using gating networks [Jordan 1994]. A variation of this approach is the growing

multi-expert network by [Chu 2000]; here the network is added to incrementally. The

local experts are added to the network strategically based on network error. [Perez

1998] evolved a modular neural network with an expert module for handwritten digit

recognition.

Output

Inputs

Gating
Network

Expert n

Expert 2

Expert 1

Figure 4-8 Basic structure of mixture of expert networks

All the modular neural networks described above are based on feed-foward layered

networks. Described below are works by other researchers using non-structured

neural networks.

[McMinn 2002] used an alternative strategy for the topology of a Central Pattern

Generator (CPG) network. In his work, neurons in the modules are randomly

connected. The network was said to be modular because the CPGs have been split

into two functional units. The task of the first unit was to oscillate. For this, the CPG

previously evolved for the biped walking pattern was used, as it produced alternating

oscillations from each output. The second unit was a pattern generator taking the

oscillating inputs from the first unit and producing the appropriate gait patterns

outputs. The concept is illustrated in Figure 8 of Section 2.3.

 50

[Gomi, T et al. 1998], [Takamura, S et al. 2000], [Hornby, G.S et al 1999], evolved

gaits for legged robots. In all these works the gaits were generated from a base level

using evolutionary techniques (the weights and connections of the ANN topology

were trained until a successful leg movement is found).

4.6 Simple Incremental Learning of ANNs

A different approach to determining the architecture of a neural network is to modify

the network topology as part of the learning process. This typically starts with an

initial network topology and then adds new units in order to learn a set of examples.

The final topology of the network is determined by the algorithm and the criteria for

adding a new cell depends on the algorithm chosen. There are about six established

incremental learning algorithms. They can be classified into those which operate on

neural networks (whose input and output pattern space are of a continuous nature) and

those which work with networks (whose input and output space are of a discrete

nature).

The six algorithms are the Tiling Algorithm [Mezard 1989], the Tower Algorithm

[Gallant 1990], and the Upstart Algorithm [Frean 1990] for discrete networks; the

Cascade-Correlation Network (CasCor) [Fahlam 1990], the Restricted Coulomb

Energy Network (RCE) [Reilly 1982], and the Resource-Allocation Network (RAN)

[Platt 1991] are associated with continuous networks. These learning algorithms are

applied on feed-forward layered networks.

Before discussing this further, it is necessary to consider the commonest modification

to all the six algorithms: the Pocket Algorithm developed by [Gallant 1986]. The

Pocket Algorithm is designed to deal with data sets which are not linearly separable.

The simple Perceptron Learning Algorithm is guaranteed to find an exact

classification of the training data set only if it is linearly separable. If the data set is

not linearly separable, then the algorithm fails to converge. The Pocket Algorithm

involves retaining a copy of the set of weights which has so far survived unchanged

for the longest number of pattern presentations. Then a new neuron is added to the

network and the connections to the new neuron only are trained. This process is

repeated until convergence is reached.

 51

Since the algorithms are rather similar, only one discrete and one continuous example

are discussed in the following section.

The Tower Incremental Algorithm was devised by [Gallant 1990]. It starts by

defining and training a simple Fully Connected Feed Forward Neural Network. The

neurons in the network are of the Simple Sigmoid type. If the network results are not

satisfactory, all the weights are frozen and a new output cell is connected to all the

input cells and the previous output cells. The process is then repeated so that all the

new weights are trained. If the results are still not satisfactory, the weights are frozen

and another new cell is inserted. This process of adding new cells continues until the

result is satisfactory. Figure 4-9 shows the operation.

New Output cell

Figure 4-9 Development of Tower network topology

The Cascade Correlation Algorithm is a good example for continuous networks and

was developed by [Fahlam 1990]. CasCor addresses the issues of evolving network

architecture by adding new hidden neurons one by one.

The algorithm starts with a minimal topology, consisting only of the required input

and output units plus a bias unit that is always equal to 1. Both layers are fully

connected. The network is trained until no further improvement in error is obtained.

Then, a collection of new candidate cells is generated. All the candidate units are

connected to the every input unit and to the existing hidden cells, but not to the

network output units. A number of training sets are applied to the candidate cells, and

 52

the input weights are adjusted after each pass to maximize the magnitude of the

correlation between the output of candidate cell and the network output neurons.

When the correlation stops increasing, the candidate unit with the highest correlation

is selected and the other candidate cells are discarded. This selected unit is installed in

the network and its input weights are frozen. Again, all the connections leading to the

network output cells are trained until the network error no longer decreases. Hidden

units are added like this until the overall error of the network falls below a target

value. Figure 4-10 shows the operation of the CasCor network.

 Candidate cell

Figure 4-10 Development of CasCor network topology.

Another interesting piece of work comes from [de Garis 1993]. In his paper, he

describes incremental evolution by inserting a small portion of an earlier chromosome

(which results from a previous phase of evolution) into a later, larger chromosome for

a second phase of evolution. He found that by doing this, the network evolved faster.

[Fritzke 1994] describes an incremental algorithm using Growing Neural Gas (GNG).

Growing Neural Gas is an unsupervised network model, which learns topologies

[Fritzke 1995]. A set of units connected by edges is distributed in the input space with

an incremental mechanism which tends to minimize the mean distortion error.

 53

4.7 Evolving More Complex Systems

So far, methods of determining ANN structure for simple applications have been

examined. Even although some of the indirect representations, such as Kitano’s

methods, provide a solution suitable for evolving a large neural network, they are not

designed to evolve a “system”. The definition for system in this context can be found

in Section 1.3. In this Section we shall look at the approaches to the evolution and

development of control architectures in animats [MacLeod 1999] (animal-like robots

which are the commonly used as test beds for ‘systems’).

The work of Gruau [Gruau 1992] [Gruau 1993] encodes grammar trees in a

chromosome. The grammar tree represents nodes which are labelled with character

symbols. These characters represent instructions for unit development that act on the

cell. This encoding scheme is called cellular encoding. Gruau’s chromosomes are

subjected to genetic operators. This encoding scheme has been used by [Gruau 1994]

to evolve a neural network capable of controlling the motion of a six-legged robot.

The work of Nolfi and Parisi [Nolfi 1991] used genes that describe the developmental

fate of a given neuron to discover a neural architecture. This architecture enables an

animat to move in an environment and to capture food. Results of the evolved

architecture tend to be structured in functional sub-networks. The extension of this

work [Nolfi 1994], considered both the genes and the environmental influence in the

neural development.

The work of Vaario [Vaario 1993] [Vaario 1994] approach takes as its starting point

environmental effects on the development of neural networks. This approach is

inspired by Lindermayer’s Systems [Lindermayer 1968]. In Vaario’s work, each cell

is characterised by a set of attributes and a set of production rules. The production

rules are used to model various morphogenesis processes such as cell division, cell

fate, axon and dendrite growth, etc. Vaario’s approach has been used to develop the

nervous system of an animat with two sensors (which allow the animat to receive

stimuli) and four actuators which allow it to move.

 54

The work of Cangelosi [Cangelosi 1995] is concerned with the evolution of animats

possessing motivational sensory units, processing units and motor units. The sensory

units inform some internal needs (hunger or thirst). This information is relayed to

processing units, which are in turn used to control motor action. The control

architecture for the animat is a bidirectional network that develops from an initial egg

cell. The initial egg will go through five cell divisions and a migration cycle followed

by five cycles of axonal growth.

The developmental process begins with the egg located in the centre of the evolution

space. At the end of cell division and migration, 32 cells are created. The functionality

of the cells is determined by the location and the cell type. Thus, neurons at the lower

end will work as a sensory network. Neurons in the upper band will work as a motor

unit and neurons which end up in the intermediate band will work as hidden units. At

the end of cell division and migration, an axonal growth process begins. During five

growth cycles, each neuron grows its branch axon according to the corresponding

parameters (axon’s angle and the length of branching, connections weight) specified.

In order to evolve such a control architecture, genetic operators are applied to each

parameter of the population. The approach simulates the process of axonal growth

that determines the connectivity of a network.

4.8 Body-Brain Evolution

This section describes research on the simultaneous development and evolution of

both an animat’s control architecture and its morphology.

Dellaert [Dellaert 1994a] was concerned with the development of a whole artificial

organism (including both the nervous system and body). His system worked by

extracting some of the beneficial properties from biological developments. The

genetic regulatory network is the principal component in his model. Each cell in the

system will respond to the expression of some gene. The morphology of the animat is

a two-dimensional square consisting of cells of various types (sensor, axon, and

actuator). The cell types are subject to genetic operators. In order to evaluate the

capabilities of their encoding scheme, Dellaert and Beer have evolved a simple animat

that roughly reproduces the relative positioning of sensors, actuators and control

 55

system in a simple artificial agent. This animat exhibits bilateral symmetry, with

sensors (cell-type 2) placed sideways at the front, with actuators (cell-type 4) placed

sideways at the back, and with a control structure made of neural tissue (cell-type 1)

connecting them. More complexity has been introduced in the revised version of this

method in [Dellaret 1994b]. Related work is described by Lee [Lee 2003]

Sims [Sims 1994a] [Sims 1994b] encodes directed graphs of both the morphology and

the control architecture in the genotype. The morphology contains a description of the

dimension of the blocks. The control architecture describes the neural circuitry of the

corresponding morphological unit. The genotype is subject to genetic operators. The

phenotype contains sets of rectangular joints at the centre of opposing faces with one,

two or more degrees of freedom. Each block can house a number of neurons. These

neurons can receive information from the same block or from any other blocks. In this

way a signal can propagate throughout the body. Every animat is evolved based on a

simulated virtual world, with which it interacts realistically, thus allowing its fitness

to be assessed. Sim’s approach allows virtual animats to swim, walk or display

following behaviours [Sims 1994a].

4.9 Context of the Current Research

The research outlined in this thesis describes a system that allows a neural network,

which is used to control a robot, to evolve in a structured but open-ended way. In

dealing with such a complex problem, a monolithic neural network often becomes too

large and complex to design and manage. The only practical way around the problem

is to design modular neural network systems consisting of simple modules. While, as

has been reported, there has been some work on combining different modules in a

system in the various fields of neural networks, statistics and machine learning, little

work has been done on how to design those modules automatically and how to exploit

the interaction between individual module design and module combination [Liu

1998]. The approach used here addresses the issues of addition of modules to

networks, the automatic determination of the number of modules and neurons and the

exploitation of the interaction between individual modules. None of the other work

surveyed examines these issues in the context of an evolving network.

 56

Growing ANNs (Section 4.4) and Simple Incremental Learning of ANNs (Section

4.6) can be classified into two categories. Firstly, constructive algorithms starts as a

minimal network (a network with topology) and adds new layers, nodes and

connections, if necessary, during training. Secondly, destructive algorithms do the

opposite − for example, starting with a fully connected network and deleting the

unnecessary layers, nodes, and connections during training. Most of the networks

discussed in these sections are feed-forward layered networks.

The technique explained here places the robot in a developing environment, and

allows both this environment and the robot’s body form, sensors and actuators to

become more complex and sophisticated as time passes. Again, although some work

presented in Section 4.7 and 4.8 of this chapter has a passing similarity to this, it is

different in almost all detail to the research reported in this thesis.

Finally, in the work presented in this thesis, modules of neurons are added

incrementally until a function is mastered. Each module is trained until its fitness does

not increase further. The weights and connections of the added module were retained

and further modules are added. Only the weights and connections of the new module

are trained. This is similar to new structures being built upon older ones (while

retaining the older structure’s functionality). This, too, is quite unique in detail among

other published research.

In summary, this research proposes an unique approach, wherein such complex

general behaviour is learned incrementally, by starting with simpler behaviour and

gradually making the task more challenging and general. It is hoped that, as the

network develops, intelligence will eventually emerge.

 57

4.10 Summary

This chapter has reviewed the important work related to this project which has

previously been carried out, in the following areas:

I. Evolutionary ANNs

II. Growing ANNs

III. Modular ANNs

IV. Incremental ANNs

V. Complex systems and

VI. Body Brain Evolution

The research presented here has been put into the context of existing literature, and

the originality of the work emphasised.

The next chapter provides detailed explanation about the growth components for the

evolution of modular artificial neural networks.

 58

Chapter 5

Components for Evolution of Modular Artificial
Neural Networks

5.1 Introduction

In this chapter, the methods and components used for modular evolution of Artificial

Neural Networks (ANNs) are discussed.

The first section describes the two different neuron models that have been used in the

research. The ANNs used to produce locomotive gaits are based on two different

types of actuator; both of these actuators are illustrated and explained in the second

section. The third section describes the development of the robot’s morphology and

the ANN which controls it. Finally, the Evolutionary Algorithm and Modular Growth

Algorithm are described in detail. The chapter also provides a foundation for

understanding the remaining chapters in the thesis.

5.2 Neuron Models

The first neuron model, which was used to simulate motor functions is shown in

Figure 5-1. This is a ‘spiky’ or ‘pulsing’ unit which loosely simulates the operation of

biological motor neurons. As a consequence of the complexity of the nerve cells

found in the brain, simplifications were introduced in the functionality of the model.

The model was designated the MMM neuron (after its designers MacLeod,

Muthuraman and McMinn). This neuron is very similar to the one developed by

McMinn [McMinn 2002a] for use in legged robot systems and is based on the known

behaviour of motor neurons, especially in terms of Long and Short Excitatory Post-

Synaptic Potentials [Brodal 1992].

 59

 O
At

K

 Threshold, θ

At-1

 Sum, St

 I1

 I2

 .

 .

 .

 .
 In

 W1

 W2

 Wn

.

.

.

Figure 5-1 MMM Neuron model

The neuron operation and formulae are as follows;

St = I1W1 + I2W2 +… InWn At time t

At = St + At-1 K Neuron activity at time t. K is a constant

(leaky integrator)

If t1 > 1 then t1 is a constant defined later

If At > θ then θ is the threshold

 O = 1 for t1 time periods

 O = -1 for t2 time periods

- Unit behaves as a pulse-width modulated neuron

If - ∞ < t1 < 1 then

O = Se−+1
1

Unit behaves like a Multi Layer Perceptron (MLP) neuron.

The chromosomes for genetic training are as follows:

Chromosome for second neuron in network

θt2t1KWn W2W1 Other neurons in network

Chromosome for first neuron in network

θt2t1KWn W2W1

Figure 5-2 First Neuron Model Chromosome Parameters

 60

Neuron Parameters Description Parameters Value
W1 to Wn The weights of the neuron Unconstrained, initial

values between –1 and +1
K Weighting constant of

previous inputs
0 ≤ K ≤ 1

t1

On time of neuron -10 ≤ t1 ≤ 100 (-∞ to 0 =
sigmoid neuron)

t2

Off time of neuron 0 ≤ t2 ≤ 100

θ Neuron firing threshold Unconstrained, initial
values 0 to 0.5

Figure 5-3 Neuron Parameters Table

The operation of the model is as follows: If the sum of the weighted inputs (I1W1 +

I2W2 +… etc) plus another term (At-1 K) is greater than the threshold, then the neuron

fires and produces a pulse for time t1 followed by no pulse for time t2, (Figure 5-4).

The (At-1) term in the formula is the activity of the neuron in the last time step and K

is a constant term (K < 1). The (At-1 K) term means that the neuron’s activity depends

both on the current weighted inputs and also on the previous ones – so “smoothing

out” or integrating short pulses. Such a response is commonly known as a “Leaky

Integrator” [Arbib 1989]. If the evolutionary algorithm sets t1 to be less than 1, the

neuron behaves as a “standard” sigmoid perceptron. Similar neurons occur in the

biological motor system [Brodal 1992].

 t1 t2

Figure 5-4 Neuron Output

The neuron parameters and connection weights are coded into an evolutionary

training algorithm, as shown in Figure 5-2. The initial weight values for the ANN are

randomly chosen between -1 and +1. The weighting constant (K) of the previous

input is selected between 0 and 1. A K-value of equal or greater than 1 indicates

positive feedback and the neural network can be said to be in an unstable state. There

are also some constraints on the time factors (t1 and t2), otherwise simulations become

unrealistic, the maximum “on” and “off” time for the neurons being fixed at 100 time

steps. There is a 10 percent probability that the evolutionary algorithm will evolve a

standard McCulloch-Pitts neuron as described above.

 61

The neuron firing threshold value is initialized randomly between 0 and 0.5. Neuron

connection weights and threshold values were not constrained to any limit. This

information is summarized in Figure 5-3.

Genetic operators are applied to the string in the same manner as the traditional

Genetic Algorithm approach. The neuron’s operation and formulae are illustrated in

Figure 5-2.

The second neuron model [Muthuraman 2003a] used in the project is a more flexible

leaky integrator type and is similar to the "Spike Accumulation and delta-Modulation"

neurons described by Kuniyosh and Berthouze [Shigematsu 1996] and shown in

Figure 5-5. In that paper the authors were investigating the usefulness of their self-

organizing neural network architecture for aspects of autonomous robot control. The

structure of a single neuron is depicted in Figure 5-5. This neuron has three

parameters associated with it: alpha(α), T and P. All of these parameters are fixed by

the evolutionary algorithm.

U(k)

external input

Alpha, α

 Sum Threshold, T

P

Z-1

Other neurons

Y(k)V(k)

Figure 5-5 Spike Accumulation and Delta-Modulation Neuron Model

Alpha is a feedback factor, which controls the proportion of feedback of the previous

internal value into the neuron (in a similar way to K in the previous model). Alpha is a

positive constant with a value less than one. Parameter T is the threshold and

parameter P controls how strong the influence of the final output on the internal state

is. V (k) represents the internal state of the neuron. A negative value for P ensures the

resetting of the neuron’s internal state V after firing a pulse.

 62

The leaky integration of inputs is given by:

U (k) = ∑
=1j

Wj(k)Xj(k) + αV(k – 1)
J nfnt

At time (k) the neuron activity U (k) is sum of the inputs multiplied by the weights

(W1X1 + W2X2 +… etc) plus another term (α * V (k – 1)).

The output Y is given by:

Y (k) = G[U(k) – T]

where T is the threshold parameter and G[z] is the threshold function: G[z]=1 for z>0,

and G[z]=0 otherwise. Finally, once an output pulse Y is produced, the internal state

V (k) of the neuron is updated by:

V(k) = U(k) – pY(k)

Figure 5-6 shows typical output waveform for this neuron model,

 0 +1

+1

xx

Stream of +1’s are represented by x
Stream of zeros are represented by y

y

Figure 5-6 Spike Accumulation & Delta-Modulation Neuron Model Output

The genes used to evolve this model are arranged as shown in Figure 5-7.

 Chromosome 1

Other Neurons Feedback
factor, α

Feedback
factor, P

Neuron 1

Neuron
Threshold,

T

Feedback
factor, α

Feedback
factor, P

Neuron 1

Neuron
Threshold,

T

Module N

Cnnt from Neu:
Cnnt to Neu:
Cnnt Status:
Cnnt Weight:

Module 2

Cnnt from Neu:
Cnnt to Neu:
Cnnt Status:
Cnnt Weight:

Cnnt from Neu:
Cnnt to Neu:
Cnnt Status:
Cnnt Weight:

Chromosome 1

Other
Neurons

Module 1

Cnnt from Neu:
Cnnt to Neu:
Cnnt Status:
Cnnt Weight:

Figure 5-7 Second Neuron Model Chromosome Parameters

Cnnt = Connection , Neu = Neuron

 63

Two separate population of chromosomes were used to evolve the network. The first

set of chromosomes was for the different types of neuron parameters and the second

set was for neuron connection status and its weight values. Feedback factor alpha (α)

always has a value less than one. The threshold T and parameter P are initialized with

a value between –5 and 1. Each connection to/from a neuron will have a value of ‘0’

or ‘1’. A zero represents no connection and a one represents the presence of a

connection. The weight values are initialized in the range –0.5 to +0.5 for presence of

a connection, otherwise they were set to zero.

Both the above neuron models have been used in the following chapters for the

evolution of modular neural networks. The reasons for having different neuron

models will become clearer in the following sections.

5.3 Evolutionary Algorithm

An Evolutionary Strategy (ES) [Schwefel 1995] [Recenberg 1973] was used to evolve

the neuron parameters, network topology and connection weights. The ES was chosen

because it operates directly on the parameters of the system itself, rather than the

genes which lie behind the system. Furthermore, an ES had proven to be successful in

previous work [McMinn 2002b].

The topological structure of an ANN has a significant role in its information

processing capability. Searching for an optimal topology can be formulated as a

search problem in the architecture space. There are several characteristics of such a

surface, (as indicated by [Miller 1989]), which make ES-based evolutionary algorithm

a good candidate for searching the surface. These characteristics, according to Miller,

are:

• There are many of possible connections in the network.

• The surface is complex and noisy since there is no direct mapping between an

architecture and its performance (it is based on the evaluation method).

• Surfaces may have similar architectures but quite different performances.

• The surface is multimodal since different architectures may have similar

performance.

 64

In this research, the evolution of both network topology and connection weights for an

ANN were done at the same time, as shown in Figure 5-7. Combining two levels of

abstraction into one increases the search space. Suppose the size of the topological

space is |ST| and the size of the connection weight space is |SW|, then the size of the

two level search space is |SW + ST|, while the size of the one level search space is |SW

× ST][Yao 1993]. The evolution of neuron parameters and network topology

connections with its associated connection weights was performed on separate

populations to reduce the length of a chromosome as the network grew bigger; so, in

general, two separate populations of chromosomes were evaluated.

A (µ + λ) ES was used to evolve the action layer of the ANS, as it was proven the

most successful setup in McMinn [McMinn 2002b]. The (µ + λ) version populates the

next generation with µ chromosomes from the best of µ parents and λ children from

the current generation. The population size was set to 700. At each generation the best

100 chromosomes were chosen to be the parents and breed 600 offspring, giving a

ratio for µ:λ of 1:7. In several experiments, different numbers of parents and offspring

were used, but the ratio was maintained. Each chromosome in the population was

evaluated based on a fitness function described later in this chapter. These

chromosomes were then sorted into descending order. Crossover was used to create

offspring from two parent chromosomes, randomly selected from the elite section of

the population. The probability of the best parent chromosomes being selected to

reproduce offspring was set to 0.85. The mutation probability for each gene was set to

0.25 (meaning that for each offspring created, on average each gene stands a 25%

chance of being mutated). Genes were mutated by adding or subtracting a small value

returned from a Gaussian random number function with mean value of zero and

standard deviation of 0.05.

5.4 Actuator Models

One of the primary tasks of the research was to evolve an ANN to generate patterns of

activity (the lower layers of the ANS) for bipedal and quadrupedal locomotion of a

simulated robot. Therefore, an actuator model was required to test the output

produced by the network. The robot leg model based on an actual robot and shown to

be accurate in [McMinn 2002a] was reused to generate bipedal locomotion walking

 65

patterns. For each leg, there is one active degree of freedom (the hip) and one passive

degree of freedom (the knee). The knee can only bend forward and locks when bent

backwards. These models have been shown to work well, as the neural networks

simulated using them display the same behavior on physical robots [McMinn 2002b].

The models have been used to produce results in several papers using different

systems [Shigematsu 1996], [McMinn 2002b] and the results were checked from time

to time on the physical robots on which they were based to ensure their compliance.

In the case reported here, the investigation started with the robotic equivalent of a

Mudskipper. This means that the robot can drag itself about using two front legs that

have one active and one passive degree of freedom type. The simulated robot leg is

shown in Figure 5-8.

 +1 and –1are

An

–1

gro

Wh

be

Full Backward Full Forward

Forward ground contact position (0.2)Rear ground contact position (0.8)

+1-1

the command
outputs from
network

Figure 5-8 Simulated Single Robot’s Leg

 output value of 1 from the network will force the leg to move back and a value of

 will move the leg forward, as shown in Figure 5-9. The leg is in contact with the

und and the knee is locked between positions 0.2 and 0.8, as shown in Figure 5-8.

ile a leg is on the ground and moving backwards, therefore locking the knee, it can

used to propel the body of the robot forwards. The robot was only allowed to move

66

when the legs were moving in opposite directions from an initial position for a fixed

period of time. This is loosely similar to a human walking gait.

MB = Leg Moving Backwards

MF = Leg Moving Forward
MFMB

Leg Position

Time (t)

-1

+1

Output Level

Time (t)

MF

Figure 5-9 Neuron output and actuator leg position

The fitness function used to evaluate the performance of the CPG is the distance over

which the simulated robot moves. The simulation time for all the experiments is set to

500 time steps. There are 50 positions between the fully forward and fully backward

point. The leg can move one position in one timestep. The leg is at position 10 (0.2 ×

50) when the knee is at the forward ground contact point and at position 40 (0.8 × 50)

when the knee is at the rear ground contact point. The fitness function is a counter

which clocks up the steps taken as the leg move backwards. For example when the leg

is moved from forward contact point to the rear contact point, the robot has propelled

itself forward 30 (40-10 = 30) steps.

In the other actuator configuration used, both degrees of freedom are active

[Muthuraman 2003b]. This actuator model is illustrated in Figure 5-10.

In the first configuration, shown in Figure 5-10 (b), the first degree of freedom

corresponds to a hip joint which can move in the horizontal plane through about 180

degrees. The first joint is allowed to move 90 degrees backward and forward from the

mid positions, which gives a full range of 180 degrees.

 67

When the leg is moving forward from the rear, it has to lift the second degree of

freedom until the forward position is reached and then place it on the ground..

The second degree of freedom allows the leg to move 45 degrees up or down from its

horizontal position. This movement is controlled by the same motor mechanism

described above. This type of configuration is loosely analogous to insect leg

movements.

Although these leg arrangements appear different, networks evolved for the one active

degree of freedom arrangement can be used as the basis for the two active degree of

freedom system because the horizontal leg joint corresponds to the “power stroke” in

the simpler system and has a corresponding angular movement.

+45degrees

2nd degree
of freedom

1st degree
of freedom

 0 degrees

1st degree
of freedom

 0 degrees

 +45 degrees

-45degrees

 Body

Top View

Body

Front View

Forward

Rear

Body

(b)

(c)

Body

(d)
(a)

-45degrees

Figure 5-10 Leg model with 2 degree of mechanical freedom

In this type of actuator there are 180 positions between the fully forward and fully

backward point. The robot’s leg has to move from the forward to rear position within

the desired range. Two different ranges have been used in experiments. The first

range is between forward ground contact point 0.75 and rear ground contact point

0.25. This means the leg has free movement between positions 135 (0.75×180) and 45

 68

(0.25×180). In this case, the robot’s leg makes a full stride from forward to the rear

position and the robot has moved 90 steps (135-45 = 90) forward. The second range is

between the forward ground contact point, 0.65 and rear the ground contact point

0.35. Figure 5-11 illustrates the range for the leg movement.

0.65

0.35

0.25

0.75

rear

forward

Range 2Range 1Top
View

Passive
Degree

Active
Degree

Figure 5-11 Robot's leg movement range

Range 1 was used in the first configuration for the leg with one active and one passive

degree of freedom and Range 2 for leg with two active degrees of freedom.

5.5 Robot Development Morphology

As the network grows, an appropriate evolutionary path must be chosen to allow the

system to develop from a simple form to a complex one [Muthuraman 2003b]. In this

research, the study started with a very simple robot - the robotic equivalent of a

Mudskipper. This means that the robot can drag itself about using two front legs of

the one active, one passive degree of freedom type. Next the system was

deconstrained so that the legs were of the two active degrees of freedom type. The

system moved from this bipedal situation to a stable quadrupedal body form. Figure

5-12 shows the general progression. These stages will be discussed in detail

accompanied with results in next few chapters.

 69

One passive, one active D.O.F
“mudskipper”

Two active degrees of freedom
“mudskipper”

Semi-stable quadruped. Each leg
with two active degrees of
freedom.

Figure 5-12 Robotic body development

It should be noted that, although a predefined body plan has been used in this

example, it would also be possible to allow an evolutionary algorithm to choose the

body plan form (for example, from pre-arranged building blocks) as part of the

algorithm [Sim 1994].

5.6 The Principle of the Artificial Evolutionary System

The basis of the research reported here is the application of the biological principles

outlined in the previous sections to an artificial system.

The technique used has its origins in the paper “Evolution and Devolved Action” by

MacLeod [MacLeod 2002] (included in Appendix A of this thesis). As outlined

earlier, this paper discusses several different methods for evolving networks. These

methods were subsequently refined in later papers [McMinn 2002b], [Muthuraman

2003a] into the system adopted here.

For ease of comparison with previous work, the technique is demonstrated using a

legged robot but, as discussed later, the general principles are applicable to many

other systems.

 70

The neural network evolution is illustrated in Figure 5-13 and proceeds as follows:

1st ANN

Module

2nd ANN
Module

1st
Module

Previously
Evolved
Modules

1st New
Module

Figure 5-13 Evolution of robotic body plan

1. Initially the robot’s body plan is made as simple as is practically possible.

2. Next, a Neural Network Module is added to the robot’s control system. This

network is trained until its fitness does not increase further. The trained weights of

this network are then fixed and do not change as further networks are added.

3. If the system has not reached its maximum possible fitness, then a new module is

added on top of the previous network and its weights are trained (again, after

training, these weights are fixed).

4. The process outlined in point three above is repeated until the fitness (the robot’s

performance) has reached its maximum possible level with the robot’s current

configuration (or, if maximum fitness information is not available, until fitness

does not increase with the addition of subsequent modules).

5. Once the evolved network has reached its maximum fitness, with its current

configuration, either the body plan or the environment of the robot is allowed to

become slightly more complex - in the terminology used here, it is deconstrained.

 71

6. The algorithm then repeats this whole process using the networks developed in the

previous iteration as a fixed basis to build on. By adding new modules on top of

old it builds up the network, one part at a time, until the maximum fitness with that

body / environment configuration is reached; the robot is then deconstrained again

and so on.

The central point is that, at each stage within this process, new networks build upon

older structures from previous iterations and only the weights of the new modules are

trained.

5.7 Implementation of the Evolutionary System Technique

The description of the software used in the project in implementing the evolutionary

ANN technique to generate results presented throughout Chapter 6 to 8 is presented in

Appendix E.

 72

Chapter 6

Initial Results

6.1 Introduction

6.2

In this chapter, the initial results obtained from simulating the Direct Growth Method

are presented and discussed. Results are presented showing the technique in operation

with a simple body form.

Results from Single Functions

The first problem investigated was the evolution of a Central Pattern Generator (CPG)

which could produce the basic gait patterns for bipedal locomotion using the one

passive, one active degree of freedom leg with the most basic (mudskipper) body

form. Firstly, the MMM neuron model described in Section 5.2 of Chapter 5 was used

to implement the CPG. In this case the actuator model is slightly modified so that the

leg joint is forced to move up to the knee lock reset point from the forward ground

contact point before the robot propels its body forward on the next stride as shown in

Figure 6-1.

Forward reset point at 5

Forward ground contact point at 10 Rear ground contact point at 40

Leg joint at neutral (0) position

Ground

Figure 6-1 Modified actuator model

The initial number of neurons in the CPG was set at two because there were two

actuators present, each of which must be connected to a neuron. The simulated robot

was stable in all directions because it was only the production of the appropriate gait

patterns that was under investigation. The fitness score for each chromosome was how

far the robot moved from its initial position within 500 time steps (therefore, higher

scores were better). Two different modules (firstly, with one neuron and secondly with

 73

two neurons) were added to grow the network, while preserving the neuron parameters

and inter-neuron connection weights in the previous modules. All the modules were

fully connected. The configuration and growth of the network with two initial neurons

proceeded as shown in Figure 6-2. Solid lines show possible connections. The

modules were added until the fitness reached its maximum value, and increasing the

number of modules thereafter made no difference to the fitness.

(a) First module. (b) Second module added.

Figure 6-2 Growth scheme for single degree of freedom. (a) First module placed and ready to

train (b) First module fully trained; second module placed and ready to train

Figure 6-3 shows the resulting robot leg positions, when modules with a single neuron

were added to an initial module containing 2 neurons. The best pattern (highest

fitness) is when both the legs fluctuate between position 5 and 40, out of phase and the

pattern repeats in this range, to give a maximum distance of 430. This corresponds to

14.25 complete strides within the simulation time.

Studying the graph (Figure 6-3 a)), one can see that the left leg is in phase with the

right leg at the beginning of the oscillation and the gait pattern stabilizes after this.

There were no oscillations in the position (between position 5 and 40) of the robot legs

in the beginning when the network size is small but the oscillation becomes clearer in

the latter part of the experiment, Figure 6-3(c). The distance moved by the robot with

 74

two neurons in the first module is 341 steps ((d)). The distance remained the same

after the second module is added.

Let us consider the operation of the network as more modules are added while freezing

the neuron parameters and connection weights of the previous modules. When a new

module is added, there are many possible connections between neurons. In this case,

for example, when a second module of one neuron is added to an initial module of 2

neurons there are 5 possible connections (including the recurrent connection to itself).

More connections are possible as the number of neurons is increased in the module or

the number of modules. The solution search space expands as number of connections

increases. The larger the search, space the more difficult it becomes for the ES to find

a good solution. One of the probable reasons for no increase in fitness is that there

were not enough neurons in the new module to influence the previous modules.

After the third module is added the distance increased to 373, an increase of 32 steps.

This increase may not be possible without the presence of the second module. The

distance remained the same for the next three modules. When the sixth module is

added the distance increased by 4 steps and remained the same thereafter with

increasing number of modules of one neuron. There is no large increment in distance

moved after the third module.

When there is no increment in distance after a new module is added, the previous

modules can be said to have reached a stable structure. Most probably, more neurons

are required in the new module to modify the initial behavior of the stable structure. In

this case, one neuron in a module is not adequate to give a great improvement.

It also can be seen from Figure 6-3(a) to (c) that the leg oscillates between positions 0

and 40, which are not within the desired range. The leg always goes to the 0th position,

Figure 6-3(a) - (c), from the rear ground contact point. This means that the distance

count loses 5 steps when the leg moves from the rear to the forward position. From

Figure 6-3(c), on average there are 12 complete strides between leg position 0 and 40.

Therefore the total number of steps was 60 less than the maximum possible. The

distance moved by the robot in Figure 6-3(d), increases with increasing number of

modules. The maximum distance moved with six modules is 377 steps.

 75

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

Time Step (t)

Le
g

P
os

iti
on

Biped Robot’s Leg Position

Right Leg
Left Leg

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

Time Step (t)

Le
g

P
os

iti
on

Biped Robot’s Leg Position

Right Leg
Left Leg

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45
Biped Robot’s Leg Position

Time Step (t)

Le
g

Po
si

tio
n

Right Leg
Left Leg

1 2 3 4 5 6 7
340

345

350

355

360

365

370

375

380
Distance Evolution

Number of Modules

D
is

ta
nc

e
M

ov
ed

 Note: x:y:z where x,y,z… refers to number of neurons in a module

d) Distance moved (fitness) with increasing
number of modules. Output to the actuator
taken from the neurons in the 1st module i.e.
neuron 1 & 2

c) 6 modules, 2:1:1:1:1:1

b) 3 modules, 2:1:1 a) 1 module, 2

Figure 6-3 Leg positions of a bipedal robot and the improvement of fitness when modules with

single neuron were added to the previous modules

 76

Figure 6-4 shows the leg positions of the robot and the distance moved when modules

with 2 neurons were added to the system. In both the legs started to oscillate between

position 5 and 45 when there were 4 neurons in total. This behaviour does not occur

when modules of one neuron are added to the existing network. The oscillations

continue to increase as the number of modules increases. This improves the distance

moved by the robot.

The robot moved 358 steps with 2 neurons in the initial module. The rate of change of

steps when the second module was introduced was 31. The distance moved increased

to 389 steps. The rate of change decreased to 5 and 2 for the third and fourth module.

Further changes remains constant at 2. The maximum distance moved was 396.

It can be seen from Figure 6-4 (e), that the distance moved increases with an

increasing number of modules, but it is still not possible to reach the theoretical

maximum distance. The distance moved increases by 22 steps when the network is

grown with a module with 2 neurons compared to when the network is grown with a

single neuron module. A good solution was still not achievable by growing the

network with 2 neurons in a module.

Even though having 2 neurons or more in the new module may provide more

connections, neuron functionality also seems to have an important role in determining

the growth of the network. In the MMM neuron model the timing parameters, t1 and t2

of the neurons are fixed; there is no flexibility to modulate this information. The

addition of new modules only provides the required phase shift for a particular gait, in

this case bipedal locomotion. This shows that the timing information of the neuron is

very important.

 77

 Note: x:y:z where x,y,z… refers to number of neurons in a module

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

Time Step (t)

Le
g

P
os

iti
on

Biped Robot’s Leg Position

Right Leg
Left Leg

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

Time Step (t)

Le
g

P
os

iti
on

Biped Robot’s Leg Position

Right Leg
Left Leg

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

Time Step (t)

Le
g

P
os

iti
on

Biped Robot’s Leg Position

Right Leg
Left Leg

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

Time Step (t)

Le
g

P
os

iti
on

Biped Robot’s Leg Position

Right Leg
Left leg

1 2 3 4 5
355

360

365

370

375

380

385

390

395

400
Distance Evolution

Number of Modules

D
is

ta
nc

e
M

ov
ed

d) 4 modules, 2:2:2:2

e) Distance moved with increasing in
number of modules. Output to the actuator
taken from the neurons in the 1st module i.e.
neuron 1 & 2.

c) 3 modules, 2:2:2

b) 2 modules, 2:2 a) 1 module, 2

Figure 6-4 Leg positions of the robot and the distance
were added to the previous modules

 78

35

40

45
Biped Robot Leg
 evolution when modules with 2 neurons

 Position

Right Leg
Left Leg

In the next experiments, the MMM neuron model described in Section 5.2 was used to

implement the lower layer of the ANS and was tested on an actuator with 2 degrees of

freedom as shown in Figure 5-10. However, when this was implemented, it was found

that the network failed to evolve to a solution, which moved any distance. The result

in Figure 6-5 below shows the robot’s leg positions when 2 and 5 neurons are used in

the initial module. The left leg position with five neurons is at position 90; therefore it

is not shown clearly on the graph.

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

Time Step (t)

Le
g

P
os

iti
on

Biped Robot’s Leg Position

Right Leg
Left Leg

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90
Biped Robot’s Leg Position

Time Step (t)

Le
g

P
os

iti
on

Right Leg
Left leg

b) 1 module, 5 neurons a) 1 module, 2 neurons

Figure 6-5 Robot’s Leg Position with New actuator model

This result meant that the system had to be examined to establish why it was failing. It

was discovered that this failure was due to the neuron model used.

The above results (Figure 6-5 (a) and (b)) suggested that the MMM neuron model

described in Section 5.2 was not capable of producing the required outputs for bipedal

locomotion using the 2 active degree of freedom model actuator. This is because the

neuron model has a fixed on (t1) and off (t2) time; this causes the neuron to fire for the

time fixed by the evolutionary algorithm. The neuron does not therefore reduce or

increase its firing rate in response to influences from other neurons. Moreover, in

further experiments (below), it was found that influence from other neurons is very

important.

 79

0

0

 00

50 100 150 200 250 300 350 400 450 500

20

40

60

80

100

120

140

160

180

Time Step (t)

Le
g P
os
iti
on

Biped Robot Leg Position

Right Leg
Left Leg

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

Time Step (t)

Le
g P
os
iti
on

Biped Robots Leg Position

Rigth Leg
Left Leg

50 100 150 200 250 300 350 400 450 500

20

40

60

80

100

120

140

160

180

Time Step (t)

Le
g

P
os

iti
on

Biped Robot Leg Position

Right Leg
Left Leg

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

Time Step (t)

Le
g

P
os

iti
on

Biped Robot Leg Position

Rigth Leg
Left Leg

1 2 3 4
220

230

240

250

260

270

280

290

300

310

320
Distance Evolution

Number of Module

D
is

ta
nc

e
M

ov
ed

Note: z:y:z where x,y,z… refers to number of neurons in a module

e) Distance moved with increasing number
of modules. Output to the actuator taken
from the neurons in the 1st module i.e.
neuron 1 & 2.

d) 4 modules, 2:1:1:1 c) 3 modules, 2:1:1

b) 2 modules, 2:1 a) 1 module with 2 neurons

Figure 6-6 Leg positions of the robot when modules with 1 neuron were added to the previous
modules

 80

Figure 6-6 shows the results of using the new neuron model (Spike Accumulation and

Delta-Modulation) described in Section 5.2 to evolve a bipedal gait when one neuron

is added to the existing modules for the actuator model shown in Figure 5-10 of

Chapter 5.

From Figure 6-6(e), the distance moved by the robot increases with increasing number

of modules with one neuron. The leg position (Figure 6-6 (a-d)), oscillates between

position 0 and 180 without reaching zero like the previous neuron model (Figure 6-3

and Figure 6-4 does with the first actuator model in Section 5.2. This shows that this

new neuron model is capable of controlling biped locomotion with these actuators.

The distance moved decreases further when a fourth single-neuron module is

introduced. There are three possible reasons for the decrement in the distance moved.

The first is the inability of the neuron model itself to modulate the firing activity.

Secondly, the connection pattern between neurons (within and between newly added

modules) is incorrect; in all the experiments described so far, all the neurons in the

network were fully connected. Thirdly, when a new module was added to the network,

the ES was not able to evolve the best connection weights to increase the distance

moved by the robot. Inconsistent activity in the network can cause the decrement in

the distance.

Figure 6-7 shows the robot’s leg positions when two neurons are added to the existing

modules. From (e), the distance moved by the robot increases for the first two added

modules and then decreases for the latter two modules. The robot’s leg position is

much improved compared with the single neuron module results. This shows that the

number of neurons in a module is very important. Later experiments will give more

insight into this point. From Figure 6-6 and Figure 6-7, it may be noticed that the

fitness increases quickly at the beginning and then starts decreasing when more

modules were introduced.

 81

 0

0 50 100 150 200 250 300 350 400 450 500
20

40

60

80

100

120

140

160

180

Time Step (t)

Le
g

P
os

iti
on

Biped Robot’s Leg Position
Right Leg
Left leg

1 2 3 4
210

220

230

240

250

260

270

280

290
Distance Evolution

Number of Module

D
is
ta
nc
e
M
ov
ed

50 100 150 200 250 300 350 400 450 500
20

40

60

80

100

120

140

160

180

Time Step (t)

Le
g

P
os

iti
on

Biped Robot ‘s Leg Position
Right Leg
Left Leg

0 50 100 150 200 250 300 350 400 450 500
20

40

60

80

100

120

140

160

180

Time Step (t)

Le
g

P
os

iti
on

Biped Robot’s Leg Position

Right Leg
Left Leg

0 50 100 150 200 250 300 350 400 450 500
20

40

60

80

100

120

140

160

180

Time Step (t)

Le
g

P
os

iti
on

Biped Robot ‘s Leg Position

Right Leg
Left Leg

e) Distance moved with increasing in
number of modules. Output to the actuator
taken from the neurons in the 1st module i.e.
neuron 1 & 2.

d) 4 modules, 2:2:2:2
c) 3 modules, 2:2:2

b) 2 modules, 2:2 a) 1 module with 2 neurons

Note: x:y:z where x,y,z… refers to number of neurons in a module

Figure 6-7 Leg positions of the robot when modules with 2 neurons was added to the previous
modules

 82

During these tests, a second important discovery was made (the first being the

importance of the neural functionality outlined above). This was that allowing all

connections to be present - that is, allowing a fully connected network - caused the

evolution to either slow down or stop completely. This problem was resolved by

allowing the Evolutionary Algorithm to choose the connections within the network as

well as their weights. The reason that the connection pattern is important may be that a

fully interconnected pattern means that all neurons in the previous module are affected

by the new module. While some of these connections cause improvements in fitness,

this may be counteracted by other connections which cause a decrease. Although it

could be argued that unused connection weights will evolve to zero anyway, it was

found that evolution proceeds much more quickly by simply allowing the deletion of

connections.

The initial experiments with this approach involved adding a module with one neuron

to the previous modules. Figure 6-8 shows the leg positions of the robot for this

configuration. The robot managed to move a distance of 261 steps with 2 neurons in

the initial module. The distance increased with increasing number of modules and

saturated at 310 after the fourth module. The growth strategy of adding a module with

one neuron could not evolve fully towards the best solution.

 83

Note: x:y:z where x,y,z… refers to number of neurons in a module

a) 1 module with 2 neurons b) 2 modules, 2:1

c) 3 modules, 2:1:1 d) 4 modules, 2:1:1:1

 e) Distance moved with increasing in number of
modules. Output to the actuator taken from the
neurons in the 1st module i.e. neuron 1 & 2.

Figure 6-8 Leg position of the robot when modules of one neuron were added to the network with
connections evolved by the ES

 84

The first module used previously to illustrate the growth in adding a module with one

neuron was used again in this experiment. Figure 6-9 shows the leg positions when a

module with 2 neurons was added to the previous modules. There were an

improvement 89 of steps in distance when the second module was added. The distance

continued to increase with an increasing number of modules. The maximum distance

moved was 420 steps with six modules. The distance saturated and remained at 420

with increasing number of modules thereafter. There were 12 (six modules of two

neurons) neurons in total. Adding 2 neurons in a module showed a great improvement

in the results compared to adding a module with one neuron but maximum distance

still could not be reached.

A conclusion that can be drawn by analyzing all the results from the previous

experiments is that there should be a minimum number of neurons in the new module

for it to have a maximum potential for incremental growth towards the best solution.

The number of neurons required depends on the mapping difficulties that the new

module has to overcome to reach the solution.

 85

Note: x:y:z where x,y,z… refers to number of neurons in a module

a) 1 module with 2 neurons b) 2 modules, 2:2

c) 3 modules, 2:2:2 d) 4 modules, 2:2:2:2

e) 5 modules, 2:2:2:2:2 f) 6 modules, 2:2:2:2:2:2

 86

e) Distance moved with increasing in number of modules.
Output to the actuator taken from the neurons in the 1st
module i.e. neuron 1 & 2.

Figure 6-9 Leg position of the robot when modules of two neurons were added to the network
with connections evolved by the ES

Figure 6-10 illustrates the distance travelled with different numbers of neurons in the

modules. The result was promising, and the distance moved and the leg patterns

improved as number of modules increased. A module with two neurons was trained.

The robot was able to move a maximum distance of 261 in 500 time steps - see Figure

6-10 (a). Then, a module with two neurons was added. The distance moved increased

to 350 – see Figure 6-10 (b). Finally, a module with three neurons was added and the

distance increased to 440 – see Figure 6-10 (c). The distance moved never changed

thereafter, with an increasing number of neurons and modules. Figure 6-10 (d) shows

the fitness improvement as modules are added to the network. The total number of

neurons to reach the maximum distance for a bipedal locomotion is 7. Figure 6-11

shows the neuron connections between neurons for all three modules.

 87

Note: x:y:z where x,y,z… refers to number of neurons in a module

a) 1 module with 2 neurons b) 2 modules, 2:2

c) 3 modules, 2:2:3 d) Distance moved with increasing in number of

modules. Output to the actuator taken from the
neurons in the 1st module i.e. neuron 1 & 2.

Figure 6-10 Leg position of the robot when variable number of neurons were added to the new
modules with connections evolved by the ES

 88

7 6 5

4 3

2 1

Connection

Neuron
X = Neuron Id

 x

Figure 6-11 Robot's body with neural connections for 1 active 1 passive degree of freedom

All the neurons in the network are assigned with a numerical Identity (Id) in order of

addition to the network. Table 1 below shows the number of modules in the network

and the neuron identities in that module. Module 2 to 3 are the new modules evolved

on top of the previous modules. Module number 1 is the initial output module.

Module Number Neuron Ids

1 1, 2
2 3, 4
3 5, 6, 7

Table 1 Module number and neuron Ids

Table 2 shows the evolved connections between neurons when module number 2 and

3 are formed.

 89

Neuron Id Connection from Neuron Id
1 2, 4, 5, 7
2 1, 2, 3, 5, 7
3 2, 4, 5, 6, 7
4 1,3, 4
5 1, 2, 4, 7
6 1, 2, 4
7 1, 2, 3, 4, 5, 6, 7

Table 2 Evolved connections to and from neurons in the network

By analyzing the connectivity table (Table 2), we can see that there is at least one

connection formed from the new module to the output module, shown in bold. It is

also noticeable that fewer connections are formed from the new module to previously

evolved modules. From Table 2, more connections are formed from the previous

modules to the new module, shown in italics.

The important point to note is that, if the evolutionary algorithm does not find a good

solution, the synapse weights connecting the new module to the previous modules turn

out to be zero. From Figure 6-12 (a) the maximum distance reached was 261. When a

new module with 2 neurons was introduced, the initial fitness was preserved for few

generations before the distance increased further. This showed that the evolutionary

algorithm managed to find that the previous modules (having already acquired some

degree of knowledge about the problem) were still able to give the maximum distance,

even although the new module made the overall system worse.

A network with 12 neurons was trained and the distance moved was 395. There could

be 144 (122) connections between neurons if all the neurons are fully connected. A

simple mathematic calculation will reveal that there are 2.23×1043 possible network

topologies. Since the ES has to find optimal weights for the connections, this indicates

that a big ANN is not always the best solution (because of the large search space). The

final solution for a problem might be very small in a large space; incremental growth

therefore has an advantage under such circumstances.

 90

Note: x:y:z where x,y,z… refers to number of neurons in a module

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

Number of Generation

D
is
ta
nc
e
M
ov
ed

Distance Evolution

0 5 10 15 20 25 30 35 40 45 50

260

270

280

290

300

310

320

330

340

350

Number of Generation

D
is
ta
nc
e
M
ov
ed

Distance Evolution

a) 1 module with 2 neurons b) 2 modules, 2:2

0 5 10 15 20 25 30 35 40 45 50
200

250

300

350

400

450

D
is
ta
nc
e
M
ov
ed

Distance Evolution

Number of Generation
c) 3 modules, 2:2:3

Figure 6-12 The evolution of distance travelled when variable number of neurons were added to
the new modules with connections evolved by the ES

6.3 Quadruped

A network to produce a quadruped trot gait based on the actuator model with 2 active

degrees of freedom (Figure 6-13) was evolved. The total number of modules required

to produce the gait was 6. The modules contained 5, 3, 2, 4, 4, and 5 neurons

respectively. In the previous experiment for bipedal locomotion there were two

neurons in the initial module. Each neuron in the module is connected to the first

active degree of the actuator. There were 5 neurons in the initial module for this

experiment. It was found that having 4 neurons in the initial module did not produce

the required phase shift between the legs. Irregularities in the leg position can be seen

in the first 3 modules (Figure 6-13 a – c). The leg position stabilised within the desired

range thereafter. A total of 23 neurons are required to successfully evolve the trot gait

 91

to the maximum distance possible. Figure 6-13 shows the leg positions of the robot

and distance evolution as new modules are added to previously evolved modules.
Note: x:y:z where x,y,z… refers to number of neurons in a module

a) 1 module with 5 neurons b) 2 modules 5:3

c) 3 modules 5:3:2 d) 4 modules 5:3:2:4

e) 5 modules 5:3:2:4:4 f) 6 modules 5:3:2:4:4:5

 92

g) Distance moved with increasing in
number of modules. Output to the actuator
taken from the neurons in the 1st module i.e.
neuron 1 & 2.

Figure 6-13 Quadruped trot gait leg positions

6.4 Permissible Module Connections

Another area addressed in larger networks is that of localising the neural module’s

connections. At present, the networks used are small enough to allow any neuron to be

connected to any other. However, in large networks, this becomes impractical and

smaller connection areas (for example only to the previous module layer) may be

required. This type of growth could be called uni-directional because modules are only

added in front or at the rear of existing modules.

To analyse the effect of permissible connections in a large network, two different

experiments were carried out. In the first experiment, modules are only connected to

the rear of the last module. Connections are not allowed between other modules (for

example connections between the second and the initial module). The outputs are

taken from the initial module. This method is illustrated in Figure 6-14.

Outputs

Connection between modules

nth

New

Module

Second

New

Module

First

New

Module

Initial

(Output)

Module

Figure 6-14 Adding modules at the rear of initial module

 93

In the second experiment, modules are added in front of the last module. Again,

connections are not allowed between other modules. In this method, the outputs are

taken from the newly added module. Any neurons in this module could be selected to

be the output neuron. The disadvantage of this method is that there will always be a

minimum number of neurons in the module. The number of neurons is determined by

the number of actuators. For example, a minimum of 4 neurons are always required in

the new module to control a quadruped robot with a single degree of freedom. In the

previous method, the number of neurons in the initial module is always fixed. Figure

6-15 illustrates this method.

Figure 6-15 Adding modules at the front of the last module

Outputs

Connection between modules

Initial

Output

Module

 Second

Output

Module

Third

Output

Module

nth Output

Module

The actuator model described in Figure 5-8 (section 5-4 of Chapter 5) was used for

these experiments. The discussion below starts with the second experiment and then

continues with the first.

Figure 6-16 shows the leg positions of the robot and the distance moved when

modules with 2 neurons are added in front of the last module. Modules with a

minimum of 2 neurons were required to control the bipedal robot because there were 2

actuators (legs with one active degree of freedom). A total of 3 modules with 2

neurons in each was required to produce a bipedal walking gait. The robot managed to

move a distance of 240 with 2 neurons in the initial module. It can be seen from Figure

6-16 (a) that the right leg is held at position 10 and the left leg oscillates within the

desired range. There is no obvious reason for this output leg pattern. This could be the

best solution the ES evolved with 2 neurons in the initial module. Then, a module with

two neurons was added. The distance moved increased to 450 – see Figure 6-16 (b).

 94

Next, a module with 2 neurons was added and the distance increased to 480 – see

Figure 6-16 (c). This is the maximum distance that the robot could move within the

specified time scale. Figure 6-16 (d) shows the distance improvement with increasing

number of modules.

Note: x:y:z where x,y,z… refers to number of neurons in a module

a) 1 module with 2 neurons b) 2 modules 2:2

c) 3 modules with 2:2:2 d) Distance moved with increasing in number of

modules. Output to the actuator taken from the
neurons in the new module.

Figure 6-16 Adding modules at the front of the last modules

In this type of growth, the previous modules are behaving like an input to the new

module. The new module behaves like a new function (F (New)). The previous

modules (F (Oldn) where n is the number of previous modules) becomes a subset of

the new function (F (New (Old))). This method is very similar to the Tiling Algorithm

(as mentioned in Chapter 4). However, in the Tiling Algorithm, all the neurons in the

new module are fully connected to the neurons in the previous module. This is not the

case with the growth technique presented here.

 95

This method may be not biologically viable, because the connections to the outputs

may not always change as new modules are evolved.

The results of the first experiment illustrated above in Figure 6-17 were examined.

Figure 6-17 shows the leg positions of the robot and the distance moved when

modules of neurons are added at the rear of the last module. In Figure 6-17 (a and b)

both the right and leg are nearly identical. Figure 6-17 (d) shows the increment in

distance moved with increasing number of modules. The distance moved never

changed thereafter, with an increasing number of neurons and modules. There were 2,

2 and 4 neurons in each module.

Note: x:y:z where x,y,z… refers to number of neurons in a module

a) 1 module with 2 neurons b) 2 modules 2:2

c) 3 modules with 2:2:4 d) Distance moved with increasing in number of

modules. Output to the actuator taken from the
neurons in the initial module.

Figure 6-17 Adding modules at the rear of initial module

 96

The significance of this technique will be become apparent after the addition of the

third module. This is because the new (third and nth module, where n is number of

modules) modules added after this will have a smaller effect on the previous modules

(n –1 modules). It is apparent from Figure 6-14 the technique that the newly added

module can only affect the previous module. It can be seen from Figure 6-17 (c) that

there was a significant improvement in the leg positions when the third module was

introduced. The reason for different numbers of neurons in a module has already been

discussed in Section 6.2 of this chapter. It was also found that the fitness never

increased with increasing number of modules with variable number of neurons

thereafter. The maximum possible distance could not be achieved with this type of

growth. One possible reason is that there is smaller influence from the newly added

module to the earlier modules in the network as more modules are added due to the

chain nature of the network structure.

We will now incorporate the second growth technique (Figure 6-15) into the network

evolved previously (Figure 6-18). Two modules with 2 and 5 neurons were added to

the existing network. It was found that fitness increased with increasing number of

modules. The distance moved saturated at 450 steps with despite an increasing number

of neurons and modules thereafter.

Figure 6-18 shows the leg positions and distance improvement of the robot for the two

newly added modules. Even though the maximum possible distance (480) could not be

achieved, the distance travelled was increased by incorporating the first growth

method. These results show that bi-directional growth is also an option with large

networks.

 97

Note: x:y:z where x,y,z… refers to number of neurons in a module

a) 4 modules with 2:2:4:2 b) 5 modules with 2:2:4:2:5

d) Distance moved with increasing in number of
modules. Output to the actuator taken from the
neurons in the new module.

Figure 6-18 Adding modules at the front of the last module

6.5 Discussion

In obtaining these results, the objective was to evolve systems which could be

compared with previous work done by McMinn [McMinn 2000] [McMinn 2002a].

A total of 7 neurons were required to successfully evolve a bipedal walking gait with

the direct growth method (Figure 6-10). The number of generations required to evolve

the best bipedal gait was less than 100 (Figure 6-12). It was also found that, when a

new module was added, the fitness increased quickly for the first few generations.

This shows that the previous modules in the network are contributing to the increment

of the fitness. The number of generations was fixed at 50 for every new module added

to previously evolved network, unless otherwise mentioned.

 98

[McMinn 2002b] used a more conventional model with a fixed network size and

functionality to obtain neural networks capable of both bipedal and four legged gaits.

The total number of neurons in the Central Pattern Generator (CPG) used by McMinn

was four neurons and these were fully connected (recurrent connections). The final

evolved CPG had a lower number of neurons. The suggested number of processing

units for the CPG is 2 × n where n is the number of legs (or joints if there are multiple

degrees of freedom per leg) based on Golubitsky [Golubitsky 1998]. However, the

processing units assumed in the 2 × n suggestion of Golubitsky [Golubitsky 1998] are

complex mathematical oscillators, rather than the simple types of neurons as used by

McMinn. The Spike Accumulation and Delta-Modulation neuron used in this research

is much simpler than the one used by McMinn. McMinn [McMinn 2002b] required

1000 generations to evolve a network to produce a bipedal walking gait. The bipedal

walking and jumping gait is the most basic. The number of generations is high because

the connection weights and neuron parameters are trained until the best walking

pattern is found.

The next gait evolved was the pronk. In this gait all the legs move simultaneously and

in phase. The initial set-up of McMinn’s network for quadruped gaits is shown in

Figure 6-19. The input to the network was a tonic signal, connected to all the neurons

in the network. Four outputs were taken from unique neurons. There was no tonic

signal provided to the networks used to produce bipedal (walking, jumping) and

quadrupedal (trot, pronk) gait in this research. The network could be said to be self

oscillating (generating an output without an input signal).

 99

 Magnitude

Input

time

“Evolution Space”

(synapses evolved here)

 Outputs to 4 legs

Figure 6-19 McMinn’s ANN setup for evolving CPGs (Reproduced by permission of McMinn)

There were 23 neurons in the network evolved using the growth strategy. The total

number of generations required to successfully evolve quadruped trot gait was 104

(see Appendix C, Section C.1). The optimal number of neurons for the same network

evolved by McMinn was found to be 16 (rather than the initial setting of 8) which

allowed all four legs to be controlled and contributing to the appropriate output

patterns. McMinn required 1500 generations [McMinn 2002b] to generate the same

gait. The main difference is that this system is open-ended and flexible enough for

continued development over and above these simpler systems as will be seen in

Chapter 7.

Similarly results for bipedal jumping and quadruped pronk gaits were produced and

presented in Appendix C, Section C.2.

 100

Chapter 7

Results From Multiple Functions

7.1 Introduction

7.2

The results in the previous chapter were based on a mechanically simple robot. In this

Chapter, further results are obtained using a more complex robot body configuration.

There are also discussions and results on other applications of the growth technique,

which illustrate the universality of the approach.

Evolution of the Body-plan

A major part of the modular evolution scheme is not the evolution of the neural

network itself, but the evolution of the robot in terms of its body plan and the

environment it is interacting with. Another way of looking at the evolution of the

environment is to say that it is the fitness function – in other words, the fitness

function changes and evolves along with the robot. Total evolution is illustrated in

Figure 7-1.

Evolution of Robot’s
Environment - Fitness

Function

Evolution of Robot’s Body
Plan - adding actuators and

sensors

Evolution of “Brain” – Neural
Network

Figure 7-1 Total evolution

All these aspects must go hand-in-hand during the robot’s development. Let us take

them separately.

Firstly, consider the body plan. This is informed by two separate branches of science:

Evolution and Embryology. Evolution is the development of animals over vast

periods of time, starting in the pre-cambrian era over 570 million years ago, with

single celled animals. More insight into this can be found in Section 3.3.7 of Chapter

3. Embryology is the study of the development of the embryo, which echoes

Evolution (the embryo starts as a single cell and passes through a similar pattern of

development to evolution – as through it is replaying the evolutionary history of the

animal).

 101

There are two things which have to be added to the robot’s body as it evolves: sensors

and actuators. With actuators, the proposal is to start with one degree of freedom and

evolve the model progressively to its final form by adding one further degree of

freedom at a time. In the case of limbs one joint at a time can be added. Limb

movement sensors also have to be added if needed.

Note that there is a limit to body plan evolution as far as actuators are concerned. For

example, in the case of a robotic biped, when all the joints are in place and are able to

be controlled (similar to the evolution of an austrapithicus), then only the “mind”

(Neural Network) and with it the environment follow. In this Chapter we will consider

the evolution of ANN for two degrees of freedom per leg is considered. More

information about sensor, environment and mind evolution is presented in the next

chapter.

7.3 Results from Further Degrees of Freedom

Once it was established that the technique could be used to grow even a single

function as described in Chapter 6, the research moved on to consider multiple

degrees of freedom. This was tackled by adding a joint to each of the biped’s legs as

shown in Figure 7-2 and described previously in Section 5.4.

Figure 7-2 Leg with two active degrees of freedom

Leg joint 1

Leg joint 2

movement

movement

Top ViewSide view

The initial robot body plan was one with one passive and one active degree of

freedom leg as shown in Figure 7-3. The robot’s leg has to move from the forward to

rear position within a desired range. ANNs were successfully evolved previously to

produce a bipedal walking gait for Range 1. However, in the new case, the

environment is deconstrained so that the controlling network has to produce walking

motion for the new range (Range 2 as shown in Figure 5.11).

 102

rear

forward

Range 2 Range 1Top
View

Passive
Degree

Active
Degree

Figure 7-3 Robot's leg movement range

The arrangement of the networks for this task is shown in Figure 7-4. The previous

(single active degree of freedom) system is retained and new modules are added to

build up the network for the newly added functionality. Connections are allowed to

the previously developed network so that the new sections can take timing cues. It

was decided to use this method rather than to add external sensors on the new leg

sections in order to test the system’s flexibility (external sensors would make the

problem easier). The Evolutionary Strategy used was as previously explained.

Connection between
neurons

Body plan deconstrained so that
Limbs have two active degrees
of freedom

One active degree of freedom situation

1st new
Module

Previously
Evolved
Modules

Previously
Evolved
Modules

Figure 7-4 Arrangement of body-form for second degree of freedom limbs

The Spike Accumulation and Delta Modulation [Shigematsu 1996] neuron model

described in Chapter 5 was used to evolve the network to control the second degree of

freedom. There were 3 modules with a total of 7 neurons in the previous network for

the single degree of freedom. The first new module with 2 neurons was added to the

network. Each neuron in this module was permanently connected to the second joint

of the actuator as shown in Figure 7-5.

 103

 e

Previous
Modules

2nd Joint

Top
View

1st Joint

The neurons in

ground and a z

purpose and F

initial module

improvement i

active degrees

remaining mod

initial module

second joint.

Note: x:y:z where

1st New Modul
Figure 7-5 Neuron connections
 this new module have to produce a +1 pulse to

ero pulse to rest the joint on the ground. ANNs w

igure 7-6 (a – f) shows the leg positions for both

has trained and the final module is added. Figur

n fitness as the new modules are added. The entire A

 of freedom is shown in Figure 7-7. The robot’s

ules are presented in Appendix C, Section C.3. Ne

control the first joint of the actuator and neurons

 x,y,z… refers to number of neurons in a module
Initial Module

a) Leg Position for both first degree of joints:

 4th module with 2 neurons (2:2:3:2 previous modu

104
Connection between
neurons
Co
j

nnection to the leg
oints
Connection to the leg
joints

lift the joint off the

ere evolved for this

 the joints after the

e 7-6 (g) shows the

NN to control both

leg position for the

urons 1 and 2 in the

8 and 9 control the

les)

b) Leg Position for front right second joint c) Leg Position for front left second joint

Final Module

d) Leg Position for both first degree of joints:

 6th module with 1 neuron (2:2:3:2:1:1 final modules)

e) Leg Position for front right second joint f) Leg Position for front left second joint

 105

g) Distance moved with increasing in number of modules.
Output to the actuator taken from the neurons in the 1st
module i.e. neuron 1,2,3 & 4.

Figure 7-6 Bipedal walking gait leg positions for both the active joints

 106

Figure 7-7 Robot's body with neural connections for 2 active joints

11

10

9 8

7 6 5

4 3

2 1

Connection

Neuron
X = Neuron Id

 x

Table 1 below shows the number of modules in the network and the neuron Ids.

Modules 4 to 6 are the new modules evolved on top of the previous network. A total

of 4 neurons are required to control the second joint and to produce the bipedal

walking gait. Modules number 1 and 4 are the output modules.

 107

Module Number Neuron Ids
1 1, 2
2 3, 4
3 5, 6, 7
4 8, 9
5 10
6 11

Table 1 Module number and neuron Ids

Table 2 shows the evolved connections between neurons when modules number 4, 5

and 6 are formed.

Neuron Id Connection From Neuron Id

1 9, 10
2 8, 9, 10
3 11
4 8, 10,
5 9,
6 9, 10, 11
7 9
8 1, 4, 5, 7, 8, 9
9 1, 2, 6, 7, 8, 10
10 2, 3, 4, 5, 10
11 1, 5, 7, 8, 9, 10

Table 2 Evolved connections to and from neurons in the network

By analyzing the connectivity table (Table 2), it can be seen that more connections

have evolved from the previous modules to the neurons in the new module. It is also

noticeable that only a few connections are formed from the new module to previously

evolved modules. Neurons in the new module are often connected to the neurons in

the output module. The new module behaves as a signal filter. It observes the

unwanted signals from other modules and outputs an improved signal to other parts of

the network. The network structure resulting from the system outlined appears, to the

casual observer, to be a fully interconnected network. However, closer inspection of

its functionality shows that different areas of the network are specialized to handle

different functions – a structure similar to that present in the biological brain, where

localized regions of an apparently interconnected structure perform specific tasks.

This is a direct result of the evolutionary process.

 108

Similarly ANNs have been evolved to control a quadruped with 2 active joints per

leg. Again, the body plan was deconstrained as shown previously in Figure 7-3. New

modules were evolved to control the second joint on top of the existing network used

to produce trotting gait in a quadruped, as described in Chapter 6, Section 6.3. In this

quadrupedal configuration neurons in the new module have to produce a +1 pulse to

rest the joint on the ground and a zero pulse to lift the joint off the ground. Six

modules with a total of 23 neurons were required in total to produce the gait (trot).

Figure 7-8 (a – j) shows the leg positions of all the joints after the initial module is

trained and after the final module is added. Figure 7-8 (k) shows the improvement in

fitness as new modules are added. The robot’s leg positions for the remaining

modules are presented in Appendix C, Section C.4.
Note: x:y:z where x,y,z… refers to number of neurons in a module

Initial Module

a) Leg Position for both first degree of joints:

 7th module with 4 neurons (5:3:2:4:4:5 previous modules)

b) Leg Position for front left second joint c) Leg Position for front right second joint

 109

d) Leg Position for rear left second joint e) Leg Position for rear right second joint

Final Module

f) Leg Position for both first degree of joints:

 11th module with 2 neurons (5:3:2:4:4:5 final modules)

g) Leg Position for front left second joint h) Leg Position for front right second joint

 110

i) Leg Position for rear left second joint j) Leg Position for rear right second joint

k) Distance moved with increasing in number of modules.
 Outputs to the actuator are taken from the neurons in the
 initial module.

Figure 7-8 Quadruped trot gait leg positions for both the active joints

Table 3 shows the distribution of number of neurons in the new modules. The module

number starts from 7 because there were already 6 modules in the initial network.

Since there were 4 actuators in the quadruped, we need 4 neurons in the seventh

module to control the second joint. Each neuron in this module will be connected to

the second joint of all the actuators. The total number of neurons required to

successfully control the second joints and produce the trotting gait for the new range

is 35 in 11 modules.

 111

Module Number Number of Neurons
7 4
8 3
9 2
10 1
11 2

Table 3 Number of neurons in each module

7.4 Copy And Paste Technique

Having successfully tested the evolutionary idea on bipedal and quadrupedal systems,

the work was expanded to investigate the reuse of successfully evolved modules in

“copy and paste” evolution (making previously evolved sub-units available for reuse

in the system). This would mimic the biological scenario of whole strings of DNA

being copied to other areas within the genome and would be useful in evolving

repeating structures. For example, extra limbs or body sections are common genetic

mistakes from incorrect copying of genes. It was therefore felt that it would be

reasonable to allow the algorithm to reuse previously evolved networks (including

their sensors and actuators).

A biped was successfully evolved in this manner by taking two single legs with one

active degree of freedom sections and allowing the algorithm to grow an intermediate

network, which interfaced the two pre-evolved sections. The leg positions oscillate in

range 2 as described earlier. This interface (or translation) network was built up in

exactly the same way as was previously described (Section 5.6 of Chapter 5). Figure

7-9 illustrates the “copy and paste” concept.

Translation
Network TN

Cut & Pasted
Network (copy of
network 1)

1’

Original Network 1

TN

1’ 1
Passive Joint

Active Joint

Top view

Figure 7-9 Illustration of copy and paste technique

 112

Figure 7-10 (a- b) shows leg positions of a single leg as modules are added. Two

modules are required to produce the hopping gait. There were 2 and 3 neurons in each

module. Figure 7-10 (f) shows the increase in fitness levels as modules are added (up

to module 2 for this setup). Later, this network is used with copy and paste technique,

and the translation network is evolved to produce a walking gait. Figure 7-10 (c - e)

shows leg positions for both the legs as modules are added. Figure 7-10 (f) shows the

fitness improvement as modules are added to the network for the system. Three

translation modules were needed to produce the walking gait within the desired range.

There are two neurons in the first and second modules and three neurons in the final

module. A total of 17 neurons was required to produce the walking gait.

Note: x:y:z where x,y,z… refers to number of neurons in a module

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

Time Step (t)

Le
g P
os
iti
on

Single Robots Leg Position

Single Leg

0 50 100 150 200 250 300 350 400 450 500

40

60

80

100

120

140

160

Time Step (t)

Le
g P
os
iti
on

Single Robots Leg Position

Single Leg

a) Single leg position, 1 module with 2 neurons b) Single leg position, 2 modules 2:3 neurons

c) Previously evolved subunit reused for bipedal d) Biped robot’s leg position, 6 modules
 walking gait, 5 modules 2:3:2:3:2 2:3:2:3:2:2

 113

e) Biped robot’s leg position, 7 modules f) Fitness Improvement with increasing number of
 2:3:2:3:2:2:3 modules

Figure 7-10 Bipedal walking gait using the Cut and Paste technique

From Chapter 6, three modules with a total of seven neurons were required to evolve

this gait. This “copy and paste” technique generates more neurons in the network. If a

jumping gait is to be evolved for a biped or a pronk for a quadruped, this technique

may be useful as individual legs do not have to be evolved separately. In the worst

scenario, (complete deletion of the translation network), it would still enable the

individual networks to function as normal (although not synchronized).

7.5 Dual-Gait Network

To further test the system, it was decided to attempt a network which was capable of

producing several gaits and switching between them. This is usually considered a

difficult problem and the biological mechanism behind such a translation has not yet

been discovered. This experiment was started with four neurons in the initial module.

The ES determines the connections among the neurons in the module. The first two

neurons are responsible for producing a walking gait and the others are for producing

a jumping gait in a bipedal system. In this system, the neurons are not directly

connected to the actuator. It is assumed that there is a switch (which could of course

be another neuron) to relay the network signal to the actuator. Figure 7-11 illustrates

the method.

 114

Switch

Walking W

Gallop G

 G W

1st Module

1st Joint

Top View

2nd Joint

Figure 7-11 Double Gait System

The network was evolved as previously described. Figure 7-12 shows the leg

positions for the different gaits as modules of neurons are added to the previously

evolved network. The initial network with 4 neurons failed to switch between the

different gaits. The problem was solved with 5 neurons. The extra neuron could

behave like a pace maker to switch between the gaits.

Note: x:y:z where x,y,z… refers to number of neurons in a module

0 100 200 300 400 500 600 700 800 900 1000

40

50

60

70

80

90

100

110

120

130

140

Time Step (t)

Le
g P
os
iti
on

Walking and Jumping Gait

Right Leg
Left Leg

a) 1 module with 5 neurons b) 2 modules with 5:3 neurons

0 100 200 300 400 500 600 700 800 900 1000
40

50

60

70

80

90

100

110

120

130

140

Le
g P
os
iti
on

Walking and Jumping Gait

Time Step (t)

Right Leg
Left Leg

c) 3 modules with 5:3:2 neurons d) 4 modules with 5:3:2:1 neurons

 115

 e) Fitness improvement with increasing number

 of modules

Figure 7-12 Different Gaits obtained

7.6 Discussion

McMinn used an alternative strategy [McMinn 2002] for evolving Central Pattern

Generator (CPG) networks. This strategy was described in Chapter 2 Section 2.3 in

layman’s terms. The alternative strategy was based on the observation that neural

networks perform best when large homogenous networks are split into several smaller

modular ones, each of which can operate as an independent unit, but can work

together to form a larger whole [MacLeod 1999]. To accomplish this, the CPG

networks were separated into two functional modules. The first unit performs the task

of an oscillator and the second modifies the oscillations to form the appropriate gait

patterns. The connection between the two units is similar to the work presented by

Prentice [Prentice 1995]. In McMinn’s work the first unit (the oscillator) was the

previously evolved biped walk CPG.

The second requirement was the pattern generator which converts the bipedal walking

pattern into the quadruped gaits. The networks were reduced to eight neurons since

the simpler task allows fewer neurons to be used. The quadruped gaits of ‘walk’,

‘trot’, ‘pace’, ‘gallop’ and ‘pronk’ were successfully produced by McMinn [McMinn

2002] using this approach. The number of generations required to evolve all these

different gaits was reduced to 500.

 116

The “copy and paste” technique is similar to the alternative strategy used by McMinn.

A biped was successfully evolved in this manner by taking two single legs with one

active degree of freedom sections and allowing the algorithm to grow an intermediate

network, which interfaces the two sections. A quaduped could be evolved in the same

manner (by “copy and paste” the bipedal network).

A total of 23 neurons were required to evolve a quadrupedal trot gait using the direct

growth technique. There were 12 neurons in McMinn’s quadruped CPG. This

technique provides a flexible evolutionary alternative to the more rigid structures even

though more neurons were required using the direct growth technique. The numbers

of generations required are also lower (Appendix C, Section C.1) than McMinn’s

alternative strategy (500). It was found that using this approach, the performance of

the CPG was improved and was quicker to evolve, while the network remained

modular. However, the superiority of the modular scheme is shown by its success in

evolving different gaits while the homogenous or coupled (alternative strategy)

network of similar size could not.

 117

Chapter 8

System Integration

8.1 Introduction

8.2

The results presented in Chapter 6 and Chapter 7 show the applicability of the

Incremental Evolution (IE) technique to robotic control systems. It has been shown

that the method allows the robot’s body plan and the controlling neural network to

build from a simple to a complex form. The technique has been successfully used to

evolve neural control systems up to the level of those required for quadruped robots.

Other applications of the technique have also been discussed in the latter part of

Chapter 6. In this Chapter, the experiments will concentrate on incorporating the

technique into a more advanced robot with a vision system. Later, the technique is

used to grow and incorporate both locomotion and vision into the same structure to

form a system.

Vision System

Since the discussion in Chapter 6 and 7 was based on networks which mainly control

outputs (producing walking patterns), it was also decided to build networks for a

vision system using a similar method. This provides a contrast since such networks

are involved in processing inputs. In particular, to provide a difficult but realistic task,

the network was configured to mimic a toad’s behavior as reported by Ewert [Ewert

1985, 1987] developed by Arbib [Arbib 1995] and implemented by Reddipogu

[Reddipogu 2002] (see Section 2.4 of Chapter 2).

Before proceeding further, consider the development of the human sensory system.

There are limits to body plan evolution as far as actuators and sensors are concerned.

For example, in the case of a robotic man, when all the joints are in place and able to

be well controlled (the robotic equivalent of an austrapithicus), then only the “mind”

neural network will continue to evolve with a more complex environment.

 118

The same idea applies to sensors − for example, Sight, Hearing, Smell, Taste and

Touch. It is likely that these will be evolved along with or after basic locomotion

(going up the ANS model starting at the bottom).

We can assume that all such systems start with the simplest possible arrangement (just

a single sensor - the equivalent of “one degree of freedom”) and become more

complex incrementally [Ewert 1985]. Let us consider sight as an example. This would

start in nature as just a light sensitive spot on the skin of the animal and develop

eventually into an organ capable of forming an image. Figure 8-1 shows the

development of the vision system from a single pixel.

Stage 3 Stage 2 Stage 1

Pixels retained from previous iteration

Pixels newly added to vision system

Figure 8-1 Vision system

To do this, the input sensor and the range of patterns to which it is exposed are

allowed to grow in a similar way to that previously explained for the body plan. The

pixels on the grid can be in two different states, either ‘ON’ (black pixels) or

‘OFF’(white pixels). There are three different stages involved in the evolution of the

vision system explored here. It starts as a single pixel in Stage 1. Then a 3 x 3 sensor

block was added to vision system in Stage 2. Finally, a 5 x 5 block was added. Figure

8-1 illustrates the evolution at different stages. Appropriate leg patterns have to be

produced on the 4 output neurons. Figure 8-2 shows the progression in sensor

complexity with the desired leg patterns for different inputs. The repertoire of patterns

available ranges from simple fight or flight responses to the identification of obstacles

in the field of view.

 119

1

2

3

4

 Retreat

(b) 3 × 3 sensor block (Stage 2)

(a) 1 × 1 sensor block (Stage 1)

10

9

8

7

Go Backward

10

9

8

7

Go forward

10

9

8

7

Go Left Go Right

10

9

8

7

 Walk

4

3

2

1

Leg Pattern:

Response:

Leg Pattern:

Response:

(c) 5 × 5 sensor block (Stage 3)

13

12 14

11

 Predator

13

12 14

11

 Prey

Leg Pattern:

Response:

Figure 8-2 Evolution of vision sensor complexity

 120

The discussion below is based on the Stage 1 evolution of the vision system but is

applicable to the other stages as well.

The leg pattern indicates which output gait should be triggered for an input. Firstly, a

module with 4 neurons was trained to produce the initial leg pattern (retreat). The

network was awarded a score of 10 for successfully producing the correct output

pattern. Then, the connection weights and neuron parameters of the current module

were frozen. Secondly, a new module was added to the previous network in order to

train both the patterns (retreat and walk). The network was awarded 20 points if it

managed to reproduce the correct output pattern for both these inputs. The vision

sensors (pixels) are fully connected to the first module and connections to other

modules are determined by the EA. The outputs were always taken from the first

module.

The reason for connecting all the sensory inputs to the first module was to make sure

that, at least at one stage, the sensory inputs are relayed to all the neurons. Figure 8-3

illustrates the above explanation.

Sensor

Connections
determined by EA

Fully connected

New
Module

First
Module

4

3

2

1

Figure 8-3 First stage evolution

 121

The Spike Accumulation and Delta Modulation [Shigematsu 1996] neuron model

described in Section 5.2 of Chapter 5 was used to evolve the modules. The duration

for all the vision experiments is 1 timestep.

A module with 4 neurons was trained successfully to produce the retreat response.

Then a new module with 2 neurons was added to produce both (retreat and walk) leg

patterns. The explanation on different numbers of neurons required in the newly

added modules has been given in Chapter 6. Figure 8-4 shows the output of the leg

patterns for different inputs and the fitness improvement as new modules were added

to the previous modules.

Figure 8-4 Vision output for stage 1

Next, a 3 × 3 sensor block was added to the vision system as shown previously in

Figure 8-2 (b). A new controlling network was evolved at each stage. Connections

were not allowed between the different stages (although there is no specific reason for

doing so). Two modules, each with 4 and 3 neurons have been evolved to produce the

 122

“Go Right” and “Go Left” responses. Later, new modules with 2, 3, 4, and 5 neurons

were added but these modules failed to produce the third leg pattern (“Go Forward”).

Figure 8-5 shows the fitness (score) improvement for the second stage of the vision

system. It can be seen from the graph that the fitness levels off at 20 with an

increasing number of modules thereafter.

Figure 8-5 Vision output for stage 2

It seems that the network has problems producing 3 or more different leg patterns. It

is very likely that the neurons have difficulty dividing the solution space into different

domains. Another experiment (equivalent to Figure 6-15, Section 6.4 of Chapter 6)

was conducted where the outputs were taken from the newly added module. Figure

8-6 illustrates the concept.

Output

Sensor

Random connection

Fully connected

New
Module

First
Module

4

3

2

1

Figure 8-6 Adding new module in front

 123

Even with this technique the network failed to produce all the required patterns. At

this stage it was thought that the neuron functionality might be causing the problems.

Similar problems were faced when the MMM neuron model was used for the

evolution of the bipedal locomotion at the beginning of the research (refer to Section

6.2). It was thought a simplified neuron model might perform better.

The most common type of artificial neuron model was used and is shown in Figure

8-7. This is the modified standard “McCulloch-Pitts" or “Perceptron” type neuron

[McCulloch 1943] with a threshold function. The operation of this neuron model can

be summarized as follows: The weights of the connections (wn) represent the strength

of the synapse in a biological neuron. The total input to the neuron is calculated as the

weighted sum of all inputs. The weighted sum is normalized using a function,

commonly the sigmoid function. The sigmoid function produces an output in the

range 0 to 1. The threshold is fixed at 0.5. If the output of the sigmoid function is

greater than the threshold, then the neuron fires and produces a pulse (an output value

of 1), vice versa no pulse (an output value of -1). Only the connection weights are

trained when this type of neuron model is used.

)(
0
∑
=

=
n

j
jjwify Sigmoid

0

1

Threshold function

in

i1

i0

wn

w1

w0

Figure 8-7 Modified Standard McCulloch-Pitts neuron with threshold function

The initial experiment concentrated on evolving a network to produce all the four

different leg patterns in Stage 2. This is because previously we had difficulties in

evolving a network to integrate the different leg patterns at this stage. The same

technique illustrated in Figure 8-3 was initially used for this experiment. A network

with two modules each with 4 and 3 neurons has been used to master the first two

patterns. The network failed to produce the third pattern when a new module was

added. It was very difficult to predict what was causing the problems. The technique

illustrated in Figure 8-6 showed successful results when it was used for evolving

 124

locomotive networks (see Section 6.4). This technique was then considered together

with the neuron model shown in Figure 8-7.

A network with 4 modules, each with 4 neurons, was successfully evolved to produce

all the 4 patterns. There were 4 neurons in each new module because 4 output neurons

are required for each pattern. Figure 8-8 (a-d) shows the output leg patterns for the

respective inputs for stage 2. Figure 8-8 (e) shows the fitness improvement as new

modules are added to the previous modules. These results show that the neuron

functionality is very important to network success.

 125

Figure 8-8 Output leg patterns for respective inputs for stage 2

Figure 8-9 shows the output leg pattern for stages 1 and 3. Networks have been grown

in the sequence shown in Figure 8-2 to successfully integrate all the patterns

presented. These results show that the technique of adding new modules in front of

the previously evolved modules is very useful when the traditional approach fails.

Stage 1 Leg Pattern

Stage 3 Leg Pattern

Figure 8-9 Output leg patterns for respective inputs for stage 1 and 3

 126

[Reddipogu 2002] used a fixed neural network topology to mimic toad’s vision

system. The connection weights were trained until the network successfully learnt all

the different input patterns. Reddipogu used Evolutionary Algorithms for

Reinforcement Learning (EARL) to train the network. The learning algorithm took

more than 13000 generations to master all the different visual patterns. It is hoped that

this new evolutionary technique will be able to evolve a network with superior

performance with lesser number of generations.

8.3 Integration of Locomotive with Vision Networks

As explained in Section 7.2 of Chapter 7, if the robot is to become smarter, it must be

introduced to an environment to which it can adapt. However, there seems little point

in starting with a full scale (unconstrained) environment. There are simply too many

(potentially conflicting) possibilities for it to contend with. The environment must be

allowed to evolve along with the robot as previously described (that is,

“deconstraining” the environment, an equivalent term to the process of “sensor and

leg joint deconstraint” in the body plan).

An analysis of the sort of tasks of different complexities that simple animals can

undertake indicates a possible forward direction. Table 1 below lists all the objects

used to illustrate the progression.

Objects Explanation

 Light source

 Simplest Animals

 Simplest Invertebrates

 More complex invertebrates

 Path

 Obstacles

 Mates

 Food

 Predator

Table 1 Objects and its representation

 127

1) Simplest animals – Go towards light

2) Simplest invertebrates – Recognise and avoid obstacles (plus skills of stage 1)

3) More complex invertebrates – Recognise food and mates (plus skills of stage 1

and 2)

4) Flatworms type animals – Recognise and flee from predators (plus skills of stage

1, 2 and 3)

5) Fish type animals – Path finding and learning (mission skills) (plus skills of stage

1, 2 , 3 and 4)

 128

6) Reptile / Bird Skills – Manipulation e.g. Object which must be removed, etc

7) Higher Skills in mammals – tool skills, etc.

These different degrees of environmental interaction must be added one at a time in a

thoughtful way to the robot. This may be accomplished through the addition of

changing targets to the system in the changing environment or alternatively, by

making the fitness function of the robot gradually more complex as it develops. The

neural networks required to control the robot would be grown in similar ways to those

previously described (see Section 5.6 of Chapter 5). It is clear with this technique that

the neural network that has been evolved to interact with a particular environment will

still be present even after a new network has been grown for another environment.

This is useful because the previously evolved network could be re-used when the

same environment re-occurs.

Returning to our previous work, separate networks exist for the locomotion and vision

systems. The next stage was to grow networks to interface the first stage of the vision

system to the previously evolved single degree of freedom bipedal walking and

jumping gait. This problem is somewhat similar to the environment number 3

(recognise food and mates) illustrated above since there are two different possible

conflicts to deal with. The other stages (Stage 2 and 3) of the vision system are not

considered in the discussion since the interest is in proving that the technique can be

used to integrate multiple different networks to form a system. The growth algorithm

was unchanged from that described in Section 5.6. The network allowed different

locomotive gaits to be triggered when different visual patterns were input. In this

case, the bipedal walking gait will be triggered when the walking leg pattern is

present at the vision system and vice-versa for gallop. The interface network can be

said to be a 2 × 1 multiplexer because one from the two different input channels

(bipedal walking and jumping gait network) will be selected to be the output

depending on the input selection (coming from the vision system) at any time. Figure

8-10 shows the system configuration for the above case.

 129

Previously Evolved
Sensory Networks

Previously evolved
Biped Walking Gait

Previously Evolved
Biped Jumping Gait

?

Leg

Previously Evolved
Sensory Networks

Previously evolved
Biped Walking Gait

Previously Evolved
Biped Jumping Gait

?

Leg

Figure 8-10 System configuration

The ES is not allowed to form connections from the new module to the previously

evolved networks since this could modify the original behaviour of the networks. The

Spike Accumulation and Delta Modulation neuron described in Chapter 5 was used to

evolve the interface network. The fitness function for the interfacing network is a

measure of the number of leg positions successfully relayed from the locomotive

network to the output module for a triggering input. Each time an output neuron

relayed the correct output to the actuator, the network was awarded a score of 1. Since

there were 2 neurons in the output module, a maximum score of 2 can be awarded for

a single timestep. A total score of 1000 could be achieved for simulation of 500

timesteps. In this case, the maximum fitness was 2000 since there were 2 locomotive

gaits (walking and jumping).

A total of 5 modules with 2, 4, 3, 5 and 2 neurons was required to integrate the vision

and the locomotive networks (refer to Chapter 6 for more explanation on the

requirement for variable number of modules and neurons). Figure 8-11 shows the

fitness improvement as each new module is added. Figure 8-12 shows the individual

fitness for each gait as new modules are added. Table 2 gives a more detailed

breakdown of the fitness in both Figure 8-11 and Figure 8-12 above.

 130

Figure 8-11 Fitness improvement for the system as new modules are added

Figure 8-12 Fitness improvement for each gait as new modules are added

Module

Number

Fitness for

Bipedal Walking

Fitness for

Bipedal Jumping

Total

Fitness

1 882 755 1637

2 910(+28) 840(+85) 1750

3 903(-7) 900(+60) 1803

4 953(+50) 948(+48) 1901

5 998(+45) 999(+51) 1997

Table 2 Breakdown down of fitness scores for each gait for all the modules

From Table 2 it can be seen that there is a gradual increment in fitness for the bipedal

jumping gait. The fitness dropped by 7 to 903 (Bipedal walking) and increased by 60

to 900 (Bipedal jumping) when the third module was introduced to the network. The

probable reason for the decrement in the fitness that is, the ES could not manage to

 131

evolve a set of weights and neuron parameters for both the gaits. There is also no

requirement in the fitness function to make sure an increment in distance moved is

achieved when a new module is introduced to the network. The gain entirely depends

on previously evolved modules and the ES. It also can be seen that there is symmetry

in the increment of individual fitness scores from the third module onwards. The

number of generations required to achieve the fitness level was 1500 for each module.

The number of generations needed is relatively large compared to the number of

generations required for much simpler tasks presented in Chapter 6 and Chapter 7.

One possible reason could be the neuron functionality. The interface network (as

mentioned before could be a 2 × 1 multiplexer) has to integrate all three different

networks. In electronics a multiplexer can be built using logic gates. If neurons in the

network have to function like any of those logic gates, without any doubt the number

of generation required to evolve a network would be fewer. Also the network was

evolved to integrate several different objective functions. Evolving networks for

multiple objective functions has proved a problem in past work [Lund 1994]. Modules

with 2, 3, 4 and 5 neurons were trained for 5000 generations but the fitness level was

not as good as that listed in the table. This shows that there is a minimum number of

neurons required in order for the system to successfully evolve. Networks could also

be grown to integrate Stages 2 and 3 of the vision system. In another experiment, the

growth technique failed to evolve a network to control the robot’s actuator and the

vision system at the same time. This shows the success of the incremental growth

technique in dealing with a complex problem incrementally.

8.4 Discussion

The system described above holds promise as a solution to the problem of the open

ended evolution and development of neural networks and hence to the creation of

large and complex multi-functional neural systems. Since the technique adopts a

systems approach to the problem, it is particularly useful in robotics and similar

problems where various unrelated subsystems need to be developed and integrated in

an intelligent way.

Two important findings from the research were: That the neuron used should be as

flexible as possible, as it is necessary to perform many difficult mappings in both the

amplitude and time domains, especially when interfacing different modules of

 132

previously grown networks and, secondly, that the evolutionary algorithms must be

able to choose the network’s connections as well as their weights.

The need for a flexible neuron with evolvable functionality has led the group to

consider “universal” neuron models which can potentially evolve any continuous

response [Capanni 2003]. This work is at an early stage but moves away from the

idea of biologically feasible models and towards evolvable processors.

One possible disadvantage of the system is that, unlike a network designed by an

optimal method, these networks may be wasteful of computing resources, in that they

are potentially larger, although the current simulations do not show this with small

networks. Another limitation, although, again, this has not been experienced in the

simulations, may be apparent in systems where evolution or growth cannot go through

an obvious sequence from simple to complex as part of its development. A related

problem occurs in evolutionary timetabling and scheduling systems, in which a

particular module must be placed early in the sequence to avoid a “bottle neck”

occurring later – that is, a particular evolutionary path may preclude certain later

developments.

It can be envisaged that, as systems become more complex, there will be a need to

engineer changes (deconstraint) in the Fitness Function as development proceeds,

choosing carefully the required steps to allow the system to evolve in the required

manner. In the end, this process would stop body plan change, once full motor control

had been achieved, and allow only the evolution of behaviour, in much the same way

as the human brain continued to evolve in our early ancestors, even after our body

plan was essentially fixed. The issue described above is a subject for future work. The

final issue is whether some flexibility in previously evolved modules would make the

evolution of later modules easier.

It is hoped that, once these issues have been resolved and integrated into the

framework, new and interesting intelligent behaviours will emerge out of larger and

more systems-orientated networks.

 133

Chapter 9

Suggestions for Further Work

9.1

9.2

Introduction to Chapter

This chapter is divided into three different sections. It starts by describing further

possible applications of the technique described in this research. The second section

describes further work on neuron functionality and learning algorithms that could be

integrated with the growth technique. Finally, the Chapter concludes by discussing

several other areas of further work that may prove fruitful.

Other Applications of the Growth Method

Many researchers are currently using Evolutionary Algorithm (EAs) to evolve

electronic circuits. John Koza of Stanford University is one of the pioneers in this

field. He has succeeded in evolving electronic circuits for analogue filters, amplifiers

and robot controllers [Scientific American 2003]. One such example is an evolved

cubic generator using Genetic Programming (GP). This function generator was

patented by the inventors [Cipriani 2000]. Koza found that the evolved circuits

perform with better accuracy than the traditionally designed ones, even though the

functionality of the evolved circuits is not fully understood.

In another example, Adrian Thompson [New Scientist 1997] showed that it is possible

to evolve electronic circuits in Field Programmable Gate Arrays (FPGAs). He has

succeeded in evolving large numbers of digital logic gates into a circuit which

performs various timing tasks. The major advantage of evolving circuits in this way is

that they can be reconfigured quickly into different topologies.

In the above work, the EAs arrange and re-arrange the components in the circuit until

the fitness increases and the functionality is met. The results are limited, however, by

the lack of modularity in the circuits and the fact that the search space grows very

quickly as the circuit size increases. However, the application of the modular

evolution technique described in this research should mitigate these problems by

allowing the circuit to grow slowly in complexity in a modular fashion.

 134

Just as in the neural network examples used in previous chapters to illustrate the

technique, it is possible to start with a single simple circuit module and evolve this

until it reaches a high fitness level. Again, it is possible to freeze the component

values of the first module and to add a second. This new module will also undergo the

same process. Modules of components may be added until the desired response is

achieved. The technique may be particularly useful in the design of analogue filters or

matching networks, which respond well to being built up in a piece-wise manner.

The same technique described above could also be used to evolve digital filters.

Deciding on a suitable structure and coefficients are common problems in digital filter

design. The algorithm could start with a population of modules containing delay lines,

random coefficients and an output node. Standard Genetic Algorithm (GA) operators

are applied for a number of generations until a good solution (module) is found. This

solution is kept and further modules are added on top of the previously evolved

network until the required specification is met. The cut and paste technique presented

in Section 7.5 of Chapter 7 might be useful when cascaded sections are used to

produce higher order filters. Copy and paste strategies may also be useful in the

design of the analogue filters mentioned above.

Deducing a mathematical equation for a non linear curve is another difficult task in

which the growth technique may be useful. In one approach, a dictionary of random

mathematical variables and operators may be created. These variables and operators

are then used to form a population of equations. The outputs of these equations are

matched with the reference curve. The equations are evaluated based on the closeness

of their match with the curve. The best equation is frozen and a new population of

equations are created and added to the fixed equation until a good solution is found.

EAs have many applications in mechanical engineering as can be illustrated by the

satellite dish support boom design devised by Keane [Keane 1996]. An important

example of the application of the growth method in mechanical engineering is in

designing aerodynamic structures.

 135

Firstly, the parameters required for a basic aerodynamic structure may be optimized

using a Evolutionary Algorithm (EA) until maximum performance for that structure is

attained. Next, the parameters of the initial structure are fixed and another structure is

joined to the first. The parameters for this structure are then optimized. This process is

repeated for all the newly added structures. As more structures are added to the basic

system, the performance (fitness) is measured for the whole system. In this case and

many others the parameters of the newly added structure is always dependent on the

previous structures in the system.

Another particular area of interest may be in the development of control systems for

advanced prosthetic limbs where there is an obvious incremental path of deconstraint

from one degree of freedom (all but one joint locked) to many degrees.

9.3 Investigations of Further Network Parameters

It was discovered during the research that the neuron functionality is important in

determining the success of the growth method. There are several different types of

neuron model available including: Radial Basis, Leaky Integration, Non-Linear and

Spiking types. Despite this, most widely used ANNs operate on a variation of the

McCulloch-Pitts perceptron. An Evolutionary System capable of developing a neuron

model which can evolve any reasonable neuron function is therefore required. This

would be able to mimic the biological neuron and also be capable of producing a wide

range of other behaviors.

However, the biological neuron itself is not well understood by theorists.

In the biological network, action potentials can be transmitted to other neurons either

electrically or chemically. Electrical transmission is not as common as chemical, and

its role in nervous system is not yet fully understood [Letivan 1997]. In chemical

transmission, the action potential causes a neurotransmitter to be released. This

neurotransmitter binds to the membrane of the next neuron. Different

neurotransmitters have different effects on a neuron. Not all the neurotransmitters are

known and, of the ones that are, it is not known what all of their effects are [Ganong

1995]. The neurotransmitters can be said to be controlling the amount and type of

 136

signal transmitted to the following neurons. Such complexity and the number of

unknown variables is the reason why a “universal artificial neuron” of the type

mentioned above would be useful.

The ANN research team at RGU has produced a new neuron model based on the idea

that a neural unit should be flexible enough to fulfil any differential mathematical

function required of it [Capanni 2003]. In his work, Capanni used power series to

represent the activation of the neuron. Figure 9-1 shows the possible setup. x, y and z

would be the three inputs and bn, cn and dn would be the respective weights.

b1, c1, d1, …..

b3, c3, d3, …..
z

y

x

f(x,y,z)b2, c2, d2, …..

 ∑∑
= =

−
−

=





 χ γ

σασ
1 1

1
,

n m

n
mmnf

Figure 9-1 A polynomial neuron (Reproduced by permission of McMinn)

The most common artificial McCulloch-Pitts neuron is nothing more than a first order

series. The above explanation is based on applying the power series neuron model to a

simple pattern recognition system. The explanation can be expanded further by

modeling the time response of the neuron. The resulting type of neuron is applicable

to time dependent (locomotive) networks. The group is currently working on

expanding the neuron model so that its time dependent response is also an evolvable

time series.

The other aspect of the network, apart from neural functionality, which needs to be

investigated, is learning. Of course, the networks used in this research do learn

(optimize their weights) using an EA, but biological systems learn as their networks

are operating (not off line, before operation starts). Online learning is therefore of

topic for further research.

 137

Traditional approaches to learning include Back Propagation (BP), Recurrent BP,

Statistical Methods (such as Boltzman and Simulated Annealing), Reinforcement

Learning, Competitive Learning, and Genetic Algorithms. The research group has

developed an alternative to these which is described in [MacLeod 2002]. The

paragraphs below are a brief explanation of this technique.

Figure 9-2 Isolated "neuron in a box" (Reproduced by permission of McMinn)

Influences on learning

Influences on learning
Influences on learning

Consider a neuron in an isolated box as shown in Figure 9-2. Such a neuron can only

be influenced by other neurons connected to it or the intercellular ‘soup’ that

surrounds it. We can therefore start by listing all the possible parameters which could

influence the network to learn.

Firstly, all the neurons in the brain are soaked in an intercellular fluid. Signals are

transmitted chemically or electrically through this fluid-for example, by hormonal

means. The result of this signal would affect the surrounding region and not an

individual synapse.

Secondly, neurons may be affected by the activities of other neurons connected

directly to them through their synapses.

Details of the possible parameters that could be used to model learning are outlined in

the paper (Evolved and Devolved Action) in Appendix B.

 138

This learning method is biologically realistic and highly dependent on the network

topology; therefore, the learning algorithm is only suitable for networks whose

topology is defined by an EA.

9.4 Other Ideas for Further Work

One of the aims of the research work beyond this project is to look at how intelligence

might emerge from a complex network. Minsky [Minsky 1969] described a model

that views the human brain as a collection of interacting modules called agents. In

Minsky’s model, each agent is capable of performing only a simple action, but

intelligence emerges from their collective behavior.

It was emphasised in Chapter 5, that a major part of the modular evolution scheme is

not the evolution of the neural network itself, but the evolution of the robot in terms

of its body plan and the environment it is interacting with. Indeed, once the body has

evolved to its fullest degree, then the system may continue to evolve the robot’s mind

by placing it in ever more complex environments. Therefore, if the robot is required to

become ‘smart’, it needs to be introduced into a developing environment in which it

can learn. Below is a list of progressively more complex environments for the robot to

evolve in. The growth strategy would remain the same as used previously. It is hoped

that intelligent behaviors might be observed as the network grows in terms of added

modules.

Types of different environments:

• Add obstacles

• Add food/mate

• Add Predator

• Path Planning

• Add object which must be removed

• Tool skills

The issues described in the paragraphs above are subjects for future work. The final

issue to be investigated is whether allowing some flexibility in previously evolved

modules would make the evolution of later modules easier.

 139

Chapter 10

Conclusions

10.1

10.2

Introduction to chapter

The purpose of this chapter is to summarise the project. In the first section, the

objectives set at the beginning of the research are revisited in terms of what has been

achieved. The following section describes the original contributions to the art of the

research. The chapter concludes by commenting on the overall success of the project.

The project objectives revisited

The objectives, as originally stated at the start of the project, were:

1) Background reading and appropriate directed study

2) Literature search in field

3) Development of a basic Central Pattern Generator (CPG) network in a suitable

format for Modular Evolution

4) The setting up of an experimental framework for the evolution of a sensory

system

5) The application of the previous work to such a sensory system

6) The integration of these techniques into an overall algorithm which deals with the

evolution of systems

7) Comparison with previously published results

Let us consider the objectives in terms of what has been achieved in the project.

 140

1. Background reading and appropriate directed study

The initial work, in terms of background reading and study necessary to understand the

project was undertaken at the beginning of the research. This included appropriate study

as directed by the supervisors and the coding and testing of practical ANNs.

Furthermore, McMinn’s work [McMinn 2002] was examined and ANNs were evolved

for the lower layers of the ANS (Reflex and Central Pattern Generator). Finally, the

paper “Evolution and Devolved Action” (EDA) [MacLeod 2002] was studied and

understood as it forms the basis of the research work.

2. Literature search in field

A literature review was undertaken during the first 6 months of the project and

thereafter at a lower level all the way through until the end. The literature search has

covered six different areas related to the research. The author has a high degree of

confidence that all important work has been assessed. The outcome of the literature

search is given in Chapter 4.

3. Development of a basic Central Pattern Generator (CPG) network in a

suitable format for Modular Evolution

A framework was developed to investigate the evolution of Modular ANNs; this was

successfully coded and implemented. The framework allows neural network modules

to be added and deleted and also allows visualization of the growth pattern. Two

different types of actuator for a quadruped robot body structure were used as a basis

for the evolution of the ANS.

Modular Neural Networks were successfully evolved for control of locomotion in

simulated Biped (walking and jumping) and Quadruped (pronk and trotting) robots. It

was shown that modular evolution could evolve ANNs, adding more functionality

(extra mechanical degrees of freedom) to their structure, by incrementally evolving

single functions without retraining the whole network, provided that the functionality

of the neuron is correct. This is an important result of the project.

 141

The results from the Modular Evolution of ANNs for control of locomotion in

simulated Biped and Quadruped robots were successful and different from the

techniques developed by other researchers.

In the next part of the project, the growth techniques were explored more extensively,

leading to some interesting findings. The outcomes are described below:

• In the growth method, connections to any of the previous neurons were

allowed. However, when the technique was expanded to very large networks,

the effect of connection area becomes a problem. The possible effects of

adding a new network at the rear of previously evolved networks or in front of

the initial module while preserving connections to the previous module only

were investigated. It was found that adding the new network at the front end

was more successful.

• It was found that allowing the algorithm to “copy and paste” previously

evolved modules was often successful. For example, a biped was successfully

evolved by taking two single leg sections and allowing an intermediate

network to develop in between which interfaced the two sections.

• It was also found the flexibility of the system was such that it was capable of

evolving two different gaits and switching between them.

• After evolving neural networks for a function (bipedal or quadrupedal single

degree of freedom), an attempt was made to grow further networks on top of

the previous function to modify the existing behavior (bipedal or quadrupedal

with two degrees of freedom). This illustrates reusability of the existing

networks.

Results to support all the points above are presented in Chapters 6 and 7 of this thesis.

 142

4. The setting up of an experimental framework for the evolution of a Sensory

System

The purpose of this experimental framework was to investigate the growth of

networks designed for sensory input (upper layer of the ANS), using the example of

vision systems. These networks are fundamentally different in nature from the

locomotive nets developed in objective 3, above, and this proved the universality of

the method. The vision framework starts with 1 by 1 grid (simple grid, 1 pixel) and

this gradually evolves into a 5 by 5 (complex grid, 25 pixels) sensory system. The

newer grids are added to the previously evolved vision system. Different ranges of

patterns are available on the grid, from simple flight or fight responses, to the

identification of obstacles in the field of view, as the grid evolves from simple to

complex. Several different ANNs will produce the appropriate output pattern to

control the robot’s actuators based on the input from the vision grid.

5. The application of the previous work to such a Sensory System

The input sensor and the range of patterns to which it was exposed to, were allowed to

grow from simple to complex. Modular neural networks were successfully evolved

for different ranges of input patterns and responses.

6. The Integration of these Techniques into an Overall Algorithm which Deals

with the Evolution of Systems

The issues of the evolution of systems, integrating both the locomotive and vision

networks was considered. Both the vision and locomotion networks were successfully

integrated by growing neural networks to map the different data sets into a single

domain. Again, the ANNs have been grown using the method described previously.

Finally, an Evolutionary Algorithm was developed for open-ended evolution of

systems, without the need for human design or intervention.

 143

7. Comparison with Previously Published Results from other Researchers

The results obtained were compared with appropriate related work. The comparison

was presented along with the results in chapters (6, 7 and 8). Some of the results

obtained from simulating the growth technique were not directly compared with other

published results. This is because the growth technique used was different from those

used by other researchers.

10.3 Novel Aspects of this Research

This project has several original aspects to it, all of which are a product of the work.

These are:

• A unique and flexible method of evolving MANNs – the Direct Growth technique

itself. The rigorous algorithm which controls the development and evolution of the

network is presented in Appendix D of this thesis.

• Experiments showed that the neuron model used was very important in the

success of the growth technique.

• Another significant finding was that the connections present from module to

module play an important role. Instead of having a fully connected module, each

neuron’s connections and weights are determined by the evolutionary algorithm.

• It was shown that the growth technique could evolve ANNs for the extra added

mechanical degrees of freedom to the robot’s body structure. This result shows

that the actuators and sensors can be added progressively and the ANNs which

control them can be evolved incrementally, provided the neuron functionality of

the neuron is correct.

• It was found that each module had to have a minimum number of neurons in order

for the system to successfully evolve.

• It was also discovered that the success of the technique depends on where in the

network new modules are added (permissible connections; at the end of the

previously evolved network or before the previously evolved network) especially

in large network.

• Several other applications of the growth technique are presented. These include

the use of “Copy and Paste” method, networks which produce several gaits and

can switch between them, and finally the integration of different networks to form

a working system.

 144

10.4

10.5

Summary of suggestions for further work

There are three main areas in which further work could be carried out to extend this

research.

Firstly, in addition to evolving neural networks, the modular evolutionary algorithm

has obvious applications in electronic engineering, mechanical engineering and

mathematics. Refer to Section 9.2 of Chapter 9 for more information.

Secondly, the possible implementation of a more universal neuron which could

potentially evolve more complex responses (Section 9.3) should lead to more

evolvable networks. An on-line learning method would also be an important

contribution to the research.

Finally (Section 9.4) the evolution of the mind for different behaviors, in much the

same way as the human brain continued to evolve in our early ancestors, even after

our body plan was essentially fixed, could be investigated.

Concluding Remarks

The project has been very successful in that all the initial objectives and more have

been achieved. The growth technique is a powerful and useful method for evolving a

modular system from simple to complex.

The author feels that the work is a useful contribution to the field of evolutionary

techniques, allowing standard EAs like Genetic Algorithms to overcome some of the

well known obstacles to their usefulness in complex systems.

It is hoped, that once the final issues (particularly neural functionality and learning)

have been resolved and integrated into the growth technique framework, new and

interesting intelligent behaviors will emerge out of larger and more systems-orientated

networks.

 145

References

Chapter 1
Minsky, M., and Papert, S., 1969, Perceptrons, MIT Press, Cambridge, MA.

de Garis., H., 1995, “CAM_BRAIN: The evolutionary engineering of a billion neuron

artificial brain by 2001 which grows / evolves at electronic speeds inside a cellular

automata machine” Neuroinformatics and Neurocomputers, pp. 62-69, 1995.

Bonabeau, E., Dorigo, M. and Theraulaz, G., 1999, Swarm Intelligence: From Natural to

Artificial Systems, Oxford University Press.

Warwick, K., Kelly, I.D., and Keating, D.A., 1997, “Mutual Learning by Autonomous

Mobile Robots,” in Proc. First workshop on Teleoperation and Robotics, Applications in

Science and Arts, pp. 103-115.

McMinn, D., 2002, Using Evolutionary Artificial Neural Networks to Design

Hierarchical Animat Nervous System, PhD Thesis, The Robert Gordon University.

Arbib, M.A., 1995, Handbook of Brain Theory and Neural Networks, The MIT Press.

Happel, B.L.M. and Murre, J.M.J., 1994, The Design and Evolution of Modular Neural

Network Architectures. Neural Networks, vol. 7, pp. 985 – 1004.

MacLeod, C., McMinn, D., Reddipogu, A., and Capanni, N., 2002, Evolution by

Devolved Action: Towards the Evolution of Systems, in Appendix B of McMinn, D.,

Using Evolutionary Artificial Neural Networks to Design Hierarchical Animat Nervous

System, PhD Thesis, The Robert Gordon University, Aberdeen, UK.

 146

Chapter 2
MacLeod, C., 1999, The Synthesis of Artificial Neural Networks using Single String

Evolutionary Techniques, PhD Thesis, The Robert Gordon University.

McMinn, D., 2002, Using Evolutionary Artificial Neural Networks to Design

Hierarchical Animat Nervous System, PhD Thesis, The Robert Gordon University.

Reddipogu, A., Maxwell, G., and MacLeod, C., 2002, “An Innovative Neural Network

Based on The Toad’s Visual System” in Proc. of ACIVS 2002 (Advanced Concepts for

Intelligent Vision Systems), Ghent, Belgium.

Ewert, J. P.,1987, “Neuroethology of Releasing Mechanisms: Prey Catching in Toads,”

Behavioural and Brain Sciences, Vol 10:3, pp. 337-367.

Chapter 3
Schaffer, J.D., Whitley, D.L., Eshelman, J., 1992, Combinations of Genetic Algorithms

and Neural Network: A survey of the state of the Art, COGANN-92(conference), IEEE

Computer Society Press.

McMinn, 2002, Using Evolutionary Artificial Neural Networks to Design Hierarchical

Animat Nervous System, PhD Thesis, The Robert Gordon University.

Bentley, P.J., 2001, “Digital Biology”, The creation of life inside computers and how it

will affect us, Published by REVIEW, ISBN 0 7472 6654 9, pp. 209-217.

MacLeod, C., 1999, The Synthesis of Artificial Neural Networks using Single String

Evolutionary Techniques, PhD Thesis, The Robert Gordon University.

MacLeod, C., and Maxwell, G., 1997 “Using Embryology as an Alternative to Genetic

Algorithms for Designing Artificial Neural Networks,” Proc. ICANNGA, pp.361-366.

Gould, S. J., 2000, Wonderful Life. (London, England: Vintage).

 147

Restak, R.M., 1979, The brain: The last frontier, Warner Books, pp 50-52.

Fritzsch, B., 1998, “Evolution of the Ancestral Vertebrate Brain”, in The Handbook of

Brain Theory and Neural Networks, M. A. Arbib, Ed, MIT Press, pp.373-376.

Chapter 4
Yao, X., 1997, A New Evolutionary System for Evolving Artificial Neural Networks.

IEEE Transactions on Neural Networks, vol. 8, no. 3, pp. 694 – 713.

Happel, B.L.M. and Murre, J.M.J., 1994, The Design and Evolution of Modular Neural

Network Architectures. Neural Networks, vol. 7, pp. 985 – 1004.

Holland, J. H., 1992, Adaption in Natural and Artificial Systems (1st MIT Press

Edn.)The MIT Press, Cambridge, MA.

Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison-Wesley, Reading, MA.

Back, T., Hoffmeister, F., and Schwefel, H.-P., 1991, A survey of evolution strategies,

Proc. Of the Fourth Int’l Conf. on Genetic Algorithms, pp. 2-9. Morgan Kaufmann, San

Mateo, CA.

Fogel, L. J., Owens, A. J., and Walsh, M. J., 1966, Artificial Intelligence Through

Simulated Evolution, John Wiley & Sons, NY.

Sutton, R. S., 1986,Two problems with backpropagation and other steepest-descent

learning procedures for network. In Proc. Of 8th Annual Conf. of the Cognitive Science

Society, pp 823-831. Lawrence Erlbaum Associates, Hillsdale, NJ.

 148

Bremermann, H. J., 1968, Numerical Optimization Procedures Derived from Biological

Evolution Processes, In Cybernetic Problems in Bionics (1996 conference), Gordon and

Breach, NY, 1968, pp. 543-562.

Fogel, D. B. and Angeline, P. J., 1995, A Review of Efforts Combining Neural Networks

and Evolutionary Computation, In SPIE vol.2492, pp. 586 – 589.

Koza, J. R. and Rice, J. P., 1991, Genetic generation of both the weights and

architecture for a neural network, In Proc. Of 1991 IEEE International Joint Conference

on Neural Networks (IJCNN’91 Seattle), vol. 2, pp. 397-404. IEEE Press, NY.

Miller, G. F., Todd, P. M., and Hedge, S. U., 1989, Designing neural networks using

genetic algorithms, Proc. Of the Third Int’l Conf. on Genetic Algorithms and Their

Applications, pp. 379-384. Morgan Kaufmann, San Mateo, CA.

Kitano, H., 1990, Designing neural networks using genetic algorithms with graph

generation system, Complex Systems, vol. 4, pp. 461-476.

Harp, S. A., Samad, T., and Guha, A., 1989, Towards the genetic synthesis of neural

networks, Proc. of the Third Int’l Conf. on Genetic Algorithms and Their Applications,

pp. 360-369. Morgan Kaufmann, San Mateo, CA.

Oliker, S., Furst, M., and Maimon, O., 1991, Optimization and training of feedforward

neural networks by genetic algorithms, In Proc. of the Second IEE International

Conference on Artificial Neural Networks, pp. 39-43. IEE Press, London, UK.

Alba, E., Aldana, J. F., and Troya, J. M., 1993, Fully Automatic ANN Design: A Genetic

Approach. In Proc. of Int’l Workshop on Artificial Neural Networks (IWANN’ 93), vol.

686, pp. 399-404. Springer-Verlag.

 149

Vonk, E., Jain, L. C., Johnson, R. P., 1997, Automatic Generation of Neural Network

Architecture using Evolutionary Computation, Advances in Fuzzy Systems –

Applications and Theory vol 14, ISBN 9810231067, World Scientific Publishing Co. Pte.

Ltd.

Harp, S. A., Samad, T., and Guha, A., 1990, Designing application-specific neural

networks using the genetic algorithm, In D. S. Touretzky, editor, Advances in Neural

Information Processing Systems 2, pp. 447-454. Morgan Kaufmann, San Mateo, CA.

Alba, E., Aldana, J. F., and Troya, J. M., 1993, “Genetic Algorithms as Heuristics for

Optimizing ANN design”, In International Conference on Artificial Neural Nets and

Genetic Algorithms (ANNGA93), pp.683-689, Innsbruck, Austria.

Doi, Y., 1988, Morphogenesis of Life Forms, Saiensu-sha.

Gruau, F., 1992, Genetic Synthesis of Boolean Neural Networks with a Cell Rewriting

Developmental Process, In IEEE International Workshop on Combinations of Genetic

Algorithms and Neural Networks (COGANN-92), pp.55-74, Baltimore.

Gruau, F., 1994, “Genetic Microprogramming of Neural Networks”, In Advances in

Genetic Programming, MIT Press.

Boers, E.J.W. and Kuiper, H., 1992, Biological Metaphors and the Design of Modular

Artificial Neural Networks, In Technical Report, Departments of Computer Science and

Experimental and Theoretical Psychology, Leiden University, The Netherlands.

Merrill, J. W. L. and Port, F., 1991, Fractally Configure Neural Networks, Neural

Networks, vol. 4, pp. 53-60.

Carpenter, G. A. & Grossberg, S., 1986, Neural Dynamics of Category Learning and

Recognition. Brain Structure, Learning and Memory (AAA Symposium)

 150

Carpenter, G. A. & Grossberg, S., 1987, A Massively Parallel Structure for a Self

Organised Neural Pattern Recognition Machine. Computer vision, graphics and image

processing 37, pp.54-115.

MacLeod, C., and Maxwell, G. M., 2001, Incremental Evolution in ANNs: Neural Nets

which Grow, Artificial Intelligence Review 16, pp. 201-224, Netherlands.

Ash, T., 1989, Dynamics Node Creation in Backpropagation Networks, Connection

Science 1, pp. 365-375.

Chakraborty, G., 1995, A Growing Network which Optimises between Undertraining and

Overtraining, IEEE Conference on Neural Networks 2, pp. 1116-1120.

Vinod, V. V. & Ghoso, S., 1996, Growing Non-uniform Feed-forward Networks for

Continous Mappings, Neurocomputing 10, pp. 444–452.

Ferran, E & Perazzo, R., 1991, Asymptotic Inferential Capabilities of Feed-forward

Neural Networks, In Europhysics letters 14(2), pp. 175-180.

Mozer , M. C. and Smolensky, P., 1989, Skeletonization: a technique for trimming the fat

from a network via relevance assessment, Connection Science, 1, pp. 3-26.

Anderle, M., Schweng, K, Kurten, K. E. & Kratky, K. W., 1995, Pattern Specific Neural

Network Design, In Journal of statistical physics 81 (3/4), pp. 843-849.

Yao, X. and Liu, Y., 1996, Ensemble structure of evolutionary artificial neural networks,

In Proc. of the 1996 IEEE Int’l Conf. on Evolutionary Computation (ICEC’96), pp. 659-

664, Nagoya, Japan.

Gruau, F., 1992, Cellular encoding of genetic neural networks.In Technical Report 92-91,

Laboratoire de l’Informatique du Parallelisme, ENS Lyon.

 151

Jacobs, R. A., Jordan, M. I., Nowlan, S. J and Hinton, G. E., 1991a, Adaptive mixtures

of local experts, In Neural Computation, vol.3, pp. 79-87.

Jacobs, R. A., Jordan, M. I., and Barto, A. G., 1991b, Task decomposition through

competition in a modular connectionist architecture: the what and where vision task, In

Cognitive Science, vol.15, pp.219-250.

Battiti, R. and Colla, A. M., 1994, Democracy in neural nets: voting schemes for

classification, In Neural Networks, vol.7, pp. 691-707.

Hansen, L. K. and Salamon, P., 1990, Neural network ensembles, In IEEE Trans. On

Pattern Analysis and Machine Intelligence, vol.12, no.10, pp.993-1001.

Fukushima, K., 1980, Neocognitron: a self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position. Biol. Cybernet. 36, pp.

193-202.

Fukushima, K., 1987, Neural netwok model for selective attention in visual pattern

recognition and associative recall, Appl. Optics 26, pp. 193-202.

Fukushima, K., 1988, Neocognitron: a hierarchical neural network capable of visual

pattern recognition, Neural Networks 1, pp. 119-130.

Fukushima, K., Miyake, S., and Ito, T., 1993, Neocognitron: a neural network model for

a mechanism of visual pattern recognition, IEEE Trans. System Man Cybernet, SCM-13,

pp. 826-834.

Rueckl, J. G., Cave, K. R., and Kosslyn, S. M., 1989, Why are ‘What’ and ‘Where’

processes by separate cortial visual system? A computational investigation, J. Cognitive

Neurosci. 1, pp.171-186.

 152

Schmidt, A. and Zuhair, B., 1998, Modularity, A concept for New Neural Network

Architectures, IASTED International Conference, Computer Science and Applications

(CSA), Irbid, Jordan.

Yang, M. C., Mehrotra, K., Mohan, C. K., and Ranka, S., 1992, Partial shape matching

with attributed strings and neural networks. In Proceedings of the Conference on

Artificial Neural Networks in Engineering (ANNIE), pp. 523-528.

Jordan, M. I., 1994, Modular and hierarchical learning systems, In press: M. Arbib (Ed.),

The Handbook of Brain Theory and Neural Networks, Cambridge, MA, MIT Press.

Chu, K. L. and Mandava, R., 2000, Growing Multi-Experts Network, Tencon

Proceedings, pp. 472-478, Malaysia.

Perez, C. A., Galdames, P.A, and Holzman, C.A., 1998, Improvements on handwritten

digit recognition by cooperation of modular neural networks, IEEE International

Conference on Systems, Man, and Cybernetics vol 5, pp. 4172-4177.

McMinn, D., 2002, Using Evolutionary Artificial Neural Networks to Design

Hierarchical Animat Nervous System, PhD Thesis, The Robert Gordon University.

Gomi, T., and Ide, K., 1998, Evolution of gaits of a legged robot, IEEE International

Conference on Fuzzy Systems Proceedings, IEEE World Congress on Computational

Intelligence, pp. 156-164.

Hornby, G.S., Fujita, M., Takamura, S., Yamamoto, T., Hanagata, O., 1999, Autonomous

evolution of gaits with the Sony Quadruped Robot, Proceedings of the Genetic and

Evolutionary Computation Conference, pp. 1297-1304.

 153

Takamura, S., Hornby, G., Yamamoto, T., Yokono, J., Fujita, M., 2000, Evolution of

dynamic gaits for a robot, International Conference on Consumer Electronics, pp. 192-

193.

Mezard, M., and Nadal, J.P., 1989, Learning in feedforward layered networks: The Tiling

algorithm, In Journal of Physics A: Math. Gen., pp.2191-2203.

Gallant, S. I., 1990, Perceptron-based learning algorithms, In IEEE Transactions on

Neural Networks, 1(2), pp.179-191.

Frean, M., 1990, The Upstart algorithm: A method for constructing and training feed-

forward neural networks, In Neural Computation, vol. 2, pp.198-209.

Fahlam, S. E. and Lebiere, C., 1989, The cascade-correlation learning architecture,

Advances in Neural Information Processing System 2. Proceedings of the 1989

Conference, pp. 524-532, San Mateo, CA.

Reilly, D. L., Cooper, L. N., and Elbaum, C., 1982, A neural model for category learning,

In Biological Cybernetics, vol. 45, pp. 35-41.

Platt, J., 1991, A resource-allocating network for function interpolation, In Neural

Computation, 3(2), pp.213-225.

Gallant, S. I., 1986, Three constructive algorithms for network learning, In Proceedings,

8th Annual Conference of the Cognitive Science, pp. 652-660.

Haris, de H., 1993, Incremental Evolution of Neural Nets, Genetic Programming in

Incremental Steps, World Congress on Neural Networks, pp. 447-450.

Fritzke, B., 1994, Fast Learning with incremental RBF Networks, Neural Processing

Letters, 1(1), pp.2-5.

 154

Fritzke, B., 1995, A growing neural gas network learns topologies, In G. Tesauro, D. S.

Touretzky, & T. K. Leen (Eds.), Advances in Neural Information Processing Systems

(Vol. 7), Cambridge MA, USA: MIT Press.

MacLeod, C., 1999, The Synthesis of Artificial Neural Networks using Single String

Evolutionary Techniques, PhD Thesis, The Robert Gordon University.

Gruau, F. and Withley, D., 1993, Adding learning to the cellular development of neural

networks: Evolution and the Balwin effect, In Evolutionary Computation, 1(3), pp. 213-

233.

Gruau, F., 1994, Automatic definition of modular neural networks, In Adaptive

Behaviour, 3(2), pp.151-184.

Nolfi, S., and Parisi, D., 1991, Growing neural networks, T.R. PCIA-91-95. Institute of

Psychology. Rome.

Nolfi, S., Miglino, O., and Parisi, D., 1994, Phenotypic plasticity in evolving neural

networks. Proceedings of the PerAc’94 Conference. IEEE Computer Society Press.

Vaario, J., 1993, An emergent modelling method for artificial neural networks, PhD

thesis, University of Tokyo.

Vaario, J., 1994, From evolutionary computation to computational evolution, In

Informatics, vol. 18, pp. 417-434.

Lindermayer, A., 1968, Mathematical models for cellular interaction in development,

parts I, II, Journal of Theoretical Biology, 18, pp. 280-299 and 300-315.

Cangelosi, A., Parisi, D., and Nolfi, S., 1995, Cell division and migration in a ‘genotype’

for neural networks, In Network: computation in neural systems.

 155

Dellaert, F. and Beer, R., 1994a, Toward an evolvable model of development for

autonomous agent synthesis, Proceedings of the Fourth International Workshop on

Artificial Life, The MIT Press/Bradford Books, Cambridge, MA.

Dellaert, F. and Beer, R., 1994b, Co-evolving body and brain in autonomous agents using

a developmental model, In Technical Report CES-94-16, Dpt of Computer Engineering

and science Case Western Reserve University, Cleveland, OH.

Lee, W.P., 2003, Evolving robot brains and bodies together: an experimental

investigation, Journal of the Chinese Institute of Engineers, pp. 125-132, Taiwan.

Sims, K., 1994a, Evolving virtual creatures, In Computer Graphics Proceedings, Annual

Conference Series, pp. 15-23.

Sims, K., 1994b, Evolving 3D morphology and behaviour by competition, Proceedings

of the Fourth International Workshop on Artificial Life. The MIT Press/Bradford Books,

Cambridge, MA.

Liu, Y., and Yao, X., 1998, Evolving Modular Neural Networks which Generalise well,

Proceedings of the IEEE International Conference on Artificial Life and Robotics,

AROBIII 98, vol. 2, pp. 736 – 739.

Chapter 5
McMinn , D., 2002a, “Using Evolutionary Artificial Neural Networks to Design

Hierarchical Animat Nervous Systems, PhD Thesis, The Robert Gordon University,

Aberdeen, UK.

Brodal, P., 1992, The Central Nervous System: Structure and Function, Oxford, pp.229.

Arbib, M. A., 1989, The Metaphorical Brain 2: Neural Networks and Beyond. Wiley.

 156

Muthuraman, S., Maxwell, G. and MacLeod, C., 2003a, “The Evolution of Modular

Evolutionary Networks for Quadrupedal Locomotion,” in Proc. International Conference

on Artificial Intelligence and Soft Computing (ASC), pp. 268-273.

Shigematsu, Y., Ichikawa, M. and Matsumoto, G., 1996, “Reconstruction studies on brain

computing with the neural network engineering,” in Perception, memory and emotion:

frontiers in neuroscience, Elsevier, pp. 581-599.

Schwefel, H-P., 1995, “Evolution and Optimum Seeking”,Wiley, New York.

Recenberg, I., 1973, “Evolution Strategie: Optimierung Technischer Systeme nach

Prinzipien der Biologischen Evolution.”, Frommann-Holzboog.

Miller, G. F., Todd, P. M., and Hegde, S. U., 1989, “Designing Neural Networks using

Genetic Algorithms”, Proc. of the Third Int’l Conf. On Genetic Algorithms and Their

Applications, pages 379-384, San Mateo, CA.

Yao, X., 1993, Evolutionary Artificial Neural Networks, International Journal of Neural

Systems, Vol. 4, No.3, pages 203-222.

McMinn, D., Maxwell, G., and MacLeod, C., 2002b, “Evolutionary Artificial Neural

Networks for Quadruped Locomotion,” Proc. ICANN, pp. 789-794.

Muthuraman, S., Maxwell, G., MacLeod, C., 2003b, “The Evolution of Modular

Artificial Neural Networks for Legged Robot Control,” in Proc. ICONIP/ICANN,

pp.488-495.

Sims, K., 1994, Evolving 3D morphology and behaviour by competition, Proceedings of

the Fourth International Workshop on Artificial Life. The MIT Press/Bradford Books,

Cambridge, MA.

 157

MacLeod, C., McMinn, D., Reddipogu, A. and Capanni, N., 2002, “Evolution by

Devolved Action: Towards the Evolution of Systems” in: Appendix B of D. McMinn,

Using Evolutionary Artificial Neural Networks to Design Hierachial Animat Nervous

Systems, PhD Thesis, The Robert Gordon University, Aberdeen, UK.

Chapter 6
McMinn, D., Maxwell, G., and MacLeod, C., 2000, “An Evolutionary Artificial Nervous

System for Animat Locomotion,” Proc. of the International Conference on Engineering

Applications of Neural Networks, pp. 170-176.

McMinn, D., Maxwell, G., and MacLeod, C., 2002a, “Evolutionary Artificial Neural

Networks for Quadruped Locomotion,” Proc. ICANN, pp. 789-794.

McMinn , D., 2002b, “Using Evolutionary Artificial Neural Networks to Design

Hierarchical Animat Nervous Systems, PhD Thesis, The Robert Gordon University,

Aberdeen, UK.

Golubitsky, M., Stewart, I., Buono, P-L., Collins, J. J., 1998, A Modular Network For

Legged Locomotion. Physica D, vol. 115, pp. 56-72.

Chapter 7

Shigematsu, Y., Ichikawa, M. and Matsumoto, G., 1996, “Reconstruction studies on brain

computing with the neural network engineering,” in Perception, memory and emotion:

frontiers in neuroscience, Elsevier, pp. 581-599.

McMinn , D., 2002, “Using Evolutionary Artificial Neural Networks to Design

Hierarchical Animat Nervous Systems, PhD Thesis, The Robert Gordon University,

Aberdeen, UK.

MacLeod, C., 1999, The Synthesis of Artificial Neural Networks using Single String

Evolutionary Techniques, PhD Thesis, The Robert Gordon University.

 158

Prentice, S. D., Patla, A. E., Stacey, D. A., 1995, Modelling the Timekeeping Function of

the Central Pattern Generator for Locomotion Using Artificial Sequential Neural

Network. Medical and Biological Engineering and Computing, vol. 33, pp. 317-322.

Chapter 8
Ewert, J. P., 1985, “Concepts in vertebrate neuroethology,” Animal Behaviour, Vol 33,

pp 1-29.

Ewert, J. P.,1987, “Neuroethology of Releasing Mechanisms: Prey Catching in Toads,”

Behavioural and Brain Sciences, Vol 10:3, pp. 337-367.

Arbib, M. A., and Liaw, J.S., 1995 “Sensorimotor transformations in the worlds of

frogs and robots,” Artificial Intelligence, Vol 72, pp. 53-79.

Reddipogu, A., Maxwell, G., and MacLeod, C., 2002, “An Innovative Neural Network

Based on The Toad’s Visual System” in Proc. of ACIVS 2002 (Advanced Concepts for

Intelligent Vision Systems), Ghent, Belgium.

Shigematsu, Y., Ichikawa, M. and Matsumoto, G., 1996, “Reconstruction studies on brain

computing with the neural network engineering,” in Perception, memory and emotion:

frontiers in neuroscience, Elsevier, pp. 581-599.

McCulloch, W., and Pitts, W., 1943, “A logical calculus of ideas immanent in nervous

activity”. Bulletin of Mathematical Biophysics, 5:115-113.

Lund, H. H. and Parisi, D., 1994, "Simulations with an Evolvable Fitness Formula",

Tech. Rep. 94-01, Institute of Psychology, CNR.

Capanni. N., MacLeod. C., and Maxwell. G., 2003, “An approach to Evolvable Neural

Functionality”, International Conference on Artificial Neural Networks and Neural

Information Processing, pp.220-223.

 159

Chapter 9
Scientific American, February 2003, pp.40-47.

Cipriani, S. and Takeshian, Anthony. A., 2000, Conexant Systems, Newport Beach,

Calif.

New Scientist, November 1997, pp. 30.

Keane, A. J. and Brown, S. M., 1996, The design of a satellite boom with enhanced

vibration performance using genetic algorithm techniques, in Proceedings of the

conference on Adaptive Computing in Engineering Design and Control, pp.107-113.

Levitan, I. B., Kaczmarek, L. K., 1997, The Neuron: Cell and Molecular Biology 2nd

Edition. Oxford University Press, pp. 149-152.

Ganong, W. F., 1995, Review of Medical Physiology. Appleton & Lange, pp. 84- 101.

Capanni. N., MacLeod. C., and Maxwell. G., 2003, An approach to Evolvable Neural

Functionality, International Conference on Artificial Neural Networks and Neural

Information Processing, pp.220-223.

MacLeod, C., McMinn, D., Reddipogu, A., and Capanni, N., 2002, Evolution by

Devolved Action: Towards the Evolution of Systems, in Appendix B of McMinn, D.,

Using Evolutionary Artificial Neural Networks to Design Hierarchical Animat Nervous

System, PhD Thesis, The Robert Gordon University, Aberdeen, UK.

Minsky, M., and Papert, S., 1969, Perceptrons, MIT Press, Cambridge, MA.

 160

Chapter 10
McMinn, D., 2002, Using Evolutionary Artificial Neural Networks to Design

Hierarchical Animat Nervous System, PhD Thesis, The Robert Gordon University.

MacLeod, C., McMinn, D., Reddipogu, A., and Capanni, N., 2002, Evolution by

Devolved Action: Towards the Evolution of Systems, in Appendix B of McMinn, D.,

Using Evolutionary Artificial Neural Networks to Design Hierarchical Animat Nervous

System, PhD Thesis, The Robert Gordon University, Aberdeen, UK.

 161

Appendix A

Papers produced during research.

Papers produced during the research program. These include published papers and

papers awaiting publication.

Paper 1

The Evolution of Modular Artificial Neural Networks for Legged Robot

Control

This paper describes the application of the evolutionary technique to control single

degree of freedom legs of a robot. In the later body configuration, a second degree of

freedom was added to the initial body plan. Initial results were presented to illustrate

the successful operation of the technique in evolving networks to produce a bipedal

walking gait.

Paper 2

The Development of Modular Evolutionary Networks for Quadrupedal

Locomotion

In this paper the biological justification for the evolutionary technique was presented.

Results were also presented which demonstrate the operation of the approach in the

development of a quadrupedal gait for a simulated robot.

Paper 3

Unconstrained Incremental Evolution of Neural Networks for Robot

Control

This paper outlines the evolutionary technique in more detail. Results were presented

showing the technique in operation. There is also a discussion of other applications of

the technique and related issues.

(Currently under review)

Appendix B

Evolution and Devolved Action: towards the evolution of systems

“Evolution and Devolved Action” examines the limitations of present Artificial

Evolutionary Algorithms from a biological perspective and looks at how these

limitations might be overcome. This report formed the basis for the research.

Appendix C

Further Results

Section C.1
Reference in Page 116

Note: x:y:z, where x,y,z… refers to number of neurons in a module

a) 1 module with 5 neurons b) 2 modules, 5:3

c) 3 modules, 5:3:2 d) 4 modules, 5:3:2:4

e) 5 modules, 5:3:2:4:4 f) 6 modules, 5:3:2:4:4:5

 C1

Section C.2
Reference in Page 99

David McMinn’s Actuator Model (Bipedal Jumping Gait)

Note: x:y:z, where x,y,z… refers to number of neurons in a module

a) 1 module with 2 neurons b) 2 modules, 2:2

c) 3 modules, 2:2:2 d) Fitness Improvement

 C2

New Actuator Model (Bipedal Jumping Gait)

Note: x:y:z, where x,y,z… refers to number of neurons in a module

a) 1 module with 2 neurons b) 2 modules, 2:2

c) 3 modules, 2:2:2 d) Fitness Improvement

 C3

New Actuator Model (Quadruped Pronk Gait)

Note: x:y:z, where x,y,z… refers to number of neurons in a module

a) 1 module with 4 neurons b) 2 modules, 4:1

c) 3 modules, 4:1:1 d) 4 modules, 4:1:1:1

e) Fitness Improvement

 C4

Section C.3
Reference in Page 103

Bipedal walking with 2 active degrees of freedom (5th module output)

Note: x:y:z, where x,y,z… refers to number of neurons in a module

a) Leg Position for both first degree of joints:

 5th module with 1 neuron (2:2:3:2:1)

b) Leg Position for front right second joint c) Leg Position for front left second joint

Section C.4

 C5

Reference in Page 108

Quadruped trot with 2 active degrees of freedom (8th – 10th module output)

Note: x:y:z, where x,y,z… refers to number of neurons in a module

a) Leg Position for all first degree of joints:

 8th module with 3 neurons (5:3:2:4:4:5:4 in previous modules)

b) Leg position for front left second joint c) Leg position for front right second joint

d) Leg position for rear left second joint e) Leg position for rear right second joint

 C6

a) Leg Position for all first degree of joints:

 9th module with 2 neurons (5:3:2:4:4:5:4:3 in previous modules)

b) Leg position for front left second joint c) Leg position for front right second joint

d) Leg position for rear left second joint e) Leg position for rear right second joint

 C7

a) Leg Position for all first degree of joints:

10th module with 1 neuron (5:3:2:4:4:5:4:3:2 in previous modules)

b) Leg position for front left second joint c) Leg position for front right second joint

d) Leg position for rear left second joint e) Leg position for rear right second joint

 C8

Appendix D

The flow chart illustrates the principal of the artificial evolutionary technique.

 D1

No

Deconstraint the
environment or
the body plan

No

No
Copy and paste a
network or a module?

Intra or inter module
connection?

Add a network module
in front or at the rear
of existing module?

Add a new ANN
module?

Add a new function?

Begin with a simple
robot’s body plan

Copy and paste the
network or the module

Algorithm stop

Is the body plan or the
environment of the robot
allowed to become more

complex?

Has the fitness
reached its
maximum

possible value?

Freeze the neuron parameters,
connection and connection

weights

Evolve the network (neuron
parameters, connection status
(excitatory or inhibitory) and
connection weights) until the

fitness does not increase further

Add a neural network module.
The number of neurons in the
module is determined by the

Evolutionary Algorithm

Yes

Note:
The search space is proportional to
number of neurons in the network.

 D2

Appendix E

This appendix contains a description of the software used in the project in

implementing the evolutionary ANN.

The software allows modules of neurons and input sensors to be added or deleted

from the network. Neurons in the network can be selected to be an output neuron.

There are options to initialize or modify neuron and sensor parameters, connection

status and associated weights. These parameters are subject to training when a new

module is added. An Evolutionary strategy is used to evolve these parameters.

Finally, the trained module can be retained and saved into a text file. Saved networks

can also be reused as the network expands. All the results presented throughout

Chapter 6 to 8 are obtained using this simulation software. The results presented are

“averages” over several experiments and not “one-offs” test data.

The evolutionary technique was programmed using Borland C++ Builder Version 5.

There are 70 functions associated with the software which manage the operation of

the simulation. The software is divided into two different main windows. The layout

of the first window (which handles the Evolution of Modular Artificial Neural

Networks) is shown in Figure E.1.

 E1

Figure E-1

The software initiates four different types of linked list. These are:

1) System Neuron List (SysNeuLst) – Linked list which stores the neurons in the

network

2) System Sensor List (SysSnrLst) – Linked list which stores the sensor inputs

to the network

3) Neuron Connection List (NeuCnntLst) – Linked list which stores the neuron

connections to be trained

4) Neuron Property List (NeuPropLst) – Linked list which stores the neuron

properties to be trained

Described below is the operation of the buttons on the layout (Figure E-1) above.

New Function – Assign an ID (N) for different functions added to the system

Add New Module – Assign an ID (N) for each new module added to the network

N is an integer from 1 to +∞, ID is the Identity and M is an integer from -1 to -∞

 E2

Add Neuron – A single neuron can be added at a time. The added neurons are

assigned an ID (N) for example 1, 2, 3 etc. Firstly, a neuron structure as shown below

is created. The data structure for a new neuron requires function ID, module ID,

neuron ID, neuron parameters, training status and two linked lists. Then the system

neuron list (SysSnrLst) is scanned and the last inserted neuron IDs are obtained. The

function and module ID is obtained from the form (Figure E-1) above. The neuron

parameters values are initialized to zero. The training status determines whether the

neuron parameters, input connections and weights associated with the connection will

undergo training. The two linked lists are neuron and sensor input list. These lists

contain input information from other neurons and sensors in the network. The neuron

and sensor input structure is shown below. Since recurrent connections are allowed in

the network, a neuron can be connected to itself. Therefore, as soon as a new neuron

is inserted into the network, a neuron input data structure is created and added to the

input list. This new neuron will receive and make connections to and from other

neurons in the network. The number of input data structures varies and depends on

number of neuron in the network. The connections weight and status for the input

neurons is initialised to zero. System sensor list (SysSnrLst) is also scanned and Input

sensor data structures are created. The input value comes from the user while the

other two parameters are set to zero. Finally, the neuron structure is added to the

system neuron link list (SysNeuLst).

struct Neu //neuron structure

{

 int fId; //function ID

 int mId; //module ID

 int id; //neuron ID

 double dc; //decay constant

 double isp; //internal state parameter

 double th; //threshold

 int st; //training status

 TList *NeuInpLst; //neuron input list

 TList *SnrInpLst; //sensor input list

};

 E3

struct InpNeu //neuron input structure

{

 int fId; //function ID

 int mId; //input neuron module ID

 int id; //neuron ID

 double lb; //connection weight

 int st; //connection status (connected or not connected)

};

struct InpSnr //sensor input structure

{

 int fId; //function ID

 int mId; //input neuron module ID

 int id; //sensor ID

 double inp; //sensor input

 double lb; //connection weight

 int st; //connection status (connected or not connected)

};

Del Neuron – Removes the selected neuron from the module. If neurons are not

deleted from the list in sequence, a background function will then sort the neuron’s ID

in ascending order. This change is updated throughout the network.

Add Sensor – Add sensor function is very similar to Add Neuron. Firstly, when a

new sensor is added to the network, a system sensor structure is created and added to

system sensor list (SysSnrLst). Secondly, the sensor input list (SnrInpLst) of each

neuron is updated. The data structure for the system sensor is shown below. The

reason for having a separate list is to monitor and maintain the growth of the sensors

in the network. Sensors can only be added when there is at least one neuron in the

network. The button adds a single sensor. Each sensor is assigned an ID (M) i.e -1, -2,

etc.

 E4

struct Snr //system sensor structure

{

 int fId; //function ID

 int mId; //module ID

 int id; //sensor ID

};

Del Sensor – Removes the selected sensor from the SysSnrLst and SnrInpLst of

every neuron. If sensors are not deleted from the list in sequence, a background

function will then sort the sensors ID in descending order. This change is updated

throughout the network.

Clear Network – Removes all the neurons and sensors for the selected function and

module ID.

Neuron Property – List the selected neuron parameters from the System Neuron

Listbox. There are options to enable and disable training neuron parameters. Figure E-

2 below shows the layout for a selected neuron.

Figure E-2

 E5

Sel Neu for Training – This option enables the selected neuron’s (of the System

Neuron Listbox) inputs (neuron and sensor connections) to undergo training.

Neu Cnnt for Training – Display the neuron’s ID whose input connections are

selected for training.

Neu Prop for Training – Display the neuron’s ID whose neuron properties are

selected for training.

Del Neu Cnnt and Del Neu Prop – Remove the selected neuron.

Sel Out Neu – Selects the output neurons from the System Neuron listbox.

Output Neuron – Display the selected output neuron.

Del Out Neu – Deletes the selected output neuron from Output Neuron combobox.

Save Network – The network information (neuron parameters, input connections and

associated weights, Evolutionary Strategy parameters) is written to a text file.

Load Network – Loads the saved network for evaluation.

Simulate Network – This will test run the loaded network for 500 time steps.

Crt Dcd Lst – Firstly, the Neuron Properties (NeuProp) and Connections (NeuCnnt)

data structure is created as shown. Secondly, SysNeuLst is scanned to determine the

training and evaluate whether the status of each neuron is enabled or disabled. Neuron

input connections or properties of the enabled neuron will undergo training. The

neuron connection data structure is added to neuron connection list (NeuCnntLst)

and the neuron properties data structure is added to neuron properties list

(NeuPorpLst). Figure 5-7 of Chapter 5 illustrates how the information is decoded

into a chromosome.

 E6

struct NeuProp //neuron property structure

{

 int id; //neuron ID

 double dc; //decay constant

 double isp; //internal state parameter

 double th; //threshold

};

struct NeuCnnt //neuron connection structure

{

 int NeuId; //neuron ID

 int InpId; //Inp neuron/sensor ID

 double st; //neuron connections, status 0 = connected, 1 = not connected

 double lb; //weight

};

Clr Dcd Lst – Clear decode list erases all the information stored on neuron

connection and properties linked list.

DistCnntSta – Disable connection status disables the training status of a neuron. This

means the selected neuron properties, input neuron and sensor connections will not

undergo training.

Neuron Inputs – Enables the user to view the selected neuron inputs. There are two

options. First option views all the neuron input connections. The second option shows

all the sensor input connections to the neuron. The neuron Inputs form, as shown

below, will appear if neuron is selected. Using this form, it is possible to edit neuron

input connection weights and the connection status as shown in Figure E-3.

 E7

Figure E-3

Sensor Input form shown in Figure E-4 below will appear if sensor option is selected.

Using this form it is possible to edit sensor input, connections weights and connection

status as shown.

Figure E-4

 E8

The vision grid shows the evolution of the sensory system through three different

stages. In the first stage, the pixel on the centre of the grid is selected. More details

about the vision sensor evolution are given in Figure 8-2 of Chapter 8. There are 25

pixels on the grid. The centre grid is selected for single patterns and it has a

predefined input value of 1 or –1. Numbers of patterns and inputs (sensors) per

pattern have to be specified if the multiple pattern option is selected. The input

sensors become unavailable after the patterns are trained. Clicking on the grid

changes the input value and pressing the OK button inserts the input pattern.

The layout of the second window is shown in Figure E-5.

Figure E-5

Obj connections – The Evolutionary Strategy form will appear as shown above,

when the create decode list (Crt Dcd Lst) button is clicked. The Object connections

list shows all the connections that will be trained. For example 1-> 1 means

connection from neuron 1 to neuron 1.

 E9

Crt Neu Cnnt Pop – Creates a population of neuron connection chromosomes. The

Number of Chromosomes determines the size of the population. The information for

the population is extracted from Neuron connection data structure. Figure 5-7 of

Chapter 5 illustrates how the information is decoded into a chromosome.

Crt Neu Prop Pop – Creates a population of neuron properties chromosomes. The

Number of Chromosomes determines the size of the population. The information for

the population is extracted from Neuron properties data structure. Figure 5-7 of

Chapter 5 illustrates how the information is decoded into a chromosome.

Del Neu Cnnt Pop and Del Neu Prop Pop – Deletes the created neuron connections

and neuron properties population.

Evaluate Network – Trains the network and updates neuron properties, neuron

connections and its associated weights for the specified number of generations.

The set-up of the Evolutionary Strategy genetic operators is explained in detail in

Section 5.3 of Chapter 5.

 E10

	AMuthurumanThesisTitle
	A thesis submitted to

	BMuthuramanThesisAcknowledgements
	CMuthuramanThesisAbstract
	DMuthuramanThesisContents
	Chapter 9.Suggestions for Further Work

	EMuthuramanThesisChapter1
	Introduction
	Introduction to Chapter
	The Nature of the Problem
	Modularity
	Aim and Objectives:
	Novel Aspects of this Research
	Thesis Structure

	FMuthuramanThesisChapter2
	Review of Previous work within the Research Group
	Introduction to Chapter
	Single String Evolutionary Techniques
	Evolution of Functions within the Animat Nervous
	Evolution of Functions within the Animat Nervous
	Conclusions Drawn from the Group’s Previous Work
	Summary

	GMuthuramanThesisChapter3
	Evolution and Devolved Action
	Introduction to the Chapter
	Biological Evolution
	Organism at the Cellular Level

	Organisation Methods
	Production Trees
	Fractals
	Altering Existing Evolutionary Algorithms
	Direct Growth
	The Role of Incremental Change
	The Final System
	Amalgamating the Function Methods

	Summary

	HMuthuramanThesisChapter4
	Literature Review
	Introduction to the Chapter
	Multilayer Perceptrons
	Evolutionary Artificial Neural Network (EANNs)
	Growing ANNs
	Modular Neural Networks
	Simple Incremental Learning of ANNs
	Evolving More Complex Systems
	Body-Brain Evolution
	Context of the Current Research
	Summary

	IMuthuramanThesisChapter5
	Components for Evolution of Modular Artificial Neural Networks
	Introduction
	Neuron Models
	Evolutionary Algorithm
	Actuator Models
	Robot Development Morphology
	The Principle of the Artificial Evolutionary System
	Implementation of the Evolutionary System Technique

	JMuthuramanThesisChapter6
	Initial Results
	Introduction
	Results from Single Functions
	Quadruped
	Permissible Module Connections
	Discussion

	KMuthuramanThesisChapter7
	Results From Multiple Functions
	Introduction
	Evolution of the Body-plan
	Results from Further Degrees of Freedom
	
	
	
	Neuron Id

	Copy And Paste Technique
	Dual-Gait Network
	Discussion

	LMuthuramanThesisChapter8
	System Integration
	Introduction
	Vision System
	Integration of Locomotive with Vision Networks
	Discussion

	MMuthuramanThesisChapter9
	Suggestions for Further Work
	Introduction to Chapter
	Other Applications of the Growth Method
	Investigations of Further Network Parameters
	Other Ideas for Further Work

	NMuthuramanThesisChapter10
	Conclusions
	Introduction to chapter
	The project objectives revisited
	Novel Aspects of this Research
	Summary of suggestions for further work
	Concluding Remarks

	OMuthuramanThesisReferences
	PMuthuramanThesisAppendixA
	QMuthuramanThesisAppendixB
	RMuthuramanThesisAppendixC
	SMuthuramanThesisAppendixD
	TMuthuramanThesisAppendixE

	OA Logo:
	AUTHOR: MUTHURAMAN, S.
	TITLE: The evolution of modular artificial neural networks.
	YEAR: 2005
	OpenAIR citation: MUTHURAMAN, S. 2005. The evolution of modular artificial neural networks. Robert Gordon University, PhD thesis. Held on OpenAIR@RGU [online]. Available from: https://openair.rgu.ac.uk
	Degree: Doctor of Philosophy, School of Engineering
	License: BY-NC-ND 4.0
	License URL: https://creativecommons.org/licenses/by-nc-nd/4.0
	CC Logo:
		2019-02-14T09:50:01+0000
	OpenAIR at RGU

