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Abstract

We introduce the Distributed, Penalty-driven Local search al-
gorithm (DisPeL) for solving Distributed Constraint Satisfac-
tion Problems. DisPeL is a novel distributed iterative im-
provement algorithm which escapes local optima by the use
of both temporary and incremental penalties and a tabu-like
no-good store. We justify the use of these features and pro-
vide empirical results which demonstrate the competitiveness
of the algorithm.

Introduction
In distributed environments, many of the problems resolved
by collaborative agents can be formalized as Distributed
Constraint Satisfaction Problems (DisCSPs). In this formal-
isation, problems such as scheduling and resource alloca-
tion are decomposed into variables and constraints which
are distributed amongst the agents involved. The problems
are solved by a collaborative process in which agents try
to reach agreements (i.e. satisfy constraints) by exchanging
value assignments for their respective variables.

Modelling problems as DisCSPs facilitates the problem
solving process by allowing agents to use the constraints in
the problem to rule out non-solutions via constraint propaga-
tion. In many cases, however, problems cannot be solved by
just constraint propagation, and seeking a solution by search
is inevitable. A complete search for a solution poses many
well known problems and, in distributed environments, these
are magnified since the problem solving process involves
the exchange of information between physically dispersed
agents and reasoning with incomplete information. In this
work, we propose a novel distributed search algorithm that
aims to improve search efficiency by helping agents identify
and avoid unprofitable areas of the search space and hence
focus on regions where solutions may exist. The algorithm,
Distributed Penalty-driven Local search (DisPeL) is a dis-
tributed iterative improvement algorithm which escapes lo-
cal optima by the use of both temporary and incremental
penalties and a tabu-like no-good store. We discuss how
these features influence the search process and show their
efficiencies with experiments on randomly generated prob-
lems.
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The rest of this paper is structured as follows. We start
with an overview of distributed constraint satisfaction. Then
we discuss the strategy employed in DisPeL and provide
some experimental justification for some of its components.
Next, we present results of empirical evaluation on distrib-
uted graph coloring problems and random non-binary DisC-
SPs. And finally, we conclude the paper with a brief sum-
mary.

Distributed Constraint Satisfaction
A Constraint Satisfaction Problem (CSP) is formally defined
as a triple (V, D, C) comprising a set of variables (V), a set
of domains (D) listing possible values that may be assigned
to each variable, and a set of constraints (C) on values that
may be simultaneously assigned to the variables. The solu-
tion to a CSP is a complete assignment of values to variables
satisfying all the constraints. In a DisCSP, variables and con-
straints are already distributed among a network of homoge-
neous agents. Each variable belongs to only one agent, while
each agent may have more than one variable1. DisCSPs are
solved by a collaborative process, where each agent strives
to find assignments for its variables that satisfy all attached
constraints.

The key distinguishing features of the DisCSP are privacy
and partial knowledge of a problem (Yokooet al. 1992).
Agents are only aware of the domains and the constraints
for the variables they represent. Privacy requirements also
mean that an agent can not know about the domain of an-
other agent or about the constraints any other agent is in-
volved in. In addition, with privacy, the only information
an agent is permitted to reveal to other agents is the current
assignments to its variables. These features distinguish dis-
tributed constraint satisfaction from parallel or distributed
approaches for solving traditional CSPs.

The DisCSP was formally described in the seminal work
by Yokoo et al.(1992), and the field was influenced early
on by search algorithms introduced by those authors. The
portfolio of search algorithms has grown considerably in
recent times but the key challenge, and what differenti-
ates the algorithms, remains how dead-ends or local op-

1In this paper we assume that each agent holds just one variable.
Therefore, we use the terms variable and agent interchangeably to
refer to the variables that agents represent.



tima2 are dealt with. In distributed backtracking algorithms
such as Asynchronous Weak Commitment Search (Yokoo
& Hirayama 2000) and Dynamic Distributed Backtrack
(Bessiere, Maestre, & Meseguer 2001), new constraints are
generated out of the deadlock situations. These help identify
sources of deadlocks and help the algorithms avoid revisit-
ing deadlock states.

In distributed iterative improvement algorithms, several
alternative mechanisms have been introduced that aim to
help identify sources of deadlocks and initiate the right
actions for their resolution. For example, in the Distrib-
uted Breakout Algorithm (DBA) (Hirayama & Yokoo 2005)
agents continually increase the importance of the constraints
associated with the deadlocks and therefore are able to focus
attention on their resolution. Other algorithms in the same
class, such as the Distributed Stochastic Search (Zhanget
al. 2005), rely on stochastic decisions to avoid and escape
from local optima. This was shown to be an efficient strategy
for distributed constraint optimisation problems; converging
quicker than DBA on a restricted class of problems where
the aim is to satisfy as many constraints as quickly as possi-
ble rather than solve the whole problem.

Distributed Penalty Driven Local Search
Strategy for Resolving Local Optima
DisPeL is a greedy algorithm that starts off with an initial
random solution which agents try to improve in successive
iterations by selecting values that minimize the number of
constraints violated. When agents are stuck in deadlocks and
unable to improve the solution, DisPeL uses either of two
penalties - temporary and incremental - to resolve the con-
flicts creating the deadlocks. The temporary penalty is first
used to perturb deadlocked agents. While the incremental
penalty is used to avoid assignments that are associated with
deadlocks if perturbations did not work.

The temporary penalty is imposed on the current value
assigned to a deadlocked variable, and it is disposed off
immediately after it is used. The purpose of the tempo-
rary penalty is to create a perturbation, by forcing agents
to choose values other than their current assignments, which
pushes agents out of the current point in the search space
and encourages exploration of distant locations. Empirical
evidence (discussed later) shows that when the temporary
penalty is used, agents are able to resolve some conflicts im-
mediately and, critically, do not often create new constraint
violations in other parts of the problem. The temporary
penalty has a fixed size(t > 1) and its value may be prob-
lem dependent. In our work so far, we found that in some
problems, such as distributed graph coloring, a small tem-
porary penalty (t = 3) worked best. In other problems, like
the car sequencing problem(Parrello, Kabat, & Wos 1986),
a large temporary penalty is more suitable. This may be re-
lated to the neighborhood structures or to the nature of the
constraints involved.

An incremental penalty is attached to each value in a vari-
ables domain, and it serves as search memory for agents.

2A Pareto optimal situation with some unresolved constraints.

When a deadlock is not resolved by perturbation, incremen-
tal penalties attached to the values are steadily increased;
contorting the shape of the plateaux occupied, thereby al-
lowing agents to resume the search. The incremental penal-
ties are reset to zero (i) periodically during the search and,
(ii) individually by agents whenever they find consistent as-
signments for their variables. In the latter case, penalties are
reset because they are assumed to have become redundant.
Whereas in the former case, penalties are reset periodically
to limit their impact on the objective landscape and leave
paths to potential solutions unhindered.

The temporary and incremental penalties are included in
each agent’s objective function, which is defined as follows:

h(di) = v(di)+p(di)+

{

t with temporary penalty

0 otherwise
(1)

where:
v (di) is the number of constraints violated with domain
valuedi,
p(di) is the incremental penalty associated withdi,
t is the temporary penalty imposed ondi andt > 1.

A no-good store is used primarily to help agents decide
what penalties to apply when deadlocks are encountered.
Each agent maintains a no-good store to keep track of re-
cent conflict states, storing a maximum ofN states at any
point in time, whereN is the number of neighbors the agent
has. This value is used to retain structural aspects of the in-
dividual problem into the algorithm, and to avoid the need
for parameter tuning as the problem sizes change. The no-
goods here are records of an agent’s conflict state (i.e. the
AgentView comprising all its neighbors’ assignments) and
are not taken as new constraints. Therefore, no additional
links are created between previously unrelated agents. No-
goods are also not used to prevent agents from revisiting pre-
vious states as in Tabu search (Glover 1990).

Agent Behavior

Agents execute processes outlined in Figures 1, 2, and 3. At
initialisation, agents first create a static ordering usingthe
Distributed Agent Ordering scheme (Hamadi 2002). This
induces an ordering among agents that allows unconnected
agents to act concurrently. Each agent uses the scheme lo-
cally to determine its set of higher and lower priority neigh-
bors using their lexicographic IDs.

After initialisation, agents take turns acting; each agent
waits to receive the values selected by all its higher priority
neighbors. Upon this, an agent typically selects a value in
its domain that minimizes equation (1) and sends this value
to all its neighbors (Figure 2, lines 3-6).

Conflict resolution is initiated whenever an agent finds it-
self at a quasi-local-optimum. Here, a quasi-local-minimum
is defined as a situation where the AgentView of an agent



1 initialise
2 do
3 when active
4 rpCounter++
5 if rpCounter = resetPeriod
6 reset incremental penalties
7 rpCounter = 0
8 evaluate state
9 if penalty request received

10 respond to message()
11 else
12 if current value is consistent
13 reset incremental penalties
14 send current value to neighbors
15 else
16 resolve conflict()
17 end if
18 end if
19 return to inactive state
20 until terminate

Figure 1: DisPeL: Main agent loop

with an inconsistent variable is unchanged in two consec-
utive iterations. To start conflict resolution, an agent first
checks its no-good store to find out if the conflict has re-
cently been encountered (Figure 2, line 7). If the conflict
state is not in the no-good store, the agent imposes a tempo-
rary penalty on its current value and selects the value in its
domain minimizing its objective function. Following that,
the agent places the current no-good in the store and sends
a message to all lower priority agents violating constraints
with it requesting them to impose temporary penalties on
their current values. At the same time, the agent sends its
new value to all its neighbors. This first resolution phase is
outlined in Figure 2 (lines 8-11).

If the conflict has been previously encountered, the agent
moves into the second resolution phase outlined in Figure 2
(lines 13-15). The incremental penalty attached to the cur-
rent domain value is increased by 1 and the agent selects the
value minimizing its objective function. This new value is
sent to all its neighbors, as well as a request for all lower
priority neighbors to increase the incremental penalties at-
tached to their current assignments.

When an agent receives a penalty request from a higher
priority neighbor, it proceeds to impose the required penalty
on its current value (Figure 1, line 10 and Figure 3). If an
agent simultaneously receives messages to impose tempo-
rary penalties and increase incremental penalties, the tem-
porary penalty request is ignored in favor of the increase.

Justification for the Temporary Penalty

In earlier investigations for this work, we first looked at the
immediate impact of different strategies and examined how
effective they were in getting an algorithm out of a local
optimum. Results from that study suggest that with a tem-
porary penalty, 57% of constraints violated at the local opti-

1 procedure resolve conflict()
2 if AgentView(t) 6= AgentView(t-1)
3 select value minimizing eqn(1)
4 send message(id, value, null)
5 return
6 end if
7 if AgentView(t) is not in no-good store
8 add AgentView(t) to no-good store
9 impose temporary penalty on current value

10 select value minimizing eqn(1)
11 send message(id, value, addTempPenalty)
12 else
13 increase incremental penalty on current value
14 select value minimizing eqn(1)
15 send message(id, value, increasePenalty)
16 end if
17 end procedure

Figure 2: DisPeL: Initiating the conflict resolution process.

1 procedure respond to message()
2 if message is increase incremental penalty
3 increase incremental penalty on current value
4 else
5 impose temporary penalty on current value
6 end if
7 select value minimizing eqn(1)
8 send message(id, value, null)
9 end procedure

Figure 3: DisPeL: Responding to a penalty message re-
ceived from a higher priority agent

mum are resolved almost immediately. While its use caused
new constraint violations in other parts of the problem 43%
of the time. In contrast, the incremental penalty resolved
65% of constraints violated at the local optimum, causing
new constraint violations 91% of the time.

We created two algorithms using each of these heuristics,
i.e. one using the temporary penalty alone and the other us-
ing the incremental penalty alone, and compared their per-
formance on random graph coloring problems. The results
are shown in Table 1, and include a comparison with Dis-
PeL. The average costs (i.e. the number of iterations) are
from attempts on a set of 100 random graphs with a maxi-
mum of 5,000 iterations for each attempt.

Heuristic % solved average cost
Temporary penalty alone 76 729
Incremental penalty alone 96 255
DisPeL 99 180

Table 1: Performance of heuristics on random graph color-
ing problems (n=100,k=3, degree= 4.6).



The results show that with incremental penalties alone,
one is able to solve nearly as many problems as with the fi-
nal algorithm (i.e. DisPeL). While the temporary penalty, on
its own, is considerably worse both in terms of effectiveness
and efficiency. But, their combination creates an interesting
synergy within DisPeL that improves search efficiency by
over 40%. The contributions to the efficiency gains by the
temporary penalty (and the accompanying no-good store) in-
clude the induced exploration and the reduced probability of
oscillation by not causing new constraint violations while
resolving existing conflicts.

Determining the Optimal Reset Period
We choose to reset incremental penalties periodically in Dis-
PeL, while aware of the potential risks of losing search ex-
perience in the process. However, there are arguments in
favor of doing this in the literature. For example, in Morris’
work on the centralized Breakout Algorithm (Morris 1995),
it was argued that weights3 can cause incompleteness as the
changes in the objective landscape conspire to block paths to
solutions. While Voudouris (1997) argues that penalties in
the Guided Local Search algorithm do become redundant at
some point and contends that periodically resetting penalties
allows the search to revisit solutions penalised earlier, sub-
sequently leading to an intensification of the search in areas
around those solutions.

Figure 4: Average search costs with DisPeL on graph color-
ing problems(n = 100, k = 3, degree = 4.7) and random
3-ary DisCSPs (75 variables, 150 constraints, 0.55 tightness,
and 8 values in each variables domain) as the reset period
changes. Each point is an average of 200 instances.

In Figure 4 we show results of experiments used to deter-
mine the optimal reset period for DisPeL, where we tested
the algorithm on random graph coloring problems, as well
as on random ternary DisCSPs, while varying the reset pe-
riod. The plots show the average search cost of solving prob-
lems. As expected, the results indicate that when incremen-
tal penalties are reset frequently (i.e. reset period is less than

3Weights are attached to constraints in the Breakout algorithm,
with the goal of modifying the objective landscape for escaping
local optima.

4) the algorithm solved fewer problems (not shown) and it
had higher search costs on those solved. However, it appears
that search costs are at a minimum when the reset period
is 5 (for the graph coloring problems) or 6 (for the tenary
problems) after which costs steadily increase. With high re-
set periods, the incremental penalties inhibit the algorithm’s
performance by obscuring the objective landscape to the ex-
tent that agents are constantly being pushed towards areas
with higher constraint violations. The valleys and peaks
of the landscape are gradually smoothed as more penalties
are retained, therefore increasing the probability of the al-
gorithm falling into a trap that causes it to roam about infi-
nitely between non-solution states. Penalties start to dom-
inate the objective function as they are retained, and as a
result emphasis gradually shifts from minimising constraint
violations to minimising the penalties. Incremental penal-
ties are reset every six iterations in DisPeL irrespective of
the the problem type and size (resetPeriod= 6 in Figure 1,
line 5). This value is used for all the experimental evalua-
tions reported in this paper.

Soundness and Completeness
DisPeL is sound because it does not return invalid solu-
tions. This is so because it only reaches stable states when
there are no constraint violations. Agents will retain their
assignments (Figure 1, lines 12 - 14) if no constraints are
violated, thus stabilizing the algorithm. And as long as a
solution has not been found, agents will continue to perturb
the state. Therefore, soundness is assured.

If a solution does not exist, the agents are unable to detect
this and therefore the algorithm will run indefinitely. No-
goods are not used as new constraints and besides, only a
few are stored at any one time. As such, there is no oppor-
tunity to completely rule out infeasible areas of the search
space. In addition, because incremental penalties are reset
periodically and when agents find consistent assignments for
their variables, they cannot provide any clues to insolubility.
Therefore, the algorithm is incomplete.

Empirical Evaluation
We have evaluated DisPeL on a number of problem types
and present the results on experiments with distributed graph
coloring and random non-binary DisCSPs. In this study, we
were interested in its ability to solve problems and its effi-
ciency in terms of the number of iterations typically required
to solve the problems. Iteration count is used for evaluation
here as the search cost because, as pointed out in (Ahuja &
Orlin 1996), it is an independent performance metric which
abstracts out the influences of implementations or the run
time environment. Using the iteration count also allows for
future comparison with our work, while serving as an ap-
proximation of the real costs in solving DisCSPs i.e. mes-
sage count, for these algorithms.

We compared the algorithm’s performance with that of the
Distributed Breakout Algorithm (DBA) (Hirayama & Yokoo
2005) (the Single-DB version) on the same data. DBA is
chosen for comparison because it has been established as
one of the benchmarks with which distributed algorithms



are compared. In addition, DBA and DisPeL are both in-
complete, iterative improvement algorithms. To verify our
implementation of DBA, we tested it with similar problems
as those used in (Yokoo & Hirayama 1996) and achieved
similar results.

Distributed Graph Coloring Problems
An algorithm from (Fitzpatrick & Meertens 2002) was used
to generate solvable 100-node problem instances for our ex-
periments. The difficulty of instances is controlled using the
average number of connections to each node (i.e. the degree)
to study the behavior of both algorithms around the phase
transition region (Cheeseman, Kanefsky, & Taylor 1991).

Figure 5: Behavior of DisPeL and DBA on random graphs
(100 nodes andk = 3) as a function of connectivity.

Space limitations here prevent us from including details
of the percentage of problems solved by both algorithms,
but we include a plot of the median search costs of both al-
gorithms in Figure 5. Both algorithms were each tested on
100 instances for each point in the plots, and attempts were
terminated as failures after a maximum of 20,000 iterations
for DBA and 10,000 iterations for DisPeL4. Both algorithms
were able to solve nearly all problems in the test set, consis-
tently above 95%, with little difference in performance on
that criterion. But as evident in Figure 5, the median costs
of finding solutions is significantly lower for DisPeL than
for DBA. The performance gap is more pronounced in the
phase transition region (i.e. between 4.6. and 4.9, see (Hogg
1996)) where DBA’s median cost peaks at 1200 iterations,
while the median cost for DisPeL in the same region is
around 200 iterations.

Random Non-Binary DisCSPs
Random non-binary problems where generated using a mod-
ified Model B (Palmer 1985), each defined by the tuple<n,
d, a, c, t>, wheren is the number of variables in the problem,
d is the domain size, anda is the arity of all the constraints
in the problem. In addition,c specifies the number of con-
straints in the problem and the tightness of each constraintis

4DBA’s two cycles (i.e.wait ok and improve?) are equivalent
to a single iteration in DisPeL.

t. To ensure solubility, we included support values for each
variable while generating the constraints.

Here, we report results from experiments on ternary (3-
ary) problems in which we study the behavior of the algo-
rithms asn increases. There are2nconstraints in each prob-
lem and the constraint tightness is held constant at 0.55. In
Figures 6 and 7, we plot the success rate and average cost
respectively, on 100 problems for each point. We limited
DisPeL to100niterations and DBA to200niterations with
each attempt.

Figure 6: Fraction of random 3-ary DisCSPs (<
n, 8, 3, 2n, 0.55 >) solved as problem size increases.

Figure 7: Average search costs required to solve the DisC-
SPs in Figure 6.

The results plotted in Figures 6 and 7 are consistent with
those reported on the experiments on graph coloring prob-
lems in the previous section. They also show that as the
problem size increases, DisPeL consistently outperforms
DBA both in terms of the percentage of problems solved and
average cost. In Figure 8 Run Length Distributions (Hoos &
Stutzle 1999) for both algorithms on a single problem in-
stance with constraints of mixed arities are plotted. These
show the probability of solving problems with a given num-
ber of iterations from 500 attempts by each algorithm, with
a maximum cut-off of 10,000 iterations for DisPeL and
20,000 iterations for DBA. Figure 8 suggests that DisPeL
has a higher probability of finding solutions with fewer iter-



ations than DBA. Further evidence is at the top end of the
curves, where at the cut-off, DBA only found solutions to
the problem in about 90% of its attempts compared to 99%
for DisPeL.

Figure 8: Run Length Distribution of DisPeL and DBA on a
random non-binary CSP (n = 80) with constraints of mixed
arities (40 binary constraints, 100 3-ary constraints and 60
4-ary constraints) all with 50% constraint tightness.

Summary
We have presented DisPeL, a novel algorithm for solving
DisCSPs which uses penalties and a tabu-like no-good store
in order to escape local optima. Two types of penalties (tem-
porary and incremental) enhance search efficiency. The tem-
porary penalty boosts search efficiency by helping agents to
resolve some conflicts immediately and by minimizing the
probability of conflicts being transferred to other parts of
the problem while agents attempt to resolve those on hand.
While, incremental penalties serve as a search memory for
agents. We have justified their periodic disposal and ex-
plained how long-term retention of memory obscures the
search landscape thus hindering overall performance. A lim-
ited form of learning is implemented with the use of a tabu-
like no-good store which helps agents decide on what con-
flict resolution strategy to employ when stuck at local op-
tima.

We are currently extending DisPeL for problems where
each agent may have multiple local variables. In addition,
we are also complementing our extensive evaluation to in-
clude other problem classes.

Results of empirical evaluations, as well as comparisons
with DBA indicate that the strategy adopted in DisPeL is
highly successful in solving random graph coloring and non-
binary DisCSPs. DisPeL typically requires fewer iterations
to solve the problems and it consistently finds more solu-
tions. We have obtained similar results from our experi-
ments with other problems such as the car sequencing prob-
lem and Schur’s lemma.
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