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Abstract

We introduce the Distributed Guided Local Search (Dist-
GLS) algorithm for solving Distributed Constraint Satisfac-
tion Problems. Our algorithm is based on the centralised
Guided Local Search algorithm, which is extended with ad-
ditional heuristics in order to enhance its efficiency in dis-
tributed scenarios. We discuss the strategies we use for deal-
ing with local optima in the search for solutions and compare
performance of Dist-GLS with that of Distributed Breakout
(DBA). In addition, we provide the results of our experiments
with distributed versions of random binary constraint satis-
faction and graph colouring problems.

Introduction
In Distributed Constraint Satisfaction, a problem is parti-
tioned amongst several physically dispersed agents, each re-
sponsible for finding a solution for its assigned sub-problem
(Yokoo & Hirayama 2000). The key challenge in solving a
Distributed Constraint Satisfaction Problem (DisCSP) is the
restriction on what information may be revealed by agents to
each other for reasons such as privacy or security; this lim-
its the scope of inference available to agents for resolving
constraint violations with other agents which are typically
associated with local optima in the search for a solution.

A Constraint Satisfaction Problem (CSP) is formally de-
fined as a triple (V, D, C) comprising a set of variables (V),
a set of domains (D) listing possible values that may be as-
signed to each variable, and a set of constraints (C) on val-
ues that may be simultaneously assigned to the variables.
The solution to a CSP is a complete assignment of values to
variables satisfying all constraints. In a DisCSP, each vari-
able is assigned to only one agent, while agents may hold
one or more variables. In this work, we focus on the case
that all agents have one variable each. DisCSPs are solved
by a collaborative process, where each agent strives to find
assignments for its variables that satisfy all constraints.

Yokoo and Hirayama (2000) stress issues such as privacy
and partial knowledge of the problem by agents in their jus-
tification for distributed constraint satisfaction. Agents can
only reveal the values currently assigned to their variables
during the search for solution, and nothing more. Agents
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are unaware of other agents’ domains and constraints and
make their decisions solely based on what is revealed to
them by other agents. These restrictions become particu-
larly important when the collaborative search process hitsa
local optimum. Each agent would already have selected val-
ues for its variables that minimise the number of constraints
violated, but in doing so, some agents would prevent other
agents from finding good value assignments. To deal with
local optima, agents will have to go through a resolution
process that will identify the sources of deadlocks and ini-
tiate actions for their resolution. However, resolution isnot
straightforward in distributed scenarios given the aforemen-
tioned restrictions. Therefore, agents have to rely on well
crafted local mechanisms that implicitly result in the reso-
lution of deadlocks. For example, in the Distributed Break-
out (DBA) (Yokoo & Hirayama 1996) agents act unilaterally
to resolve deadlocks, by placing weights on constraints and
increasing weights on constraints causing deadlocks with
other agents. In other algorithms such as the Asynchronous
Weak Commitment Search (Yokoo & Hirayama 2000) and
Asynchronous Backtracking (Yokooet al. 1992) agents gen-
erate new constraints out of the deadlocks and as such, will
avoid returning to those deadlocks as the search for a solu-
tion progresses. In algorithms like those presented in (Zhang
et al. 2005) and (Liu, Jing, & Tang 2002), agents rely on
stochastic mechanisms to avoid and escape from local op-
tima without attempting to identify the causes of conflicts.

In this work, we introduce the Distributed Guided Local
Search (Dist-GLS) algorithm for solving DisCSPs. In par-
ticular, we emphasise the strategies in the algorithm for deal-
ing with local optima in the search for solutions. Our algo-
rithm is partly an extension of the centralised Guided Lo-
cal Search (GLS) (Voudouris 1997), with additional heuris-
tics incorporated into it to enhance the algorithm’s efficiency
in distributed scenarios. The centralised GLS algorithm for
search and combinatorial optimisation introduced structure-
based learning for identifying the features of the solution
that are particularly associated with local optima. Penalties
are associated with these features, and these are incorporated
into the objective function to be optimised. Penalties on fea-
tures are increased when the underlying hill-climbing search
hits a local optimum, if the features are present at that par-
ticular local optimum. The idea is to use penalties to change
the shape of the objective landscape and as a result guide the



search away from sub-optimal regions and to focus attention
on more profitable areas of the search space.

The rest of this paper is structured as follows. In the next
section we outline the general framework of Dist-GLS. Fol-
lowing that, we discuss the heuristics for resolving conflicts
associated with local optima and justify their use. Next, we
provide an illustration of the resolution process. Finally, we
present results of preliminary experiments on random binary
CSPs and graph colouring problems.

Distributed Guided Local Search
Dist-GLS is a semi-synchronous distributed iterative im-
provement algorithm. Aspects of the Distributed Agent Or-
dering (Hamadi 2002) algorithm are incorporated into Dist-
GLS at the initialisation phase, which permits concurrent
activity in unconnected parts of the problem. An agent’s
position in the ordering is also used to determine its prior-
ity within its neighbourhood. Each agent in the algorithm
represents a single variable in the DisCSP, and is aware of
the variable’s domain and all the constraints attached to the
variable. In addition, each agent also keeps track of penalties
attached to individual domain values for its variable1. Each
agent also maintains a no-good store used to keep track of
deadlock situations encountered during the search process.

Agents take turns to choose values for their variables, and
become active only after receiving choices of higher priority
neighbours; then the individual agent will typically pick the
value with the least sum of constraint violations and penal-
ties (Figure 2, line 3). However, on detection of a quasi-
local optimum i.e. in this case a deadlock situation where
an agent is unable to find a value in its domain that reduces
the number of constraints currently violated2, the agent will
initiate the conflict resolution process with lower priority
neighbours (discussed in detail in the next section) and begin
increasing penalties on particular domain values associated
with this deadlock.

An agent may only communicate with other agents con-
nected to it by constraints on their respective variables.
To minimise the communication costs incurred during the
search process, agents communicate with neighbours using
a single message type that encapsulates both the values as-
signed to their variables and other messages. For exam-
ple, to request that certain neighbours impose a temporary
penalty on their current assignments, the message will be in
this form: message(its id, its value, addTempPenalty).

Dealing with local optima
A two-tiered penalty system is introduced as opposed to
the uniform penalty system adopted in GLS. This is imple-
mented as follows:

1. On detection of a quasi-local optimum, an agent checks
its no-good store initially to find out if the current incon-
sistent state had been previously visited. If it is not the

1Domain values are used as problem features for the GLS as-
pect of the algorithm

2And all its neighbours values are unchanged from the previous
iteration.

1 initialise

2 do
3 when active
4 evaluate state
5 if penalty message received
6 respond to message()
7 else

8 if current value is consistent
9 reset incremental penalties
10 send message(id, value, null) to neighbours
11 else
12 resolve conflict()
13 end if

14 end if
15 return to inactive state
16 until terminate

Figure 1: Dist-GLS: Main agent loop

case, then the agent imposes a temporary penalty on its
current value and sends a message to all lower priority
neighbours violating constraints with it requiring them to
do the same (Figure 2, lines 7-11). The temporary penalty
is discarded immediately after it is used.

2. If it is the case that a deadlock state has been previ-
ously encountered, then the agent increases the incremen-
tal penalty on its current domain value. In addition, the
agent sends a message to all its lower priority neighbours
requesting the same action (Figure 2, lines 13-16). If an
agent receives requests for the imposition of a temporary
penalty and increases of incremental penalties simultane-
ously from different neighbours, the latter takes prece-
dence (Figure 3, lines 2-7).

The temporary penalty is a positive integert (t > 1), and
its value is problem dependent. In problems where the solu-
tion is a permutation of values a larget (e.g.t = 1000) works
best, as it creates a perturbation large enough to allow agents
find alternative values for their variables. While in problems
involving some optimisation, like graph colouring, a small
t (e.g. t = 3) is sufficient. The choice of temporary penal-
ties in the first phase of the resolution process came out of
empirical investigations into the effect of heuristics on con-
flict resolution. Results from those experiments indicate that
while the use of temporal penalties resolves the least number
of conflicts, it is unlikely to cause as many new constraint
violations as with the use of incremental penalties on do-
main values. Therefore we concluded that temporary penal-
ties would generally speed up the search process by helping
the agents resolve conflicts without necessarily creating new
conflicts in other parts of the problem.

All incremental penalties on domain values are set to zero
at initialisation, and are increased incrementally by 1 in



1 procedure resolve conflict()
2 if neighbours state(t) 6= neighbours state(t-1)
3 select new value
4 send message(id, value, null)
5 return
6 end if

7 if neighbours state(t) is not in no-good store
8 add neighbours state to no-good store
9 impose temporary penalty on current value
10 select new value
11 send message(id, value, addTempPenalty)
12 else

13 if incremental penalty on current
value < upper bound

14 increase incremental penalty by 1
15 select new value
16 else
17 select worst value in domain
18 end if

19 send message(id, value, increasePenalty)
21 end if
22 end procedure

Figure 2: Dist-GLS: Resolve conflict

deadlock situations. In evaluating its options, an agent adds
the incremental penalty of a domain value to the number of
constraints violated by that value. An upper bound is im-
posed on the size of the incremental penalties. The intent is
to prevent penalties increasing infinitely thereby exaggerat-
ing the effects on the objective landscape; and in addition,to
avoid arrival at a situation where the penalties cease to con-
tribute positively to the conflict resolution process. The up-
per bound is defined individually for each agent asN, where
N is the number of neighbours. This number is chosen as
the upper bound for each agent in order to incorporate struc-
tural aspects of the individual DisCSP in the algorithm and
to avoid the need for parameter tuning. When the incre-
mental penalties on the current domain value hit the upper
bound, the agent uses the temporary constraint maximisa-
tion heuristic (TCM) (Fabiunke 2002) and selects the worst
value in its domain. The aim is to perturb the agent’s neigh-
bourhood, forcing as many neighbours as possible to select
alternative values for their respective variables.

Incremental penalties on all domain values are reset to
zero whenever an agent finds a consistent assignment for its
variable (Figure 1, line 9). Although there is a risk of losing
experience gained in the search by doing so, this is an at-
tempt to minimise the risk of the algorithm falling into a trap
that causes it to oscillate between non-solution states. The
idea of resetting penalties (or weights) has been explored in
the literature, albeit in different contexts. For example,Mor-
ris (Morris 1995) argues that weight increases may conspire

1 procedure respond to message()
2 if message is incremental incremental penalty
3 if incremental penalty on current

value < upper bound
4 increase incremental penalty on current value
5 else
6 impose temporary penalty on current value
7 end if
8 select new value
9 send message(id, value, null)
10 end procedure

Figure 3: Dist-GLS: Responding to penalty message re-
ceived from higher priority agent

to block the path to a solution in the objective landscape.
While, Voudouris (Voudouris 1997) points out that penal-
ties may become invalid some point after they have been
incurred. He therefore proposes, amongst other things, re-
setting penalties periodically. However, in this work, one
intent of resetting penalties is to maintain algorithm robust-
ness. Based on our argument that as agents do retain too
much environmental history, the algorithm should be more
responsive to dynamically changing problem specifications
and communication failures while it runs.

An agent’s no-good store is central to the coordination of
its strategies for dealing with quasi-local-optima. The store
is in some ways similar to tabu-lists (Glover 1989), serving
as short term memory. The difference, however, is that the
no-good store is not used to forbid the repetition of recent
decisions by agents. A maximum ofN recently encountered
no-good states are maintained in the store on a First-In-First-
Out basis. Unlike the incremental penalties, the no-good
store is not emptied when the agent finds a consistent value
for its variable.

Example of algorithm execution
A typical run of Dist-GLS is illustrated with the trivial
DisCSP in Figure 4. In the example problem there are four
agents, each representing one variable -a, b, c, andd re-
spectively. Constraints on variable pairs are highlightedon
the connecting arcs. The domains of the variables are shown
in the figure (Da, Db, Dc, andDd) as well as the number of
constraints violated for each domain value (Va, Vb, Vc, and
Vd) given the current assignments to all variables. For exam-
ple, both domain values forb violate the constraint (b = c)
for the current assignmentc = 0. The incremental penalties
on the respective domain values are also displayed (Pa, Pb,
Pc, andPd).

The state of the DisCSP in Figure 4 is a deadlock because
both agentsb andc are at a quasi-local optima, each without
possible improvements for their respective variables. At this
stage, in Dist-GLS, agentb imposes a temporary penalty (t
= 100) on its current value (see Figure 5 (i)). The violations
for b’s current value are increased prompting it to change
its assignment tob = 2. At the same time, agentb sends



Figure 4: Example DisCSP.

its new value and a temporary penalty message to lower pri-
ority agentc ( message(b, 2, addTempPenalty) ) and sends
its other neighbours an update of its new assignment ( mes-
sage(b, 2, null) ). Agent b also places the current values
of all its neighbours in its no-good store e.g.no-good(a=3,
c=0, d=3). The no-good is not counted as a new constraint,
it is only referred to if the conflict is not resolved using
the temporary penalties. In Figure 5 (ii), agentc receives
the temporary penalty message and imposes a temporary
penalty on its current value, forcing it to change the value
assigned to its variable. In this trivial example, the con-
flict is resolved with temporary penalties in the first phase
of conflict resolution. If it is the case that conflicts remain
unresolved after this phase, agentb will initiate subsequent
phases of the resolution process going through incremental
penalty increases and resorting to the TCM heuristic as a last
resort, as discussed in the previous section.

Empirical Evaluation

To evaluate the performance of Dist-GLS, it was tested with
randomly generated problems. The algorithm’s performance
was evaluated along two criteria; (1) effectiveness in terms
of the ability to find solutions to problems, and (2) efficiency
with respect to the number of iterations utilised in finding so-
lutions. We use the number of iterations, rather than the run
times, to abstract out implementation and environmental in-
fluences on the behaviour of the algorithm. We also compare
its performance with DBA on the same set of problems.

We use DBA for comparison because it is a widely ac-
cepted benchmark with which incomplete iterative improve-
ment algorithms are compared. In addition, we also chose
it, over other distributed algorithms, because it has a some-
what similar approach with Dist-GLS for dealing with lo-
cal optima. To verify our implementation of DBA it was
first tested on graphs generated with the same method used
in (Yokoo & Hirayama 1996) and the results are at least as
good as those reported in that work (see Table 1).

Figure 5: Example of Dist-GLS execution.

Random Binary Constraint Satisfaction Problems

Dist-GLS was first tested on a class of random constraint
satisfaction problems, strictly composed of binary relational
constraints3 i.e. the constraints are relational operators (e.g.
=, 6=, <, >) between pairs of variables. The problems were
generated using the standard Model B (Palmer 1985) and
the individual constraints were built around support values
for variables which ensured that each problem was solvable,
having at least one solution.

In the results plotted in Figures 6 (a) and (b), each algo-
rithm was tested on 500 problems for each constraint den-
sity. There were 70 variables in each problem with five val-
ues in each variable’s domain. A time limit of100n iter-
ations was imposed on both algorithms after which an at-
tempt was reported as failure. A large temporary penalty (t
= 1000) was used for Dist-GLS in these experiments. The
plots summarise the results of experiments studying the be-
haviour of both algorithms on the relational CSPs as con-
straint density increases. The first plot suggests, first of all,

3For the rest of this paper these are referred to as Relational
CSPs.



m = n * 2 m = n * 2.7
n (a) (b) (a) (b)
90 150 128 517 478
120 210 152 866 836
150 278 168 1175 1173

Table 1: Average search costs of solving random graph
colouring problems with our implementation of DBA (b),
compared to results of similar experiments reported in
Yokoo and Hirayama (1996) (a). In these experiments we
tested on 100 graphs (k=3) for eachn (number of nodes) and
m (number of edges).

that problems with low constraint densities (less than 0.2)
appear to be more difficult than those with higher constraint
densities. This is drawn from the fact that both algorithms
solved fewer problems in this region. More importantly,
the figures also show that Dist-GLS found more solutions
in the region of difficult problems and consistently required
fewer iterations than DBA in finding the solutions. How-
ever, the figures understate the advantage of Dist-GLS over
DBA. This is because for every iteration in DBA, each agent
sends two messages (improveandok?messages) as opposed
to the single message used in the Dist-GLS. Therefore, the
actual cost incurred by DBA is twice that displayed.

Graph Colouring
Performance of Dist-GLS was also evaluated on the dis-
tributed version of the graph colouring problem. In this case,
both algorithms (Dist-GLS and DBA) were tested on ran-
dom 100-node graphs with varying degrees of connectivity.
The graphs were generated using the algorithm suggested in
(Fitzpatrick & Meertens 2002).

Given that graph colouring is a hybrid of constraint satis-
faction and optimisation, Dist-GLS was modified slightly to
take into account the optimisation requirements of the prob-
lem. Therefore, agents were forced to choose the leftmost
minimum value in their domains when two or more values in
the domains had equal number of minimal constraint viola-
tions; as we sought to find a solution with the least number of
colours. This strategy was proposed in Liu et al’s work (Liu,
Jing, & Tang 2002). The heuristic previously employed on
the binary CSPs required agents to retain their current values
when faced with more than one equally appealing option4.
In addition, we used a small temporary penalty (t = 3).

Results of experiments using the modified version of the
algorithm, as well as the comparison with DBA, are plotted
in Figure 7. In these experiments, each algorithm was tested
on 100 random graphs for each degree (i.e. the average num-
ber of edges per node), with an upper bound of 10,000 itera-
tions before an attempt was recorded as a failure. The plot in
Figure 7(a) shows that both algorithms were able to solve a
high percentage of problems, deteriorating slightly for DBA
in the phase transition region. However, the plot of median
search costs in Figure 7(b) shows a significant difference in
performance in favour of Dist-GLS. Results in the plot show

4Assuming the agent’s current value is equally as appealing

Figure 6: Comparison of Dist-GLS and DBA behaviour on
relational CSPs (n=70,d=5) in terms of:(a) number of prob-
lems solved and(b) median search costs.

that in the majority of cases the number of iterations required
by DBA to find solutions to problems is twice that of Dist-
GLS.

Completeness and Termination Detection
The Distributed Guided Local Search algorithm is not com-
plete and, therefore, will not terminate for unsolvable prob-
lem instances. As evident in the results presented, it solved
a high percentage of problems even though it is not guar-
anteed to find a solution within reasonable time; as with all
incomplete algorithms. Since there is no inbuilt termination
detection mechanism within the algorithm, we have relied
on a ‘global overseer’ to detect global termination states in
the experiments performed so far. To compensate for this in
the comparison with DBA, we deducted, from the results of
DBA, the number of iterations deemed to be utilized mainly
for termination detection. However, we expect that since
Dist-GLS is largely synchronous, the termination mecha-
nism required will not necessarily be as complicated as that



Figure 7: Phase transition behaviour of Dist-GLS and DBA
on graph colouring problems (n = 100, k = 3) as average
node connectivity increases. Algorithms are compared with
respect to:(a) number of problems solved and(b) the me-
dian search cost.

used in asynchronous algorithms (like DBA), and therefore
may not require as many iterations for correct termination.

Conclusions
In this work, we have introduced the Distributed Guided Lo-
cal Search algorithm. The algorithm is partly based on the
centralised Guided Local Search algorithm for combinato-
rial optimisation problems, with additional heuristics incor-
porated into it to improve its efficiency. These heuristics
and the justifications for their inclusion were discussed in
the paper. In addition, we presented the results of empiri-
cal evaluations of Dist-GLS on two problem classes, as well
as a comparison with DBA. To summarise, the results show
that on average the cost of finding solutions to problems with
Dist-GLS is about half that of DBA. By implication, offering
significant savings in communication costs incurred in the
process of solving distributed CSPs. The results, whilst still
preliminary, also show that Dist-GLS finds more solutions
to problems than DBA especially in the region of difficult
problems.

Our future work with Dist-GLS aims to address some of

the issues highlighted here, especially the need to incorpo-
rate a termination detection mechanism into it. We have
tested our algorithm on two problem classes and we intend
to continue investigations into its performance on different
problem classes such as non-binary constraint satisfaction
problems. We will also consider extensions to the algorithm
to enable it solve DisCSPs where agents represent multiple
local variables.
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