
OpenAIR@RGU

The Open Access Institutional Repository
at The Robert Gordon University

http://openair.rgu.ac.uk

This is an author produced version of a paper published in

Research and development in intelligent systems XIX: Proceedings of
ES2002, the twenty-second SGAI international conference on knowledge
based systems and applied artificial intelligence. (ISBN 9781852336745)

This version may not include final proof corrections and does not include
published layout or pagination.

Citation Details

Citation for the version of the work held in ‘OpenAIR@RGU’:

RENKER, G., AHRIZ, H. and ARANA, I., 2002. CSP – there is more
than one way to model it. Available from OpenAIR@RGU. [online].
Available from: http://openair.rgu.ac.uk

Citation for the publisher’s version:

RENKER, G., AHRIZ, H. and ARANA, I., 2002. CSP – there is more
than one way to model it. In: A. PREECE, F. COENEN and M.
BRAMER eds. Research and development in intelligent systems
XIX. Proceedings of ES2002, the twenty-second SGAI international
conference on knowledge based systems and applied artificial
intelligence. 10-12 December 2002. Cambridge, UK. pp. 395-408.

Copyright
Items in ‘OpenAIR@RGU’, The Robert Gordon University Open Access Institutional
Repository, are protected by copyright and intellectual property law. If you believe that
any material held in ‘OpenAIR@RGU’ infringes copyright, please contact
openair-help@rgu.ac.uk with details. The item will be removed from the repository while
the claim is investigated.



CSP - There is more than one way to
model it

Gerrit Renker, Hatem Ahriz and Ines Arana

School of Computing, The Robert Gordon University
Aberdeen, Scotland, UK.

Abstract

In this paper, we present an approach for conceptual modelling of con-
straint satisfaction problems (CSP). The main objective is to achieve a
similarly high degree of modelling support for constraint problems as it
is already available in other disciplines. The approach uses diagrams as
operational basis for the development of CSP models. To facilitate a
broader scope, the use of available mainstream modelling languages is
adapted. In particular, the structural aspects of the problem are visually
expressed in UML, complemented by a textual representation of rela-
tions and constraints in OCL. A case study illustrates the expositions
and deployment of the approach.

1 Introduction

Conceptual models are widely used for problem analysis, abstracting compli-
cated and unwieldly reality into compact and tangible form. The strength of
visual models in particular lies in the ability to represent the structure of com-
plex data in a terse and condensed fashion [12]. Conceptual models allow the
analysing expert to gain a better understanding of the problem requirements.
Visual models are a useful tool to discuss and structure concepts among several
developers and to communicate this knowledge to even non-domain experts in
an understandable form.

Constraint-based reasoning has successfully been used to solve problems
throughout a wide diversity of domains and industrial applications [15]. As
a result of more than 30 years of research, this discipline is well defined and
understood, and a variety of efficient solving methods does exist. Although
constraint problems can already be expressed in a variety of (dedicated) pro-
gramming languages, coding normally requires specialized expert knowledge.
Other computing disciplines like database or software design have been benefit-
ing from conceptual modelling in the form of analysis and design methodologies
with a wide range of (visual) tool support for a long while. For applications of
constraints however, we do not find the same degree of support for modelling
and design in terms of tools, notations and methodologies.

We have been comparing modelling constructs in semantic data modelling,
knowledge engineering and formal software specification. Analyzing the com-
monalities of these approaches with respect to their usefulness for constraint



problems has enabled us to formulate a minimal set of requirements for con-
straint modelling. This has resulted in the modelling approach taken in the
recop (REpresenting COnstraint Problems) project. The main objective of
this approach is to achieve a comparable degree of modelling support for the
(re-) formulation of CSPs, as it is already available for the analysis and design
of databases and general software. As a secondary goal, we aim at a suitable
re-use of broadly and publicly available modelling standards, to facilitate a
broader scope of applicability.

The outline of the paper is as follows. Section 2 presents the results of our
analysis to isolate useful constructs for constraint modelling. In section 3, we
present our integrated modelling approach and give reasons for the underlying
design decisions. The use of the approach illustrated by a case study in section
4. We relate to existing work in section 5 and conclude in section 6.

2 Requirements of Constraint Modelling

In this section, we analyze the common tasks in setting up a constraint problem
and point out the constructs which have shown to be useful for modelling. A
discussion of existing modelling approaches for constraints follows in section 5.

2.1 Constraint acquisition

Initially, a problem description may often be ambiguous and appear informally
in natural language. Eventually, a machine-interpretable implementation has
to be unambiguous and solve precisely what has been stated as initial problem.
The modelling process can thus be viewed as working on a concept at various
levels of abstraction and detail. The conceptual model helps to record know-
ledge gained during the analysis. Following this reasoning, the precise extent
and definition of constraints appearing in a problem may initially be unclear to
a developer who solves a CSP, or develops an application with constraint-based
reasoning. Constraints have to be identified and defined during the design. This
cognitive process is understood as constraint acquisition and forms a branch of
current constraint research [24].

2.2 Dynamic versus static CSPs

CSPs can be distinguished according to the degree of dynamic change involved.
Purely static CSPs remain unchanged over the lifetime, and so are associated
models. The other extreme are purely dynamic CSPs, in which all involved
constraints are potentially subject to change. Here, a model can at best be
used to reflect the changes. All other cases involve at least a core set of static
constraints for which a model can be built. Depending on the individual case,
work can be done either with the core model, or the model can be updated
whenever changes (e.g. constraint addition) become apparent.



2.3 Common modelling tasks

The process of formulating a CSP so that the search space is minimized and
possible symmetries are broken is similar in concept to the design of a relational
database, in which the objective is to minimize the amount of unnecessary links
and redundant information stored in tables. In relational database design, this
is typically achieved via normalisation [19]. Similar, but less standardised,
guidelines for the design of CSPs can be found throughout the literature, e.g.
in [20]. This section covers only a selection of the better known modelling
techniques. Not specific to the modelling of CSPs is the often used approach of
dividing large, complex problems into easier solvable subproblems. More impor-
tant is the problem of selecting the right representation (model) [32, 20, 16, 22],
as using the right model can significantly reduce search effort. By detecting
and purposefully breaking symmetries in a model, further solver effort can be
spared. In some situations it may even pay to choose an alternative model of
the problem, which exhibits more symmetry that can be broken. Clusters of
individual constraints can in many cases be replaced by global constraints such
as alldifferent(), atmost() and the like [20]. Adding redundant constraints
(which are entailed by the CSP) to the model can further improve solution
convergence. A study in [31] has shown that adding entailed constraints can
make a problem path consistent prior to solver execution. Finally, a clever
exploitation of inheritance (where available) can group sets of behaviourally
equivalent constraints into a much reduced number of class constraints [25].

2.4 Relational basis of a CSP

A constraint is a relation that must hold for one or more variables. It can be
expressed in extensional form by explicitly stating the (non-) valid tuples, or it
can be represented in intensional form using a formula. A CSP is commonly
defined as follows.

Constraint DomainVariable

value

1..* 1..* 11..*

Figure 1: Constraint Satisfaction Problem (CSP)

Definition 1. A constraint satisfaction problem (CSP) is a 3-tuple 〈V, D, C〉,
in which V = {x1, .., xn} represents the set of variables xi of the CSP. D =
{d1, .., dn} represents the set of all domains in the problem; a bijection from
D to V associates one domain di with each variable xi. The set C contains
all the constraints ci of the problem, such that ci yields true if constraint ci

is satisfied. A solution DSol to the CSP is a subset of the Cartesian product
DCart = d1 x .. x dn such that ∀ ci ∈ C : ci = true.



Figure 1 illustrates this definition in UML [18]; a variable has exactly one
domain, but may be associated with multiple constraints.

The procedure that computes the solution(s) to a CSP can in turn be ex-
pressed in terms of a relation, as it assigns the subset DSol ⊆ DCart to the
elements in V . If the constraints in C are too restrictive, the problem is
over-constrained and DSol = {}. Solving a CSP can be expressed in rela-
tional algebra [19] in terms of applying the selection operator σ on DCart,
DSol = σF (DCart). The logical formula F of the selection operator σ com-
prises the conjunction of all constraints ci ∈ C. This connection of constraint
problems and relational algebra has been pointed out in form of discussing
the analogies between solving CSPs and relational databases throughout the
literature [8, 34, 28].

We therefore argue that it does make sense to base a modelling paradigm for
CSPs on a (visual) expression of relations. Semantic data models, for example,
offer a rich variety of notations for categorically different forms of relations [29].

2.5 Structural abstraction

The traditional CSP representation (figure 1) is restricted in expressivity and
offers limited abstraction capabilities. Considering that a domain is a special
form of a unary constraint, the representation in figure 1 can be further re-
duced. As a result, it leaves this form of CSP representation to comprise only
entities with just a single attribute (the variables) and allowing only one type
of relationship between the entities (the constraints).

Many real-life problems exhibit a fair degree of texture [30], hence an ade-
quate expression of structure and aggregation is required [25]. Further, entities
can have more than a single attribute and relationships (constraints) can be
complex and involve several levels of abstraction [7]. Organizing the inherently
flat structure of CSPs (fig. 1) into a hierarchy of subtypes and supertypes (ISA
hierarchy, [19]) has several advantages. First, it allows a drastic gain in abstrac-
tion. Paltrinieri for example uses such a hierarchy for constraint solving and is
able to completely express the semantics of 168 constraints of a bridge building
CSP by just 7 class constraints [25]. Second, domains with a high inherent
degree of structure, such as configuration problems [30, 5], can adequately be
modeled. Last, an important benefit of abstraction via ISA-hierarchies lies in
the improved facilities for constraint visualisation and debugging. CSPs can
conventionally be visualized by constraint graphs, in which variables appear as
vertices and constraints as (hyper-) edges. This form of representation does not
allow structural abstraction and it does not scale well for problems of a larger
size. Current visualisation methods like Goualard’s S-boxes [13] are therefore
based on a hierarchical restructuring of given source code, effectively arran-
ging the program constraints into an inclusion hierarchy, which is conceptually
close to an ISA hierarchy. Rather than re-introducing structure for debugging
purposes into a finished program, we argue that it makes more sense to use
structure as an integral part of the design process.



3 Modelling approach for constraint problems

This section presents the constructs we have found most useful for modelling
CSPs. The basis of the approach (which relates to OO analysis) is subsequently
introduced and our methodology is presented. This is illustrated by the case
study in section 4.

3.1 Choosing the constructs

Following the reasoning in section 2.4, we have decided to center modelling
around the expression of relations between entities. Experiences in semantic
data modelling [29] have shown that using a single type construct of relation-
ships leads to semantic overloading, i.e. several categorically different kinds of
relationships have to be represented by the same construct. We have there-
fore chosen to use several different relationship constructs that were success-
fully used for modelling in knowledge engineering [6], object-oriented analysis
[14, 27, 17] and semantic data models [19, 29]. These are attribute access,
association, aggregation and ISA1 relationships. Attribute relations allow to
conceptually build complex entities (types) from simple (atomic) ones. De-
ployment of attribute and ISA relationships allows to achieve the structural
abstraction discussed in section 2.5. As a result of employing these constructs,
the developer can work with the model at various levels of detail (cf. sec-
tion 2.1), information about a given type can be isolated from that about its
attributes and subtypes. Aggregation allows a similar abstraction, from the
constituent parts to a whole. These basic relationship types correspond to an
analytical decomposition of the real world; the colour ‘attributed’ to a car is
conceptually different from its ‘associated’ driver. Traditionally, research into
object-oriented analysis has been enthusiastic in that virtually everything could
potentially be modelled using objects (or frames, [6]). Quoting [17, p. 235]:
“An OO way of thinking can be used to develop any kind of system – whether
or not the system is implemented using OO technology”.

A central guideline of the recop project has been that simple things should
be simple to express, whereas complex things should not be prohibited. We have
thus rooted our modelling approach on OO concepts, while giving the developer
enough freedom to integrate his own systematics. Modelling is a human activity,
and there may be as many different approaches (or even methodologies) as there
are different kinds of developers. This is confirmed by the sheer multitude of
different modelling approaches in database modelling [19], OO analysis [27, 17]
and software modelling [14]. The use of the above relationship types represents
the intersection of modelling in disparate disciplines and should be applicable
to a range of different methodologies. For the graphical notation, we have
further chosen to use UML [18], since it has refined modelling notions of the
past decade, captures all the above types and permits even further nuances. For
instance, associations can be expressed in five ways; association class, binary,
n-ary, qualified and derived association. In addition to this, UML is widely

1in this text, we use ISA and specialization/generalization relationship interchangeably.



available. Many developers are already familiar with UML, and CASE tools
exist on virtually every platform. We have also looked at the Alloy modelling
language [9], but abandoned the idea, as Alloy does not support attribute
relationships and there is currently no support for basic types like integers, real
numbers or strings. Also, it is less widely supported as UML.

Regarding the graphic notation, the number of visually expressible relations
is naturally limited, as research into new diagrammatic notations has shown
[11]. Thus, an accompanying textual notation for logical formulae (as proposed
in [25]) is a good complement to the diagrams, whose strength is the terse
expression of problem structure. Out of these considerations, we have further
found it useful to adopt the Object Constraint Language (OCL) [33] of the
UML for our purposes. OCL was initially intended as textual addendum to
UML, to describe object behaviour at runtime. We are using and extending
OCL for the declarative specification of constraints. The fact that it combines
a form of first-order predicate logic with a rich variety of additional expressions
has made it interesting to test whether the language is sufficiently expressive
for constraint problems. We have achieved very promising results in our case
studies and include an example problem for evaluation in section 4.

3.2 Constraint Representation

In analogy to the usual definition of a CSP (sec. 2.4), we now define the
object-oriented representation that we use in the recop project.

Definition 2. An object - oriented CSP (OOCSP) is a CSP in which the
variables in V are represented either as classes or as attributes of classes, the
constraints C as associations between the elements of V and the domains in
D are represented as unary constraints over the elements of V . A solution to
an OOCSP can be represented as a fully instantiated object graph in which the
assignments to the elements in V satisfy both the constraints in D and C.

It is important to point out that the OOCSP representation is primarily used
for modelling purposes. It is not imperative to actually implement each entity
as an object.

3.3 General methodology

Figure 2 illustrates the different modelling stages. Reading from left to right,
the aim is to increase the degree of precision, up to the implementation level.
Starting with the problem specification, a conceptual model is developed, clari-
fying the requirements of the problem. The definition of entities in OOCSP
representation provides the building blocks for the structural model, visualized
in UML. Graphical notation is well suited to represent the structural aspects,
but less effective for precisely documenting the details of a system specification.
To this avail, the algebraic model is build from the structural one, using a
textual OCL representation to resolve ambiguities of the graphical model and



Structural
Model

Conceptual 
Model

Algebraic
Model Source CodeProblem

Specification
UML OCL code

transformation

ConstraintsEntities

natural
language

Figure 2: Design Process

to define the constraints. The algebraic model marks the end of the modelling
process, having achieved a concise and unambiguous model, whose specification
is precise enough to support the implementation.

Summarizing, the general modelling process involves three steps:

1. identification of the main entities in the problem

2. definition of the structural model, visualized in UML

3. definition of the algebraic model, using textual OCL representation

4 Case Study

We now illustrate the use of the approach on a particular CSP, the steel mill
slab design problem [2, 3]. This problem belongs to a class of difficult problems,
in which the structure of the problem is not fully known at the begin of the
solving process. The problem is comparable to the popular warehouse location
problem [26, 16]. A brief outline of OCL is provided to clarify the expositions.

4.1 A Sketch of OCL

The Object Constraint Language (OCL) [33] is fully integrated into the UML
standard and is used to define the well-formedness of the UML meta-model as
well as for other meta-models within the OMG [23]. The description of the
various OCL concepts and their use fills an entire book [33]. Thus, we can only
introduce the most prominent concepts here.

OCL allows to further specify associations, in annotated form directly in
the diagram or via a separate text file. A separate OCL expression always
begins with the class context it refers to. From this context, expressions and
navigations throughout the entire diagram are possible, using the role names
at association ends or class names with lower case first letter. Apart from the
built-in types such as Integer, Real, Boolean and String, a rich notation for
collection types is provided in OCL by the Sequence, Bag and Set types. Ex-
pressions on collection types always relate to the (navigation) context they are
stated in, so that the notation remains unambiguous. Among a variety of set-
theoretic operations, universal (forAll) and existential (exists) quantification
are supported. To distinguish operations on collections from those on objects,
the arrow symbol (->) is used in place of the usual dot. All navigations, classes



and attributes of the UML model are accessible in OCL, thus allowing to post
constraints on any element of the diagram. The built-in types allow modelling
in both finite and continuous domains. Additionally, if non-standard domains
are required, the type extension mechanism of UML can be used [18, p. 484].
The special OCLType class permits access to the meta-level of the model, which
allows further modifications and provides room for extensions. The fact that
OCL is a typed modelling language greatly simplifies the verification of models.

4.2 Problem specification

The problem involves coordinating steel orders with a given system of steel
production. A mill produces steel in units of slabs, which are classified by their
weight dimension. Only a finite number of weight classes can be produced. In-
put orders are characterized by the weight of the requested steel and a required
route through the steel mill, indicated by a colour name.

Order 1 2 3 4 5 6 7 8 9

Weight 2 3 1 1 1 1 1 2 1
Colour Red Green Blue Orange Brown

Table 1: Instance data for input orders (taken from [2])

The design problem comprises determining number and dimension of steel slabs
such that all orders are fulfilled and the total slab capacity is minimised. The
task is thus an optimisation problem with an a priori unknown structure of
slabs, having as cost function the sum of the allocated slab weights. The fol-
lowing constraints apply:

C1 orders can not be split between slabs.

C2 the total weight of orders assigned to a slab must not exceed its capacity.

C3 the number of different colours per slab is restricted to maxColours.

The problem is introduced in [2]. Three slab sizes (1,3 and 4) and five colours
(Red, Green, Blue, Orange and Brown) are available. Table 1 shows the prob-
lem instance data for the input orders.

4.3 Structural model

The structural model is presented in figure 3. The problem centers around
the relation between the sets of orders and slabs, this is reflected in by the
two classes Order and Slab. The third class, SDP, is mainly a utility class to
contain data relevant to problem instances. Informally, the diagram reads as
’the steel mill slab design problem (SDP) is composed of orders and associated
steel slabs ’. The constraint C1 is already encoded as multiplicity constraint:
each instance of Order is associated with exactly one Slab instance.2

2it can redundantly be expressed using context Order inv: slab->size() = 1



SDP
 numSlabSizes: Integer
 numOrders: Integer
 maxColours: Integer
 /usedSlabC: Integer

Order
 id: Integer
 colour: String
 weight: Integer

Slab
 dim: Integer

1..* 1

1..*1..*

Figure 3: Structural model of the steel mill slab design problem

4.4 Constraints

4.4.1 Multiplicity Constraints

The problem instance data affects the multiplicities of several entities, as fol-
lows.

context SDP inv:

numOrders = order->size() and
numSlabSizes = slab.dim->asSet()->size()

Note the stacked operation on Slab. Since multiple occurrences of slab sizes
can be expected, the navigation to Slab forms a bag, whose duplicates are
eliminated by the asSet() conversion [23, p. 6-43]. The size() operator is then
applied to the resulting set, yielding the number of different slab sizes in the
problem.

4.4.2 Domain constraints

Domains are represented as unary constraints. First, the instantiation value
for maxColours and the domain for the slab (weight) dimension are stated.

context SDP inv:

maxColours = 2

context Slab inv:

Set{1,3,4}->includes(dim)
context Order inv:

Set{’Red’, ’Green’, ’Blue’, ’Orange’, ’Brown’}->includes(colour)

The first expression limits the number of different colours per slab to two. The
last two expressions state that the value of the respective attribute is contained
in the specified set, which is converse to the mathematical notation (value
ε domain). Next are the instantiation values for the Order class, effectively
translating table 1 into OCL:

context Order inv:

id = 1 implies (weight = 2 and colour = ’Red’) and
id = 2 implies (weight = 3 and colour = ’Green’) and
id = 3 implies (weight = 1 and colour = ’Green’) and
id = 4 implies (weight = 1 and colour = ’Blue’) and
id = 5 implies (weight = 1 and colour = ’Orange’) and
id = 6 implies (weight = 1 and colour = ’Orange’) and



id = 7 implies (weight = 1 and colour = ’Orange’) and

id = 8 implies (weight = 2 and colour = ’Brown’) and

id = 9 implies (weight = 1 and colour = ’Brown’)

4.4.3 Main constraints

As C1 is already encoded as multiplicity constraint in the diagram (figure 3), the
capacity (C2) and colour (C3) constraints remain and are encoded as follows.

context Slab inv:

dim >= order.weight->sum()

and

order.colour->asSet()->size() <= sDP.maxColours

The first expression represents the weight constraint C2 and asserts that the
value for dim of every Slab instance is never below the sum of all associated order
weights. The second expression represents C3 and also uses the conversion into
a set before counting the number of distinct colours, which is then related to
the constant maxColours via the navigation to SDP.

4.4.4 Additional and implied constraints

After formulating the essential problem constraints, further constraints can be
added to prohibit using flawed problem instance data. As an example, we add
the constraint that the constant maxColours must not exceed the number of
colours available in the problem instance.

context SDP inv:

maxColour <= order.colour->asSet()->size()

The main objective behind adding implied constraints is improving solution
convergence by adding redundant information (cf. section 2.3). As an example,
it can be concluded from C1 that the number of slabs will not exceed the number
of orders, which is coded as follows.

context SDP inv:

slab->size() <= numOrders

For an in-depth treatment of breaking symmetries and using implied constraints
in the steel mill slab design problem, see [2] and in particular [3].

4.4.5 Cost function

The objective function in this optimisation problem is the consumed total slab
capacity, which is stated as derived value usedSlabC in figure 3.

context SDP inv: -- how to calculate the derived value usedSlabC

usedSlabC = slab.dim->sum()

4.4.6 Solution

Figure 4 shows a solution, which was derived in [3]. For perspicuity, the instance
of SDP and the otherwise resulting 13 aggregation links are left out in the object
diagram. The total cost evaluates to usedSlabC = 13, which is optimal in that
the total weight of the slabs equals the total weight of the orders (cf. table 1).



s3:Slab

dim = 3

s2:Slab

dim = 3

o1:Order

id = 1
weight = 2
colour = ’Red’

o2:Order

id = 2
weight = 3
colour = ’Green’

o3:Order

id = 3
weight = 1
colour = ’Green’

s4:Slab

dim = 3

o4:Order

id = 4
weight = 1
colour = ’Blue’

o5:Order

id = 5
weight = 1
colour = ’Orange’

o6:Order

id = 6
weight = 1
colour = ’Orange’

s1:Slab

dim = 4

o7:Order

id = 7
weight = 1
colour = ’Orange’

o8:Order

id = 8
weight = 2
colour = ’Brown’

o9:Order

id = 9
weight = 1
colour = ’Brown’

Figure 4: A solution to the example problem (values taken from [3])

5 Related Work

A survey on industrial applications of constraints in [15] points out a need
for a modelling paradigm in constraint programming and notes that mastering
current constraint techniques involves a non-trivial learning period. The evalu-
ation of a questionnaire poll in [1] regarding the needs of constraint program-
mers shows ”a strong demand for graphical tools”. The recent introduction of
the constraint modelling languages EaCL [21] and OPL [26] (with extensions
in [10, 28]) have presented a simplified and possibly more user-friendly way
of formulating constraint problems. Both are however textual constraint pro-
gramming languages. Felfernig [5, 4] uses UML diagrams for the construction of
configuration knowledge bases. Configuration problems often have highly struc-
tured domains and employ (in comparison to CSPs in general) relatively simple
constraints. The results in [4] displayed a successful solution for knowledge ac-
quisition and automated generation of the configuration knowledge bases. The
principle of the approach lies in the use of a UML extension mechanism, which
allows to encode domain-specific knowledge as special instances of UML con-
structs. These results are very encouraging to continue our work.

To the best of our knowledge, we are currently not aware of any other
approach or case studies that adapt available modelling standards like UML
and OCL to support work on conceptual modelling in the set-up of general
constraint problems.

6 Conclusion

In this paper we have presented our UML-based modelling approach for the
conception of problems that use constraint-based reasoning. We presented an
example problem to study and evaluate its use. We see the main benefits of
our approach in the introduction of a more user-friendly paradigm for con-
straint problems with visual support. It further simplifies the incorporation



of constraints into mainstream software engineering, since many developers
are already familiar with UML approaches. It can help to exploit constraint-
based reasoning in non-AI applications and to avoid the paradigm shift between
traditional programming languages and special-purpose constraint languages.
Non-constraint programmers can use the models independently of the host lan-
guage. Models can be shared between case tools and over the network using
the (XML Metadata Interchange) standard. Last, the concept is helpful for
knowledge reuse, as (i) recurring tasks can be banned into libraries or design
patterns [14] and (ii) the format of the models is understandable by people
other than the initial developer.

References

[1] A. Aggoun, F. Bueno, M. Carro, and et al. CP Debugging Needs and Tools.
In Mariam Kamkar, editor, Proceedings of AADEBUG ’97. Linköping Uni-
versity Electronic Press, 1997.

[2] Alan M. Frisch, Ian Miguel, and Toby Walsh. Modelling a Steel Mill Slab
Design Problem. In Christian Bessiere, editor, Proceedings of the IJCAI-
01 Workshop on Modelling and Solving Problems with Constraints, pages
39–45, 2001.

[3] Alan M. Frisch, Ian Miguel, and Toby Walsh. Symmetry and Implied Con-
straints in the Steel Mill Slab Design Problem. In Proceedings of the CP’01
Workshop on Modelling and Problem Formulation, pages 8–15, 2001.

[4] Alexander Felfernig, Gerhard Friedrich, and Dietmar Jannach. Generating
Product Configuration Knowledge Bases from Precise Domain Extended
UML Models. In Proceedings of the 12th International Conference on
Software Engineering and Knowledge Engineering (SEKE’2000), Chicago,
Illinois, USA, pages 284–293, 2000.

[5] Alexander Felfernig, Gerhard Friedrich, and Dietmar Jannach. Concep-
tual modeling for configuration of mass-customizable products. Artificial
Intelligence in Engineering, 15(2):165–176, April 2001.

[6] Avelino J. Gonzalez and Douglas D. Dankel. Engineering of Knowledge-
Based Systems. Prentice-Hall, 1993.

[7] Pierre Berlandier. The Use and Interpretation of Meta Level Constraints.
In Miguel Filgueiras and Luis Damas, editors, Proceedings of the 6th Por-
tuguese Conference on Artificial Intelligence (EPIA ’93), volume 727 of
Lecture Notes in Computer Science, pages 271–280. Springer, 1993.

[8] Frans Coenen, Barry Eaglestone, and Mick Ridley. Verification, Validation
and Integrity Issues in Expert and Database Systems: Two Perspectives.
Expert Update, 3(3):26–42, 2000.



[9] Daniel Jackson. Alloy: A Lightweight Object Modelling Notation. Tech-
nical report, MIT Laboratory for Computer Science, 2001.

[10] Pierre Flener and Brahim Hnich. The Syntax and Semantics of ESRA.
Technical report, Department of Information Science, Uppsala University,
Sweden, March 2001.

[11] J. Gil, J. Howse, and S. Kent. Constraint Diagrams: A Step Beyond UML.
In Proceedings of TOOLS USA ’99. IEEE Computer Society Press, 1999.

[12] J. Gil, J. Howse, and S. Kent. Formalizing Spider Diagrams. In Proceedings
of IEEE Symposium on Visual Languages (VL-99), pages 130–137. IEEE
Computer Society Press, 1999.

[13] Frédéric Goualard and Frédéric Benhamou. A Visualization Tool for Con-
straint Program Debugging. In Proceedings of The 14th IEEE Interna-
tional Conference on Automated Software Engineering (ASE-99), pages
110–118. IEEE Computer Society, 1999.

[14] Hans van Vliet. Software Engineering: Principles and Practice. John
Wiley and Sons, 2nd edition, 30 August 2000.

[15] Helmut Simonis. Building Industrial Applications with Constraint Pro-
gramming. In H. Comon, C. Marché, and R. Treinen, editors, Constraints
in Computational Logics: Theory and Applications, volume 2002 of LNCS,
chapter 6, pages 271–309. Springer-Verlag, 2001.

[16] ILOG, France. Ilog solver 4.4, User’s Manual, 1999.

[17] James J. Odell. Advanced Object-Oriented Analysis and Design Using
UML. Cambridge University Press, sigs reference library edition, 1998.

[18] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling
Language Reference Manual. Object Technology Series. Addison-Wesley,
1999.

[19] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems
Vol. 1. Computer Science Press, 1988.

[20] Kim Marriott and Peter J. Stuckey. Programming with Constraints: An
Introduction. The MIT Press, 1998.

[21] P. Mills, E. Tsang, R. Williams, J. Ford, and J. Borrett. EaCL 1.5: An
Easy abstract Constraint optimisation Programming Language. Technical
Report CSM-324, University of Essex, 1999.

[22] B. A. Nadel. Representation selection for constraint satisfaction: A case
study using n-queens. IEEE Expert, 5(3):16–23, June 1990.



[23] OMG. Object Constraint Language Specification. In OMG Unified Model-
ing Language Specification, Version 1.4, September 2001, chapter 6. Object
Management Group, Inc., Needham, MA, Internet: http://www.omg.org,
2001.

[24] Barry O’Sullivan, Eugene C. Freuder, and Sarah O’Connell. Interactive
Constraint Acquisition. In Working Notes of the First International Work-
shop on User-Interaction in Constraint Satisfaction at CP-01, 2001.

[25] Massimo Paltrinieri. Some Remarks on the Design of Constraint Satisfac-
tion Problems. In Alan Borning, editor, Second International Workshop
on Principles and Practice of Constraint Programming (PPCP-94), vol-
ume 874 of LNCS, pages 299–311. Springer, 1994.

[26] Pascal Van Hentenryck. The OPL Optimization Programming Language.
The MIT Press, January 1999.

[27] Peter Coad and Edward Yourdon. Object Oriented Analysis. Prentice-Hall,
2nd edition, 1991.

[28] Pierre Flener. Towards Relational Modelling of Combinatorial Optimisa-
tion Problems. In Christian Bessière, editor, Proceedings of the IJCAI’01
Workshop on Modelling and Solving Problems with Constraints, 2001.

[29] Richard Hull and Roger King. Semantic Database Modeling: Survey,
Applications, and Research Issues. ACM Computing Surveys (CSUR),
19(3):201 – 260, September 1987.

[30] Daniel Sabin and Eugene C. Freuder. Configuration as Composite Con-
straint Satisfaction. In George F. Luger, editor, Proceedings of the (1st)
Artificial Intelligence and Manufacturing Research Planning Workshop,
pages 153–161. AAAI Press, 1996.

[31] Barbara M. Smith. How to Solve the Zebra Problem, or Path Consistency
the Easy Way. In Bernd Neumann, editor, Proceedings of the 10th Euro-
pean Conference on Artificial Intelligence (ECAI 92), pages 36–37. John
Wiley and Sons, Ltd, 1992.

[32] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press,
1993.

[33] Jos B. Warmer and Anneke G. Kleppe. The Object Constraint Language:
Precise Modeling with UML. Addison Wesley, 1999.

[34] Kit ying Hui and Peter M. D. Gray. Developing Finite Domain Con-
straints - A Data Model Approach. In John W. Lloyd and et al., editors,
Proceedings of the First International Conference on Computational Logic
(CL-00), volume 1861 of LNAI, pages 448–462. Springer, 2000.


