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Escaping Local Optima in Multi-Agent Oriented 
Constraint Satisfaction 

M. Basharu, H. Ahriz, and I. Arana 

School of Computing, The Robert Gordon University, Aberdeen, U.K. 

Abstract. We present a multi-agent approach to constraint satisfaction where 
feedback and reinforcement are used in order to avoid local optima and, 
consequently, to improve the overall solution. Our approach, FeReRA, is based 
on the fact that an agent’s local best performance does not necessarily 
contribute to the system’s best performance. Thus, agents may be rewarded for 
improving the system’s performance and penalised for not contributing towards 
a better solution. Hence, agents may be forced to choose sub-optimal moves 
when they reach a specified penalty threshold as a consequence of their lack of 
contribution towards a better overall solution. This may allow other agents to 
choose better moves and, therefore, to improve the overall performance of the 
system. FeReRA is tested against its predecessor, ERA, and a comparative 
evaluation of both approaches is presented. 

1. Introduction 

A recurring theme with meta-heuristics inspired by the behaviour of social insects 
is the notion of “emergence from local interaction.” In this class of heuristics, control 
is delegated down to a multitude of simple and unsophisticated agents whose local 
interactions dynamically drive a process of self-organisation to the emergence of a 
global solution. Agents are simple because each agent is typically involved in a small 
aspect of a problem, while the behaviour and interaction between agents are defined 
by a limited set of reactive rules. These new heuristic approaches have been shown to 
be successful in solving many hard combinatorial optimisation and constraint 
satisfaction problems (CSP) in areas such as manufacturing process control [1, 5], 
frequency planning [2, 10, 13], and network routing [4]. A CSP consists of a set of 
variables, whose values are taken from finite, discrete domains, and a set of 
constraints that limit the combination of values some variables may simultaneously 
take. Solving a CSP is equivalent to finding a consistent assignment of values to all 
variables such that all constraints are satisfied. 

 
A distributed CSP is a CSP in which variables and constraints are distributed into 

sub-problems, each of which is to be solved by an agent. Yokoo et al. [14] have made 
a significant contribution in the area of distributed CSP and have developed a number 
of algorithms inspired from solutions to the centralised CSP. Recently, Liu et al. [11] 
developed a new framework called ERA (Environment, Reactive rules and Agents) a 
self-organising multi-agent algorithm, inspired by swarm models, in which 



2      M. Basharu, H. Ahriz, and I. Arana 

independent agents, representing variables in a CSP, are coupled with their 
environment to create a recurrent dynamical system that is capable of solving CSPs 
without much computational overhead. A comparison (in averaged number of cycles) 
of ERA and Yokoo et al.’s algorithms in solving benchmark n-queen problems is 
presented in [11] and has shown that ERA is an effective and competitive approach. 

 
In this paper, we propose the FeReRA (Feedback, Reinforcement and Reactive 

Agents) algorithm, an extension to ERA. The remainder of the paper is organised as 
follows: Sect. 2 the ERA framework is presented and its strengths and weaknesses 
discussed; details of our extension to the algorithm are explained in Sect. 3; and a 
summary of results from empirical tests comparing the performance of ERA and our 
extension is presented in Sect. 4. Concluding remarks are given in Sect. 5. 

2. The ERA Framework 

The Environment, Reactive Rules, and Agents (ERA) framework was first 
introduced as a multi-agent heuristic to solve the n-queen problems [9] and was later 
extended as a general approach for solving constraint satisfaction problems [11]. ERA 
is a Swarm-type distributed algorithm, in which a constraint satisfaction problem is 
divided into smaller problems and each sub-problem is solved by an independent and 
self-interested agent.  

 
The motivation for this approach is to use the emergent properties of a system, in 

which agents act locally with respect to local evaluation functions to solve search 
problems [11].  The algorithm starts with a random initialisation and attempts to 
improve the solution over a number of discrete time steps. At each time step each 
agent, representing a single variable, tries to find an assignment within its variable’s 
domain that minimises the number of constraints violated. Decisions of agents are 
based on a set of locally reactive behaviours, and the resulting interactions create a 
dynamic system that self-organises itself gradually towards a solution state. 

 
The three components of ERA are: 

1. The Environment: It is a two dimensional lattice where a row is dedicated for 
each variable in the problem, and a column for each possible value of a 
variable.  Each position in the environment holds two values: the domain 
value and the number of violations for that position if the agent moves there 
and other agents remain unmoved. The violation values are continuously 
updated as agents move. By recording violation values within it, the 
environment extends its role to provide a form of indirect communication 
between agents. Eliminating the need for message passing to communicate 
current assignments of variables (as in [14]). 
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A CSP is given as follows: 

           Variables :      { X, Y, Z } 
           Domains :       DX = { 1, 2, 3, 4, 5 },      DY = { 2, 4, 6 },   DZ = { 1, 3, 5, 7 } 
           Constraints :   { X ≠ Y,    X > Z } 

 
☺X

☺Y

☺Z

☺X

☺Y

☺Z
 

1 2 3 4

X 1 2 1 1

2 4

Y
1 0

1 3 5 7

Z

0

0 1 1 1

6

1

51 2 3 4

X 1 2 1 1

2 4

Y
1 0

1 3 5 7

Z

0

0 1 1 1

6

1

5
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Figure 1: A schematic representation of the environment within ERA.  
 

Figure 1 is an example of how a CSP can be represented within this 
framework. For illustration purposes, two rows are used for each agent’s 
local environment to show the two different values held by each position i.e. 
the domain value and the number of violations (shaded). At initialization, 
agents are placed in random positions (a). Then, the number of violations is 
computed for each agent based on the present positions of other agents (b). 
For example, two violations are recorded in the second position for X 
because that value would result in violating two constraints; X ≠Y (where X = 
2 and Y = 2) and X > Z (where X = 2 and Z = 7). 

 
2. Reactive Rules: at each time step, each agent may choose one of the 

following behaviours based on a set of behaviour selection probabilities.  

a. Least move: This is essentially a min-conflicts heuristic and it 
generally states that the agent is to move to the position with the least 
number of constraint violations. If more than one such position exists, 
then it moves to the leftmost one. For example, the least move for the 
agent Y would take it to the second position (i.e. Y = 4). 

b. Better move: An agent randomly picks a position in its environment 
and compares its attractiveness with its current position. If that 
position is better than its current position then the agent moves to that 
position, otherwise it remains still.  

c. Random move: With a much smaller selection probability, the agent 
randomly selects a position that is not its present position and moves 
there. The random move is introduced for two reasons; first it 
encourages further exploration of the search space, and secondly, it is 
a source of internal perturbations that prevents the algorithm from 
premature convergence on local optima.  

3. Agents: Agents act independently and move locally within their rows. The 
position of an agent within its environment represents the current value 
assignment for the variable it represents. The goal for each agent is to find a 
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position that has the least number of constraint violations for its variable, 
which ideally should be a zero position.  

 
Two major strengths of ERA have been identified from empirical tests. First, its 

authors contend that if there is a solution for a problem the algorithm will find it. And 
if no solution exists the algorithm is capable of finding good approximate solutions. 
Secondly, it has also been shown that the algorithm is fast and can find good 
approximate solutions in a few time steps without much computational overhead. For 
example, in tests carried out on benchmark graph colouring instances, results show 
that over 80% of variables were assigned consistent values within the first three time 
steps [11]. 

For all its strengths, ERA lacks a critical property: consistency (or reliability). This 
comes out of its reliance on some randomness (i.e. the behaviour selection 
probabilities and the random move behaviour). This study (and the subsequent 
extension of ERA) was prompted by this observation from previous work in [2] where 
ERA was used for the frequency assignment problem. The observed behaviour of the 
algorithm was a tendency to produce different results for the same problem with 
different runs. This lack of completeness had also been noted in [9]. Notwithstanding, 
the randomness is an important aspect of the algorithm especially its role of 
preventing premature convergence on local optima. To improve the reliability of the 
algorithm, it is therefore necessary to find alternative deterministic behaviours that 
preserve this role and at the same time fit into the self-organising structure of the 
approach. 

3. Adding Feedback and Reinforcement to ERA with FeReRA 

The min-conflicts heuristic is widely used in distributed constraint satisfaction and 
it always presents a potential for premature convergence on local optima. A number 
of strategies have been adopted in the literature to deal with this convergence. One 
approach has been to simply to try avoid settling on local optimum in the first place. 
An example of this is the random activation mechanism in [8] in which neighbouring 
agents were prevented from changing values simultaneously. However, while it did 
try preventing early convergence, there was still the random likelihood of getting 
stuck at local optima and there were no apparent mechanisms in algorithm to push it 
out. In other approaches, such as [7, 16], the adopted strategy have typically gone the 
down the route of detecting quasi-local optima and applying breakout rules, in 
response, to push the process to another region of the search space. Similar strategies 
have been suggested with local search algorithms [14, 15], where the objective 
function is augmented with penalties which change the shape of the fitness landscape 
as local optimums are detected. Therefore, pushing the search process to another 
region of the search space.  

The work presented here is quite similar to the breakout strategy adopted in [7]. In 
that work, a counter is incremented while an agent is stuck at a quasi-local optimum 
and when that counter hits pre-defined threshold the agent is forced to make a non-
improving move [7]. However, in this work the emphasis moves from responding to 
quasi-local optima to real local optima. Emphasis is on self-regulation, whereby the 
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thresholds for which agents are forced to make non-improving moves are defined by 
the individual structure of the problem. The rest of this section explains our approach 
where random decisions (including the better move behaviour) have been removed 
from ERA and are replaced with an explicit feedback mechanism which determines 
how agents respond to the system’s convergence at local optima by taking into 
consideration the effect of agent behaviours on the global state of the system. 

The feedback mechanism applied here by FeReRA is inspired by the pheromone 
system in the Ant Colony Optimisation algorithm and related work [3]. However, in 
this instance a ‘levy’ is introduced into the algorithm as the basis for the 
reinforcement mechanism and also as a means of providing a form of short-term 
memory for the system. We must emphasise here that the use of reinforcement in this 
context is somewhat restrictive; referring to only the “reward” and “punishment” 
aspect of it and it is not used in the same vein as in machine learning. 

The levy system is devised to take into account the particular structure of each 
problem and is primarily designed to reward or punish agents by increasing or 
decreasing its levels based on the cumulative effects of particular decisions on the 
global state of the system. Reinforcement in this context generally serves as 
individual triggers for agents to make non-improving moves when the individual 
levies reach a given threshold. The underlying assumption is that the propagation of 
the fluctuations caused by these non-improving moves will serve as the means by 
which the system can escape local optimums.  

Feedback is established as a combination of positive and negative reinforcement, 
and it is only applied when agents remain in fixed positions over a few time steps. At 
initialisation, the lower bounds for the levies are established for each agent. This 
lower bound and the amount of reinforcement received is determined by a function 
ƒ(n, d), which in this instance is directly related to the ratio of the number of 
constraints attached to an agent vis-à-vis the number of constraint for its most 
constrained neighbour. This also helps to establish a ‘pecking order’ for the agents, 
whereby the least constrained agents will tend to have higher levies imposed on them 
and are therefore likely to move more often.  

At each time step, each agent uses the least move behaviour to find the best 
position in its environment. After all agents have moved, levies are simultaneously 
updated for all agents whose assignments were unchanged in that time step, as 
follows: 

− Increase the levy if the global solution is either unchanged or has worsened, 
and the penalties associated with the agent’s position have either decreased or 
stayed unchanged. In this instance, the agent is ‘punished’ for its improvement 
at the expense of the system. 

− When the global solution improves, agents get a ‘refund’ by way of a 
reduction in accumulated levies only if they have not moved in that time step. 
The rationale for this is that the decision not to move in that time step 
contributes to an overall improvement in the solution and therefore the agents 
involved must be rewarded for the decision. 
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Levies accumulate as agents remain unmoved, increasing at different rates 
depending on the number of constraints attached to each agent.  When an agent’s total 
levy is equal to or greater than a predefined maximum, it is forced to move by 
applying a break out rule which can be anything from temporal constraint 
maximisation to picking a slightly worse position. Levies are reset to the initial levels 
anytime an agent moves to a new position, either as a result of finding a better 
position or as a result of a forced move. What results is a system whereby the least 
constrained agents will strive to find consistent assignments with the values picked by 
more constrained agents. “Backtracking” cascades upwards through the agent 
hierarchy as levies of more constrained agents hit the upper bounds. In addition, the 
resulting sub-optimal moves help to periodically push the system away from local 
optimums to other regions of the search space and hence promote further exploration 
of the search space.  

Given that the feedback mechanism has to mirror the structure of the problem, it 
gives room for some flexibility in the definition of the lower bounds and the rates of 
change in levies. With small problems or a direct ratio of the number of constraints 
between constrained neighbours may be sufficient. However for larger problems, 
especially those with different magnitudes of constraints, the chosen function has to 
adequately represent a hierarchy of variables and return values between 0 and 1. Out 
of empirical tests, it was observed that for the levy-mediated feedback to work a 
discontinuous step function is required. Although this may result in a situation where 
groups of agents may change their values in the same time step, it has the advantage 
of cutting down the number of moves and therefore allows some exploration of the 
immediate neighbourhood of a solution. The full pseudo-code listing of the FeReRA 
model can be found in Listing 1. 

 

 
1 
 
2 
3 
4 
5 
 
6 
7 
8 
9 
 
10 
11 
12 
13 
14 
15 
16 

Initialisation 
Sort All Agents by number of attached constraints in descending order 
 
For all agentsi 
     Compute initial levy and rate of change for each agent 
     agentsi.position = 1  // starting the algorithm from a ‘worst possible scenario’ 
End for 
 
repeat 
       For all agentsi 
             sense environmenti 
             select best position, position with least number of violations 
     
             If best position is same as position at timet-1 then 
                     If  agenti.levy >= upper_bound then 
                          apply breakout rule 
                          agenti.levy = agenti.initial_levy 
                     End if 
             End if 
       End for 
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17 
 
18 
 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

 
       compute current solution solt 
 
       If solt is solution then end program and return solution 
 
       For all agentsi 
              If agenti.positiont = agenti.position t-1 then 
                    If  solt ≥ solt-1 then 
                          If agenti.penaltyt ≤ agenti.penalty t-1 then  
                                            increase agenti.levy 
                    Else 
                          reduce agenti.levy 
                          If agenti.levy < agenti.initial_ levy  then  
                                 agenti.levy = agenti.initial_ levy 
                    End if  
              End if 
       End for 
until t = maximum time steps 

Listing 1:  Pseudo-code listing of FeReRA 

4. Experimental Results 

4.1 The Experimental Set-up 

Ten benchmark instances of graph colouring problems from the Center for Discrete 
Mathematics and Theoretical Computer Science1 (DIMACS) were used for a 
comparative evaluation of the performance of FeReRA and the original ERA 
framework. Graph colouring was chosen as it still remains an important benchmark 
for the evaluation of the performance of search and constraint satisfaction techniques, 
and it also provides a basis for comparison with other established techniques. In the 
graph colouring problem, a graph of n connected nodes is to be coloured using k 
colours such that no two connected (or neighbouring) nodes are assigned the same 
colour.  This problem is still known to be intractable as there are still no efficient 
algorithms for solving it. Two sets of experiments were run for comparison and the 
results are presented in the following sections. All tests were run in a Java 
environment on a 1.4GHz machine with 512MB of RAM.  

4.2 The Step Function 

A step function was used by FeReRA to determine the initial levies and the rate of 
change for reinforcement. These values were computed as follows: 

                                                           
1 Graph colouring instances from this data set may be found at 

http://mat.gsia.cmu.edu/COLOR/instances.html 
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1.    For each variable, compute the ratio of its constraints vis-à-vis the number of 

constraints for its most constrained neighbour: 
  

r(x)  =   number of constraints2 for most constrained neighbour of variable x 
                                   number of constraints for variable x 

 
2.   Normalise r(x) for all variables to ensure that all values fall between 0 and 1:  

 
r′(x)  =      r(x)  – min(r(x)) 

max(r(x)) – min(r(x)) 
 

3.   Compute the “step” value r′′ (x) by rounding r′ (x) down to one decimal digit. 
 
4.    The rate of change for each agent is defined as: 

 
rate_of_change(x) = base_levy  x  [ r′′ (x)  +  0.7 ] 

 
where  base_levy = 0.1 

 
The value of r′′(x) ranges from 0 to 1 and the above definition sets a minimum rate 

of change, which is particularly important for the most constrained agents3. The same 
definition is used to compute the lower bound for each agent. This lower bound is 
used as the initial levy at the start of the algorithm and is also used to reset levies 
when agents move to new positions.  The value for base_levy came out as a result of 
empirical testing. In theory, it means that under deteriorating conditions an agent with 
rate_of_change(x)  = 1 is allowed to remain at a particular position for a maximum of 
nine time steps (i.e. where the threshold is 1). On the other hand, a high base_levy 
value has the tendency to cause the algorithm to settle into a continuous oscillation 
between two states after a few time steps. Further investigations are still being carried 
out to explain the reasons behind this and to find optimal values for both base_levy 
and the threshold that trigger the non-improving moves. 

In figures 2 and 3 are plots of the rate of change for two problem instances from 
our test set.  These illustrate the structure dependent nature of the levy system. In the 
plot for the Anna instance (figure 2), the rate of change increases steadily as the node 
degree decreases. Indicating that a large number of small degree nodes are directly 
connected to a small number of high degree nodes. In contrast, the plot for the 
miles500 instance (figure 3) suggests a highly connected graph with a high number of 
connections between high degree nodes. It also indicates that the distribution of edges 
is not particularly skewed to a restricted number of nodes. 

 

                                                           
2 For graph colouring problems, the number of constraints for each node is taken as the number 

of nodes directly connected to it. 
3 If r′′(x) = 0 (this is the case for the agents with the largest number of constraints attached to 

it), agents will not receive any reinforcement and therefore can not be forced to move out of 
positions that are holding the system at a local optimum. 
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Figure 2: Number of neighbours (left axis) and rate of change (right axis) for the 
Anna instance. 
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Figure 3: Number of neighbours (left axis) and rate of change (right axis) for the 
miles500 instance. 

 
 

4.3 Comparative Results 

The first set of experiments were run in order to determine if each algorithm could 
find a solution for each problem instance and how much time it took to find the 
solution. On account of its inbuilt randomness, ten runs were made on each problem 
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instance with ERA and the best and worst results are presented in Table 1, along with 
results for our modified algorithm. FeReRA was expected to be slightly slower than 
ERA because at each time step all agents use only the least move behaviour which is 
more computationally intensive than the better move or random move behaviours. 

 
 

Time Taken (in seconds) 
Instance Nodes Number of 

Edges ERA 
(best time) 

ERA 
(worst time) 

FeReRA 

Anna 138 493 0.01 0.032 0.015 

David 87 406 0.01 0.047 0.01 

Huck 74 301 0.01 0.016 0.016 

Inithx.I.1 864 18707 0.344 33.437 0.016 

Jean 80 254 0.01 0.016 0.01 

Miles250 128 387 0.01 0.016 0.015 

Miles500 128 1170 0.01 1.922 0.01 

Miles750 128 2113 0.953 5.235 0.453 

Miles1000 128 3216 2.187 7.438 7.094 

Miles1500 128 5198 0.265 1.828 0.015 

Table 1: Time taken to find solutions using the optimal number 
of colours for each instance. 

 
Both algorithms were able to find solutions to all the instances presented4. Results 

show that at its best performance, ERA was able to find solutions quicker in four 
instances, while FeReRA performed better in three instances and performance was the 
same with the other problem instances. Compared to ERA’s worst performance, 
FeReRA outperformed the former in nine out of the ten cases. Overall, FeReRA gave 
results which were almost as good as the best performance of ERA and substantially 
better than its worst performance. 

 

                                                           
4 In their earlier paper [11], Liu et al had shown that the ERA could find solutions for the all the 

instances in Table 1 
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Having established that both algorithms were able to find solutions for all 
instances, further experiments were carried out to find out how well they would 
perform on a set of over constrained graph colouring instances. The same instances 
from Table 1 were used for this set of experiments but this time with fewer colours. In 
these tests, both algorithms were not expected to find solutions for the over 
constrained instances and therefore each algorithm was run for 5000 time steps in 
order to confirm the best partial solution it could find. As with the first set of tests, 
each over constrained problem instance was run ten times with ERA. Results are 
shown in Table 2. 

 
Number of Violations 

Instance Optimal 
Colouring 

Number of 
Colours Used ERA 

(best) 
ERA 

(worst) 
FeReRA 

Anna 11 10 1 1 1 

   9 2 2 2 

   8 3 3 3 

   7 4 5 4 

Inithx.I.1 54 49 5 6 5 

   43 11 11 11 

   38 16 18 16 

   32 33 36 32 

Miles250 8 7 1 1 1 

   6 4 5 4 

   5 10 12 10 

Miles500 20 18 2 3 2 

   16 4 5 4 

   14 7 9 7 

   12 11 15 12 

Miles750 31 28 3 4 3 

   25 6 8 6 

   22 11 13 11 

   19 16 20 17 

Miles1000 42 38 4 5 4 

   34 8 10 8 

   29 16 19 16 

   25 23 28 24 

Miles1500 73 66 7 7 7 

   58 15 15 15 

   51 22 22 22 

   44 29 30 29 
Table 2: A comparative evaluation of performance on the same data 

set from Table 1 above, using colours 10%, 20%, 30%, and 40% fewer 
colours respectively (except for the Miles250 instance). Results for 
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three problem instances (David, Huck, and Jean) are excluded because 
there was no difference between the ERA best, ERA worst, and 
FeReRA. 

 
At first glance at the results in table 2, what immediately stands out is the wide 

performance gap between the best and worst outcomes with ERA. In the worst case, 
the penalties incurred on the worst result are 50% higher than those incurred with the 
best result (see Miles500 with 18 colours). Taking the cases where the best and worst 
outcomes were equal aside, on average the penalties incurred on the worst solutions 
were 27% higher than those on the best. A similar gap was also observed with results 
in table 4.1. Although, at its best performance, ERA found slightly better partial 
solutions than FeReRA in three instances, the latter found substantially better partial 
solutions than ERA’s worst solutions for those same instances. In addition, FeReRA 
found a better partial solution than ERA’s best in one instance, and better solutions 
than ERA’s worst in nineteen instances. Our approach shows higher consistency with 
better or equal average performance across all instances. 

 
Furthermore, we have to point out here that contrary to Sect. 3 where the need to 

build the reinforcement mechanism around the individual structure of the problem 
was mentioned; “default” values were used for all problem instances in these tests. As 
a result, it is highly probable that this would have had adverse effects on the 
performance of the FeReRA on some problems. Work is still going on to establish 
how to determine the optimal set of parameters for each individual problem. 

 
One question raised in the course of our initial inquiry with ERA was on the 

ability of the algorithm to minimise the number of colours used in the search for a 
solution.  It was observed from that work that the behaviour of ERA is quite similar to 
a greedy heuristic, whereby it tries to find a maximum assignment for each colour 
before using subsequent colours. This is as a result of the least move behaviour which 
forces an agent to pick its leftmost minimum, if more than one minimum position 
exists in the environment. This behaviour is still evident with FeReRA. The example 
in figure 4 shows that 60% of the nodes were assigned the first two colours. The 
implications of this are particularly important in some application domains such as 
frequency planning. 
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Figure 4: Assignment of colours (instance: Anna) 
 

5. Conclusions 

In this paper, we have presented FeReRA, a deterministic and predictable multi-
agent meta-heuristic for solving constraint satisfaction problems. FeReRA is an 
extension to ERA, and introduces a feedback and reinforcement mechanism to replace 
random decisions as a strategy for escaping local optimums. FeReRA also extends the 
concept of reactive agents in ERA by allowing the agents take into account the impact 
of some decisions on the global state of the system when making decisions, rather 
than relying solely on information from their local environments. This results in a 
self-regulatory system that decides when these typically self-interested agents have to 
make non-improving moves necessary to push it out of local optimums.  

 
Preliminary results from our work with graph colouring problems are very 

encouraging, showing substantial improvement in terms of results and consistency 
over ERA. We are currently evaluating the performance of FeReRA with different 
graph structures (sparse, dense and critical) and will consider further improvements to 
FeReRA for future work; these include possible advances to the present feedback and 
reinforcement scheme, and a study of the scope of application of FeReRA on various 
constraint satisfaction and optimisation problems. 
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