OpenAlIR@RGU

The Open Access Institutional Repository
at The Robert Gordon University

http://openair.rqu.ac.uk

This is an author produced version of a paper published in

Proceedings of the Twenty-Third SGAI Annual Conference on Artificial
Intelligence, Al-2003 (ISBN 185233780X)

This version may not include final proof corrections and does not include
published layout or pagination.

Citation Detalils

Citation for the version of the work held in ‘OpenAIR@RGU’:

BASHARU, M., AHRIZ, H. and ARANA, I., 2003. Escaping local
optima in multi-agent oriented constraint satisfaction. Available
from OpenAIR@RGU. [online]. Available from:

http://openair.rgu.ac.uk

Citation for the publisher’s version:

BASHARU, M., AHRIZ, H. and ARANA, I., 2003. Escaping local
optima in multi-agent oriented constraint satisfaction. In: F.
COENEN, A. PREECE and A. MACINTOSH, eds. Research and
development in intelligent systems Xx. Proceedings of Ai2003, the
twenty-third SGAIl international conference on innovative
techniques and applications of artificial intelligence. 15-17
December 2003. Cambridge, UK. Pp. 97-110.

Copyright
Items in ‘OpenAIR@RGU’, The Robert Gordon University Open Access Institutional
Repository, are protected by copyright and intellectual property law. If you believe that
any material held in ‘OpenAIR@RGU’ infringes copyright, please contact
openair-help@rgu.ac.uk with details. The item will be removed from the repository while
the claim is investigated.

Escaping Local Optimain Multi-Agent Oriented
Constraint Satisfaction

M. Basharu, H. Ahriz, and |. Arana

School of Computing, The Robert Gordon Universitye/teen, U.K.

Abstract. We present a multi-agent approach to constraitiéfaation where
feedback and reinforcement are used in order tddalaral optima and,
consequently, to improve the overall solution. @pproach, FeReRA, is based
on the fact that an agent's local best performadoes not necessarily
contribute to the system’s best performance. Tagents may be rewarded for
improving the system’s performance and penalisedb contributing towards
a better solution. Hence, agents may be forcechtmse sub-optimal moves
when they reach a specified penalty threshold @mnaequence of their lack of
contribution towards a better overall solution. SThay allow other agents to
choose better moves and, therefore, to improveotieeall performance of the
system. FeReRA is tested against its predeces$th, Bnd a comparative
evaluation of both approaches is presented.

1. Introduction

A recurring theme with meta-heuristics inspiredtbg behaviour of social insects
is the notion of “emergence from local interactidn. this class of heuristics, control
is delegated down to a multitude of simple and phsticated agents whose local
interactions dynamically drive a process of seffamisation to the emergence of a
global solution. Agents are simple because eachtageypically involved in a small
aspect of a problem, while the behaviour and icteya between agents are defined
by a limited set of reactive rules. These new h&arégproaches have been shown to
be successful in solving many hard combinatoriatingpation and constraint
satisfaction problems (CSP) in areas such as metowifiag process control [1, 5],
frequency planning [2, 10, 13], and network routjdyy A CSP consists of a set of
variables, whose values are taken from finite, rdigc domains, and a set of
constraints that limit the combination of valuesnsovariables may simultaneously
take. Solving a CSP is equivalent to finding a ¢xieat assignment of values to all
variables such that all constraints are satisfied.

A distributed CSP is a CSP in which variables amdstraints are distributed into
sub-problems, each of which is to be solved bygent Yokoo et al. [14] have made
a significant contribution in the area of distribdtCSP and have developed a number
of algorithms inspired from solutions to the celidesd CSP. Recently, Liu et al. [11]
developed a new framework called ERA (Environmemiadlive rules and Agents) a
self-organising multi-agent algorithm, inspired tgwarm models, in which

2 M. Basharu, H. Ahriz, and I. Arana

independent agents, representing variables in a, G8® coupled with their

environment to create a recurrent dynamical systehis capable of solving CSPs
without much computational overhead. A comparisorayeraged number of cycles)
of ERA and Yokoo et al.’s algorithms in solving benark n-queen problems is
presented in [11] and has shown that ERA is an &affeand competitive approach.

In this paper, we propose the FeReRA (Feedbackyféteement and Reactive
Agents) algorithm, an extension to ERA. The remairafehe paper is organised as
follows: Sect. 2 the ERA framework is presented @sdstrengths and weaknesses
discussed; details of our extension to the algaritire explained in Sect. 3; and a
summary of results from empirical tests comparimg performance of ERA and our
extension is presented in Sect. 4. Concluding rksnare given in Sect. 5.

2. The ERA Framework

The Environment, Reactive Rules, and Agents (ERA) éwark was first
introduced as a multi-agent heuristic to solvertriieen problems [9] and was later
extended as a general approach for solving conssatisfaction problems [11]. ERA
is a Swarm-type distributed algorithm, in which anstraint satisfaction problem is
divided into smaller problems and each sub-prokitesvlved by an independent and
self-interested agent.

The motivation for this approach is to use the emetrgroperties of a system, in
which agents act locally with respect to local eaibn functions to solve search
problems [11]. The algorithm starts with a randamtidlisation and attempts to
improve the solution over a number of discrete tsteps. At each time step each
agent, representing a single variable, tries td &in assignment within its variable’s
domain that minimises the number of constraintdatéal. Decisions of agents are
based on a set of locally reactive behaviours, thedresulting interactions create a
dynamic system that self-organises itself graduallyards a solution state.

The three components of ERA are:

1. The Environment: It is a two dimensional lattice weha row is dedicated for
each variable in the problem, and a column for eaa$sible value of a
variable. Each position in the environment holds walues: the domain
value and the number of violations for that positibthe agent moves there
and other agents remain unmoved. The violation eslare continuously
updated as agents move. By recording violation ealwithin it, the
environment extends its role to provide a form rdiiect communication
between agents. Eliminating the need for messagengato communicate
current assignments of variables (as in [14]).

Escaping Local Optimain Multi-Agent Oriented Constraint Satisfaction 3

A CSP is given as follows:
Variables: X,Y,Z
Domains: Dx={1,2,3,4,5, Dy={2,4,6}, D,={1,3,57
Constraints : X#Y, X>2Z}

X o u 1]2]3]4]>5

Y [o XAzt [1]t
Z ©| 246

(@) ®)

Figure 1: A schematic representation of the envirent within ERA.

Figure 1 is an example of how a CSP can be repexenithin this
framework. For illustration purposes, two rows aied for each agent's
local environment to show the two different vallietd by each position i.e.
the domain value and the number of violations (sbxdAt initialization,
agents are placed in random positions (a). Thenntingber of violations is
computed for each agent based on the present@usitf other agents (b).
For example, two violations are recorded in theosdcposition forX
because that value would result in violating twasteaints;X £Y (whereX =

2 andY = 2) andX > Z (whereX =2 andZ =7).

Reactive Rules: at each time step, each agent rhagse one of the
following behaviours based on a set of behaviol@acsien probabilities.

a. Least move: This is essentially a min-conflicts h&tigi and it
generally states that the agent is to move to tisitipn with the least
number of constraint violations. If more than onetsposition exists,
then it moves to the leftmost one. For example Jéhst move for the
agentY would take it to the second position (iYe= 4).

b. Better move: An agent randomly picks a positioritsnenvironment
and compares its attractiveness with its currergitipo. If that
position is better than its current position thiea agent moves to that
position, otherwise it remains still.

C. Random move: With a much smaller selection proiigbihe agent
randomly selects a position that is not its prepasition and moves
there. The random move is introduced for two ressdirst it
encourages further exploration of the search sgawksecondly, it is
a source of internal perturbations that prevents dlyorithm from
premature convergence on local optima.

Agents: Agents act independently and move locaithiw their rows. The
position of an agent within its environment repriésethe current value
assignment for the variable it represents. The fpyadach agent is to find a

4 M. Basharu, H. Ahriz, and I. Arana

position that has the least number of constraiotations for its variable,
which ideally should be a zero position.

Two major strengths of ERA have been identified frempirical tests. First, its
authors contend that if there is a solution for@bfem the algorithm will find it. And
if no solution exists the algorithm is capable ioldfng good approximate solutions.
Secondly, it has also been shown that the algorithnfiast and can find good
approximate solutions in a few time steps withoucmcomputational overhead. For
example, in tests carried out on benchmark grapbudag instances, results show
that over 80% of variables were assigned consisi@oes within the first three time
steps [11].

For all its strengths, ERA lacks a critical properdgnsistency (or reliability). This
comes out of its reliance on some randomness (he. behaviour selection
probabilities and the random move behaviour). Thigdys (and the subsequent
extension of ERA) was prompted by this observafiom previous work in [2] where
ERA was used for the frequency assignment problera.obiserved behaviour of the
algorithm was a tendency to produce different testdr the same problem with
different runs. This lack of completeness had atsninoted in [9]. Notwithstanding,
the randomness is an important aspect of the #goriespecially its role of
preventing premature convergence on local optimainiove the reliability of the
algorithm, it is therefore necessary to find altgive deterministic behaviours that
preserve this role and at the same time fit in® gblf-organising structure of the
approach.

3. Adding Feedback and Reinfor cement to ERA with FeEReRA

The min-conflicts heuristic is widely used in dibtrted constraint satisfaction and
it always presents a potential for premature cayerece on local optima. A number
of strategies have been adopted in the literamngetl with this convergence. One
approach has been to simply to try avoid settlindazal optimum in the first place.
An example of this is the random activation meckiamin [8] in which neighbouring
agents were prevented from changing values sinrdtasly. However, while it did
try preventing early convergence, there was dtédl tandom likelihood of getting
stuck at local optima and there were no apparecham@sms in algorithm to push it
out. In other approaches, such as [7, 16], thetadogirategy have typically gone the
down the route of detecting quasi-local optima amplying breakout rules, in
response, to push the process to another regitrecfearch space. Similar strategies
have been suggested with local search algorithmMs I5], where the objective
function is augmented with penalties which chargeshape of the fitness landscape
as local optimums are detected. Therefore, pusthirgsearch process to another
region of the search space.

The work presented here is quite similar to the kmetstrategy adopted in [7]. In
that work, a counter is incremented while an agestuck at a quasi-local optimum
and when that counter hits pre-defined threshoddatent is forced to make a non-
improving move [7]. However, in this work the emplsamoves from responding to
quasi-local optima to real local optima. Emphasign self-regulation, whereby the

Escaping Local Optimain Multi-Agent Oriented Constraint Satisfaction 5

thresholds for which agents are forced to makeimproving moves are defined by
the individual structure of the problem. The resthi$ section explains our approach
where random decisions (including the better moskaliiour) have been removed
from ERA and are replaced with an explicit feedbaschanism which determines
how agents respond to the system’s convergencecat bptima by taking into
consideration the effect of agent behaviours orgtbkal state of the system.

The feedback mechanism applied here by FeReRA j@rétsby the pheromone
system in the Ant Colony Optimisation algorithm aethted work [3]. However, in
this instance a ‘levy’ is introduced into the aligfim as the basis for the
reinforcement mechanism and also as a means ofdprgva form of short-term
memory for the system. We must emphasise herd¢hbatse of reinforcement in this
context is somewhat restrictive; referring to otihe “reward” and “punishment”
aspect of it and it is not used in the same vein asachine learning.

The levy system is devised to take into accountpidueicular structure of each
problem and is primarily designed to reward or phnagents by increasing or
decreasing its levels based on the cumulative tsffet particular decisions on the
global state of the system. Reinforcement in thimtext generally serves as
individual triggers for agents to make non-impravimoves when the individual
levies reach a given threshold. The underlying apsiom is that the propagation of
the fluctuations caused by these non-improving rmowél serve as the means by
which the system can escape local optimums.

Feedback is established as a combination of pesiihd negative reinforcement,
and it is only applied when agents remain in fipeditions over a few time steps. At
initialisation, the lower bounds for the levies astablished for each agent. This
lower bound and the amount of reinforcement reckigedetermined by a function
f(n, d), which in this instance is directly relatéul the ratio of the number of
constraints attached to an agent vis-a-vis the eunadd constraint for its most
constrained neighbour. This also helps to estalalighecking order’ for the agents,
whereby the least constrained agents will tendatgerigher levies imposed on them
and are therefore likely to move more often.

At each time step, each agent uses the least mekaviour to find the best
position in its environment. After all agents haweved, levies are simultaneously
updated for all agents whose assignments were ngelain that time step, as
follows:

— Increase the levy if the global solution is eithichanged or has worsened,
and the penalties associated with the agent’'siponditave either decreased or
stayed unchanged. In this instance, the agentiisished’ for its improvement
at the expense of the system.

— When the global solution improves, agents get durfm by way of a
reduction in accumulated levies only if they hawt moved in that time step.
The rationale for this is that the decision not tove in that time step
contributes to an overall improvement in the solutand therefore the agents
involved must be rewarded for the decision.

6 M. Basharu, H. Ahriz, and I. Arana

Levies accumulate as agents remain unmoved, inogeaai different rates
depending on the number of constraints attacheddb agent. When an agent’s total
levy is equal to or greater than a predefined marimit is forced to move by
applying a break out rule which can be anythingmfrdemporal constraint
maximisation to picking a slightly worse positidrevies are reset to the initial levels
anytime an agent moves to a new position, eithea assult of finding a better
position or as a result of a forced move. Whatlteds a system whereby the least
constrained agents will strive to find consistesgignments with the values picked by
more constrained agents. “Backtracking” cascadewargs through the agent
hierarchy as levies of more constrained agentthhitupper bounds. In addition, the
resulting sub-optimal moves help to periodicallysipithe system away from local
optimums to other regions of the search space andenpromote further exploration
of the search space.

Given that the feedback mechanism has to mirrorsthecture of the problem, it
gives room for some flexibility in the definitiorf the lower bounds and the rates of
change in levies. With small problems or a diretior of the number of constraints
between constrained neighbours may be sufficiemwéver for larger problems,
especially those with different magnitudes of coaists, the chosen function has to
adequately represent a hierarchy of variables andarr values between 0 and 1. Out
of empirical tests, it was observed that for theyimediated feedback to work a
discontinuous step function is required. Althoubis tmay result in a situation where
groups of agents may change their values in thesamne step, it has the advantage
of cutting down the number of moves and therefdl@va some exploration of the
immediate neighbourhood of a solution. The fullymk®code listing of the FeReRA
model can be found in Listing 1.

Initialisation
1 Sort All Agents by number of attached constraints in descending order
2 For all agents;
3 Compute initial levy and rate of change for each agent
4 agentsi.position = 1 // starting the algorithm from a ‘worst possible scenario’
5 End for
6 repeat
7 For all agents;
8 sense environment;
9 select best position, position with least number of violations
10 If best position is same as position at time..; then
11 If agentilevy >= upper_bound then
12 apply breakout rule
13 agent;levy = agent;.initial_levy
14 End if
15 End if

16 End for

Escaping Local Optimain Multi-Agent Oriented Constraint Satisfaction 7

17 compute current solution sol;

18 If sol; is solution then end program and return solution
19 For all agents;

20 If agent;.position, = agent;.position .| then

21 If sol; 2 sol.; then

22 If agent;.penalty, < agent;.penalty . then
23 increase agent;.levy

24 Else

25 reduce agent;.levy

26 If agent;levy < agent;initial_levy then
27 agentilevy = agent;.initial_ levy

28 End if

29 End if

30 End for

31 until ; = maximum time steps

32

33

Listing 1: Pseudo-code listing of FeEReRA

4. Experimental Results

4.1 The Experimental Set-up

Ten benchmark instances of graph colouring probfeoms the Center for Discrete
Mathematics and Theoretical Computer Scién@IMACS) were used for a
comparative evaluation of the performance of FeRe&# the original ERA
framework. Graph colouring was chosen as it stithains an important benchmark
for the evaluation of the performance of search @mtbtraint satisfaction techniques,
and it also provides a basis for comparison witiepestablished techniques. In the
graph colouring problem, a graph wofconnected nodes is to be coloured uding
colours such that no two connected (or neighbolnmayies are assigned the same
colour. This problem is still known to be intrad&fas there are still no efficient
algorithms for solving it. Two sets of experimentsres/ run for comparison and the
results are presented in the following sectionsl t&kts were run in a Java
environment on a 1.4GHz machine with 512MB of RAM.

4.2 The Step Function

A step function was used by FeReRA to determinarittial levies and the rate of
change for reinforcement. These values were comm@agdallows:

1 Graph colouring instances from this data set neafobnd at
http://mat.gsia.cmu.edu/COLOR/instances.html

8 M. Basharu, H. Ahriz, and I. Arana

1. For each variable, compute the ratio of @sstraints vis-a-vis the number of
constraints for its most constrained neighbour:

r(x) =_number of constrairitfor most constrained neighbour of variakle
number of coasits for variable

2. Normalise (x) for all variables to ensure that all values batween 0 and 1:

r'ex) = r(x) —min(r(x))
max(r(x)) —min(r(x))

3. Compute the “step” valué¢ (x) by rounding’ (X) down to one decimal digit.
4. The rate of change for each agent is defised a

rate_of _changg) =base_levyx [r"(X) + 0.7]

where base_levy 0.1

The value of "(x) ranges from 0 to 1 and the above definition aagtgnimum rate
of change, which is particularly important for tmest constrained agehthe same
definition is used to compute the lower bound facke agent. This lower bound is
used as the initial levy at the start of the aliponi and is also used to reset levies
when agents move to new positions. The valudése_levycame out as a result of
empirical testing. In theory, it means that undetedorating conditions an agent with
rate_of changg) = 1 is allowed to remain at a particular positfor a maximum of
nine time steps (i.e. where the threshold is 1).tl@nother hand, a highase_levy
value has the tendency to cause the algorithmttte Seto a continuous oscillation
between two states after a few time steps. Funtivesstigations are still being carried
out to explain the reasons behind this and to éiptimal values for botlvase levy
and the threshold that trigger the non-improving/es

In figures 2 and 3 are plots of the rate of chafogeawo problem instances from
our test set. These illustrate the structure degrgnaature of the levy system. In the
plot for the Anna instance (figure 2), the ratecbéinge increases steadily as the node
degree decreases. Indicating that a large numbemafl degree nodes are directly
connected to a small number of high degree nodesohtrast, the plot for the
miles500 instance (figure 3) suggests a highly eoted graph with a high number of
connections between high degree nodes. It alsoateh that the distribution of edges
is not particularly skewed to a restricted numterazes.

2 For graph colouring problems, the number of camsts for each node is taken as the number
of nodes directly connected to it.

31f r(x) = O (this is the case for the agents with thedargiumber of constraints attached to
it), agents will not receive any reinforcement anerefore can not be forced to move out of
positions that are holding the system at a loctihapm.

Escaping Local Optimain Multi-Agent Oriented Constraint Satisfaction

80 L 0.2

70 B

l 0.18

60 |
4
5 L 0.16
S 5018 o
S] 2
Z 404 8 1014 5
© ©
o o
230+ @
E @ 1012
z

Nodes

o— # of neighbours —e—rate of change ‘

9

Figure 2: Number of neighbours (left axis) and ftehange (right axis) for the

Anna instance.

40 0.2
me
35+ 0
m +0.18
mﬂl
Lo ey, o
5 [=] r 0.16
8251 o o, ©
= DI:I o (=
g m &
Z 204 b l 014 G
5 i |5
9] Ty 1
2 15+ = IS
E - t0.12
=z m :}
10+ n m
r 0.1
]
0 0.08
Nodes
‘ o # of neighbours —e— rate of change ‘

Figure 3: Number of neighbours (left axis) and @ftehange (right axis) for the

4.3 Compar ative Results

miles500 instance.

The first set of experiments were run in order ttedrine if each algorithm could
find a solution for each problem instance and houclmtime it took to find the
solution. On account of its inbuilt randomness, @ms were made on each problem

10 M. Basharu, H. Ahriz, and |. Arana

instance with ERA and the best and worst resultpesented in Table 1, along with
results for our modified algorithm. FeReRA was etpd to be slightly slower than
ERA because at each time step all agents use amlgdist move behaviour which is
more computationally intensive than the better mmveandom move behaviours.

Time Taken (in seconds)
Instance Nodes Number of
Edges ERA ERA FeReRA
(best time) (wor st time)

Anna 138 493 0.01 0.032 0.015
David 87 406 0.01 0.047 0.01
Huck 74 301 0.01 0.016 0.016
Inithx.l.1 864 18707 0.344 33.437 0.016
Jean 80 254 0.01 0.016 0.01
Miles250 128 387 0.01 0.016 0.015
Miles500 128 1170 0.01 1.922 0.01
Miles750 128 2113 0.953 5.235 0.453
Miles1000 128 3216 2.187 7.438 7.094
Miles1500 128 5198 0.265 1.828 0.015

Table 1: Time taken to find solutions using the optimumber
of colours for each instance.

Both algorithms were able to find solutions tothl instances presente®esults
show that at its best performance, ERA was ablani $olutions quicker in four
instances, while FeReRA performed better in thnetances and performance was the
same with the other problem instances. Compare&R@&’s worst performance,
FeReRA outperformed the former in nine out of & ¢ases. Overall, FeReRA gave
results which were almost as good as the bestmpasfice of ERA and substantially
better than its worst performance.

4In their earlier paper [11], Liu et al had shownattthe ERA could find solutions for the all the
instances in Table 1

Escaping Local Optimain Multi-Agent Oriented Constraint Satisfaction

Having established that both algorithms were alglefind solutions for all
instances, further experiments were carried outind out how well they would
perform on a set of over constrained graph colguiistances. The same instances
from Table 1 were used for this set of experimentgltis time with fewer colours. In
these tests, both algorithms were not expectedintd $olutions for the over
constrained instances and therefore each algonthm run for 5000 time steps in
order to confirm the best partial solution it cotildd. As with the first set of tests,
each over constrained problem instance was rurtitegs with ERA. Results are

shown in Table 2.

ntance Optim_al Number of — Number;:;\'al\lolatlons
Colouring | ColoursUsed FeReRA
(best) (wor st)
Anna 11 10 1 1 1
9 2 2 2
8 3 3 3
7 4 5 4
Inithx.l.1 54 49 5 6 5
43 11 11 11
38 16 18 16
32 33 36 32
Miles250 8 7 1 1 1
6 4 5 4
5 10 12 10
Miles500 20 18 2 3 2
16 4 5 4
14 7 9 7
12 11 15 12
Miles750 31 28 3 4 3
25 6 8 6
22 11 13 11
19 16 20 17
Miles1000 42 38 4 5 4
34 8 10 8
29 16 19 16
25 23 28 24
Miles1500 73 66 7 7 7
58 15 15 15
51 22 22 22
44 29 30 29

Table 2: A comparative evaluation of performancalmsame data
set from Table 1 above, using colours 10%, 20%, 309d,40% fewer
colours respectively (except for the Miles250 inst). Results for

12 M. Basharu, H. Ahriz, and |. Arana

three problem instances (David, Huck, and Jeanpactided because
there was no difference between the ERA best, ERAstwand
FeReRA.

At first glance at the results in table 2, what iedhately stands out is the wide
performance gap between the best and worst outcaitie€ERA. In the worst case,
the penalties incurred on the worst result are 5@gher than those incurred with the
best result (see Miles500 with 18 colours). Takimg cases where the best and worst
outcomes were equal aside, on average the penaltiesed on the worst solutions
were 27% higher than those on the bAssimilar gap was also observed with results
in table 4.1. Although, at its best performance, ERAnd slightly better partial
solutions than FeReRA in three instances, therl&ttend substantially better partial
solutions than ERA’s worst solutions for those sans¢ances. In addition, FeReRA
found a better partial solution than ERA’s best ire anstance, and better solutions
than ERA’s worst in nineteen instances. Our appraacws higher consistency with
better or equal average performance across arinss.

Furthermore, we have to point out here that copttarSect. 3 where the need to
build the reinforcement mechanism around the inidial structure of the problem
was mentioned; “default” values were used for adlgem instances in these tests. As
a result, it is highly probable that this would bakad adverse effects on the
performance of the FeReRA on some problems. Wostilisgoing on to establish
how to determine the optimal set of parametergé&ah individual problem.

One question raised in the course of our initial inquiry with ERvas on the
ability of the algorithm to minimise the number @jlours used in the search for a
solution. It was observed from that work that ledaviour of ERA is quite similar to
a greedy heuristic, whereby it tries to find a mawin assignment for each colour
before using subsequent colours. This is as a rektile least move behaviour which
forces an agent to pick its leftmost minimum, if ,adhan one minimum position
exists in the environment. This behaviour is glident with FeReRA. The example
in figure 4 shows that 60% of the nodes were assighe first two colours. The
implications of this are particularly important some application domains such as
frequency planning.

Escaping Local Optimain Multi-Agent Oriented Constraint Satisfaction 13

50% ~

45% -

40% -

35% +

30% -+

25% +

20% ~

15% -

nodes assigned colour

10% -

5% +

0% —+

colour

0O FeReRA mERA
| |

Figure 4: Assignment of colours (instance: Anna)

5. Conclusions

In this paper, we have presented FeReRA, a detistinimnd predictable multi-
agent meta-heuristic for solving constraint satifem problems. FeReRA is an
extension to ERA, and introduces a feedback amfiargiement mechanism to replace
random decisions as a strategy for escaping lgtahams. FeReRA also extends the
concept of reactive agents in ERA by allowing therdag take into account the impact
of some decisions on the global state of the systémn making decisions, rather
than relying solely on information from their locahvironments. This results in a
self-regulatory system that decides when thesea&jlgiself-interested agents have to
make non-improving moves necessary to push it blatcal optimums.

Preliminary results from our work with graph colmgr problems are very
encouraging, showing substantial improvement imgepof results and consistency
over ERA. We are currently evaluating the perforneant FeReRA with different
graph structures (sparse, dense and critical) alhdomsider further improvements to
FeReRA for future work; these include possible ades to the present feedback and
reinforcement scheme, and a study of the scopemication of FeReRA on various
constraint satisfaction and optimisation problems.

14

M. Basharu, H. Ahriz, and |. Arana

6. References

1.

10.

11.

12.
13.

Agassounon W., Martinoli A. and Goodman R., A selaistributed algorithm
for allocating workers in embedded systeins.Proceedings of the 2001 IEEE
Systems, Man and Cybernetics Confere@ober 2001, pp. 3367-3373.

Basharu, M.B.Automatic frequency planning for mixed voice and SRRstems
MSc Dissertation, University of Sussex, 2002.

Bonabeau E., Dorigo M., and Theraulaz G., Inspirafior optimization from
social insect behaviolNature 407, pp. 39-42, July 2000.

Bonabeau E., Henaux F., Guérin S., Snyers D., Kunhiz Routing in

telecommunications networks with “smart” ant-likgeats.In: Proceedings of

IATA'98, Second International Workshop on IntelligerAgents for

Telecommunications Applicationgecture Notes in Al vol. 1437, Springer
Verlag, 1998.

Cicirello V. A. and Smith S. F., Improved routingasps for distributed factory
control. In: IJCALI-01 Workshop on Artificial Intelligence arddanufacturing:
New Al Paradigms for Manufacturinguugust 2001

Fabiunke M., A swarm intelligence approach to caist satisfaction.In:
Proceedings of the Sixth Conference on Integratedigde and Process
TechnologyJune 2002.

Faiunke M. and Kock G., A connectionist method ¢tve job shop problems.
Cybernetics and Systems: An International Joyr@al(5), pp. 491-506, 2000.

Fitzpatrick S. and Meertens L., An experimental sssent of a stochastic
anytime, decentralized, soft colourer for sparsaplys.In: Proceedings of the
Symposium on Stochastic Algorithms, Foundations Aplications Springer,
Berlin, pp. 49-64, 2000.

Han J., Liu J. and Qingsheng C., From ALIFE agenis kingdom of n-queens
In: J. Liu and N. Zhong eds.|ntelligent Agent Technology: Systems,
Methodologies, and Toglpp. 110-120, The World Scientific Publishing Cte,P
Ltd., 1999.

Lawlor M. and White T., A self organizing social iesenodel for dynamic
frequency allocation in cellular telephone networks Proceedings of the
Second International Joint Conference on Autonomfgents and Multi-agent
Systems (AAMAS 2003 appear.

Liu J.,, Han J. and Tang Y.Y., Multi-agent orientednstoaint satisfaction
Artificial Intelligence136 (1) pp. 101 — 144, 2002.

Swarm Development Group, Swarm simulation systewwswarm.org

Tateson R., Self-organising pattern formation: fifliks and cell phonedn:
Autonomous Agents and Multi-Agent Systéros 3, No. 2, pp. 198-212, 2000.

14.

15.

16.

Escaping Local Optimain Multi-Agent Oriented Constraint Satisfaction 15

Voudouris, C, Guided local search for combinatoojatimisation problems, PhD
Thesis, Department of Computer Science, UniverditEssex, Colchester, UK,
July, 1997

Wu, Z. and Wah, B. W. Trap escaping strategies serdie lagrangian methods
for solving hard satisfiability and maximum satdfility problems. In
AAAI/IAAI pp. 673 — 678, 1999.

Yokoo M. and Hirayama K., Algorithms for Distribute€Constraint Satisfaction.
In Proceedings of the"International Conference on Multi agent systems.
401 - 408, 1996.

