
OpenAIR@RGU

The Open Access Institutional Repository
at The Robert Gordon University

http://openair.rgu.ac.uk

This is an author produced version of a paper published in

Proceedings of the Twenty-Third SGAI Annual Conference on Artificial
Intelligence, AI-2003 (ISBN 185233780X)

This version may not include final proof corrections and does not include
published layout or pagination.

Citation Details

Citation for the version of the work held in ‘OpenAIR@RGU’:

BASHARU, M., AHRIZ, H. and ARANA, I., 2003. Escaping local
optima in multi-agent oriented constraint satisfaction. Available
from OpenAIR@RGU. [online]. Available from:
http://openair.rgu.ac.uk

Citation for the publisher’s version:

BASHARU, M., AHRIZ, H. and ARANA, I., 2003. Escaping local
optima in multi-agent oriented constraint satisfaction. In: F.
COENEN, A. PREECE and A. MACINTOSH, eds. Research and
development in intelligent systems Xx. Proceedings of Ai2003, the
twenty-third SGAI international conference on innovative
techniques and applications of artificial intelligence. 15-17
December 2003. Cambridge, UK. Pp. 97-110.

Copyright
Items in ‘OpenAIR@RGU’, The Robert Gordon University Open Access Institutional
Repository, are protected by copyright and intellectual property law. If you believe that
any material held in ‘OpenAIR@RGU’ infringes copyright, please contact
openair-help@rgu.ac.uk with details. The item will be removed from the repository while
the claim is investigated.

Escaping Local Optima in Multi-Agent Oriented
Constraint Satisfaction

M. Basharu, H. Ahriz, and I. Arana

School of Computing, The Robert Gordon University, Aberdeen, U.K.

Abstract. We present a multi-agent approach to constraint satisfaction where
feedback and reinforcement are used in order to avoid local optima and,
consequently, to improve the overall solution. Our approach, FeReRA, is based
on the fact that an agent’s local best performance does not necessarily
contribute to the system’s best performance. Thus, agents may be rewarded for
improving the system’s performance and penalised for not contributing towards
a better solution. Hence, agents may be forced to choose sub-optimal moves
when they reach a specified penalty threshold as a consequence of their lack of
contribution towards a better overall solution. This may allow other agents to
choose better moves and, therefore, to improve the overall performance of the
system. FeReRA is tested against its predecessor, ERA, and a comparative
evaluation of both approaches is presented.

1. Introduction

A recurring theme with meta-heuristics inspired by the behaviour of social insects
is the notion of “emergence from local interaction.” In this class of heuristics, control
is delegated down to a multitude of simple and unsophisticated agents whose local
interactions dynamically drive a process of self-organisation to the emergence of a
global solution. Agents are simple because each agent is typically involved in a small
aspect of a problem, while the behaviour and interaction between agents are defined
by a limited set of reactive rules. These new heuristic approaches have been shown to
be successful in solving many hard combinatorial optimisation and constraint
satisfaction problems (CSP) in areas such as manufacturing process control [1, 5],
frequency planning [2, 10, 13], and network routing [4]. A CSP consists of a set of
variables, whose values are taken from finite, discrete domains, and a set of
constraints that limit the combination of values some variables may simultaneously
take. Solving a CSP is equivalent to finding a consistent assignment of values to all
variables such that all constraints are satisfied.

A distributed CSP is a CSP in which variables and constraints are distributed into

sub-problems, each of which is to be solved by an agent. Yokoo et al. [14] have made
a significant contribution in the area of distributed CSP and have developed a number
of algorithms inspired from solutions to the centralised CSP. Recently, Liu et al. [11]
developed a new framework called ERA (Environment, Reactive rules and Agents) a
self-organising multi-agent algorithm, inspired by swarm models, in which

2 M. Basharu, H. Ahriz, and I. Arana

independent agents, representing variables in a CSP, are coupled with their
environment to create a recurrent dynamical system that is capable of solving CSPs
without much computational overhead. A comparison (in averaged number of cycles)
of ERA and Yokoo et al.’s algorithms in solving benchmark n-queen problems is
presented in [11] and has shown that ERA is an effective and competitive approach.

In this paper, we propose the FeReRA (Feedback, Reinforcement and Reactive

Agents) algorithm, an extension to ERA. The remainder of the paper is organised as
follows: Sect. 2 the ERA framework is presented and its strengths and weaknesses
discussed; details of our extension to the algorithm are explained in Sect. 3; and a
summary of results from empirical tests comparing the performance of ERA and our
extension is presented in Sect. 4. Concluding remarks are given in Sect. 5.

2. The ERA Framework

The Environment, Reactive Rules, and Agents (ERA) framework was first
introduced as a multi-agent heuristic to solve the n-queen problems [9] and was later
extended as a general approach for solving constraint satisfaction problems [11]. ERA
is a Swarm-type distributed algorithm, in which a constraint satisfaction problem is
divided into smaller problems and each sub-problem is solved by an independent and
self-interested agent.

The motivation for this approach is to use the emergent properties of a system, in

which agents act locally with respect to local evaluation functions to solve search
problems [11]. The algorithm starts with a random initialisation and attempts to
improve the solution over a number of discrete time steps. At each time step each
agent, representing a single variable, tries to find an assignment within its variable’s
domain that minimises the number of constraints violated. Decisions of agents are
based on a set of locally reactive behaviours, and the resulting interactions create a
dynamic system that self-organises itself gradually towards a solution state.

The three components of ERA are:

1. The Environment: It is a two dimensional lattice where a row is dedicated for
each variable in the problem, and a column for each possible value of a
variable. Each position in the environment holds two values: the domain
value and the number of violations for that position if the agent moves there
and other agents remain unmoved. The violation values are continuously
updated as agents move. By recording violation values within it, the
environment extends its role to provide a form of indirect communication
between agents. Eliminating the need for message passing to communicate
current assignments of variables (as in [14]).

Escaping Local Optima in Multi-Agent Oriented Constraint Satisfaction 3

A CSP is given as follows:

 Variables : { X, Y, Z }
 Domains : DX = { 1, 2, 3, 4, 5 }, DY = { 2, 4, 6 }, DZ = { 1, 3, 5, 7 }
 Constraints : { X ≠ Y, X > Z }

☺X

☺Y

☺Z

☺X

☺Y

☺Z

1 2 3 4

X 1 2 1 1

2 4

Y
1 0

1 3 5 7

Z

0

0 1 1 1

6

1

51 2 3 4

X 1 2 1 1

2 4

Y
1 0

1 3 5 7

Z

0

0 1 1 1

6

1

5

 (a) (b)

Figure 1: A schematic representation of the environment within ERA.

Figure 1 is an example of how a CSP can be represented within this
framework. For illustration purposes, two rows are used for each agent’s
local environment to show the two different values held by each position i.e.
the domain value and the number of violations (shaded). At initialization,
agents are placed in random positions (a). Then, the number of violations is
computed for each agent based on the present positions of other agents (b).
For example, two violations are recorded in the second position for X
because that value would result in violating two constraints; X ≠Y (where X =
2 and Y = 2) and X > Z (where X = 2 and Z = 7).

2. Reactive Rules: at each time step, each agent may choose one of the

following behaviours based on a set of behaviour selection probabilities.

a. Least move: This is essentially a min-conflicts heuristic and it
generally states that the agent is to move to the position with the least
number of constraint violations. If more than one such position exists,
then it moves to the leftmost one. For example, the least move for the
agent Y would take it to the second position (i.e. Y = 4).

b. Better move: An agent randomly picks a position in its environment
and compares its attractiveness with its current position. If that
position is better than its current position then the agent moves to that
position, otherwise it remains still.

c. Random move: With a much smaller selection probability, the agent
randomly selects a position that is not its present position and moves
there. The random move is introduced for two reasons; first it
encourages further exploration of the search space, and secondly, it is
a source of internal perturbations that prevents the algorithm from
premature convergence on local optima.

3. Agents: Agents act independently and move locally within their rows. The
position of an agent within its environment represents the current value
assignment for the variable it represents. The goal for each agent is to find a

4 M. Basharu, H. Ahriz, and I. Arana

position that has the least number of constraint violations for its variable,
which ideally should be a zero position.

Two major strengths of ERA have been identified from empirical tests. First, its

authors contend that if there is a solution for a problem the algorithm will find it. And
if no solution exists the algorithm is capable of finding good approximate solutions.
Secondly, it has also been shown that the algorithm is fast and can find good
approximate solutions in a few time steps without much computational overhead. For
example, in tests carried out on benchmark graph colouring instances, results show
that over 80% of variables were assigned consistent values within the first three time
steps [11].

For all its strengths, ERA lacks a critical property: consistency (or reliability). This
comes out of its reliance on some randomness (i.e. the behaviour selection
probabilities and the random move behaviour). This study (and the subsequent
extension of ERA) was prompted by this observation from previous work in [2] where
ERA was used for the frequency assignment problem. The observed behaviour of the
algorithm was a tendency to produce different results for the same problem with
different runs. This lack of completeness had also been noted in [9]. Notwithstanding,
the randomness is an important aspect of the algorithm especially its role of
preventing premature convergence on local optima. To improve the reliability of the
algorithm, it is therefore necessary to find alternative deterministic behaviours that
preserve this role and at the same time fit into the self-organising structure of the
approach.

3. Adding Feedback and Reinforcement to ERA with FeReRA

The min-conflicts heuristic is widely used in distributed constraint satisfaction and
it always presents a potential for premature convergence on local optima. A number
of strategies have been adopted in the literature to deal with this convergence. One
approach has been to simply to try avoid settling on local optimum in the first place.
An example of this is the random activation mechanism in [8] in which neighbouring
agents were prevented from changing values simultaneously. However, while it did
try preventing early convergence, there was still the random likelihood of getting
stuck at local optima and there were no apparent mechanisms in algorithm to push it
out. In other approaches, such as [7, 16], the adopted strategy have typically gone the
down the route of detecting quasi-local optima and applying breakout rules, in
response, to push the process to another region of the search space. Similar strategies
have been suggested with local search algorithms [14, 15], where the objective
function is augmented with penalties which change the shape of the fitness landscape
as local optimums are detected. Therefore, pushing the search process to another
region of the search space.

The work presented here is quite similar to the breakout strategy adopted in [7]. In
that work, a counter is incremented while an agent is stuck at a quasi-local optimum
and when that counter hits pre-defined threshold the agent is forced to make a non-
improving move [7]. However, in this work the emphasis moves from responding to
quasi-local optima to real local optima. Emphasis is on self-regulation, whereby the

Escaping Local Optima in Multi-Agent Oriented Constraint Satisfaction 5

thresholds for which agents are forced to make non-improving moves are defined by
the individual structure of the problem. The rest of this section explains our approach
where random decisions (including the better move behaviour) have been removed
from ERA and are replaced with an explicit feedback mechanism which determines
how agents respond to the system’s convergence at local optima by taking into
consideration the effect of agent behaviours on the global state of the system.

The feedback mechanism applied here by FeReRA is inspired by the pheromone
system in the Ant Colony Optimisation algorithm and related work [3]. However, in
this instance a ‘levy’ is introduced into the algorithm as the basis for the
reinforcement mechanism and also as a means of providing a form of short-term
memory for the system. We must emphasise here that the use of reinforcement in this
context is somewhat restrictive; referring to only the “reward” and “punishment”
aspect of it and it is not used in the same vein as in machine learning.

The levy system is devised to take into account the particular structure of each
problem and is primarily designed to reward or punish agents by increasing or
decreasing its levels based on the cumulative effects of particular decisions on the
global state of the system. Reinforcement in this context generally serves as
individual triggers for agents to make non-improving moves when the individual
levies reach a given threshold. The underlying assumption is that the propagation of
the fluctuations caused by these non-improving moves will serve as the means by
which the system can escape local optimums.

Feedback is established as a combination of positive and negative reinforcement,
and it is only applied when agents remain in fixed positions over a few time steps. At
initialisation, the lower bounds for the levies are established for each agent. This
lower bound and the amount of reinforcement received is determined by a function
ƒ(n, d), which in this instance is directly related to the ratio of the number of
constraints attached to an agent vis-à-vis the number of constraint for its most
constrained neighbour. This also helps to establish a ‘pecking order’ for the agents,
whereby the least constrained agents will tend to have higher levies imposed on them
and are therefore likely to move more often.

At each time step, each agent uses the least move behaviour to find the best
position in its environment. After all agents have moved, levies are simultaneously
updated for all agents whose assignments were unchanged in that time step, as
follows:

− Increase the levy if the global solution is either unchanged or has worsened,
and the penalties associated with the agent’s position have either decreased or
stayed unchanged. In this instance, the agent is ‘punished’ for its improvement
at the expense of the system.

− When the global solution improves, agents get a ‘refund’ by way of a
reduction in accumulated levies only if they have not moved in that time step.
The rationale for this is that the decision not to move in that time step
contributes to an overall improvement in the solution and therefore the agents
involved must be rewarded for the decision.

6 M. Basharu, H. Ahriz, and I. Arana

Levies accumulate as agents remain unmoved, increasing at different rates
depending on the number of constraints attached to each agent. When an agent’s total
levy is equal to or greater than a predefined maximum, it is forced to move by
applying a break out rule which can be anything from temporal constraint
maximisation to picking a slightly worse position. Levies are reset to the initial levels
anytime an agent moves to a new position, either as a result of finding a better
position or as a result of a forced move. What results is a system whereby the least
constrained agents will strive to find consistent assignments with the values picked by
more constrained agents. “Backtracking” cascades upwards through the agent
hierarchy as levies of more constrained agents hit the upper bounds. In addition, the
resulting sub-optimal moves help to periodically push the system away from local
optimums to other regions of the search space and hence promote further exploration
of the search space.

Given that the feedback mechanism has to mirror the structure of the problem, it
gives room for some flexibility in the definition of the lower bounds and the rates of
change in levies. With small problems or a direct ratio of the number of constraints
between constrained neighbours may be sufficient. However for larger problems,
especially those with different magnitudes of constraints, the chosen function has to
adequately represent a hierarchy of variables and return values between 0 and 1. Out
of empirical tests, it was observed that for the levy-mediated feedback to work a
discontinuous step function is required. Although this may result in a situation where
groups of agents may change their values in the same time step, it has the advantage
of cutting down the number of moves and therefore allows some exploration of the
immediate neighbourhood of a solution. The full pseudo-code listing of the FeReRA
model can be found in Listing 1.

1

2
3
4
5

6
7
8
9

10
11
12
13
14
15
16

Initialisation
Sort All Agents by number of attached constraints in descending order

For all agentsi
 Compute initial levy and rate of change for each agent
 agentsi.position = 1 // starting the algorithm from a ‘worst possible scenario’
End for

repeat
 For all agentsi
 sense environmenti
 select best position, position with least number of violations

 If best position is same as position at timet-1 then
 If agenti.levy >= upper_bound then
 apply breakout rule
 agenti.levy = agenti.initial_levy
 End if
 End if
 End for

Escaping Local Optima in Multi-Agent Oriented Constraint Satisfaction 7

17

18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

 compute current solution solt

 If solt is solution then end program and return solution

 For all agentsi
 If agenti.positiont = agenti.position t-1 then
 If solt ≥ solt-1 then
 If agenti.penaltyt ≤ agenti.penalty t-1 then
 increase agenti.levy
 Else
 reduce agenti.levy
 If agenti.levy < agenti.initial_ levy then
 agenti.levy = agenti.initial_ levy
 End if
 End if
 End for
until t = maximum time steps

Listing 1: Pseudo-code listing of FeReRA

4. Experimental Results

4.1 The Experimental Set-up

Ten benchmark instances of graph colouring problems from the Center for Discrete
Mathematics and Theoretical Computer Science1 (DIMACS) were used for a
comparative evaluation of the performance of FeReRA and the original ERA
framework. Graph colouring was chosen as it still remains an important benchmark
for the evaluation of the performance of search and constraint satisfaction techniques,
and it also provides a basis for comparison with other established techniques. In the
graph colouring problem, a graph of n connected nodes is to be coloured using k
colours such that no two connected (or neighbouring) nodes are assigned the same
colour. This problem is still known to be intractable as there are still no efficient
algorithms for solving it. Two sets of experiments were run for comparison and the
results are presented in the following sections. All tests were run in a Java
environment on a 1.4GHz machine with 512MB of RAM.

4.2 The Step Function

A step function was used by FeReRA to determine the initial levies and the rate of
change for reinforcement. These values were computed as follows:

1 Graph colouring instances from this data set may be found at

http://mat.gsia.cmu.edu/COLOR/instances.html

8 M. Basharu, H. Ahriz, and I. Arana

1. For each variable, compute the ratio of its constraints vis-à-vis the number of

constraints for its most constrained neighbour:

r(x) = number of constraints2 for most constrained neighbour of variable x
 number of constraints for variable x

2. Normalise r(x) for all variables to ensure that all values fall between 0 and 1:

r′(x) = r(x) – min(r(x))

max(r(x)) – min(r(x))

3. Compute the “step” value r′′ (x) by rounding r′ (x) down to one decimal digit.

4. The rate of change for each agent is defined as:

rate_of_change(x) = base_levy x [r′′ (x) + 0.7]

where base_levy = 0.1

The value of r′′(x) ranges from 0 to 1 and the above definition sets a minimum rate

of change, which is particularly important for the most constrained agents3. The same
definition is used to compute the lower bound for each agent. This lower bound is
used as the initial levy at the start of the algorithm and is also used to reset levies
when agents move to new positions. The value for base_levy came out as a result of
empirical testing. In theory, it means that under deteriorating conditions an agent with
rate_of_change(x) = 1 is allowed to remain at a particular position for a maximum of
nine time steps (i.e. where the threshold is 1). On the other hand, a high base_levy
value has the tendency to cause the algorithm to settle into a continuous oscillation
between two states after a few time steps. Further investigations are still being carried
out to explain the reasons behind this and to find optimal values for both base_levy
and the threshold that trigger the non-improving moves.

In figures 2 and 3 are plots of the rate of change for two problem instances from
our test set. These illustrate the structure dependent nature of the levy system. In the
plot for the Anna instance (figure 2), the rate of change increases steadily as the node
degree decreases. Indicating that a large number of small degree nodes are directly
connected to a small number of high degree nodes. In contrast, the plot for the
miles500 instance (figure 3) suggests a highly connected graph with a high number of
connections between high degree nodes. It also indicates that the distribution of edges
is not particularly skewed to a restricted number of nodes.

2 For graph colouring problems, the number of constraints for each node is taken as the number

of nodes directly connected to it.
3 If r′′(x) = 0 (this is the case for the agents with the largest number of constraints attached to

it), agents will not receive any reinforcement and therefore can not be forced to move out of
positions that are holding the system at a local optimum.

Escaping Local Optima in Multi-Agent Oriented Constraint Satisfaction 9

0

10

20

30

40

50

60

70

80

Nodes

N
u

m
b

er
 o

f
N

ei
g

h
b

o
u

rs

0.08

0.1

0.12

0.14

0.16

0.18

0.2

ra
te

 o
f

ch
an

g
e

of neighbours rate of change

Figure 2: Number of neighbours (left axis) and rate of change (right axis) for the
Anna instance.

0

5

10

15

20

25

30

35

40

Nodes

N
u

m
b

er
 o

f
N

ei
g

h
b

o
u

rs

0.08

0.1

0.12

0.14

0.16

0.18

0.2

ra
te

 o
f

ch
an

g
e

of neighbours rate of change

Figure 3: Number of neighbours (left axis) and rate of change (right axis) for the
miles500 instance.

4.3 Comparative Results

The first set of experiments were run in order to determine if each algorithm could
find a solution for each problem instance and how much time it took to find the
solution. On account of its inbuilt randomness, ten runs were made on each problem

10 M. Basharu, H. Ahriz, and I. Arana

instance with ERA and the best and worst results are presented in Table 1, along with
results for our modified algorithm. FeReRA was expected to be slightly slower than
ERA because at each time step all agents use only the least move behaviour which is
more computationally intensive than the better move or random move behaviours.

Time Taken (in seconds)
Instance Nodes Number of

Edges ERA
(best time)

ERA
(worst time)

FeReRA

Anna 138 493 0.01 0.032 0.015

David 87 406 0.01 0.047 0.01

Huck 74 301 0.01 0.016 0.016

Inithx.I.1 864 18707 0.344 33.437 0.016

Jean 80 254 0.01 0.016 0.01

Miles250 128 387 0.01 0.016 0.015

Miles500 128 1170 0.01 1.922 0.01

Miles750 128 2113 0.953 5.235 0.453

Miles1000 128 3216 2.187 7.438 7.094

Miles1500 128 5198 0.265 1.828 0.015

Table 1: Time taken to find solutions using the optimal number
of colours for each instance.

Both algorithms were able to find solutions to all the instances presented4. Results

show that at its best performance, ERA was able to find solutions quicker in four
instances, while FeReRA performed better in three instances and performance was the
same with the other problem instances. Compared to ERA’s worst performance,
FeReRA outperformed the former in nine out of the ten cases. Overall, FeReRA gave
results which were almost as good as the best performance of ERA and substantially
better than its worst performance.

4 In their earlier paper [11], Liu et al had shown that the ERA could find solutions for the all the

instances in Table 1

Escaping Local Optima in Multi-Agent Oriented Constraint Satisfaction 11

Having established that both algorithms were able to find solutions for all
instances, further experiments were carried out to find out how well they would
perform on a set of over constrained graph colouring instances. The same instances
from Table 1 were used for this set of experiments but this time with fewer colours. In
these tests, both algorithms were not expected to find solutions for the over
constrained instances and therefore each algorithm was run for 5000 time steps in
order to confirm the best partial solution it could find. As with the first set of tests,
each over constrained problem instance was run ten times with ERA. Results are
shown in Table 2.

Number of Violations

Instance Optimal
Colouring

Number of
Colours Used ERA

(best)
ERA

(worst)
FeReRA

Anna 11 10 1 1 1

 9 2 2 2

 8 3 3 3

 7 4 5 4

Inithx.I.1 54 49 5 6 5

 43 11 11 11

 38 16 18 16

 32 33 36 32

Miles250 8 7 1 1 1

 6 4 5 4

 5 10 12 10

Miles500 20 18 2 3 2

 16 4 5 4

 14 7 9 7

 12 11 15 12

Miles750 31 28 3 4 3

 25 6 8 6

 22 11 13 11

 19 16 20 17

Miles1000 42 38 4 5 4

 34 8 10 8

 29 16 19 16

 25 23 28 24

Miles1500 73 66 7 7 7

 58 15 15 15

 51 22 22 22

 44 29 30 29
Table 2: A comparative evaluation of performance on the same data

set from Table 1 above, using colours 10%, 20%, 30%, and 40% fewer
colours respectively (except for the Miles250 instance). Results for

12 M. Basharu, H. Ahriz, and I. Arana

three problem instances (David, Huck, and Jean) are excluded because
there was no difference between the ERA best, ERA worst, and
FeReRA.

At first glance at the results in table 2, what immediately stands out is the wide

performance gap between the best and worst outcomes with ERA. In the worst case,
the penalties incurred on the worst result are 50% higher than those incurred with the
best result (see Miles500 with 18 colours). Taking the cases where the best and worst
outcomes were equal aside, on average the penalties incurred on the worst solutions
were 27% higher than those on the best. A similar gap was also observed with results
in table 4.1. Although, at its best performance, ERA found slightly better partial
solutions than FeReRA in three instances, the latter found substantially better partial
solutions than ERA’s worst solutions for those same instances. In addition, FeReRA
found a better partial solution than ERA’s best in one instance, and better solutions
than ERA’s worst in nineteen instances. Our approach shows higher consistency with
better or equal average performance across all instances.

Furthermore, we have to point out here that contrary to Sect. 3 where the need to

build the reinforcement mechanism around the individual structure of the problem
was mentioned; “default” values were used for all problem instances in these tests. As
a result, it is highly probable that this would have had adverse effects on the
performance of the FeReRA on some problems. Work is still going on to establish
how to determine the optimal set of parameters for each individual problem.

One question raised in the course of our initial inquiry with ERA was on the

ability of the algorithm to minimise the number of colours used in the search for a
solution. It was observed from that work that the behaviour of ERA is quite similar to
a greedy heuristic, whereby it tries to find a maximum assignment for each colour
before using subsequent colours. This is as a result of the least move behaviour which
forces an agent to pick its leftmost minimum, if more than one minimum position
exists in the environment. This behaviour is still evident with FeReRA. The example
in figure 4 shows that 60% of the nodes were assigned the first two colours. The
implications of this are particularly important in some application domains such as
frequency planning.

Escaping Local Optima in Multi-Agent Oriented Constraint Satisfaction 13

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

1 2 3 4 5 6 7 8 9 10 11

colour

n
o

d
es

 a
ss

ig
n

ed
 c

o
lo

u
r

FeReRA ERA

Figure 4: Assignment of colours (instance: Anna)

5. Conclusions

In this paper, we have presented FeReRA, a deterministic and predictable multi-
agent meta-heuristic for solving constraint satisfaction problems. FeReRA is an
extension to ERA, and introduces a feedback and reinforcement mechanism to replace
random decisions as a strategy for escaping local optimums. FeReRA also extends the
concept of reactive agents in ERA by allowing the agents take into account the impact
of some decisions on the global state of the system when making decisions, rather
than relying solely on information from their local environments. This results in a
self-regulatory system that decides when these typically self-interested agents have to
make non-improving moves necessary to push it out of local optimums.

Preliminary results from our work with graph colouring problems are very

encouraging, showing substantial improvement in terms of results and consistency
over ERA. We are currently evaluating the performance of FeReRA with different
graph structures (sparse, dense and critical) and will consider further improvements to
FeReRA for future work; these include possible advances to the present feedback and
reinforcement scheme, and a study of the scope of application of FeReRA on various
constraint satisfaction and optimisation problems.

14 M. Basharu, H. Ahriz, and I. Arana

6. References

1. Agassounon W., Martinoli A. and Goodman R., A scalable distributed algorithm
for allocating workers in embedded systems. In: Proceedings of the 2001 IEEE
Systems, Man and Cybernetics Conference. October 2001, pp. 3367-3373.

2. Basharu, M.B., Automatic frequency planning for mixed voice and GPRS systems
MSc Dissertation, University of Sussex, 2002.

3. Bonabeau E., Dorigo M., and Theraulaz G., Inspiration for optimization from
social insect behaviour Nature, 407, pp. 39-42, July 2000.

4. Bonabeau E., Henaux F., Guérin S., Snyers D., Kuntz P., Routing in
telecommunications networks with “smart” ant-like agents. In: Proceedings of
IATA’98, Second International Workshop on Intelligent Agents for
Telecommunications Applications. Lecture Notes in AI vol. 1437, Springer
Verlag, 1998.

5. Cicirello V. A. and Smith S. F., Improved routing wasps for distributed factory
control. In: IJCALl-01 Workshop on Artificial Intelligence and Manufacturing:
New AI Paradigms for Manufacturing, August 2001

6. Fabiunke M., A swarm intelligence approach to constraint satisfaction. In:
Proceedings of the Sixth Conference on Integrated Design and Process
Technology, June 2002.

7. Faiunke M. and Kock G., A connectionist method to solve job shop problems.
Cybernetics and Systems: An International Journal, 31 (5), pp. 491-506, 2000.

8. Fitzpatrick S. and Meertens L., An experimental assessment of a stochastic
anytime, decentralized, soft colourer for sparse graphs. In: Proceedings of the
Symposium on Stochastic Algorithms, Foundations and Applications, Springer,
Berlin, pp. 49-64, 2000.

9. Han J., Liu J. and Qingsheng C., From ALIFE agents to a kingdom of n-queens
In: J. Liu and N. Zhong eds., Intelligent Agent Technology: Systems,
Methodologies, and Tools, pp. 110-120, The World Scientific Publishing Co. Pte,
Ltd., 1999.

10. Lawlor M. and White T., A self organizing social insect model for dynamic
frequency allocation in cellular telephone networks. In: Proceedings of the
Second International Joint Conference on Autonomous Agents and Multi-agent
Systems (AAMAS 2003), to appear.

11. Liu J., Han J. and Tang Y.Y., Multi-agent oriented constraint satisfaction
Artificial Intelligence 136 (1) pp. 101 – 144, 2002.

12. Swarm Development Group, Swarm simulation system, www.swarm.org

13. Tateson R., Self-organising pattern formation: fruit flies and cell phones. In:
Autonomous Agents and Multi-Agent Systems, Vol. 3, No. 2, pp. 198-212, 2000.

Escaping Local Optima in Multi-Agent Oriented Constraint Satisfaction 15

14. Voudouris, C, Guided local search for combinatorial optimisation problems, PhD
Thesis, Department of Computer Science, University of Essex, Colchester, UK,
July, 1997

15. Wu, Z. and Wah, B. W. Trap escaping strategies in discrete lagrangian methods
for solving hard satisfiability and maximum satisfiability problems. In
AAAI/IAAI, pp. 673 – 678, 1999.

16. Yokoo M. and Hirayama K., Algorithms for Distributed Constraint Satisfaction.
In Proceedings of the 2nd International Conference on Multi agent systems, pp.
401 – 408, 1996.

