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Abstract 

 
Connectionist approaches to Artificial Intelligence 

are almost always based on Artificial Neural 
Networks. However, there is another route towards 
Parallel Distributed Processing, taking as its 
inspiration the intelligence displayed by single celled 
creatures called Protoctists (Protists). This is based on 
networks of interacting proteins. Such networks may be 
used in Pattern Recognition and Control tasks and are 
more flexible than most neuron models. In this paper 
they are demonstrated in Image Recognition 
applications and in Legged Robot control. They are 
trained using a Genetic Algorithm and Back 
Propagation. 
 
 
1. Introduction 
 

Protoctists, also called Protists, are singled celled 
organisms which live in a variety of different 
environments [1]. Those which display animal-like 
behaviour are usually called Protozoa and make up a 
large part of the fauna often disparagingly known as 
“pond life”. 

However, despite their primitive reputation, they 
display remarkable abilities and behaviours [2]. Some 
have stinging darts with which they disable their prey; 
others have sensory hairs to feel their way about and 
sense the vibration of prey approaching and a few even 
have leg-like appendages for locomotion. They can 
avoid light with their sensitive eyespots and actively 
hunt for their food. The variety they display is 
enormous, with a range of relative sizes greater than 
that between a rabbit and a blue whale. Some even 
build shelters - shells with which to protect themselves 
from predators and the environment. They display 
many of the traits of intelligence. 

 
2. Natural Biochemical Networks 
 

Protozoa display the behaviours described above by 
means of interactions between proteins in their 
cytoplasm. Proteins are the chemical workhorses of the 
cell [2]. It is the cell proteins which the DNA genetic 
code specifies, as shown in Figure 1. This scheme is so 
fundamental that it is sometimes referred to as the 
“Central Dogma” of biology. 

 

 
Figure 1. Central DogmaFigure 1. Central DogmaFigure 1. Central DogmaFigure 1. Central Dogma    
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Proteins perform all the important operations of the 
cell - making new material, destroying old and sensing 
and signalling changes in the cell's environment. All 
proteins bind to other chemicals. Some synthesise new 
molecules by joining bound component parts together, 
others break them up - such proteins are called 
Enzymes. Yet others use their ability to bind by joining 
to other proteins, changing their behaviour and thereby 
forming signalling networks within the cell [2]. Such a 
signalling network is best illustrated by example - see 
Figure 2. 
 

 
Figure 2. A simplified signalling pathwayFigure 2. A simplified signalling pathwayFigure 2. A simplified signalling pathwayFigure 2. A simplified signalling pathway    

 
Figure 2 is a hypothetical example of a signalling 

network. Molecules in the cell's external environment 
A bind to receptor proteins B. This changes the shape 
of the receptor and causes a protein C, which was 
bound to the receptor to disassociate from it. This 
protein then floats freely in the cell's cytoplasm and 
eventually binds with the protein D (chemicals in the 
cytoplasm are buffeted around by thermo-dynamic 
forces which act to mix the constituents). When C and 
D are bound as shown in E, they can bind further to a 
motor protein F (a protein which can change its shape 
by a large amount, allowing it to move large objects). 
The motor protein is attached to the cell's outer 
membrane and this causes the cell to move towards or 
away from the molecules A by changing its shape. 

Obviously such a system may be represented by a 
network in a similar way to a Neural Net [2]. In this 
case, the nodes would represent the proteins, the 
connections their interactions and layers represent 
sequential/hierarchical protein interaction. One can 
also see that the system allows for intricate control 
over these functions - for example, by using other 
proteins generated as a result of other internal or 
external cellular stimuli, which can stimulate or 
suppress those shown [4]. An appropriate name for 
such a network might be an Artificial Biochemical 
Network (ABN). 
 

3. Artificial Biochemical Networks 
 

Given that in the simplest implementation, the basic 
network topology can be constructed to be no different 
in appearance from other connectionist networks, the 
difference is mainly in the unit functionality and 
information flow. A typical output is shown in Figure 
3. The lag time until the presence of the protein is felt 
is A; this is set using the Genetic Algorithm which can 
also train the network weights. Time B is proportional 
to unit activity, the constant of proportionality being 
defined by the Genetic Algorithm. Unit activity is 
calculated using a standard Leaky Integrator [5]. 

 

 
Figure 3. Unit cycleFigure 3. Unit cycleFigure 3. Unit cycleFigure 3. Unit cycle    

 
The Genetic Algorithm has also been implemented 

to choose which of the time periods A or B is 
proportional (or inversely proportional) to the unit 
activity and which is fixed [6]. This additional 
evolvable parameter [7] has lead to pulse width or 
frequency modulated units as shown in Figure 4. 

This allows for the production of more universal 
units from this basic type. It has been suggested that 
such dynamics may lead to new perspectives on 
intelligence [8]. 
 



 

Figure 4. Figure 4. Figure 4. Figure 4. Pulse modulated unitsPulse modulated unitsPulse modulated unitsPulse modulated units    
 
4. Examples in Pattern Recognition 
 

A network based on the units described above (in 
this case the Pulse Width Modulated variety) was 
compared with a standard Multilayer Perceptron 
(MLP) in pattern recognition problems. A 5 by 5 pixel 
grid was set up with standard roman characters and 
alternative identifiers as shown in Figure 5. 

 

 
Figure Figure Figure Figure 5555. A 5 by 5 grid of letter ”G”, simple . A 5 by 5 grid of letter ”G”, simple . A 5 by 5 grid of letter ”G”, simple . A 5 by 5 grid of letter ”G”, simple 

predator and prey identifierspredator and prey identifierspredator and prey identifierspredator and prey identifiers    
 
It was tested first whether the network had the same 

memory capacity as an equivalent MLP network (one 
with the same number of units). The networks used had 
25 inputs (corresponding to the input pattern pixels) 
and the same number of output units as patterns. The 
number of hidden layer units was then increased and 
the network trained, using a [200, 200] Genetic 
Algorithm, with one pattern at a time (starting with 
character .A.) until failure. The results are shown in 
Figure 6. The solid line shows the MLP and quantised 
ABN results, the dashed line the initial (un-quantised) 
ABN. 



 

 
Figure 6. Memory performance of ABN Figure 6. Memory performance of ABN Figure 6. Memory performance of ABN Figure 6. Memory performance of ABN vs.vs.vs.vs. MLP MLP MLP MLP    

 
It may be seen from the figure that the two networks 

hold a similar number of patterns slight differences at 
first attributed to different initial values used in the 
training algorithm were found to be characteristics of 
the time-domain quantisation of ABNs. 

Next the systems were tested to establish their 
generalisation abilities. Noise was progressively added 
to the data and the performance measured. Figure 7 
shows the results of this (lines are represented as 
previously). The noise addition procedure is that used 
in the MATLAB Neural Networks toolbox [9]. 

 
Figure 7. Noise Figure 7. Noise Figure 7. Noise Figure 7. Noise ttttolerance of ABN olerance of ABN olerance of ABN olerance of ABN vs.vs.vs.vs. MLP MLP MLP MLP    

 
Again, it may be seen that the networks are 

comparable in performance.  Similar results were also 
obtained for the Frequency Modulated and full 
versions of the network.  The ABN showed better 
generalisation and an investigation on this is reported 
[6]. 

It was also shown that the network could be trained 
using standard Back Propagation. In these cases, the 
scalar inputs (in the case of the characters used above, 
a black pixel was a 1 and a white 0) where coded as 

pulses using a sigmoidal transfer function for 
normalisation as shown in Figure 8. The outputs were 
similarly normalised. 

 

 
Figure 8. Transfer functionFigure 8. Transfer functionFigure 8. Transfer functionFigure 8. Transfer function    

 
A method of Back Propagation was synthesised for 

the time domain specifics of the ABN.  This resulted in 
an improved training time over standard Back 
Propagation from the same initial parameters but as 
expected no functional improvement in memory or 
generalisation [6]. 
 
5. Examples in control 
 

The results above show that, in pattern recognition 
problems, the network is similar in performance to a 
standard MLP type network. There is scarcely any 
advantage in this in terms of time independent pattern 
recognition as it is more complex to program (having 
to keep internal clocks to account for where the units 
are in their cycles).  There are functional advantages 
which are discussed [6] in the conclusions. 

However, MLP networks have difficulty producing 
suitable outputs to control time domain tasks (for 
example PWM motor control).  The ABN network is 
inherently time domain and does not have this 



 

disadvantage.  It was therefore also trained to control 
the gaits of a simulated bipedal legged robot. The robot 
is based on a physical robot, the legs of which are 
controlled by servo motors as shown in Figure 9. The 
legs have one active and one passive degree of 
freedom. The network has four units; two chosen by 
the GA are designated outputs. 

 
Figure 9. Robot leg layoutFigure 9. Robot leg layoutFigure 9. Robot leg layoutFigure 9. Robot leg layout    

 
Space restrictions here stop us from exploring these 

dynamics in depth; however, this simulation has been 
used and reported many times previously and the 
dynamics of the legs and the robot are fully reported in 
other papers [10, 11].  Figure 10 shows the leg 
movements generated when the network was evolved 
to walk. The result corresponds well with the perfect 
pattern (a perfect pattern would have a repeat time of 
60 time steps and a movement from position 80 to 
position 100). 

 
Figure 10. Movement pattern of legsFigure 10. Movement pattern of legsFigure 10. Movement pattern of legsFigure 10. Movement pattern of legs    

 

6. Conclusions 
 

The system discussed in this paper is a new and 
different approach to connectionist AI. Instead of being 
based on neural networks, it models the chemical 
signalling within cells. Of course, such signalling lies 
at the root of neuron functionality also, as the neuron is 
itself a cell. 

The retention of both generalisation and universality 
[12] affects the ABN performance in pattern and 
control, allowing for graceful decay as noise increases.  
Such “fuzzy” uncertainty is far more stable than a 
system that performs longer with higher accuracy then 
undergoes critical failure with little warning. 

With regards to mobile robot operation there is a 
functional advantage of ABN pattern recognition.  
Most pattern recognition is achieved “in vitro” where 
time is not a constraining factor, here “snapshot” 
pattern recognition can be utilised.  In an artificial 
organism that has to adapt to its environment “in vivo” 
then an ABN information flow pattern system can 
assimilate information as it appears. 

The implementation of ABNs allows a single type 
of intelligent units to perform all the operations of a 
modular AI used in robot control and can be encoded 
as part of the evolutionary algorithm with an operator 
placing specific units.[6, 13] . 

The approach has several advantages. It simplifies 
the design of time dependant outputs which, in turn, 
allows the straightforward implementation of Central 
Pattern Generator networks in robots, Pulse Width 
Modulation for Motor Control and other similar 
systems. However, the networks are equally at home in 
traditional Pattern Recognition tasks.  They also allow 
systems to be developed which behave in many 
respects like Spiking Neuron models, but without the 
associated complexity. Finally, they may be trained 
using traditional methods. 
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