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Abstract

We present a hybrid way to extend taxonomic reasoning using
inference fusion, i.e. the dynamic combination of inferences
from distributed heterogeneous reasoners. Our approach in-
tegrates results from a DL-based taxonomic reasoner with
results from a constraint solver.Inference fusionis carried
out by (i) parsing heterogeneous input knowledge, producing
suitable homogeneous subset of the input knowledge for each
specialised reasoner; (ii) processing the homogeneous knowl-
edge, collecting the reasoning results and passing them to the
other reasoner if appropriate; (iii) combining the results of the
two reasoners. We discuss the benefits of our approach to the
ontological reasoning and demonstrate our ideas by propos-
ing a hybrid modelling languages,DL(D)/S, and illustrating
its use by means of examples.

Motivation and background
Current approaches to ontology reasoning during the knowl-
edge lifecycle management are based on a wide variety of
structured knowledge models, each enabling different auto-
mated capabilities. Different from the Object-oriented and
Frame-based approaches, models based on Description Log-
ics (DLs) like OIL/DAML+OIL (Fenselet al. 2001) are
equipped with a whole set of specialised deductions based
on taxonomic reasoning. Such deductive services include,
among others, semantic consistency check and contradiction
detection, explicitation of hidden knowledge, subsumption,
and concept classification (Donini & others 1996). There-
fore, DL-based approaches are particularly appealing for ap-
plications such as ontology reasoning in the Semantic Web,
where taxonomic reasoning has been recognised as one of
the core inferences (Fenselet al. 2001). Moreover, DLs use
the notions of concept (i.e. unary predicate) and role (i.e.
binary relation) to model declarative knowledge in a struc-
tured way. Using different constructors defined with a uni-
form syntax and unambiguous semantics, complex concept
definitions and axioms can be built from simple components.
Therefore, DLs are particularly appealing both to represent
ontological knowledge and to reason with it.

Unfortunately, because the expressive power needed to
model complex real-world ontology is quite high, ontology
reasoning was initially ruled out of the list of services to
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be provided by ontology management tools (Fikes & Far-
quhar 1999). Nevertheless, it as been re-introduced by the
OIL/DAML+OIL effort as a first-class issue, providing a so-
lution within the framework of a DL-based, frame-centred
approach (Fenselet al. 2001). However, despite its expres-
sivity, the OIL/DAML+OIL approach does not yet provide
practical support to reasoning with concrete domains or lo-
cal constraints (i.e. role-value maps). This is because the
knowledge model of the iFaCT DL engine (Horrocks 1999),
which provides the deductive services for the ontology in-
ference layer, does not currently include concrete domains
or role-value maps.

Some approaches have been proposed to includecon-
crete domainsin DL-based concept definitions which are
normally restricted toabstract domains. Despite the di-
versity of their representations, most of them have based
on ALC (Schmidt-Schauß & Smolka 1991) or its expres-
sive successorSHIQ (Horrocks, Sattler, & Tobies 1999).
They concentrated on extending the original tableau-based
algorithm (Schmidt-Schauß & Smolka 1991), i.e. create a
tableaux containing both concept constructors and constraint
predicates, during which process, the complex intervention
of abstract and concrete knowledge is inevitable. It has been
proved that adding concrete domains (e.g. numeric con-
straints) directly to expressive DL-based systems may result
in undecidable inferential problems (Lutz 2001).

The dilemma faced by DL-community brings up a new
question: although single-purposed reasoning systems have
improved substantially, their homogeneous approaches are
limited in two ways: (i) the expressive power of their rep-
resentation is restricted in order to ensure computational
tractability, completeness and decidability; (ii) the specialist
nature of their reasoning means that they are only successful
at carrying out particular inferential tasks.

We believe that if a knowledge model is too expensive
to be analysed by a reasoner (e.g. DLs) alone, other rep-
resentation and reasoning paradigms must be jointly used.
Therefore, it’s reasonable to consider that a hybrid ap-
proach to heterogeneous knowledge management may pro-
vide, among other things, a wider and better support to on-
tology reasoning.

In this paper, we thus present a generic hybrid schema
to extend existing DL-based systems with the ability of
representing and reasoning with numeric constraints. Our



idea is materialised through a hybrid modelling language
DL(D)/S, and explained with examples.

Inference fusionbased on DLs
Inference fusionis critical in Hybrid Reasoning Systems
(HRSs), which combine different kinds of specialised in-
ferential sub-systems. In this paper, we focus on a partic-
ular class of HRSs, which fuse TBox deductions from a
taxonomic reasoner with constraint satisfaction inferences
from a constraint solver. In order to ensure the autonomy of
both reasoners, we introduce the concept oflinkageswhich
are relations responsible for the inter-engine communication
between DL systems and constraint solvers. They: (i) en-
able cooperative reasoning without changing the underlying
inference algorithms of either reasoner; (ii) are expressive
enough to describe all the reasoning results from one sys-
tem to the other without dramatically increasing the original
computational complexity.

In our approach, a Hybrid Knowledge Base (HKB), de-
noted asΠKB , is first processed by aparserwhich fragments
the descriptions and splits them into three homogeneous
sets, namely: (i) a set of DL-oriented statements which do
not exceed the expressive power of the selected DL-based
system, (ii) a set of non-DL statements which contains the
concrete knowledge filtered out to form the set of DL state-
ments, and (iii) a set oflinkageswhich are one-to-one rela-
tions connecting DL and non-DL statements.

As a result, all the information related to the numeric con-
straints is removed from the concept definitions. Thus, only
the proper DL constructors which are admitted by the se-
lected DL-based systems are left.

The reasoning results from non-DL systems are fed into
the DL system by the ordering amonglinkages. The hybrid
characteristics of our approach are evident in the “polymor-
phism” of linkageswhich are defined as atomic concepts in
DL-based systems while act as legal objects in non-DL sys-
tems, (e.g. constrained variables in constraint solvers).

Hybrid modelling with inference fusion
We have introducedDL(D)/S, a hybrid language which fa-
cilitates the integration of DL-based systems withconcrete
domains. The concrete domainsare formally defined as a
pairD = (∆D, ΦD), where∆D is a set called the domain
andΦD is a set of predicates. Each predicateφ ∈ ΦD is
associated with an arityn and an n-ary predicateφD ⊆ ∆n

D.
In this paper, we restrict predicates to algebraic and boolean
operators, while we restrict the domain∆D to a finite one
with numeric values and string constants.

In principle, because of the generic characteristics ofin-
ference fusionand the common available oflinkages, the use
of a particular DL language is not mandatory, i.e. our ap-
proach to extending DLs with numeric constraints can po-
tentially be applied to other existing DL-based systems.

Syntax and Semantics ofDL(D)/S
We use theALCN , ALC with role number restrictions, as
the foundation of our hybrid representation since it provides
most of the constructs necessary for our purposes. LetA

denote a concept name,C arbitrary concepts,R a role name
andn an non-negative integer. Concepts inALCN are:

>|⊥|A|¬C|C u D|C t D|∀R.C|∃R.C|(≤ nR)|(≥ nR)

A concept definitionis eitherA
.v C (partial definition) or

A .= C (full definition). An interpretationI for ALCN is a
couple (∆I , ·I) where the nonempty set∆I is the domain
of I and the·I function maps each concept to a subset of∆I
while each role to a subset of∆I × ∆I . The interpretation
of ALCN constructors can be found in (Patel-Schneider &
Swartout 1993).

Let all the aforementioned symbols be defined as previ-
ously,H a hybrid concept andξ a concrete predicate. In ad-
dition to the syntax ofALCN , we introduce the following
new constructors:

1. hybrid role value restriction: ∀hR.H is a concept specify-
ing the value restrictions of role successors (H is referred
to ashybrid conceptso as to be differentiated from the
normal abstract role successors);

2. role cardinality restriction: (= v R) is a concept wherev
is anZ∗-type role cardinality (RC) variable;

3. role cardinality constraint: ∃v1, . . . , vn.C/ξ[v1, . . . , vn]
is a concept specifying the set of all constraints on role
cardinalities associated with conceptC.

With concept-local RC constraints, it is possible to restrict
the numbers of roles without giving the exact values. For
instance, usingDL(D)/S, a equipment with twice as many
airpads as axes is described as:

∃(α β).(Machine Tool u (= α has-axis) u (= β has-airpad))/{α = 2β}

where the RC constraints are specified asξ[α, β] : α = 2β.
Meanwhile, global constraints are introduced throughhy-

brid conceptsH as: ψ(H1, . . . , Hn) giving the restrictions
on the role successors. Note that global constraint is not
introduced by means of concept constructors and is not in-
terpreted within abstract domains.

Let ·I be the interpretation function,C[vi/ti] the concept
obtained through bounding each variable inv1, . . . , vn to a
numbert1, . . . , tn in Z∗, andλ′(·) : vi → ti the assignment
function. The meaning of the new constructors are inter-
preted as followings:

1. (∀hR.H)I = {x ∈ ∆I | ∀y.〈x, y〉 ∈ RI → y ∈ HI}
2. (= v R)I = { c ∈ ∆I | ] { d ∈ ∆I : 〈 c, d 〉 ∈ RI } = λ′(v) }
3. (∃v.C[v]/ξ[v])I = CI [v/t] ∧ ξ[v/t].

Constraints in DL(D)/S
DL(D)/S provides the capability to express both the HKB-
global constraints and the concept-local constraints. A
DL(D)/S knowledge base (DL(D)/S-KB) is represented as
Ω = T + Ψ, whereT is the set of concept definitions and
multi-concept relationships (e.g. subsumption and disjoint-
ness) andΨ is the set of all global constraintsψ[H1,. . . ,Hn]
defined overH1,. . . ,Hn or a subset of them.

To some extents, ourhybrid conceptis similar to thecon-
crete datatypein SHOQ(D) (Horrocks & Sattler 2001).
However, they are different in two aspects. All the concept
constructors are interpreted solely in abstract domains; asso-
ciations between abstract and concrete domains are realised



by an assignment function throughhybrid concepts. More-
over, the overall inferential process is distributed across dif-
ferent specialised engines and thus the intervention between
different language components is avoided.

Let λ(HI) ⊆ ∆D be the assignment function which cre-
ates a concrete image for ahybrid conceptand assign a sub-
set of∆D to the concrete image,λ′(vi) → ti ∈ Z∗ mapping
vi to a non-negative integer. We have:

(ψ(H1, . . . , Hn))
I ≡ sat(ψ(H1, . . . , Hn)) ≡

n̂

i=1

∀xi ∈ λ(HIi ).(∃y1 ∈ λ(HI1 ), . . . , ∃yi−1 ∈ λ(HIi−1),

∃yi+1 ∈ λ(HIi+1), . . . , ∃yn ∈ λ(HIn).ψ(y1, . . . , yi−1, xi, yi+1, yn))

i.e. for every possible value of the concrete image of
Hi, there exist values in everyHj (j = 1 . . . n, j 6= i)
such thatψ holds. Meanwhile, the collectionΨ is satisfied
sat(Ψ[H1, . . . , Hn]) iff

sat(Ψ[H1, . . . , Hn]) ≡ ∀ψ ∈ Ψ[H1, . . . , Hn].sat(ψ)

A DL(D)/S-conceptC/ξ (ξ may be empty) is satisfiable
w.r.t. ξ[vi] iff there is an assignmentλ′(vi) → ti ∈ Z∗ such
thatC[ti] 6= ∅ andξ[ti] holds fori = 1 . . . n:

(∃vi.C[vi]/ξ[vi])
I = ∃ti.C

I [ti] 6= ∅ ∧ ξ[ti] (i = 1 . . . n)

Both types of constraints need to be “wrapped” as they
cannot be directly processed by DL-based systems. Con-
cepts containing wrapped constraints are said to benor-
malised. The concept normalisation is specified as follows:

Global constraints: (i) generating a atomic concept for
eachhybrid conceptH, (ii) creating alinkagebetweenH
and the corresponding constrained variable and (iii) remov-
ing all global constraints;

RC-constrained concept: (i) replacing every sub-concept
containing RC constraints with an existential role restric-
tion; (ii) introducing an atomic concept for every set of con-
straints on role cardinalities; (iii) removing the existential
restrictions on RC variables and eliminating RC constraints
by conjuncting atomic concepts at the same logical level;

non-RC-constrained concept: If the concept is defined
with the RC constrained roles acting as the subject of nu-
meric role cardinality restrictions, (i) creating an existen-
tial role restriction to replace every sub-concept referring
to RC-constrained roles; (ii) generating a set of numeric
constraints to represent the numeric role cardinality restric-
tions; (iii) defining an atomic concept into the knowledge
base and conjuncting it to the original concept at the same
logical level. Concepts will not be changed otherwise.

For instance, the previousMachine Tool example is trans-
formed into

Machine Tool u ∃has-axis u ∃has-airpad u C1 axis-pad

where the RC constraint (i.e. “α = 2β”) is replaced by
C1 axis-pad introduced as an atomic concept. Meanwhile,
Concept (1) in the same HKB isnormalisedas (2)

Machine Tool u (≥ 4 has-axis) u (≤ 4 has-axis) (1)

Machine Tool u ∃has-axis u C2 axis-pad (2)

where the RC constraints (e.g.{|has-axis| ≤ 4}) is
extracted and replaced byC2 axis-pad because the role
has-axis is a RC-constrained role.

If we define that all concepts containing roles which are
restricted by RC constraints as RC-related concepts, then:

1. If two conceptsC andD are RC-related concepts, the sub-
sumption relationship is defined as:

(a) let C’ and D’ be the normalised concept definitions of
C andD;

(b) let ξ′C (ξ′D) be the union of original RC constraints
ξC (ξD) and those generated from the normalisation of
conceptC (D, respectively).

D/ξD v C/ξC if conceptD’ is subsumed byC’, i.e. D’ v
C’ and constraint setξ′D entails constraint setξ′C in model
Σ, ξ′D |=Σ ξ′C.

2. If otherwise, the normal DL-based reasoning is carried.

Reasoning with concrete constraints
The linkagesare based on two observations. Firstly, DL-
based systems can specify subsumption relationships be-
tween concepts (the “told” knowledge), e.g.(implies A B)
in iFaCT

Secondly, it is possible to obtain an ordering (e.g.quasi-
ordering(Hu, Arana, & Compatangelo 2003)) with the help
of constraint solvers1. For instance, the entailment relation-
ship between two set of constraints is seen as an ordering.

Ordering of constraints
In our case, orderings w.r.t. constraints are obtained in dif-
ferent ways. When domain reduction can be carried out
thoroughly and the constraint system can reach a stable sta-
tus, the inclusion relationships between reduced domains are
passed to the DL-based system. Such an approach applies
to cases when (i) variable domains exist independently; (ii)
their images in DL-based systems can be isolated from the
rest of a HKB; and (iii) the isolated knowledge can be re-
ferred to as an independent object naturally. For instance,
the life-span of human beings whose domain is0 . . . 150 can
be isolated from others easily and defined and referred to as
a atomic concept in a DL-based knowledge base.

When constrained variables appear as the RC restrictions,
the domain reduction is not applicable. Since constraints
can be considered as the set of tuples of legal values that the
constrained variables can take simultaneously (Tsang 1993),
an inclusion (entailment) between different sets of tuples can
actually be established and manipulated.

The relationships among concrete constraints are de-
scribed by aquasi-ordering. A formal definition on the new
concept,quasi-ordering, is introduced as follows:

Let α andβ be the sets of compound labels (tuples). We
say thatα is prior toβ in a quasi-orderingwith regard to a
modelΣ, if every tuple inβ also exists inα, i.e. β |=Σ α.

1Currently, Constraint Logic Programming (CLP) languages
have been extended with the ability to tackle with different domains
of computation, e.g. Boolean algebra, finite domains,etc. and, for
part of these domains provide the decision about consistency and
entailment of constraints (please refer to (Jaffar & Maher 1994)



In this case, we also say thatβ is tighter thanα. If such
ordering are mutual,α andβ are said to be equivalent.

Constraints inDL(D)/S-KB are manipulated in two
ways. Global role value constraints are removed in the sense
that the same restrictions can be achieved by reducing the
domains of constrained objects (i.e. maintaining a path con-
sistency among the concrete images of thehybrid concepts).
Contrarily, local RC constraints are enhanced by explicitly
expressing the restrictions which are otherwise implicit (i.e.
discover the entailments ordering and the disjointness).

Combinational behaviour semantics
The reasoning system ofDL(D)/S-KB is build on the top
of two subsequent engines, i.e. a DL system and a constraint
solver. In our approach, no change to the underlaying rea-
soning algorithms is necessary as a clear separation is kept
between DL-based descriptions and constraint-based ones.
Constraint solvers only reason with the constraint-related re-
strictions while DL-based systems focus on the taxonomic
reasonings. The behaviour semantics of our knowledge base
is defined with syntactic objects as:

(DL(D)/S-KB)I = DL( Con(Πnon-DL) ∪ ΠDL )

whereDL is the DL-based system,Con is the constraint
solver andΠnon-DL andΠDL are the sets of non-DL and DL-
based descriptions respectively.

With the combinational behaviour semantics, a system is
endowed with the ability to carry out real calculations (e.g.
the sum of two numeric values) while preserves theopen
world assumptionwhich is a distinctive characteristics of
the DL-based approach to the ontological reasonings. More-
over, the system modularity and the simplicity of implemen-
tation are enhanced as both theDL and theCon reasoning
engines can be off-the-shelf systems.

Modelling with DL(D)/S
An example built up using theDL(D)/S language is pre-
sented in LISP-style in Figure (1), where terms in bold
fonts are reserved words of the user language while constant
strings are presented in typewriter font, e.g.square .

Starting with the topmost conceptFloorplan, a series of
roles, hybrid variables, concepts and constraints are defined.
Note that all the concepts of room styles are only defined for
demonstrating purposes. Hence, no further restrictions other
than shapes are specified.

Reasoning about the HKB in Figure (1) using current DL-
based systems may be: (i) possible but at the price of com-
putational complexity, e.g. reasoning about the individual
shapes; or (ii) not feasible, e.g. the reasoning with numeric
constraints on role cardinalities.

In a hybrid approach, the reasoning about concrete con-
straints and variables can be redirected to a constraint solver
which is design particular for this type of inferences. More-
over, the interference between abstract and concrete knowl-
edge, one of the major contributions to the high computa-
tional complexity, can be avoided, if the fragment of the
HKB and the selection of the carrier (linkages) for inter-
engine communications is carefully designed.

After the hybrid reasoning, a series of nontrivial conclu-
sions can be drawn as follows:

Figure 1:DL(D)/S knowledge base example

(def-primconcept ’Floorplan ’top)

(def-role ’has room) (def-role ’has bathroom)
(def-role ’has bedroom) (def-role ’has internet plug)
(def-role ’has phone plug)

(decl-variable ’Shape SBaD [square, rect, rhomb, cir, tri ])
(decl-variable ’Shape SBeD [square, rect, rhomb, cir, tri ])
(decl-variable ’Shape SBaH [square, rect, rhomb, cir, tri ])
(decl-variable ’Shape SBeH [square, rect, rhomb, cir, tri ])
(decl-variable ’Shape SBaE [square, rect, rhomb, cir, tri ])
(decl-variable ’Shape SBeE [square, rect, rhomb, cir, tri ])

(def-concept ’Residence Design ’(exists (r be ba)
(and Floorplan

(equal r has rooms)
(equal be has bedrooms) (equal ba has bathrooms) )

(with :begin :body
r > be + ba

:end) ))

(def-concept ’Hitech Design ’(exists (x y z n1 n2)
(and Floorplan

(equal x has rooms) (equal z has phone plug)
(equal y has internet plug)
(equal n1 has bathrooms) (forall has bathrooms Style bath Hi)
(equal n2 has bedrooms) (forall has bedrooms Style bed Hi) )

(with :begin :body
x > n1 + n2, y = z, y = x

:end) ))

(def-concept ’Ensuit Design ’(exists (x y z)
(and Floorplan

(equal z has rooms)
(equal x has bedrooms) (forall has bedrooms Style bed En)
(equal y has bathrooms) (forall has bathrooms Style bath En) )

(with :begin :body
x = y, z ≥ y + x + 1

:end) ))

(def-concept ’Modern Design ’(exists (r pl)
(and Residence Design

(equal r has rooms) (equal pl has phone plug) )
(with :begin :body

r = pl

:end) ))

(def-concept ’Dorm Design ’(exists (x y z)
(and Floorplan

(equal x has rooms)
(equal y has bedrooms) (forall has bedrooms Style bed Do)
(equal z has bathrooms) (forall has bathrooms Style bath Do) )

(with :begin :body
x > y + z, y = z

:end) ))

(def-concept ’Style bath Do ’(and room (fallin shape Shape SBaD) ))
(def-concept ’Style bed Do ’(and room (fallin shape Shape SBeD) ))
(def-concept ’Style bath Hi ’(and room (fallin shape Shape SBaH) ))
(def-concept ’Style bed Hi ’(and room (fallin shape Shape SBeH) ))
(def-concept ’Style bath En ’(and room (fallin shape Shape SBaE) ))
(def-concept ’Style bed En ’(and room (fallin shape Shape SBeE) ))

(decl-constraint ’RoomShape :with :BEGIN
:BODY

Shape SBaD=[square, rect, rhomb ],
Shape SBeD=[square, rect, rhomb ],
Shape SBaE\=[cir, oval, tri, rhomb ],
Shape SBeH=[square, rect, oval ],
Shape SBaE=Shape SBeE,
disjoint(Shape SBaH, Shape SBeH)

:END)

Conc. 1 Modern Design is satisfiable:
because of the consistency of the overall RC con-
straints including the concept-local ones and those
inherited fromResidence Design through “told”
subsumption relationship;

Conc. 2 Ensuit DesignvDorm Design:
(i) conceptsStyle bath En and Style bed En
are subsumed by conceptsStyle bath Do and
Style bed Do respectively, and (ii) RC con-
straints ofEnsuit Design is tighter than those of
Dorm Design;

Conc. 3 Dorm DesignvResidence Design, based on
the entailment ordering between RC constraints;

Conc. 4 Hitech DesignvMorden Design:
the composite RC constraints ofMorden Design
entails concept local RC constraints of concept
Hitech Design;



Conclusions
We have presented a new approach which extends taxo-
nomic (DL-based) systems by combining the results of ex-
isting non DL-based reasoning systems. This approach aims
at enablinginference fusionby dividing a HKB into smaller
components, each containing the homogeneous knowledge
that can be processed by a different specialised reasoning
system. Results of inferences are then fused.

Benefiting from the use of independent inferential engines
and the polymorphous characteristics oflinkageswhich are
required to have consistent semantics within different sys-
tems, our approach toinference fusiondoes not depend on a
specific DL-based system or constraint solver.

In order to demonstrate the feasibility and applicability of
our ideas, we have presented a hybrid modelling language,
DL(D)/S which extendsALCN and illustrated its usage in
the context ofinference fusionby means of an example.

An implementation of theinference fusionapproach to
extend DLs with the ability of modelling concrete knowl-
edge is complete (Hu, Compatangelo, & Arana 2002). It
fuses inferences from the FaCT DL-based taxonomic rea-
soning system (Horrocks 1999) and the Eclipse constraint
reasoner (Brisset & others 2001). Preliminary results are
promising. Although no thorough analysis has been made,
the computational complexity can be estimated as follows:

DL-based system:since we do not explicitly introduce any
new types of reasoning or new constructors or operators,
the complexity of the DL-based system is expected to
remain unchanged. Meanwhile, by introducing a hybrid
approach, we avoid the complex interventions between
symbolic role number restrictions and other conceptual
constructors by normalising the former with “wrapper”
concepts. This removes one of the major sources of com-
putational complexity (Baader & Sattler 1996) with re-
gard to the extensions of DLs with concrete constraints,
if, again, only the DL-based inference is considered.

Constraint reasoner: Finite Constraint Satisfaction Prob-
lems (FCSPs) are NP-complete as a general class (Mack-
worth & Freuder 1993). Pragmatic results show that the
performance varies from system to system. For a thor-
ough analysis on different constraint systems, please re-
fer to (Ferńandez & Hill 2000).

Reasoning coordinator:on the general case, we expect the
complexity of the overall coordinating algorithm to be
O(N2) with regard to the size of the input HKB.

A formal evaluation of the implemented system using
real-life examples is forthcoming.
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