

AUTHOR(S):

TITLE:

YEAR:

Publisher citation:

OpenAIR citation:

Publisher copyright statement:

OpenAIR takedown statement:

 This publication is made
freely available under
________ open access.

This is the ______________________ version of an article originally published by ____________________________
in __
(ISSN _________; eISSN __________).

This publication is distributed under a CC ____________ license.

__

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

Facilitating DL-based Hybrid Reasoning

with Inference Fusion

Bo Hu1, Inés1 Arana and Ernesto Compatangelo2

1 School of Computing, The Robert Gordon University,

Aberdeen AB25 1HG, Scotland

Tel: +44 1224 262702, Fax: +44 1224 262727

2Department of Computing Science, University of Aberdeen

Aberdeen AB24 3UE, Scotland

Tel: +44 1224 272397, Fax: +44 1224 273422

Abstract

We present an extension to DL-based taxonomic reasoning by means

of the proposed inference fusion, i.e. the dynamic combination of infer-

ences from distributed heterogeneous reasoners. Our approach integrates

results from a DL-based system with results from a constraint solver un-

der the direction of a global reasoning coordinator. Inference fusion is

performed by (i) processing heterogeneous input knowledge, producing

suitable homogeneous input knowledge for each specialised reasoner; (ii)

activating each reasoner when necessary, collecting its results and passing

them to the other reasoner if appropriate; (iii) combining the results of the

1

two reasoners. We discuss the benefits of our approach and demonstrate

our ideas by proposing a language (DL(D)/S) and a reasoning system

(Concor) which uses knowledge bases written in DL(D)/S and supports

hybrid reasoning. We illustrate our ideas with an example.

Keywords: Description Logics, Hybrid Reasoning, Constraint Reasoning.

1 Motivation and background

The development of languages understandable by both human and machines

is central to the semantic web [1]. Thus, research in this area has increased

the interest of ontological modelling and reasoning. Current approaches to on-

tology reasoning during the knowledge lifecycle management are based on a

wide variety of structured knowledge models, each enabling different automated

capabilities. Some models, such as UML [2], represent knowledge at the concep-

tual level. Unfortunately, most of them have an ill-defined semantics and thus

do not enable any semantic deduction. Frame-based models like Protégé [3]

represent knowledge at the epistemological level (i.e. they use the two generic

primitives class and role). Although these models enable automated inferences

such as class membership, they do not support deductions such as subsumption.

Finally, models based on Description Logics (DLs) like OIL/DAML+OIL [4]

broaden the spectrum of frame-based inferences with a whole set of specialised

deductions based on taxonomic reasoning.

Deductive services provided by DL-based reasoners include, among others,

semantic consistency check subsumption, and concept classification [5]. DL-

2

based approaches are particularly appealing for applications such as ontology

reasoning in the Semantic Web, where taxonomic reasoning has been recognised

as one of the core inferences [4]. Moreover, DLs use the notions of concept (i.e.

unary predicate) and role (i.e. binary relation) to model declarative knowledge

in a structured way. Using different constructors defined with a uniform syntax

and unambiguous semantics, complex concept definitions and axioms can be

built from simple components. Therefore, DLs are particularly appealing both

to represent ontological knowledge and to reason with it.

Unfortunately, the expressive power needed to model complex real-world

ontologies is quite high, so that ontology reasoning was initially ruled out of

the list of services to be provided by ontology management tools [6]. Nev-

ertheless, the OIL/DAML+OIL effort has re-introduced the issue of ontology

reasoning as a first-class problem, providing a solution within the framework of

a DL-based, frame-centred approach [4]. However, despite its expressivity, the

OIL/DAML+OIL approach does not yet provide practical support to reason-

ing with concrete domains or local constraints (i.e. role-value maps). This is

because the knowledge model of the iFaCT DL engine [7], which provides the

deductive services for the ontology inference layer, does not currently include

concrete domains or role-value maps.

During the last few years, much research has been devoted to the develop-

ment of more powerful reasoning systems, Although single-purposed reasoning

systems have improved substantially, their homogeneous approaches are limited

in two ways: (i) the expressive power of their representation is restricted in

3

order to ensure computational tractability, completeness and decidability; (ii)

the specialist nature of their reasoning means that they are only successful at

carrying out particular inferential tasks. For instance, DL-based systems spe-

cialised in the construction of concept taxonomies from concept descriptions

while constraint programming tools solve constraint problems. Although in the

past there has been some research on the integration of hybrid homogeneous rea-

soning [8], little has been done on the integration of heterogeneous reasoning,

e.g. the integration of DL-based and constraint-based reasoners.

Some approaches have been proposed to include concrete domains—and

predicates on these domains—in DL-based concept definitions which are nor-

mally restricted to abstract domains. Despite the diversity of their representa-

tions, most of them are based on ALC [9] and its expressive successor SHIQ [10]

and extend the original tableau-based algorithm [9] in different ways. It has been

proved, however, that reasoning about extensions of ALC with concrete domains

is generally intractable [11]. This problem can be mitigated only if suitable re-

strictions are introduced in the way of combining concept constructors [12].

Homogeneous reasoning systems (or systems with homogeneous inference al-

gorithms) have encountered the difficulty of finding the right “trade-off” between

expressiveness and computational complexity. We believe that if a knowledge

model is too expressive to be analysed within the framework of DLs, then other

representation and reasoning paradigms must be jointly used. Therefore, it’s

reasonable to consider a that a hybrid approach to heterogeneous knowledge

management may provide, among other things, a wider and better support to

4

ontology reasoning. The benefits of such an approach in the context of ontology

sharing through the articulation of ontology interdependencies is highlighted

in [13].

In this paper, we thus present a generic schema to extend existing DL-based

systems with the ability of representing and reasoning with numeric constraints.

Our idea is materialised through a hybrid modelling language DL(D)/S, and

supported by an implemented hybrid reasoning system (HRS), Concor.

2 Practical approach for hybrid reasoning

Inference fusion is a generic schema for dynamically integrating heterogeneous

inferential engines [14]. More specifically, we focus on a particular class of in-

ference fusion-based HRSs, which fuse the T-Box deductions from a DL-based

taxonomic reasoning system with constraint satisfaction inferences from a con-

straint solver under the direction of a global reasoning coordinator.

In order to ensure the autonomy of both inferential sub-systems (hereafter,

referred to as engines), there should be a reliable mechanism responsible for the

communicating between them. For this purpose, we introduce the bijection,

linkage, which is responsible for mapping the intrinsic data structures in the

DL-based system to the data structures in the constraint solver and vice versa.

Linkages ensure that (i) the results from one system can be fed into the other

system without increasing the original computational complexity of these two

systems; and (ii) no changes are required on either reasoning system, i.e. the

5

underlying inference algorithms remain unchanged.

A Hybrid Knowledge Base (HKB), denoted as ΠKB, is first processed by a Π = pi

parser which fragments the descriptions and splits them into three sets, namely:

(i) ΠDL, i.e. a set of DL-oriented statements which do not exceed the expressive

power of the selected DL-based system, (ii) Πnon-DL, i.e. a set of non-DL state-

ments which contains the concrete knowledge filtered out to form ΠDL, and (iii)

Πlinkage, i.e. a set of linkages which are one-to-one relations connecting DL and

non-DL statements.

As a result, instead of reasoning with constraints directly, DL-based systems

provide inferential services without being aware of the existence of constraint

reasoning. All the information related to concrete domains is removed from

concept definitions. Thus, only the proper DL-based constructors which are

admitted by the selected DL-based inferential engines are left.

The reasoning results from the non-DL system are reflected into the DL one

using linkages. Therefore, the hybrid characteristics of our approach are evident

in the “polymorphism” of linkages which are regarded as atomic concepts in the

DL-based inferential engine while act as legal objects in the non-DL reasoning

system (e.g. constrained variables in CSs).

For instance, let’s assume that, in state X, all people participating in legal

marriages should be at least 22 years old. In the meantime, only those who

are older than 70 are counted as senior citizens. Amongst the married people,

couples who have already celebrated their golden wedding anniversary should

have been married for at least 50 years. The set of concepts and global con-

6

straints for this domain is as follows: Married-person who is between 22 and 1001,

Golden-couples who have been married for at least 50 years, and Senior-citizens

who are between 70 and 100. Because of the difficulty of carrying out real cal-

culations, e.g. addition of X+Y, DL-based systems may not be able to detect

that a person who belongs to Golden-couple is also a Senior-citizen.

Our approach can facilitate such reasoning by splitting and redirecting knowl-

edge to specialised reasoners. In the above example, a series of AGEx will be

defined as constrained variables with specified domains, e.g. 0..100. Linkages

map a concrete variable AGEx (used by the constraint solver) to an abstract

atomic concept Agex (referred in the DL concept definitions of Married-person,

Golden-couple and Senior-citizen). Thus, the reasoning results w.r.t. AGEx from

the constraint solver are fed into the DL-based system. Subsequently, the sub-

sumption relationship between Senior-citizen and Golden-couple can be detected

by the DL-based (taxonomic) reasoning system.

3 Hybrid DL-based modelling with DL(D)/S

In this section, the hybrid modelling language DL(D)/S is proposed to illus-

trate the applicability of inference fusion in extending the DL-based systems.

DL(D)/S extends ALC with various types of concrete constraints. Note that,

because of the generic characteristics of inference fusion and the common avail-

ability of linkages in DLs, the use of ALC is not mandatory, i.e. other DLs

1We assume that the life span of human being does not exceed 100 years

7

could have been used for our purposes.

3.1 Syntax and Semantics of DL(D)/S

ALC concepts are built as follows. Let A be the set of concept names, C the set

of arbitrary concept descriptions, R the set of role names and n an arbitrary

non-negative integer. Starting with (i) A ∈ A, (ii) C, D ∈ C and (iii) R ∈ R,

concept terms can be defined inductively. A concept definition is either A
.v C

(partial definition) or A
.= C (full definition). An interpretation I for ALC is a

couple (∆I , ·I): the nonempty set ∆I is the domain of I, while the ·I function ∆ = delta

maps each concept to a subset of ∆I and each role to a subset of ∆I × ∆I .

The interpretation of ALC constructors is shown in Table 1.

ALC has been extended with the ability to describe concrete knowledge. For

instance, ALC(D) [15] extends ALC with constructors allowing the definition of

predicates over functional roles and role chains. Sound and complete algorithms

for ALC(D) exist for A-Box reasoning provided that D is an admissible concrete

domain, e.g. N [15]. SHOQ(D) extends ALC with constructors for concrete

datatypes used to represent numbers and strings [16]. Sound and complete

algorithms exist for reasoning in SHOQ(D) provided that suitable restrictions

are introduced [15]. Meanwhile, substantial efforts have been made on the

implementations, e.g. ALCRP(D) [17] and RACER [18].

Despite the difference in expressive and deductive powers, traditional ap-

proaches which extend DLs have concentrated on enhancing the algorithm orig-

inally devised for ALC [9], i.e. create a tableaux containing both concept con-

8

structors and constraint predicates, during which process, the complex inter-

vention of abstract and concrete knowledge is inevitable. Thus, adding concrete

domains (e.g. numeric constraints) directly to expressive DL-based systems may

result in undecidable inferential problems [11].

We introduced the hybrid modelling language DL(D)/S (Table 2) in order

to extend DLs with concrete domains while avoiding a significant increase in the

computational complexity of the DL-based systems [14]. The concrete domain

is formally defined as a pair D = (∆D, ΦD), where ∆D is a finite set of numeric Φ = phi

and symbolic constants and ΦD a set of algebraic and boolean operators.

Here, rel ∈ {=}, H is a hybrid concept, v an integer type variable and ξ[v] the

set of role cardinality constraints defined over v; λ′ an assignment mapping v to

a set of non-negative integers. The constraints are, therefore, specified through

hybrid role successors (hybrid concept) H or role cardinality variables v1, . . . , vn.

The following concept contains a numeric constraint which restricts the number

of airpads (α) to be twice the number of axis (β): α = alpha
β = beta

exists(α, β) (and Machine Tool (equal α has-axis) (equal β has-airpad)\

(: with : begin α = 2β : end))

3.2 Constraints in DL(D)/S

Both global constraints over hybrid role successors and local constraints on role

cardinalities are allowed in DL(D)/S. A DL(D)/S knowledge base (DL(D)/S-

KB) is represented as Ω = T + Ψ, where T is the set of concept definitions and Ω = omega,

Ψ = psimulti-concept relationships (e.g. subsumption and disjointness among concepts)

9

and Ψ (short for Ψ[H1,. . . ,Hn]) is the set of all global constraints ψ[H1,. . . ,Hn]

defined over H1,. . . , Hn or a subset of them. ψ = psi

Let λ(HI) ⊆ ∆D be the assignment function which creates a concrete image λ = lambda

(a concrete variable with associated domains) for an hybrid concept and assign

a subset of ∆D to the concrete image, and λ′(vi) → ti ∈ N mapping vi a

non-negative integer. We have:

(ψ(H1, . . . , Hn))I ≡ sat(ψ(H1, . . . , Hn)) ≡
Vn

i=1 ∀xi ∈ λ(HIi).(∃y1 ∈ λ(HI1), . . . , ∃yi−1 ∈ λ(HIi−1),

∃yi+1 ∈ λ(HIi+1), . . . , ∃yn ∈ λ(HIn).ψ(y1, . . . , yi−1, xi, yi+1, yn))

i.e. for every value of the concrete image of Hi, there exist values in every

Hj (j = 1 . . . n, j 6= i) such that predicate ψ holds. Meanwhile, the collection

Ψ[H1, . . . , Hn] is satisfied sat(Ψ[H1, . . . , Hn]) iff

sat(Ψ[H1, . . . , Hn]) ≡ ∀ψ ∈ Ψ[H1, . . . , Hn].sat(ψ)

A DL(D)/S-concept C/ξ (where ξ is the set of concept-local role cardinality con- ξ = xi

straints that may be empty) is satisfiable w.r.t. ξ[vi] iff there is an assignment λ′

such that C[λ′(vi)] 6= ∅ and ξ[λ′(vi)] hold for i = 1 . . . n where λ′(vi) → ti ∈ N :

(∃vi.C[vi]/ξ[vi])
I = ∃ti.(C

I [ti] 6= ∅ ∧ ξ[ti]) (i = 1 . . . n)

Our hybrid concepts capture both abstract knowledge and RC constraints.

However, constraints need to be “wrapped” as they cannot be directly processed

by a DL-based system. Concepts containing wrapped RC constraints are said

10

to be normalised.The normalisation of DL(D)/S concepts:

Global constraints: (i) Generating a atomic concept for each hybrid con-

cept H, (ii) creating a mapping between H and the corresponding constrained

variable and (iii) removing all global constraints is as:

RC-constrained concept: (i) Replacing every sub-concept containing con-

straints on role cardinalities with an existential role restriction; (ii) Introducing

an atomic concept for every set of constraints on role cardinalities; (iii) Remov-

ing the existential restrictions on RC variables and eliminating RC constraints

by conjuncting atomic concepts at the same logical level;

Non-RC-constrained concept: If the concept is defined with the RC con-

strained roles acting as the subject of numeric role cardinality restrictions, (i)

creating an existential role restriction to replace every sub-concept referring to

RC-constrained roles; (ii) generating a set of numeric constraints to represent

the numeric role cardinality restrictions; (iii) defining an atomic concept into

the HKB and conjuncting it to the original concept at the same logical level.

Concepts will not be changed otherwise.

For instance, the previous Machine Tool example is transformed into

(and Machine Tool (some has-axis) (some has-airpad) C1 axis-pad)

where the RC constraint (i.e. α = 2β) is replaced by C1 axis-pad introduced as

11

an atomic concept. Meanwhile, if a concept in the same HKB is defined as

(and Machine Tool (atleast 4 has-axis) (atmost 4 has-axis))

it will be normalised as:

(and Machine Tool (some has-axis) C2 axis-pad)

where the RC constraints (e.g. {|has-axis| ≤ 4}) is extracted and replaced by

C2 axis-pad because that the same roles (i.e. has-axis and has-airpad) have been

restricted by RC constraints in other concepts from the same HKB.

If we define that all concepts contains roles that restricted by RC constraints

as RC related concept, then:

1. If two concepts C and D are RC related concepts (i.e. ξ may be empty but

the concept contains roles restricted by RC constraints), the subsumption

relationship between DL(D)/S concepts is defined as follows:

• let C’ and D’ be the normalised concept definitions of C and D;

• let ξ′C (ξ′D) be the union of original RC constraints ξC (ξD) and those

generated from the normalisation of concept C (D).

Then, D/ξD v C/ξC if concept D’ is subsumed by C’, i.e. D v C and

constraint set ξ′D entails constraint set ξ′C in model Σ, namely ξ′D |=Σ ξ′C.

2. If otherwise the normal DL-based reasoning will be carried.

The hybrid concept is similar to the concrete datatype in SHOQ(D) [16].

12

However, our approach differs from the latter in three aspects. Firstly, all the

concept constructors are interpreted solely in abstract domains; associations

between abstract and concrete domains are realised by an assignment function

through hybrid concepts. Secondly, more complex global constraints can be

modelled using role value constraints. Finally, the overall inferential process is

distributed across different (specialised) engines and thus the overall complexity

of the reasoning task may be reduced.

4 Hybrid reasoning with constraints

Our linkages are based on two observations. Firstly, DL-based systems can

specify subsumption relationships between concepts (the “told” knowledge). For

instance, in the iFaCT system [7], one can specify concept A to be subsumed

by concept B as (implies A B). Most other DL systems such as Loom [19] and

RACER [18] have the same functionality.

Secondly, it is possible to obtain an ordering (e.g. quasi-ordering [20]) with

the help of constraint solvers2. For instance, the entailment between two set of

constraints can be seen as an ordering.

2Currently, Constraint Logic Programming (CLP) languages have been extend with the
ability to tackle with different domains of computation, e.g. Boolean algebra, finite domains,
etc. and, for part of these domains provide the decision about consistency and entailment of
constraints (please refer to [21] for a detailed survey).

13

4.1 Ordering of constraints

When domain reduction can be carried out thoroughly and the constraint system

can reach a stable status, the inclusion relationships between reduced domains

are passed to the DL-based system. Such approach applies to cases when (i)

variable domains exist independently; (ii) their images in DL-based systems can

be extracted from the rest of a KB and (iii) the extracted knowledge can be

referred to as an independent object in the KB. For instance, the life-span of

human beings whose domain is 0 . . . 150 can be isolated from others easily and

defined as a atomic concept in a DL-based knowledge base.

When constrained variables appear as the role number restrictions, the do-

main reduction technique is not applicable. Because constraints can be consid-

ered as the set of tuples of legal values that the constrained variables can take

simultaneously [22], an inclusion between different sets of tuples can actually be

established and manipulated.

The relationship obtained among concrete constraints is described by a

quasi-ordering. A formal definition on the new concept, quasi-ordering, is intro-

duced as follows:

Let α and β be the sets of compound labels (tuples). We say that α is prior

to β in a quasi-ordering with regard to a model Σ, if every tuple in β also exists Σ = sigma

in α, i.e. β |=Σ α. In this case, we also say that β is tighter than α.

Note that the ordering among constraint sets is a partial ordering as it is

reflexive, transitive and anti-symmetric. In cases when such ordering are mutual,

α and β are equivalent.

14

Constraints in DL(D)/S-KB are manipulated in two ways. Global role value

constraints are removed in the sense that the same restrictions can be achieved

by reducing the domains of constrained objects (i.e. maintaining a path con-

sistency among the associated constrained domains of concrete images of the

hybrid concepts). On the contrary, local RC constraints are enhanced by explic-

itly expressing the restrictions which are otherwise implicit (i.e. discover the

entailments ordering and the disjointness).

4.2 Hybrid reasoning system, Concor

Concor is composed of four major parts: engine interface, user(and KB) in-

terface, internal storage and reasoning coordinator which is at the heart of Con-

cor. Hybrid knowledge is input into Concor through the user(and KB) in-

terface. The user(and KB) interface contains a parser which checks the inputs

for errors such as illegal syntax and invalid constructors, i.e. those constructors

that are not admitted by the selected inferential engines. Well-formed concept

descriptions are normalised and translated into intermediate forms and split

into non-DL, DL and linkage pools which are referred to as internal storage.

Having parsed the input HKB, the user(and KB) interface passes control to

the reasoning coordinator and the latter will decide which subsequent-inferential

engines (SIEs) the contents of the internal storage should be sent to. Communi-

cations between the reasoning coordinator and the SIEs are carried out through

the engine interface. An engine interface associated to an engine is responsible

for transferring the data and control flows to this particular engine. The en-

15

gine interface helps to design Concor system in a modular manor: SIE can be

replaced together with its interface, thus, theoretically the effect of exchanging

SIE will not ripple off to other parts of the HRS.

The modular manor of Concor system is further guaranteed by introducing

an intermediate language between user language and the underlying modelling

languages of the selected SIEs. The intermediate language allows a standard

translator to be designed for each inferential engine. It also reduces the pro-

gramming tasks on any further extensions to the modelling language—only the

parser residing in the User Interface need to be upgraded. Meanwhile, because

the intermediate modelling language has a well-formed semantics, engine inter-

faces can actually be developed off-line with the help of certain tools.

Concor’s reasoning process is as follows:

1. parse the input HKB and split it into small homogeneous parts: DL, non-

DL (global and concept-local constraints), and linkage;

2. check the consistency of global constraints and propagate them in order

to maintain a full path-consistency by reducing the set of possible values

associated with each constrained variable;

3. update DL-based descriptions with the quasi-ordering (domain inclusion)

between constrained variables;

4. check the consistency of concept-local RC constraints w.r.t. each individ-

ual RC constrained concept;

5. obtain quasi-ordering (entailment ordering) among all RC constraint sets;

16

6. update and classify the DL-based descriptions based on the new knowledge

(quasi-ordering).

4.3 Hybrid reasoning with examples

We will use a toy example to demonstrate the merits of our hybrid approach.

Assume that an estate agency X maintains a database of floor plans. Each

design contains certain types of constraints on the number and style of rooms.

The HKB is as follows:

(def-primconcept ’Floorplan ’top)

(def-role ’has room) (def-role ’has bathroom)

(def-role ’has bedroom) (def-role ’has internet plug)

(def-role ’has phone plug)

(decl-variable ’Shape SBaD [square, rect, oval, rhomb, cir, tri])

(decl-variable ’Shape SBeD [square, rect, oval, rhomb, cir, tri])

(decl-variable ’Shape SBaH [square, rect, oval, rhomb, cir, tri])

(decl-variable ’Shape SBeH [square, rect, oval, rhomb, cir, tri])

(decl-variable ’Shape SBaE [square, rect, oval, rhomb, cir, tri])

(decl-variable ’Shape SBeE [square, rect, oval, rhomb, cir, tri])

17

(def-concept ’Ensuit Design ’(exists (x y z)

(and Floorplan

(equal z has rooms) (equal x has bedrooms)

(forall has bedrooms Style bed Ensuit)

(equal y has bathrooms)

(forall has bathrooms Style bath Ensuit))

(with :begin

:body

x = y, z ≥ y + x + 1

:end)))

(def-concept ’Residence Design ’(exists (r be ba)

(and Floorplan (equal r has rooms)

(equal be has bedrooms)

(equal ba has bathrooms)

(with :begin

:body

r > be + ba

:end)))

18

(def-concept ’Hitech Design ’(exists (x y z n1 n2)

(and Floorplan

(equal x has rooms) (equal z has phone plug)

(equal y has internet plug)

(equal n1 has bathrooms)

(forall has bathrooms Style bath Hitech)

(equal n2 has bedrooms)

(forall has bedrooms Style bed Hitech))

(with :begin

:body

x > n1 + n2, y = z, y = x

:end)))

(def-concept ’Dorm Design ’(exists (x y z)

(and Floorplan

(equal x has rooms) (equal y has bedrooms)

(forall has bedrooms Style bed Dorm)

(equal z has bathrooms)

(forall has bathrooms Style bath Dorm))

(with :begin

:body

x > y + z, y = z

:end)))

19

(def-concept ’Modern Design ’(exists (r pl)

(and Residence Design

(equal r has rooms) (equal pl has phone plug)

(with :begin

:body

r = pl

:end)))

(def-concept ’Style bath Dorm ’(and room (fallin shape Shape SBaD)))

(def-concept ’Style bed Dorm ’(and room (fallin shape Shape SBeD)))

(def-concept ’Style bath Hitech ’(and room (fallin shape Shape SBaH)))

(def-concept ’Style bed Hitech ’(and room (fallin shape Shape SBeH)))

(def-concept ’Style bath Ensuit ’(and room (fallin shape Shape SBaE)))

(def-concept ’Style bed Ensuit ’(and room (fallin shape Shape SBeE)))

(decl-constraint ’RoomShape :with :BEGIN

:BODY

Shape SBaD=[square, rect, rhomb],

Shape SBeD=[square, rect, rhomb],

Shape SBaE\=[cir, oval, tri, rhomb],

Shape SBeH=[square, rect, oval],

Shape SBaE=Shape SBeE,

disjoint(Shape SBaH, Shape SBeH)

:END)

Reasoning about the above HKB with traditional DL-based systems may

be either (i) possible but at the price of computational complexity, e.g. rea-

soning about the individual shapes; or (ii) not feasible, e.g. the reasoning with

constraints on role cardinalities.

20

After the hybrid reasoning, a series of nontrivial conclusions can be drawn

from the above example as:

Ensuit Design v Dorm Design

Dorm Design v Residence Design

Hitech Design v Morden Design

5 Conclusions and future work

We have presented a new approach which extends taxonomic (DL-based) sys-

tems by combining the results of existing non DL-based reasoning systems. This

approach aims at enabling inference fusion by dividing an input hybrid KB into

smaller components, each containing the knowledge that can be processed by a

different specialised reasoning system. Results of inferences are then fused.

Benefiting from the use of independent inferential engines and the polymor-

phous linkages which are required to have consistent semantics within different

systems, our approach to inference fusion does not depend on a specific DL-

based system or constraint solver.

In order to demonstrate the feasibility and applicability of our ideas, we

have presented a hybrid modelling language, DL(D)/S which extends ALC and

illustrated its usage in the context of inference fusion by means of an example.

The Concor architecture is proposed as the platform of carrying out infer-

ence fusion which has several advantages, such as system extensibility, simplic-

ity and component isolation. Implementation of Concor system is completed

which fuses inferences from the iFaCT DL-based system [7] and the Eclipse

21

CS [23]. Small test cases have been reasoned about by Concor system giving

promising results. Although no formal analysis of the Concor system has been

made, its complexity can be estimated as follows:

• DL system: since we do not explicitly introduce any new type of reasoning

or new concept constructors or operators, the complexity of the DL sys-

tem remains unchanged. Meanwhile, by introducing a hybrid approach,

we avoid the complex interventions between symbolic role number restric-

tions and other conceptual constructors by introducing the former through

hybrid “wrapping” concepts. This removes one of the major sources of

computational complexity [24] with regard to the extensions of DLs with

concrete domains, if, again, only the DL-based inference is considered.

• Constraint reasoner: Finite Constraint Satisfaction Problems (FCSPs) are

NP-complete as a general class [25]. Pragmatic results show that the

performance varies from system to system. For a thorough analysis on

different constraint systems, please refer to [26].

• Reasoning coordinator: thorough analysis on the algorithms working with

the reasoning coordinator is forthcoming.

A formal evaluation of Concor and the theory of inference fusion using

real-life examples is forthcoming.

22

Acknowledgements

This work is partially supported by an Overseas Research Scholarship from the

British Council and by EPSRC under the AKT IRC grant GR/N15764.

References

[1] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific

American, pages 28–37, May 2001.

[2] The Object Management Group OMG. OMG Unified Mod-

eling Language Specification, March 2000. Available from

http://www.omg.org/technology/documents/formal/uml.htm.

[3] N. F. Noy, R. W. Fergerson, and M. A. Musen. The knowledge model of

Protégé-2000: Combining interoperability and flexibility. In Proc. of the

12th Intl. Conf. on Knowledge Engineering and Knowledge Management

(EKAW’2000), 2000.

[4] D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. Patel-

Schneider. OIL: An Ontology Infrastructure for the Semantic Web. Intel-

ligent Systems, 16(2):38–45, 2001.

[5] F. M. Donini et al. Reasoning in description logics. In Foundations of

Knowledge Representation, pages 191–236. CSLI Publications, 1996.

[6] R. Fikes and A. Farquhar. Distributed Repositories of Highly Expressive

Reusable Ontologies. Intelligent Systems, 14(2):73–79, 1999.

23

http://www.omg.org/technology/documents/formal/uml.htm�

[7] I. Horrocks. FaCT and iFaCT. In Proc. of the Intl. Workshop on Descrip-

tion Logics (DL’99), pages 133–135, 1999.

[8] B. Nebel. What is hybrid in hybrid representation and reasoning systems?

In Proc. of the 2nd Intl. Symp. on Computational Intelligence (CI’89),

pages 217–228, 1989.

[9] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with

complements. Artificial Intelligence, 48(1):1–26, 1991.

[10] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive

description logics. In Proc. of the 6th Intl. Conf. on Logic for Programming

and Automated Reasoning (LPAR’99), number LNAI-1705, pages 161–180,

1999.

[11] C. Lutz. NExpTime-complete description logics with concrete domains. In

Proc. of the Intl. Joint Conf. on Automated Reasoning, number LNAI-2083,

pages 45–60, 2001.

[12] V. Haarslev, C. Lutz, and R. Möller. A description logic with concrete

domains and role-forming predicates. Jour. of Logic and Computation,

9(3):351–384, 1999.

[13] E. Compatangelo and H. Meisel. K−ShaRe: an architecture for sharing

heterogeneous conceptualisations. In Proc. of I-KOMAT’2002-to appear,

2002.

24

[14] B. Hu, E. Compatangelo, and I. Arana. Coordinated reasoning with infer-

ence fusion. In E. Damiani et. al., editor, Proc. of the KES-2002, Sixth Intl.

Conf. on Knowledge-Based Intelligent Information & Engineering Systems,

pages 156–160. IOS Press, 2002.

[15] F. Baader and P. Hanschke. A scheme for integrating concrete domains

into concept languages. In Proc. of the 12th Intl. Joint Conf. on Artificial

Intelligence (IJCAI’91), pages 452–457. Morgan Kaufmann, 1991.

[16] I. Horrocks and U. Sattler. Ontology Reasoning in the SHOQ(D) Descrip-

tion Logic. In Proc. of the 17th Intl. Joint Conf. on Artificial Intelligence

(IJCAI’01), pages 199–204. Morgan Kaufmann, 2001.

[17] V. Haarslev, R. Möller, and A. Turhan. ABox reasoner: Progress report.

In Proc. of the Intl. Workshop on Description Logics (DL’98), pages 82–86,

1998.

[18] V. Haarslev and R. Möller. High Performance Reasoning with Very Large

Knowledge Bases: A Practical Case Study. In Proc. of the 17th Intl. Joint

Conf. on Artificial Intelligence (IJCAI’01), pages 161–168, 2001.

[19] R. MacGregor, H. Chalupsky, and E. R. Melz. PowerLoom Manual. ISI,

University of South California, 1997.

[20] B. Hu, E. Compatangelo, and I. Arana. A hybrid approach to extend DL-

based reasoning with concrete domains. In Proc. of the KI-2001 Workshop

on Applications of Description Logics, 2001.

25

[21] Joxan Jaffar and Michael J. Maher. Constraint Logic Programming: A

Survey. The Jour. of Logic Programming, 19 & 20:503–582, 1994.

[22] E. P. K. Tsang. Foundations of Constraint Satisfaction. Academic Press,

1993.

[23] P. Brisset et al. ECLiPSe Constraint Library Manual, Rel. 5.2. Interna-

tional Computers Ltd. and Imperial College London, 2001.

[24] F. Baader and U. Sattler. Description Logics with Symbolic Number Re-

strictions. In Proc. of the 12th European Conf. on Artificial Intelligence

(ECAI’96), pages 283–287. John Wiley, 1996.

[25] A. K. Mackworth and E. C. Freuder. The Complexity of Constraint Satis-

faction Revisited. Artificial Intelligence, 59(1–2):57–62, 1993.

[26] A. Fernández and P. M. Hill. A Comparative Study of Eight Constraint

Programming Languages over the Boolean and Finite Domains. Jour. of

Constraints, 5:275–301, 2000.

26

Table 1: Syntax and semantics of ALC constructors

Constructor Syntax Semantics (Interpretation)

Top (Universe) > ∆I

Bottom (Nothing) ⊥ ∅
Atomic Concept A AI ⊆ ∆I

Atomic Role R RI ⊆ ∆I ×∆I

Conjunction C u D CI ∩ DI

Disjunction C t D CI ∪ DI

Negation ¬ C ∆I \ DI

Universal quantification ∀R .C { c ∈ ∆I | ∀ d ∈ ∆I : 〈 c, d 〉 ∈ RI → d ∈ CI }
Existential quantification ∃R .C { c ∈ ∆I | ∃ d ∈ ∆I : 〈 c, d 〉 ∈ RI ∧ d ∈ CI }

27

Table 2: Syntax and semantics of DL(D)/S constructor (not in ALC)

Constructor Syntax Semantics (Interpretation)

role value constraint(D) ∀RH.H {x ∈ ∆I | ∀y.〈x, y〉 ∈ RI → y ∈ HI}
role cardinality (rel v R) { c ∈ ∆I |] { d ∈ ∆I : 〈 c, d 〉 ∈ RI } rel λ′(v) }
constraint(S) ∃v.C[v]/ξ[v] CI [λ(v)] where ξ[λ(v)] hold

28

Captions

Figure 1: System architecture of Concor.

29

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

N
on

-D
L

-p
oo

l
L

in
ka

ge
-p

oo
l

D
L

-p
oo

l

C
or

e
co

nt
ro

lle
r

Pa
rs

er

re
su

lts

H
K

B
 f

ile
U

se
rs

C
S

re
as

on
er

D
L

re
as

on
er

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

U
se

r
In

te
rf

ac
e

E
ng

in
e

In
te

rf
ac

e
R

ea
so

ni
ng

 C
oo

rd
in

at
or

C
on

co
r

H
yb

ri
d

R
ea

so
ni

ng
Sy

st
em

CS Interface

DL Interface

Figure 1: Knowledge-Based Systems, B. Hu, I. Arana and E. Compatangelo

30

	HU 2003 Facilitating DL-based hybrid 1
	HU 2003 Facilitating DL-based hybrid 2
	HU 2003 Facilitating DL-based hybrid 3
	HU 2003 Facilitating DL-based hybrid 4
	HU 2003 Facilitating DL-based hybrid 5
	HU 2003 Facilitating DL-based hybrid 6
	HU 2003 Facilitating DL-based hybrid 7
	HU 2003 Facilitating DL-based hybrid 8
	HU 2003 Facilitating DL-based hybrid 9
	HU 2003 Facilitating DL-based hybrid 10
	HU 2003 Facilitating DL-based hybrid 11
	HU 2003 Facilitating DL-based hybrid 12
	HU 2003 Facilitating DL-based hybrid 13
	HU 2003 Facilitating DL-based hybrid 14
	HU 2003 Facilitating DL-based hybrid 15
	HU 2003 Facilitating DL-based hybrid 16
	HU 2003 Facilitating DL-based hybrid 17
	HU 2003 Facilitating DL-based hybrid 18
	HU 2003 Facilitating DL-based hybrid 19
	HU 2003 Facilitating DL-based hybrid 20
	HU 2003 Facilitating DL-based hybrid 21
	HU 2003 Facilitating DL-based hybrid 22
	HU 2003 Facilitating DL-based hybrid 23
	HU 2003 Facilitating DL-based hybrid 24
	HU 2003 Facilitating DL-based hybrid 25
	HU 2003 Facilitating DL-based hybrid 26
	HU 2003 Facilitating DL-based hybrid 27
	HU 2003 Facilitating DL-based hybrid 28
	HU 2003 Facilitating DL-based hybrid 29
	HU 2003 Facilitating DL-based hybrid 30
	HU 2003 Facilitating DL-based hybrid 31

	OA: GREEN
	OA Logo:
	AUTHORS: HU, B., ARANA, I. and COMPATANGELO, E.
	TITLE: Facilitating DL-based hybrid reasoning with inference fusion.
	YEAR: 2003
	Publisher citation: HU, B., ARANA, I. and COMPATANGELO, E. 2003. Facilitating DL-based hybrid reasoning with inference fusion. Knowledge-based systems [online], 16(5-6), pages 253-260. Available from: https://doi.org/10.1016/S0950-7051(03)00026-1
	OpenAIR citation: HU, B., ARANA, I. and COMPATANGELO, E. 2003. Facilitating DL-based hybrid reasoning with inference fusion. Knowledge-based systems, 16(5-6), pages 253-260. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk/
	Version: AUTHOR ACCEPTED
	Publisher: ELSEVIER
	Series: Knowledge-based systems
	ISSN: 0950-7051
	eISSN: 1872-7409
	Set statement:
	License: BY-NC-ND 4.0
	License URL: https://creativecommons.org/licenses/by-nc-nd/4.0
	CC Logo:

