
An Approach to Evolvable Neural Functionality 
 

Niccolo Capanni, Christopher MacLeod, Grant Maxwell 
The Robert Gordon University, Aberdeen AB10 1FR, U.K. 

 
Abstract. This paper outlines a neural model, which has been designed to be flexible 
enough to assume most mathematical functions. This is particularly useful in evolutionary 
networks as it allows the network complexity to increase without adding neurons. Theory 
and results are presented, showing the development of both time series and non-time 
dependent applications. 

 
 
Introduction 
Research into Artificial Neural Networks 
(ANNs) has resulted in a diverse range of 
neuron models that have improved network 
functionality and expanded applications. 
Improvements in training methodologies have 
further increased the possibilities and this has 
spurred extensive work on the intricacies of 
improving training time and network 
robustness.  
 
Examples of the resulting innovative neuron 
models include Radial Basis, Leaky 
Integration, Non-linear and Spiking types [1]. 
Despite this, most widely used ANNs operate 
on a variation of the classical neural 
(Continuous Perceptron) model.  
 
Our research team has produced a new neural 
model based on the idea that a neural unit 
should be flexible enough to fulfil any 
differentiable mathematical function required 
of it [2]. This model is a logical extension of 
the Perceptron and is particularly useful in 
evolutionary and control applications. 
 
Basic Power Series Neuron   
The most common artificial neural models in 
current use are those developed from the 
original McCulloch-Pitts neuron. Ignoring the 
squashing or activation function, which 
normalises the output, the activity of this 
neuron is given by: 
 

∑
=

=
n

i
iiwxO

1
 

Where n is the number of inputs, xi is an input 
and wi is the corresponding weight.  
 
For a two input neuron, with input x associated 
with weight b and input y associated with 
weight c (as illustrated in figure 1), the activity 
could be written as: 
 

cybxO +=  

 
 
 
 
 
 

Figure 1. A simple neuron 
 
This, of course, corresponds to a linear 
separator [3].  
 
We can model any continuous function using 
an infinite Power Series [4] (for example a 
Taylor series): 

 
12 ....)( −+++= n

n xxxxf δβα  

This is the basic series, which is given in most 
references. However, it can be extended to any 
number of variables (and hence any number of 
dimensions). For example, in two dimensions, 
the series is: 
 

..3
3

2
2

2
211 +++++= xbycxbycxbO  

 
Notice that the first two terms are the same as 
in the first equation. This could correspond to 
a two-input neuron with inputs x, and y and 
weights bn, cn. A three input version of this 
neuron is shown in figure 2.  
 
 
 
 
 
 
 
 

Figure 2. A polynomial neuron 
 
More generally, for γ variables and an χ order 
series: 
 

x

y

b 

c 

f(x,y,z) 

x 
 
 
y 
 
 
 
z 
 

b1, b2, b3,.. 

c1, c2, c3,.. 

d1, d2, d3,..... 



∑∑
= =

−=
χ γ

σασ
1 1

1
,)(

n m

n
mmnf  

Which is a non-linear separator. This can also 
be expanded to include input product terms 
(e.g. wxy) [5], which can enclose areas as 
discussed below.  
 
Separators in the Second Order Case 
To illustrate some of the attributes of higher 
order separators, let us first consider the 
second order case of a two input neuron with 
inputs labelled in and weights ωn.  
 

S = ω0.i0 + ω1.i1 + [ω2.i0
2 + ω3.i1

2]  
 
Figure 3 shows how a single second order 
neuron can separate areas requiring many 
linear separators. 

 
Figure 4 shows in a three-dimensional plot 
how the neuron can form a separator which 
can enclose (or exclude) a particular area.   
 
Note that to reduce sensitivity in the neuron, it 
is often necessary to divide the higher power 
terms by their factorial. 

I

Figure 4. More complex second order 
separator 

 
In all of these models, the weights of the 
second powers can evolve to “0”, and the 
Perceptron emerges. 
 
Separators in the Third Order Case 
The decision surface can be further 
complicated through expansion of the power 
series. The symmetrical limitation of the 2nd 
order case can be removed by adding a 3rd 
order as shown in figure 5. 

 
S = ω0.i0 + ω1.i1 + ω2.i0

2 + ω3.i1
2 + [ω4.i0

3 + 
ω5.i1

3]  

 
Figure 5. 3D Decision surface of 3rd order 

neuron 

 
Addition of higher powers increases the 
complexity of the decision surface and allows 
greater separation and isolation of decisions. 
 
More Complex Cases 
The addition of higher orders of the power 
series is not the only method of improving the 
unit functionality. The previous neurons had 
no interaction between the inputs. However, if 
interaction is allowed, even more complex 
behaviour exists (as in sigma-pi units). 
 
S = ω0.i0 + ω1.i1 + ω2.i0

2 + ω3.i1
2 + [ω4.(i0

2.i1) + 
ω5.(i0.i1

2)+ω6.(i0.i1)2] 
 
A 2nd order expansion is shown, with the 
complex expansions enclosed within brackets. 
 
The addition of these product terms allows 
greater flexibility in the decision surface 
without continually expanding the power 
series.  It also introduces a greater element of 
asymmetrical separation and isolation of 
distinct regions through the interaction of the 
inputs. A 3rd order complex neuron produces a 
separator as shown in figure 6. 

0.4 0.2 0 0.2 0.4
0.5

0

0.5

 Figure 3. Second order separator 



 
Figure 6. 3D decision surface 3rd order 

incomplete complex neuron 

 
Applications 
Allowing neurons to use higher powers of their 
inputs allows smooth separators as shown in 
figure 3. This improves generalisation in the 
network, although for higher orders 
generalisation decreases again [5]. 
  
These neurons are particularly useful in control 
systems in a similar way to radial basis units as 
they can take complex continuous forms 
without the need for large networks.  
 
In evolutionary networks they allow the 
complexity of the network to increase by 
adding extra orders without adding new units 
to the network structure. 
 
Finally, they can be used with Taguchi Method 
training [6] by training the first order initially 
and adding and training each additional order 
thereafter for a more accurate response.  
 
Some Typical Results 
When used with evolutionary training 
methods, the neurons allow us to reduce the 
number of epochs required to reach a solution 
as shown in figure 7. 
 

number of generation for orders of 
power series

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00

1 2 3 4 5 6 7 8 9 10

order of power series

G
en

er
at

io
ns

 
Figure 7. Reduction of training epochs 

 
This network is three layered, consisting of 25 
inputs and 60 neurons configured for character 
recognition. One can see that there is little 
point in introducing orders above the third. 
Although the training epochs decrease, the 
computational power required for training 
increases - in the case of the three order 
neuron, by three times. However, there is still 
a net improvement in training time. 
 
As mentioned above we can also train one 
order of the neuron at a time using an 
evolutionary algorithm. 
 
When used in a standard pattern recognition 
system (of the same type mentioned in relation 
to figure 7), the use of the higher order neurons 
allows the system to operate with fewer units, 
as shown in figure 8. 
 

minimum network size

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00

1 2 3 4 5 6 7 8 9 10

order of power series

no
. o

f n
eu

ro
ns

 
Figure 8. Number of units required in character 

recognition system 
 
One can see in both cases, that above the fifth 
order, performance shows little improvement. 
Indeed there may be disadvantages in using 
too many orders [5]. In this case, the reduction 
in number of neurons offsets the increase in 
multiply and accumulate instructions required 
for a more complex network.   
 
Future Work - Time Series Models 
A time response can also be modelled with 
another Power Series 
 

etcctbtatf ...)( 2 +++=  
 

Where t is the time variable. There is no 
evidence that the temporal properties of 
neurons are this complex. As a result, it is 
often easier to simply make an evolvable (or 
trainable) time decay. 
 

btaetf =)(   
   



A squashing function may be applied to this if 
necessary, as can another time series 
representing a delay (refractory period) of the 
neuron’s output.  
 
This response can be multiplied with the 
power series described earlier to provide a 
neuron that is capable of mimicking any 
differentiable function of time.  
 
Conclusions 
The neuron described above may prove useful 
in several application areas including control 
systems and evolutionary systems. Its principal 
asset is that it allows the network to evolve 
with a wide variety of behaviours from a small 
number of neurons. 
 
References 
1. Arbib, M.: The Handbook of Brain Theory 

and Neural Networks, The MIT Press 
(1998) 

2. MacLeod, C., McMinn, D., et al.: 
Evolution by devolved action: towards the 
evolution of systems. In appendix B of: 
McMinn, D.: Using Evolutionary Artificial 
Neural Networks to Design Hierarchical 
Animat Nervous Systems, PhD Thesis, The 
Robert Gordon University, Aberdeen, UK 
(2002) 

3. Khanna, T.: Foundations of Neural 
Networks, Addison Wesley (1990) 

4. Croft, A., Davison, R., Hargreaves, M.: 
Engineering Mathematics, Addison-Wesley 
(1996) 418-440 

5. Bishop, C. M.: Neural Networks for Pattern 
Recognition, Oxford (1995) 9-14. 

6. MacLeod, C., Maxwell, G. M.: Using 
Taguchi Methods to Train Artificial Neural 
Networks,” AI Review, 13, 3, Kluwer 
(1999) 177-184 

 


