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Abstract 
 
Lexical semantic space models have recently been investigated to automatically derive the 
meaning (semantics) of information based on natural language usage. In a semantic space, a term 
can be considered as a concept represented geometrically as a vector, the components of which 
correspond to terms in a vocabulary. A primary way to perform reasoning in a semantic space is 
to categorize concepts in the space into a number of regions (i.e., groups). Such a process is 
referred to as concept induction, which can be realized by clustering objects in the space. The 
resulting groups can potentially form a basis for knowledge discovery and ontology construction. 
Conventional clustering algorithms, e.g., the K-Means method, normally produce crisp clusters, 
i.e., an object could be assigned to only one cluster. It is not always the case in reality. For 
example, a word “Reagan” may belong to both the cluster about administration of US 
government, and another one about the Iran-contra scandal. Therefore, a membership function is 
applied, which determines the degree to which an object belongs to different clusters. This 
chapter introduces a cognitively motivated semantic space model, namely Hyperspace Analogue 
to Language (HAL), and shows how a fuzzy C-Means clustering algorithm is used to concept 
categorization in the high dimensional semantic space. The experimental results indicate that 
applying fuzzy C-Means clustering over the HAL semantic space is promising in constructing 
semantically related groups of terms. 
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1. Introduction 
 
A human encountering a new concept often derives its meaning via an accumulation of 
the contexts in which the concept appears. Based on this distributional characteristic of 
semantics, various lexical semantic space models have been investigated. The meaning 
of a word is captured by examining its co-occurrence patterns with other words in the 
language use (e.g., a corpus of text).  There have been two major classes of semantic 
space models: document spaces and word spaces. The former represents words as vector 
spaces of text fragments (e.g. documents, paragraphs, etc) in which they occur. A 
notable example is the Latent Semantic Analysis (LSA) (Landauer and Dumais 1997). 
The latter represents words as vector spaces of other words, which co-occur with the 
target words within a certain distance (e.g., a window size). The strength of the 
association can be inversely proportional to the distance between the context and target 
words. The Hyper-space Analogue to Language (HAL) model employs this scheme 
(Lund and Burgess 1996).  The dimensionality of semantic spaces is often very high, for 
example, Lund and Burgess (1996) constructed a 70,000x70,000 HAL vector space 
from a 300 million word textual corpus gathered from Usenet. The concepts occurring in 
the similar contexts tend to be similar to each other in meaning. For example, “nurse” 
and “doctor” are semantically similar to each other, as they often experience the same 
contexts, i.e., hospital, patients, etc. The similarity can be measured by the angle 
(Cosine) or Euclidean distance between two word vectors in the semantic space.  
 
Semantic space models can be considered as computational approximations of the 
conceptual spaces advocated by (Gärdenfors 2000), which are built upon geometric 
structures representing concepts and their properties. At the conceptual level, 
information is represented geometrically in terms of a dimensional space.  In this 
chapter, we propose to use HAL vectors to prime the geometric representation of 
concepts. HAL vectors are also interesting because semantic associations computed 
using these vectors correlate with semantic associations drawn from human subjects 
(Burgess et al. 1998). It has been shown that HAL vectors can be used to simulate 
semantic, grammatical and abstract categorizations (Burgess et al. 1998). Another 
advantage of the HAL approach is that it is automatic and computationally tractable. 
 
In a conceptual space, a domain is defined as a set of integral dimensions in the sense 
that a value in one dimension(s) determines or affects the value in another dimension(s). 
For example, pitch and volume are integral dimensions representing a domain of 
“sound”. Gärdenfors’ and Williams (2001) state “the ability to bundle up integral 
dimensions as a domain is an important part of the conceptual spaces framework”. The 
thrust of Gärdenfors’ proposal is that concepts are dimensional objects comprising 
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domains. A domain, in turn, is a vector space with as basis a set of integral dimensions. 
Properties are represented as regions within a given domain.  
 
By their very nature, conceptual spaces do not offer a hierarch of concepts as is often the 
case in ontologies, taxonomies, and the like. However, similar objects can be grouped 
due to their semantic similarity. By way of illustration, a set of feathered objects with 
wings leads to the grouping “bird”. This facet of conceptual space is referred to as 
concept induction in this paper. One way of gaining operational command of concept 
induction is by means of clustering of objects in a semantic space. Clustering techniques 
divide a collection of data into groups or hierarchy of groups based on similarity of 
objects (Chuang and Chien 2005). A well known clustering algorithm is the K-Means 
method (Steinbach et al., 2000; Cimiano et al., 2005), which takes a desirable number of 
clusters, K, as input parameter, and outputs a partitioning of K clusters on the set of 
objects. The objective is to minimize the overall intra-cluster dissimilarity, which is 
measured by the summation of distances between each object and the centroid of the 
cluster it is assigned to. A cluster centroid represents the mean value of the objects in the 
cluster. A number of different distance functions, e.g., Euclidean distance, can be used 
as the dissimilarity measure. 
 
Conventional clustering algorithms normally produce crisp clusters, i.e., one object can 
only be assigned to one cluster. However, in real applications, there is often no sharp 
boundary between clusters. For example, depending on the context it occurs, President 
“Reagan” could belong to a number of different clusters, e.g., one cluster about the US 
government administration, and another about the Iran-contra scandal. The latter reflects 
the fact that he was involved in the illegal arms sales to Iran during Iran-Iraq war.  
Therefore, a membership function can be naturally applied to clustering, in order to 
model the degree to which an object belongs to a given cluster. Among various existing 
algorithms for fuzzy cluster analysis (Höppner et al. 1999), a widely used one is the 
fuzzy C-Means (Hathaway et al. 2000, Krishnapuram et al. 2001, Höppner and  
Klawonn 2003, Kolen and  Hutcheson 2002, etc.), a fuzzification of the traditional K-
Means clustering.  
 
The practical implication of the use of fuzzy clustering for conceptual induction is 
rooted in its ability to exploit the context sensitive semantics of a concept as represented 
in semantic space. There is a connection here with the field of text mining. Broadly 
speaking, text mining aims at extracting new and previously unknown patterns from 
unstructured free text (Hearst 2003, Perrin and Petry 2003, Srinivasan 2004). 
Conceptual space theory and its implementation by means of semantic space models 
introduced in this chapter provides a cognitively validated dimensional representation of 
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information based on the premise that associations between concepts can be mined in a 
principled way (Song and Bruza 2003).  
 
The goal of this chapter is to introduce the construction of a high dimensional semantic 
space via the HAL model (Section 2) and address how a fuzzy C-Means clustering 
algorithm, presented in Section 3, can be applied to conceptual induction within a HAL 
space. Its effectiveness is illustrated by a case study in Section 4. Finally, we conclude 
the chapter and highlight some future directions in Section 5. 
 
2. Constructing a High-Dimensional Semantic Space via Hyperspace Analogue to 
Language 
    
In this section, we give a brief introduction to the Hyperspace Analogue to Language 
(HAL) model. Given a n-word vocabulary, the HAL space is a word-by-word matrix 
constructed by moving a window of length l over the corpus by one word increment 
ignoring punctuation, sentence and paragraph boundaries. All words within the window 
are considered as co-occurring with each other with strengths inversely proportional to 
the distance between them. Given two words, whose distance within the window is d, 
the weight of association between them is computed by (l – d + 1). After traversing the 
whole corpus, an accumulated co-occurrence matrix for all the words in a target 
vocabulary is produced. HAL is direction sensitive: the co-occurrence information for 
words preceding every word and co-occurrence information for words following it are 
recorded separately by its row and column vectors. By way of illustration, the HAL 
space for the example text “The effects of spreading pollution on the population of 
Atlantic salmon” is depicted below (Table 1) using a 5 word moving window (l=5). 
Note that, for ease of illustration, in this example we do not remove the stop words such 
as “the”, “of”, “on”, etc. The stop words are dropped in the experiments reported later. 
As an illustration, the terms “effects” appears ahead of “spreading” in the window and 
their distance is 2-word. The value of cell (spreading, effect) can then be computed as: 
5-2+1 = 4.   

Table 1: Example of a HAL space 

 the effects of spreading pollution on Population Atlantic salmon 

the  1 2 3 4 5    
effects 5         
of 8 5  1 2 3 5   
spreading 3 4 5       
pollution 2 3 4 5      
on 1 2 3 4 5     
population 5  1 2 3 4    
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atlantic 3  5  1 2 4   
salmon 2  4   1 3 5  

 
This table shows how the row vectors encode preceding word order and the column 
vectors encode posterior word order. For the purposes of this chapter, it unnecessary to 
preserve order information, so the HAL vector of a word is represented by the addition 
of its row and column vectors. 
 
The quality of HAL vectors is influenced by the window size; the longer the window, 
the higher the chance of representing spurious associations between terms. A window 
size of eight or ten has been used in various studies (Burgess et al. 1998, Bruza and 
Song 2002, Song and Bruza 2001, Bai et al., 2005). Accordingly, a window size of 8 
will also be used in the experiments reported in this chapter. 
 
More formally, a concept1 c is a vector representation:  ><=

ncpcpcp wwwc ,...,, 
21

 where 

nppp ,...,, 21
are called dimensions of c, n is the dimensionality of the HAL space, 

and
icpw denotes the weight of p i  in the vector representation of c. In addition, it is 

useful to identify the so-called quality properties of a HAL-vector. Intuitively, the 
quality properties of a concept or term c are those terms which often appear in the same 
context as c. Quality properties are identified as those dimensions in the HAL vector for 
c which are above a certain threshold (e.g., above the average weight within that vector). 
A dimension is termed a property if its weight is greater than zero. A property p i  of a 

concept c  is termed a quality property iff ∂>
icpw , where ∂ is a non-zero threshold 

value. From a large corpus, the vector derived may contain much noise. In order to 
reduce the noise, in many cases only certain quality properties are kept. Let 

)(cQP∂ denote the set of quality properties of concept c. )(cQPµ will be used to denote the 
set of quality properties above mean value, and )(cQP is short for )(cQP∂ .  
 
HAL vectors can be normalized to unit length as follows:   

∑
=

k
pc

pc
pc

ki

ji

ji
w

w
w

2
 

 
                                                 
1 The term “concept” is used somewhat loosely to emphasize that a HAL space is a primitive 
realization of a conceptual space 
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For example, the following is the normalized HAL vector for “spreading” in the above 
example (Table 1): 
 
spreading = < the: 0.52, effects: 0.35, of: 0.52, pollution: 0.43, on: 0.35, population: 
0.17 > 
 
In language, word compounds often refer to a single underlying concept. As HAL 
represents words, it is necessary to address the question of how to represent a concept 
underpinned by more than a single word. A simple method is to add the vectors of the 
respective terms in a compound. In this article, however, we employ a more 
sophisticated concept combination heuristic (Bruza and Song 2002). It can be envisaged 
as a weighted addition of underlying vectors paralleling the intuition that in a given 
concept combination, some terms are more dominant than others. For example, the 
combination “GATT 2  Talks” is more “GATT-ish” than “talk-ish”. Dominance is 
determined by the specificity of the term.  
 
In order to deploy the concept combination in an experimental setting, the dominance of 
a term is determined by its inverse document frequency (idf) value. The following 
equation shows a basic way of computing the idf of a term t: 
 

)/log()( nNtidf =  where N is the total  number of documents in a collection and n is 
the number of documents which contain the term t. 
 
More specifically, the terms within a compound can be ranked according to its idf. 
Assume such a ranking of terms: .1 ,, mtt K (m > 1). Terms 1t and 2t  can be combined 
using the concept combination heuristic resulting in the combined concept, denoted as 

21 tt ⊕ , whereby 1t  dominates 2t (as it is higher in the ranking). For this combined 
concept, its degree of dominance is the average of the respective idf scores of 1t  and 2t . 
The process recurs down the ranking resulting in the composed “concept” 

))))((..( 321 mtttt ⊕⊕⊕⊕ K . If there is only a single term (m =1), its corresponding 
normalized HAL vector is used as the combination vector. 
 
We will not give a more detailed description of the concept combination heuristic, 
which can be found in (Bruza and Song 2002). Its intuition is summarized as follows:  

 
• Quality properties shared by both concepts are emphasized. 

                                                 
2 General Agreement on Tariffs & Trade is a forum for global trade talks. 
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• The weights of the properties in the dominant concept are re-scaled higher 

• The resulting vector from the combination heuristic is normalized to smooth out 
variations due to differing number of contexts the respective concepts appear in.   

 
By way of illustration we have the following vector for the concept combination “GATT 
talks”: 
 
gatt ⊕ talks =  < agreement: 0.282, agricultural: 0.106, body: 0.117, china: 0.121, 
council: 0.109, farm: 0.261, gatt: 0.279, member: 0.108, negotiations: 0.108, round: 
0.312, rules: 0.134, talks: 0.360, tariffs: 0.114, trade: 0.432, world: 0.114,> 
 
In summary, by constructing a HAL space from text corpus,  concepts are represented as 
weighted vectors in the high dimensional space, whereby each word in the vocabulary of 
the corpus gives rise to an axis in the corresponding semantic space. The rest of this 
chapter will demonstrate how the fuzzy C-Means clustering can be applied to conceptual 
induction and how different contexts are reflected.  
 
3. Fuzzy C-Means Clustering 
 
As the focus of this chapter is not the development of a new clustering algorithm, the 
fuzzy C-Means algorithm we use in our experiment is adapted from some existing 
studies in the literature (Hathaway et al. 2000, Krishnapuram et al. 2001).  
 
Let },...,{ 21 nxxxX = be a set of n objects in a S-dimensional space. Let ),( ij xxd  be 

the distance or dissimilarity between objects ix and jx . Let },...,,{ 21 KvvvV = , each cv be 

the prototype or mean of the c-th cluster. Let ),( ic xvd be the distance or dissimilarity 

between the object ix  and the mean of the cluster that it belongs to.  
 
The fuzzy clustering partitions these objects into K overlapped clusters based on a 
computed minimizer of the fuzzy within-group least squares functional: 
 

∑∑
==

=
N

i
icic

m
K

c
m xvdxvUVUJ

11
),(),(),(                                     (1) 

 
where the minimization is performed over all Vvc ∈ , and ),( ic xvU  is the membership 
function for the object ix  belonging to the cluster cv .  
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To optimize (1), we alternate between optimization of )|( *
_

VUJ m over U with 

*V fixed and )|( *
_

UVJ m over V  with *U  fixed, producing a sequence },{ )()( pp VU . 
Specifically, the p+1st value of },...,,{ 21 KvvvV = is computed using the p-th value of 
U  in the right-hand side of: 
 

∑

∑

=

=+ = N

i

m
i

p
c

p

N

i

m
i

p
c

p
i

p
c

xvU

xvUx
v

1

)()(

1

)()(

)1(

)],([

)],([*
                                              (2) 

 
Then the updated p+1st value of V is used to calculate the p+1st value of U  via: 
 

∑
=

−−+

−−+
++ = K

c

mp
ci

mp
ki

i
p

k
p

vxd

vxd
xvU

1

)1/(1)1(

)1/(1)1(
)1()1(

),(

),(
),(                                  (3) 

 
Where ),1( +∞∈m  is the fuzzifier. The greater m is, the fuzzier the clustering is. 
Krishnapuram et al. (2001) recommend a value between 1 and 1.5 for m.  In addition, 
the following constraint holds: 
 

1),(      ,...,2,1  
1

==∀ ∑
=

K

c
ic xvUNii                                                      (4) 

 
For the sake of efficiency in large datasets, an alternative method is to use the top 

)( NLL < objects in the cluster, and the objects are sorted based on descending 
membership value:   

∑

∑

=

=+ = N

i

m
i

p
c

p

L

i

m
i

p
c

p
i

p
c

xvU

xvUx
v

1

)()(

1

)()(

)1(

)],([

)],([*
                                               (5) 

 
If the dissimilarity is inner product induced, i.e. Square Euclidean measure defined later 
in section 3.1, it can be proved mathematically that computing V  andU  iteratively 
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according to Equation (2) and (3) satisfies the necessary conditions for optima of 

)|( VUJ m  (Bezdek 1981).  
 
The traditional K-Means clustering algorithm, namely the hard C-Means clustering, is a 
special case of fuzzy C-Means clustering by simply replacing (3) with: 
 
      { qcif

qcific
p

ic
c

xvUxvdq =
≠

+ ==           1
          0

)1( ),(               ),(minarg  

 
The fuzzy C-Means clustering algorithm is detailed as follows: 
 
Fuzzy C-Means Algorithm: 
 
 
Fix the number of clusters K and Max_iter; Set iter = 0; 
Pick initial means V={v1, v2, …, vK} from X; 
 
Repeat 
 
    Compute memberships U(vc, xi) for c = 1, 2, …, K and         
    i = 1, 2, …, N by using Equation (3)                                                                (A) 
 
    Store the current means, Vold = V; 
 
    Re-compute the new means vc for c = 1, 2, …, K by using Equation (2)        (B) 
    Iter = Iter + 1;  
 
Until 
 
     Iter = Max_iter or  
 
     The absolute value of increment of the objective function ε<∆ |),(| VUJ , where ε 
is some prescribed tolerance. 
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3.1 Dissimilarity Measures 
 
Several measures can be employed to compute the dissimilarity between two 
objects ),( ij xx , as well as between an object and the mean ),( ic xv . The most 
frequently used approach is the Lp norm distance, which is defined as follows 
(Hathaway et al. 2000): 
 

p
S

j

p
jcjiic vxxvd

/1

1
,, ||),( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ∑

=

 

 
where ),1[ +∞∈p  and S is the dimensionality of the vectors. This is a generalized 
dissimilarity measure. By way of illustration, Euclidean distance corresponds to the case 
when 2=p : 
 

∑
=

−=−=
S

j
jcjiciic vxvxxvd

1

2
,, )(),( , it is used in (Bobrwoski and Bezdek 1991) 

 
If 1=p , Manhattan dissimilarity results: 

||),( ,
1

, jc

S

j
jiic vxxvd ∑

=

−= .   

 
Moreover, if ∞=p : 

||),( ,,1 jcji

S

jic vxMaxxvd −=
=

.  

 
Hathaway et al (2000) have shown that 1=p  or 2 offers the greatest robustness for 
outlier handling. 
 
In addition, other widely used dissimilar measures are: 

Squared Euclidean: ∑
=

−=−=
S

j
jcjiciic vxvxxvd

1

2
,,

2 )(),(   

 

Cosine based dissimilarity: ),(),( ic xvSim
ic exvd −= , where ),( ic xvSim is defined as: 
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∑ ∑

∑
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2
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3.2 Initialization 
 
Initialization is vital to the performance of Fuzzy C-Means algorithm. Though we stated 
in the beginning of section 3 that the algorithm satisfies the necessary conditions for 

optima of the objective function )|( VUJ m ,  the Fuzzy C-Means algorithm is not 
guaranteed to find the global minimum. Different initialization procedures will produce 
slightly different clustering results. Nevertheless, appropriate initialization will make the 
algorithm converge fast.  If the K means are initialized randomly, it is desirable to run 
the algorithm several times to increase the reliability of the final results. We have 
experimented with two different ways of initializing the K means. The first way is to 
pick all the means candidates randomly. This method is referred to as Initialization 1. 
The second way is to pick the first candidate as the mean over all the items in the space 
X, and then each successive one will be the most dissimilar (remote) item to all the 
items that have already been picked. This makes the initial centroids evenly distributed. 
We refer to this procedure as Initialization 2. 
 
Initialization 2 for Fuzzy C-Means Clustering 
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Fix the number of means K > 1; 
 
Compute the first mean v1: 

N

x
v

N

i
i∑

== 1
1   

Set V = { 1v  }, iter = 1; 
 
Repeat 
      iter = iter + 1; 
      }{)),(min(max

||11 iterkjVk
Vx

Njiter vVVthenvxdv
j

∪==
≤≤

∉
≤≤

 

Until 
      iter = K; 
 

 
For a given data set, the initial produced by Initialization 2 is fixed. In our experiments, 
Initialization 2 outperforms Initialization 1 consistently.   
 
 
4. Word Clustering on a HAL Space – A Case Study 
 
This experiment aims to illustrate the effectiveness of the fuzzy C-Means approach for 
clustering concepts (words) represented as HAL vectors.  
 
HAL Space Construction 
 
We applied the HAL method to the Reuters-21578 collection, which consists of new 
articles in the late 1980s. The vocabulary is constructed by removing a list of stop words 
and also dropping some infrequent words which appears less than 5 times in the 
collection. The size of final vocabulary is 15415 words. The window size is set to be 
eight. A too small window leads to loss of potentially relevant correlations between 
words, whereas a too large window may compute irrelevant correlations. We think 
window size of eight is reasonable since precision is our major concern. Previous studies 
in HAL (Lund and Burgess 1996; Song and Bruza 2003) have also employed a window 
size of eight in their experiments.  
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HAL vectors are normalized to unit length. As an 
example, the following is part of the cosine-
normalized HAL vector for “Iran” computed derived 
from applying the HAL method to the Reuters-21578 
collection. This example demonstrates how a word is 
represented as a weighted vector whose dimensions 
comprise other words. The weights represent the 
strengths of association between “Iran” and other 
words seen in the context of the sliding window: the 
higher the weight of a word, the more it has lexically 
co-occurred with “Iran” in the same context(s). The 
dimensions reflect aspects which were relevant to the 
respective concepts during the mid to late eighties. 
For example, Iran was involved in a war with Iraq, 
and President Reagan was involved in an arms 
scandal involving Iran. 
 

Data  
 
The following twenty words were selected from the vocabulary to prime the clustering 
process: airbus, boeing, plane, Chernobyl, nuclear, disaster, computer, nec, japan, ibm, 
contra, industry iran, iraq, scandal, war, president, reagan, white, house.  
 

Table 3: Handcrafted Result 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 
Airbus Chernobyl Computer White Iran 
Boeing Disaster Nec House Scandal 
Plane Nuclear Ibm President Contra 
Industry  Industry Reagan Reagan 
   Iraq War 
   War Reagan 
   Iran Iraq 
   Japan  
   Industry  
 
Table 3 summaries a manual clustering of the above words. These words involve 
approximately the following contexts in the Reuters collection:  
 

Table 2: The Iran vector. 
 

Iran 
Dimension Value 

arms 0.64 
iraq 0.28 
scandal 0.22 
gulf 0.18 
war 0.18 
sales 0.18 
attack 0.17 
oil 0.16 
offensive 0.12 
missiles 0.10 
reagan 0.09 
... ... 
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(1) Aircraft manufacturers;  

(2) Chernobyl nuclear leaking disaster in the Soviet Union;  

(3) Computer companies;  

(4) The roles of the White House (i.e., Reagan government) in the middle 1980s 
(dealing with Iran-Iraq war and trade war against Japan);  

(5) The Iran-contra scandal (President Reagan was involved in the illegal arms sales to 
Iran during the Iran-Iraq war).  
 
Note there is some overlap between clusters.  For example, cluster 4 shares “industry” 
with clusters 1 and 3; it also shares “reagan” and “iran” with cluster 5, etc.  
 
Fuzzy Clustering of HAL Vectors 
 
In order to find the best performing parameter settings for the fuzzy C-Means clustering, 
we have developed a test bed on which a series of prior studies have been conducted. 
Cosine combined with fuzzifier 2.0 and Initialization 2 was finally chosen after some 
initial pilot studies. When the membership value of a word belonging to a cluster is 
greater than a prior probability (0.2 for this experiment), it is output as a member in the 
cluster. The following table lists the result of fuzzy C-Means clustering (the number 
following each word is the membership value of the word belonging to the 
corresponding cluster).  
 

Table 4: Clustering Result of Fuzzy C-Means Algorithm 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 
Airbus: 0.914 Chernobyl: 0.966 Computer: 0.921 White: 0.861 Iraq: 0.869 
Boeing: 0.851 Disaster: 0.302 Nec: 0.906 House: 0.793 Scandal: 0.814 
Plane: 0.852 Nuclear: 0.895 Ibm: 0.897 President: 0.653 Contra: 0.776 
   Reagan: 0.708 Iran: 0.725 
   Japan: 0.558 War: 0.584 
   Industry: 0.494 Reagan: 0.213 
   Disaster: 0.488  
   War: 0.331  
   Iran: 0.221  
   Contra: 0.203  

 
We also conducted experiments with K-Means algorithm on the same data and the best 
performing result (via Cosine-based dissimilarity function) is depicted below: 
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Table 5: Clustering Result from K-Means Algorithm 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 
Airbus Chernobyl Computer Contra Nuclear 
Boeing Disaster  House  
IBM   Iran  
Industry         Iraq  
Japan   President  
Nec   Reagan  
Plane   Scandal  
   War  
   White  

 
Discussions: 
 
Table 4 shows that the fuzzy clustering results basically reflect the underlying contexts 
described in Table 3, particularly the overlap between Reagan government, Iran-Iraq 
war and Iran-Contra scandal.  
 
However, the K-Means clustering result presented in Table 5 is less ideal: Cluster 1 
contains the words related to industry, either plane-manufacturing or IT; “Nuclear” is 
separated from the “Chernobyl Disaster”; “Computer” forms a singular cluster; Cluster 
4 contains terms related to politics. 
 
In short, the results from the case study suggest that Fuzzy K-Means clustering of word 
“meanings” in a HAL space is promising. 
 
5. Conclusions and Future Work 
 
In this chapter, we have introduced a cognitively motivated model, namely Hyper-space 
Analogue to language (HAL), to construct a high dimensional semantic space. The HAL 
space can be used to realize aspects of Gärdenfors’ conceptual space theory dealing with 
the geometrical representation of information. Within the conceptual space, concepts 
can be categorized into regions reflecting different contexts. A fuzzy C-Means algorithm 
has been investigated in detail for concept induction with the advantage that an 
acknowledged weakness, namely, the crispiness of the traditional K-Means method is 
overcome. We present a case study on word clustering in a HAL space which is 
constructed from the Reuters-21578 corpus. The case, though preliminary, suggests that 
the fuzzy C-Means algorithm is encouraging.  
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The work presented in this article can potentially be extended to other areas, such as 
query expansion of information retrieval, web page clustering, etc. Furthermore, we will 
conduct formal evaluation of the algorithm based on larger collections in the future.  
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