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Abstract 

Intelligent software agents are promising in improving the effectiveness of e-marketplaces for 

e-commerce. Although a large amount of research has been conducted to develop negotiation 
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protocols and mechanisms for e-marketplaces, existing negotiation mechanisms are weak in 

dealing with complex and dynamic negotiation spaces often found in e-commerce. This paper 

illustrates a novel knowledge discovery method and a probabilistic negotiation decision 

making mechanism to improve the performance of negotiation agents. Our preliminary 

experiments show that the probabilistic negotiation agents empowered by knowledge 

discovery mechanisms are more effective and efficient than the Pareto optimal negotiation 

agents in simulated e-marketplaces.  

Key words: Knowledge Discovery, Bayesian Learning, Adaptive Negotiation Agents, 

e-Marketplaces.  

1. Introduction 

The number of transactions conducted over e-marketplaces has grown rapidly in recent years. 

In the context of Business-to-Business (B2B) e-commerce, e-marketplaces are no longer 

operated in isolation but function as a series of interacting markets along an electronic supply 

chain (eChain) [33]. It is argued that software agents can provide high level of intelligence 

and autonomy for enhancing the effectiveness of e-marketplaces [6]. Software agents are 

encapsulated computer systems situated in some environments such as the Internet and are 

capable of flexible, autonomous actions in that environment to meet their design 

objectives [39]. These agents can incorporate experiential knowledge of past transactions to 

streamline the effects of volatile demand and supply conditions across multiple 

e-marketplaces in the electronic supply chain. Negotiation refers to the process by which 

group of agents (human or software) communicate with one another in order to reach a 

mutually acceptable agreement on resource allocation (distribution) [21,36,37]. This paper 

focuses on the development of a novel knowledge discovery mechanism to enhance 

negotiation agents’ decision making processes in B2B e-marketplaces.  

1.1 The Problems 

In typical B2B negotiation situations, a negotiator does not know the preferences of its 
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opponents because each party wants to protect their own business interests. Nevertheless, 

knowing the preferences of the opponents (e.g., the reservation prices) may help improve the 

efficiency of the negotiation processes since negotiation agents (human or software) can 

avoid wasting their time to explore the non-fruitful negotiation options. For cooperative 

agents, having partial knowledge about their opponents may even help improve the 

negotiation effectiveness because it becomes easier for the agents to identify the “win-win” 

outcomes from among the set of feasible solutions. Unfortunately, classical negotiation 

models [5,32,35,40] do not address the learning issue essential for real-world negotiations. 

Instead, these models often assume that the preferences (e.g., the utility functions) of the 

opponents are available as public information. Such an assumption turns out to be invalid for 

typical e-commerce negotiation situations. Even though agent-based negotiation systems have 

been developed, these systems still suffer from the problems of supporting only limited types 

of negotiation scenarios (e.g., bi-lateral negotiations, price only negotiations, availability of 

opponents’ payoff functions, or static negotiation spaces) [6,10,22,31]. One of the ways to 

alleviate the weakness of classical negotiation models and provide adequate support for 

real-world negotiations is to empower negotiation agents with a knowledge discovery 

mechanism so that they can continuously “mine” the preferences of the opponents based on 

the histories of negotiation dialogs among the participating agents.  

1.2 Contributions 

This paper illustrates the design and development of adaptive negotiation agents to enhance 

the degree of autonomy and the efficiency of e-marketplaces. In particular, the common 

weaknesses of existing negotiation systems are addressed by introducing a novel knowledge 

discovery method and a Bayesian learning mechanism to improve the learning autonomy and 

adaptation power of negotiation agents. These adaptive probabilistic negotiation agents can 

discover crucial negotiation knowledge such as the opponents’ changing preferences by 

mining the past negotiation histories and continuously monitoring the current negotiation 

dialogs with their opponents. Our preliminary experiments show that the probabilistic 
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negotiation agents empowered by our novel knowledge discovery mechanism outperform a 

negotiation mechanism which guarantees Pareto optimum. Our research work opens the door 

to the development of practical intelligent systems to enhance the effectiveness and efficiency 

of modern e-marketplaces.  

1.3 Outline of the paper 

The remainder of the paper is organized as follows. A comparative study of previous research 

work is reported in Section 2. An introduction to the basic negotiation mechanism which 

guarantees Pareto optimum is given in Section 3. Section 4 illustrates the computational 

details of the probabilistic negotiation decision making mechanism and the associated 

knowledge discovery method for adaptive negotiation agents. Section 5 describes the 

quantitative evaluation of the adaptive negotiation agents and reports our experimental results. 

Finally, we offer concluding remarks and describe future direction of our research work.  

2. Related Work 

Fuzzy logic has been applied to develop intelligent negotiation agents in e-Marketplace [6]. 

Nine pre-defined fuzzy rules are used to generate trade-off for quantitative issues and another 

nine fuzzy rules are used to generate concession for qualitative issues separately [6]. The 

proposed negotiation model is somewhat limited since it is developed from the perspective of 

the supplier agents only. The main weakness of the fuzzy negotiation system is that it is not 

adaptive; for instance, the system cannot learn and refine the pre-defined fuzzy rules 

automatically. The probabilistic negotiation agents proposed in this paper are adaptive since 

they are empowered by a knowledge discovery mechanism to continuously mine the 

preference information of their opponents. 

 

Non-linear regression has been applied to estimate the specific parameters (e.g., lower/upper 

bounds of the zone of acceptance of an attribute, negotiation deadline, weight of individual 

tactic, etc.) of the time-dependent and the behavior-dependent negotiation tactics [4]. It is 
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assumed that agents’ negotiation tactics are static and therefore it is possible to estimate these 

parameters based on the current negotiation dialogs. Instead of estimating the specific 

parameters of some pre-defined negotiation tactics, our proposed method adopts a 

non-parametric negotiation knowledge discovery approach where the opponents’ negotiation 

tactics are not assumed static nor treated as public information. Our probabilistic negotiation 

agents are evaluated in multi-lateral dynamic negotiation scenarios.  

 

Zeng and Sycara [40] have developed a sequential negotiation model called Bazaar. It was 

believed that an agent’s belief about the opponent’s true reservation price could be computed 

according to the posterior probability 
1

( ) ( )

( ) ( )
( ) i i

n
k kk
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i Pr o H Pr H

Pr H o
=

|

|
| =

∑
, where ( )iPr H  

characterizes the probability distribution of the opponent’s reservation prices and was 

assumed public information in the negotiation system. Moreover, domain knowledge in the 

form of conditional probabilities ( )iPr o H|  describing the chance of receiving an offering 

price o  given the opponent’s true reservation price iH  was assumed available. Similar 

approach has also been applied to develop negotiation agents in the context of multi-agent 

co-ordination [5]. Nevertheless these approaches suffer from the problem of assuming the 

availability of the opponents’ private information (e.g., the true reservation price). We 

illustrate an efficient data mining method of deriving the priori probabilities of offer 

acceptance without the assumption of the availability of the opponents’ private information. 

Moreover, our proposed Bayesian learning mechanism is extended to deal with multiple 

negotiation issues. 

  

Mining customers’ transaction files to discover their shopping preferences has been 

conducted [16]. In particular, a Bayesian Belief network (BBN) is constructed to capture the 

dependency among the preferred shopping items based on the mutual information derived 

from among these items. The recommender system generates a recommendation set by 

referring to the customer’s current transactional actions and the trained BBN representing the 
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shopping preferences of a particular customer. Our work is similar in the sense that we mine 

the negotiators’ negotiation histories to discover their corresponding preferences. However, 

we use a computationally more efficient naive Bayesian approach since we would like the 

negotiation agents to conduct automated negotiations in real-time.  

 

As a summary, there are variety of approaches of negotiation knowledge discovery such as 

case-based reasoning [3], fuzzy rules [6], time series approximation [24], Bayesian 

learning [5,40], Markov Chain Process [25], evolutionary learning [19], constraint satisfaction 

[38], etc. Generally speaking, these learning approaches can be classified into the broad 

categories of parametric [3,19,24] or non-parametric methods [5,25,40]. The negotiation 

knowledge discovery method illustrated in this paper is based on non-parametric approach 

since heterogeneous negotiation agents utilizing various tactics may be deployed to 

e-Marketplaces. Our non-parametric negotiation learning method is unique in the sense that it 

can support multi-party multi-issue negotiation situations and it has been tested under 

dynamic negotiation environment.  

3. A Pareto Optimal Negotiation Model 

A negotiation space Neg =  P A D U T< , , , , >  is a 5-tuple which consists of a finite set of 

negotiation parties (agents) P , a set of attributes (i.e., negotiation issues) A  understood by 

all the parties p P∈ , a set of attribute domains D  for A , and a set of utility functions U  

with each function o
pU U∈  for an agent p P∈ . An attribute domain is denoted 

iaD  

where 
iaD D∈  and ia A∈ . A utility function pertaining to an agent p  is defined by: 

1 2
… [0 1]

n

o
p a a aU D D D: × × × ,  [17]. Each agent p  has a deadline d

pt T∈ . It is assumed 

that information about P A D, ,  is provided by the facilitator agents in an e-marketplace. A 

multi-lateral negotiation situation can be modeled as many one-to-one bi-lateral negotiations 

where a negotiation agent p  maintains a separate negotiation dialog with each opponent. In 
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a negotiation round, the agent will make an offer to each of its opponents in turn, and 

concentrate on the most favorable counter-offer from among the set of incoming offers 

evaluated according to its own payoff function o
pU . 

  

An offer o =  
1 2

…
na a ad d d< , , , >  is a n-tuple of attribute values (intervals) pertaining to a 

finite set of attributes 1 2{ ... }nA a a a= , , , . Generally speaking, a finite set of candidate offers 

pO  acceptable to an agent p  (i.e., satisfying its hard constraints) is constructed via the 

Cartesian product 
1 2 na a aD D D× × × . As human agents tend to specify their preferences in 

terms of a range of values, a more general representation of an offer is a tuple of attribute 

value intervals such as io =  20 30 1 2 10 30 100 500< − , − , − , − > .  The valuations of 

individual attributes and attribute values (intervals) are defined by the valuation functions 

[0 1]A
pU A: ,  and [0 1]ai

i

D
p aU D: ,  respectively, whereas A

pU  is an agent p ’s 

valuation function for each attribute ia A∈ , and aiD
pU  is an agent p ’s valuation function 

for each attribute value 
i ia ad D∈ . In addition, the valuations of attributes are assumed 

normalized, that is, ( ) 1
i

A
p ia A

U a
∈

=∑ . One common way to quantify an agent’s preference 

(i.e., the utility function o
pU ) for an offer o  is by a linear aggregation of the 

valuations [2,13,17,26]: ( ) ( ) ( )ai

ii ai

Do A
p p i p aa A d o

U o U a U d
∈ , ∈

= ×∑ , where 
iad  is the attribute 

value interval specified in an offer o . 

  

If an agent’s initial proposal is rejected by its opponent, it needs to propose an alternative 

offer with the least utility decrement (i.e., computing a concession). An agent will maintain a 

set  
pO ′  which contains the offers it has proposed before (including the offer proposed in the 

current round). In a negotiation round, an alternative offer with a concession can be 
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determined based on 
{ }counter p po O O ′∈ −

∃   { }x p po O O ′∈ −
∀ :  [ ]x p countero o , where x p yo o  

denotes that an offer yo  is more preferable than another offer xo . The preference relation 

p  is a total ordering induced by an agent p ’s utility function o
pU  over the set of feasible 

offers pO . The concession mechanism works by picking an offer from the top of the list 

ranked by  ( { })p p pO O ′, −  in each negotiation round. 

 

The term o  represents agent p ’s interpretation about the opponent’s proposal o . Once 

o  is computed, acceptance of the incoming offer o  can be determined with respect to 

p ’s own preference ( p pO, ). An offer po O∈  is equivalent to o  iff every attribute 

interval of o  intersects each corresponding attribute interval of o . The acceptance criteria 

for an incoming offer o  (i.e., the equivalent o ) is defined by:  

1. If 
x po O x po o∈∀ , an agent p  should accept o  since it produces the maximal 

payoff.  

2. If  
po O ′∈  is true, an agent p  should accept o  because o  is one of proposals 

it makes before.  

It is shown that if each participating agent p P∈  employs their preference ordering 

( )p pO,  to compute concessions and uses the offer acceptability criteria described above to 

evaluate incoming offers, Pareto optimal [29] result is always found if it does exist in a 

negotiation space [2].  

4. The Probabilistic Negotiation Agents 

The development of the probabilistic negotiation mechanism for adaptive negotiation agents 

is driven by the basic intuition that rational negotiators strive for two possibly contradictory 

objectives [10,19]: (1) maximizing self payoffs, and (2) maximizing the chance of reaching an 
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agreement. The former can be computed according to a negotiator’s private utility function as 

discussed in Section 3, and the latter can be estimated based on Bayesian learning [8]. The 

proposed adaptive negotiation agents can refer to the negotiation history files to discover the 

negotiation preferences of their opponents. Moreover, these agents can monitor the current 

negotiation dialog with their opponents to identify the possible preferential changes of their 

opponents.  

4.1 Probabilistic Negotiation Decision Making 

Our probabilistic negotiation agents’ decision making mechanisms are underpinned by a 

ranking function; this function produces a ranked list of offers according to the potential of 

individual offers for maximizing self payoff and the chance of offer acceptance by the 

opponent. In particular, the preference relation p  of a probabilistic negotiation agent is a 

total ordering induced by the product of the agent’s private utility function o
pU  and the 

probability function ( )Pr accept o|  which characterizes the probability of acceptance of an 

offer o  by the opponent. In other words, the feasible offers of an agent p  are ranked in 

descending order according to:  

 
11

(1 )( ) [ ( )] [ ( )]o
pRank o U o Pr accept o αα −= × |                           (1) 

where [0 1]α ∈ ,  is a trade-off factor for maximizing one’s own payoff or maximizing the 

chance of the offer being accepted by the opponent. According to our current implementation, 

when 0α =  is specified by the human negotiator, the fraction 
1
α

will not be computed and 

a default value of zero will be returned; this results in instantiating a benevolent agent which 

only considers the opponent’s benefits. On the other hand, if 1α =  is specified, the fraction 

1
1 α−

will return zero instead of an undefined value; this results in instantiating a strictly 

self-interest agent.  Moreover, a system wide default of 0 5.  will be assumed if the α  

value is not provided by the human negotiator initially. It should be noted that the absolute 
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numerical value of ( )Rank o  is not important, but the relative rank of an offer o . 

  

A counter-offer with the least amount of concession (in terms of the least decrement of own 

payoff and the minimal reduction of offer acceptability) is selected from the top of the list 

 ( { })p p pO O ′, −  ranked by an agent p  in each negotiation round. Once the counter-offer 

is determined, it will be added to the set pO ′ . The revised pO ′  forms the basis to evaluate 

the incoming offers. The probability of acceptance of an offer o  can be computed according 

to Bayes theorem [8]:  

 
( ) ( )

( )
( )

j j
j

Pr o c Pr c
Pr c o

Pr o
| ×

| =                                      (2) 

where { }jc accept reject∈ ,  and j  is the index of a particular class. If the naive 

assumption of feature (i.e., negotiation issue) independency is made, the prior probability 

( )jPr o c|  can be approximated by [23,27]:  

 
1

( ) ( )
i

A

j a j
i

Pr o c Pr d c
| |

=

| = |∏                                        (3) 

where 
iad  is one of the attribute values of an offer o . By the addition rule of probability 

theory, 
1

( ) ( ) ( )n
j jj

Pr o Pr o c Pr c
=

= | ×∑  is held. Therefore, the probability of acceptance 

of an offer o  by the opponent can be estimated according to:  

 

1

1

1

( ) ( ( ) ( ))

[ ( ) ( )

( ) ( )]

i

i

i

A

a
i

A

a
i

A

a
i

Pr accept o Pr accept Pr d accept

Pr accept Pr d accept

Pr reject Pr d reject

| |

=

| |

=

| |

=

| = × | ÷

× | +

× |

∏

∏

∏

                (4) 

It should be noted that if only a partial counter-offer (i.e., some attributes are missing in an 

offer) is evaluated, the corresponding terms such as ( )
iaPr d accept|  and ( )

iaPr d reject|  

are treated as 1 because these negotiation issues are considered not relevant by an agent. As 
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a result, the probability of offer acceptance is determined by other attribute values. Currently, 

there are two operating modes of our probabilistic negotiation agents, namely adaptive and 

non-adaptive. For the non-adaptive mode, the probability negotiation agents estimate the 

opponents’ preferences based on the past negotiation histories only. They operate based on 

the negotiation mechanism described in Section 3 except that the offer ranking is established 

according to Eq.(1) instead of based on an agent’s own utility function. After a negotiation 

session begins, the preferences of an agent and its opponents are assumed unchanged. 

  

On the other hand, for the adaptive probabilistic agents, the probability function 

( )Pr accept o|  is revised in each negotiation round based on the most recent negotiation 

dialog. Therefore, the adaptive probabilistic negotiation agents are sensitive to the opponents’ 

recent preferential changes. After updating the priori probabilities based on the current 

negotiation dialog, the set of feasible offers pO  for the agent p P∈  will be re-ranked 

again according to Eq.( 1). As a result, more sensible negotiation decision making can be 

conducted from time to time according to the most recent preferences of agent p  and its 

opponents. As the time dimension is always an important issue for practical negotiations [21], 

our probabilistic negotiation agents are extended to take into account the time pressure:  

 
1 1

( ) (1 ( ))( ) [ ( )] [ ( )]o TP t TP t
pRank o U o Pr accept oα α× − ×= × |                    (5) 

 

The term ( )TP t  represents the time pressure function. The basic intuition is that when the 

negotiation deadline is approaching, an agent is more likely to concede in order to make a 

deal [14,30]. However, different agents may have different attitudes towards deadlines. An 

agent may be eager to reach a deal and so it will concede quickly (Conceder agent). On the 

other hand, an agent may not give ground easily during negotiation (Boulware agent) [28]. 

Therefore, a time pressure function 
1

( ) 1 ( ) ep
d
p

t
t

TP t = −  is developed to approximate a wide 

spectrum of agents’ concession attitude. Our TP  function is similar to the negotiation 
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decision function referred to in the literature [9,11]. The term d
pt  indicates the deadline for 

an agent p , and pe  is used to model the “concession attitude” of the agent p .  

4.2 Mining Negotiation Knowledge 

Data mining refers to the non-trivial process of identifying valid, novel, potentially useful, 

and ultimately understandable patterns in data [12]. In the context of knowledge discovery for 

automated negotiations, the novel patterns are the negotiation preferences (i.e., the frequently 

requested issues and their values). This kind of patterns is ultimately understandable and 

potentially useful because they can be applied to improve both negotiation effectiveness (e.g., 

joint payoffs) and negotiation efficiency (e.g., reducing the amount of time to reach 

agreements). In association rule mining, the measures of rule support and rule confidence are 

used to evaluate the quality of the association rules extracted from frequent item-sets [1]. In 

fact, rule support and rule confidence correspond to the joint probability and the conditional 

probability of the appearance of items (e.g., consumer products) in transactions. Our approach 

of discovering the preferences of negotiators is also based on computing the priori 

probabilities of the frequently requested items (negotiation options) appearing in some offers. 

The prior probabilities such as ( )Pr accept , ( )Pr reject , ( )
iaPr d accept| , and 

( )
iaPr d reject|  can be estimated based on the negotiation histories. Figure 1 depicts a 

segment of a negotiation history file.  

[INSERT FIGURE 1 HERE] 

The basic assumption of our negotiation knowledge discovery method is that each 

counter-offer from the opponent is considered an acceptable offer (i.e., a positive training 

example). Moreover, if an agent proposes an offer and it is rejected by the opponent, it is 

treated as a negative training example. As agents’ preferences may change in real-world 

negotiation situations, the most recently archived negotiation sessions are more useful than 

the sessions archived long time ago in terms of estimating the opponent’s current preferences. 

Moreover, a negotiation agent will maintain a separate history for the negotiation processes it 
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conducted with each of its partners. A negotiation session refers to a particular negotiation 

process. The negotiation process ends when an agreement could be reached or all the parties 

decide to quit. For each negotiation process (session), a negotiation agent will make series of 

offers (i.e., entries). Based on the above assumptions, the training examples generated from 

the past negotiation sessions and the current negotiation dialog should be weighted. The 

weight factor S
iw  is computed and assigned to a negotiation session i  according to a linear 

function:  

 
1

S max min
i max

w ww w step
session

−
= − ×

| | −
                                   (6) 

where S
iw  is the highest weight assigned to a particular negotiation session i ; the terms 

0maxw >  and 0minw >  represent the maximal and the minimal weights assigned to valuate 

all the negotiation sessions. The term session| |  is the total number of archived negotiation 

sessions including the current negotiation session for knowledge discovery purpose. The term 

step =  0 1 ..., 1session< , , | | − >  represents the sequence of negotiation sessions. For 

example, the step value of the most current negotiation session is 0 , and the second most 

current session is 1, so on so forth. 

  

In addition, the weight of each offer (or counter-offer) within a negotiation session i  varies. 

For instance, a counter-offer proposed by the opponent at the earlier stage is more preferable 

(for the opponent) than the one proposed at a later stage. Therefore, each entry in a 

negotiation session i  is also weighted in chronological order. The second weight factor E
ijw  

for the j th negotiation entry (i.e., an event) in the i th archived negotiation session is 

computed according to:  

 1( 1)
S S

E S i i
ij i

w ww w j
E

+−
= − − ×

| |
                                     (7) 

where E  is the total number of entries of an archived negotiation session i . S
iw  and 1

S
iw +  
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are the highest session weights assigned to the i  session and the session immediately 

preceding it respectively. For the oldest session (i.e., ( 1)i session+ >| | ) in a negotiation 

history file, the value of 1
S
iw +  is assumed zero. 

[INSERT TABLE 1 HERE] 

Table 1 shows an example of the sample space which consists of 3 past negotiation sessions 

and 1 current negotiation session. The maximal weight 500maxw =  and the minimal weight 

200minw =  are set. The entry depicted at the bottom of Table 1 represents the current 

negotiation session between an agent and its opponent. The weight of the second most current 

negotiation session is computed according to Eq.(6), that is 500 200
2 4 1500 1 400Sw −

−= − × = . In 

addition, the weight of the second negotiation entry in this session is computed according to 

Eq.(7), that is 400 300
22 4400 (2 1) 375Ew −= − − × = . In fact, the weights can be interpreted as 

the additional sample points attached to each event (i.e., a training example). According to 

Table 1, there are 3650 sample points in the sample space, and 1500
3650( ) 0 41Pr accept = = .  is 

estimated. Similarly, 2150
3650( ) 0 59Pr reject = = . , 675

1500(price 25 30 ) 0 45Pr accept= − | = = . , 

825
1500(qty 50 50 ) 0 55Pr accept= − | = = . . 

5. The Experiments 

5.1 General Procedure 

The simulated e-marketplaces were characterized by multi-lateral negotiations among some 

buyer agents ( 1 ...,B Bn, ) and some seller agents ( 1 ...S Sn, , ). These agents negotiated over 

some virtual services or products described by five attributes (i.e., 5A| |= ) with each 

attribute domain containing five discrete values {1 2 3 4 5}
iaD = , , , , . For each agent p , the 

size of the feasible offer set is: 55 3 125pO| |= = , . The valuation of an attribute or a discrete 

attribute value fell in the unit interval of (0 1], . For each negotiation case, an agreement zone 
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always existed since the difference between the buyers and the sellers only lay on their 

valuations against the same set of negotiation issues (e.g., attributes and attribute values). The 

simulated e-marketplaces were symmetric where the same number of buyers and sellers 

participated. 

  

At the beginning of every negotiation round, each agent would invoke its own decision 

making mechanism to generate an offer for that round. The order of deliberation of out-going 

offers among the agents was randomly chosen by the facilitator agent. At the message 

exchange phase, each agent sent the offer messages to all the opponents (e.g., 1 1S B→ , 

1 2S B→ , 1 3S B→ , etc. for the seller 1S ). After the message exchange phase, the 

facilitator agent randomly selected a sequence of agents such as 2 1 1 2 ...B B S S Sn< , , , , , >  

for incoming offer evaluation. For instance, with reference to the above sequence, agent 2B  

would evaluate its incoming offers first, then agent 1B  would evaluate its incoming offers, 

etc.  If agreements could be made, an agent always selected the best deal (evaluated 

according to its private utility function). If there was a tie, an opponent would be randomly 

selected by an agent. Once an agreement was made between a pair, they would be removed 

from the e-marketplace immediately by the facilitator agent, and the remaining agents would 

continue their negotiations until either agreement was made or the negotiation deadline was 

due. Our e-marketplaces were instantiated on a PC with a Pentium-4 2.2GHz single processor 

and 1 GB main memory. To avoid the communication overheads, all the experiments were 

conducted under our Intranet environment. All the agents were developed using Java SDK 

1.5.0.  

5.2 Evaluation Measures 

Both the effectiveness (in terms of average joint payoff) and the efficiency (in terms of 

average number of negotiation rounds) of the negotiation processes were evaluated. We adopt 

the relative measure of “negotiation rounds” to assess the negotiation time involved in a 

negotiation process (and indirectly measuring the computational/communication costs) so that 
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it becomes easier to compare our results with others which may be conducted in different 

computational environments. Moreover, average weighted Euclidean distance [8] was also 

used to measure how far away the solutions obtained by our probabilistic agents from the 

Pareto optimum:  

 1 1
( , )PS PA

i jj i
dist o o

AvgDist
PA PS

| | | |

= ==
| | × | |

∑ ∑
                                 (8) 

 2

1

( , ) ( )
i i

A
x y

x y i a a
i

dist o o w d d
| |

=

= −∑                                   (9) 

where PA P⊆  is the set of agents reaching an agreement in an e-marketplace, and PS  is 

the set of Pareto optimal solutions. As each agent has its own preference iw  for an attribute 

ia , the average distance is computed among the agents PA  by Eq.(8). Since the Pareto 

optimum set PS  may contain more than one optimal solution, the mean distance between 

the agents’ solution and every Pareto optimal solution is computed. The weight factor 

( )A
i p iw U a=  in Eq.(9) is an agent’s valuation for a particular attribute ia A∈ . An offer 

vector xo  contains an attribute value 
i

x
ad  along the i th dimension (issue) in a negotiation 

space. If an attribute interval instead of a single value is specified for an offer, the mid-point 

of an attribute interval is first computed.  

5.3 Experiment One 

Hypothesis One: The probabilistic negotiation agents empowered by the knowledge discovery 

mechanisms are more efficient than the Pareto optimal agents which are not equipped with 

the knowledge discovery mechanisms.  

5.3.1 The Experimental Procedures 

The first experiment aimed at developing a basic test to see if the proposed negotiation 

knowledge mining method could improve the negotiation processes. Two buyer agents and 

two seller agents were involved (i.e., 4P| |= ) in this experiment. There were six negotiation 
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groups which are characterized by various levels of conflict among the buyers and the sellers. 

Each group contained ten negotiation cases (i.e., totally 6 10 60× =  simulated 

e-marketplaces). For the first negotiation group, buyers and sellers had exactly the same 

utility functions (i.e., no conflict). Two utility functions are the same if both the valuation of 

the attributes and the valuation of the corresponding attribute values are the same. Table 2 

shows an example of the utility functions for a buyer agent 1p  and a seller agent 2p  used 

in this experiment. 

[INSERT TABLE 2 HERE] 

For each succeeding negotiation group, buyers and sellers were characterized by having 

common weighting from one (small conflict group) to five attributes (highest conflict group) 

respectively [26]. For these negotiation groups, opposing valuations of the attribute values 

were created between the buying side and the selling side. In this experiment, no negotiation 

deadline was imposed in the e-marketplaces. The control group consisted of the Pareto 

optimal negotiation agents developed according to the negotiation mechanism described in 

Section 3. These agents could found Pareto optimal solutions when time constraint was not 

present. After running a simulated e-marketplace, the average joint-payoffs and the average 

negotiation time were recorded.  

 

The experimental group comprised of the same number of non-adaptive (i.e., the priori 

probabilities about the opponents’ preferences were not updated) probabilistic negotiation 

agents as defined in Section 4. The same set of negotiation cases attempted by the Pareto 

optimal agents were applied to the probabilistic agents. The negotiation histories of the Pareto 

optimal agents were made available to the probabilistic agents as the training set. As a result, 

each probabilistic agent had some knowledge about its opponents before the negotiation 

process began. In particular, only the first 60%  of the entries captured in a negotiation 

session were used to train the probabilistic agents. We employed a heuristic min MAXw E>=| |  

and max minw session w≥| |×  to derive various combinations of maxw  and minw , whereas 
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MAXE| |  is the number of entries of the largest archived session, and session| |  is the 

number of sessions archived in the negotiation history file. Based on the empirical testing for 

typical negotiation scenarios, we found that the parameters 20 000maxw = , , 2 000minw = , , 

0 6α = .  produced good performance and so they were adopted in this experiment. After a 

negotiation process began, a probabilistic agent could estimate the posteriori probability 

( )Pr accept o|  for each of its opponent based on the training data. In this experiment, the 

preference of each agent remained static.  

 

5.3.2 The Experimental Results 

According to the experimental results depicted in Table 3, the Pareto optimal agents achieved 

an overall average joint utility of 2.31 by using 938.25 negotiation rounds on average. On the 

other hand, the probabilistic agents achieved an overall average joint utility of 2.23 in 724.75 

negotiation rounds on average. There was a 2 31 2 23
2 31 100 3 2%. − .
. × = .  decrement of the overall 

average joint utility when the probabilistic agents were engaged in the same negotiation 

situations as the Pareto optimal agents. The overall average distance from the solutions found 

by the probabilistic agents to the Pareto optimum is 0 16.  which is considered a small 

distance. However, the improvement in terms of reduced average negotiation time of the 

probabilistic agents was 938 25 724 75
938 25 100 22 8%. − .

. × = . . Except the first negotiation group, the 

probabilistic agents consistently consumed less negotiation time than that of the Pareto 

optimal agents. For each test case in the first negotiation group, both buyers and sellers had 

exactly the same utility function. Therefore, an agreement could always be found in the first 

negotiation round. According to paired one tail t-test, the average negotiation time consumed 

by probabilistic agents is significantly less than that of the Pareto optimal agents, 

(5) 3 48 01t p= − . , < . . Therefore, we conclude that the probabilistic negotiation agents 

empowered by knowledge discovery mechanisms can identify negotiation solutions faster 

than the Pareto optimal agents do. Hypothesis One is supported according to our experiment. 
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[INSERT TABLE 3 HERE] 

 

[INSERT FIGURE 2 HERE] 

5.3.3 The Impact of the Trade-off Factor 

The impact of the trade-off factor α  on the performance of our probabilistic negotiation 

agents was evaluated. In particular, we would like to observe how the various levels of α  

affect the quality of the solutions (e.g., average distance from the Pareto optimum) and the 

time required to search for those solutions. Figure 2 plots the overall average distance 

between the solutions found by the probabilistic agents and that produced by the Pareto 

optimal agents over the six negotiation groups listed in Table 3. It should be noted that the 

overall average distances plotted in Figure 2 was scaled up by a factor of one thousand. It is 

shown that a lower rate of decrement of the overall average distance occurs beyond 0 6α = . , 

and at the same time a higher rate of increment of the overall average negotiation time (e.g., a 

larger angle of the slop) occurs. Therefore, we set the trade-off factor to 0 6α = .  to strive 

for a better balance between the quality of the negotiation solutions and the time required to 

identify those solutions. According to our testing, the average joint payoffs of the agents do 

not vary with respect to the choices of different maxw  and minw  as long as our heuristic of 

how to estimate these parameters was followed. 

 

5.3.4 The Impact of the Negotiation History 

In addition, we examined the impact of the availability of various amount of negotiation 

history data (i.e., the training set) on the effectiveness of the probabilistic negotiation agents. 

The negotiation histories were obtained by repeatedly invoking the Pareto optimal agents to 

attempt the 60 negotiation cases we developed before. Each negotiation history file contained 

certain number of recorded sessions (i.e., negotiation processes) and each session contained 
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certain number of entries (i.e., offers and counter-offers). In particular, we made the first x  

percentage of the negotiation entries in a session and the first y  percentage of negotiation 

sessions in a history file available to train the probabilistic agents in each run. After the 

training process, the probabilistic agents would start to negotiate as before. 

 

Figure 3 highlights the overall average joint payoff achieved by the probabilistic negotiation 

agents when various number of entries and sessions are used to train them. It is shown that 

using more than 60%  of the top entries and more than 2  negotiation sessions to train the 

probabilistic agents cannot improve the maximal average joint utility. In fact, employing a 

large number of sessions (e.g., 10 sessions) and all the entries (100%) of a negotiation session 

to train a probabilistic agent may even lead to slightly degraded performance because the final 

offers do not represent the actual preference of the opponent due to the concession making 

process. According to our empirical testing, it only took 6.1 seconds to train an agent (i.e., 

computing all the priori probabilities) with a negotiation history file containing 10 sessions 

and each session containing 500 entries on average. This shows a positive sign for the 

computational efficiency of our negotiation knowledge discovery method. 

[INSERT FIGURE 3 HERE] 

5.3.5 Discussion 

As a summary, this experiment confirms that the probabilistic negotiation agents empowered 

by the knowledge discovery mechanism can make use of the knowledge about their 

opponents to find agreements faster. With better knowledge about their opponents, the 

probabilistic negotiation agents can by-pass some of the non-fruitful offers (e.g., chance of 

acceptance is low) from the set of feasible offers. Even though the probabilistic agents are not 

fully self-interested, they can achieve near optimal joint payoffs. This represents a win-win 

negotiation strategy. Such a strategy is desirable for negotiations in B2B e-commerce because 

it helps maintain long-term relationships among business partners.  
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5.4 Experiment Two 

Hypothesis Two: Under time pressure, the probabilistic negotiation agents outperform the 

Pareto optimal agents in terms of negotiation effectiveness.  

5.4.1 The Experimental Procedures 

The second experiment tries to evaluate the effectiveness of our probabilistic agents under 

realistic negotiation condition such as the presence of time pressure. In addition, we would 

like to test the agents’ time adjustment mechanisms defined according to Eq.(5). The same set 

of negotiation cases employed in experiment one was re-used with a negotiation deadline of 

500 rounds. This experiment was still based on a control group vs. experimental group design. 

The first simulation run involved the Pareto optimal agents, and then the non-adaptive 

probabilistic agents participated in the second simulation run. The third simulation run 

involved the non-adaptive probabilistic agents with the time adjustment mechanisms Eq.(5) 

activated. The concession attitude 0 4pe = .  was set for all the time sensitive probabilistic 

agents. If an agent could not find a deal before the negotiation deadline, its payoff would be 

zero.  

[INSERT TABLE 4 HERE] 

5.4.2 The Experimental Results 

The average joint-payoffs obtained by different types of agents from six negotiation groups 

are tabulated in Table 4. The overall average joint payoffs achieved by the Pareto optimal 

agents, the probabilistic agents, and the time sensitive probabilistic agents are 1.42, 1.58, and 

2.09 respectively. Except the first negotiation group where agents could always find the best 

agreements in the first negotiation round, the probabilistic agents consistently performed 

better than the Pareto optimal agents, and the time sensitive probabilistic agents also 

performed better than their non time sensitive counterparts. According to paired one tail t-test, 

the average joint payoffs achieved by probabilistic agents are significantly higher than that of 
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the Pareto optimal agents (e.g., (5) 4 72 01t p= . , < .  for the non time sensitive probabilistic 

agents and (5) 3.13 01t p= , = .  for the time sensitive probabilistic agents). Therefore, we 

can conclude that our proposed probabilistic agents are more effective than the Pareto optimal 

agents under time pressure. Hypothesis Two is supported according to our experiment. The 

reason for such a difference is that the Pareto optimal agents could not be able to find 

solutions before the deadline in many cases where negotiation conflicts existed. On the other 

hand, the probabilistic agents were able to carry out the search faster (e.g., by ignoring some 

less promising deals). As a result, they were able to seal some deals even though a tough 

deadline was imposed.  

5.4.3 The Difference of Agents’ Concession Behavior 

Figure 4 shows the difference of the concession making processes conducted by a Pareto 

optimal agent (PO), a probabilistic agent (PR), and a time sensitive probabilistic agent (PRT) 

respectively. There was a significant performance boost of the probabilistic agents who were 

empowered by the time adjustment mechanism because these agents were sensitive to the 

negotiation deadlines. When the deadline was approaching, these agents tended to propose 

offers which were more likely to be accepted by their opponents (e.g., the α  value drop to a 

very low value). As a consequence, the time sensitive probabilistic agents could find 

agreements for all the negotiation cases in this experiment. The Y axis in Figure 4 represents 

the potential utility value brought to an agent if the corresponding offer is really accepted by 

the opponent. The comparison is based on one of the negotiation cases from negotiation group 

4, and the potential payoffs of the offers are computed from the perspective of the sellers. It is 

not difficult to find that the concession making behavior of the time sensitive probabilistic 

agent is different from the other two agents. For instance, there was a bigger drop of the 

utility values of the agent’s offers when the deadline was approaching. In this case, the time 

sensitive probabilistic agent found an agreement at the 486th negotiation round, whereas the 

other two agents could not find solution before the deadline of the 500th negotiation rounds. 

According to paired one tail t-test, the average payoffs of the time sensitive probabilistic 
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agents is significantly higher than that of their non time sensitive counterparts, 

(5) 2 59 02t p= . , = . . As can be seen, the proposed time adjustment mechanism for 

probabilistic agents is effective since it can improve negotiation outcomes in general.  

[INSERT FIGURE 4 HERE] 

5.4.4 The Impact of the Agents’ Concession Attitude 

We further tested the concession attitude of the time sensitive probabilistic negotiation agents 

by varying the parameter value 0 1pe = .  (extreme Boulware agents) and 10pe =  

(Conceder agents) while keeping the other experimental conditions unchanged. For the 

extreme Boulware agents, the overall average joint payoff achieved is 2.06. For the Conceder 

agents, the overall average joint payoff achieved is 1.95. The extreme Boulware agents 

actually failed to reach an agreement in one case with high conflict and so their performance 

was not as good as the little Boulware agents. On the other hand, the conceder agents 

conceded too quickly even for the neutral negotiation situations, and therefore their 

performance was not as good as the little Boulware agents either.  

5.5 Experiment Three 

Hypothesis Three: Under dynamic negotiation environment (e.g., the presence of preferential 

changes of the negotiators), the adaptive probabilistic negotiation agents can achieve near 

Pareto optimal negotiation results. 

5.5.1 The Experimental Procedures 

Under realistic negotiation situations, the preferences of negotiation agents may change over 

time. This experiment tries to test if the adaptive probabilistic negotiation agents (i.e., their 

priori probabilities were updated after every negotiation round) can achieve good negotiation 

outcomes given the preferential changes of themselves and their opponents. At the beginning 

of the simulations, we employed the same set of negotiation cases used in experiment one. 

However, the utility functions of the agents would be modified n  times after the negotiation 
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processes started. As a result, the utility functions of these agents may not be the same as that 

examined in experiment one when the negotiation processes completed. The final outcomes in 

terms of average joint payoffs and the average distances from the Pareto optimum would be 

recorded. The final negotiation outcomes were computed according to the last modified utility 

functions of the agents. For instance, after 100 rounds of negotiations, the valuation values of 

m  attributes pertaining to each agent would be randomly selected and modified. After 

another 100 rounds of negotiations, the agents’ valuation functions would be changed again 

(i.e., 2n = ). To ensure the required number of preferential changes could be injected into 

each agent, these agents were forced not to accept a deal until the last change was injected. 

No negotiation deadline was imposed in this experiment.  

 

To evaluate the adaptiveness of the probabilistic agents, we invoked the adaptive evolutionary 

negotiation agents [20] under the same conditions (e.g., the same utility function and the same 

preferential changes of the agents). The evolutionary agents were developed based on a 

genetic algorithm (a heuristic search approach) and they were not equipped with a knowledge 

discovery mechanism. The negotiation agents discussed in this paper were empowered by a 

knowledge discovery mechanism underpinned by Bayesian learning. For this experiment, the 

parameters 2n =  and 2m =  were used, whereas n  and m  stand for the frequency of 

changes and the number of attributes modified respectively. It should be noted that the first 

negotiation group was a reference group where no preferential changes was injected to the 

agents. As the preferences of the buyers and the sellers were the same for this negotiation 

group, an agreement was always reached in the first negotiation round in each case.  

5.5.2 The Experimental Results 

The comparison between the performance of the evolutionary agents and that of the adaptive 

probabilistic agents is tabulated in Table 5. By ignoring the reference group (negotiation 

group 1), the overall average distance of the solutions found by the adaptive probabilistic 
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agents from the Pareto optimum is 0 14 0 22 0 19 0 23 0 25
5 0 21. + . + . + . + . = . , which is close to that (i.e., 

0.19) achieved by the non-adaptive probabilistic agents in experiment one. This demonstrates 

that the average performance of our adaptive probabilistic agents can be maintained even 

though they operate under a more challenging dynamic negotiation environment.  

[INSERT TABLE 5 HERE] 

Based on our simulations, the difference between the average joint payoff of the evolutionary 

agents and that of the adaptive probabilistic agents is only marginal (by paired one tail t-test, 

t(5) = 1.17, p = .15). On the other hand, significant difference of the average weighted 

Euclidean distances between the evolutionary agents and the probabilistic agents was not 

found (by paired one tail t-test, t(5) = -0.54, p = .31). Therefore, we conclude that the adaptive 

probabilistic agents are able to adapt to the dynamic negotiation environment, and the 

performance of these agents is comparable to that achieved by the adaptive evolutionary 

agents whose effectiveness was tested in a previous study [20]. The adaptive probabilistic 

agents can produce negotiation outcomes close to the Pareto optimum (e.g., 0.21 point away 

from the optimum). In general, Hypothesis Three is supported according to our study.  

 

Figure 5 plots the overall average distances from the Pareto optimum given the various values 

of n  and m . The overall average distances shown in Figure 5 excluded the negotiation 

group one since no preferential change was injected to the agents in this group. It is not 

difficult to observe that the agents can adapt to the preferential changes presented in the 

negotiation environment. As a result, the overall average distances from the Pareto optimum 

do not vary much given more frequent changes and greater extent of changes. However, if the 

changes occurred more frequently, the negotiation efficiency will be affected. Figure 6 shows 

that more frequent preferential changes of the agents will generally increase the overall 

average negotiation time. The reason is that the agents need to take time to learn the 

opponents’ new preferences and adapt to these preferences. Nevertheless, the probabilistic 

negotiation agents seem robust enough in responding to the frequent changes because the 
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negotiation time is only increased linearly with respect to the number of preferential changes 

as shown in Figure 6.  

[INSERT FIGURE 5 HERE] 

[INSERT FIGURE 6 HERE] 

6. Conclusions and Future Work 

Intelligent software agents are promising for supporting business negotiations in 

e-marketplaces. Since real-world negotiation spaces are complex and dynamic, it is desirable 

to empower negotiation agents with effective knowledge discovery mechanisms so that these 

agents can automatically uncover essential negotiation knowledge to improve negotiation 

outcomes. A novel knowledge discovery method and the corresponding probabilistic 

negotiation decision making mechanism are developed for adaptive negotiation agents. These 

agents can continuously learn the preferences of their opponents based on the negotiation 

dialogs recorded in history files. Our preliminary experiments show that the probabilistic 

negotiation agents empowered by knowledge discovery mechanisms can make a better 

balance between maximizing self-payoff and improving offer acceptability, and therefore they 

are more effective and efficient than the Pareto optimal agents under realistic negotiation 

conditions. Our research opens the door to the development of intelligent software tools to 

enhance the autonomy and effectiveness of e-marketplaces. As naive Bayesian learning is 

adopted in our negotiation knowledge discovery framework, dependencies among 

negotiation issues cannot be taken into account. Future research will explore Bayesian 

belief network to model the dependency of negotiation issues in complex negotiation 

spaces. Since our current probabilistic negotiation decision making mechanism only takes 

into account the opponent agents’ concession patterns, an extended decision making 

mechanism which also considers the opponents’ reputation will be examined in the future.  
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Figure 1. A Segment of Negotiation History 

 

Table 1. A Weighted Sample Space 

Session  Offers  Price  
(

1ad )  
Shipment 

Time (
2ad ) 

QTY  
(

3ad )  
Opponent  

Accept ( jc )  
Weights  

4   1o   5 10−  1 2−   20 30−  N  200   
 

2o   15 20−  3 4−   50 50−  Y  175   
 

3o   1 2−   2 2−   10 20−  N  150   
 

4o   25 30− 5 8−   60 100−  Y  125   

3   1o   5 10−  1 2−   20 30−  N  300   

 
2o   15 20−  3 4−   50 50−  Y  275   

 
3o   1 2−   2 2−   10 20−  N  250   

 
4o   25 30− 5 8−   60 100−  Y  225   

2   1o   5 10−  1 2−   20 30−  N  400   
 

2o   15 20−  3 4−   50 50−  Y  375   
 

3o   1 2−   2 2−   10 20−  N  350   
 

4o   25 30− 5 8−   60 100−  Y  325   

1  1o   5 10−  1 2−   20 30−  N  500   
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Table 2. The Utility Functions of Two Agents 

Agent  
Buyer: 1p   

   

1
( ) 0 3A

pU price = .
  

1
( ) 0 3A

pU qty = .
  

1
( ) 0 2A

pU size = .
  

1
( ) 0 1A

pU delivery = .
  

1
( ) 0 1A

pU warranty = .
   

1
(1) 0 9priceD

pU = .
  1

(1) 0 9qtyD
pU = .

 1
(1) 0 9sizeD

pU = .
 1

(1) 0 9deliveryD
pU = .

  1
(1) 0 9warrantyD

pU = .
   

1
(2) 0 8priceD

pU = .
  1

(2) 0 8qtyD
pU = .

 1
(2) 0 8sizeD

pU = .
 1

(2) 0 8deliveryD
pU = .

  1
(2) 0 8warrantyD

pU = .
   

1
(3) 0 6priceD

pU = .
  1

(3) 0 6qtyD
pU = .

 1
(3) 0 6sizeD

pU = .
 1

(3) 0 6deliveryD
pU = .

  1
(3) 0 6warrantyD

pU = .
   

1
(4) 0 2priceD

pU = .
  1
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Table 3. The Impact of Bayesian Learning on Negotiations 

 Pareto Optimal  Probabilistic   
Group Avg. 

Joint-Util. 
Avg. Time Avg. 

Joint-Util. 
Avg. Time Avg. Dist.  

1  2.74  1.0  2.74 1.0  0.00   
2  2.41  562.0  2.35 459.0  0.15   
3  2.38  813.0  2.31 622.5  0.18  
4  2.29  1036.0  2.23 804.0  0.17  
5  2.15  1483.5  2.04 1110.0  0.22  
6  1.87  1734.0  1.73 1352.0  0.26  

Mean 2.31  938.25  2.23 724.75  0.16  
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Figure 2. The Impact of α on Agent’s Performance 

 

Figure 3. The Impact of Negotiation History on Agent’s Performance 

 

Table 4. Agent Performance Under Time Pressure 

Group  Pareto Optimal Probabilistic Eq.(1) Probabilistic Eq.(5)  
1  2.74  2.74  2.74   
2  1.93  2.16  2.31   
3  1.66  1.81  2.02   
4  1.15  1.34  1.95   
5  0.86  1.05  1.88   
6  0.19  0.36  1.63   

Mean  1.42  1.58  2.09  
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Figure 4. Comparative Concession Behavior Among Three Types of Agents 

 

 

Table 5. Performance of Adaptive Negotiation Agents 

 Evolutionary  
Agents  

Probabilistic   
Agents   

Group  Avg. Joint 
Utility  

Avg. Dist. Avg. Joint 
Utility  

Avg. Dist.  

1  2.74  0.00  2.74  0.00   
2  2.41  0.15  2.42  0.14  
3  2.16  0.21  2.14  0.22   
4  2.12  0.18  2.11  0.19   
5  1.96  0.23  1.96  0.23   
6  1.79  0.25  1.78  0.25   
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Figure 5. The Impact of Preferential Changes on  
Average Distance from Pareto Optimum 

 

 

Figure 6. The Impact of Preferential Changes on Average Negotiation Time 

 


