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Abstract

We present an extension to DL-based taxonomic reasoning by means
of the proposed inference fusion, i.e. the dynamic combination of infer-
ences from distributed heterogeneous reasoners. Our approach integrates
results from a DL-based system with results from a constraint solver un-
der the direction of a global reasoning coordinator. Inference fusion is
performed by (i) processing heterogeneous input knowledge, producing
suitable homogeneous input knowledge for each specialised reasoner; (ii)
activating each reasoner when necessary, collecting its results and passing
them to the other reasoner if appropriate; (iii) combining the results of
the two reasoners. We discuss the benefits of our approach and demon-
strate our ideas by proposing a language (DL(D)/S) and a reasoning
system (Concor) which uses knowledge bases written in DL(D)/S and
supports hybrid reasoning. We illustrate our ideas with an example.

1 Motivation and background

Central to the semantic web is the development of representations which are
understandable by both human beings and machines [3]. Hence, progress in the
semantic web has boosted the research in ontological modelling and reasoning.
Current approaches to ontology reasoning during the knowledge lifecycle man-
agement are based on a wide variety of structured knowledge models, each
enabling different automated capabilities. Some models, such as UML [24],
represent knowledge at the conceptual level. Unfortunately, most of them have
an ill-defined semantics and thus do not enable any semantic deduction. Frame-
based models like Protégé [23] represent knowledge at the epistemological level
(i.e. they use the two generic primitives class and role). Although these models
enable automated inferences such as class membership, they do not support
deductions such as subsumption. Finally, models based on Description Logics
(DLs) like OIL/DAML+OIL [7] broaden the spectrum of frame-based infer-
ences with a whole set of specialised deductions based on taxonomic reasoning.

Deductive services provided by DL-based reasoners include, among others,
semantic consistency check subsumption, and concept classification [6]. DL-
based approaches are particularly appealing for applications such as ontology



reasoning in the Semantic Web, where taxonomic reasoning has been recognised
as one of the core inferences [7]. Moreover, DLs use the notions of concept (i.e.
unary predicate) and role (i.e. binary relation) to model declarative knowledge
in a structured way. Using different constructors defined with a uniform syntax
and unambiguous semantics, complex concept definitions and axioms can be
built from simple components. Therefore, DLs are particularly appealing both
to represent ontological knowledge and to reason with it.

Unfortunately, the expressive power needed to model complex real-world
ontologies is quite high, so that ontology reasoning was initially ruled out of
the list of services to be provided by ontology management tools [9]. Nev-
ertheless, the OIL/DAML+OIL effort has re-introduced the issue of ontology
reasoning as a first-class problem, providing a solution within the framework of
a DL-based, frame-centred approach [7]. However, despite its expressivity, the
OIL/DAML+OIL approach does not yet provide practical support to reason-
ing with concrete domains or local constraints (i.e. role-value maps). This is
because the knowledge model of the iFaCT DL engine [13], which provides the
deductive services for the ontology inference layer, does not currently include
concrete domains or role-value maps.

During the last few years, much research has been devoted to the develop-
ment of more powerful reasoning systems, Although single-purposed reasoning
systems have improved substantially, their homogeneous approaches are lim-
ited in two ways: (i) the expressive power of their representation is restricted in
order to ensure computational tractability, completeness and decidability; (ii)
the specialist nature of their reasoning means that they are only successful at
carrying out particular inferential tasks. For instance, DL-based systems spe-
cialised in the construction of concept taxonomies from concept descriptions
while constraint programming tools solve constraint problems. Although in
the past there has been some research on the integration of hybrid homoge-
neous reasoning [22], little has been done on the integration of heterogeneous
reasoning, e.g. the integration of DL-based and constraint-based reasoners.

Some approaches have been proposed to include concrete domains—and
predicates on these domains—in DL-based concept definitions which are nor-
mally restricted to abstract domains. Despite the diversity of their represen-
tations, most of them are based on ALC [25] and its expressive successor
SHIQ [15] and extend the original tableau-based algorithm [25] in different
ways. It has been proved, however, that reasoning about extensions of ALC
with concrete domains is generally intractable [19]. This problem can be miti-
gated only if suitable restrictions are introduced in the way of combining con-
cept constructors [10].

Homogeneous reasoning systems (or systems with homogeneous inference
algorithms) have encountered the difficulty of finding the right “trade-off” be-
tween expressiveness and computational complexity. We believe that if a knowl-
edge model is too expressive to be analysed within the framework of DLs, then
other representation and reasoning paradigms must be jointly used. There-
fore, it’s reasonable to consider a that a hybrid approach to heterogeneous
knowledge management may provide, among other things, a wider and better



support to ontology reasoning. The benefits of such an approach in the context
of ontology sharing through the articulation of ontology interdependencies is
highlighted in [5].

In this paper, we thus present a generic schema to extend existing DL-based
systems with the ability of representing and reasoning with numeric constraints.
Our idea is materialised through a hybrid modelling language DL(D)/S, and
supported by an implemented hybrid reasoning system (HRS), Concor.

2 Practical approach for hybrid reasoning

Inference fusion is a generic schema for dynamically integrating heterogeneous
inferential engines [17]. More specifically, we focus on a particular class of
inference fusion-based HRSs, which fuse the T-Box deductions from a DL-
based taxonomic reasoning system with constraint satisfaction inferences from
a constraint solver under the direction of a global reasoning coordinator.

In order to ensure the autonomy of both inferential sub-systems (hereafter,
referred to as engines), there should be a reliable mechanism responsible for the
communicating between them. For this purpose, we introduce the bijection,
linkage, which is responsible for mapping the intrinsic data structures in the
DL-based system to the data structures in the constraint solver and vice versa.
Linkages ensure that (i) the results from one system can be fed into the other
system without increasing the original computational complexity of these two
systems; and (ii) no changes are required on either reasoning system, i.e. the
underlying inference algorithms remain unchanged.

A Hybrid Knowledge Base (HKB), denoted as ΠKB, is first processed by a
parser which fragments the descriptions and splits them into three sets, namely:
(i) ΠDL, i.e. a set of DL-oriented statements which do not exceed the expressive
power of the selected DL-based system, (ii) Πnon-DL, i.e. a set of non-DL
statements which contains the concrete knowledge filtered out to form ΠDL,
and (iii) Πlinkage, i.e. a set of linkages which are one-to-one relations connecting
DL and non-DL statements.

As a result, instead of reasoning with constraints directly, DL-based systems
provide inferential services without being aware of the existence of constraint
reasoning. All the information related to concrete domains is removed from
concept definitions. Thus, only the proper DL-based constructors which are
admitted by the selected DL-based inferential engines are left.

The reasoning results from the non-DL system are reflected into the DL one
using linkages. Therefore, the hybrid characteristics of our approach are evident
in the “polymorphism” of linkages which are regarded as atomic concepts in the
DL-based inferential engine while act as legal objects in the non-DL reasoning
system (e.g. constrained variables in CSs).

For instance, let’s assume that, in state X, all people participating in le-
gal marriages should be at least 22 years old. In the meantime, only those
who are older than 70 are counted as senior citizens. Amongst the married
people, couples who have already celebrated their golden wedding anniversary



should have been married for at least 50 years. The set of concepts and global
constraints for this domain is as follows: Married-person who is between 22
and 1001, Golden-couples who have been married for at least 50 years, and
Senior-citizens who are between 70 and 100. Because of the difficulty of carry-
ing out real calculations, e.g. addition of X+Y, DL-based systems may not be
able to detect that a person who belongs to Golden-couple is also a Senior-citizen.

Our approach can facilitate such reasoning by splitting and redirecting
knowledge to specialised reasoners. In the above example, a series of AGEx will
be defined as constrained variables with specified domains, e.g. 0..100. Linkages
map a concrete variable AGEx (used by the constraint solver) to an abstract
atomic concept Agex (referred in the DL concept definitions of Married-person,
Golden-couple and Senior-citizen). Thus, the reasoning results w.r.t. AGEx from
the constraint solver are fed into the DL-based system. Subsequently, the sub-
sumption relationship between Senior-citizen and Golden-couple can be detected
by the DL-based (taxonomic) reasoning system.

3 Hybrid DL-based modelling with DL(D)/S

In this section, the hybrid modelling language DL(D)/S is proposed to illus-
trate the applicability of inference fusion in extending the DL-based systems.
DL(D)/S extends ALC with various types of concrete constraints. Note that,
because of the generic characteristics of inference fusion and the common avail-
ability of linkages in DLs, the use of ALC is not mandatory, i.e. other DLs
could have been used for our purposes.

3.1 Syntax and Semantics of DL(D)/S

ALC concepts are built as follows. Let A be the set of concept names, C the set
of arbitrary concept descriptions, R the set of role names and n an arbitrary
non-negative integer. Starting with (i) A ∈ A, (ii) C, D ∈ C and (iii) R ∈ R,
concept terms can be defined inductively. A concept definition is either A

.v
C (partial definition) or A

.= C (full definition). An interpretation I for ALC
is a couple ( ∆I , ·I): the nonempty set ∆I is the domain of I, while the ·I
function maps each concept to a subset of ∆I and each role to a subset of ∆I

× ∆I . The interpretation of ALC constructors is shown in Table 1. ALCN [15]
extends ALC with numeric role number restrictions, i.e. >n R and 6n R.

ALC has been extended with the ability to describe concrete knowledge.
For instance, ALC(D) [1] extends ALC with constructors allowing the defini-
tion of predicates over functional roles and role chains. Sound and complete
algorithms for ALC(D) exist for A-Box reasoning provided that D is an admis-
sible concrete domain, e.g. N [1]. SHOQ(D) extends ALC with constructors
for concrete datatypes used to represent numbers and strings [14]. Sound and
complete algorithms exist for reasoning in SHOQ(D) provided that suitable

1We assume that the life span of human being does not exceed 100 years



Table 1: Syntax and semantics of ALC constructors

Constructor Syntax Semantics (Interpretation)

Top (Universe) > ∆I

Bottom (Nothing) ⊥ ∅
Atomic Concept A AI ⊆ ∆I

Atomic Role R RI ⊆ ∆I ×∆I

Conjunction C u D CI ∩ DI

Disjunction C t D CI ∪ DI

Negation ¬ C ∆I \ DI

Universal quantification ∀R .C { c ∈ ∆I | ∀ d ∈ ∆I : 〈 c, d 〉 ∈ RI → d ∈ CI }
Existential quantification ∃R .C { c ∈ ∆I | ∃ d ∈ ∆I : 〈 c, d 〉 ∈ RI ∧ d ∈ CI }

restrictions are introduced [1]. Meanwhile, substantial efforts have been made
on the implementations, e.g. ALCRP(D) [12] and RACER [11].

Despite the difference in expressive and deductive powers, traditional ap-
proaches which extend DLs have concentrated on enhancing the algorithm
originally devised for ALC [25], i.e. create a tableaux containing both con-
cept constructors and constraint predicates, during which process, the complex
intervention of abstract and concrete knowledge is inevitable. Thus, adding
concrete domains (e.g. numeric constraints) directly to expressive DL-based
systems may result in undecidable inferential problems [19].

We introduced the hybrid modelling language DL(D)/S (Table 2) in order
to extend DLs with concrete domains while avoiding a significant increase in the
computational complexity of the DL-based systems [17]. The concrete domain
is formally defined as a pair D = (∆D, ΦD), where ∆D is a finite set of numeric
and symbolic constants and ΦD a set of algebraic and boolean operators.

Table 2: Syntax and semantics of DL(D)/S constructor (not in ALC)

Constructor Syntax Semantics (Interpretation)

role value constraint(D) ∀RH.H {x ∈ ∆I | ∀y.〈x, y〉 ∈ RI → y ∈ HI}
role cardinality (rel v R) { c ∈ ∆I |] { d ∈ ∆I : 〈 c, d 〉 ∈ RI } rel λ′(v) }
constraint(S) ∃v.C[v]/ξ[v] CI [λ(v)] where ξ[λ(v)] hold

Here, rel ∈ {=}, H is a hybrid concept, v an integer type variable and ξ[v]
the set of role cardinality constraints defined over v; λ′ an assignment mapping
v to a set of non-negative integers. The constraints are, therefore, specified
through hybrid role successors (hybrid concept) H or role cardinality variables
v1, . . . , vn. The following concept contains a numeric constraint which restricts
the number of airpads to be twice the number of axis:

exists(α, β)(and Machine Tool (equal α has-axis) (equal β has-airpad)\
(: with : begin α = 2β : end))



3.2 Constraints in DL(D)/S

Both global constraints over hybrid role successors and local constraints on role
cardinalities are allowed in DL(D)/S. A DL(D)/S knowledge base (DL(D)/S-
KB) is represented as Ω = T + Ψ, where T is the set of concept definitions
and multi-concept relationships (e.g. subsumption and disjointness among
concepts) and Ψ (short for Ψ[H1,. . . ,Hn]) is the set of all global constraints
ψ[H1,. . . ,Hn] defined over H1,. . . , Hn or a subset of them.

Let λ(HI) ⊆ ∆D be the assignment function which creates a concrete image
(a concrete variable with associated domains) for an hybrid concept and assign
a subset of ∆D to the concrete image, and λ′(vi) → ti ∈ N mapping vi a
non-negative integer. We have:

(ψ(H1, . . . , Hn))I ≡ sat(ψ(H1, . . . , Hn)) ≡
n̂

i=1

∀xi ∈ λ(HIi ).(∃y1 ∈ λ(HI1 ), . . . , ∃yi−1 ∈ λ(HIi−1),

∃yi+1 ∈ λ(HIi+1), . . . , ∃yn ∈ λ(HIn).ψ(y1, . . . , yi−1, xi, yi+1, yn))

i.e. for every value of the concrete image of Hi, there exist values in every
Hj (j = 1 . . . n, j 6= i) such that predicate ψ holds. Meanwhile, the collection
Ψ[H1, . . . , Hn] is satisfied sat(Ψ[H1, . . . , Hn]) iff

sat(Ψ[H1, . . . , Hn]) ≡ ∀ψ ∈ Ψ[H1, . . . , Hn].sat(ψ)

A DL(D)/S-concept C/ξ (ξ may be empty) is satisfiable w.r.t. ξ[vi] iff there is
an assignment λ′ such that C[λ′(vi)] 6= ∅ and ξ[λ′(vi)] hold for i = 1 . . . n where
λ′(vi) → ti ∈ N :

(∃vi.C[vi]/ξ[vi])
I = ∃ti.(C

I [ti] 6= ∅ ∧ ξ[ti]) (i = 1 . . . n)

Our hybrid concepts capture both abstract knowledge and RC constraints.
However, constraints need to be “wrapped” as they cannot be directly processed
by a DL-based system. Concepts containing wrapped RC constraints are said
to be normalised.The normalisation of DL(D)/S concepts:

Global constraints: (i) Generating a atomic concept for each hybrid con-
cept H, (ii) creating a mapping between H and the corresponding constrained
variable and (iii) removing all global constraints is as:

RC-constrained concept: (i) Replacing every sub-concept containing con-
straints on role cardinalities with an existential role restriction; (ii) Intro-
ducing an atomic concept for every set of constraints on role cardinalities;
(iii) Removing the existential restrictions on RC variables and eliminating RC
constraints by conjuncting atomic concepts at the same logical level;

non-RC-constrained concept: If the concept is defined with the RC con-
strained roles acting as the subject of numeric role cardinality restrictions, (i)
creating an existential role restriction to replace every sub-concept referring to
RC-constrained roles; (ii) generating a set of numeric constraints to represent
the numeric role cardinality restrictions; (iii) defining an atomic concept into
the HKB and conjuncting it to the original concept at the same logical level.
Concepts will not be changed otherwise.



For instance, the previous Machine Tool example is transformed into

(and Machine Tool (some has-axis) (some has-airpad) C1 axis-pad)

where the RC constraint (i.e. α = 2β) is replaced by C1 axis-pad introduced
as an atomic concept. Meanwhile, if a concept in the same HKB is defined as

(and Machine Tool (atleast 4 has-axis) (atmost 4 has-axis))

it will be normalised as:

(and Machine Tool (some has-axis) C2 axis-pad)

where the RC constraints (e.g. {|has-axis| ≤ 4}) is extracted and replaced by
C2 axis-pad because that the same roles (i.e. has-axis and has-airpad) have been
restricted by RC constraints in other concepts from the same HKB.

If we define that all concepts contains roles that restricted by RC constraints
as RC related concept, then:

1. If two concepts C and D are RC related concepts (i.e. ξ may be empty but
the concept contains roles restricted by RC constraints), the subsumption
relationship between DL(D)/S concepts is defined as follows:

• let C’ and D’ be the normalised concept definitions of C and D;

• let ξ′C (ξ′D) be the union of original RC constraints ξC (ξD) and
those generated from the normalisation of concept C (D).

Then, D/ξD v C/ξC if concept D’ is subsumed by C’, i.e. D v C and
constraint set ξ′D entails constraint set ξ′C in model Σ, namely ξ′D |=Σ ξ′C.

2. If otherwise the normal DL-based reasoning will be carried.

The hybrid concept is similar to the concrete datatype in SHOQ(D) [14].
However, our approach differs from the latter in three aspects. Firstly, all the
concept constructors are interpreted solely in abstract domains; associations
between abstract and concrete domains are realised by an assignment function
through hybrid concepts. Secondly, more complex global constraints can be
modelled using role value constraints. Finally, the overall inferential process is
distributed across different (specialised) engines and thus the overall complexity
of the reasoning task may be reduced.

4 Hybrid reasoning with constraints

Our linkages are based on two observations. Firstly, DL-based systems can
specify subsumption relationships between concepts (the “told” knowledge).
For instance, in the iFaCT system [13], one can specify concept A to be sub-
sumed by concept B as (implies A B). Most other DL systems such as Loom [20]
and RACER [11] have the same functionality.



Secondly, it is possible to obtain an ordering (e.g. quasi-ordering [16]) with
the help of constraint solvers2. For instance, the entailment between two set of
constraints can be seen as an ordering.

4.1 Ordering of constraints

When domain reduction can be carried out thoroughly and the constraint sys-
tem can reach a stable status, the inclusion relationships between reduced do-
mains are passed to the DL-based system. Such approach applies to cases when
(i) variable domains exist independently; (ii) their images in DL-based systems
can be extracted from the rest of a KB and (iii) the extracted knowledge can
be referred to as an independent object in the KB. For instance, the life-span
of human beings whose domain is 0 . . . 150 can be isolated from others easily
and defined as a atomic concept in a DL-based knowledge base.

When constrained variables appear as the role number restrictions, the do-
main reduction technique is not applicable. Because constraints can be consid-
ered as the set of tuples of legal values that the constrained variables can take
simultaneously [26], an inclusion between different sets of tuples can actually
be established and manipulated.

The relationship obtained among concrete constraints is described by a
quasi-ordering. A formal definition on the new concept, quasi-ordering, is in-
troduced as follows:

Let α and β be the sets of compound labels (tuples). We say that α is prior
to β in a quasi-ordering with regard to a model Σ, if every tuple in β also exists
in α, i.e. β |=Σ α. In this case, we also say that β is tighter than α.

Note that the ordering among constraint sets is a partial ordering as it
is reflexive, transitive and anti-symmetric. In cases when such ordering are
mutual, α and β are equivalent.

Constraints in DL(D)/S-KB are manipulated in two ways. Global role
value constraints are removed in the sense that the same restrictions can be
achieved by reducing the domains of constrained objects (i.e. maintaining a
path consistency among the associated constrained domains of concrete images
of the hybrid concepts). On the contrary, local RC constraints are enhanced by
explicitly expressing the restrictions which are otherwise implicit (i.e. discover
the entailments ordering and the disjointness).

4.2 Hybrid reasoning system, Concor

Concor is composed of four major parts: engine interface, user(and KB)
interface, internal storage and reasoning coordinator which is at the heart of
Concor. Hybrid knowledge is input into Concor through the user(and KB)
interface. The user(and KB) interface contains a parser which checks the inputs

2Currently, Constraint Logic Programming (CLP) languages have been extend with the
ability to tackle with different domains of computation, e.g. Boolean algebra, finite domains,
etc. and, for part of these domains provide the decision about consistency and entailment of
constraints (please refer to [18] for a detailed survey).



Figure 1: System architecture of Concor hybrid reasoning systems
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for errors such as illegal syntax and invalid constructors, i.e. those constructors
that are not admitted by the selected inferential engines. Well-formed concept
descriptions are normalised and translated into intermediate forms and split
into non-DL, DL and linkage pools which are referred to as internal storage.

Having parsed the input HKB, the user(and KB) interface passes control to
the reasoning coordinator and the latter will decide which subsequent-inferential
engines (SIEs) the contents of the internal storage should be sent to. Communi-
cations between the reasoning coordinator and the SIEs are carried out through
the engine interface. An engine interface associated to an engine is responsible
for transferring the data and control flows to this particular engine. The en-
gine interface helps to design Concor system in a modular manor: SIE can be
replaced together with its interface, thus, theoretically the effect of exchanging
SIE will not ripple off to other parts of the HRS.

The modular manor of Concor system is further guaranteed by introducing
an intermediate language between user language and the underlying modelling
languages of the selected SIEs. The intermediate language allows a standard
translator to be designed for each inferential engine. It also reduces the pro-
gramming tasks on any further extensions to the modelling language—only the
parser residing in the User Interface need to be upgraded. Meanwhile, be-
cause the intermediate modelling language has a well-formed semantics, engine
interfaces can actually be developed off-line with the help of certain tools.

Concor’s reasoning process is as follows:

1. parse the input HKB and split it into small homogeneous parts: DL,



non-DL (global and concept-local constraints), and linkage;

2. check the consistency of global constraints and propagate them in order
to maintain a full path-consistency by reducing the set of possible values
associated with each constrained variable;

3. update DL-based descriptions with the quasi-ordering (domain inclusion)
between constrained variables;

4. check the consistency of concept-local RC constraints w.r.t. each individ-
ual RC constrained concept;

5. obtain quasi-ordering (entailment ordering) among all RC constraint sets;

6. update and classify the DL-based descriptions based on the new knowl-
edge (quasi-ordering).

4.3 Hybrid reasoning with examples

We will use a toy example to demonstrate the merits of our hybrid approach.
Assume that an estate agency X maintains a database of floor plans. Each
design contains certain types of constraints on the number and style of rooms.
The HKB is as follows:

(def-primconcept ’Floorplan ’top)

(def-role ’has room) (def-role ’has bathroom)
(def-role ’has bedroom) (def-role ’has internet plug)
(def-role ’has phone plug)

(decl-variable ’Shape SBaD [square, rect, oval, rhomb, cir, tri ])
(decl-variable ’Shape SBeD [square, rect, oval, rhomb, cir, tri ])
(decl-variable ’Shape SBaH [square, rect, oval, rhomb, cir, tri ])
(decl-variable ’Shape SBeH [square, rect, oval, rhomb, cir, tri ])
(decl-variable ’Shape SBaE [square, rect, oval, rhomb, cir, tri ])
(decl-variable ’Shape SBeE [square, rect, oval, rhomb, cir, tri ])

(def-concept ’Ensuit Design ’(exists (x y z)
(and Floorplan

(equal z has rooms) (equal x has bedrooms)
(forall has bedrooms Style bed Ensuit)
(equal y has bathrooms)
(forall has bathrooms Style bath Ensuit))

(with :begin
:body

x = y, z ≥ y + x + 1
:end) ))

(def-concept ’Residence Design ’(exists (r be ba)
(and Floorplan

(equal r has rooms)
(equal be has bedrooms)
(equal ba has bathrooms)

(with :begin
:body

r > be + ba
:end) ))



(def-concept ’Hitech Design ’(exists (x y z n1 n2)
(and Floorplan

(equal x has rooms) (equal z has phone plug)
(equal y has internet plug)
(equal n1 has bathrooms)
(forall has bathrooms Style bath Hitech)
(equal n2 has bedrooms)
(forall has bedrooms Style bed Hitech))

(with :begin
:body

x > n1 + n2, y = z, y = x
:end) ))

(def-concept ’Dorm Design ’(exists (x y z)
(and Floorplan

(equal x has rooms) (equal y has bedrooms)
(forall has bedrooms Style bed Dorm)
(equal z has bathrooms)
(forall has bathrooms Style bath Dorm))

(with :begin
:body

x > y + z, y = z
:end) ))

(def-concept ’Modern Design ’(exists (r pl)
(and Residence Design

(equal r has rooms) (equal pl has phone plug)
(with :begin

:body
r = pl

:end) ))

(def-concept ’Style bath Dorm ’(and room (fallin shape Shape SBaD) ))
(def-concept ’Style bed Dorm ’(and room (fallin shape Shape SBeD) ))
(def-concept ’Style bath Hitech ’(and room (fallin shape Shape SBaH) ))
(def-concept ’Style bed Hitech ’(and room (fallin shape Shape SBeH) ))
(def-concept ’Style bath Ensuit ’(and room (fallin shape Shape SBaE) ))
(def-concept ’Style bed Ensuit ’(and room (fallin shape Shape SBeE) ))

(decl-constraint ’RoomShape :with :BEGIN
:BODY

Shape SBaD=[square, rect, rhomb ],
Shape SBeD=[square, rect, rhomb ],
Shape SBaE\=[cir, oval, tri, rhomb ],
Shape SBeH=[square, rect, oval ],
Shape SBaE=Shape SBeE,
disjoint(Shape SBaH, Shape SBeH)

:END)

Reasoning about the above HKB with traditional DL-based systems may
be either (i) possible but at the price of computational complexity, e.g. rea-
soning about the individual shapes; or (ii) not feasible, e.g. the reasoning with
constraints on role cardinalities.

After the hybrid reasoning, a series of nontrivial conclusions can be drawn
from the above example as:

Ensuit Design v Dorm Design

Dorm Design v Residence Design

Hitech Design v Morden Design



5 Conclusions and future work

We have presented a new approach which extends taxonomic (DL-based) sys-
tems by combining the results of existing non DL-based reasoning systems.
This approach aims at enabling inference fusion by dividing an input hybrid
KB into smaller components, each containing the knowledge that can be pro-
cessed by a different specialised reasoning system. Results of inferences are
then fused.

Benefiting from the use of independent inferential engines and the polymor-
phous linkages which are required to have consistent semantics within different
systems, our approach to inference fusion does not depend on a specific DL-
based system or constraint solver.

In order to demonstrate the feasibility and applicability of our ideas, we
have presented a hybrid modelling language, DL(D)/S which extends ALC and
illustrated its usage in the context of inference fusion by means of an example.

The Concor architecture is proposed as the platform of carrying out infer-
ence fusion which has several advantages, such as system extensibility, simplic-
ity and component isolation. Implementation of Concor system is completed
which fuses inferences from the iFaCT DL-based system [13] and the Eclipse

CS [4]. Small test cases have been reasoned about by Concor system giv-
ing promising results. Although no formal analysis of the complexity of the
Concor system has been made, the complexity of each of its components is
as follows:

• DL system: since we do not explicitly introduce any new type of rea-
soning or new concept constructors or operators, the complexity of the
DL system remains unchanged. Meanwhile, by introducing a hybrid ap-
proach, we avoid the complex interventions between symbolic role number
restrictions and other conceptual constructors by introducing the former
through hybrid “wrapping” concepts. This removes one of the major
sources of computational complexity [2] with regard to the extensions
of DLs with concrete domains, if, again, only the DL-based inference is
considered.

• Constraint reasoner: Finite Constraint Satisfaction Problems (FCSPs)
are NP-complete as a general class [21]. Pragmatic results show that the
performance varies from system to system. For a thorough analysis on
different constraint systems, please refer to [8].

• Reasoning coordinator: the analysis of the complexity of the reasoning
coordinator has not been thoroughly carried out yet.

A formal evaluation of Concor and the theory of inference fusion using
real-life examples is forthcoming.



Acknowledgements

This work is partially supported by an Overseas Research Scholarship from the
British Council and by EPSRC under the AKT IRC grant GR/N15764.

References

[1] F. Baader and P. Hanschke. A scheme for integrating concrete domains
into concept languages. In Proc. of the 12th Intl. Joint Conf. on Artificial
Intelligence (IJCAI’91), pages 452–457. Morgan Kaufmann, 1991.

[2] F. Baader and U. Sattler. Description Logics with Symbolic Number Re-
strictions. In Proc. of the 12th European Conf. on Artificial Intelligence
(ECAI’96), pages 283–287. John Wiley, 1996.

[3] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American, pages 28–37, May 2001.

[4] P. Brisset et al. ECLiPSe Constraint Library Manual, Rel. 5.2. Interna-
tional Computers Ltd. and Imperial College London, 2001.

[5] E. Compatangelo and H. Meisel. K−ShaRe: an architecture for sharing
heterogeneous conceptualisations. In Proc. of I-KOMAT’2002-to appear.

[6] F. M. Donini et al. Reasoning in description logics. In Foundations of
Knowledge Representation, pages 191–236. CSLI, 1996.

[7] D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. Patel-
Schneider. OIL: An Ontology Infrastructure for the Semantic Web. Intel-
ligent Systems, 16(2):38–45, 2001.

[8] A. Fernández and P. M. Hill. A Comparative Study of Eight Constraint
Programming Languages over the Boolean and Finite Domains. Jour. of
Constraints, 5:275–301, 2000.

[9] R. Fikes and A. Farquhar. Distributed Repositories of Highly Expressive
Reusable Ontologies. Intelligent Systems, 14(2):73–79, 1999.
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