OpenAlIR@RGU

The Open Access Institutional Repository
at The Robert Gordon University

http://openair.rqu.ac.uk

This is an author produced version of a paper published in

Communications of the IIMA (ISSN 1543-5970)

This version may not include final proof corrections and does not include
published layout or pagination.

Citation Details

Citation for the version of the work held in ‘OpenAIR@RGU’:

ALLISON, I. and MERALI, Y., 2006. Learning to improve software
processes. Available from OpenAIR@RGU. [online]. Available from:
http://openair.rgu.ac.uk

Citation for the publisher’s version:

ALLISON, I. and MERALI, Y., 2006. Learning to improve software
processes. Communications of the 1IMA, 6 (1), pp. 17-28.

Copyright
Items in ‘OpenAIR@RGU’, The Robert Gordon University Open Access Institutional
Repository, are protected by copyright and intellectual property law. If you believe that
any material held in ‘OpenAIR@RGU’ infringes copyright, please contact
openair-help@rgu.ac.uk with details. The item will be removed from the repository while
the claim is investigated.

Learning to Improve Software Processes: Making Sense of Practice

lan Allison
Nottingham Trent University, Nottingham, NG11 8NS, UK.
Yasmin Merdi

University of Warwick, Coventry, CV4 7AL, UK.

Abstract

Software Process Improvement (SPI) programs are frequently considered to be planned in nature.
However, there is recent evidence to suggest that SPI can be understood as a form of learning.
Drawing on the organizational learning literature this paper proposes an active learning
perspective of improvements in processes. This view recognizes the various actors in the project
to be reflective in their actions, making sense of the current context and thus designing their use
of the process to best suit their needs at the time. The changes in the processes emerge through
ongoing adjustments, experimentation and improvisation as developers and managers seek to
improve their product devel opment.

Key words: Software Process Improvement; Reflective Practitioners; Organizational Learning;
Sensemaking

INTRODUCTION

The robustness of an organization’s software processes are often considered to be a key factor in
the resultant quality of an organization’s information systems. Through software process
improvement (SPI) programs the current methods used are refined or atered to ensure future
systems are developed to a high standard. Traditionaly, following the Software Engineering
Institute (SEI)’s lead, programs of improvement were determined from a predefined model (e.g.
the Capability Maturity Model (CMM)). Evidence shows that a number of organizations
achieved benefits as a result of this adoption (Herbselb, 1997). Consequently, the majority of the
literature has focused on devel oping such models (Hansen, 2004).

Not all companies have found this approach to software process improvement to be beneficia
with many abandoning SPI programs or avoiding norm-based models like CMM (Herbselb,
1997; Conradi and Fugetta, 2002). These models are also the subject of criticism for the rigidity
of the process areas and their underlying deterministic assumptions about implementation
(Bollinger and McGowan, 1991). They are aso seen to be inflexible and lack an emphasis on
people (McFeeley, 1996).

The SPI literature, therefore, has started to explore how processes change through time by
considering process improvement in practice. So, building upon this recent literature, this paper
will show that processes emerge through situated practice, as the various actors make sense of
their own actions, thus enabling the learning required to improve the processes to achieve better
quality products. A longitudina case study based on a software vendor is drawn upon to provide
evidence and examples of how processes improve through improvisation as practitioners reflect
on their actions, and in doing so enhance the resilience of the end products.

LEARNING IN SPI

The SPI literature has begun to recognize that both competence of an organization’s members
and their ability to learn are important aspects of improving the quality of products and processes.
Mathiassen et al (2002, p.7), for instance, suggest that:
SPI is driven by knowledge about practices and perceived needs, insights gained during
the improvement process, software industry standards, and state-of-the art methodologies
and tools. SPI efforts aso depend on the implicit, individual knowledge of participants.
However, the general ideaisto make knowledge explicit and to share knowledge.
This section discusses how organizational learning theory informs our understanding of how
process improvements occur. An understanding of learning and the use of knowledge as a process
will be explored, showing that to understand how process improvements occur we need to
encapsulate the way that organizations learn to improve over time. An action based view of
knowledge helps us to see SPI as a process of sensemaking, where agents are seen to draw on
their knowledge during the action, and learn through reflection on their experience.
Lyytinen and Robey (1999) cite the failure of organizations to learn from their own previous
experience as a reason for the recurrence of problems in IS development. They argue that
learning from experience runs against the common practice because the incentives are not there
to do this. When failure occurs the pressure is on IS management to externalize the problem,
identifying deficiencies in the infrastructure, or its supply, rather than poor internal application.
The result of this pressure is that improvements in systems devel opment approaches have focused
on the adoption of new tools, technologies and techniques from outside, such new development
methods. Lyytinen and Robey (1999) argue though that externa knowledge may not be
transferable into an organization as it is based on the experience of others and, even when it is
transferable, external knowledge often adds little competitive benefit asit isin the public domain.
S0, this external emphasis does not produce the experiential learning necessary to avoid making
the same mistakes with the next set of tools and technologies. To deliver improvement an
organization needs to create knowledge from the inside and thereby feed the continuous
improvement activity (Nonaka and Takeuchi,1995).
New methods or development technology are readily identified when employees are
knowledgeable about current processes. Fichman and Kemerer (1997) confirm that organizations
are more likely to innovate or take on innovation when the skills required are close to those in the
organization. Successful application of ideas increases confidence and knowledge, encouraging
further changes (Allison, 1999). Competence of software developers can encourage commitment
to projects and process improvement. When software practitioners ‘ understand and appreciate the
process, they are empowered to use their discretion and adapt the process to meet the needs of
both the situation and their customers’ (Aaen et a, 2002, p.34). Without such ability or readiness

to learn, an organization is likely to face difficulties in delivering change and adapting to the
demands of the market, and will therefore lose out in a competitive environment. Ravichandran
and Rai (2000), for instance, suggest that an IS group’s ability to learn needs to be nurtured, as
acquiring technica know-how places significant demands on developers. Organizations seek to
address this learning by devel oping programs and incentives to encourage this to happen.
These human resource management strategies do not offer immediate solutions. Rather,
Scarbrough (1998, p.221) states that whilst this resource based view of knowledge traces ‘a clear
and compelling causal path from endogenous characteristics of the firm through its product and
innovation portfolio to competitive performance’, there are problems with tapping knowledge as
knowledge is distributed and embedded in different social groups (communities-of-practice). So,
he challenges the desire to orchestrate the distribution of knowledge in aformalized way, arguing
that it tends to institutionalize the communities-of -practice from which competence emerges. The
problem, therefore, is one of integration and not just a problem of combining, sharing or making
data commonly available (Scarbrough, 1999).
Many recognize the separation of tacit understanding of individuals from the explicitly
documented knowledge captured in formal systems, such as software process models and
standards. The problem with seeing knowledge as only the explicit dimension is that much of
organizational knowledge is not in its formal systems (the espoused theory) but in its beliefs,
habits, routines, and memory of its members (the theory-in-use) (Argyris and Schon, 1996). This
is why Choo (1998) encourages organizations to find ways to move the tacit to the explicit
through sharing experiences, stories, reconfiguring existing knowledge and through
internalization of the tacit by experience. Pourkomeylian (2001) suggests that externalization
through socialization occurs in software process improvement, for instance through the creation
of SPI plans and process descriptors. Whether it is possible to consciously share tacit knowledge
in this way is debatable, but it recognizes the importance of the dynamic, social element in the
sharing of knowledge. What it misses is the reflective nature of learning through action. Senge
(1990) states that organizations are continuously changing through active implementation and
reflection on their theory-in-use. Argyris and Schén (1996, p.16), likewise, state that:
individuals within an organization experience a problematic situation and inquire into it
on an organization’s behalf. They experience a surprising mismatch between expected
and actual results of action and respond to that mismatch through a process of thought and
further action that leads them to modify their images of organization or ther
understanding of organizationa phenomena and to restructure their activities so as to
bring outcomes and expectations into line, thereby changing organizational theory-in-use.
McGuire and Randall (1999), also, argue that the software development activities involve
multiple iterations and feedback loops that result in a maturing sequence of mental models for the
human actors. Process models and software engineering features can be understood as
frameworks for learning (Mathiassen, 1998). These can be drawn on by the developersin sharing
and adopting ideas. Mathiassen (1998) uses Schon’s concept of reflection-in-action to show how
software developers learn by making use of their past experiences and adapting these to fit the
current situation. Reflection-in-action assists organizational actors to gain insight into the
background context of the change, thus it helps to reshape and restructure the organizationa
context. Schon (1983) considers that we show ourselves to be knowledgeable through our
intuitive actions and decisionsin everyday life. Our knowing is often tacit, as seen in our patterns
of action and feeling for the given activity. Schon (1983, p.49) therefore posits that ‘ our knowing

Is in our action’. So our work life depends upon our tacit knowing-in action: the ability to
recognize phenomena, patterns and symptoms. So the know-how is in the action.

If we recognize knowing-in-action, Schon (1983) claims that we should also recognize that we
sometimes think about what we are doing. This thinking implies that we consider what we are
doing during the action so as to improvise and respond to the context. This *reflection-in-action
hinges on the experience of surprise’ (ibid, p.56); when things please us or lead to undesired
results we may respond by reflecting-in-action. At such moments, Schon considers that reflection
interactively focuses on the intuitive knowing that is implicit in the action. A practitioner’s
reflection helps to surface and correct previous tacit understanding; they may reflect on the tacit
norms and appreciations which support a decision. Practitioners also reflect on their knowing-in-
practice through a post-activity review: they think back on a project. March and Olsen (1976,
p.56) see this experiential learning as sensemaking, in which ‘individuals and organizations make
sense of their experience and modify behavior in terms of their interpretations.’

So, successful improvement involves learning, iteration and the emergence of new ideas, because
processes ‘are improvisational in that they combine real-time learning through design iterations
and testing’ (Eisenhardt and Tabuzi, 1995, p.108). The integration of any new innovation is not
simple and requires intensive learning; the adoption should not be seen as a stand alone action
(Lyytinen and Damsgaard, 2001). Lyytinen and Damsgaard (2001) also point out that the
timescales in the implementation of any innovation are not necessarily short, so recognizing the
time-based factors in the emergent change is necessary. So we need a context and process based
mode that helps us to understand this emergent change as occurring through reflective learning.
It is therefore necessary to accommodate iterative experimentation, use, and learning in any
model of change.

SPI ASSENSEMAKING

The chalenge, then, is to understand process change as an emergent, active learning process
developed from the relationship between people and their context. Orlikowski (1996, p.65)
argues that a situated change perspective helps to explore the ongoing practices of organizational
actors that emerge ‘out of their (tacit and not so tacit) accommodations to and experiments with
everyday contingencies, breakdown, exceptions, opportunities, and unintended consequences that
they encounter’. Each action either changes or reproduces existing organizational properties and
practices. As these amendments are sustained over time then fundamental changes occur:
The recurring story is one of autonomous initiatives that bubble up internally; continuous
emergent change; steady learning from both failure and success; strategy implementation
that is replaced by strategy making; the appearance of innovations that are unplanned,
unforeseen, and unexpected; and small actions that have surprisingly large consequences.
(Weick, 2000, p.225)
The concepts of situated change are founded on the social theories of sensemaking and
improvisation. To engage in sensemaking is to frame the boundaries of the problem, and impose
coherence upon it to alow us to decide how the situation needs to be changed. We are always in
the middle of complex situations as there are no absolute starting points: sensemaking is an
ongoing activity. In improvised change the solution applied is refined to fit the need on each
occasion. To do this, organizations need to create new knowledge and to draw on the
competencies available. Sensemaking helps us to understand situated, purposeful change in

dynamic organizations in a different way to the deterministic view. Taking this perspective can
help us to understand the unfolding changes in SPI through the actions of the human actors,
whether intended or not. The intention of the key actors and their design for the change are
important aspects of understanding the reasons for and the consequences of the changes.

Weick (1995) considers sensemaking to be the process of constructing an interpretation of the
unknown by active agents. Whilst not all authors agree, he argues that action results from
sensemaking, as interpretation is only part of sensemaking not synonymous with it: ‘ sensemaking
is about authoring as well as reading’ (Weick, 1995, p.7). It is an activity or process of invention
not simply a discovery of ‘the interpretation’ (ibid). Individuas try to make sense of ther
experience. Even when the experience is complex and ambiguous they impose order, attribute
meaning and provide explanations (March and Olsen, 1976).

Sensemaking is an ongoing activity. We are dways in the middle of complex situations; there are
no absolute starting points. Weick (1995) shows that problems do not present themselves as
givens, but need to be constructed from complex, fuzzy, puzzling and uncertain situations. To
engage in sensemaking is to frame the boundaries of the problem, and impose coherence upon it
to alow usto decide in what direction the situation needs to be changed:

There is a strong reflexive quality to this process. People make sense of things by seeing aworld
on which they have already imposed what they believe. People discover their own inventions,
which is why sensemaking understood as invention, and interpretation understood as discovery,
can be complementary ideas (Weick, 1995, p.15).

Interpretation and invention, or improvisation, are at different ends of a continuum (Weick,
2001). With improvisation greater modification of the originad model is implied than with
interpretation which is seen as just giving meaning to the original. Improvisation is a mixture of
the pre-composed and the spontaneous (Weick, 2001). It does not materialize out of nothing:
Ciborra (1999) points out that the improvisation is planned not haphazard, as people practice they
develop the skills and understanding necessary. Weick (1995) devel ops the idea of enactment to
show that we receive stimuli as aresult of our own action. We do something (say to improve our
context) which then helps us to do our job better so we continue to improve it. Sensemaking is,
therefore, more than ssimply a cognitive process, but one that exists within the body. Mingers
(2001, p.123) therefore argues that the physical embodiment of our action ‘suggests that much
that we “know”, in the sense that we are able to undertake particular actions and activities, is
essentially tacit, habitual, and beneath our consciousness . Knowledge is therefore learnt through
action by practice and habituation.

The integration of any new innovation is not simple and requires intensive learning; the adoption
should not be seen as a stand aone action (Lyytinen and Damsgaard, 2001). Software process
improvement technologies and methods require interpretation and will evolve through time
(Swanson, 1994). Lyytinen and Damsgaard (2001) point out that technologies do not diffusein a
homogenous and fixed socia ether but that a complex set of contextua constraints shape these
changes. Thus, this paper explores how continuous change occurs by taking into account the
contextually situated actions of the various actors and how these interacted to enable the
improvement in the process.

RESEARCH METHODOLOGY

A single-case study was adopted for exploratory research and to develop theory. The case
organization, InfoServ (a pseudonym), is a leading global information services company with

over 13,000 employees and an annual turnover of £1.2 billion. This study focuses on the Market
Analysis Package (MAP) software team based in the GeoMarketing (UK) division over aten year
period. The division combines data and software products for the market analysis purposes. The
MAP product is the division’s flagship product and directly contributes half of their sales. Asthe
purpose of this study was to understand the process of improving the software process, the unit of
analysis was taken as the continuous software process improvement activity rather than the
organizational unit, allowing the case to be compared at a later date with another improvement
initiative (Miles and Huberman, 1984).

The methodology for this study has been based on longitudinal study and processual analysis
(e.g. Pettigrew, 1997). The overall stages of the research were based on Eisenhardt’s (1989)
roadmap of how to undertake case study research, thus enfolding the literature rather than being
theory led. Both in-flight and historical data was captured through participant-observation for
over a year enabling the development of a more holistic response to the events (Jogensen, 1989).
In this case wide-ranging access was given to people and information. The role was undertaken
overtly, also enabling open interviews to be conducted, attendance at meetings, access to a wide
range of documents, notes to be taken immediately and interviews to be taped for later
transcription. Two forms of interview were used: a set of 29 formal semi-structured interviews
covering al the development staff within the software development team and their line
management and a set of 27 review meetings software managers to discover their intentions for,
and reactions to, product and process developments. Internal data collected by the software
group was aso acquired for usein the analysis of the perceived efficacy of the SPI activities.

The analysis was based upon a contextual, structurational framework (see Allison and Merali,
2003 for details). The concepts and themes developed were drawn from the data using an
inductive approach. The findings in this paper were therefore grounded in the data and supported
by the literature rather than been literature driven. To ensure that the account is plausible two
forms of feedback have been sought: on the case accuracy and interpretations, and the framework
and analysis. Informants have reviewed the accuracy of the case study data and agreed the
interpretation of the data.

PROCESSEMERGENCE: A LEARNING PERSPECTIVE

The organization established an SPI program following two years' experience of using processes
defined as part of an 1SO 9000 initiative. These processes had been defined in a group quality
manual. Over the two years from the definition of the process individual teams had returned to
previous practice, had devised or adopted additional practices, and had adapted the processes in
the manual to suit their needs. However, one key reason for initiating the SPI program was that a
major release of a new package had significant defects. Here though we will focus on what
happened after this point, by looking at how the processes changed and individuals learned
through practice. The nature of process improvement at InfoServ has been shown to fall into
three types of change: planned, improvised and unintentional (Allison and Merali, 2006). A brief
synopsis:

Planned changes occurred through action teams following an initial SPI meeting to identify areas
for change, such as the need to introduce an automated testing tool. Improvisation came about
through personal desire to change aspects of the development process. This happened when
individuals saw an opportunity to try something different and so would experiment with the idea
to test it and to communicate the benefits to others. Additionally, through ongoing practice

changes to the process would ‘bubble-up’, often unintentionally, as people learned to do things
differently. Small adjustments were made as a consequence of the ongoing interpretation and
application of practiced processes to develop new software products. They occur as a
consequence of the ongoing interpretation and application of practiced processes to develop new
software products. So, whilst the actor is conscious of their action, they do not design the action
to change the process. Innovations in the software process were based on the reflective
considerations of the individualsinvolved during the practice of developing the software.

The analysis of the caseillustrated that the learning occurs through reflection-in-action during the
enactment of the software process. Individuals learn, share lessons and draw on this shared
knowledge to undertake the process of developing products. Figure 1 identifies separate elements
of the learning activity to be discussed. Thisis not to imply that these elements can be separated
other than for analytical purposes, rather that learning and practice occur together, synergistically
informing each other. The model reflects the dualistic view of action and context, where the
individual draws on the organizational context to undertake their practice and through that
practice changes the context. The discussion highlights the linkage between the two facets.

Shared understanding explicitly and tacitly developed

Shared knowledge
drawn on through

practice
Individual Software organisational
learning Process Learning
Improvement
Practice
Reflection makes challenges
sense of practice existing
understandi
Software
Knowledge Practice nforms future
in action practice

Figurel. SPI aslearning

As discussed above, sensemaking is considered to be more than a cognitive process, but rather it
isembodied in our physical action: actors improve their software process which helps to improve
the product development, and so continue to refine their process. Actors therefore learn through
action, bringing prior experience and conceptual knowledge from other sources to support their
action. This learning is akin to the model of learning through use developed by Daft and Weick
(1984), and Kolb’s (1984) experientia learning model.

Learning to change is often taken to be a transfer of information from those who know to those
who do not. This ‘reifies knowledge and de-emphasizes its collective nature as well as social

processes of knowing' (Swan and Newell, 2000, p.592). This view implies that prior knowledge
is the only thing that is important, which tends to reinforce what is already done in the
organization. MacDonald (1998, p.40) argues, on the contrary, that this knowledge sharing is ‘a
process which cannot be directed and controlled’. At InfoServ their local adoption was influenced
by the context, the desire of the developer, and the perceived relevance of the innovation for the
product development. The assimilation and application of ideas in the case, whether from internal
or external sources, were seen to be related to the perceived value of the method or idea. The
value related to their level of trust of the sources as well as the percelved usefulness or
applicability of the technique.

At InfoServ, product and process innovation occurred through individual experimentation. One
example was the creation of a component from the MAP software that encouraged the software
management to explore the adoption of component-based development. More specificaly in the
area of process innovation the adoption of both the Critical Chain planning and test estimation
approaches followed external training. In each case these ideas were assimilated through an
individual who was able to identify how these approaches would help to resolve existing issues
that they were facing. The techniques were introduced through improvisation and
experimentation: each ideawas reinvented for the needs of the team, debated with other members
of thelr community-of-practice before exposing it to members of the wider team, and then
evaluated in given instances to test its usefulness. The willingness to put their own resources into
trying out new ideas combined with the creativeness to achieve a useful result were critical
personal attributes. The experimentation often alowed the individual to explore an idea without
the pressure to succeed: the result could be thrown away if it did not work out. Experimentation
can be encouraged, but the instances observed did not result from any organizational scheme but
from individua capability and desire. In both the examples above it was the motive to change the
current approach that encouraged them to put their own time into the experiment. This type of
successful assimilation reflects Ciborra's (1999, p.137) understanding of smart improvisation as
an action ‘which contributes to the individual or organizational effectiveness' rather than that of a
novice or someone just acting extemporaneously which has no effective link with the demands of
the situation.

Forma training and development programs are not required to enable external ideas to be
incorporated into an organization. Merali (2002) shows that individuals who are part of a fluid,
external network of professionals will reflect on those interactions and seek to apply ideas
appropriate to the perceived needs of their own software processes and products. The danger is
when external innovations are introduced en-masse because they have worked elsewhere.
Lefebvre et a (1995) show that the level of benefits derived from the adoption of new ideas is
dependent upon the level of penetration of those approaches within the organization, which
requires that the solution applied is refined to fit the need on each occasion. This is a form of
bricolage, that is it makes use of whatever resources and skills are at hand, and therefore contrasts
to the engineering view of change where projects are not started until all resources are identified
and available (Weick, 2001).

Bricolage encourages the use of existing tools and routines by people at the operational level to
solve new problems. Loca cues are used to obtain ad hoc solutions that bubble-up
serendipitously from the normal daily activity. Thus, these changes ‘emerge from the enactment
and reinforcement of local innovation’ (Ciborra, 1994, p.16). However, thisis not to suggest that
the development of the process or product is entirely random. By combining the approaches of

bricoleurs with those of engineers there are no limits to the possible implementations of software
engineering ideas (Dahlbom and Mathiassen, 1995).

Ciborra (1994) finds that only by encouraging improvisation through tinkering, or bricolage, and
having a willingness to fail will innovation occur. When new ideas were introduced at InfoServ
not everyone fully understood them, not even those who were introducing the idea, but people
were willing to experiment with ideas to see if they had value. The changes to the software
process therefore continued to emerge as individuals considered how their actions were
supporting the devel opment of the software products.

Individuals mental models matured through the enactment of the process, as highlighted by the
technical architect, who recognized that he had a maturing view of design that took into account
perceived mistakes as well as successes: ‘I know a lot more about designing large, relatively
large software projects in C++ than | did before doing this one. There is a whole host of design
approaches which | would no longer take (sic.)’. This maturing of understanding was evident
across the team. Individual learning is linked to the organizational learning that takes place as a
result of the organization’s experience with any innovation (Lefebvre et al, 1995).

Such organizational learning is more than simply documenting new processes but is about
improving the knowledge of members of the organization by sharing experiences. Indeed,
Conradi and Fuggetta (2002) found that developers considered formally documenting processes
ineffective in transferring knowledge. So whilst, software process models documented in
manual's can be changed to reflect current practice, to incorporate new ideas from outside or in an
attempt to develop a more mature process, such manuals at best only reflect the desired practice
of a software development group. Truex et a (2000) suggest that methods are discarded early in
the development process and practice is often inconsistent with the defined methodology. So,
even if we assume that teams attempt to instantiate the process as defined in a particular project,
by looking at the defined processes our understanding of the process is limited to the espoused
theory.

Argyris and Schon (1996) show that individuals maintain their own theory-in-use by interpreting
the espoused theory and other previous experience. It is the theory-in-use that the individual
draws on to respond to the particular problem faced. We therefore cannot assume that the
espoused theory is the same as the theory-in-use, and that it is the same as the action within the
development activity. However, it is as the theory-in-use changes and becomes the norm that the
espoused theory also changes, in the way that the defined processes were rewritten or
communicated to new members of the team, reflecting Argyris and Schén’s (1996) concept of
double loop learning.

Sharing understanding can therefore be supported through process documentation but this has a
limited role in communicating understanding. We therefore need to recognize that knowledge
emerges from ‘patterns of socia relations and dynamic practice’ (Scarbrough, 1998, p.227).
Knowledge can be viewed as an emergent property of organizationa interaction with the wider
environment, and in terms of social practice and relations. As organizations learn through
practice the norms of their communities-of-practice emerge. As practice unfolds it challenges
those norms and refines them through individual learning, and then future practice (and related
process change) isinformed by the norms as individuals draw on them to sanction actions.

These norms can be seen in terms of individuals learning to routinely follow the process. Whilst
there was some resistance to following the processes as defined, as the actual processes used
became the norm people knew what was expected of them and therefore as one developer put it:

‘it gets ingtinctive...[and so they] follow [the] method...despite themsalves'. The application of
object oriented programming was a good example of this routinization.

The move to a C++ development environment was difficult because knowledge and skills in this
area were in short supply. The level of prior understanding varied and therefore some devel opers
found the abstraction and encapsulation discipline difficult, sometimes returning to old habits.
However, through repeated use, listening to others in design meetings and subsequent inspection
meetings, and both formal and informal training their persona understanding developed, albeit to
a varying extent. The improvement was evident to those looking back at software developed at
different times.

So as ideas are shared across a group, tacitly and explicitly, the degree of systemness increases
within the communities-of-practice through shared meaning. Giddens (1999) defines social
systems as the reproduced relations between actors or collectives, organized as regular social
practices. These collectives are not unified, but draw on commonly understood rules to
communicate and act. So there is a greater ability to draw on similar rules as ideas are shared
across communities-of-practice. This shared knowledge resides with individuals, but the team’s
capability increases through an improved ability to access knowledge held within the community
and a greater understanding of its relevance to their needs. As this capability improves, so the
team’s agility to respond to development triggers improves. As norms are drawn on within the
practice, then further experience will challenge the understanding embedded in those norms — at
the individual level but through discussion and negotiation the norms will evolve — and those
norms will be used to inform participants' future practice. The case showed that sharing ideas to
develop group solutions is difficult, as individual motives tend to engender a persond
perspective. Trust between the participants enables this sharing and learning to happen.

CONCLUSION

Previously, SPI has been mainly understood as something to be engineered. Even continuous
process improvement approaches, such as IDEAL, take little account of the organizationa
context. Thus, if we are to understand how continuous change occurs we need to take into
account the organizational context it is occurring in, the actions of the various actors and how
these interact to enable the learning and knowledge creation said to be required to improve the
process.

The improvement at InfoServ was shown to be a process of emergent change. Reflection by
developers during their development tasks informed their process improvement. The changes
were derived from innovations they felt to be directly relevant to their work, and would address
problems in the software or the life cycle. Ideas that were tried out as experiments to address a
particular need during a development activity were communicated to other devel opers through a
shared experience of the product devel opment.

Future work must therefore continue to develop this understanding of software process
improvement as emergent change. To do so it will be necessary to develop a stronger theoretical
framework to understand how this change happens so as to draw out the different features of the
change in a more precise and theoretically informed way. To achieve this further empirical data
will be required. The lessons from this study also need to be taken on in terms of what the impact
of a more emergent, agile perspective of SPI would mean for practice and how this can be best
supported (Allison, 2005). An agile perspective that highlights the need to learn to improve

through situated practice within an organizational framework would support the ongoing needs of
the business, reflecting the learning intensive nature of SPI.

REFERENCES

Aaen, |., Arent, J.,, Mathiassen, L. & Ngwenyama, O. (2002), Mapping SPI Ideas and Practices,
In: Mathiassen, L. Pries-Heje, J. & Ngwenyama, O. (eds.) Improving Software Organizations,
23-46, Upper Saddle River, NJ. Addison-Wesley.

Allison, I. & Merdi, Y. (2003) Software Process Improvement: Towards an Emergent
Perspective, In: Levy, M. Martin, A. & Schweighart, C. (eds.), Proceedings of the 8" UKAIS
Conference, 9 — 11™ April, University of Warwick.

Allison, 1. & Merdi, Y. (2006) Intra-team Software Process Emergence: Resilence Through
Improvisation, In: Hapeshi, K. & Tomlinson, A. (eds)), Proceedings of the 11" UKAIS
Conference, 10— 11" April, University of Gloucestershire.

Allison, I. (1999) Information Systems Professional Development: A Work-Based Learning
Model, Journal of Continuing Professional Devel opment, 2(3), 86-92.

Allison, I. (2004) Software Process Improvement as Emergent Change: a Structurational
Analysis, PhD Thesis, University of Warwick.

Argyris, C. & Schon, D.A. (1996) Organizationa Learning II: Theory, Method and Practice,
Reading: MA : Addison-Wesley.

Bollinger, T. B. & McGowan, C. (1991) A Criticd Look at Software Capability Evaluations,
|EEE Software, 8(4), 25-41.

Choo, C.W. (1998) The Knowing Organization: How Organizations Use Information To
Construct Meaning, Create Knowledge and Make Decisions, New York: Oxford University
Press.

Ciborra, C. (1994) The Grassroots of IT and Strategy, In: Ciborra, C. & Jelassi, T. (eds) Strategic
Information Systems: a European Perspective, 3-24, Chichester: John Wiley & Sons.

Ciborra, C.U. (1999) A Theory of Information Systems Based on Improvisation, In: Currie, W.L.
and Galliers, R. (eds.), Rethinking Management Information Systems, 136-155, Oxford: Oxford
University Press.

Conradi, R.& Fugetta, A. (2002) Improving Software Process Improvement, |IEEE Software,
19(4), 92-99.

Daft, R.L. & Weick, K.E. Toward a Model of Organizations as Interpretation Systems, Academy
of Management Review, 9(2), 284-295.

Dahlbom, B. & Mathiassen, L. (1995) Computers in Context: the Philosophy and Practice of
Systems Design, Cambridge, MA: Oxford : NCC Blackwell.

Eisenhardt, K.M. (1989) Building Theories from Case Study Research, Academy of Management
Review, 14(4), 532-550.

Fichman, R.G. & Kemerer, C.F. (1997) The Assimilation of Software Process Innovations: an
Organizational Learning Perspective, Management Science, 43(10), 1345-1363.

Gasston, J. & Halloran, P. (1999) Continuous Software Process Improvement Requires
Organizational Learning: An Australian Case Study, Software Quality Journal, 8(1), 37-51.

Giddens, A. (1999) Elements of the Theory of Structuration, In: Elliott, A. (ed.) The Blackwell
Reader in Contemporary Social Theory, 119-130, Oxford: Blackwell Publishers Ltd.

Gray, E.M. & Smith, W.L. (1998) On the Limitations of Software Process Assessment and the
Recognition of a Required Re-orientation for Global Process Improvement, Software Quality
Journal, 7(1), 21-34.

Hansen, B.H., Rose, J. & Tjornehoj, G. (2004) Prescription, description, reflection: the shape of
the software process improvement field, International Journal of Information Management, 24,
457-472.

Herbselb, J., Zubrow, D., Goldenson, D., Hayes, W., & Paulk, M. (1997) Software Quality and
the Capability Maturity Model, Communications of the ACM, 40(6), 30-40.

Hollenbach, C., Young, R., Pflugrad, A. & Smith, D. (1997) Combining Quality and Software
Improvement, Communications of the ACM, 40(6) 41-45.

Jorgensen, D.L. (1989) Participant Observation. Newbury Park, CA: Sage Publications Inc.
Kolb, D.A. (1984) Experiential Learning, Englewood Cliffs, NJ: Prentice Hall.

Lefebvre, E, Lefebvre, L A, & Roy, M (1995) Technological penetration and organizational
learning in SMEs: The cumulative effect, Technovation, 15 (8), 511-522.

Lyytinen, K. & Damsgaard, J. (2001) What’'s Wrong with the Diffusion of Innovation Theory?
In: Ardis, M.A and Marcolin, B.L. (eds.) Diffusing Software Products and Process Innovations
(IFIP TC8 WG8.6 Fourth Working Conference, 173-204, April 7-10", Banff, Canada), Norwell,
MA: Kluwer Academic Publishers.

Lyytinen, K. & Robey, D. (1999) Learning Failure In Information Systems Development,
Information Systems Journal, 9, 85-101.

MacDonald, S. (1998) Information For Innovation: Managing Change Form An Information
Perspective, Oxford: Oxford University Press.

March, J.G. & Olsen, JP. (1976) Ambiguity and Choice in Organizations, Olso, Norway:
Scandinavian University Press.

Mathiassen, L. (1998) Reflective Systems Devel opment, Online a
http://www.cs.auc.dk/~larsm/rsd.html, Accessed on 5/12/2001.

Mathiassen, L., Pries-Heje, J. & Ngwenyama, O. (2002) Improving Software Organizations: from
principlesto practice, Boston, MA: Addison-Wesley.

McFeeley,B (1996) IDEAL: A User’s Guide For Software Process Improvement (CMU/SEI-96-
HB-001), Pittsburgh, PA: Software Engineering Institute/ Carnegie Melon University.

Merali, Y. (2002) The Role of Boundaries in Knowledge Processes, European Journal of
Information Systems, 11(1), 47-60

Miles, M.B. & Huberman, A.M. (1994) Quditative Data Analysis: An Expanded Sourcebook
(2nd ed.). Thousand Oaks, CA : Sage Publications, Inc..

Mingers, J. (2001) Embodying information systems: the contribution of phenomenology,
Information and Organization, 11, 103-128

Nonaka, I. & Takeuchi, H. (1995) The Knowledge-Creating Company, New York: Oxford
University Press.

Orlikowski, W.J. (1996) Improvising Organizational Transformation Over Time: A Situated
Change Perspective, Information Systems Research, 7(1), 63-92.

Pettigrew, A.M. (1997) What is Processua Analysis? Scandinavian Journal of Management,
13(4), 337-348.

Pourkomeylian, P. (2001) Knowledge Creation in Improving a Software Organisation, In: Ardis,
M. & Marcolin, B. (eds.) IFIP TC8 WGB8.6 Fourth Conference, 205-224, Norwell, MA: Kluwer
Academic Publishers.

Ravichandran, T. & Rai, A. (2000) Software Process Management: An Organizationa Learning
Perspective, In: Hansen, H.R., Bichler, M., & Mahrer, H. (eds.) Proceedings of the 8th European
Conference on Information Systems, 202-209, 3rd-5th July, Vienna, Austria: Vienna University
of Economics and Business Administration.

Scarbrough, H. (1998) Path(ological) Dependency? Core Competencies from an Organizational
Perspective, British Journal of Management, 9(3), 219-232.

Scarbrough, H. (1999) The Management of Knowledge Workers, In: Currie, W.L. and Galliers,
R. (eds)), Rethinking Management Information Systems, 474-496, Oxford : Oxford University
Press.

Schon, D.A. (1983) The Reflective Practitioner: How Professionals Think In Action, New Y ork:
Basic Books.

Suchman, L.A. (1987) Plans and Situated Actions: the Problem Of Human-Machine
Communication, Cambridge: Cambridge University Press.

Swan, J. A. & Newsdll, S. (2000). Linking Knowledge Management and Innovation, In: Hansen,
H.R., Bichler, M., and Mahrer, H. (eds.) Proceedings of the 8th European Conference on
Information Systems, 591-598, 3rd-5th July, Vienna, Austria: Vienna University of Economics
and Business Administration.

Swanson, E.B. (1994) Information Systems Innovation among Organizations, Management
Science, 40(9), 1069-1092.

Truex, D., Baskerville, R. & Travis, J. (2000) Amethodical Systems Devel opment: The Deferred
Meaning Of Systems Development Methods, Accounting, Management, and Information
Technology, 10, 53-79.

Weick, K.E. (1995) Sensemaking in Organizations, Thousand Oaks, CA: Sage Publications Inc.

Weick, K.E. (2000) Emergent Change as a Universal in organizations, In: Beer, M. and Nohria,
N. (eds.) Breaking the code of change, 223-242, Boston, MA: Harvard Business School Press.

Weick, K.E. (2001) Making Sense of the Organization, Oxford: Blackwell Publishers.

