
OpenAIR@RGU

The Open Access Institutional Repository
at The Robert Gordon University

http://openair.rgu.ac.uk

This is an author produced version of a paper published in

Proceedings of the 3rd Conference of the LTSN-ICS (ISBN 0954192710)

This version may not include final proof corrections and does not include
published layout or pagination.

Citation Details

Citation for the version of the work held in ‘OpenAIR@RGU’:

ALLISON, I., ORTON, P. and POWELL, H., 2002. A virtual learning
environment for introductory programming. Available from
OpenAIR@RGU. [online]. Available from: http://openair.rgu.ac.uk

Citation for the publisher’s version:

ALLISON, I., ORTON, P. and POWELL, H., 2002. A virtual learning
environment for introductory programming. In: Proceedings of the
3rd Conference of the LTSN-ICS. 27-29 August 2002.
Loughborough: Loughborough University. Pp. 48-52.

Copyright
Items in ‘OpenAIR@RGU’, The Robert Gordon University Open Access Institutional
Repository, are protected by copyright and intellectual property law. If you believe that
any material held in ‘OpenAIR@RGU’ infringes copyright, please contact
openair-help@rgu.ac.uk with details. The item will be removed from the repository while
the claim is investigated.



A VIRTUAL LEARNING ENVIRONMENT FOR INTRODUCTORY

PROGRAMMING

Ian Allison
The Nottingham Trent University

Burton Street

Nottingham
ian.allison@ntu.ac.uk

http://dcm.ntu.ac.uk/5_staff/staff_ian.htm

Paul Orton
The Nottingham Trent University

Burton Street

Nottingham
paul.orton@ntu.ac.uk

http://dcm.ntu.ac.uk/5_staff/staff_pao.htm

Heather Powell
The Nottingham Trent University

Burton Street

Nottingham
heather.powell@ntu.ac.uk

http://dcm.ntu.ac.uk/5_staff/staff_hmp.htm

ABSTRACT

Teaching of initial programming is a significant
pedagogical problem for computing departments. It
is shown that by understanding the changing
characteristics of computing students helps to
identify their learning approaches and requirements.
These findings are used to explain the rationale for
the development and use of a virtual learning
environment to support the learning of introductory
programming.

Keywords

Virtual learning environment; teaching programming.

1. INTRODUCTION

The teaching of the initial programming language is
a significant pedagogical problem for computing
departments. With increasing numbers of
computing students in the UK, the teaching of this
core skill has become more difficult. A higher
proportion of students are selecting to study
computing without a natural aptitude for
programming.

One approach adopted to address this problem in
some curriculum areas is computer-aided learning
(CAL). A variety of CAL tools have been applied to
support teaching in computing. In part the emphasis
for this has been on reducing class contact.
However, the reduction of contact time is only one
aspect of CAL tools. CAL has been shown to
provide valuable support in many contexts [e.g. 13].

A virtual-learning environment (VLE), known as Idyll,

has been developed by NTU in response to the
problems outlined above. Lessons are drawn from
previous experience with CAL tools to develop Idyll.
The purpose of this paper is to show how Idyll can
help to overcome a number of problems of teaching
and learning programming. The paper initially
outlines the background to this initiative and the use
of computer-aided learning tools in computing. We
then discuss the new approach and show how it
addresses the problems outlined.

2. BACKGROUND

2.1 Changes in the computing
academic environment
Computing was a niche discipline over a decade
ago, with many new students gaining their initial
experience in programming prior to starting their
degree. These students were “motivated to learn
about a subject they found interesting” [7]. Today’s
students have quite a different background with
home PCs often seen as an entertainment vehicle
rather than just a tool for dedicated hobbyists. The
IT skills shortage and resulting lucrative job market
entice many school leavers into undertaking
computing degrees. The consequence of these
changes is that a diverse set of students enters
university to study computing [7]. Many of these
students are not equipped with an appropriate
problem-solving aptitude for learning programming.
So, computing courses have wastage rates that are
high compared to other disciplines.

Over a similar time period, industry standard
languages were introduced to the curriculum instead
of simplified teaching languages such as Pascal.
There was pressure to change because Pascal was
“suitable only for small self-contained programs that
have only trivial interactions with their environment”
[10]. Since the early 90’s C++ has been the core
programming language taught at NTU. Arguably,
this change has achieved the desired objective of
assisting graduates to obtain jobs in the employment
market. However, current languages and
programming environments complicate the learning

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission.

3nd Annual Conference on the Teaching of Computing,
Loughborough University

© 2002 LTSN Centre for Information and Computer Sciences



process for novice programmers. These
environments place an additional burden upon the
learner to understand not just the language and
concepts of programming, but also the
idiosyncrasies of the development environment. All
of this places a cognitive overload on those who do
not have the natural aptitude for programming.

Student feedback at NTU gives very high ratings for
all aspects of the teaching of introductory
programming modules. It seems quite natural then
to assume that the problem is simply that C++ is
intrinsically too hard or the students are not capable
of using it. Some universities have adopted
alternative languages like Java or Visual Basic in an
attempt to overcome problems with language
complexity [e.g. 2], but this does not solve the
problem. It is our view that understanding the
different approaches and motivation for learning
programming is the key. By adapting to the needs of
the students we can support those with less natural
ability to learn.

2.2 Student Motivation and Learning
Student motivation is a complex issue and
influences the individual’s approach to learning. It is
widely assumed that computing students are
extrinsically motivated. However, it is argued that
students’ motivation is a product of their value of
success and their expectation of success [6]. The
value of success is equivalent to the student’s own
extrinsic motivation factors, such as a well-paid job
or high marks. The problem in programming is that
the expectation to succeed wanes with early
disappointments and difficulties. For students to
expect to succeed they must see that they have
control over their own success.

An active role in the learning process encourages
learning. An active learner is not necessarily
independent, but one that has more involvement
with the subject matter. Figure 1 shows that an
active learner will selectively apply the knowledge
gained and evaluate ideas through applying them to
a problem. Motivation to learn will increase through
successful application of the techniques learnt.

By their natural aptitude for learning to program
students can be classified in order to ensure
teaching resources are targeted appropriately. For
students who can be classified as strugglers [7] our
role as motivator is essential. The tools that we use
need to support student learning by helping students
to expect to succeed [6]. The struggler’s
“confidence, anxiety and other affective states…can
change as a result of experience” [1]. So the
objective of this project is to address the constraints
on learning amongst this group of students. “After

all, the art of pedagogy is, as I see it, the craft of
helping other people to teach themselves even
those things which they, at some time and for any
reason, may not be inclined to learn, in spite of their
desire to do so.” [14].

Figure 1 Active student learning adapted from [3]

3. CAL TOOLS FOR PROGRAMMING

Computer-aided learning has many potential
benefits but also many potential drawbacks that
developers need to be aware of. The perception that
drove the Teaching and Learning Technology
Programme

1
in the early 1990s was that content

could just as easily be delivered through a computer
interface as via a lecture, thereby saving lecturer
time. Moreover, the learning would be student-
centred because it would take place at the student’s
own pace and at their convenience. Whilst some of
this is true, there are several factors that favour a
more imaginative use of computers for teaching
than mere content dissemination. One is the
relatively large amount of time that it takes to
develop presentational material for CAL. Another is
the need to motivate students. Just giving learners
access to a CAL package does not guarantee that
they will use it. Learners that benefit most from this
approach are those in work who use CD material to
improve work-related skills. A human facilitator is
still needed to initiate the learning and maintain
momentum for most undergraduate learners.

There are two other important factors. One is that to
achieve the most thorough level of understanding in
any subject, learners need to apply what they have
learnt. This is where the potential of CAL can be
most fully realised. For maximum efficacy in terms
of the quality of learning, highly interactive
environments are needed. These environments
allow students to try things out and learn by
experimenting. These are known as simulations and
can take a number of different forms. Whilst initially

1
TLTP 75m programme funded by HEFCE, SHEFC,

HEFCW and DENI from 1992 to 1996

Active
selection of
current
knowledge

Active
filtering of

new
knowledge

Active processing

e.g. linking,
applying, adapting,

synthesising

Learning context /
motivation for

learning

Preferred approach to
learning



expensive to produce, they are by their nature
relatively reusable so ultimately can be more cost-
effective than presentational CAL.

The final factor concerns the use of CAL for weaker
students. We have noted that CAL is student-
centred, supporting individual variation in the pace of
learning. It is also a powerful medium for allowing
concepts that abler students might understand from
written text to be brought to life. This is achieved
through graphical demonstration and the use of
concrete examples and natural semantics. This
enables students with weaker logical and linguistic
skills to grasp more complex concepts.

The teaching of computing is a special case with
respect to CAL. The medium and the message are
inextricably linked. This is most strikingly apparent
when programming is considered. It is perhaps for
this reason that CAL for programming has not been
fully exploited. Any programming environment
already provides the learner with a highly interactive
environment where students can try things out and
learn by experimenting. So what else is necessary?
A programming environment on its own has no
pedagogic input, being effectively an environment
that allows learning by discovery. Supporters of
discovery learning, such as [11] and [12], might
welcome this as giving the best option for complete
understanding. However, research in other
environments has shown that some pedagogic
guidance is beneficial [4]. The main focus for
pedagogic input to programming environments has
been to manage the learning by scheduling the
student in which problems to attempt next and in
assessing the student’s answers. The main benefits
for students of these facilities is the immediate
feedback received and the removal of some of the
effort and motivation required for them to work
through the course of examples completely
independently. These advantages combined with the
benefits to the tutor of much reduced marking load
and some protection against plagiarism make for a
powerful package.

However, previous work along these lines makes no
attempt at addressing the difficulties learners
experience with the subject matter itself. One
reason for this is that it is very difficult to incorporate
a pedagogic component into what is effectively a
very complex simulation [5]. The system has so
many possible states that to achieve a reasonable
level of tutor feedback would require an AI engine to
cope with the complexity. Some free-standing CAL
packages have been developed to aid students in
understanding aspects of programming e.g. the
graphical demonstration of linked lists, but the use
of virtual environments to help in the teaching of
C++ has been limited to mirroring the pattern of

worked examples conventionally used, which in turn
has been dictated by the characteristics of
conventional C and C++ programming
environments.

The approach presented in this paper is able to
address the difficulty of the subject matter because
the virtual environment developed allows complete
flexibility in terms of examples students are able to
try. It has been possible therefore to reassess the
ordering of the sequence in which students practice
and assimilate the components of the language.
This has enabled progression through the material
to be organised such that it is in small increments as
opposed to the conventional approach which
requires students to understand a lot of syntax and
several programming concepts just to get started.

4. A VIRTUAL LEARNING ENVIRONMENT

4.1 A Rationale for a Virtual Learning
Environment for Programming
The term virtual learning environment has been
coined to reflect a broader concept than either CAL
or content-based internet browser systems. Virtual
learning environments bring together learning
opportunities, assessment and feedback,
management of student progressions, and
interconnectivity with university-wide managed-
learning environment [MLE] [9]. Learning
environments need to be multi-layered to be
effective [8]. Idyll is just one strand of the overall
VLE/MLE in the computing domain at NTU. Aspects
of content and broader university facilities are
provided by an intranet system connected into the
university student information systems. The Idyll
VLE system is specifically aimed at the students on
the introductory programming modules.

One view of learning environments is that they are
“a coping strategy to deliver government targets
within current resources” [8]. Particularly with larger
numbers of students where several members of
staff are involved on a single course the problem of
managing the learning environment becomes much
more complex. Monitoring student performance
and identifying weaker students at an early stage is
problematic. A system that integrates student
monitoring, the delivery and testing of exercises is
essential. If it also gives rapid feedback and help to
the students then tutors can concentrate on giving
good support to those who most need it.

A pitfall with the introduction of VLEs, as with CAL,
is the danger of focusing on the benefits to the tutor.
The only way learning environments can make “a
real difference has to be by allowing better learning



to take place by providing learners with more choice
and flexibility which in turn means better content and
better interactions” [8]. By encouraging students to
realise that they have control over their own success
motivates them to reach higher standards and
become independent learners. So, the VLE outlined
here is designed to provide students with the
motivation to learn by rewarding incremental
understanding. It is designed to boost student
confidence at the very critical early stage. By
providing instant checking, feedback and monitoring
of results it facilitates better nurturing of struggling
students.

4.2 Idyll: an VLE for Learning
Programming in C++
The Idyll VLE provides a simplified, streamlined and
more intuitive introduction to programming. It does
this by reducing the complexity of the task to a
single problem-solving exercise. The cognitive load
of using a standard development environment is
removed because the tool acts as an interface to the
Visual C++ development environment. Idyll has the
flexibility of learning normally associated with CAL
tools. The system provides positive reinforcement of
the learning through constant feedback and provides
incentives through a rating system. All of this is done
within an integrated environment that allows access
to taught content and provides tutors with
information to allow the management of students’
progression.

The predominant approach in C++ textbooks is to
start with terminal type interfaces that use Cin and
Cout classes for the input and output. Executable
programs are produced. In PC Windows
environments these applications run in DOS
windows. Since DOS applications were never
designed to run under the powerful new operating
systems they cannot easily access Windows
graphics or many of the powerful API functions.
From the student’s point of view it appears that they
are being taught skills that are out of date that do
not let them access many of the facilities that they
aspire to use. Idyll provides a more gratifying
experience by enabling the early use of powerful
Windows facilities. With teaching of terminal or DOS
type programs there are questions about whether a
consistent message is received by the student.
Currently, nearly all students are brought up on
Windows interfaces, where input means point and
click and output means a lot more than a character
string.

A large proportion of programming today is not
about producing stand-alone programs from scratch
but rather about writing code fragments or dlls that
link or communicate with a mass of proprietary
software. In essence, the emphasis has shifted

towards programming that is largely about writing
functions or fragments of code. The MS Visual C++
development studio allows you to develop Windows
applications but does not require you to write the
Winmain wrapping parts. Programmers can simply
add functions or code fragments.

Figure 2. A problem exercise

Idyll uses this facility to isolate the problem to be
tackled to a fragment of code in a dll. It issues
exercises in the form of problems with a function
specification (see figure 2). The exercises typically
have some correct and some missing information.
There are links to relevant teaching material for the
particular problem. The student simply edits and
compiles the program. The system automatically
runs the compiler environment. Idyll detects that a
new dll has been compiled and then runs tests.
Before running the code, Idyll checks automatically
to see if the parameters and return types are
correct. The code is then called with a whole range
of appropriate test data. If the code crashes, Idyll
traps the exception and suggests possible causes.
Idyll automatically times out when code is trapped in
a loop.

Similar applications, such as Coursemaster, use a
template to check the program ‘correctness’ and
style. Idyll does not attempt to look at style issues,
leaving this to the tutor. Idyll, however, rigorously
checks the results giving appropriate feedback.This
testing of students’ programs is an important aspect
of the learning process, as most students have an
immature approach to testing their own code. It
rates the solutions and records a mark before
providing a new challenge. It will give the students
their current rating statistics on the work to date.

Idyll maintains a database to keep track on students,
look after their work their achievements and monitor
attendance. It is intended that students should see it
as a helpmate rather than a taskmaster. The
database keeps all the student’s attempted



solutions. This information is processed and
accessible to the lecturer but, importantly, the
results it are also accessible to the individual to give
feedback on performance. Students are also able to
view peer group statistics.

By taking this approach, students will be able to start
solving significant problems without being distracted
by I/O issues or testing strategies. Students should
be able to gain confidence with the use of the most
basic concepts (variables, assignment conditional
branching and loops). Ultimately it is intended that
the system will allow a smooth transition to classes.

5. EVALUATION AND FUTURE WORK

The basic ideology has been widely discussed by
staff and students and is very well received.
Implementation of this tool is at an early stage but
initial feedback has been received from students. A
focus group was set up consisting of students of
different abilities. Stronger students who wish to
explore the wider environment approved of the
system, but felt constrained. The less-confident
students were very positive with the additional
support. A pilot-study of selected students will be
conducted during the coming year.

Further consideration needs to be given to the types
of problems that Idyll will use. It is expected that a
significant number of exercises will be built up to
provide students with a good choice as they develop
confidence to tackle the initial programming
concepts. A further development to enable distance
learning is required. One such aspect would be
intelligent tutoring of a student. Idyll does not
currently provide this support, but it is designed for
use within a traditional tutor-centred environment.
The role of the teacher remains critical to the
success of a Virtual Learning Environment.

6. CONCLUSION

Idyll provides a computer based environment that is
both effective and improves motivation to enable the
learning of initial programming skills by students
who do not have a natural aptitude for it. A learning
tool for programming should have integral syntax
checking, test programs thoroughly, and provide
objective assessment of other style criteria [5]. Idyll
addresses all these requirements.

7. ACKNOWLEDGEMENTS

This paper would not have been possible without the
contributions from the whole of the Idyll project
team. We gratefully acknowledge the support of the
LTSN-ICS development fund.

8. REFERENCES

[1] Baldwin,L.P., Eldabi, T. and Macredie, R.D.,
Learning Strategies and Individual Learner
Differences; their role in the learning of
programming, In: procs of the 6

th
UKAIS conf.,

649-659 (2001).

[2] Bergner, K. and Huber, F. Systems
Development with Java: Experiences from a
practical project course in software engineering,
In: Procs of 8

th
Int. Workshop on Software

technology and Engineering Practice, IEEE
Computer Society, 382-389 (1997)

[3] Brown, G and Atkins, M Effective Teaching in
Higher Education, Methuen (1988).

[4] Duffy, T. M. and David, H., J., Constructivism
and the Technology of Instruction, Lawrence
Erlbaum Associates (1992).

[5] Jackson, D. Computer-based teaching of
programming: can it be done? In: Hart, J. and
Smith,M.(eds)Innovations in Computing
Teaching 2: Improving the Quality of Teaching
and Learning, SEDA paper 91.

[6] Jenkins, T. Teaching Programming- A journey
from teacher to motivator, In Procs of 2nd
Annual Conf. of the LTSN Centre for Information
and Computer Sciences, (2001).

[7] Jenkins, T. and Davy, J., Dealing with Diversity
in Introductory Programming, In Procs of 1st
Annual Conf. of the LTSN Centre for Information
and Computer Sciences, 81-87 (2000).

[8] JISC workshop on Managed Learning
Environments final report.
http://www.jisc.ac.uk/pub00/mle/final_rep.html
(2000)

[9] JISC, Introducing Managed Learning
Environments, http://www.jisc.ac.uk/mle/ (2001)

[10] Kernighan, B.W. Why Pascal is not my favorite
programming language
http://www.lysator.liu.se/c/bwk-on-pascal.html
(1981).

[11] Papert, S., Mindstorms: Children, computers
and powerful ideas, Basic Books (1980).

[12] Piaget, J., Structuralism, Basic Books (1970).

[13] Powell, H and Palmer-Brown, D., Computer-
Aided Learning in Computing, Innovation, 1,47-
50, (1996).

[14] Wankowski, J., Increasing students’ power for
self-teaching in Raaheim et.al. (eds.) Helping
Students to Learn, SRHE & OU Press (1991).


