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ABSTRACT
We discussed a new approach usinginference fusion, i.e.
the cooperative reasoning from distributed heterogeneous
inference systems, to extend the expressive and deductive
powers of existing Description Logic (DL) based systems.
More specifically, our approach integrates results from a
DL reasoner with results from a constraint solver.Infer-
ence fusion(i) fragments heterogeneous input knowledge
to generate suitable homogeneous inputs for the DL and
constraint reasoners; (ii) passes control to each reasoner, re-
trieving the results and making them available to the other
reasoner for further inferencing; and (iii) dynamically com-
bines the results of the two reasoners to present the overall
conclusion. We also outline the main features ofinference
fusionby way of a small example.
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1 Introduction

The so-called “Semantic Web” has reignited the research
into expressive knowledge representation and reasoning
systems and, in particular, ontology modelling and reason-
ing [3]. Inferential engines based on Description Logics
(DLs) are extremely powerful when reasoning about onto-
logical knowledge, since they can automatically discover
hierarchical structures of a set of vocabulary [5]. How-
ever, in general, their expressive power is restricted in or-
der to reduce the computational complexity and to guaran-
tee the decidability of their deductive algorithms. Conse-
quently, this restriction prevents DL-based taxonomic rea-
soning from being widely applied to ontological services
on heterogeneous domains (e.g. domains with integers, ra-
tional numbers, strings,etc.).

During the last few years, much research has been de-
voted to the development of more powerful reasoning sys-
tems. Although single-purposed reasoning systems have
improved substantially (e.g. FaCT [8] and RACER [7]),
their homogeneous approaches are limited in three ways:
(i) the inevitable limitation of available resources has em-
phasised the “trade-off”, i.e. the expressive power of their
representation is restricted in order to ensure the compu-
tational tractability, completeness and decidability; (ii) the
specialist nature of their reasoning means that they are only

successful at carrying out particular inferential tasks; and
(iii) because of the diversity of real-life applications, new
extensions to a reasoner always lead to new limitations to
be discovered.

Because that developing a general and omnipotent
reasoning system is impractical [4], ad hocadoptions of
an existing system to meet certain requirements in real life
applications are inevitable. However, changing the under-
lying algorithm of certain reasoning systems might be very
difficult for knowledge engineers to carry out at the appli-
cation stage, as such process may involve in-depth knowl-
edge of the reasoning systems and extensive programming
skills. This is especially true when considering DLs, due
to the insufficient functionality provided by the Knowledge
Base Management System (KBMS) of DL reasoners.

In this paper, we present aninference fusion[12] (In-
Fusion) approach as an effort to reduce the necessity ofad
hocextensions of DL-based systems in ontological reason-
ing. This approach extends DL-based systems with con-
straint solvers in a heterogeneous manor.

2 A hybrid representation for InFusion

DLs are based on the notion of concepts (i.e. unary predi-
cates) and roles (i.e. binary relations). Using different con-
ceptual constructs defined with uniform syntax and unam-
biguous semantics, complex concepts can be built up from
simple components. For instance, ifhuman andmale are
defined concepts with their intuitive meanings, the concept
man can be defined as:(and human male). Meanwhile,
if has-child is specified as a role, the conceptFather, a
man whose children are human, can be expressed as:

(and man (forall has-child human))

In the past decades, different approaches have been
proposed and implemented to extend the expressive and de-
ductive powers of DL-based systems. The InFusion frame-
work is proposed to provide hybrid reasoning based on
theDL(D)/S language which extends the DLs, in general,
with Hybrid Knowledge Base (HKB)-global constraints on
role successors1 and concept-local constraints on role car-
dinalities [10, 11].

1The constrained role successors are referred to ashybrid conceptsto
be distinguished from normal DL concepts



We use theALCN , ALC [15] DL with role number
restrictions (N ), DL language as the foundation of our hy-
brid representation since it provides most of the necessary
constructs. LetA denote a concept name,C an arbitrary
concept,R a role name andn a non-negative integer. An
interpretationI for ALCN is a tuple (∆I , ·I) where the
nonempty set∆I is the domain ofI and the·I function
maps each concept to a subset of∆I while each role to a
subset of∆I × ∆I . The syntax and semantics ofALCN
is presented in Table1, whererel ∈ {≥, ≤}.

Table 1.Syntax and semantics ofALCN constructs

Syntax Semantics(Interpretation)

> ∆I

⊥ ∅
A AI ⊆ ∆I

R RI ⊆ ∆I ×∆I

C u D CI ∩ DI

C t D CI ∪ DI

¬ C ∆I \ DI

∀R .C { c ∈ ∆I |∀d ∈ ∆I : 〈 c, d 〉 ∈ RI → d ∈ CI }
∃R .C { c ∈ ∆I |∃d ∈ ∆I : 〈 c, d 〉 ∈ RI ∧ d ∈ CI }

(rel n R) {c ∈ ∆I | ]{d ∈ ∆I : 〈 c, d 〉 ∈ RI} rel n}

While DLs are normally used to model abstract
domains, in domains such as engineering and architec-
ture, modelling of numeric constraints is essential. New
constructs are thus necessary to express the heteroge-
neous domains with both abstract and concrete knowledge.
DL(D)/S is introduced to extendALCN by incorporating
the concrete knowledge shown in Table2.

H is a hybrid concept, v an integer type vari-
able, Ψ the set of role cardinality constraints andλ
an assignment mappingv to a set of non-negative in-
tegers. DL(D)/S constraints are, therefore, specified
through thehybrid concepts, i.e. ∀x1 ∈ H1, . . . , ∀xn ∈
Hn.Q(x1, . . . , xn) or role cardinalities (RC) variables, i.e.
∃v1, . . . , vn.P(v1, . . . , vn) ∈ Ψ whereH1, . . . , Hn arehy-
brid concepts, v1, . . . , vn role cardinality variables and
P, Q constraint predicates.

Table 2.Syntax and semantics ofDL(D)/S extensions

Syntax Semantics(Interpretation)

∀hR.H {x ∈ ∆I | ∀y.〈x, y〉 ∈ RI → y ∈ HI}
(= v R) {c ∈ ∆I | ]{d ∈ ∆I : 〈 c, d 〉 ∈ RI} = λ(v)}

∃v.C[v]/Ψ[v] CI [λ(v)] whereΨ[λ(v)] holds

For example, the following LISP-style expression de-
fines afather who “has twice as many sons as daughters”:

(exists(x y) (and father (eqx has-son) (eqy has-daughter) )

:with :begin :body (x = 2 ∗ y) :end)

Meanwhile, aDL(D)/S-HKB is a tupleHKB =
(T , C), where T is the set of concept definitions and
multiple concept relations (e.g.father is subsumed by
man andman is disjoint fromwoman) including the RC-
constrained concepts,C is the set of global constraints (e.g.
the restriction on human’s lifespan[0..100]).

3 Fusion of DL-based and constraint-based
inferences

In order to fully exploit the unparallel power of DL-based
approaches in taxonomic reasoning, when reasoning about
DL(D)/S-HKB with heterogeneous knowledge, we have
developed a hybrid approach [12] that facilitates the col-
laboration of two disparate reasoners. The InFusion of dis-
parate reasoners is defined as a three-stage process, namely,
knowledge fragmenting, homogeneous reasoning and in-
ference combination.

Two features are beneficial for reasoning with InFu-
sion: (i) DL-based systems can specify (told) subsumption
relationships between concepts, and (ii) an ordering (de-
noted asquasi-ordering[12]) can be introduced between
different sets of constraints.

Our approach differentiates global and local numeric
constraints and handles them in two different ways:

(i) Eachhybrid conceptis associated with a concrete im-
age (“object identification”+“constrained domain”).
TheHKB-global constraints are eliminated from the
knowledge base as, after constraint propagation (i.e.
maintaining a full path-consistency among the con-
crete images), the same restricting effects can be
achieved by thequasi-orderingamong the reduced
domains of those constrained concrete images.

(ii) A new atomic concept is introduced to replace each
set of local constraints. The restrictions of local con-
straints are enhanced by explicitly expressing the re-
strictions that are otherwise implicit, i.e. the entail-
ments and disjointnesses among different RC con-
straint sets (quasi-ordering) are emulated by the sub-
sumption relationships among the new concepts.

A heterogeneousDL(D)/S-HKB is reasoned by the
InFusion reasoning system in the following steps:

1. HKB is normalised to generate three homogeneous
sets of statements:

(i) A set of DL statements (stored inDL-pool and
donated asSDL) which do not exceed the expres-
sive power of the selected DL system;

(ii) A set of non-DL statements (stored innon-DL-
pool and donated asSnon-DL) containing the con-
crete knowledge (both global and local con-
straints) that filtered out to makeSDL ;



(iii) A set of linkages(stored inlinkage-pool and do-
nated asSlinkages) which are bijections connect-
ing DL and non-DL statements.

2. The set ofHKB-global constraints is isolated and
checked for satisfiability. In cases where an unsatis-
fiable global constraint exists,false is returned with a
message to indicate the nature of the result.

3. All HKB-global constraints are propagated. The prop-
agation of constraints applies path-consistency by re-
moving the inconsistent values from the domains of
concrete images (domain reduction). Using a con-
straint solver, (inclusion)quasi-orderingamong the
reduced domains,O⊆, is retrieved and mapped toSDL

throughlinkages.

4. The HKB-global constraints are removed from the
original HKB since that the same restrictions can be
emulated by synchronising the relationships among
hybrid conceptswith the inclusion relations among
the domains of concrete images.

5. The concept-local role cardinality constraints are
checked with regard to each concept. If an inconsis-
tency is identified, the system returns the truth value
falsewith a message.

6. The (entailment)quasi-ordering, O|=, is generated
with the help of a constraint solver and used to update
the corresponding relationships among atomic con-
cepts inSDL throughlinkages.

7. The updatedSDL is classified to give the overall con-
ceptual hierarchies of the originalHKB .

As a result of the proposed reasoning method, all the nu-
meric constraints are removed from the concept definitions,
leaving only proper DL-based descriptions built up with
the legal and admitted constructs of the selected DL-based
inferential engine (e.g.SHIQ DL of the FaCT system).
The reasoning process is summarised in Figure1, where
Sat(HKB) checks the satisfiability of the given knowledge
baseHKB .

4 The InFusion system

The InFusion theory is materialises by combining the TBox
deductions with the constraint satisfaction inferences under
the supervision of a reasoning agent. The system (see Fig-
ure 2) is composed of areasoning coordinator(the inter-
facing agent), a DL reasoner and a constraint solver.

A combinational behaviour semantics is associated
with the architecture as:

(DL(D)/S-HKB)I = DL( linkage(Con(Snon-DL)) ∪ SDL )

whereDL andCon are DL-based systems and constraint
solvers respectively andlinkage the mapping mechanism
betweenSDL andSnon-DL.

Figure 1.Reasoning algorithm forDL(D)/S-HKB

sat : HKB −→ boolean

sat(HKB) =

normalise HKB → SDL, Snon-DL, Slinkage;

if ∀Cglobal ∈ Snon-DL.Cglobal satisfiable

then

propagate Cglobal;

obtain domain inclusion ordering, O⊆;

SDL = SDL ∪ linkage(O⊆);

if ∀∃Cconcept local ∈ Snon-DL.Cconcept local consistent

then

obtain entailment ordering, O|=;

SDL = SDL ∪ linkage(O|=);

if satisfiable SDL

then true: successful;

else false: inconsistent HKB;

else false: inconsistent Cconcept local;

else false: inconsistent Cglobal;

Figure 2.InFusion’s architecture

DL-based
systems

Constraint
Solver

Reasoning
Coordinator

Users

Thereasoning coordinatoris at the heart of InFusion
and is responsible for redirecting knowledge to the spe-
cialised reasoning engines, analysing the results of their
inferencing, deciding whether further processes should be
carried out, updating the knowledge base files and return-
ing results. It uses an internal language which acts as the
mediator between the input and the underlying representa-
tion used by the selected DL or constraint system. This lan-
guage (i) makes InFusion engine-independent, since when-
ever a reasoner is replaced, only the interface need to be
switched, and (ii) reduces the programming effort on any
further extensions to the modelling language, since only
the parser residing between the intermediate language and
user language need to be modified.

4.1 Complexity

Small test cases have been reasoned about by InFusion giv-
ing promising results. Although the overall analysis of the



complexity of our system has not been completed, the com-
plexity of each of its components is discussed below:

Because of the architecture of our system, the com-
plexity can actually be considered in three relatively inde-
pendent parts, i.e. the complexity of DL-based reasonings,
the complexity of constraint solving, and the complexity of
the globalreasoning coordinator.

4.1.1 Complexity of DL-based reasoning

When considered from the DL’s point of view, we do not
explicitly introduce any new concept constructs—only new
mechanisms to interpret the foreign constructs using nor-
mal DL-based ones. In another word, new constructs do not
participate in either DL-based or constraint reasonings—
they are removed after concept normalisation.

Moreover, we avoid the complex interventions be-
tween symbolic RC restrictions and other conceptual con-
structs by wrapping the former with atomic concepts. This
removes one of the major sources of computational com-
plexity [1] w.r.t. the extensions of DLs with concrete do-
mains, if, again, only the DL-based inference is considered.

More specifically, we expect the complexity of the
DL-based taxonomic inference to be in the same class as
that of the original language without any new constructs or
operators.

4.1.2 Complexity of constraint solving

When considering from the constraint’s point of view, the
Finite Constraint Satisfaction Problems (FCSPs) are NP-
complete as a general class [14]. Pragmatic results shows
that the performance varies from system to system. For a
thorough analysis on different constraint programming sys-
tems, please refer to [6].

When considering the RC-constraints, FCSP is con-
sidered to have enough expressive power for modelling
and solving the constraints on integer-type role cardinali-
ties. On the contrary, the global constraints may be used
to model problems with real numbers, e.g. mechanical
domains, of which the constraint solving is prohibitively
expensive. Nevertheless, DL with concrete domains is,
in itself, complex—the satisfiability and subsumption of
ALC(D)-concepts areNEXPTIME-hard when (i) TBox is
taken into account and (ii) satisfiability in concrete domain
D is PTIME [13].

However, we can reduce the overall complexity of
DL(D)/S reasoning by restricting the constraints that can
be defined over the role successors to finite domains or
other less complex domains.

4.1.3 Complexity of reasoning coordination

New sources of computational complexity of the InFusion
approach mainly originate from thereasoning coordinator.

Reasoning processes ofDL(D)/S involve language
analysing processes (i.e. syntax checking and language
fragmenting) which are linear to the size of inputHKB .

Meanwhile,quasi-orderingis obtained by testing the
relationships between each pair of different RC constraint
sets or concrete images ofhybrid concepts. Such tests
are performed in a deterministic manor in both directions.
Therefore, it is expected to be ofO(N2) with regard to the
size of inputHKB (i.e. the number of RC-constrained con-
cepts orhybrid concepts).

5 Hybrid reasoning with examples

In order to illustrate the reasoning process in detail, a toy
example with numeric constraints is presented. Let us as-
sume that company X plans to have a contest on property
designs. To simplify the evaluation procedure, the organ-
iser has defined what he means by a good design using the
conceptGood-Design. Among others, one of the submitted
designs isDesign-A. We have all the information stored in
aHKB as shown in Figure3.

Figure 3.hybrid knowledge baseH KB

(defprimconcept Residence-Estate Top)
(defprimconcept Room Top)

(defprimrole has-bedroom)
(defprimrole has-s-room)

(decl-variable ’Shape-et [SQ, RECT, OVAL, CIR, POLY])
(decl-variable ’Shape-ba [SQ, RECT, OVAL, CIR, POLY])
(decl-variable ’Area-ba [0..100])
(decl-variable ’Area-ca [0..100])

(defconcept ’Good-Design ’(and Residence-Estate
(exists (x y)

(and (eq x has-bedroom)
(eq y has-s-room))

(with :begin
(x = 4y)

:end))
(forall has-bedroom Econ-Type)) )

(defconcept ’Econ-Type ’(and Room
(fallin has-area Areaet)
(fallin has-shape Shapeet)) )

(defconcept ’Type-A ’(and Residence-Estate
(exact 8 has-bedroom)
(exact 2 has-s-room)
(forall has-bedroom Bedroom-A)
(forall has-s-room Sittingroom-A)) )

(defconcept ’Bedroom-A ’(and Room
(fallin has-area Area-ba)
(fallin has-shape Shape-ba)) )

(defconcept ’Sittingroom-A ’(and Room
(fallin has-area Area-sa)) )

(decl-constraint ’Rooms
:with :begin

Shape-et =[RECT, CIR, OVAL, SQ, POLY],
Shape-ba =[RECT],
20 ≤ Area-ba ≤ 40,
Area-ba ≤ Area-ca −10,
Area-ba ≥ Area-ca /2,
Area-ca = 50

:end)



After normalisation, the original hybridHKB is frag-
mented into homogeneous parts and stored into pools as
explained in Section (3). The contents of different pools
are illustrated in Figure4, whereSnon-DL is the union of
SGlobal

non-DL andSLocal
non-DL, i.e.

Snon-DL = SGlobal
non-DL ∪ SLocal

non-DL

Figure 4.contents of Pools

SDL (defconcept Good-Design (and Residence-Estate
(some has-bedroom)
(some has-s-room)
C-gd
(forall has-room1 Econ-Type)))

(defconcept Econ-Type (and Room (forall has-area Area-et)
(forall has-shape Shape-et)))

(defconcept Design-A (and Residence-Estate
(some has-bedroom)
(some has-s-room)
C-da
(forall has-bedroom Bedroom-A)
(forall has-s-room Sittingroom-A)))

(defconcept Bedroom-A (and Room (forall has-area Area-ba)
(forall has-shape Shape-ba)))

(defconcept Sittingroom-A (and Room
(forall has-area Area-ca)))

SGlobal
non-DL Shape-et = [RECT, CIR, OVAL, SQ, POLY],

Shape-ba = [RECT],
20m2 ≤ Area-ba ≤ 40m2,
Area-ba ≤ Area-ca − 10m2,
Area-ba ≥ Area-ca/2,
Area-ca = 50m2

SLocal
non-DL RC-gd = {|has-bedroom| = x, |has-s-room| = y,

x = 10 ∗ y}
RC-da = {|has-bedroom| = 20, |has-s-room| = 2}

Slinkage C-gd → RC-gd C-da → RC-da

Shape-ba → Shape-ba Shape-et → Shape-et
Area-ba → Area-ba Area-et → Area-et
Area-ca → Area-ca

By consulting the constraint solver,quasi-orderings
between the concrete images ofhybrid concepts(i.e.
Shape-et,etc.) and RC constraint sets (i.e. RC-gd,etc.)
are established as followings:

RC-da¹|= RC-gd

Area-ba¹⊆ Area-et

Shape-ba¹⊆ Shape-et

The orderings are mapped intoSDL as relationships be-
tween concepts introduced to replace concrete knowledge
in the originalHKB as:

C-da v C-gd Area-ba v Area-et Shape-ba v Shape-et

Thus, together with the original concept definitions inSDL ,
we can draw a conclusion that the design A is a sub-class
of good designs for this particular contest, i.e.

Design-A v Good-Design

Note that, for theHKB presented in this paper, exist-
ing DL-based systems are either do not have the expres-
sive and deductive powers to give the correct answers (e.g.
the reasoning of RC constrained concepts) or the reasoning
process is computational expensive because of the inter-
vention between concrete and abstract knowledge (e.g. the
interactions between concrete domains on one hand and in-
dividual fillers or inverse roles on the other [9]).

6 Implementation of InFusion

InFusion framework has been implemented which com-
bines the inferential powers of the LISP-based DL sys-
tem FaCT and the Prolog-based constraint solver ECLiPSe.
Note that the selection of both FaCT and ECLiPSe is not
mandatory as InFusion is introduced as a generic frame-
work which can be applied to other DL-based reasoners
and constraint solvers as long as the requested functionali-
ties (ordering and mapping) are provided.

6.1 Language parser and translator

Language parsing and translation are one of the core func-
tionalities of InFusion systems (residing in thereasoning
coordinator). Several programming languages (e.g. Prolog
and Lisp) and tools are available for this purpose. In this
investigation, a C/C++ based tool, Bison/Flex, is selected
to assist in coding of parsers and translators.

6.2 Coordinator and User Graphic Interface

Thereasoning coordinator, implemented with Tcl/Tk, ben-
efits from a User Graphic Interface (UGI). End users give
instructions to the systemreasoning coordinatorthrough
buttons, menu items or dialog boxes.

As shown in Figure5, end-users can obtain the sys-
tem feedback both from the Output Window of the UGI
and line-wisely from the console window. This is to pro-
vide users a flexible means to acquire more detailed expla-
nations on errors and warnings which may not be provided
by InFusion system. For instance, DL-based system FaCT
provides verbose explanations on errors. For simplicity,
such verbose information is not displayed in UGI Output
Window. However, experienced users of FaCT may found
it useful and thus can refer to the console window.

7 Conclusions

We have presented a hybrid reasoning system which fuses
the inferences of a DL-based taxonomic reasoner with
those of a constraint solver without increasing the compu-
tational complexity of the former system. We consider our
approach as an exemplary solution to the general problem
of reducing and distributing the reasoning with expressive



Figure 5.The implemented InFusion HRS

knowledge to the combination of inferences from hetero-
geneous reasoners. Our approach shows how to distribute
and coordinate the reasoning task among different inferen-
tial engines, each dealing with a homogeneous part of the
overall expressive power.

The proposed theory is demonstrated in a hybrid rea-
soner which combines inferences from both the FaCT DL-
based reasoning system [8] and the ECLiPSe constraint
solver [2]. The hybrid characteristics of our approach are
evident in thelinkagesmechanism which maps atomic con-
cepts in the DL reasoner to the legal objects (e.g. concrete
images and RC constraint sets) in the constraint solver, and
vice versa. Our approach does not depend on the particular
(DL and constraint) reasoners adopted, since the character-
istics of thelinkagesmakes thereasoning coordinatorinde-
pendent from any specific DL system or constraint problem
solver [12].
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