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ABSTRACT
Dimensionality reduction plays an important role in effi-
cient similarity search, which is often based on k-nearest
neighbor (k-NN) queries over a high-dimensional feature
space. In this paper, we introduce a novel type of k-NN
query, namely conditional k-NN (ck-NN), which considers
dimension-specific constraint in addition to the inter-point
distances. However, existing dimensionality reduction meth-
ods are not applicable to this new type of queries. We pro-
pose a novel Mean-Std(standard deviation) guided Dimen-
sionality Reduction (MSDR) to support a pruning based
efficient ck-NN query processing strategy. Our preliminary
experimental results on 3D protein structure data demon-
strate that the MSDR method is promising.

Ca teg o ri es a nd Subject Des cri pto rs

H.3.3 [Information Search and Retrieval]: Retrieval
models; H.2.8 [Database Applications]: Scientific databases

General Terms: Algorithms

1. INTRODUCTION
The k nearest neighbor (k-NN) similarity search plays an

central role in a wide range of applications, such as multi-
media retrieval, molecular biology, medical imaging. Data
objects are represented by automatically extracted content
features which are points (vectors) in a high dimensional
space. Similarity query processing is to find the data objects
similar to a query, often the nearest k neighboring points of
the query object in the high dimensional space, by measur-
ing distance (often Euclidean distance) between each point
in the database and the query point.

Conditional k-NN. Recently, there has been an emerg-
ing demand of a new type of queries, which take into ac-
count not only inter-point distances (as in the conventional
k−NN), but also certain local constraints that two objects
must match within certain tolerance threshold along certain
individual dimensions. This is meaningful for many practi-
cal applications. For example, in protein structure analysis,
two structures which are close in terms of their Euclidean
distance but have a very large difference along certain sin-
gle dimension may potentially lead to completely different
biological functions [6]. We refer such type of query to as
conditional k-NN query (ck-NN query).
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Curse of dimensionality. Similarity search over a large
scale complex data repository is computationally intensive,
mainly due to the size of data and the high dimensionality
of the feature space, known as the “curse of dimensionality”
[2]. To alleviate the problem, dimensionality reduction tech-
niques have been explored for finding a lower dimensional
approximation of the original space. However, existing di-
mensionality reduction methods, such as Principle Compo-
nent Analysis (PCA), Singular Value Decomposition (SVD)
and Locality Preserving Projections (LPP)[3], are not ap-
plicable to ck-NN since they consider the global correlation
of dimensions among all points and neglect the difference
along each individual dimension between two points. Con-
sequently, they are not sufficient to support ck-NN queries.

In this paper, we formulate the conditional k-NN problem
and propose a novel Mean-Std guided Dimensionality Reduc-
tion (MSDR) to facilitate an efficient ck-NN query process-
ing strategy.

2. CONDITIONAL K-NN SEARCH
Definition1:Dimension-specific Similarity Measure

Given two objects represented by their feature vectors A =
(a1, a2, ..., aD) and B = (b1, b2, ..., bD). A and B are similar
(denoted as A ∼=ε B), if ∀i ∈ 1..D, ai

∼=ε bi), where D is
the dimensionality of the feature space.

“∼=ε” means “equal to within a tolerance ε”, where ε = 0
implies a rigid matching (i.e., the two objects are identical);
otherwise a semi-rigid matching. However, one potential
problem is that, depending on the value of ε, there can be
too many similar objects found. It is often necessary to add
a global similarity measure, normally based on the Euclidian
distance between objects.

In summary, given a query object, the problem we inves-
tigate here is to find the k most similar objects from the
dataset. The similarity between two objects is measured by
the Euclidean distance, subject to the maximum allowable
variation on each dimension.

3. MEAN-STD GUIDED DIMENSIONALITY
REDUCTION (MSDR)

MSDR first analyzes the statistics of each dimension glob-
ally. Those dimensions having the similar statistics are then
summarized into single ones. For each point, each of its
summarized dimension is in turn represented by the local
statistic of its original dimensions. The statistical parame-
ters we use are mean (μ) and standard deviation (σ). We
outline the algorithm of MSDR as follows.
Compute μ and σ: MSDR first computes μ and σ of val-
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ues alone each dimension for all points and represents each
dimension as a 2D point (μ,σ) . The original space X is then
transformed to a 2D μ-σ space with D points corresponding
to the original D dimensions.
Clustering: The K-means algorithm is employed in μ-σ
space to classify the D points into D′ clusters (D′ = K),
each of which is described by its centroid c.
Generate the subspace: It is natural to combine the di-
mensions in each cluster into one, resulting in a new D′-
dimensional space X

′. Each object in X is mapped onto X
′

where its value on each new dimension is the mean value of
the dimensions in X that form the new one.

4. ck-NN QUERY PROCESSING
An intuitive way for ck-NN query processing is to prune

the data space by first performing conditional pruning along
individual dimensions to form a candidate set, and then fur-
ther prune the candidate set by the global similarities, or
vice versa. However, it will generate a relatively large num-
ber of intermediate candidates which is strongly undesirable
for large scale data.

We propose a novel hybrid ck-NN query processing strat-
egy which cooperates conditional pruning and k-NN pruning
concurrently. The basic index structure is to maintain a sep-
arate table (objects-values) for each dimension. The tables
are accessed one by one in certain order. After a dimension
is accessed, the lower and upper bounds of candidates are
updated correspondingly. The candidates are then sorted
by their upper bounds in an ascending order. For each can-
didate, it is first checked by the condition rule and removed
from the candidate set if the condition is violated, followed
by k-NN pruning. If the current candidate’s lower bound is
greater than the kth largest upper bound, it can be safely
pruned. In the next iteration, the same process is performed
and the candidate set is further reduced, until all dimensions
have been processed since the measure of similar patches re-
quires pair-wise comparisons on all dimensions. Due to the
page limit, we will not give the formal description of up-
per/lower bound in this paper.

5. EXPERIMENTS
This section reports our preliminary performance study on

our MSDR algorithm. As mentioned previously, the existing
dimensionality reduction methods[3] and high-dimensional
indexing methods [2] are not applicable to the ck-NN prob-
lem, and thus not directly comparable with the proposed
MSDR approach. MSDR derives a lower dimensional space
X

′ and therefore will lose information. Average precision is
used as the effectiveness indicator, with ck-NN search re-
sults from the original space as ground truth. The efficiency
of our hybrid ck-NN algorithm is measured by the Pruning
Power (PP) which is defined as the ratio of the number of
pruned objects to the total number of objects. Clearly, a
larger PP corresponds to a more powerful pruning strategy,
hence a faster response.

We conduct experiments on 3D protein structure data.
The feature space is constructed based on a compact data
representation model, which represent each structure as a
high dimensional point[5][4]. From a total number of 1,100
sample protein structures in the Protein Data Bank [1], we
build a dataset of 2,207,018 53-dimensional points (feature
vectors). 100 points are randomly selected as queries. k is
set to 10. The distance tolerance ε along each dimension is
set to be 1.5Å to be biologically meaningful.
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Figure 1: Effect of δ and D′.

Fig.1(a) shows the average precision increases as more di-
mensions are retained. When D′ reaches 8, the precision
increases sharply to more than 70% while the new space is
only 8/53 of the original space. When D′ is greater than
8, the precision then increases slowly before finally reach-
ing 100%.The result confirms that MSDR can achieve rea-
sonable quality of results even when the dimensionality is
reduced to be a very small number. Fig.1(b) depicts the
pruning power comparison of three methods, from which
we can observe that our hybrid ck-NN method achieves the
best performance which prunes more space than the rest two
methods by large percentages.

6. CONCLUSION
In this paper, we propose a new query type called ck-

NN query and correspondingly a novel method MSDR to
support efficient ck-NN search. The results demonstrate an
encouraging performance of our method. More extensive
performance evaluation is currently being conducted on pro-
tein structure as well as image data and will further involve
comparison with human relevance judgments.
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