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ABSTRACT 
Language Modeling (LM) has been successfully applied to 
Information Retrieval (IR). However, most of the existing LM 
approaches only rely on term occurrences in documents, queries 
and document collections. In traditional unigram based models, 
terms (or words) are usually considered to be independent. In 
some recent studies, dependence models have been proposed to 
incorporate term relationships into LM, so that links can be 
created between words in the same sentence, and term 
relationships (e.g. synonymy) can be used to expand the 
document model. In this study, we further extend this family of 
dependence models in the following two ways: (1) Term 
relationships are used to expand query model instead of document 
model, so that query expansion process can be naturally 
implemented; (2) We exploit more sophisticated inferential 
relationships extracted with Information Flow (IF). Information 
flow relationships are not simply pairwise term relationships as 
those used in previous studies, but are between a set of terms and 
another term. They allow for context-dependent query expansion. 
Our experiments conducted on TREC collections show that we 
can obtain large and significant improvements with our approach. 
This study shows that LM is an appropriate framework to 
implement effective query expansion.  

Categories and Subject Descriptors 

H.3.3 [Information Systems]: Information Search and Retrieval – 
retrieval models. 

General Terms 

Experimentation, Performance  

Keywords 
Language model, Term relationships, Information flow, Query 
expansion 

1.  INTRODUCTION 
Language Modeling (LM) is an approach used in many recent 
studies in IR. It not only produces promising experimental results 
(comparable to the best IR systems), but also provides a solid 
theoretical setting. However, the classical LM approaches usually 
 

 

 

 

 

 

 

assume independence between indexing units, which are unigrams 
or bigrams. In reality, a word may be related to other words. An 
example is the synonymy relationship. Such relationships between 
terms should be properly integrated into LM. 

Some recent approaches try to extend the existing LM by 
incorporating term relationships or dependencies [1, 4, 6]. Term 
relationships are considered in the following two perspectives:  

(1) One may create relationships or links among document 
terms or among query terms. In such a way, a sentence (either in a 
query or in a document) is interpreted not only as a set of words, 
but also as a set of relationships or links among the words. Under 
such an interpretation, for a document to be retrieved, it has to 
contain not only the words required in the query as in the classical 
LM, but also the additional links required by the query. Therefore, 
term relationships are used to enhance document and query 
representations in this perspective. This is the idea of dependence 
model implemented in [6].  

(2) Term relationships can also be considered between query 
terms and document terms, so that indirect correspondence 
between document and query can be inferred during query 
evaluation. This is what is done in [1, 4]: If a document does not 
contain the same terms as the query does, but contains some 
related terms, it can still be retrieved by using the term 
relationships. In both [1] and [4], term relationships are used to 
expand the document model, so that the probability of the related 
terms in the document will be increased.  

    Our work also aims to exploit relationships between query 
terms and documents terms in the context of the second 
perspective as [1, 4]. However, there are two differences: 

    (1) The previous work often aims to improve the document 
model in order to increase probabilities of related terms in a 
document. This can be regarded as a document expansion 
approach. Our work aims to use term relationships in query 
expansion within the LM framework. 

(2) There are not many large linguistic resources such as 
Wordnet available for IR. Therefore, a question that one may raise 
is, beside co-occurrence relationships, can we extract other types 
of relationship from data that can be incorporated into LM? In this 
paper, we exploit inferential term relationships extracted by using 
a more sophisticated approach, namely Information Flow (IF). 
Unlike the traditionally used pairwise term relationships, these 
relationships are context-dependent, in the sense that they are 
between a set of terms and another term (e.g. (Java, computer) → 
programming). This would help reduce the inappropriate 
applications of the relationships in wrong contexts (when 
ambiguity arises). The information flow model has produced 
encouraging results when employed in concert with the classical 
vector space model [2,15]. In this paper, we integrate 
relationships computed by information flow into a LM. 
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It will be shown that the idea of query expansion can be 
integrated into LM in a straightforward way – query expansion via 
term relationship can be seen as a new smoothing of query model. 
Query expansion in LM has also been investigated in several 
previous studies [8, 9, 11, 12, 18]. However, these latter all rely 
on feedback documents to enhance the original query model. In 
our work, we use explicit relationships between terms for query 
expansion, similarly to traditional query expansion approaches. 
Our experiments will show that we can obtain improvements by 
expanding the query model using both co-occurrence 
relationships and IF relationships, but IF relationships make a 
much larger contribution to it. 

    This paper is organized as follows. The next section briefly 
describes the existing LM approaches. In Section 3, we first give 
an overview on query expansion via LM, and then describe our 
approach of integrating term relationships into LM for query 
expansion. Section 4 presents the method of deriving inferential 
term relationships. Our experimental set-up and the empirical 
results on the TREC data set are presented in Section 5. Finally, 
section 6 concludes the paper and highlights some future 
directions. 

2.  EXISTING LANGUAGE MODELS 

2.1 Classical LM 
The basic idea of LM for IR is to compute the conditional 
probability P(Q|D), i.e., the probability of generating a query Q 
given the observation of a document D [5]. Documents are then 
ranked in descending order of this probability.   

Assuming that words in the query are independent, we have a 
general unigram model formulated as follows: 

                ∏
∈

=
Qq

i

i

DqPDQP )|()|(                             (1) 

where qi is a term (unigram in this paper) in the query. 

Another popular formulation of LM in IR is the KL-divergence 
[5]. In this case, a document model is estimated, so is a query 
model. The score is then determined by KL-divergence between 
the two models. More specifically: 
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where V is the vocabulary of the collection, MQ and MD are 
respectively language models for Q and D. Note that in previous 
studies, )|( QtP i

 is often directly determined by Maximum 
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where tf(ti,Q) is the term frequency of ti in Q. In this way, the sum 
can be restricted to query terms only, i.e., 

∑
∈

×=
Qq

ii

i

DqPQqPDQScore )|(log)|(),(  

In practice, this restriction also has the advantage of reducing 
the complexity of the query evaluation process. 

We can observe that both formulas still require the query terms 
to appear in a document for the latter to be retrieved. With 
smoothing of the document model, one can increase the 
probability )|( DqP i  of a term qi absent in D from zero to a small 

value, thus making it possible for a document not containing some 

of the query terms to be retrieved. It is important to note that 
smoothing increases the probabilities of all the non-occurring 
terms in the document uniformly or proportionally to the term 
distribution in the whole collection. No distinction is made 
between the terms that are really related to the document terms 
and those that are not related. 

In fact, some terms are strongly related to others. For example, 
suppose that the term “algorithm” appears in a document. The 
probability that the document satisfies a query on “computer” is 
much higher than that for a query on, say, “elephant”. Therefore, 
if both terms are absent from a document, then the increase of the 
probabilities of “computer” and “elephant” in the document 
should not be equal or simply proportional to their distribution in 
the collection. Instead, it should be a function based on the 
strength of their relationships to the document term “algorithm”. 
This is the idea of [4] which incorporates term relationships in 
document language models. 

2.2 Dependence LM for document expansion 
Now let us examine how a query term is satisfied in a document 
(i.e., the document is relevant to the query term). On one hand, if 
the query term is contained in the document, it is certainly 
satisfied by the document to some degree. On the other hand, 
however, a query term not appearing in a document does not 
necessarily mean that the document is not relevant. There may be 
some other terms in the document that are strongly related to the 
given query term, for example, synonyms. In this second case, the 
document can still be judged relevant to some extent through the 
term relationships. Taking both cases into account, the probability 

)|( DqP i
can be formulated as follows: 

)|,()|,()|( DqPDqPDqP RiUii θθ +=  

where Uθ  and 
Rθ represent respectively the independent unigram 

model and the model with term relationships. This expression 
means that the satisfaction of a query term can be either a direct 
satisfaction or a satisfaction through term relationships. Starting 
with this development, we can further derive: 

)|(),|()|(),|()|( DPDqPDPDqPDqP RRiUUii θθθθ +=  

In this formula, )|( DP Uθ  and )|( DP Rθ  determines the 

probability of selecting each of the models, given a document. 
),|( DqP Ui θ  can be estimated by )|( DqP i  in the unigram 

model, and ),|( DqP Ri θ  can be estimated by considering any 

kind of term relationships. In [4], co-occurrences, as well as 
relationships in Wordnet, are used to estimate ),|( DqP Ri θ . 

Alternatively, the translation relationships proposed in [1] can 
also be used.  

If we limit our consideration to the above two models only, we 
have 1)|()|( =+ DPDP RU θθ . A further simplification is to assume 

equal )|( DP Uθ  for different D. The above formula can then be 

viewed as another variation of smoothing between a unigram 
model and a dependence model: 
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where )|( DP Uθλ =  is a mixture parameter. 

We can see here that the effect of integrating term relationships 
is to create a new document model P(.|D), which is smoothed by a 
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relation model (the second term of the above formula). We can 
therefore term the approach “document expansion”.  

2.3 Query expansion with feedback 
The converse of “document expansion”, is “query expansion”, the 
goal of which is to obtain a better query description. In terms of 
LM, it aims to build a better query model. 

Several previous studies have investigated query expansion via 
pseudo-relevance feedback. [12] selects the terms that have high 
probability in the feedback documents, but low probability in the 
collection, as expansion terms. These terms are integrated into a 
new query model. [11] uses a similar approach.   

More recent studies try to exploit feedback documents in 
model-based approaches. Basically, feedback documents are used 
to create different language models, which are considered to be 
samples for relevance [9] or for a new query model [8, 18].  The 
original query terms are used to focus the selection among these 
sample models. The selected sample models are then used to form 
a new query/relevance model. 

Although all the above approaches also aim at building a new 
query model, which is expanded from the original query in a 
certain way, we notice that these approaches basically make use of 
a new term distribution within a subset of documents and within 
the collection. No term relationships are explicitly used, which, in 
our opinion, is necessary to determine P(ti|Q). Our approach aims 
precisely to make use of term relationships in query expansion. 

3. QUERY EXPANSION WITH TERM 
RELATIONSHIPS 
With respect to formula (2), query expansion consists of finding a 
better way of estimating P(ti|Q), so that not only the terms 
expressed in the query will have a non-zero probability, but also 
other related terms. While this idea is intuitive and appealing, it 
has not been fully incorporated into LM framework.  

Classical smoothing techniques, by combining the collection 
model or other term distributions, can only redress this issue to 
some extent: one can arrive at a smoothed query model in which 
more terms will receive non-zero probabilities, which are thus 
taken into account in query evaluation. However, as we already 
stated, if we only rely on term frequency redistribution via 
smoothing, the effect of term relationships is simply ignored. For 
example, it is likely that for a query on “computer”, the new term 
“algorithm” may not necessarily receive a higher probability than 
the term “elephant” after the redistribution. As a result, the term 
“elephant” will have equal or even higher importance to 
“algorithm” in the evaluation of the query on “computer”, which 
is counter-intuitive. In this case, it is more reasonable to assign a 
higher probability to the term “algorithm” due to the relationship 
between “algorithm” and “computer”. In addition, a naïve 
utilization of smoothing by a collection model results in a large 
query model (having all terms with non-zero probability) thereby 
increasing the cost of computing the matching function between 
query and document models. 

Our alternative solution is to smooth the original query model 
PML(ti|Q) by another probability function PR(ti|Q) determined 
according to some explicit term relationships: 

       )|()1()|()|( QtPQtPQtP iRiMLi λλ −+=              (4) 

where λ is a mixture parameter as in formula (3). This formula 
expresses the main idea of our approach. It is similar to that 
proposed in [18]. However, as one will see, our expansion is 

based on explicit term relationships instead of pseudo-relevance 
feedback. 

Putting this into formula (2) using KL-divergence, we obtain 
the following formula: 
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Notice that the first term is a sum over the query words (instead 
of all the vocabulary). This is because 0)|( =QtP iML  for Qti ∉ . 

The second term corresponds to the classical query expansion 
process, in which some (new) terms ti related to the query Q are 
determined, and their probabilities in the document model are 
used in query evaluation. 

Similarly to the earlier case on document expansion, there are 
several possible ways to determine PR(ti|Q). In this study, we 
investigate two following ones: 

• One can use co-occurrence information to generate statistical 
relationships between terms, and use these relationships to 
“smooth” the query model; 

• One can also use some other types of knowledge, such as 
Wordnet or other knowledge extracted from document 
collection. 

Whatever the relationships used, it is important to restrict the 
number of terms ti to be considered in the second term of formula 
(5) in order to render the approach more computationally 
efficient. Therefore, some selection or filtering of terms according 
to their PR(ti|Q) should be done. This selection does not raise the 
same problem as for documents, because we do not have the zero-
probability problem for query models. 

4. USING TERM RELATIONSHIPS  

4.1 Term relationships from co-occurrence counts 
Term co-occurrences have been used to derive term relationships 
in a number of studies [14]. Typically, one observes the frequency 
of term co-occurrences within a certain context, which can be the 
whole document, passage, or a window of fixed length. Then the 
strength (or probability) of term relationship is calculated as 
follows: 

                

∑
=

it
i

co ttf

ttf
ttP
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),(
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21
12

         (6) 

where f (t1, t2) is the frequency of co-occurrences of t1 and t2. 

4.2 Co-occurrence in HAL space 
HAL (Hyperspace Analogue to Language) is a cognitively 
motivated and validated semantic space model for deriving term 
co-occurrence relationships [3, 10]. What HAL does is to generate 
a word-by-word co-occurrence matrix from a large text corpus via 
a l-sized sliding window: All the words occurring within the 
window are considered as co-occurring with each other. By 
moving the window across the text corpus, an accumulated co-
occurrence matrix for all the words in a certain vocabulary is 
produced. The strength of association between two words is 
inversely proportional to their distance. This idea is similar to the 
decaying factor according to distance used in [7].  
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Table 1. Example of a HAL space 

 the effects of pollution on population 

the 1 2 3 4 5  

effects 5      

of 4 5     

pollution 3 4 5    

on 2 3 4 5   

population 5 1 2 3 4  

An example showing the HAL space for the text “the effects of 
pollution on the population” using a 5-word moving window 
(l=5) is depicted in Table 1.  

The original HAL space is direction sensitive: The co-
occurrence information preceding and following a word are 
recorded separately by the row and column vectors. However, for 
the purpose of deriving term relationships in IR, word order does 
not seem to be important. Therefore, the HAL vector of a word is 
represented by adding up its row and column vectors.  For a given 
word, the dimensions in its HAL vector whose weights are higher 
than a threshold (set at the mean positive weight in our 
experiments) are called “quality properties” of the word. 

To fit in the LM framework, a probabilistic HAL space can be 
estimated by normalizing a HAL vector by the sum of all the 
dimension weights:  

∑
=

it
i

HAL ttHAL

ttHAL
ttP

)|(

)|(
)|(

1

12
12

 

where HAL(t2|t1) is the weight of t2 in the HAL vector of t1. 
    Below are the probability values we obtain for the simple 
example: 

pollution = {effects:0.17, of:0.21, on: 0.21, population: 0.12, the:0.29} 
 

    This example demonstrates how a word is represented as a 
weighted vector whose dimensions comprise other words. The 
weights represent the strengths of associations between 
“pollution” and other words seen in the context of the sliding 
window: the higher the weight of a word, the more it has lexically 
co-occurred with “pollution” in the same context(s).  
    From a large corpus, the vector derived contains much noise. In 
order to reduce noise, only the dimensions with weights above the 
mean are kept and then normalized so that they sum to 1. Thus we 
can consider the weight )|( 12 ttPHAL

 as an alternative probability 

function for )|( 12 ttPco
. 

Different words can be combined to form more complex 
concepts like “space program”. A vector is also obtained for this 
latter by combining the HAL vectors of the individual terms. A 
simple method is to add the vectors of the terms. In this article, 
however, we employ a more sophisticated concept combination 
heuristic [2]. It can be envisaged as a weighted addition of 
underlying vectors paralleling the intuition that in a given concept 
combination, some terms are more dominant than others. For 
example, the combination “space program” is more “space-ish 
than “program-ish”. Dominance is determined by the specificity 
of the term, that is, dominance is assumed to correlate with the idf 
of a term. Space restrictions preclude a more detailed description 
of the concept combination heuristic, but by way of illustration we 
have the following vector for the concept combination “space 
program”: 

{U.S.:0.11 aboard:0.04 administration:0.17 aeronautics:0.15 agency:0.15 
air:0.04 america:0.06 american:0.05 astronauts:0.04 based:0.09 
billion:0.07 budget:0.04 bush:0.07 center:0.18 challenger:0.04 
commercial:0.04 council:0.06 defense:0.07 development:0.05 
director:0.03 discovery:0.03 earth:0.03 european:0.04 exploration:0.08 
flight:0.13 grant:0.07 house:0.03 johnson:0.04 kennedy:0.05 launch:0.08 
launched:0.04 manned:0.10 marshall:0.03 million:0.05 mir:0.04 
missile:0.04 mission:0.04 nasa:0.12 national:0.23 new:0.09 officials:0.06 
president:0.06 probe:0.04 program:0.40 programs:0.05 quayle:0.04 
research:0.07 rocket:0.08 science:0.08 shuttle:0.37 soviet:0.17 space:0.38 
star:0.04 station:0.33 technology:0.06 unmanned:0.04 wars:0.03 
work:0.03} 

4.3 Information Flow (IF) 
Information flow is a mechanism developed to do information 
inference [15]. We say that there is an information flow from a set 
of terms (or information items) ktt ,,1 K  to another term jt  if the 

former entails, or “suggests”, to some degree, the latter. This is 
denoted as jk ttt −,,1K . The terms ktt ,,1 K are referred to as the 

“premise”. 

    In the previous work, [2] developed a heuristic way to extract 
information flows. Their approach can be summarized as follows: 

• The initial HAL space is filtered so that for each term, only 
strong co-occurring terms are kept as “quality properties” of 
the term; 

• The degree of information flow from ktt ,,1 K  to tj is defined 

as follows: 

δ>⊕−
≤≤
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ki1

,1 jijk ccttt <K  
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where ci denotes the HAL vector for term ti, i
ki
c

≤≤
⊕

1
denotes the 

concept combination vector of individual vectors ci, 
li pcw  denotes 

the weight of component pl in vector ci, QP(.) refers the set of 
quality properties of the vector in question, and δ a threshold 
which determines the strength of information flow necessary to 
sanction the associated inference. In our case, this threshold plays 
no role as terms will be ranked according to the degree of 
information flow from the premise being a set of query terms. The 
top raked terms will then be used to prime the query model. More 
details about this come shortly. 

    Information flow is a normalized score which essentially 
measures how many of the quality properties of the source vector 
are also quality properties of the target vector. The more such 
quality properties, the higher the information flow. Maximal 
information flow is achieved when all quality properties of the 
source vector “map” into the target. For example, some top ranked 
information flows from “space program” (TREC topic 011) are 
listed as follows (where the numbers are degrees): 

space, program |- 
{program:1.00 space:1.00 nasa:0.97 new:0.97 U.S.:0.96 agency:0.95 
shuttle:0.95 national:0.95 soviet:0.95 president:0.94 bush:0.94 million:0.94 
launch:0.93 called:0.93 thursday:0.93 research:0.92 administration:0.92 
flight:0.92 rocket:0.92 defense:0.91 friday 0.91 project:0.91 system:0.91 
mission:0.91 work:0.90 launched:0.90 officials:0.90 station:0.89 long:0.88 
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announced:0.88 science:0.88 scheduled:0.87 reagan:0.87 director:0.87 
programs:0.87 air:0.87 put:0.87 center:0.87 billion:0.87 aeronautics:0.87 
satellite:0.87 force:0.86 news:0.86 wednesday:0.86 technology:0.86 
american:0.86 budget:0.86 states:0.86 back:0.85 office:0.85 
monday:0.85 plan:0.85 people:0.85 manned:0.85 satellites:0.85 …} 

Notice that the bolded terms in the above example, such as 
“satellite”, “pentagon”, “scientists” etc., are absent from the 
vector for “space program”. These new terms appear in the above 
vector because they share many of the context words with “space 
program”. Some of the added terms (e.g. satellite) are indeed 
closely related to “space program”. This example shows the 
possible benefit of IF. 

Note that the degrees of information flow in the above example 
are in range of (0,1] rather than probabilities. To fit in the LM 
framework, the probability of information flow relationships can 
be computed as: 

∑
∈

=

Vocabularyt
k

IF

k

cc

cc
ttP

)(degree

)(degree
)|(

1

21
12

<
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    In comparison with the classical co-occurrence relationships, IF 
have the following unique characteristics: 

• IF is constructed on a filtered HAL space. Therefore, a lot of 
statistical noise has been removed before IF is extracted. 

• IF is not always a relationship between pairs of terms. Rather, 
it can be a relationship between a set of terms and a new term. 
By using a set of terms as premise, one is able to account for 
context-dependent relationships. For example, while in 
general, “program” can entail “computer” (in particular, for a 
computer-related corpus), “space program” should not entail 
the same term, but rather “satellite”. We can see that IF 
relationships may encode more complex, context-dependent 
relationships.  

• The use of term combination allows us not to be limited to 
syntactically valid phrases only. It is a more flexible way of 
deriving information flows from any arbitrary composition of 
related terms. 

• Information flow computation allows for “genuine” 
inferences. In the example of “space program”, we see that 
some new related terms can be inferred.   

4.4 Query expansion using term relationships  
Now we explain how we can use different term relationships to 
define )|( QtP iR

 in formula (5). We consider two cases: (1) using 

relationships derived from raw co-occurrence data (or HAL 
space); (2) using inferential relationships of IF. 

Using co-occurrence or HAL relationships 
Assume a set of term relationships defined between pairs of terms 
with probability )|( jiHAL ttP . We can estimate )|( QtP iR

 as follows: 
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Putting it into formula (5), we obtain: 
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As noted earlier, in practice, it is computationally inefficient to 
prime query models with positive probabilities for all terms in the 
vocabulary. Some selection is warranted. One way to do this is to 
limit to a reasonable number of terms during the expansion (for 
example, a set of strongest relationships). Assume that a set E of 
term relationships is selected. We then have the following 
approximation: 
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where EqtR
ji

∈),( means that the term relationship between ti and 

qj is selected. 

This formula corresponds to the approach using pairwise term 
relationships for query expansion. One may observe some 
similarity between formula (7) and the translation model proposed 
in [1]. However, our formula is used to expand query model, 
while that of [1] is used to expand document model.  

Using information flow 
Assume that we have extracted a set of IF relationships. Then 

)|( QtP iR
 can be developed as follows: 

∑
⊆

×==
QQ

jjiIFiIFiR

j
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where Qj is a single query term, or a group of query terms, 
corresponding to the premise of an IF relationship. An important 
difference from the previous formula is that term relationships are 
no longer pairwise. The idea of using a set of terms as the premise 
of an IF relation is similar to that of [13]. In [13], it has been 
shown that the best approach to query expansion is to determine 
the expansion terms not according to their relationships to 
individual query terms, but to the whole query. In our 
formulation, Qj expresses the query terms that are necessary to 
determine an appropriate expansion term. So our above formula is 
an implementation of the idea of [13] in the LM framework. 

P(Qj|Q) is another component to be determined. A possible way 
is to determine it according to the probabilities of terms 
composing Qj in the query. In our experiments, however, we will 
take a simpler manner: P(Qj|Q) is assigned an equal value, i.e., 
1/|Q’| where Q’ is the number of terms in the expanded query. 
This simple solution does not have any impact in our experiments, 
because our queries are very short, and usually all the original 
query terms are included in the premise of the IF relationships 
used. 

Formula (5) now becomes: 
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As previously, it is necessary to limit the number of term 
relationships used in query expansion. Assume that we have 
selected a set E of the strongest IF relationships. The following 
approximation can then be made: 
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Note that our discussions above focus on query model. For the 
document model, one has to use a smoothing method as proposed 
in other studies [18]. We will test several smoothing methods in 
our experiments.  

5.  EXPERIMENTAL EVALUATION 
5.1 Experimental setup 
We evaluate our model described in the previous sections using 
TREC collections – AP (Associated Press). Some statistics are 
shown in Table 2. All documents have been processed in a 
standard manner: terms are stemmed using the Porter stemmer and 
stop words are removed. The experiments reported here use the 
AP89 collection (TREC disk 1) for topics 1-50, and the AP 
88&89 collection (TREC disks 1 and 2) with TREC topics 101-
150 and 151-200. Only the titles of the topics are used as queries.  

Table 2. Text collection statistics 

Corpus # Doc. Size (Mb) Vocab.  Query  Q. length 

AP89 84, 678 262 137, 728 1-50 3.2 

AP88-89 164, 597 507 249, 453 101-150 3.6 

AP88-89 164, 597 507 249, 453 151-200 4.3 

    We test the classical LM and three query expansion models as 
follows: 

Basic LM: As reference models, we use unigram models with 
different smoothing techniques proposed in [17].  

HAL-based query expansion: This model is used to investigate 
whether using co-occurrence information via HAL in query 
expansion can bring some improvement. In this model, the HAL 
spaces are constructed from both collections using a window size 
of 8 words (i.e. l = 8). For expanding the query model, we select 
the top 85 highly weighted dimensions (quality properties) in the 
vector representation of the combination of query terms, which is 
derived via the concept combination heuristic. Both the window 
size and the number of vector dimensions are set empirically, and 
they have led to good performance in a previous study [2].  

Global IF-based query expansion: This test is to investigate 
whether information flow analysis contributes positively to query 
model derivation. The top 85 information flows extracted from the 
whole document collection are used to expand the query model. 
Comparing with HAL-based query expansion, this experiment can 
show the additional benefit to extract IF from HAL space. 

Local IF-based query expansion with pseudo-relevance 
feedback: In contrast to the previous method, this method 
constructs a local context (HAL) space by using the top 50 
feedback documents in response to a query, and thereafter 
deriving a query model via IF computation from this local 
collection. The fifty documents were retrieved by the baseline LM 
model. The top 60 information flows are used to expand query 
model. This number is also determined empirically. 

    The experimental results are measured using average precision 
(AvgPr) and recall, which are calculated on top 1000 retrieved 
documents. 

    In the experiments using language models, we use the Lemur 
toolkit1. In our models, several parameters have to be determined: 

                                                                 
1 The Lemur toolkit for language modeling and information retrieval: 
http://www.lemurproject.org/ 

λ in formulas (8) and (9), and the other smoothing parameters 
involved in different smoothing methods (e.g. Dirichlet prior, 
etc.). These parameters could be tuned automatically, for example, 
using EM algorithm [17]. However, in this paper, we determine 
these parameters empirically. The results that we report here are 
the best ones we obtained. The corresponding parameters are 
indicated in the summary of results. 

5.2 Experimental results 
Tables 3-5 show the experimental results respectively on AP89 
with topics 1-50, AP88-89 with topics 101-150 and 151-200. The 
percentages in the table are the relative changes with respect to 
the baseline LM without query expansion. In general, the methods 
under comparison perform very similarly in the three cases.  

Smoothing on document model: In our baseline methods, two 
different smoothing methods are used on document model: 
Dirichlet and Two-stage smoothing. These methods have shown 
good results in other studies [17], and they are robust. In these 
experiments, the parameters have been tuned so that we can 
obtain the best effectiveness for these baseline methods. One can 
observe that the effectiveness reported here is slightly higher than 
those reported in the previous studies on the same collections. For 
the other models, we do not change these parameters from the 
baseline methods, but try to set other parameters, namely the 
mixture weight λco and λIF. So the other models are not tuned to 
their best. 

Query expansion with HAL or co-occurrence information: 
When HAL relationships are used for query expansion, we can 
obtain improvements of around 3-4% for each of the smoothing 
methods. This improvement is similar to those reported in other 
studies that use co-occurrences to extend document model [4]. 
This comparable effectiveness improvement suggests that one can 
use co-occurrence information to expand either document model 
or query model, and both lead to similar effects. Although the 
query expansion is performed online (while document expansion 
is performed offline), as we limit the number of expansion terms, 
this will not require too much additional time for query evaluation. 

Query expansion with global IF relationships: In contrast, 
when we use IF to expand queries (LM with IF), the effectiveness 
is greatly improved for each smoothing method. The effectiveness 
reported here are higher than those reported in other studies on 
the same test collections [2]. This experiment shows that IF 
combined with LM can indeed add interesting terms into queries, 
which cannot be added using raw co-occurrence relationships. 
The main reason is that the application of IF relationships are 
more constrained than that of pairwise relationships. When a new 
term is added by expansion, all (or most of) the query terms are 
used as the premise of IF relationship. In comparison with 
pairwise relationships, IF relationships allow us to avoid applying 
term relationships in inappropriate contexts. Therefore, less noisy 
terms are added during query expansion. In addition, in this 
experiment, as the queries are short, the IF relationships used to 
do query expansion usually include all the original query terms. 
Therefore, the selected expansion terms are chosen according to 
the whole query in a similar way to [13]. 

Query expansion with local IF relationships: The last column 
(LM with IF & FB) shows the benefit of combining IF with 
pseudo-relevance feedback. This combination results in a set of 
local IF relationships extracted from the subset of documents that 
are closely related to the query. The local IF performs generally 
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      Figure 1. Effect of λλλλIF on AP89, Q1-50              Figure 2. Effect of λλλλIF on AP88-89, Q100-150      Figure 3. Effect of λλλλIF on AP88-89, Q151-200 

Table 3. Comparison between different models on AP89 collection for queries 1-50 

  LM baseline LM with HAL LM with IF LM with IF & FB 

AvgPr Dirichlet (µ=2000) 0.1991 (λco=0.5) 0.2046 (++3%) (λIF=0.5) 0.2524 (++27%) (λIF=0.6) 0.2663 (++34%) 

 Two-Stage (λ=0.7) 0.2013 (λco=0.5) 0.2056 (++2%) (λIF=0.6) 0.2539 (++26%) (λIF=0.5) 0.2664 (++32%) 

Recall Dirichlet 1557/3301 1602/3301 (++3%) 2246/3301 (++44%) 2356/3301 (++51%) 

 Two-Stage 1565/3301 1602/3301 (++2%) 2221/3301 (++42%) 2372/3301 (++52%) 

Table 4. Comparison between different models on AP88-89 collection for queries 101-150 

  LM baseline LM with HAL LM with IF LM with IF & FB 

AvgPr Dirichlet (µ=2000) 0.2338 (λco=0.5) 0.2435 (++4%) (λIF=0.5) 0.2738 (++17%) (λIF=0.6) 0.3130 (++34%) 

 Two-Stage (λ=0.7) 0.2347 (λco=0.5) 0.2451 (++4%) (λIF=0.5) 0.2806 (++20%) (λIF=0.6) 0.3185 (++36%) 

Recall Dirichlet 3160/4805 3258/4805 (++3%) 3717/4805 (++18%) 3893/4805 (++28%) 

 Two-Stage 3130/4805 3220/4805 (++3%) 3729/4805 (++19%) 3900/4805 (++25%) 

Table 5. Comparison between different models on AP88-89 collection for queries 151-200 

  LM baseline LM with HAL LM with IF LM with IF & FB 

AvgPr Dirichlet (µ=1000) 0.3135 (λco=0.5) 0.3235 (++3%) (λIF=0.7) 0.3516 (++12%) (λIF=0.6) 0.3927 (++25%) 

 Two-Stage (λ=0.7) 0.3107 (λco=0.5) 0.3203 (++3%) (λIF=0.6) 0.3540 (++14%) (λIF=0.7) 0.3942 (++27%) 

Recall Dirichlet 3434/4933 3486/4933 (++2%) 3599/4933 (++5%) 3859/4933 (++12%) 

 Two-Stage 3446/4933 3505/4933 (++2%) 3625/4933 (++5%) 3841/4933 (++11%) 

better than global IF. The comparison between expansion with 
global and local IF relationships is similar to that between global 
and local context analysis [16]. 

To see the difference between global and local IF relationships, 
we show below the 20 strongest terms in the expanded query from 
“space program” using local IF relationships: 

space:0.987 program:0.759 nasa:0.758 shuttle:0.682 mission:0.644 
launch:0.611 station:0.574 astronauts:0.568 earth:0.546 flight:0.543 
new:0.533 satellite:0.516 president:0.506 national:0.496 billion:0.491 
long:0.490 orbit:0.489 manned:0.488 bush:0.485 agency:0.478 

We can see in this example that the terms with strong degrees 
are more relevant to the query than in the previous example 
(shown in section 4.3) with global IF relationships.  

We can also compare this experiment with the previous studies 
on query expansion using feedback documents [8, 9, 18]. Our 
method shows higher effectiveness on the same test collections 
(AP88-89, Queries 100-150). This confirms the advantage to 

extract explicit term relationships from feedback documents, 
instead of using them as term distributions. 

5.3 Effect of smoothing with term relationships 
In order to see the impact of expanding query model with a 
relation model, we change the value of the smoothing factor λIF in 
the series of experiments with IF relationships. The results are 
shown in Figures 1-3. 

As we can see, in all the cases, when λIF<1 (i.e. when the 
relation model is combined to some extent), we see clear 
improvements in the retrieval effectiveness compared to the case 
of λIF=1 (i.e. the baseline model without relation model). 

In addition, we also see very steady effectiveness for λIF in the 

range of 0.5-0.7. These results suggest that smoothing by the 
relation model of IF is a useful and robust approach. 
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6.  CONCLUSIONS 
Language modeling emerges as an appropriate and effective 
framework for IR. However, most of the models assume term 
independence. As a consequence, they ignore relationships 
between terms (e.g. synonymy) which may enhance retrieval 
performance.  

In some recent models, pseudo-relevance feedback has been 
used to create a better document or query model. However, no 
explicit term relationships are extracted, and the feedback 
documents only serve as different term distributions. 

    On the other hand, in a more classical setting, explicit term 
relationships have been used in query expansion in order to obtain 
a better expression of the query (or information need). However, 
the same approach has not been implemented in a LM setting. 

In this paper, we propose an approach to LM which integrates 
the idea of query expansion. Term relationships are used to derive 
a new query model. Two specific types of term relationship are 
considered in this paper: co-occurrence relationships (or HAL 
relationships) and inferential relationships derived from 
information flow. We show that the idea of query expansion with 
term relationships can be naturally implemented in LM. Our 
experiments on TREC test collection show that such a query 
expansion is beneficial to IR. In addition, when IF relationships 
are used, query expansion is carried out in a context-dependent 
manner. This allows us to make a better selection of the expansion 
terms appropriate to the given query, and provides an effective 
way to deal with term ambiguity. 

    As IF relationships are extracted from documents, the approach 
can also be combined with the idea of pseudo-relevance feedback. 
Our experiments show that such a combination allows us to 
extract query-centered IF relationships. These relationships turn 
out to be better than the IF relationships computed from the whole 
document collection. 

    The present study shows the feasibility of integrating query 
expansion in LM. Several aspects can be improved: (1) In our 
current experiments, the parameters are set empirically. In fact, 
they can be tuned automatically using a mechanism, such as EM. 
(2) In our model, a query is still discomposed into single words 
(or unigram). This means that we have not considered the possible 
links between words in the query. This makes arise the question 
about query representation by words. It is often believed that 
words are not the best representation units. A possible solution 
would be to combine our approach with that of [6], so that term 
relationships are considered both between and within document 
and query. Finally, we will test our approach on more test 
collections. 
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