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ABSTRACT 
The language modelling approach to information retrieval 
can also be used to compute query models. A query model 
can be envisaged as an expansion of an initial query. The 
more prominent query models in the literature have a 
probabilistic basis, that is, for each term w in the 
vocabulary, the probability of  w, given the query Q,, is 
computed. This paper introduces an alternative, non-
probabilistic approach to query modelling whereby the 
strength of information flow is computed between the 
query Q and the term w. Information flow is a reflection of 
how strongly w is informationally contained within the 
query Q. In other words, the basis of the query model 
generation is information inference. The information flow 
model is based on Hyperspace Analogue to Language 
(HAL) vector representations, which reflects the lexical co-
occurrence information of terms. Research from cognitive 
science has demonstrated the cognitive compatibility of 
HAL representations with human processing, and therefore 
HAL vectors would thus seem to be a potentially useful 
basis for inferring query expansion terms. Query models 
computed from TREC queries by HAL-based information 
flow are compared experimentally with two probabilistic 
query language models. Experimental results are provided 
showing the HAL-based information flow model be 
superior to query models computed via Markov chains, and 
seems to be as effective as a probabilistically motivated 
relevance model. 
 
Main topics: Retrieval language models; Retrieval, 
Query expansion and fusion; Information Retrieval 
Theory 
 
 
 
 
 
 
 
 

1. INTRODUCTION 
 
Since the Cranfield experiments in document retrieval 
during the sixties, it has become well known that user 
queries to an information retrieval system are typically 
imprecise descriptions of the given information need. This 
phenomenon has been particularly emphasized with respect 
to queries on the web. Web queries average between two 
and three terms in length. Such short queries are, almost 
certainly,  poor descriptions of the associated information 
need.  
 
Various query expansion techniques have been developed 
in order to improve the initial query from the user. The goal 
of automatic query expansion is to automatically expand 
the user’s initial query Q with terms related to the query 
terms in Q yielding a query Q′ . The expanded query Q′ is 

then used to return documents to the user. Various models 
and techniques have been proposed for determining the 
expansion terms.  
 
Thesaurus-based techniques use a thesaurus, or ontology, as 
the source of expansion terms, for example, WordNet [22]. 
Global collection expansion techniques involve analyzing a 
collection of documents and computing term associations 
within the collection, for example, on the basis of term co-
occurrence [1, 7, 9, 15]. An initial query is expanded by 
those terms strongly associated with query terms. Local 
collection expansion techniques generally follow a two-
stage process, sometimes referred to as pseudo-relevance 
feedback. The initial query Q is issued to retrieve a ranked 
list of documents. The top N of these documents constitutes 
the local collection. Terms are extracted from these 
documents and used to expand Q, for example, local 
context analysis identifies terms within the neighbourhood 
of query terms present in documents of the local collection 
[19].  
 
Other techniques involve implicit relevance feedback 
assuming all documents in the local collection to be 
relevant [3], or selecting terms from the local collection 
using various methods, for example, from simple term 
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frequency to a probabilistic basis such as Robertson’s 
Selection Value [16]. In both global and local techniques, 
the initial query can sometimes be massively expanded into 
a query of  hundreds of terms [3].  
 
The language modelling approach to information retrieval 
has allowed query expansion to be re-considered as a 
language modelling problem. More specifically, a query 
language model comprises estimating the probability 

)|( QtP of every term t in the vocabulary in the light of the 

initial query ),( ,1 mqqQ K= . Intuitively, those terms t 

with probabilities above a threshold can be considered 
more useful candidate terms for expanding the initial query 
Q. There have been a number of promising approaches 
proposed for estimating query language models.  
 
Lavrenko and Croft recently estimate the query language 
model in terms of a Relevance Model [12]. The query Q is 
considered to be a random sample from the unknown 
relevance model R. R can be envisaged as an unknown 
process from which words can be sampled, so if query 

terms mqq ,,1 K have been sampled, what is the 

probability of term t will be sampled next. Essentially this 
probability can be expressed in term of the probability of 
co-occurrence between t and Q, which is estimated by 
sampling the query terms from t via a number of unigram 

distributions iM . The top 50 ranked documents retrieved 

by the query Q are used to serve as these distributions. 
They stated that “from a traditional IR perspective, our 
method is a massive query expansion technique”.  
 
In another approach to query language modelling, Lafferty 
and Zhai generate query language models using Markov 

chains [10]. Given a query model qθ  and a word w, the 

probability of expanding qθ using w can be calculated as a 

language model P(w| qθ ), which is estimated using the 

Markov chain method according to the prior probability of 
w and the translation model for generating the query model 
from w. The Markov chain starts from the initial word w 
and the alternates between words and documents. For a 
given word, a document is selected according to its 
document language model. For the selected document, a 
word is then selected according to its posterior probability. 
The Markov chain lasts until a query term is selected or a 
limit of steps is reached.  
 
Even though probabilistic approaches to query language 
modelling are promising, there are other points of 
departure. There is a growing body of research from 
cognitive science in which corpus-based representations of 
terms and concepts are being computed which correlate 
with human processing [4, 11, 13, 14]. One such model is 

Hyperspace Analogue to Language (HAL) [4, 13]. HAL 
represents words as vectors in a high dimensional space 
based on lexical co-occurrence. HAL is significant because 
the term associations computed by this model correlate 
with human judgements in word association tasks. In other 
words, HAL representations would seem to be a promising 
basis on which to compute term associations for query 
expansion.  
 
We have recently proposed an information flow model 
based on HAL vectors [18]. The goal of this model is to 
produce information-based inferences which correlate with 
human inferences with regard to information. In essence, 
the HAL-based information flow model computes the 
degree to which term j is informationally 
contained/conveyed/carried by the terms mii ,,1 K . The 

theoretical basis of the information inference is drawn from 
Barwise and Seligman’s account of information flow [2]. 
From a philosophical point of view, the model is in accord 
with the views of Gärdenfors [6] and Newby [14], who 
advocate a semiotic-cognitive stance with regard to 
information representation and processing (rather than a 
probabilistic one). If the terms mii ,,1 K  are query terms, 

then those terms j flowing informationally from these query 
terms can be considered as candidate query expansion 
terms. So, instead of a probabilistic foundation for the 
query language model via )|( QtP , we propose a query 

language model based on the degree of information flow 
between the query Q and a vocabulary term t.  
 
The goal of this paper is to use the HAL-based information 
flow model to compute a query language model and 
evaluate its effectiveness by comparing its performance 
with prominent probabilistic query language models. At a 
broader level, we are aiming to gain an initial picture of 
how information inference fares in relation to traditional 
probabilistic inference.  

2. COMPUTING HAL- BASED 
INFORMATION FLOW  
 
2.1 HAL- Hyperspace analogue to Language 
 
A human encountering a new concept derives its meaning 
via an accumulation of experience of the contexts in which 
the concept appears. This opens the door to “learn” the 
meaning of a concept through how a concept appears 
within the context of other concepts. Following this idea, 
Burgess and Lund developed a representational model of 
semantic memory called Hyperspace Analogue to 
Language (HAL), which automatically constructs a high 
dimensional semantic space from a corpus of text [4,13]. 
The space comprises high dimensional vector 
representations for each term in the vocabulary. Given an 
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n-word vocabulary, the HAL space is a n x n matrix 
constructed by moving a window of length l over the 
corpus by one word increment ignoring punctuation, 
sentence and paragraph boundaries. All words within the 
window are considered as co-occurring with each other 
with strengths inversely proportional to the distance 
between them. After traversing the corpus, an accumulated 
co-occurrence matrix for all the words in a target 
vocabulary is produced. Note that the word pair in HAL is 
direction sensitive, i.e. the co-occurrence information for 
words preceding every word and co-occurrence information 
for words following it are recorded separately by its row 
and column vectors. For the purposes of computing 
information flow, we have not found it useful to preserve 
the order information, so a term is represented by the 
addition of its row and column vectors in the HAL matrix.   
 
The quality of HAL vectors is influenced by the window 
size; the longer the window, the higher the chance of 
representing spurious associations between terms. Burgess 
and Lund used a size of ten in their studies [4]. In the 
experiments reported below a window size of eight was 
used to construct the HAL matrix because in our previous 
work, this value tended to produce more precise 
representations of terms [18]. In addition, it is sometimes 
useful to identify the so called quality properties of a HAL-
vector.  
 
Intuitively, the quality properties of a concept or term c are 
those terms which often appear in the same context as c. 
Quality properties are identified as those dimensions in the 
HAL vector for c which are above a certain threshold (e.g., 
above the average weight within that vector). HAL vectors 
are normalized to unit length before information flow 
computation. For example, part of the normalized HAL 
vector for “superconductors” computed from a corpus of 
Associated Press news feeds is as follows: 
 
superconductors = < U.S.:0.11 american:0.07 basic:0.11 bulk:0.13 
called:0.15 capacity:0.08 carry:0.15 ceramic:0.11 commercial:0.15 
consortium:0.18 cooled:0.06 current:0.10 develop:0.12 dover:0.06 
electricity:0.18 energy:0.07 field:0.06 goal:0.06 high:0.34 
higher:0.06 improved:0.06 japan:0.14 loss:0.13 low:0.06 make:0.07 
materials:0.25 new:0.24 require:0.09 research:0.12 
researching:0.13 resistance:0.13 retain:0.06 scientists:0.11 
semiconductors:0.10 states:0.11 switzerland:0.06 technology:0.06 
temperature:0.48 theory:0.06 united:0.10 university:0.06> 
 
This example demonstrates how a word is represented as a 
weighted vector whose dimensions comprise other words. 
The weights represent the strength of association between 
“superconductors” and other words seen in the context of  
window: the higher the weight of a word, the more  it has 
lexically co-occurred with “superconductors” in the same 
context(s).  
 

In summary, a concept1 c i  is a vector representation:  

niii pcpcpci wwwc ,..., 
21

=  where 
nppp ,...,, 21
are 

called dimensions of c i , n is the dimensionality of the HAL 

space, and
ii pcw denotes the weight of p i  in vector of c i . A 

dimension is termed a property if its weight is greater than 

zero. A property
ip of a concept 

ic  is a termed quality 

property iff 
ii pcw > ∂, where ∂ is a non-zero threshold 

value. Let )(cQP denote the set of quality properties of 

concept c. 
 
Combining concepts 
 
Concept combination is important in IR, as combinations of 
words in a query topic may represent a single underlying 
concept, for example, space program. An important 
intuition in concept combination is that one concept can 
dominate the other. For example, the term “space” can be 
considered to dominate the term “program” because it 
carries more of the information in the phrase.  Given two 

concepts 
npcpcpc wwwc

12111
,...,1 = and 

npcpcpc wwwc
22212

,...,2 = , the resulting combined 

concept is denoted 21 cc ⊕ . The following concept 

combination heuristic is essentially a restricted form of 
vector addition whereby quality properties shared by both 
concepts are emphasized, the weights of the properties in 
the dominant concept are re-scaled higher, and the resulting 
vector from the combination heuristic is normalized to 
smooth out variations due to differing number of contexts 
the respective concepts appear in.  
 

Step 1: Re-weight c
1

 and c
2

 in order to assign higher 

weights to the properties in c
1
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For example, if 5.01 =l and 
2l
=0.4, then property 

weights of c
1

 are transferred to interval [0.5, 1.0] and 

property weights of c
2

are transferred to interval [0.4, 0.8], 

thus scaling the dimensions of the dominant concept higher.  
 
                                                 
1 The term “concept” is used somewhat loosely; it can be 
envisaged as “term” in the traditional IR sense 
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Step 2: Strengthen the weights of properties appearing in 

both c
1

 and c
2

via a multiplier α; the resultant highly 

weighted dimensions constitute significant  properties in 
the resultant combination. 
 

,*|))()((
1121 ii pcpcii wwcQPpcQPp α=∈∧∈∀

 
ii pcpc ww

22
*α=  , where α > 1.0   

 
Step 3: Compute property weights in the composition c

1
⊕ 

c
2

: 
 

niwww
iii pcpcpcc ≤≤+=⊕ 1,

2121 )(
  

   
 

Step 4: Normalize the vector c
1

 ⊕ c
2

. The resultant 
vector can then be considered as a new concept, which, in 
turn, can be composed to other concepts by applying the 
same heuristic. 
 
In order to deploy the information flow model in an 
experimental setting, the queries have to analysed for 
concept combinations. In particular, the question of which 
concept dominates which other concept(s) needs to be 
resolved. As there seems to be no reliable theory to 
determine dominance, a heuristic approach is taken in 
which dominance is determined by multiplying the query 
term frequency  (qtf) by the inverse document frequency 
(idf) value of the query term. More specifically, query 
terms can re ranked according to qtf*idf. Assume such a 

ranking of query terms: .1 ,, mqq K (m > 1). Terms 1q and 

2q can be combined using the concept combination 

heuristic described above resulting in the combined concept 

21 qq ⊕ , whereby 1q  dominates 2q (as it is higher in the 
ranking). For this combined concept, its degree of 
dominance is the average of the respective qtf*idf scores of 

1q and 2q . The process recurses down the ranking 

resulting in the composed query “concept” 

))))((..( 321 mqqqq ⊕⊕⊕⊕ K . This denotes a single 

vector from which query models can be derived. If there is 
a single query term (m =1), it’s corresponding normalized 
HAL vector is used for query model derivation. 
 
As it is important to weight query terms highly, the weights 
of query terms which appeared in the initial query were 
boosted in the resulting query model by adding 1.0 to their 
score. Due to the way HAL vectors are constructed, it is 
possible that an initial query term will not be represented in 
the resulting query model. In such cases, the query term 
was added with a weight of 1.0. Pilot experiments show 

that the boosting heuristic performs better than the use of 
only query models without boosting query terms. 
 
2.2 Computing Information Flow 
 
Barwise & Seligman have proposed an account of 
information flow that provides a theoretical basis for 
establishing informational inferences between concepts [2]. 
For example, 
  

space, program |- satellites 
 
illustrates that the concept “satellites” is carried 
informationally by the combination of the concepts “space” 
and “program”. Said otherwise, “satellites” flows 
informationally from “space” and “program”. Such 
information flows are determined by an underlying 
information state space. A HAL vector can be considered to 
represent the information “state” of a particular concept (or 
combination of concepts) with respect to a given corpus of 
text. The degree of information flow between “satellites” 
and the combination  of “space “ and “program” is directly 
related to the degree of inclusion between the respective 
information states represented by HAL vectors. Total 
inclusion leads to maximum information flow and can be 
visualised as follows: 
 
 
 
 
 
 
Inclusion is a relation ⊆ over the concept space. For 
example, the above diagram is denoted by 
space⊕program⊆ satellites. 
 
Definition 1 ( HAL-based information flow) 
 

λ>⊆⊕− )degree( iff ,,1 jin ccjii K  

 
where ic denotes the conceptual representation of token i, 

and λ is a threshold value. (For ease of exposition, ic⊕ will 

be referred to as ic  because combinations of concepts are 
also concepts). 
 
Note that information flow shows truly inferential 
character, i.e., concept j is not necessarily a dimension of 
the ic⊕ . The degree of inclusion is computed in terms of  

the ratio of intersecting quality properties of ic  and jc  to 

the number of quality properties in the source ic : 

 
space⊕program 

satellites 
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degree(c
i
 ⊆ c

j
) = ∑

∑

∈

∧∈

)iQP(cpk

pic k

))jQP(c)i(QP(cpl

pic l

w

w

   

In terms of the experiments reported below, the set of 

quality properties )( ii cQP in the source HAL vector ic is 

defined to be all dimensions with non-zero weight (i.e., ∂ > 
0). The set of quality properties )( jj cQP in the target HAL 

vector jc is defined to be all dimensions greater than the 

average dimensional weight within jc .  These definitions 

for determining the quality properties in the source concept 

ic  and target concept jc were determined via pilot studies 

in information flow computation. 
 
2.3 Deriving query models via information flow 
 
Given the query ),( ,1 mqqQ K= , a query model can be 

derived from Q in the following way:  
 

• Compute )degree( ti cc ⊆⊕  for every term t in the 

vocabulary, where ic⊕ represents the conceptual 

combination of the HAL vectors of the individual 

query terms miqi ≤≤1, and tc represents the HAL 

vector for term t. 
 
• The query model kk ftftQ :,,: 11 K=′  comprises 

the top k information flows  
 

Observe that the weight if associated with the term it in 

the query model is not probabilistically motivated, but 

denotes the degree to which we can infer it  from Q in 

terms of underlying HAL space. 
 

3. EXPERIMENTS 
 

3.1 Experimental set-up 
 
Two experiments to be reported here use the AP89 
collection (disk 1) for TREC2 topics 1 – 50, and the AP 
88&89 collection (disks 1 and 2) using TREC topics 101-
150 and 151-200. Only the titles of the topics were used as 
queries. We attempted to set up the experiment to allow 
comparison against the Markov chain and Relevance 

                                                 
2 TREC stands for the Text Retrieval Conference series run 
by NIST. See trec.nist.gov 

Models mentioned in the introduction. Table 1 summarizes 
the collection and query characteristics: 
 
 Experiment 1 Experiment 2 
Query set Topics 1-50 (titles 

only) 
Topics 101-150 and 
151-200 (titles Only) 

Average 
Query Length 

3.24 3.8 and 4.5 

Collection AP89 AP88 & 89 
Number of 
Documents 

84, 678 164, 597 

Size of 
Vocabulary 

137, 728 249, 453 

Table 1: Test collections and queries 

 
HAL spaces were constructed from both collections using a 
window size of 8 words (l = 8). Stemming was not 
performed during HAL space construction. 
 
The following query models were evaluated for their 
effectiveness: 
 
HAL-based Information Flow Model (IM): This model 
was chosen to investigate whether information flow 
analysis contributes positively to query model derivation. 
IM is a global collection based model for query expansion. 
The top 85 information flows were used in the query model 
(k=85). This value produced best performance during a 
series of pilot studies. 
 
Information Flow Model with pseudo-relevance 
feedback (IM w/pseudo): Pseudo-relevance feedback has 
consistently generated improved effectiveness. This model 
was implemented by constructing a high dimensional 
context (HAL) space by using the top fifty documents in 
response to a query, and thereafter deriving a query model 
deriving from this local collection. The fifty documents 
were retrieved by the baseline model. The top 60 
information flows were used in the query model (k=60). 
This value produced the best performance during a series of 
pilot studies.   
 
For each query topic, the query terms are combined using 
our concept combination heuristic into a single query 
vector ( )0.2,3.0,5.0 21 === αll . This vector is then used 

to derive a query model.  
 
In the baseline model, documents are indexed using the 
document term frequency and inverse collection frequency 
components of Okapi BM25 formula [16] (parameters 

( 1k =1.2, 2k =0.0, b=0.75). Query vectors are produced 

using query term frequency with query length 
normalization [20], which is defined similarly to the 
BM25’s document term frequency with parameter 
k3=1000.  
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The matching function employed between document and 
query vectors was dot product as advocated by Lafferty and 
Zhai [10, 20].  
 
Note that in the baseline, Markov Chain, and Relevance 
models terms were stemmed, whereas in the information 
flow models with and without pseudo feedback, terms were 
not stemmed as pilot studies revealed that information flow 
models perform slightly better  without stemming. 
 
3.2 Results: Experiment 1 
 
This experiment evaluated the effectiveness of IM on the 
AP89 collection with TREC query topics 1-50. This 
experiment allows a direct comparison of the HAL-based 
information flow model with Lafferty & Zhai’s Markov 
chain based query model both with and without pseudo-
relevance feedback.  These results are detailed in Table 2 
and Figure 1. Note that these results do not include topic 47 
which was omitted in Lafferty and Zhai’s experiments [10]. 
 
3.3 Results: Experiment 2 
 
 In the second experiment, the information flow model is 
investigated in the context of the larger AP 88&89 
collection using TREC topics 101-150,151-200. This 
experiment allows a performance comparison between the 
information flow model and Lavrenko and Croft’s 
Relevance model [12]. The results are shown in Table 3, 
Figures 2 and 3. 
 
3.4 Discussion 
 
The first observation is the low baseline performance 
(average precision 0.185. .221, 0.296) for the three query 
topic sets. This is due to only the titles being used. The 
average precision scores using the corresponding TDN 
(title, description, narrative) queries are (0.269, 0.329, 
0.343). 
 
The results of experiment 1 suggest that the HAL-based 
information flow model outperforms the Markov chain 
query language model. It is notable that the information 
flow model without feedback outperforms the Markov 
chain model with feedback. (Note the baseline performance 
on both collections is poor due to only titles being used as 
queries. 
 
In the results of Experiment 2 the comparison between the 
information flow model with pseudo-relevance feedback  
(M w/Pseudo) with the Relevance model is most pertinent 
as the Relevance model also uses feedback. (The top-
ranked 50 documents are used as the sampling 
distributions). This comparison shows the HAL-based 
information flow model outperforms the Relevance model 

for both topic sets. Of notable interest is that the 
information flow model without feedback (IM) has similar 
performance to the Relevance model for query topics 101-
150, and slightly inferior performance to the Relevance 
model for query topics 151-200. In other words, a global 
collection query expansion model is performing similarly to 
a local collection query expansion model. Experiences from 
the TREC conference series have consistently revealed that 
local collection expansion techniques outperform the global 
collection based techniques. In order to see if such a result 
was by accident, we compared the IM model (global 
collection model) with a pseudo-relevance feedback model 
based on term frequency using the top-ranked 40 
documents retrieved by the baseline. The 30 most 
frequently occurring terms were selected for query 
expansion. The average precision scores for AP89-topics 1-
50, AP88&89-Topics 101-150, AP88&89-topics 151-200 
were 0.233, 0.294, and 0.335 respectively. The IM model’s 
performance was (0.247, 0.265, 0.298). There is some 
evidence to suggest that the global collection based 
information flow model performs as well as, or near to, 
local collection based techniques.  
 
A major disadvantage of the existing global techniques, for 
which it has been criticized, is its context insensitivity. For 
example, “program” may occur in different contexts such 
as “software”, “postgraduate program”, “space program”, 
and so on. All these contexts exist in the same “program” 
vector constructed via term co-occurrence methods. We 
have addressed this problem in our model by introducing 
concept combination and information flow inference. When 
“program” appears in the context of “space”, the related 
dimensions like “NASA” and “defense” will be enhanced 
by combining “space” and “program” using our concept 
combination heuristic. Those irrelevant dimensions such as 
“postgraduate” will be accordingly eliminated or adjusted 
with a lower weights. Moreover, the information flow 
analysis allows true inference. Terms, for example, 
“satellites”, which are not dimensions present in the 
composed query vector for space⊕program, can be 
inferred and then used for query expansion.  
 
The IM model comprises two components: HAL 
representations, and information inference. In order to 
understand where the effectiveness of the IM is originating 
from, a further experiment was carried out which evaluated 
the effectiveness of the IM model without the inference 
component on the AP89 collection using topics 1-50. In 
other words, query topics were translated into query vectors 
as before, normalized, and used for retrieval. The average 
precision achieved was 0.197. This represents an 8% 
improvement over the baseline model. The IM model’s 
average precision scored 0.247 which represents a 35% 
improvement over the baseline. Similarly with respect to 
recall the model without the inference component produced 
a 19% improvement (1996/3301 relevant documents 
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retrieved) versus a 35% improvement in recall of the IM 
model (2269/3301). These figures suggest that the 
inference component contributes more to precision than the 
underlying HAL representation. 
 
The performance increases of the IM model over the 
baseline were not as marked using query topics 101-150. 
As these topics are on average longer than the other topic 
sets, it may be the case that the translation heuristic of 
topics via concept combinations may not be as effective for 
longer queries. Further experimentation is needed to bear 
this out. 
  
The improvement of the IM model with pseudo-feedback 
over the IM model without pseudo-feedback, parallels the 
general trend of local collection based query expansion 
techniques outperforming global collection based query 
expansion techniques. It is interesting that the 
improvements are not as marked as the improvement 
registered by the Markov model. 
 
4. RELATED WORK 
 
Schütze and Pedersen apply a singular value decomposition 
(SVD) algorithm to the term co-occurrence matrix, which is 
produced by moving a k-word sliding window, for 
dimensional reduction [17]. SVD is also used in the Latent 
Semantic Analysis (LSA) or more specifically to IR, Latent 
Semantic Indexing (LSI), to reduce the number of 
dimensions of a term-passage matrix [5, 8, 11]. It 
performances some reasonable inductions, i.e. some words 
not occurring in a passage could be inferred and the 
weights of some originally occurring terms are changed. 
Therefore, SVD and the Information Flow model seem to 
be complementary but address different aspects of the 
informational inference problem. SVD has a strong 
mathematical basis: Its inferential character comes from the 
matrix decomposition and the dimension reduction. The 
information flow model is based on HAL vectors and a 
calculation of the degree of inclusion between vectors to 
compute the strength of inference.  
 
5. CONCLUSIONS 
 
This paper compares the effectiveness of query models 
derived from information flow computations on vector 
representations of terms produced by Hyperspace Analogue 
to Language (a model of information representation from 
cognitive science) with two prominent probabilistic 
language models. More specifically, the information flow 
model outperforms a Markov chain based query language 
model and a relevance-based query language model. In 
addition, the HAL-based information flow model performs 
well using both local and global collection-based 
expansion.  

 
The information flow approach presented here differs from 
the probabilistic approaches to query language models in 
the following ways: 
 
� Query terms are not considered independent. HAL-

based vector representations embody associations 
between terms, which are context sensitive. Moreover, 
information flow analysis involves concept 
combination which melds individual vector 
representations of query terms, thus not treating them 
separately. 

 
� The degree of information flow (or informational 

inference) between term w and query Q is used weight 
the words in the query model. These weights reflect 
how strongly Q is informationally contained in w, 
rather than a conditional probability.  

 
The information flow model comprises two components. 
The first is the HAl-based representation, the second is an 
information inference component. The improvements in 
average precision appear to arise primarily from the 
information inference component. This suggests that further 
research should be directed to tune this component. In 
addition, investigating the inference component in tandem 
with alternative vector representations of terms, for 
example, latent semantic analysis, is an interesting avenue 
for further exploration. 
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 Baseline IM Markov 
Chain  

IM w/ pseudo Markov Chain w/pseudo 

AvgPr 0.185 0.251 
 

0.201 0.263 
 

0.232 

InitPr 0.479 0.559 
 

0.500 0.544 
 

0.534 

Recall 1650/3261 2236/3261 
 

1745/32613 2298/3261 
 

2019/3261 

Table 2: Comparison of various query models for the AP89 collection using TREC topics 1-50 (titles), but not 
including topic 47 
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Figure 1: Precision recall curves comparing Baseline with the information flow model (with/without feedback) for the 
AP89 collection using TREC topics 1-50 (titles) 
 
 
 

 

 

Table 3: Comparison of query models on the AP collection and topics 101-150 and 151-200 (titles) 

                                                 
3.By adding query topic 47, the AvgPr, InitPr and Recall of baseline, IM and IM w/pseudo are (0.183, 0.475, 1683/3301),  (0.247, 0.554, 
2269/3301) and  (0.258, 0.554, 2331/3301). 

Topics Baseline IM IM w/pseudo Relevance Model 
AvgPr 0.221 0.265 

 
0.301 
 

0.262 

InitPr 0.616 0.587 
 

0.623 
 

0.616 101-150 

Recall 3183/4805 3456/4805 
 

3822/4805 
 

3733/4805 

AvgPr 0.296 0.298 
 

0.344 
 

0.318 

InitPr 0.731 0.655 
 

0.703 
 

0.725 151-200 

Recall 3348/4933 3125/4933 
 

3446/4933 
 

3222/4933 
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Figure 2: Precision-recall curves comparing the Baseline with Information Flow model (with/without) feedback on the 
AP collection, TREC topics 101-150 (titles) 
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Figure 3: Precision-recall curves comparing the Baseline with Information Flow model (with/without) feedback for 
the AP collection, TREC topics 151-200 (titles) 
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