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ABSTRACT

This paper presents an informational inference meisim
realized via the use of a high dimensional con@dppace. More
specifically, we claim to have operationalized intpat aspects of
Gardenfors’'s  recent three-level cognitive model. e Th
connectionist level is primed with the Hyperspaaealague to
Language (HAL) algorithm which produces vector emgntations
for use at the conceptual level. We show how imfegeat the
symbolic level can be implemented by employing Bsewand
Seligman’s theory of information flow. This artickdso features
heuristics for enhancing HAL-based representatioashe use of
quality properties, determining concept inclusiord &omputing
concept composition. The worth of these heuristics
underpinning informational inference are demonsttavia a
series of experiments. These experiments, thougill smscale,
show that informational inference proposed in thicle has a
very different character to the semantic associatjproduced by
the Minkowski distance metric and concept simifadbmputed
via the cosine coefficient. In short, informationadference
generally uncovers concepts that are carried, ogome cases,
implied by another concept, (or combination of cpts).

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval-Retrieval modelsH1.1 Models and Principles:
Systems and Information Theory]- Information theoh2.0
[Artificial Intelligence]: General- Philosophical foundations;
1.2.6 [Artificial Intelligence ]: Learning—Concept learning.

General Terms
Theory, Algorithms, Experimentation.

Keywords

Conceptual space, Information flow, Informatiorekrence.

1. INTRODUCTION

Consider the text fragmentWelcome to Penguin Books, U.A
human can quickly make the judgment that this taxtbably
refers to Penguin, the publisher. The teAntarctic Penguins
on the other hand, would lead to the judgment thattext is
referring to with penguins of the animal varietyurhian have the
ability to make hasty, though reliable judgmentsutbwvhat terse
text fragments are about (or are not about). Mahysodo this
daily while scanning the subject descriptions o&isn or the title
captions in the result set from a search enginesituations
involving large amounts of incoming electronic infation (e.g.,
defence intelligence), judgments about content (ladre by
automatic or manual means) are sometimes perforhasd
simply on a title description or brief caption besa it is too time
consuming, or too computationally expensive to perwhole
documents.

This article is about how to automatically infeattone piece of
information carries information about another. This goes beyond
the traditional term co-occurrence relationshipd ae refer it to
asInformational InferenceFor example, given a company named
NEC, we may conclude that NEC also carries therin&tion “a
computer company”, “an electronics corporationt, dthis is also
referred to as ihformation flow by Barwise and Seligman
(1997): x carries/bears/conveys the information that The
discovery of information flow will be able to enh@mn our
cognitive power and thus become more aware in var more
complex information environment. We draw upon resedrom
both cognitive science and logic.

Currently, symbolic and connectionist approachemidate in
cognitive science. The former views cognition asnisglic
manipulation, while the latter models associatiasmg artificial
neural networks. However, neither of them providppropriate
modelling tools for the mechanisms @dncept learningwhich
are fundamental for many cognitive phenomena, farmple, the
aforesaid information flow between two concepts.rdgéfors
(2000) proposes a three-level cognitive model, wreenbodies
the symbolic, conceptual and connectionist persgest He
introduces conceptual spaces as a bridge betweesytnbolic
and connectionist approaches. A conceptual spabeilsupon
geometric structures representing concepts ancepies.

Informational inference has been proposed in teohgules
prescribing properties of aboutness (Bruza, Sond ¥fong,
2000). It therefore suffers from the disadvantagegrent to the



symbolic approach, for example, it sustains no torea
inductions, no genuinely new knowledge and no cptuz
discoveries (Gardenfors 2000). Géardenfors’ conaptievel
allows informational inference to be defined innterof vector
representations at the conceptual level. In ordesperationalize
Gardenfors’ cognitive model, we have propos&gmiotic
Cognitive Information Processing Systems (SCIRShext
generation information retrieval devices (Bruza &ahg 2001)
In this article, we will use vector representatiomghich are
obtained from the connectionist level via the Hgpece
Analogue to Language (HAL) approach (Lund and Bssg&996;
Burgess, Livesay and Lund, 1998). The conceptwal leill then
feature a theory of information flow, which underpi the
informational inference at the symbolic level (Bessv and
Seligman, 1997). In this way, the architecture oS@IPS is
shown as below:

Cognitive SCIPS model
model
) Informational
Symbolic /ﬁ/ Inference

¢ ¢

|l { Infomation Flow
Discovery

A 1
Connectionism /ﬂ/

\

Conceptual o

HAL

2. CONCEPTUAL SPACE

Within the conceptual level of Gardenfors' cogmtiodel,

information is represented geometrically. For exampthe

property colour can be represented as a ternarnpivet three

dimensions: Hue, chromaticity, and brightness. Bumanifested
directly from the wavelength of the light, so a fe445 nano-
metres corresponds to the colour red. Chromatisitydimension
that reflects the saturation of the colour. The¢hdimensions that
together represent the property of colour haver thats in the

human perceptual mechanism of vision, however, tigisd not
always be the case; dimensions may also be abstract

The concept “apple” may have domains taste, shegeur etc.
The thrust of Gérdenfors’ proposal is that progsrti(and
concepts) are represented geometrically as paintegions) in a
space of dimensions (or domains). Context is medeks a
weighting function on the domains, which expressbe
dimensions’ salience within a given context. Foaraple, when
eating an apple, the taste domain will be prominbnt when
playing with it the shape domain will be heavilyigrged (i.e.,
it's roundness).

Gardenfors extends the notion of properties intocepts which
are based on the concept oflamain a domain being a set of
integral dimensions in the sense that a value & dimension(s)
determines or affects the value in another dimerfsjoBy way of
illustration, the dimensions used to establish gplare integral

because a value cannot be assigned on one dimewstioout
giving values to the other dimensions. For exanthle brightness
of a colour will affect its saturation (chromatigit

A human encountering a new concept draws its mgavii an
accumulation of experience of the contexts in whtod concept
appears. In parallel, for text machine learning theaning of a
concept can be learnt through training lexical coworence
information in a corpus to obtain the history ofntexts it
experiences. Following this idea, Burgess and Ldedeloped a
representational model of semantic memory, nameiyerspace
Analogue to Language (HAL) to automatically constra high
dimensional semantic space from a collection of. tBlumeric
vectors of concepts are produced to represent mgsauaf these
concepts (Lund and Burgess 1996; Burgess, Livesdylaind
1998).

A window is moved over the whole corpus by one wiamtement
and all the words within the window are considei@sl co-
occurring with each other with strengths invergaigportional to
the distance between them. After traversing thepusr an
accumulated co-occurrence matrix for all the woidsa target
vocabulary is produced. Note that the word pairHAL is
direction sensitive, i.e. the co-occurrence infaiorafor words
preceding every word and co-occurrence informafamwords
following it are recorded separately by its row aodlumn
vectors. Given n-word vocabulary, the length ofheaector is 2n.

We applied HAL method to the Reuters-21578 coltectiThe

vocabulary is constructed by removing a list ofpsteords and

also dropping some infrequent words which appesss than 25
times in the collection. The size of final vocabulas 5403

words. Window size is set to be 6. A too smalldaw leads to

loss of potentially relevant correlations betweeasrds, whereas a
too large window may compute irrelevant correlasioBurgess et
al (1998) employed a window size of 8 in their expents. We

think 6-word window size is reasonable since preniss our

major concern. Furthermore, for the purpose of fraper, we

don’t consider the direction sensitivity of wordipand added
the row and column vectors into one, thus the dsimenof each

vector is reduced to vocabulary size n. As an eXxangart of the

HAL vector fornecis as follows:

nec = < analysts: 28, bull: 29, chip: 27, computer; 88rp: 227,
electronics: 40, information: 26, japan: 37, ne20,1pct: 26,
petition: 32, quantum: 27, series: 29, ...... >

This example demonstrates how a word is represeated
weighted vector whose dimensions comprise wordse Th-

normalized weights represent how strongly word®eour with

“NEC” in the context of the sliding window, summadross the
whole collection. Note that those highly weighteidnensions,
e.g., “corp”, would be expected by the average tsdye useful
term associations in relation to the term “NE®@Ve propose to
use the HAL vectors as a means to prime the ge@metr
representations inherent to Gardenfors’ concepmpates. HAL
vectors are also interesting because semantic iageos

computed using these vectors correlate with semastociations
drawn from human subjects. Therefore, there isemgd that the
HAL vectors approximate to cognitive representatiaf words.

Another advantage of the HAL approach is that @itomatic. In
the following we formally define a computational deb of

conceptual space based on HAL vectors.



Concept
A conceptC; is a vector representation:

Ci =< Weip, s We,p, »+-Weip, >

where are called dimensions @, n is number of
pl’pz""’pn |

dimensions of ¢, andyy_ _ is the weight op; in vector ofc; . A
G Pi

dimension is termed a property if its weight isajeg than zero.

Using the illustration abovec(= NEC), for the property

computer WNECcomputer: 33. FunctionP(C;) is used to

represent the set of properties of conegpt

Quality Property

Some dimensions are more important than othersndiépg on
the context. In this account, we will not deal wittntext directly,
but will approximate it by extracting those propestof sufficient
weight as computed across the Reuters collection.olir
experiments, various thresholds will be set fontidging quality
properties.

A propertypi ofa conceptci is aquality propertyiff W, , >0,
whered is a non-zero threshold value. Funct(@li?i ((;i ) is used
to represent the set of quality properties of cphce, with

respective t@ set for(;i .

Conceptual Space

A conceptual spacs is set of all concepts in a collection and the

properties of a concept are all the concepts irsgfaee. Formally,
let C,,C,,..C, be the concepts in a spasei.e. c,.C,,..c, OS:

For each conceqt; , c,

i W >

=< WCiC'i , Wcicz ""’WCiCi e We g,

Combining Concepts

Gérdenfors states that “our ability to combine @pis and, in
particular, tounderstandnew combinations of concepts is a
remarkable feature of human thinking” (Gardenfod®@ pl14).
For example, most people can understand combirasach as
pink elephantor cubic soap bubble Gardenfors presents a
thoughtful account of how the combination of corieep realized
in terms of the geometric representations of theceptual level.
For example, “elephant” is a concept with many digiens, one
of which is colour. This colour is typically grewhich is a
property represented as a rediofihe concept “pink elephant”
can be constructed by replacing this grey regioth vainother
region representing the property pink. Observehis example
that “pink” acts as a modifier for the concept fgiant”, the latter
being the more dominant of the two. In general, dbmbination
of concepts cannot always be realized in such agstiforward
fashion. As a consequence, Gardenfors does noterires
comprehensive theory from which an implementatibreancept
combination can be derived. Therefore, in the foilg we

! Gardenfors proposes that natural properties ocaugnvex region of a
domain (a set of integral dimensions).

formalize a heuristic-based approach to combinomgepts based
on HAL vectors.

Given two concepts = and
PIS € =<wWy, W oo W, >
= . Assumec,_is dominant. The
Cp =<W W o W, > 1

resulting combined concept is denoteg O C,. For example,

let c,be “NEC” and ¢, be “computer”, thenC, L1 C, would

denote the geometric representation underpinniegittun phrase
compound “NEC computer”.

An important intuition is to weight the dimensions the
dominant concept higher than in the other conaam, strengthen
the weights of the dimensions in common. In théofeing, we
restrict our attention to “meaningful” compositior the

intersection between the sets of quality propeufezsl and c, is
not empty.

Note we did not normalize the property weightshie previous
definitions. For the purpose of computation, inticafar, the
composition of two concepts, however, normalizat®desirable.
For example, the weights of a HAL vector dependtanoverall
history of co-occurrence of dimensions within theowing

window. However, the significance of a dimensionaiwector is
relative. Thus by normalizing the vectors, they tencompared
or computed at the same level. We propose to uséottowing

cosine normalization algorithm for a dimensiopip concept; :

Wci Pj

W, =L

G Pj 2
«\’;quk

Concept Combination Heuristic

1)

Step 1:Re-weightcl andc2 in order to assign higher weights to

the quality properties inl.

l,*wW
W, =0+ @)
P Max(w, )
k C.lpk
*
W - + fz WCzPi
%P2 Max(w, )
K C2Pk

¢, 1,000, 10)and/, >/,

For example, ifgl = (05and 52:0.4, then property weights of
c,6 are transferred to interval [0.5, 1.0] and propeveights of
c,are transferred to interval [0.4, 0.8],

dimensions of the dominant concept higher.

thus saalithe



Step 2:Strengthen the weights of properties appearirtgpth c,

and c,- these will form important dimensions in the re¢isig
combination.

O(p, OP(c,) O p, OP(S,)) | (W,, =a*w,, and

=a*w

) wherea > 1.0.
C2pi

w 3

C2Pi
Step 3:Compute property weights in the compositinlnEI c,:

+w

P

W(CJ.DCZ)pi - Wcj.pi “)

Step 4: Normalize the vectoc | [J C,- The resultant vector can

then be considered as a new concept, which, in, tcein be
composed to other concepts by applying the samestieu

To illustrate the above heursitic, the followingctas ofnecand
corp contain only quality dimensions. (In this casepsin
dimensions above two standard deviations of thenjnea

NEC = < bull: 0.098, computer: 0.111, corp: 0.766, &laucs:
0.135, japan: 0.125, nec: 0.405, petition: 0.1@8es: 0.098 >

corp = < acquisition: 0.069, agreed: 0.042, air: 0.0d%erica:
0.039, american: 0.123 bank: 0.10Q banking: 0.049, board:
0.051, boston: 0.066, business: 0.055, capitad4).@hairman:
0.053, chemical: 0.043, chrysler: 0.080, commuiocat 0.039,
company: 0.072computer: 0.047 corp: 0.688, credit: 0.046,
debt: 0.054, development: 0.059, dividend: 0.07s: d.097,
electric: 0.042, energy: 0.042, expects: 0.045erf@d 0.055,
filed: 0.043, financial: 0.146, general: 0.163, o 0.040,
insurance: 0.062, international: 0.163, loss: 0,06¥achines:
0.048, min: 0.128, motors: 0.138, national: 0.086t. 0.154,
offer: 0.040, offering: 0.049, pacific: 0.056, p8t085, petroleum:
0.060, poor: 0.146, gtly: 0.053, gtr: 0.255, qudyte).041, sales:
0.042, securities: 0.053, sets: 0.081, shares:40.6fr: 0.084,
standard: 0.104, stock: 0.067, subsidiary: 0.1%3tesms: 0.052,
union: 0.048 >

The combination oNEC andcorp is (gl, l, anda are set to be
0.5, 0.3 and 2.0 respectively):

NEC O corp = < acquisition: 0.014, agreed: 0.009, air: 0.009,
america: 0.008american: 0.025 bank: 0.021 banking: 0.010,
board: 0.011, boston: 0.013, bull: 0.297, busin@s¥l1, capital:
0.009, chairman: 0.011, chemical: 0.009, chryslér016,
communications: 0.008, company: 0.0t6mputer: 0.308 corp:
0.555, credit: 0.009, debt: 0.011, development1®,@ividend:
0.014, dirs: 0.020, electric: 0.00@Jectronics: 0.305 energy:
0.009, expects: 0.009, federal: 0.011, filed: 0,0@B8ancial:
0.030, general: 0.034, group: 0.008, insurance:13).0
international: 0.033japan: 0.303 loss: 0.013, machines: 0.010,
min: 0.026, motors: 0.028, national: 0.018, ne850, net: 0.032,
offer: 0.008, offering: 0.010, pacific: 0.011, p€t017, petition:
0.299, petroleum: 0.012, poor: 0.030, gtly: 0.04f; 0.052,
quarterly: 0.008, sales: 0.009, securities: 0.8gties: 0.297, sets:
0.017, shares: 0.015, shr: 0.017, standard: 0.8@tk: 0.014,
subsidiary: 0.024, systems: 0.011, union: 0.010 >

The above example illustrates that the compositiuristic
assigns high weights to intersecting quality prapsr (e.g.,
“computer”), and assigns the other properties appgan the
dominant concept relatively higher weights tharsthin the non-
dominant concept.Corp is a concept with properties typically
relevant to corporate issues, such as “bank”, ffoed, “sales”,
“shares”, etc. When it is combined witNEC intersecting
properties such aomputerandcorp are strengthenédAlso, the
other quality properties dfIEC are merged into theorp vector.
The weights of other quality properties are weakler@bserve
how in the corp vector that “american” has a high weight
reflecting that in the Reuters collection thereaisstrong co-
occurrence relationship between “american” andgtoifter the
composition, “american” has a relatively low weigtand in
contrast “japan” has a high weight. This illusteatdesirable
nonmontonic behaviour with respect to concepts d&afors
2000, p126). As a consequence, the resuli#® /7 corp vector
reflects a Japanese computer and electronics arporas would
be expected.

3. INFORMATION FLOW

We view the HAL-based vectors of concepts to beniogly

motivated representations of “meaning”. The tokarchs as
“NEC” is not simply a sequence of three characténst is

underpinned by a much richer vector representatidrich

embodies associations with other concepts. Inicisogic, the
connection between the level of tokens (syntax) thedlevel of
meaning (semantics) is established by model thetsrparallel

can be found between the symbolic and conceptuelden the
sense that tokens at the symbolic level are relatedch other via
their representations at the conceptual level. Ban& Seligman
(1997) have proposed an account of information fldvat

provides a theoretical basis for establishing saidonnection by
the use of information state spaces. The concepgpakces
constructed from HAL vectors are a particular exiempf the

state spaces that Barwise and Seligman proposecdrgection
between the symbolic level and state space is floreth as
follows:

Definition 1 (Barwise-Seligman’s Information Flow)

iy |- (1) sG) O's()

O<ksn

The left hand side of the formula describes anticglahip
between a set of types (tokerig) i,, ... i, and a type (token)
j- The intuition behind the above formula is thae#tablishes the
information described by the combination of tokeis to
i, carries the information describgd~or example,

NEC, computer |- technology

Barwise & Seligman refer to it as a “constraint"teen the
respective sets of types; the relationship candneeptualised as

one of information flow between the conjunctionigfto i, to .

2 Note that the abovldEC O corp vector has been normalized. Thus the
absolute weights of its properties might be lestthose inNEC or
corp vectors, even though their relative significanaeNEC O corp
may have increased.



We consider Barwise & Seligman’s definition of infmation flow
to particular formalization of informational inferee at a
symbolic level.

The right hand side of Barwise & Seligman’s defaitdescribe

how the inference relationship is defined in teohstate spaces,
where S(i, ) denotes the state space associated with token

i, 0<ks<n. We view that a HAL vector represents the

information “state” of a particular concept (or domation of
concepts) with respect to a given collection. Franaple, the
token “NEC” is underpinned by a particular vectepresentation
as shown in the previous section. As a consequetite,
intersection and inclusion of states needs to bdinete
appropriately in order to compute the right harttk 9f the above
formula. For intersection, we propose the concephlination
heuristic detailed in the previous section. Furiae, as HAL
vectors are not perfect representations of thecassd concept,
inclusion should not be defined in strict sensinaet theory. We
propose to compute a degree of inclusion basedawn hany
dimensions of one concept are present in anothecegt. The
informational inference at the symbolic level ied®d to hold if
the degree of inclusion is deemed to be sufficient:

Definition 2 (HAL-based information flow)

iy ...,ip|- jiff degreeQlc; Oc;)>0
wherec; denotes the conceptual representation of tokandd is
a threshold value. (For ease of expositiarg; will be referred to
as ¢; (combinations of concepts are also concepts).

Inclusion is a relation over concepts (i.&l, 0 SxS), which
models that one concept is included in another one.

Given two concepts; andc]- the degree of inclusion is defined

as follows:
Z w Cip|
p|0(QPj (ci )OQPj (cj))
d - Oc.)= 5
egreet, Oc ) > W (5)

P OQP; (cj)

The underlying idea of this definition is to makeres that a
majority of the most important quality propertie‘soq appear in

cj . The numerator calculates the accumulation of ktsigf
those quality properties appearing in botpand cj. The

denominator is the sum of all quality propertiesights of C .
According to Barwise and Seligman'’s definition, thtber quality
properties of c} need not to be considefedVhen a threshold

value 1.0 is set for degreq(@ cj ), the HAL-based information

flow definition equates to Barwise & Seligman’s one

3 We designed another algorithm considering bopamj cJ. in the

denominator. It behaves similarly to the cosinecfiom.

Our definition of information flow shows some sigiity to the
use of fuzzy inclusion for computing broader terfivilyamoto
1990). However, this work does not deal with comcep
combinations, and moreover, we feel that informrelanference
goes beyond the notion of broader term.

4. EXAMPLES

4.1 Single-Concept Information Flow

For the case of single concepts, we select a faidical concept
“NEC”. “NEC” is a company that appears in a numbér o
business contexts. As a consequence, it's HAL velots 241
properties. The results detailed in this sectiom similar to the
results we achieved investigating other concepasvdrfrom the
Reuters collection.

The basis of the experiment is to see if the imfees resulting
from information flow have a different character $omilarity
metrics. To this end, we compare the informatiawflresults
with those computed using the cosine and Minkowss&asures.
The latter is claimed by Burgess et al (1998) toabsemantic
distance measure between words.

similarity-cosine¢. ,c . )= Wt w (6)

b = cb. P

2 *
EWen T T,
minkowskiC.,c . )= W - w [ (7)
o '\/;' en.” e,

Lo . . _ o~k * minkowskig, c;)
similarity-minkowski = € (8)

In our experimentd, is set to be 2 (Burgess et al (1998) also used
| =2 in their experiments), arldis set to be 1/1500.

Table 1 depicts the results. Each column of a téibte top 10
conceptd resulting from the cosine-based similarity funotio
Minkowski distance based similarity function ane tHAL-based
information flow functions:

Similarity Similarity Information Flow
(Cosine) (Minkowski-based)
nec:1.0 nec:1.0 nec (55): 1.0
intel : 0.6878 intel : 0.7768 computer(271):0.9415
hospital : 0.6067 unisys : 0.7532 { corp (596),
itt : 0.6055 republicbank:0.7504 | electronics(135),

republicbank:0.5922| itt: 0.7429

unisys : 0.5872 southland : 0.7417
gte : 0.5861 ball : 0.7407
exxon : 0.5758 bellsouth:0.7403
corp: 0.5717 nynex : 0.7392
usx : 0.5591 gte : 0.7347

information(225)}: 0.8355
analysts (474): 0.8154
computers(129): 0.8007
{ charging (66),

chip (93),

controls (166),

high (413),

japan (510),

largest (311),

maker (121),
technology (295),
supply (305) }: 0.7623

Table 1: Analysis of concept “NEC”

4 The information flows grouped in braces all hakve same associated
degree



- We tried various threshold variables to determinglity
properties used in the underlying representatiérecepts.
However, as the Reuters collection is small, thése
insufficient basis for forming a theory in this eed. The
selection of quality properties is still a reseagciestion.

- The number in brackets next to each concept isitheber
of quality properties of that concept.

Discussion:

¢ The cosine and Minkowski functions yield results @f
different character than information flow. As thesme and
Minkowski functions measure similarity, they tend t
compute similar concepts to NEC. For example, Inte
“Unisys”, “ITT” are all technology companies likeBC. On
the other hand, information flow tends to uncover
information carried by the source concept NEC eieample,
“computer”, “electronics”, “industry”, “informatich
“corp.”, “japan” etc. Moreover, they are far beyortide
“broader terms” of “nec”.

e The resultant concepts flowing from a concept acg n
necessarily among the properties of that concéps Means
information flow has a truly inferential charactather than
simply being a product of term co-occurrence.

e There is a wide spread in the number of propenciethe
concepts being inferred (from 66 to 596). Resuttoss a
number of examples suggest that the informatiom ftdf
Definition 2 is not biased towards inferring contsepvith
larger numbers of properties.

4.2 Multi-concept Information Flow

In this subsection, we give illustrations by shogvsome typical
results from our concept combination model. The ligua
properties of the combined concept are selectedsditing a
threshold of 2 standard deviation above the aversige the

minimal number of quality properties being 8. Theethold of
right hand side of information flow relation is detbe above the

average. The paramete{’rf, fz anda are set to be 0.5, 0.3 and

2.0 respectively. The experiments are classifiéd wertical and
horizontal tests. A vertical test refers to the refinemefitao
concept by composing a number of other related equsan order
to specify its context. For example, combination“afms” and
“talks” into “arms talks” makes the concept “tdlksore specific.
A horizontal test is to specify different contextsa general (i.e.
multi-contextual) concept by composing differentrenapecific
concepts to it. Different information flows coulé produced with
respect to different contexts. For example, infdrama flowing
out of “arms talks” is different from “gattalks” because “arms”
and “gatt” specify different contexts of “talks”.

4.2.1 Vertical Test
Using HAL-based information flow, the top 20 infaoes from
the concept “talks” are:

talks |- {talks (387): 1.000,
agreement (498): 0.832,

negotiations (302): 0.865,
meeting (343): 0.784, internationa

5 Gatt (General Agreement on Tariffs & Trade) a forfor global trade
talks.

(502): 0.758,
(423): 0.734,

plans (482): 0.741, government 700739, set
bank (611): 0.733, major (595):1@,7 company
(776): 0.704, trade (550): 0.685, officials (470@)682, banks
(510): 0.680, companies (543): 0.676, officiaigt 0.672,
national (421): 0.665, countries (406): 0.664nfecence (247):
0.661, continue (467): 0.660 }

Observe that the information flowing from “talkshdludes
general concepts such as “negotiations”, “agree€inettt

Similarly, for the concept “arms™

arms |- { arms (92): 1.000,iran (212): 0.864, officials (475):
0.766, reagan (326): 0.758,american (436): 0.723, set (436):
0.723, soviet (244): 0.718, major (603): 0.690, result (353):
0.690, agreed (442): 0.679, oil (542): 0.665, sihpn(155):
0.654, export (410): 0.658pntra (23): 0.649sale (366): 0.646,
agency (313): 0.644, states (348): 0.644, chind)(35.642,
equipment (261): 0.640, details (223): 0.638 }

In the Reuters collection, “arms” has two majorteats. The first
is the “arms scandal” that the Reagan adminismasaffered
when secretly selling arms to Nicaraguan rebels @b-called
Iran-contra affair). The other context is arms colnt a series of
talks were held with the Soviet Union about medidistance
nuclear missiles. Both of these contexts are reftbin the above
vector.

Using the concept composition heuristic presentetlieg,
“armg] talks” yields (assuming “arms” to be dominant):

arms [0 talks = < agreement: 0.254692, arms: 0.259444, control:
0.121992, deal: 0.105783, iran: 0.189955, negatidtd 04788,
profits: 0.103651, reagan: 0.257337, sale: 0.109184les:
0.127537, scandal: 0.132513, secret: 0.106352ed)269334,
talks: 0.331767, trade: 0.104741, >

Now, the top 20 informational inferences from armtalks are:

arms O talks |- { arms (92): 1.0, officials (475): 0.816ran
(212): 0.802,reagan (326): 0.773,american (436): 0.771, set
(436): 0.771,soviet (244): 0.770, oil (542): 0.764agreement
(505): 0.738, future (356): 0.73@alks (387): 0.728, agreed
(442): 0.726, details (223): 0.721, made (558):20,7union
(350): 0.719,moscow (120): 0.718, major (603): 0.703, result
(353): 0.703government(724): 0.693, make (509): 0.685 }

The above results highlight relevant inferences hsuas
“American”, “Soviet”, “Union”, “Moscow”, etc. Theseonvey
information about the negotiations surrounding ttetrol of
nuclear missiles. Analysis revealed that the reagloy desirable
inferences “nuclear”, “missile” were not appearings due to the
window producing the HAL-vectors was too narrow.

The above results also demonstrate some unsousreiites such
as “Iran”, etc. The problem here is that the Irantca context
dominates the arms control context. This suggeBtt the
combination algorithm is not sufficient to smoothtcall the
variations in context. Depending on the contexttate properties
will be highly weighted and others less so. Thesggiats will



shifts as the context shifts. Gardenfors (2000)ppses that
context can be modelled as a weighting function r otree
properties, however, the practical research chgdles the
automatic acquisition and maintenance of this wigHfunction.

4.2.2 Horizontal Test
This experiment compares the inferences drawn fomeItalks
versus those from gattalks.

Assuming “gatt” to be dominant:

gatt O talks = < agreement: 0.282, agricultural: 0.106, body:
0.117, china: 0.121, council: 0.109, farm: 0.264ft:.g0.279,
member: 0.108, negotiations: 0.108, round: 0.3Lksr 0.134,
talks: 0.360, tariffs: 0.114, trade: 0.432, wofkdt14,>

The top 20 informational inferences from dattalks are:

gatt O talks |- { gatt (119): 1.000trade (540): 0.963agreement
(505): 0.961,world (426): 0.856,negotiations (307): 0.850,
talks (387): 0.843, set (436): 0.822, states (348): 9.8t (371):
0.814, japan (499): 0.782, general (371): 0.7f@8m (273):
0.776, include (354): 0.767%ules (225): 0.763, round (107):
0.763, members (338): 0.736, council (177): O.7&giculture
(211): 0.731, officials (475): 0.724, governmer24y. 0.718 }

GattJtalks mainly carries information of negotiations dan
agreements about the rules of international adticall (farm)
trade between different countries, especially Eeappcountries.
When contrasted with the inferences drawn from armelks,
some measure of context sensitivity is revealediming that the
inference mechanism is sensitive to “gatt” or “drinsthe context
of “talks”.

The above horizontal and vertical tests are oniypesof typical
examples selected for illustration. They do sugdkat HAL-
based model of information flow can realize dedediehaviour
in the form of non-monotonicity and context seniiyi

5. SUMMARY AND CONCLUSION

The main contribution of this article is the reatipn of an
informational inference mechanism via the use ofhigh
dimensional conceptual space. The dimensional spfiees two
advantages. Firstly, it offers a cognitively mota@ model theory
on which to found inference at a symbolic levelc@wlly, as this
model theory is expressed in terms of vectors,ctimaputational
complexity of inference at the symbolic level candide-stepped.
More specifically, we claim to have operationalizedportant
aspects of Gardenfors’s three-level cognitive mod&he
connectionist level is primed with the HAL approagtich
produces vector representations for use at theeptnal level.
We show how inference at the symbolic level canl@mgnted by
employing Barwise and Seligman’s theory of inforimatflow:
The real valued state spaces advocated by themealiged by
HAL vectors to represent the information “state”aofvord in the
context of a collection of words. Cognitive studresse revealed
that HAL vectors correlate with the cognitive regamptations of
words, therefore, by employing them, we aim to potem

informational inferences that correlate with hunjadgements
about information. This article also featuresrisics:

1. for enhancing HAL-based representations via the ofse
quality properties.

2. determining concept inclusion
computing concept composition.

The worth of these heuristics in underpinning infational
inference are suggested via a series of small empets. These
experiments, though small in scale, show that méiional
inference proposed in this article has a very wbffié character to
the semantic associations produced by the Minkowgktiance
metric and concept similarity computed via the segoefficient.
In short, informational inference generally unceveoncepts that
are carried, or, in some cases, implied by anotlbeicept, (or
combination of concepts). Though early days, osults suggest
that the informational inference mechanism defiimethis article
could possibly be used to deduce nested informaétationships
(Van Rijsbergen, 1989) Such relationships, combingih
semantic, and other automatically computed assonmbpen the
door to the automatic construction of ontologiesir @Qltimate
goal is to produce information processing devicésclv have
some sense of the "meaning" of the information tleg
processing. Moreover, the inferences they drawelation to
information will correlate with inferences that ham agents
would draw modulo the context. These devices, tdresmiotic-
cognitive information processing systems, will emt& our
cognitive firepower and thus help us become moraravin our
ever more complex information environment.
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