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Abstract

The thesis outlines the use of Orthogonal Arrays for the training of Artificial

Neural Networks. Such arrays are popularly used in system optimisation and are

known as Taguchi Methods. The chief advantage of the method is that the

network can learn quickly. Fast training methods may be used in certain Control

Systems and it has been suggested that they could find application in ‘disaster

control,’ where a potentially dangerous system (for example, suffering a

mechanical failure) needs to be controlled quickly.

Previous work on the methods has shown that they suffer problems when used

with multi-layer networks. The thesis discusses the reasons for these problems and

reports on several successful techniques for overcoming them. These techniques

are based on the consideration of the neuron, rather then the individual weight, as

a factor to be optimised. The applications of technique and further work are also

discussed.
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Chapter 1

Introduction

1.1 Introduction to Chapter
This chapter starts by describing the problems addressed by the project. The aims

and objectives of the research are outlined and novel ideas discovered during the

research are listed. A breakdown, chapter by chapter, of the thesis and a list of

abbreviations used are also included.

1.2 The Nature of the Problem
The quest for Artificial Intelligence (AI) is one of the most exciting challenges

that mankind has ever undertaken. The real promise of AI research is to study

intelligent behaviour in humans and attempt to engineer such behaviour in a

computer or other machine. Biologically inspired Artificial Neural Networks

(ANNs) are one of the tools used to achieve this.

At the present time, most research into ANNs is aimed at engineering

applications. Examples of such applications include Pattern Recognition, Control

Systems and Signal Processing. These usually involve fairly small networks with

fixed topologies, unit functionality and training methods. This has led to the

adoption of popular and simple “off the shelf” networks such as Back Propagation

(BP) trained Multilayer Perceptrons, Radial Basis Networks and others. An

important requirement for such applications is network training time. Particularly

for online Control Systems, network learning rate may be very critical.

This work presents a number of innovative methods to train neural networks using

Taguchi Methods. The principle advantage of these techniques is their speed. The

methods allow the weights of the network to be set quickly without having to go

through a lengthy training routine. Taguchi methods allow the weights to be

chosen using a pre-defined pattern of known experiments based on Orthogonal

Arrays. Different levels are set for the weights in these experiments in order to
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find out the best combination of weights by calculation. A detailed explanation of

the technique is given in Chapter 4.

1.3 Aims & Objectives
The aim of the research was to develop new training methods to train ANNs using

Taguchi Methods. These networks are fairly small and have a fixed topology.

To accomplish the task the following objectives were set out at the beginning of

the project.

Background Reading and Appropriate Directed Study

Appropriate directed studies were undertaken at the beginning of the research.

These included attending lectures in the field of study, understanding and

reproducing the work done by (MacLeod et al 1999) and understanding the work

done by (Stoica et al 1997) on Neural Learning using Orthogonal Arrays.

Undertake a study of relevant literature

A literature search into the training methods of ANNs was undertaken. The search

concentrated on fast training methods and other work using Taguchi Methods or

Orthogonal Arrays.

Train a simple neuron using Taguchi Methods

The primary aim here was to investigate the use of Taguchi methods to train a

simple (single) neuron, then progress to single layer networks, and finally to

multi-layer networks.

Investigate new methods of training ANNs using Taguchi Methods

Initial experiments were concerned with finding out whether it is possible to use

Taguchi Methods for ANNs training. However, when they were tried on multi-

layer networks, the training failed due to interaction between the interlayer

weights. A number of alternate training strategies were considered to overcome

the interaction problem. These were layer-by-layer training, coding the state of

neuron training method and neuron-by-neuron training. Taguchi Methods were
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also applied to Polynomial (power series) neurons (Maxwell et al 2002) for ANNs

training. A detailed explanation of the techniques is given in Chapters 4, 5 and 6.

Investigate use of custom-made OAs for training ANNs

Under some circumstances it may be difficult to select a suitable OA table for a

given problem. The use of custom-made OA tables in these situations is

investigated.

Use the new methods developed to learn non-linear functions

The capabilities and limitations of the new methods are explored by applying

them to learning non-linear functions.

Comparison with Previously Published Results from other Researchers

The results obtained were compared with previously published results to assess

the advantages and disadvantages of the technique.

As it can be seen, all the objectives mentioned in this section have been met.

1.4 Novel Aspects of this Research
Although researchers have tried to use Taguchi Method to train the neural

networks before, there are several unique aspects to the approach presented here.

The most important of these are listed below.

 An innovative ‘Neuron-by-Neuron Training’, which is based on Taguchi

Methods, was developed to train Artificial Neural Networks. This method

enables the weights to be set very quickly without going through the

lengthy training routine. The problem of interlayer weights interaction is

avoided.

 Experimental results show that just after the first iteration (one pass) of

training, the error reduces dramatically.

 A unique method of ‘Coding the State of Neuron Training Method’, which

is based on Taguchi Methods, was also developed. This method uses



4

custom-made Orthogonal Array tables. This helps to select the suitable OA

table to accommodate network weights.

 When compared with traditional algorithms like Back-Propagation, this

method reduces the network training time significantly. It was also

demonstrated in learning some non-linear functions.

 To train Polynomial (power series) neurons, another unique training

method was developed using Taguchi Methods. In this method, one can set

the first order weights initially, then second order weights (squared terms),

and then third order weights (cubed terms) etc. The network error reduces

with each increasing input power as the approximation becomes more

accurate.

1.5 Thesis structure
Given below is an overview of each chapter.

Chapter 2. Literature Review

This chapter gives a review of other important work, related to the research.

Chapter 3. Introduction to Taguchi Methods

This chapter introduces the basics of Taguchi Methods, explaining the operation

of the method and outlines the theory behind it. It describes orthogonal arrays and

their significance in finding the best combination of factors with the minimum

number of experiments.

Chapter 4. Artificial Neural Network Training using Taguchi Methods

This chapter explains the operation of Taguchi methods training by applying it to

the problem of finding the weights for a simple neuron, single layer network and

multi-layer networks for pattern recognition problems.

Chapter 5. New Training Methods using Taguchi Methods for ANN Training

In this chapter, the new training techniques developed to train multi-layer

networks are discussed. The results obtained with different training methods
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developed are presented in this chapter. The advantages and disadvantages of each

method are discussed.

Chapter 6. New Training Method using Custom-made OAs for ANN Training

This chapter presents a new method of training using custom-made OA tables.

Results are presented and advantages and disadvantages of the method are

discussed.

Chapter 7. Using New Methods in Learning Non-linear Functions

This chapter compares the results obtained using the new methods with the Back-

Propagation algorithm. It was also demonstrated on non-linear training functions -

sigmoid, reverse sigmoid and Gaussian (bell curve). Comparison is made between

theoretical and actual outputs of the function.

Chapter 8.Conclusions

The final chapter revisits the objectives outlined in the first chapter and critically

assesses the success of the project. It also suggests some further work.

Published papers and some further results are included in appendices.

1.6 Abbreviations used in text
Artificial Intelligence - AI

Artificial Neural Networks - ANN

Neural Network – NN

Taguchi Methods – TM

Orthogonal Arrays - OA

Back Propagation - BP
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Chapter 2

Literature Review

2.1 Introduction to Chapter
This chapter reviews the previous work done related to the research topic. The

literature review is primarily focused on the main research area of using Taguchi

Methods or Orthogonal Arrays for ANN training. A number of papers proposed

the use of Taguchi Methods and Orthogonal Arrays for neural network design

unrelated to training: for example, choosing the number of neurons in the layer,

training sampling selection, etc. These are also discussed briefly in this chapter.

To make a comparison with the present work and to gain a better understanding of

its capabilities, other fast training methods for training ANNs are also considered.

2.2 Taguchi Methods and Orthogonal Arrays for ANN training
The idea of using Taguchi Methods and Orthogonal Arrays to train Artificial

Neural Networks was originated by C. MacLeod in 1994 (MacLeod et al 1999) at

The Robert Gordon University and implemented by his student (Dror 1995) in an

MSc project. Another group at the JPL research centre in NASA also developed

the same idea independently at around the same time (Stoica et al 1997).

The initial work by (MacLeod et al 1999) was demonstrated on a simple character

recognition problem. It was shown that Taguchi Methods offered the potential to

train feed-forward neural networks and had advantages in terms of their speed and

unsupervised training properties. In some circumstances, it proved faster than

other algorithms and in general character recognition problems, it was up to 10

times faster than the back-propagation algorithm.

At the JPL research centre in NASA (Stoica et al 1997), the method was tested on

a multi-layer neural network. It was shown that the method could be used

iteratively to reduce the error further over a number of runs. After each iteration,

the search interval was shrunk to narrow down the search space. To improve the
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final result, a local search (e.g. gradient-based) was suggested. Further work was

also suggested to obtain an appropriate OA table size for a given network.

The general capabilities and limitations of Taguchi Methods for ANN training

were explored by (Maxwell et al 2002) and demonstrated on some more pattern

recognition problems. The issue of obtaining suitable OA tables was highlighted

and it was suggested that custom-made tables could be generated to accommodate

the network weights. The other problem discussed was the interaction between

interlayer weights. As discussed elsewhere in the thesis, if the method is applied to

a multi-layer network, the resultant network will often work poorly, due to the

problem of interaction between the weights, since the conventional method can

only handle a small amount of interaction between the factors. It was suggested

that one possible way around this problem was to train one layer at a time

(randomising the weights in the other layer). To establish whether this was a

reliable method of training, further work was suggested.

The method was tested on a simple non-linear function and it was highlighted that

it offers potential for neural control applications, because of the training speed and

the fact that the networks involved are usually small.

It was suggested that power series (polynomial) neurons are more suitable for the

Taguchi Method of training because it allows the setting of first order weights

initially, then, independently, second order weights then the third order weights

and so on. The network error reduces with each increasing power.

Previous experimental work (Maxwell et al 2002) had shown that the method

could successfully train single layer networks. However, interaction between

layers precluded the successful reliable training of multi-layer networks. A paper,

based on the current research work, by (Viswanathan et al 2005) describes a

number of successful strategies, which can be used to overcome this problem.

Successful results were produced using these methods and it was also shown that

the new methods could be used to map non-linear functions. This paper is

included in Appendix A1.
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2.3 Taguchi Methods and Orthogonal Arrays for general ANNs

design

Quite a number of papers have also proposed the use of Taguchi Methods or

Orthogonal Arrays for optimum neural network design. For example, choosing the

number of neurons in a layer, training selection, etc. Some of these can lead

indirectly to better training speeds or faster convergence. Some are aimed at a

specific application. To give the reader some idea of the range of these papers,

some are discussed in this section.

These developments are parallel to the field, but not the same as the current

research work.

(Young-Sang Kim et al 2004) proposed the robust design of multi-layer feed-

forward ANNs. ANNs have been successfully used for solving a wide variety of

problems; however, determining a suitable set of structural and learning parameter

values still remains a difficult task. This paper is concerned with the robust design

of multi-layer feed-forward ANNs, trained by the BP algorithm and develops a

systematic experimental strategy which emphasises simultaneous optimisation of

BP neural network parameters under various noise conditions. The problem is

formulated as a Taguchi dynamic parameter design, together with a fine-tuning of

the BP neural network output.

(Ming-Der Jean et al 2005) proposed the application of an artificial neural

network with a Taguchi orthogonal experiment to develop a robust and efficient

method of depositing alloys with a favourable surface morphology by a specific

microwelding hardfacing process. An ANN model performs self-learning by

updating weights and repeating learning epochs. The network can be constructed

based on the data obtained from experiments. The root of mean squares (RMS)

error can be minimized by applying results obtained from training and testing

samples, such that the predicted and experimental values exhibit a good linear

relationship. The experimental results reveal that the coating is greatly improved

by optimising the coating conditions and is accurately predicted by the neural

network model. The combination of the network model with Taguchi-based
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experiments is demonstrated as an effective and intelligent method for developing

a robust, efficient, high-quality coating process.

(Yang et al 1999) proposed a method of neural network design using Taguchi

Methods. One of the major difficulties in ANN applications is the selection of the

network configuration parameters and of learning algorithm coefficients for fast

convergence. This paper develops a network design by combining the Taguchi

Method and BP training with an adaptive learning rate for minimum training time.

Analysis and experiments show that the optimal design parameters can be

determined in a systematic way, thereby avoiding a lengthy trial-and-error

process.

Optimal design of ANNs using Taguchi Methods was suggested by (Khaw et al

1995). The design of ANN involves the selection of an optimal set of design

parameters to achieve fast convergence during training and the required accuracy

during recall. This paper describes an innovative application of the Taguchi

Method for the determination of these parameters to meet the training speed and

accuracy requirements. The feasibility of using this approach is demonstrated in

this paper by optimising the design parameters of a BP neural network for

determining operational policies for a manufacturing system.

(Packianather et al 2000) proposed optimising the parameters of multilayered feed

forward ANN through Taguchi Design. Being a parallel approach, the method

offers considerable benefits in time and accuracy when compared with the

conventional serial approach of trial and error. The use of Taguchi Methods

ensures that the quality of the ANN is taken into account at the design stage.

(Mo-Chung Lee et al 1999) also proposed the use of Taguchi Methods to develop

the structure of a BP neural network. The method makes it easy to determine the

optimal number of hidden nodes, learning rate and momentum term.

Using Taguchi Methods to control errors in Multi-Layered Perceptrons is

proposed by (Peterson et al 1995). Network errors can occur when the training

data does not faithfully represent the required function due to noise or low
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sampling rates. The paper reports several experiments whose purpose was to rank

the relative significance of these error sources and thereby find ANN design

principles for limiting the magnitude and variance of network errors.

(Rowlands et al 1996) explains how optimal design can be achieved by using

design of experiments in conjunction with neural networks. It is common practice

in industry to find the optimal design through the Taguchi methods. In order to

identify the optimal design, Taguchi methods replace the need for running a full

factorial design of experiments by a fractional factorial design using orthogonal

arrays. However, the compromise between the use of fractional factorial design

and full factorial design requires some assumptions to be made in identifying the

optimal design parameters and consequently leads to some uncertainty in the

result. The neural network was trained using the results of a fractional factorial

design for an intelligent sensor example. The neural network was then used to

predict the response values for the full factorial design. A comparison between the

Taguchi method and the neural network approach highlights the superior results

produced by the neural network.

(Su, Chao-Ton et al 2000) proposes an approach using a neural network and

simulated annealing for parameter design optimisation. Parameter design

optimisation has extensive industrial applications, including product development,

process design and operational condition setting. The parameter design

optimisation problems are complex because non-linear relationships and

interactions may occur among parameters. To resolve such problems, engineers

commonly employ the Taguchi method. However, the Taguchi method has some

limitations in practice. In this work, the authors present a means of improving the

effectiveness of the optimisation of parameter design. The proposed approach

employs the neural network and simulated annealing, and consists of two phases.

Phase 1 formulates an objective function for a problem using a neural network

method to predict the value of the response for a given parameter setting. Phase 2

applies the simulated annealing algorithm to search for the optimal parameter

combination. A numerical example demonstrates the effectiveness of the proposed

approach.



11

(Chang et al 2002) proposed the selection of training samples for model updating

using ANNs. One unique feature of ANNs is that they have to be trained to

function. In developing an iterative ANN technique for model updating structures,

it was shown that the number of training samples required increases exponentially

as the number of parameters to be updated increases. Training the neural networks

using these samples becomes a time-consuming task. In this study, the authors

investigate the use of OAs for the sample selection. The results indicate that the

OA method can significantly reduce the number of training samples without

affecting too much the accuracy of the ANN prediction.

2.4 Other methods to improve ANNs training
A number of papers have proposed different training algorithms and other

methods to improve the network training speed. These involve developing a new

algorithm or improving the existing algorithms like BP, etc. It is not possible to

cover all of these papers here due to the large number of them; however, some of

them are reviewed in this section to gain better understanding.

Although these papers discuss several methods of improving ANN training, the

methods developed in this research work are completely different from the other

methods and as such, are unique.

A new fast high-order neural network learning algorithm for pattern recognition

was proposed by (Zhang et al 2004). The new algorithm uses the properties of

trigonometry to reduce and control the number of weights of a third-order network

used for invariant pattern recognition.

A fast training algorithm which could be used instead of BP was suggested by

(Yamada et al 1994), which is based on the Newton-Rapson method. It is well

known that BP as a gradient-descent algorithm can get stuck in local minima and

this method is designed to avoid that problem. Comparison is made with back-

propagation algorithm.
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An improved neural network learning algorithm was proposed by (Altun et al

1997). Using this technique, an improvement on the BP algorithm is obtained. The

technique is based on manipulating the input data so that the redistribution of the

input domain results in quick learning. The results presented in this paper show an

acceleration by a factor of 8.7 over standard BP.

(Dubrovin et al 2002) suggested another quick method of neural network training.

An algorithm for training neural networks, which increases the convergence of

network training, is developed. The results of experiments in practical problem

solving on the basis of the proposed algorithm are shown.

Some learning algorithms for neurocomputing have a high computational

complexity that makes them inefficient. (Looney et al 1992) investigate a new

approach for learning that is quick relative to BP. The key feature of this approach

is that it uses a different synaptic weight set for each class of objects that is

learned.

Another algorithm was proposed by (Kawata et al 1998) to overcome the

problems posed by BP (like low rate of convergence, low recognition rate for

unlearned data, initial random weights and one point search, etc). The proposed

method uses a genetic algorithm, which searches several search points at the same

time for improvement dependent on the initial random and limited part solution.

The algorithms reviewed in this section are included as alternative fast training

methods. They offer other techniques which can result in improvement in

learning. However, it should be noted that it is not possible to compare the method

reported here with them directly as the papers often do not contain actual data on

algorithm speed, and when they do it is based on data which is not directly

comparable to the experiments illustrated in this thesis.
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Chapter 3

Introduction to Taguchi Methods

3.1 Background & Overview of Taguchi Methods
After the Second World War, the allied forces found that the quality of the

Japanese telephone system was extremely poor and totally unsuitable for long-

term communication purposes. To improve the system the allied command

recommended establishing research facilities in order to develop a state-of-the-art

communication system. The Japanese founded the Electrical Communication

Laboratories (ECL) with Dr. Genichi Taguchi in charge of improving the R&D

productivity and enhancing product quality. He observed that a great deal of time

and money was expended on engineering experimentation and testing (Ranjit

1990). Little emphasis was given to the process of creative brainstorming to

minimise the expenditure of resources. He noticed that poor quality cannot be

improved by the process of inspection, screening and salvaging. No amount of

inspection can put quality back into the product. Therefore, he believed that

quality concepts should be based upon, and developed around, the philosophy of

prevention.

Taguchi started to develop new methods to optimise the process of engineering

experimentation. He believed that the best way to improve quality was to design

and build it into the product. He developed the techniques which are now known

as Taguchi Methods. His main contribution lies not in the mathematical

formulation of the design of experiments, but rather in the accompanying

philosophy. His concepts produced a unique and powerful quality improvement

technique that differs from traditional practices. He developed manufacturing

systems that were “robust” or insensitive to daily and seasonal variations of

environment, machine wear and other external factors.

His philosophy had far reaching consequences, yet it is founded on three very

simple concepts. His techniques arise entirely out of these three ideas.
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The concepts are:

1. Quality should be designed into the product and not inspected into it.

2. Quality is better achieved by minimising the deviation from a target. The

product should be so designed that it is immune to uncontrollable

environmental factors.

3. The cost quality should be measured as a function of deviation from the

standard and the losses should be measured system-wide.

Taguchi viewed quality improvement as an ongoing effort. He continually strived

to reduce the variation around the target value. The first step towards improving

quality is to achieve the population distribution as close to the target value as

possible. To accomplish this, Taguchi designed experiments using especially

constructed tables known as “Orthogonal Arrays” (OA). The use of these tables

makes the design of experiments very easy and consistent.

The Taguchi Method is applied in four steps.

1. Brainstorm the quality characteristics and design parameters important

to the product/process.

2. Design and conduct the experiments.

3. Analyse the results to determine the optimum conditions.

4. Run a confirmatory test using the optimum conditions.

Taguchi methods start with an assumption that we are designing an engineering

system - either a machine to perform some intended function, or a production

process to manufacture some product or item. Since we are knowledgeable

enough to be designing the system in the first place, we generally will have some

understanding of the fundamental processes inherent in that system. Basically, we

use this knowledge to make our experiments more efficient. We can skip all the

extra effort that might have gone in to investigating interactions that we know do

not exist. Without going into the details, it has been shown that this can decrease

the level of effort by a factor of ten or twenty and sometimes much more.
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Another distinction of Taguchi methods is the recognition that there are variables

that are under our control and variables that are not under our control. In Taguchi

terms, these are called Control Factors and Noise Factors, respectively.

This chapter gives a general introduction to Taguchi Methods. A detailed analysis

of results using the method is beyond the scope of the thesis. Hence, we will limit

the technique’s applicability to the main research topic.

3.2 An Insight into Orthogonal Arrays (OA) & Taguchi Methods
The technique of laying out the conditions (designs) of experiments involving

multiple factors was first proposed by Sir R. A. Fisher, in the 1920s (Ranjit 1990).

The method is popularly known as factorial design of experiments. A full factorial

design identifies all possible combinations for a given set of factors. Since most

industrial experiments involve a significant number of factors, a full factorial

design results may involve a large number of experiments.

Factors are the different variables which determines the functionality or

performance of a product or system. Factors are:

 design parameters that influence the performance.

 input that can be controlled.

 included in the study for the purpose of determining their

influence upon the most desirable performance.

In a heat treatment experiment, for example, a factor can be “cooling rate” or

“temperature” etc. Each factor may be set to different levels. Hence for the same

experiment the levels can be “slow cooling” and “fast cooling” or “low

temperature” and “high temperature” etc. depending on the application.

For example, consider a design with three variables (factors A, B and C), each of

which can be set at two different values. For convenience, these values are

denoted as levels, 1 and 2. A full factorial experiment requires 23 = 8 experiments,

as shown in Table 3-1. On the other hand, one can get as much useful data using

four experiments as indicated in Table 3-2, which is an L4 OA (general properties

of OA are given in section 3.2.1 of this chapter).
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Experiments A B C

1 1 1 1

2 1 1 2

3 1 2 1

4 1 2 2

5 2 1 1

6 2 1 2

7 2 2 1

8 2 2 2

Table 3-1. Full factorial experiments table

Experiments A B C

1 1 1 1

2 1 2 2

3 2 1 2

4 2 2 1

Table 3-2. Orthogonal Array L4

For example, in an experiment involving seven factors, each with two levels, the

total number of combinations will be 128 (27). To reduce the number of

experiments to a practical level, only a small set from all possibilities is selected.

The method of selecting a limited number of experiments which produces the

most information is known as a partial factorial experiment. Although this

shortcut method is well known, there are no general guidelines for its application

or the analysis of the results obtained by performing the experiments (Ranjit

1990).

Taguchi’s approach complements these two important areas. Taguchi constructed

a special set of Orthogonal Arrays (OA) to lay out his experiments. By combining

existing orthogonal latin squares in a unique manner, Taguchi prepared a new set
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of standard OAs which could be used for a number of experimental situations. He

also devised a standard method for analysis of the results. A single OA may

accommodate several experimental situations. Commonly used OAs are available

for 2, 3 and 4 levels. The combination of standard experimental design techniques

and analysis methods in the Taguchi approach produces consistency and

reproducibility.

3.2.1 Properties of the OA
A common OA for 2 level factors is shown in table 3-3. This array, designated by

the symbol L8, is used to design experiments involving up to seven 2 level factors.

The array has 8 rows and 7 columns. Each row represents a trial condition

(experiment) with factor levels indicated by the numbers in the row. The vertical

columns correspond to the factors specified in the study.

Factors
Experiments

A B C D E F G

1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2

Table 3-3. Orthogonal Array L8 (27)

Assume that a variable (i.e. a design parameter under investigations) can take n

different values, vi…vn. Assume that a total of m experiments are conducted. Then

a set of experiments is balanced with respect to the variable if:

(i) m = kn, for some integer k;

(ii) each of the values, vi, is tested in exactly k experiments.
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An experiment is balanced if it is balanced with respect to each variable under

investigation. For example, in L8 OA shown in table 3-1, each column contains

four level 1 and four level 2 conditions for the factor assigned to the column. It is

easy to see that all columns provide four tests under the first level of the factor,

and four tests under the second level of the factor.

The idea of balance ensures equal chance is given to each level of each variable.

Similarly, we want to give equal attention to combinations of two variables.

Assume that we have two variables, A (values: ai, …, an) and B (values bi, …, bm).

Then the set of experiments is orthogonal if each pair-wise combination of values,

(ai, bj) occurs in the same number of trials.

For example, in L8 OA shown in table 3-3, two factors with 2 levels combine in

four possible ways:

(1,1), (1,2), (2,1) and (2,2)

Note that any two columns of an L8 OA have the same number of combinations of

(1,1), (1,2), (2,1) and (2,2). This is one of the features that provide the

orthogonality among all the columns (factors).

When two columns of an array form these combinations, the same number of

times (two times in this case), and all columns provide the same number of tests

under the first level of the factor, and the same number of tests under the second

level of the factor, then the columns are said to be balanced and orthogonal. Thus,

all seven columns of an L8 array are orthogonal to each other.

In Taguchi design, the array is orthogonal, which means the design is balanced so

that factor levels are weighted equally. The real power in using an OA is the

ability to evaluate several factors in a minimum of tests. This is considered an

efficient experiment since much information is obtained from a few trials.



19

Consider the following array with 12 rows and 11 columns:

0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 1 1 0 1 0 0 0

0 1 1 1 0 1 1 0 1 0 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 1 1 0 1 1 0 1

1 0 0 0 1 1 1 0 1 1 0

0 1 0 0 0 1 1 1 0 1 1

1 0 1 0 0 0 1 1 1 0 1

1 1 0 1 0 0 0 1 1 1 0

0 1 1 0 1 0 0 0 1 1 1

1 0 1 1 0 1 0 0 0 1 1

1 1 0 1 1 0 1 0 0 0 1

Pick any two columns, say the first and the last.

0 0

1 0

0 0

0 0

0 1

1 0

0 1

1 1

1 0

0 1

1 1

1 1

Each of the four possible rows are,

0 0, 0 1, 1 0, 1 1

And they all appear the same number of times (three times, in fact). That is the
property makes it an orthogonal array.

Only 0's and 1's appear in that array, but for use in statistics

0 or 1
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The first column might be replaced by,

"butter" or "margarine" ,

and the second column might be replaced by,

"sugar" or "no sugar" ,

and so on.

Since only 0's and 1's appear, this is a 2-level array. There are 11 columns, which

means one can vary the levels of up to 11 different variables, and 12 rows, which

means one is going to conduct 12 different experiments.

The array forces all experimenters to design identical experiments. Experimenters

may select different designations for the columns but the eight trial runs will

include all combinations independent of column definition. Thus the OA assures

consistency of design by different experimenters (Ranjit 1990).

To design an experiment, the most suitable orthogonal array is selected. Next,

factors are assigned to the appropriate columns, and finally, the combinations of

the individual experiments (called the trial conditions) are described. Let us

assume that there are at most seven 2 level factors in the study. Call these factors

A, B, C, D, E, F and G, and assign them to columns 1, 2, 3, 4, 5, 6 and 7

respectively of an L8 array. The table identifies the eight trials needed to complete

the experiment and the level of each factor for each trial run. Each experimental

set up is determined by reading numerals 1 and 2 appearing in the rows of the trial

runs. A full factorial experiment would require 27 or 128 runs, but would not

provide appreciably more information.

Experimental design using OAs is attractive because of experimental efficiency.

Generally speaking, OA experiments work well when there is minimal interaction

among factors, i.e. the factor influences on the measured quality objectives are

independent of each other and are linear - in other words, the outcome is directly

proportional to the linear combination of individual factor effects. OA design

identifies the optimum condition and estimates performance in this situation

accurately. If, however, the factors interact with each other and influence the
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outcome in a non-linear manner, there is still a good chance that the optimum

condition will be identified accurately (Ranjit 1990), but the estimate of

performance at the optimum can be poor. The degree of inaccuracy in

performance estimates will depend on the degree of complexity of interactions

among all the factors.

3.2.2 Designing the Experiment
Before designing an experiment, knowledge of the product/process under

investigation is of prime importance for identifying the factors likely to influence

the outcome.

The aim of the analysis is primarily to seek answers to the following three

questions:

1. What is the optimum condition?

2. Which factors contribute to the results and by how much?

3. What will be the expected result at the optimum condition?

Consider an example. An experimenter has identified three controllable factors for

a plastic moulding process. Each factor can be applied at two levels (Table 3-4).

The experimenter wants to determine the optimum combination of the levels of

these factors and to know the contribution of each to product quality.

FACTORS /

LEVELS

A. Injection

Pressure

B. Mould

temperature

C. Set Time

LEVEL 1 A1 = 250 psi B1 = 150 oF C1 = 6 sec.

LEVEL 2 A2 = 350 psi B2 = 200 oF C2 = 9 sec.

Table 3-4. Factors and levels for molding process

There are 3 factors, each at 2 levels, thus an OA of L4 is suitable which is shown

in Table 3-5.
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FACTORS
Experiments

A B C

1 1 1 1

2 1 2 2

3 2 1 2

4 2 2 1

Table 3-5. An experiment layout using L4 OA

This configuration is a convenient way to layout a design. Since an L4 has 3

columns, 3 factors can be assigned to these columns in any order. Having assigned

the factors, their levels can also be indicated in the corresponding column. There

are four independent experimental conditions in an L4. These conditions are

described by the numbers in the rows.

A full set of experiments for this process would require eight different

experiments (full factorial design = 23) as opposed to the four which are needed

for the Taguchi version of the experiment using L4 OA. As previously noted, the

saving involved in using the Taguchi method becomes more significant as the

number of levels or factor increases (Ranjit 1990).

To analyse the results, there must be a way of comparing the results produced by

each experiment. In this example, one could measure the quality characteristic, Y

– the lower the better, of the moulded products.

So, having undertaken the experiments and obtained the results, it is now possible

to calculate the best levels to use with each factor. Let us assume, for example, the

results obtained are as shown in Table 3-6.
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FACTORS
Experiments

A B C

Result (quality

characteristic)

Y1 1 1 1 30

Y2 1 2 2 25

Y3 2 1 2 34

Y4 2 2 1 27

Table 3-6. Results for experiments

One can now find the effect of each level in each factor by averaging the results

which contain that level and that factor.

A1 = (Y1 + Y2)/2 = (30 + 25)/2 = 27.5

A2 = (Y3 + Y4)/2 = (34 + 27)/2 = 30.5

B1 = (Y1 + Y3)/2 = (30 + 34)/2 = 32.0

B2 = (Y2 + Y4)/2 = (25 + 27)/2 = 26.0

C1 = (Y1 + Y4)/2 = (30 + 27)/2 = 28.5

C2 = (Y2 + Y3)/2 = (25 + 34)/2 = 29.5

From the above we can see that the best combination of factors is A1, B2, and C1.

These are the factors which produce the lowest results.

3.2.3 Designs with Interaction
The term interaction is used to describe a condition in which the influence of one

factor upon the result is dependant on the condition of another. Two factors A and

B are said to interact when the effect of changes in level A, determines the

influence of B and vice versa.

Consider the following example. Temperature and humidity appear to have strong

interaction with respect to human comfort. An increase in temperature alone may

cause slight discomfort but the discomfort increases as humidity increases.

Assume the comfort level is dependant only upon two factors T and H, and is

measured in terms of numbers ranging from 0 to 100. If T and H are each allowed
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to assume levels of T1, T2, H1 and H2, a set of experimental data may be obtained

and is represented by Table 3-7

T1 T2 Total

H1 62 80 142

H2 75 73 148

Total 137 153 290

Table 3-7. Layout for Experiment with Two 2 level Factors with Interaction

The data plotted in Figure 3-1 shows an interaction between the two factors, since

the lines cross each other. If the lines are parallel, it means there is no interaction.

If the lines are not parallel or not crossing each other, the factors may interact,

albeit weakly.

Figure 3-1. Main effects of factors T and H show Interaction

This graphical method reveals if interaction exists and may be calculated from the

experimental data.

Assigning factors to columns

Experimental design using Taguchi OA’s is simple and straightforward when

there is no need to include interactions. It requires a little more care to design an

experiment where interactions are to be included. In Taguchi OA’s the effect of
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interactions are mixed with the main effect of a factor assigned to some other

column. For example, in the L4 shown in Table 3-8 with factors A and B assigned

to columns 1 and 2, interaction effects of A x B will be contained in column 3. If

the interactions of A x B are of no interest, a third factor C can be assigned to

column 3. The effect of interaction A x B will then be mixed with the main effect

of factor C.

Experiments A B

A x B

C

1 1 1 1

2 1 2 2

3 2 1 2

4 2 2 1

Table 3-8. Orthogonal Array L4 with Two 2 level Factors

The following Standard Orthogonal Arrays are commonly used to design

experiments:

2-Level Arrays: L4, L8, L12, L16, L32

3-Level Arrays: L9, L18, L27

4-Level Arrays: L16, L32

Some standard arrays also accommodate factors with mixed levels. In some

situations, a standard OA is modified to suit a particular experiment requiring

factors of mixed levels which are well explained in many texts (Ross 1988).

One of the limitations of conventional Taguchi Methods for Neural Network

problems is that published Orthogonal Arrays are of fixed and often inconvenient

size for the network. Very large OAs are not often published and these may be

needed for larger networks. One way around these problems is to generate tables

custom-made for the particular network design. The tables used in conventional

Taguchi Methods are actually only a subset of those which it is possible to use.

Taguchi techniques belong to a family of similar methods called “n fractional

methods”. Like the tables Taguchi chose, these are also suitable for optimisation
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problems and may be applied to Neural Networks in the same way. It is therefore

possible to use these alternative techniques to generate tables of different sizes and

structures. Details of suitable methods for generating tables from first principles

may be found in, for example, (Owen 2004) and (Dey 1985) and a library of over

200 Orthogonal Arrays in (Sloane 2004).

3.2.4 Triangular table of Interaction & Linear Graphs
Each OA has a particular set of linear graphs and a triangular table associated with

it. The Triangular Table of Interaction presents information about which columns

interact. A triangular table therefore contains information about the interaction of

the various columns of an OA. The table 3-9 should be interpreted in the

following way. The number in the parenthesis at the bottom of each column

identifies the column. To find in which column the interaction between columns 4

and 6 will appear, move horizontally across (4) and vertically from (6), the

intersection is “2” in the tables. Thus the interaction effects between columns 4

and 6 will appear at column 2. In similar manner, other interacting columns can be

identified.

Column: 1 2 3 4 5 6 7

1 3

(2)

2

1

(3)

5

6

7

(4)

4

7

6

1

(5)

7

4

5

2

3

(6)

6

5

4

3

2

1

(7)

Table 3-9. Interaction between two columns in an L8 OA

This triangular table facilitates laying out experiments with interactions. The table

greatly reduces the time and increases the accuracy of assigning proper columns

for interaction effects.
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To further enhance the efficiency of the experimental layout, Taguchi created line

diagrams based on the triangular tables known as Linear Graphs. These diagrams

represent standard experimental designs.

Figure 3-2. Linear graph for L4

Linear graphs are made up of numbers, dots and lines as shown in Figure 3-2,

where a dot and its assigned number identifies a factor, a connecting line between

two dots indicates interaction and the number assigned to the line indicates the

column number in which interaction effects will be compounded. Factors 1 and 2

are assigned to columns 1 and 2 respectively and column 3 is assigned for

interaction between factors 1 and 2.

In designing experiments with interactions, the triangular tables are essential; the

linear graphs are complementary to the tables.

1
3 2
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Chapter 4

Artificial Neural Network Training using Taguchi
Methods

4.1 Introduction to Chapter

This chapter discusses the basic methodology developed to train the Artificial

Neural Networks using Taguchi Methods. The method is first tried on a simple

neuron, and then tested on multi-layer networks. The results obtained are

discussed below.

4.2 Training a Simple Neuron

Initial experiments are performed with a simple, single perceptron, type neuron.

Consider the four-input neuron as shown in Figure 4-1. The inputs are i0, i1, i2 and

i3 and w0, w1, w2 and w3 are the corresponding weights (Wasserman 1989).

Figure 4-1. A simple neuron with inputs and weights

The sum is given by:

33221100 wiwiwiwiSum 

and the output:

Output = Sume1

1

i3

w0

w1

w2

w3

i0

i1

i2

Output
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An L9 orthogonal array may be used to conduct the experiment, which is shown in

Table 4-1.

Experiment
No.

Column 1 Column 2 Column 3 Column 4

Exp 1 1 1 1 1

Exp 2 1 2 2 2

Exp 3 1 3 3 3

Exp 4 2 1 2 3

Exp 5 2 2 3 1

Exp 6 2 3 1 2

Exp 7 3 1 3 2

Exp 8 3 2 1 3

Exp 9 3 3 2 1

Table 4-1. L9 Orthogonal Array

The L9 OA is a three level array (levels 1, 2 and 3 as shown in Table 4-1) with 9

experiments.

4.2.1 Experimental Design

The following test parameters for two patterns are used to conduct the

experiments, Figure 4-2.

Pattern 1:

i0 1 0

0 1i3 i2

i1

Output = 1
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Pattern 2:

Figure 4-2. Simple neuron with two input patterns

Weights w0, w1, w2 and w3 are assigned to column 1, column 2, column 3 and

column 4 of L9 OA respectively. The task of any training algorithm is to choose

values for these weights, so as to produce the correct outputs from the neuron for a

set of given input vectors.

To make it simple, for this example, let us say that each weight can have only one

of three fixed values, L9 being a three level array. In other words, the values have

been quantised which the weights may take. For example, in experiment number 1

all four weights are at value number one i.e., level 1. In experiment number 2 the

first weight is at level 1 and the other three weights at level 2 etc. (refer Table 4-

1). The weights corresponding to the used levels are:

Level 1 = -2

Level 2 = 0

Level 3 = 2

These levels are just used as a starting point for the weights; however, these will

be fine-tuned and the level range will be reduced to get closer to the optimum

weights.

Therefore, when the levels are mapped in L9 OA, the experimental layout would

be as shown in Table 4-2.

i0 1 1

1 0i3 i2

i1

Output = 0
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Experiment
No. Weight w0 Weight w1 Weight w2 Weight w3

Exp 1 -2 -2 -2 -2

Exp 2 -2 0 0 0

Exp 3 -2 2 2 2

Exp 4 0 -2 0 2

Exp 5 0 0 2 -2

Exp 6 0 2 -2 0

Exp 7 2 -2 2 0

Exp 8 2 0 -2 2

Exp 9 2 2 0 -2

Table 4-2. L9 Orthogonal Array experimental layout

For the first pattern, for experiment no.1, the test parameters are therefore:

Inputs i0 = 1

i1 = 0

i2 = 1

i3 = 0

Weight w0 = -2

w1 = -2

w2 = -2

w3 = -2

Output = 1

The sum and sigmoid output are calculated. Then the error is calculated as:

Error, E1 = Target (first pattern) – Output

Similarly for the second pattern, for experiment no.1, the test parameters are

therefore:

Inputs i0 = 1

i1 = 1

i2 = 0

i3 = 1

Weight w0 = -2

w1 = -2

w2 = -2

w3 = -2

Output = 0
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The sum and sigmoid output are calculated. Then the error is calculated as:

Error, E2 = Target (second pattern) – Output

The total error for experiment number 1 is denoted as TE1, and for experiment

number 2 is TE2, and so on. Therefore, the total error (negative values were

converted to positives) for experiment 1 would be:

TE1 = E1 + E2

The total error values for each experiment are given in Table 4-3.

Exp.No. Total Error
Exp 1 0.9845
Exp 2 1.0000
Exp 3 1.3808
Exp 4 1.0000
Exp 5 0.2384
Exp 6 1.7616
Exp 7 0.5180
Exp 8 1.4820
Exp 9 1.0000

Shading indicates the lowest error

Table 4-3. Total error

Once all 9 experiments are completed, then “sum error” is calculated. Sum error is

the total error for a particular weight, at a particular level. For example, the sum

error for weight w0 at level 1 can be calculated by adding up the total errors

produced by the experiments 1, 2 and 3, which is given as:

Sum error at level 1 for weight w0 = TE1 + TE2 + TE3

Similarly, Sum error at level 2 for weight w0 = TE4 + TE5 + TE6

Sum error at level 3 for weight w0 = TE7 + TE8 + TE9

Sum error may be calculated in a similar way for all the weights. Table 4-4 shows

the sum error for all the weights.
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Level 1 Level 2 Level 3
Weight w0 3.37 3.00 3.00
Weight w1 2.50 2.72 4.14
Weight w2 4.23 3.00 2.14
Weight w3 2.22 3.28 3.86

Shading is used to indicate the lowest error for each weight

Table 4-4. Sum error

It can be seen that the lowest error for weight w0 is level 3, for weight w1 is level

1, for weight w2 is level 3 and for weight w3 is level 1. It is known that a lower

error is better. Hence choose the best level (out of levels 1, 2 and 3) that produced

the lowest sum error for weight w0. The process is repeated for other weights.

Therefore, the weights for the corresponding best levels are 2, -2, 2, -2, and that

produced an error of 0.1372, which is lower than the errors shown in Table 4-3.

4.2.2 Experiment Iterations

The best weights obtained in the first iteration often need to be refined, if the

desired error was not reached at the first attempt. This can be done, for example,

using Gradient Descent Algorithms (Haykin 1999) or methods like Simulated

Annealing (Wasserman 1989). However, it is also possible to iterate the Taguchi

Method and continue training the network in this way.

The best weights are selected from the first iteration and will be used as a starting

point for subsequent iterations. To continue with the previous example, after the

first iteration, the weights for the corresponding best levels were 2, -2, 2, -2 as

shown in Figure 4-3.

2(W0)

Output

-2(W1)

2(W2)

-2(W3)

Figure 4-3
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One can reapply the array and refine the weights further by reassigning the levels

of the array to new weights. For example, in this case of weight w0 (which is 2),

we know that 2 is chosen in preference to other levels (0 and -2), so one can set

the three levels for the next iteration to try 1, 2 and 3. Similarly, in the case of

weight w1 (which is -2), we know that -2 is chosen in preference to other levels (0

and 2), so one can try –3, -2 and -1 for these in the next attempt. The new levels

for weights w2 and w3 are set in the same way. It can be seen that the range is also

reduced to get closer to the optimum weights. Figure 4-4 shows the new levels and

produces the array shown in Table 4-5.

Figure 4-4. New levels

Exp.No. Weight w0 Weight w1 Weight w2 Weight w3

Exp 1 1 (level 1) -3 (level 1) 1 (level 1) -3 (level 1)
Exp 2 1 (level 1) -2 (level 2) 2 (level 2) -2 (level 2)
Exp 3 1 (level 1) -1 (level 3) 3 (level 3) -1 (level 3)
Exp 4 2 (level 2) -3 (level 1) 2 (level 2) -1 (level 3)
Exp 5 2 (level 2) -2 (level 2) 3 (level 3) -3 (level 1)
Exp 6 2 (level 2) -1 (level 3) 1 (level 1) -2 (level 2)
Exp 7 3 (level 3) -3 (level 1) 3 (level 3) -2 (level 2)
Exp 8 3 (level 3) -2 (level 2) 1 (level 1) -1 (level 3)
Exp 9 3 (level 3) -1 (level 3) 2 (level 2) -3 (level 1)

Table 4-5. New levels for iteration 2

The experiments are conducted for iteration 2 in the same way as explained for

iteration 1. It can be clearly seen that the error has reduced over the iteration for

all the weights, which are shown in Figure 4-5.

Try 1, 2 and 3

Output

Try -3, -2 and -1

Try 1, 2 and 3

Try -3, -2 and -1
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Weight 0

0.0

1.0

2.0

3.0

4.0

Iteration 1 Iteration 2

Level 1

Level 2

Level 3

Weight 1

0.0

1.0

2.0

3.0

4.0

Iteration 1 Iteration 2

Level 1

Level 2

Level 3

Weight 2

0.0

1.0

2.0

3.0

4.0

Iteration 1 Iteration 2

Level 1

Level 2

Level 3

Weight 3

0.0

1.0

2.0

3.0

4.0

Iteration 1 Iteration 2

Level 1

Level 2

Level 3

Figure 4-5. Sum error for weights with different iterations

After iteration 2, the weights for the corresponding best levels are 1, -3, 3, -3, and

that produced an error of 0.0247, which is less than the error obtained after

iteration 1, using the best weights.
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Figure 4-6 shows how the weight w0 found its way to the optimum value in two

iterations.

Weight W0

0

1

2

3

1 2
Iteration

w
e
ig

h
t

Figure 4-6. Trend of weight w0 with different iterations

4.3 Training Single Layer Networks

In the previous section, it was shown that Taguchi methods may be applied to

train simple neurons. In order to explore the capabilities of the Taguchi Methods

of training, experiments were conducted on single layer neural networks for

pattern recognition problems.

4.3.1 Experimental Design

Consider a simple single layer network with four neurons (A, B, C and D) as

shown in Figure 4-7. Each neuron has four inputs, namely i0, i1, i2 and i3 and w0,

w1, w2 and w3 are the corresponding weights for each neuron.

Figure 4-7. Single layer network
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Each neuron has to be trained for a pattern. The following test parameters for four

patterns are used to conduct the experiments, which are shown in Figure 4-8.

Figure 4-8. Patterns

An L9 orthogonal array may be used to conduct the experiments. Weights w0, w1,

w2 and w3 are assigned to column 1, column 2, column 3 and column 4 of L9 OA

respectively. The weights corresponding to the used levels are:

Level 1 = -2

Level 2 = 0

Level 3 = 2

Table 4-6 shows the array of experiments.

Experiment
No. Weight w0 Weight w1 Weight w2 Weight w3

Exp 1 -2 -2 -2 -2

Exp 2 -2 0 0 0

Exp 3 -2 2 2 2

Exp 4 0 -2 0 2

Exp 5 0 0 2 -2

Exp 6 0 2 -2 0

Exp 7 2 -2 2 0

Exp 8 2 0 -2 2

Exp 9 2 2 0 -2

Table 4-6 Experimental layout
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As explained in previous section, all the experiments are conducted and the sum

error is calculated. Table 4-7 shows the error for individual experiments for

pattern 1, and the sum error is given in Table 4-8.

Exp. No. Error
Exp 1 0.9820
Exp 2 0.8808
Exp 3 0.5000
Exp 4 0.5000
Exp 5 0.1192
Exp 6 0.8808
Exp 7 0.0180
Exp 8 0.5000
Exp 9 0.1192

Table 4-7 Experimental layout

Level 1 Level 2 Level 3
Weight w0 2.36 1.50 0.64
Weight w1 1.50 1.50 1.50
Weight w2 2.36 1.50 0.64
Weight w3 1.22 1.78 1.50

Table 4-8 Sum error

Therefore, the weights for the corresponding best levels are 2, 0, 2, -2, and that

produced an error of 0.0180, which is exactly the same as the error produced by

experiment number 7 (which produced the lowest error among other OA table of

experiments).

In the same way all the patterns are trained and the errors are similar to those

demonstrated for pattern 1. Figure 4-9 compares the lowest error obtained from

the OA table of experiments with the error produced by the best weights. Best

weights must produce the lowest error or at least the same error produced by the

OA table of experiments. It can be seen that best weights produced the error which

is the same as the error produced by the OA table of experiments. This is true for

all the patterns trained. These results show that all patterns were trained

successfully.
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Figure 4-9. Comparison of errors

4.4 Training Multi-Layer Networks

In the previous sections of this chapter, it was shown that Taguchi methods may

be applied to train simple neurons or single layer networks. In order to explore the

capabilities and limitations of the Taguchi Methods of training further,

experiments are conducted on multi-layer neural networks for pattern recognition

problems.

4.4.1 Experimental Design

Figure 4-10 shows a simple multi-layer network used for experiments. It has two

inputs i1, i2 and six weights w1, w2, w3, w4, w5 and w6. Taguchi orthogonal array L8

may be used to conduct the experiment. The L8 OA is a two level array (levels 1,

and 2) with 8 experiments.

Figure 4-10. Multi-layer network

Weights w1, w2, w3, w4, w5 and w6 are assigned to column 1, column 2, column 3,

column 4, column 5 and column 6 of the L8 OA respectively.

i1

i2

AW1

C

B

W2

W4

W6

W5

W3

Inputs

Output = 1

-1

1



40

The weights corresponding to the levels are:

Level 1 = -2

Level 2 = 2

Therefore, the experimental layout, which is used to conduct experiments with

actual weights, is shown in Table 4-9.

Exp.No. Weight w0 Weight w1 Weight w2 Weight w3 Weight w4 Weight w5

Exp 1 -2 -2 -2 -2 -2 -2
Exp 2 -2 -2 -2 2 2 2
Exp 3 -2 2 2 -2 -2 2
Exp 4 -2 2 2 2 2 -2
Exp 5 2 -2 2 -2 2 -2
Exp 6 2 -2 2 2 -2 2
Exp 7 2 2 -2 -2 2 2
Exp 8 2 2 -2 2 -2 -2

Table 4-9. L8 Orthogonal Array experimental layout

As explained in section 4.2.1, all 8 experiments are conducted and the error is

calculated which is shown in Table 4-10. Then the sum error is calculated, which

is shown in Table 4-11.

Exp. No. Error
Exp 1 0.8808
Exp 2 0.0491
Exp 3 0.8730
Exp 4 0.2761
Exp 5 0.5000
Exp 6 0.2761
Exp 7 0.1192
Exp 8 0.9509

Shading is used to indicate the lowest error

Table 4-10. Individual error for experiments

Weight
w0

Weight
w1

Weight
w2

Weight
w3

Weight
w4

Weight
w5

Level 1 2.0790 1.7059 2.0000 2.3730 2.9808 2.6078

Level 2 1.8462 2.2192 1.9252 1.5521 0.9444 1.3174

Shading is used to indicate the lowest error for each weight

Table 4-11. Sum error
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As explained earlier, we must choose the best level (out of levels 1 and 2) that

produces the lowest sum error for the weights.

Therefore, the weights for the corresponding best levels are 2, -2, 2, 2, 2, 2, which

produces an error of 0.2619. It can be noticed that the error is increased when

compared to the lowest error shown in Table 4-10, and is represented in graphical

form in Figure 4-11.
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Figure 4-11. Comparison of errors

This is due to training weights in different layers at the same time. When the

network is trained as a whole, the weights in different layers interact; for example,

the weights in the first layer interact strongly with those in second layer (that is, if

one changes the first layer weights, those in the second layer must also change, if

the error is to stay the same or to reduce further). The basic Taguchi Method can

only handle a small amount of interaction between factors as it primarily focuses

on the main effects of the factors. This, therefore, causes the training to fail.

4.5 Summary
It was shown that Taguchi Methods may be applied to train a single neuron or a

single layer network. However, when the method was applied to the multi-layer

networks for pattern recognition problems, the network performs poorly due to the

interaction between the weights in different layers.

To overcome this, alternate ideas have been developed to train the multi-layer

networks using Taguchi Methods, which are discussed in the next chapter.
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Chapter 5

New Training Methods using Taguchi Methods for
ANN Training

5.1 Introduction to Chapter
In the previous chapter, it was shown that Taguchi Methods may be used to train

single layer networks. It was also highlighted that this method of training does not

work well in multi-layer networks due to interaction between the layers. Due to

the potential capabilities of Taguchi Methods for ANN training, it was decided to

explore this further.

Based on this, a number of ideas were developed including:

 Layer-By-Layer training method

 Neuron-By-Neuron training method

 Using Polynomials

This chapter discusses the new techniques developed to train multi-layer neural

networks using Taguchi Methods. Each of the above methods is discussed in the

following subsections.

5.2 Layer-By-Layer Training Method
To overcome the problem of interaction between the weights in different layers,

the following method of training was tried. Consider the following network with

two layers (1 and 2) as shown in Figure 5.1.

The idea is to apply Taguchi Methods initially to train the weights in layer 1 only

(layer 2 weights are set to a known value of ‘1’). Once the weights in layer 1 have

been fixed, Taguchi Methods is then applied to layer 2. This way, both layers of

weights can be trained by Taguchi Methods, one at a time.
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Figure 5-1. Training multi layer networks

The method illustrated above was employed to train the network shown in Figure

5-1. The weights for layer 1 (from inputs to neurons A and B) are denoted as w1,

w2, w3, w4. w5 and w6 and the weights for layer 2 (from neuron A and B to neuron

C) are w7 and w8.

The following patterns were used to train the network:

Pattern 1 Pattern 2

Output = 1 Output = 1

To train this network an L8 OA (two levels and 8 trials) may be used; this is

shown in Table 5-1.

Expt. No. Col.1 Col.2 Col.3 Col.4 Col.5 Col.6 Col.7

1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2

Table 5-1. L8 Orthogonal Array
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Weights w1, w2, w3, w4. w5 and w6 are assigned to column 1, column 2, column 3,

column 4, column 5 and column 6 of L8 OA respectively. The weights

corresponding to the used levels were:

Level 1 = -1

Level 2 = 1

As the weights in layer 1 are being trained, weights in layer 2 (w7 and w8) are set

to a known value of ‘1’ to eliminate the effect of these weights on the other layer.

Therefore, the experimental layout for weights in layer 1, which is used to conduct

experiments with actual weights, is shown in Table 5-2.

W1 W2 W3 W4 W5 W6

Exp 1 -1 -1 -1 -1 -1 -1

Exp 2 -1 -1 -1 1 1 1

Exp 3 -1 1 1 -1 -1 1

Exp 4 -1 1 1 1 1 -1

Exp 5 1 -1 1 -1 1 -1

Exp 6 1 -1 1 1 -1 1

Exp 7 1 1 -1 -1 1 1

Exp 8 1 1 -1 1 -1 -1

Table 5-2. L8 Orthogonal Array experimental layout

Network error calculations were done as explained before in the previous chapter

(section 4.2.1). Table 5-3 shows the sum error matrix. Shade indicates the lowest

error.

W1 W2 W3 W4 W5 W6
Level 1 2.0569 2.3257 2.3692 2.0569 2.3545 2.3692
Level 2 2.3975 2.1287 2.0852 2.3975 2.0998 2.0852

Table 5-3. Sum error for layer 1 weights

Based on the lowest errors, the best levels are selected for layer 1 weights, which

are, for this example:

-1, 1, 1, -1, 1, 1
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The layer 1 weights are fixed, and the weights for layer 2 need to be trained and

fixed now. In order to do this, the levels for weights w7 and w8 are to be chosen. If

one has to consider the levels as 0 and 1, then all possible four combinations

would be:

0 0, 0 1, 1 0, 1 1

which is shown as:

W7 W8
Exp 1 0 0
Exp 2 0 1
Exp 3 1 0
Exp 4 1 1

Then the experiment layout would look as shown in Table 5-4. It may be noted

that layer 1 weights w1, w2, w3, w4. w5 and w6 are already selected.

W1 W2 W3 W4 W5 W6 W7 W8
Exp 1 -1 1 1 -1 1 1 0 0
Exp 2 -1 1 1 -1 1 1 0 1
Exp 3 -1 1 1 -1 1 1 1 0
Exp 4 -1 1 1 -1 1 1 1 1

Table 5-4. Experiment layout to fix layer 2 weights

Table 5-5 shows the sum error matrix to observe the lowest errors for layer 2

weights w7 and w8. Shading indicates the lowest error. Based on the lowest error,

the weights for the corresponding best levels are selected.

Error
Exp 1 1.0000
Exp 2 0.6406
Exp 3 0.6406
Exp 4 0.3753

Table 5-5. Sum error

Therefore the best weights are -1, 1, 1, -1, 1, 1, 1, 1 (which produced an error of

0.3753).
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If one conducts the full factorial experiments to find out the lowest error possible,

256 tests need to be performed (8 factors each at two levels). To compare the

lowest error achieved through the layer-by-layer training method, all the 256 tests

are performed and the errors are calculated. The lowest error obtained is 0.3753

which is exactly the same, when compared with the layer-by-layer training

method.

Limitations

Although layer-by-layer method of training successfully recognised the patterns

for the above example, when it was tested on some other patterns (an example is

given below), it was unable to produce the lowest error possible.

Pattern 1 Pattern 2

Output = 1 Output = 1

For these patterns, layer-by-layer training method produced an error of 0.5552, but

the full factorial experiment produced a lowest error of 0.538. There are few

experiments which produced this lowest error, for example, experiment no. 242

(Full results are given in Appendix A3).

When all the weights in layer 1 are being trained, the weights which are connected

to different neurons interact; for example, the weights which are connected to

neuron A interact with those which are connected to neuron B (that is, if one

changes the neuron A weights, those in the neuron B must also change, if the error

is to stay the same or to reduce further). The basic Taguchi Method can only

handle a small amount of interaction between factors as it primarily focuses on the

main effects of the factors. This, therefore, causes the training to fail. This also

depends on the complexity of the patterns being trained.



47

The other aspect is, although it is possible to use this method for large networks,

selecting the suitable OA becomes difficult.

5.3 Neuron-By-Neuron Training Method
As part of the effort to develop a training method which will use Taguchi Methods

to train multi-layer ANNs, another idea was developed. Consider the network

given in Figure 5-2.

Figure 5.2. Training multi layer networks

The idea is, first train and fix the weights w1, w2 and w3 for neuron A (weights w4,

w5 and w6 for neuron B are set to ‘0’, and the layer 2 weights w7 and w8 are set to

a known value of ‘1’). Then in the same way, fix the weights w4, w5 and w6 for

neuron B, and finally fix the weights w7 and w8 for layer 2. This method of

training a set of weights which are connected to a particular neuron for a particular

layer, avoids the interlayer-weights interaction.

The method illustrated above was employed to train the network shown in Figure

5-2. To train this network L4 OA (two levels and 4 runs) may be used which is

shown in Table 5-6.
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The following patterns were used to train the network:

Pattern 1: Pattern 2:

Output = 1 Output = 1

Experiment
Number

Column 1 Column 2 Column 3

1 1 1 1
2 1 2 2
3 2 1 2
4 2 2 1

Table 5-6. L4 Orthogonal Array

Weights w1, w2 and w3 are assigned to column 1, column 2 and column 3 of L4

OA respectively.

The weights corresponding to the used levels are:

Level 1 = -1

Level 2 = 1

When the weights (w1, w2 and w3) for neuron A are trained, weights (w4. w5 and

w6) for neuron B are set to ‘0’, and the layer 2 weights (w7 and w8) are set to a

known value of ‘1’ to eliminate the effect of these weights on the other layer.

Therefore, the experimental layout for weights w1, w2 and w3 for neuron A is

shown in Table 5-7.

W1 W2 W3
-1 -1 -1
-1 1 1
1 -1 1
1 1 -1

Table 5-7. L4 Orthogonal Array experimental layout
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Table 5-8 shows the sum error matrix. Shading indicates the lowest error.

W1 W2 W3
Level 1 1.2378 1.0207 1.1568
Level 2 0.9396 1.1568 1.0207

Table 5-8. Sum error for neuron A weights

Based on the lowest errors, the best levels are selected for neuron A weights,

which are, for this example:

1, -1, 1

In the same way, using the weights for the corresponding best levels for neuron A,

weights for neuron B is fixed (keeping the layer 2 weights as ‘1’). Table 5-9

shows the sum error matrix. Shading indicates the lowest error.

W4 W5 W6
Level 1 0.9396 0.7630 0.8716
Level 2 0.6949 0.8716 0.7630

Table 5-9. Sum error for neuron B weights

Based on the lowest errors, the best levels are selected for neuron B weights,

which are, in this case:

1, -1, 1

Now, the weights for neuron A and neuron B are fixed, we need to find the best

levels for weights w7 and w8 in layer 2. As explained before, if we consider the

levels as 0 and 1, then all the possible combinations are:

0 0, 0 1, 1 0, 1 1

which may be shown as:

W7 W8
Exp 1 0 0
Exp 2 0 1
Exp 3 1 0
Exp 4 1 1
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The experimental layout would then look as shown in Table 5-10. It may be noted

that layer 1 weights w1, w2, w3, w4. w5 and w6 are the best levels, already selected.

W1 W2 W3 W4 W5 W6 W7 W8
Exp 1 1 -1 -1 -1 1 1 0 0
Exp 2 1 -1 -1 -1 1 1 0 1
Exp 3 1 -1 -1 -1 1 1 1 0
Exp 4 1 -1 -1 -1 1 1 1 1

Table 5-10. Experiment layout to fix layer 2 weights

Table 5-11 shows the sum error matrix used to observe the lowest errors for layer

2 weights w7 and w8. Shading indicates the lowest error. Based on the lowest

error, the weights for the corresponding best levels are selected.

Error
Exp 1 1.0000
Exp 2 0.5860
Exp 3 0.5860
Exp 4 0.293

Table 5-11. Sum error

Therefore, the best weights are 1, -1, 1, 1, -1, 1, 1, 1 (which produced an error of

0.293).

Comparing the full factorial experiment results shown in Appendix A4,

experiment number 238 produced the lowest error of 0.293 which is exactly the

same as that obtained using the Neuron-By-Neuron training method.

Alternatively, this method can also be used for training in a slightly different way.

By including the output weight of the neuron being trained in the array (OA table),

it is possible to train, at the same time, all the weights which are connected to a

particular neuron. This method also successfully recognises the patterns and finds

the lowest error possible.
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Advantages

The Neuron-By-Neuron training method has been tested with several patterns and

it was able to successfully recognise all of them. It is a very consistent and reliable

method of training.

For example, the same pattern, which is given below (which layer-by-layer

training method failed to produce the lowest error) was tested with this method. It

successfully produced the lowest error and is comparable with the full factorial

results given in Appendix A3.

Pattern 1 Pattern 2

Output = 1 Output = 1

Limitations

This method of training is more suitable for relatively small networks. However, it

is possible to use this method for large networks by selecting or generating the

suitable OAs.

5.4 Using Polynomials
The research team at The Robert Gordon University has produced a new neural

model based on the idea that a neural unit should be flexible enough to fulfil any

mathematical function required of it (McMinn 2002).

The most common artificial neural models in current use are those developed from

the original McCulloch-Pitts model (Wasserman 1989). Ignoring the squashing or

activation function, which normalises the output, the activity of this neuron is

given by:





n

i
iiwxA

1

Where n is the number of inputs, xi is an input and wi is its corresponding weight.
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For a two input neuron, with input x associated with weight b and input y

associated with c, as illustrated in Figure 5-3, the activity could be written as:

cybxA 

Figure 5-3. A simple neuron

This corresponds to a linear separator (Khanna 1990).

One can model any continuous function using an infinite Power Series (for

example, a Taylor series):

12 ..............)(  n
n xcxbxxf 

This is the basic series, which is given in most references. However, it is

extendable to any number of variables (and hence any number of dimensions). For

example, in two dimensions (or, for a two input neuron), the series is:

n
n

n
n ycxbycxbycxbycxbA  ..............)()()( 3

3
3

3
2

2
2

211

Taguchi Methods may be used to train such networks because one can set the first

order weights initially, then second order weights (squared terms), and then the

third order weights (cubed terms) etc. The network error reduces with each

increasing input power (as the mathematical approximation becomes more

accurate).

A

x
b

c

y
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The method illustrated above was employed to train the neuron shown in Figure 5-

4. To train this neuron, an L4 OA (two levels and 4 trials) may be used.

Figure 5-4. A simple neuron with three inputs

The following test parameters are used to conduct the experiments:

Output = 1

Output = 1

Weights w1, w2 and w3 are assigned to column 1, column 2 and column 3 of L4

OA respectively.

The weights corresponding to the levels used are:

Level 1 = -1

Level 2 = 1

Therefore, the experimental layout, which is used to conduct experiments, is

shown in Table 5-12.

A

i1
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i3
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Output
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W1 W2 W3
Exp 1 -1 -1 -1
Exp 2 -1 1 1
Exp 3 1 -1 1
Exp 4 1 1 -1

Table 5-12. L4 Orthogonal Array experimental layout

All the experiments are conducted and the first order output is calculated. Based

on the lowest error, the weights for the corresponding best levels are chosen, and

then the optimum output is calculated.

For the second order (squared terms), the inputs are squared and then the output is

calculated using the sum previously obtained from the first order trial (the second

order weights are shown in brackets in figure 5-4). For example, the second order

output may be written as,

6

2

35

2

24

2

1332211 wiwiwiwiwiwiSum 

As explained previously, based on the lowest error, the weights for the

corresponding best levels are chosen, and then the optimum output is calculated

for the second order. The same approach can be used for the third order (cubed

terms).

Figure 5-5 shows how the error reduces when the order increases as the

approximation becomes more accurate.
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Figure 5-5. Error for the network



55

Using factorials in the series may improve the accuracy of the solution by scaling

the higher order terms. The factorial may be multiplied or divided depending on

the weights.

For example, if 0<w<1 (or) 0>w>-1 then multiply by the factorial for that order.

For the second order, the sum may be written as,

)!2!2!2()( 6

2

35

2

24

2

1332211  wiwiwiwiwiwiSum

and if w>1 (or) w<-1 then divide by the factorial for that order. This may be

applied in a similar way to third order and so on. Figure 5-6 shows reduction on

error with factorials.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

1 2 3

Polynomial order

E
rr

o
r without factorial

with factorial

Figure 5-6. Using factorials in power series

It is also possible to use Polynomials with the Neuron-By-Neuron method of

training demonstrated in section 5.3, so that each polynomial neuron can be

trained, one at a time. For example, consider the network shown in Figure 5-7.

Figure 5-7. Multi-layer network
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Weights w1, w2, w3 and w7, which are connected to the neuron A, can be trained

at the same time but training as a polynomial neuron. It is possible to iterate this

method to reduce the error to the desired level.

Advantages

Training using Polynomial neurons successfully recognises and differentiates the

patterns being trained. A neuron can function in a single layer and the

approximation becomes more accurate with the increasing order.

Limitations

This method of training is suitable for a network size which is relatively small.

Although it is possible to use this method for large networks, selecting the suitable

OA may be difficult under some circumstances.
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Chapter 6

New Training Method using Custom-Made OAs for
ANN Training

6.1 Introduction to Chapter
In the previous chapters, it has been demonstrated that Taguchi Methods may be

applied to train a single neuron, single layer networks and multi-layer networks

successfully. These networks are usually small, with a fixed network structure. It

has been highlighted that selecting a suitable OA table for a given problem may be

difficult under some circumstances.

Therefore, another new method of training was also developed that uses custom-

built OA tables. This chapter discusses a new method called ‘Coding the state of

each neuron’ training.

6.2 Coding the State of Each Neuron
This method of training is based on the idea that each level in the OA table may

correspond to the state of an individual neuron. Consider the multi layer network

shown in Figure 6-1.

Figure 6-1. Multi layer network
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As can be seen from the network structure, considering the number of weights

there is no standard published OA available to fit it. As explained previously in

Chapter 3, published Orthogonal Arrays are of a fixed and often inconvenient size.

Also, very large OAs are not often published and these may be needed for larger

networks.

Hence, we need to use a custom-built table to train this multi-layer network. The

method used to generate the matrices, for this particular problem, was based on

algorithms by (Owen 2004).

The coding of a neuron is explained by referring to Figure 6-2, levels are shown in

Table 6-1, and experiments are shown in Table 6-2. Each neuron may take 8

different levels, from 0 to 7 (based on the experiments). For example, for neuron

N1, if the level is ‘0’ for the first experiment (refer Table 6-2), then the weights

corresponding to the level are –1, -1, -1 which is illustrated in Figure 6-2.

Similarly for neuron N2 (which is level 5 for the first experiment), then the

weights are 1, -1, 1 and so on, which are highlighted in Table 6-1.

Figure 6-2. Neuron N1 with level 0

LEVELS

Weight 0 1 2 3 4 5 6 7

W1 -1 1 -1 1 -1 1 -1 1

W2 -1 -1 1 1 -1 -1 1 1

W3 -1 -1 -1 -1 1 1 1 1

Table 6-1. Levels for experiments

Output

W1

W3

W2

i2

i1

N1
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9 neurons are assigned to 9 columns of the OA table as shown in Table 6-2.

Total number of experiments is 64.

Table 6-2. OA table for experiments

NEURONS

N1 N2 N3 N4 N5 N6 N7 N8 N9

Exp 1 0 5 6 0 1 2 2 5 1

Exp 2 0 6 4 4 2 7 3 0 7

Exp 3 0 4 2 3 3 4 6 3 2

Exp 4 0 7 3 6 4 0 1 7 3

Exp 5 0 3 7 1 0 5 0 6 4

Exp 6 0 0 1 5 6 1 7 4 0

Exp 7 0 2 0 7 7 6 4 2 5

Exp 8 0 1 5 2 5 3 5 1 6

Exp 9 7 5 4 3 4 5 7 2 6

Exp 10 7 6 6 6 3 1 0 1 5

Exp 11 7 4 3 0 2 6 5 6 0

Exp 12 7 7 2 4 1 3 4 4 4

Exp 13 7 3 1 7 5 2 3 3 3

Exp 14 7 0 7 2 7 7 2 7 2

Exp 15 7 2 5 1 6 4 1 5 7

Exp 16 7 1 0 5 0 0 6 0 1

Exp 17 5 5 2 1 7 1 5 0 3

Exp 18 5 6 3 5 5 5 4 5 2

Exp 19 5 4 6 7 0 3 7 7 7

Exp 20 5 7 4 2 6 6 0 3 1

Exp 21 5 3 0 0 3 7 1 4 6

Exp 22 5 0 5 4 4 2 6 6 5

Exp 23 5 2 7 3 1 0 3 1 0

Exp 24 5 1 1 6 2 4 2 2 4

Exp 25 2 5 3 7 6 7 6 1 4

Exp 26 2 6 2 2 0 2 1 2 0

Exp 27 2 4 4 1 5 0 2 4 5

Exp 28 2 7 6 5 7 4 3 6 6

Exp 29 2 3 5 3 2 1 4 7 1

Exp 30 2 0 0 6 1 5 5 3 7

Exp 31 2 2 1 0 4 3 0 0 2

Exp 32 2 1 7 4 3 6 7 5 3

Exp 33 3 5 7 5 2 3 1 3 5

Exp 34 3 6 1 1 1 6 6 7 6

Exp 35 3 4 0 2 4 1 3 5 4

Exp 36 3 7 5 7 3 5 2 0 0

Exp 37 3 3 6 4 6 0 5 2 2

Exp 38 3 0 4 0 0 4 4 1 3

Exp 39 3 2 2 6 5 7 7 6 1

Exp 40 3 1 3 3 7 2 0 4 7

Exp 41 4 5 1 2 3 0 4 6 7

Exp 42 4 6 7 7 4 4 5 4 1

Exp 43 4 4 5 5 1 7 0 2 3

Exp 44 4 7 0 1 2 2 7 1 2
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Exp 45 4 3 4 6 7 3 6 5 0

Exp 46 4 0 6 3 5 6 1 0 4

Exp 47 4 2 3 4 0 1 2 3 6

Exp 48 4 1 2 0 6 5 3 7 5

Exp 49 6 5 0 4 5 4 0 7 0

Exp 50 6 6 5 0 7 0 7 3 4

Exp 51 6 4 7 6 6 2 4 0 6

Exp 52 6 7 1 3 0 7 5 5 5

Exp 53 6 3 2 5 4 6 2 1 7

Exp 54 6 0 3 1 3 3 3 2 1

Exp 55 6 2 6 2 2 5 6 4 3

Exp 56 6 1 4 7 1 1 1 6 2

Exp 57 1 5 5 6 0 6 3 4 2

Exp 58 1 6 0 3 6 3 2 6 3

Exp 59 1 4 1 4 7 5 1 1 1

Exp 60 1 7 7 0 5 1 6 2 7

Exp 61 1 3 3 2 1 4 7 0 5

Exp 62 1 0 2 7 2 0 0 5 6

Exp 63 1 2 4 5 3 2 5 7 4

Exp 64 1 1 6 1 4 7 4 3 0

Once the levels and weights are chosen for the neurons, then the network was

trained. The following test parameters were used:

Output =1

Once the final output is calculated for experiment 1, then the error is calculated

using the target output. Similarly, the error is calculated for all the experiments

which are shown in Table 6-3. It can be observed that experiment number 18

which produced a lowest error of 0.04. Then sum error was calculated for each

level which is shown in Table 6-4. These calculations are explained previously in

Chapter 4.
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Table 6-3. Experiments showing errors

NEURONS

N1 N2 N3 N4 N5 N6 N7 N8 N9
Error

Exp 1 0 5 6 0 1 2 2 5 1 0.72

Exp 2 0 6 4 4 2 7 3 0 7 0.34

Exp 3 0 4 2 3 3 4 6 3 2 0.88

Exp 4 0 7 3 6 4 0 1 7 3 0.67

Exp 5 0 3 7 1 0 5 0 6 4 0.58

Exp 6 0 0 1 5 6 1 7 4 0 0.59

Exp 7 0 2 0 7 7 6 4 2 5 0.19

Exp 8 0 1 5 2 5 3 5 1 6 0.57

Exp 9 7 5 4 3 4 5 7 2 6 0.06

Exp 10 7 6 6 6 3 1 0 1 5 0.53

Exp 11 7 4 3 0 2 6 5 6 0 0.34

Exp 12 7 7 2 4 1 3 4 4 4 0.28

Exp 13 7 3 1 7 5 2 3 3 3 0.84

Exp 14 7 0 7 2 7 7 2 7 2 0.10

Exp 15 7 2 5 1 6 4 1 5 7 0.16

Exp 16 7 1 0 5 0 0 6 0 1 0.73

Exp 17 5 5 2 1 7 1 5 0 3 0.48

Exp 18 5 6 3 5 5 5 4 5 2 0.04

Exp 19 5 4 6 7 0 3 7 7 7 0.05

Exp 20 5 7 4 2 6 6 0 3 1 0.43

Exp 21 5 3 0 0 3 7 1 4 6 0.67

Exp 22 5 0 5 4 4 2 6 6 5 0.06

Exp 23 5 2 7 3 1 0 3 1 0 0.91

Exp 24 5 1 1 6 2 4 2 2 4 0.66

Exp 25 2 5 3 7 6 7 6 1 4 0.21

Exp 26 2 6 2 2 0 2 1 2 0 0.93

Exp 27 2 4 4 1 5 0 2 4 5 0.32

Exp 28 2 7 6 5 7 4 3 6 6 0.09

Exp 29 2 3 5 3 2 1 4 7 1 0.84

Exp 30 2 0 0 6 1 5 5 3 7 0.49

Exp 31 2 2 1 0 4 3 0 0 2 0.95

Exp 32 2 1 7 4 3 6 7 5 3 0.42

Exp 33 3 5 7 5 2 3 1 3 5 0.56

Exp 34 3 6 1 1 1 6 6 7 6 0.71

Exp 35 3 4 0 2 4 1 3 5 4 0.73

Exp 36 3 7 5 7 3 5 2 0 0 0.39

Exp 37 3 3 6 4 6 0 5 2 2 0.66

Exp 38 3 0 4 0 0 4 4 1 3 0.89

Exp 39 3 2 2 6 5 7 7 6 1 0.34

Exp 40 3 1 3 3 7 2 0 4 7 0.84

Exp 41 4 5 1 2 3 0 4 6 7 0.42

Exp 42 4 6 7 7 4 4 5 4 1 0.05

Exp 43 4 4 5 5 1 7 0 2 3 0.33

Exp 44 4 7 0 1 2 2 7 1 2 0.72

Exp 45 4 3 4 6 7 3 6 5 0 0.28

Exp 46 4 0 6 3 5 6 1 0 4 0.52

Exp 47 4 2 3 4 0 1 2 3 6 0.88

Exp 48 4 1 2 0 6 5 3 7 5 0.33

Exp 49 6 5 0 4 5 4 0 7 0 0.11
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Exp 50 6 6 5 0 7 0 7 3 4 0.16

Exp 51 6 4 7 6 6 2 4 0 6 0.13

Exp 52 6 7 1 3 0 7 5 5 5 0.11

Exp 53 6 3 2 5 4 6 2 1 7 0.42

Exp 54 6 0 3 1 3 3 3 2 1 0.99

Exp 55 6 2 6 2 2 5 6 4 3 0.42

Exp 56 6 1 4 7 1 1 1 6 2 0.82

Exp 57 1 5 5 6 0 6 3 4 2 0.42

Exp 58 1 6 0 3 6 3 2 6 3 0.92

Exp 59 1 4 1 4 7 5 1 1 1 0.81

Exp 60 1 7 7 0 5 1 6 2 7 0.27

Exp 61 1 3 3 2 1 4 7 0 5 0.84

Exp 62 1 0 2 7 2 0 0 5 6 0.64

Exp 63 1 2 4 5 3 2 5 7 4 0.32

Exp 64 1 1 6 1 4 7 4 3 0 0.81

Level N1 N2 N3 N4 N5 N6 N7 N8 N9

0 4.552 4.276 4.565 4.317 4.595 4.519 4.415 4.377 4.359

1 5.044 5.193 5.098 4.778 5.091 5.143 5.142 5.071 4.907

2 4.249 4.167 4.296 4.442 4.512 4.563 4.416 4.079 4.591

3 5.122 5.136 4.824 5.092 4.620 4.599 4.653 5.057 4.964

4 3.534 3.593 3.454 3.566 3.765 3.683 3.602 3.586 3.471

5 3.292 2.993 2.928 3.088 3.013 3.122 3.020 3.108 2.958

6 3.159 3.679 3.796 3.516 3.429 3.447 3.564 3.570 3.764

7 3.036 2.952 3.028 3.189 2.963 2.912 3.176 3.139 2.974

Shading indicates lowest error

Table 6-4. Sum error

Based on the lowest sum error, the weights for the corresponding best levels are

selected. Therefore, the best levels are 7, 7, 5, 5, 7, 7, 5, 5, 5 which produced the

maximum output with zero error.

The second iteration was done merely to demonstrate that the error value

consistently reduced with the number of iterations. As explained in Chapter 4 in

section 4.2.2, the levels are modified using the best levels obtained from the first

iteration.

Table 6-5 shows the errors after the second iteration. It can be seen that for the

same experiment number 18, the error reduced to zero producing the maximum

output. Interestingly there are other experiments (experiment nos. 9, 14, 15 etc.),
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which also produced zero error. It can also be observed that for any experiment in

iteration 2, the error is less when compared to iteration 1 for the same experiment.

Table 6-5. Experiments showing errors after iteration 2

NEURONS Error

N1 N2 N3 N4 N5 N6 N7 N8 N9 Iteration 1 Iteration 2

Exp 1 0 5 6 0 1 2 2 5 1 0.72 0.16

Exp 2 0 6 4 4 2 7 3 0 7 0.34 0.05

Exp 3 0 4 2 3 3 4 6 3 2 0.88 0.39

Exp 4 0 7 3 6 4 0 1 7 3 0.67 0.11

Exp 5 0 3 7 1 0 5 0 6 4 0.58 0.06

Exp 6 0 0 1 5 6 1 7 4 0 0.59 0.06

Exp 7 0 2 0 7 7 6 4 2 5 0.19 0.02

Exp 8 0 1 5 2 5 3 5 1 6 0.57 0.06

Exp 9 7 5 4 3 4 5 7 2 6 0.06 0.00

Exp 10 7 6 6 6 3 1 0 1 5 0.53 0.05

Exp 11 7 4 3 0 2 6 5 6 0 0.34 0.04

Exp 12 7 7 2 4 1 3 4 4 4 0.28 0.02

Exp 13 7 3 1 7 5 2 3 3 3 0.84 0.08

Exp 14 7 0 7 2 7 7 2 7 2 0.10 0.00

Exp 15 7 2 5 1 6 4 1 5 7 0.16 0.00

Exp 16 7 1 0 5 0 0 6 0 1 0.73 0.16

Exp 17 5 5 2 1 7 1 5 0 3 0.48 0.03

Exp 18 5 6 3 5 5 5 4 5 2 0.04 0.00

Exp 19 5 4 6 7 0 3 7 7 7 0.05 0.00

Exp 20 5 7 4 2 6 6 0 3 1 0.43 0.03

Exp 21 5 3 0 0 3 7 1 4 6 0.67 0.03

Exp 22 5 0 5 4 4 2 6 6 5 0.06 0.01

Exp 23 5 2 7 3 1 0 3 1 0 0.91 0.21

Exp 24 5 1 1 6 2 4 2 2 4 0.66 0.11

Exp 25 2 5 3 7 6 7 6 1 4 0.21 0.02

Exp 26 2 6 2 2 0 2 1 2 0 0.93 0.73

Exp 27 2 4 4 1 5 0 2 4 5 0.32 0.04

Exp 28 2 7 6 5 7 4 3 6 6 0.09 0.00

Exp 29 2 3 5 3 2 1 4 7 1 0.84 0.26

Exp 30 2 0 0 6 1 5 5 3 7 0.49 0.06

Exp 31 2 2 1 0 4 3 0 0 2 0.95 0.72

Exp 32 2 1 7 4 3 6 7 5 3 0.42 0.02

Exp 33 3 5 7 5 2 3 1 3 5 0.56 0.06

Exp 34 3 6 1 1 1 6 6 7 6 0.71 0.16

Exp 35 3 4 0 2 4 1 3 5 4 0.73 0.11

Exp 36 3 7 5 7 3 5 2 0 0 0.39 0.02

Exp 37 3 3 6 4 6 0 5 2 2 0.66 0.06

Exp 38 3 0 4 0 0 4 4 1 3 0.89 0.39

Exp 39 3 2 2 6 5 7 7 6 1 0.34 0.01

Exp 40 3 1 3 3 7 2 0 4 7 0.84 0.25

Exp 41 4 5 1 2 3 0 4 6 7 0.42 0.15

Exp 42 4 6 7 7 4 4 5 4 1 0.05 0.00

Exp 43 4 4 5 5 1 7 0 2 3 0.33 0.02
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Exp 44 4 7 0 1 2 2 7 1 2 0.72 0.16

Exp 45 4 3 4 6 7 3 6 5 0 0.28 0.00

Exp 46 4 0 6 3 5 6 1 0 4 0.52 0.02

Exp 47 4 2 3 4 0 1 2 3 6 0.88 0.39

Exp 48 4 1 2 0 6 5 3 7 5 0.33 0.01

Exp 49 6 5 0 4 5 4 0 7 0 0.11 0.00

Exp 50 6 6 5 0 7 0 7 3 4 0.16 0.02

Exp 51 6 4 7 6 6 2 4 0 6 0.13 0.02

Exp 52 6 7 1 3 0 7 5 5 5 0.11 0.01

Exp 53 6 3 2 5 4 6 2 1 7 0.42 0.02

Exp 54 6 0 3 1 3 3 3 2 1 0.99 0.84

Exp 55 6 2 6 2 2 5 6 4 3 0.42 0.04

Exp 56 6 1 4 7 1 1 1 6 2 0.82 0.03

Exp 57 1 5 5 6 0 6 3 4 2 0.42 0.02

Exp 58 1 6 0 3 6 3 2 6 3 0.92 0.41

Exp 59 1 4 1 4 7 5 1 1 1 0.81 0.11

Exp 60 1 7 7 0 5 1 6 2 7 0.27 0.05

Exp 61 1 3 3 2 1 4 7 0 5 0.84 0.40

Exp 62 1 0 2 7 2 0 0 5 6 0.64 0.08

Exp 63 1 2 4 5 3 2 5 7 4 0.32 0.01

Exp 64 1 1 6 1 4 7 4 3 0 0.81 0.06

6.3 Multiple Pattern Recognition

To ascertain the capabilities of the algorithm for training multiple patterns, the

same network was tested using the following patterns:

Output =1 Output =0 Output =0

Network is trained with all three patterns and the total error is calculated which is

given in Table 6-6. It can be observed that the lowest error is 1.05

Table 6-6. Error for multiple patterns

NEURONS

N1 N2 N3 N4 N5 N6 N7 N8 N9 Total Error

Exp 1 0 5 6 0 1 2 2 5 1 1.27

Exp 2 0 6 4 4 2 7 3 0 7 1.65

Exp 3 0 4 2 3 3 4 6 3 2 1.10

Exp 4 0 7 3 6 4 0 1 7 3 1.54

Exp 5 0 3 7 1 0 5 0 6 4 1.51
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Exp 6 0 0 1 5 6 1 7 4 0 1.59

Exp 7 0 2 0 7 7 6 4 2 5 1.50

Exp 8 0 1 5 2 5 3 5 1 6 1.32

Exp 9 7 5 4 3 4 5 7 2 6 1.87

Exp 10 7 6 6 6 3 1 0 1 5 1.84

Exp 11 7 4 3 0 2 6 5 6 0 1.65

Exp 12 7 7 2 4 1 3 4 4 4 1.68

Exp 13 7 3 1 7 5 2 3 3 3 1.09

Exp 14 7 0 7 2 7 7 2 7 2 1.49

Exp 15 7 2 5 1 6 4 1 5 7 1.83

Exp 16 7 1 0 5 0 0 6 0 1 1.38

Exp 17 5 5 2 1 7 1 5 0 3 1.34

Exp 18 5 6 3 5 5 5 4 5 2 1.73

Exp 19 5 4 6 7 0 3 7 7 7 1.91

Exp 20 5 7 4 2 6 6 0 3 1 1.68

Exp 21 5 3 0 0 3 7 1 4 6 1.45

Exp 22 5 0 5 4 4 2 6 6 5 1.87

Exp 23 5 2 7 3 1 0 3 1 0 1.09

Exp 24 5 1 1 6 2 4 2 2 4 1.24

Exp 25 2 5 3 7 6 7 6 1 4 1.85

Exp 26 2 6 2 2 0 2 1 2 0 1.10

Exp 27 2 4 4 1 5 0 2 4 5 1.37

Exp 28 2 7 6 5 7 4 3 6 6 1.94

Exp 29 2 3 5 3 2 1 4 7 1 1.09

Exp 30 2 0 0 6 1 5 5 3 7 1.43

Exp 31 2 2 1 0 4 3 0 0 2 1.05

Exp 32 2 1 7 4 3 6 7 5 3 1.58

Exp 33 3 5 7 5 2 3 1 3 5 1.12

Exp 34 3 6 1 1 1 6 6 7 6 1.80

Exp 35 3 4 0 2 4 1 3 5 4 1.21

Exp 36 3 7 5 7 3 5 2 0 0 1.39

Exp 37 3 3 6 4 6 0 5 2 2 1.24

Exp 38 3 0 4 0 0 4 4 1 3 1.27

Exp 39 3 2 2 6 5 7 7 6 1 1.65

Exp 40 3 1 3 3 7 2 0 4 7 1.17

Exp 41 4 5 1 2 3 0 4 6 7 1.58

Exp 42 4 6 7 7 4 4 5 4 1 1.94

Exp 43 4 4 5 5 1 7 0 2 3 1.46

Exp 44 4 7 0 1 2 2 7 1 2 1.27

Exp 45 4 3 4 6 7 3 6 5 0 1.73

Exp 46 4 0 6 3 5 6 1 0 4 1.66

Exp 47 4 2 3 4 0 1 2 3 6 1.19

Exp 48 4 1 2 0 6 5 3 7 5 1.55

Exp 49 6 5 0 4 5 4 0 7 0 1.73

Exp 50 6 6 5 0 7 0 7 3 4 1.91

Exp 51 6 4 7 6 6 2 4 0 6 1.92

Exp 52 6 7 1 3 0 7 5 5 5 1.73

Exp 53 6 3 2 5 4 6 2 1 7 1.58

Exp 54 6 0 3 1 3 3 3 2 1 1.13

Exp 55 6 2 6 2 2 5 6 4 3 1.49

Exp 56 6 1 4 7 1 1 1 6 2 1.75

Exp 57 1 5 5 6 0 6 3 4 2 1.58
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Exp 58 1 6 0 3 6 3 2 6 3 1.50

Exp 59 1 4 1 4 7 5 1 1 1 1.68

Exp 60 1 7 7 0 5 1 6 2 7 1.79

Exp 61 1 3 3 2 1 4 7 0 5 1.17

Exp 62 1 0 2 7 2 0 0 5 6 1.43

Exp 63 1 2 4 5 3 2 5 7 4 1.37

Exp 64 1 1 6 1 4 7 4 3 0 1.68

As explained before, sum error is calculated, and based on the lowest sum error

the weights for the corresponding best levels are selected. The best levels

produced an error of 0.97, which is less than the error produced by the table of

experiments.

This method of training gives a better error reduction than applying the standard

method. The error reduction is generally good, but it is not always the lowest

which is theoretically possible. The reason for this is interactions between the

neurons are replacing interactions between the layers as a problem. The advantage

with this method is custom-made OAs can be used to accommodate different size

of networks.
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Chapter 7

Using New Methods in Learning Non-linear
Functions

7.1 Introduction to Chapter
In the previous chapters, it has been demonstrated that Taguchi Methods may be

applied to train a single neuron, single layer networks and multi-layer networks

successfully. The Neuron-By-Neuron training method and the polynomial method

are particularly effective. These methods give the optimum weights in all tests.

In this chapter, attention is drawn to the following areas:

 A comparison is made between the Neuron-By-Neuron training method

and the standard back-propagation algorithm in terms of training speed.

 To fully illustrate its capabilities, one of the new methods was tested with

non-linear training functions - Sigmoid, Reverse Sigmoid and Gaussian

(bell curve). A comparison is made between the theoretical (expected) and

actual outputs of the function.

7.2 Comparison with the Back Propagation Algorithm

It is difficult to assess different training algorithms in terms of their comparative

speed, as this depends on many factors. For example, the complexity of the

problem, the number of patterns being trained, the number of weights in the

network, the error goal, and whether the network is being used for pattern

recognition (discriminant analysis) or function approximation (regression), etc.

To have a like-with-like comparison of a known pattern recognition problem, a

multi-layer network and sample test patterns were chosen. The network is shown

in Figure 7-1. Two tests have been conducted. The first test (Test 1) uses two

patterns, which are shown in Figure 7-2.
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Figure 7-1. Network for training cycles comparison

Pattern 1 Pattern 2

Output = 1 Output = 1

Figure 7-2. Test 1 patterns

The network was trained using the Neuron-By-Neuron Method of Training,

demonstrated in Chapter 5. The error after just one pass was 0.538. The same

network with same patterns was trained using Back-Propagation algorithm. To

reach the closest error of 0.53798, the BP algorithm took 293 iterations (training

cycles).

To get a better picture, both the methods of training were looked at more closely

in terms of calculations. Table 7-1 gives the arithmetical operations involved for

one iteration, for each method.

Back Propagation Taguchi Methods

Adds/Subtracts 44 252

Multiplies/Divides 70 264

Exponentiations 6 72

Table 7-1. Comparative data for one iteration

Aw1

w2

C

B

w3

w6

w8

w7

w5
w4

layer 1
layer 2

i1

i2

i3
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To reach the same error of 0.53798, BP algorithm took 293 iterations. Hence, the

arithmetic operations for BP shown in Table 7-1 were multiplied by 293, and this

is shown in Table 7-2.

Back Propagation Taguchi Methods

Adds/Subtracts 12892 252

Multiplies/Divides 20510 264

Exponentiations 1758 72

Table 7-2. Arithmetic operations required to reach the same error

Therefore, for this example, the Neuron-By-Neuron training method was faster

than BP by a factor of 60.

The same network was trained with another set of patterns, which are given in

Figure 7-3.

Output = 1

Output = 1

Figure 7-3. Test 2 patterns

Using the Neuron-By-Neuron training method, the error after just one pass was

0.370. Again, this was trained using the Back-Propagation algorithm. To reach

approximately the same error of 0.37016, the BP algorithm took 514 generations.

As explained before, Table 7-3 shows the comparative data for this example.
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Back Propagation Taguchi Methods

Adds/Subtracts 22616 252

Multiplies/Divides 35980 264

Exponentiations 3084 72

Table 7-3. Comparative data for Test 2

Hence, in this example, the Neuron-By-Neuron training method was faster than

BP by a factor of 100.

The above examples illustrate the range of training speed improvements possible

in a particular set of small pattern recognition problems. For the size of networks

tested (illustrated in the previous figures), the method is at least 60 times faster

than BP. Note, however, that this improvement varies with different sized

networks.

7.3 Learning Non-linear Functions

To test the effectiveness of the training methods developed it was decided to test

the algorithm’s effectiveness in learning some non-linear functions. These were

selected because they might be encountered as compensation functions in non-

linear control situations (Nijmeijer et al 1990). These were, the Sigmoidal

Function (equation 1), its inverse and the bell (Gaussian) curve (equation 2).

Equation 1 xe
xf




1

1
)(

Equation 2
2

)(
2/2xe

xf




Where  is an arbitrary constant which governs the shape of the curve.

To do this, a nine neuron hidden layer, 2 input and one output network (MacLeod

et al 2003) was constructed. One of the new training methods, ‘Coding the state of

Neuron’ was used to train this network. However, any other successful new
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method could have been used since they showed better results when used for

training.

To train this network, one input was held at a constant bias level of 1, the other

was subject to a linear ramp of one-unit steps, which is illustrated in Figure 7-4.

The network was trained with a single pass. Results are shown below in figure 7-5

for Sigmoid Function, Reverse Sigmoid and Gaussian transfer functions. Thus, the

network successfully learns non-linear mappings.

Figure 7-4. Inputs for the network
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Figure 7-5. Taguchi learning of non-linear compensation functions
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Reverse Sigmoid Function
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In this chapter, a comparison was made between the Neuron-By-Neuron training

method and the standard back-propagation algorithm in terms of training speed. It

was shown that the new method trains the network at a much faster rate than BP.

To explore the full capabilities of the method, it was tested on non-linear training

functions - sigmoid, reverse sigmoid and Gaussian (bell curve). Comparison is

made between theoretical and actual outputs of the function. The network

successfully learns the non-linear mappings. This was demonstrated by using

‘Coding the state of Neuron’ training method, and it is also possible to produce the

same results using the other new methods developed.
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Chapter 8

Conclusions

8.1 Introduction to Chapter
This final chapter presents the conclusions of the project. The objectives, as

specified in Chapter 1, are reviewed with reference to the work presented in the

previous chapters. A brief discussion of original contributions to the art and

suggestions for further work are made. Finally, some concluding remarks about

the project as a whole are given.

8.2 The Project Objectives Revisited
The project objectives, as defined in Chapter 1, are listed below:

1. Undertake a study of relevant literature

2. Train a simple neuron using Taguchi Methods

3. Investigate new methods of training ANNs using Taguchi Methods

4. Investigate use of custom-made OAs for training ANNs

5. Use the new methods developed to learn non-linear functions

6. Comparison against other published work

The following sections look at each of these objectives in turn and consider how

well they have been achieved.

8.2.1 Undertake a study of relevant literature
Literature search was done in a wide range of topics including Taguchi Methods,

Orthogonal Arrays, ANN training and other training methods. This was done

extensively at the beginning of research and continued throughout the duration of

the project, at a slightly lower level. The results of these are given in Chapter 3,

although references are made to appropriate material throughout the thesis.
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8.2.2 Train a simple neuron using Taguchi Methods
The primary aim here was to investigate the use of Taguchi Methods to train a

simple neuron, then progress to single layer networks, and finally to multi-layer

networks. Taguchi Methods were successfully applied to the training of a simple

neuron and also to single layer networks. However, when they were tried on

multi-layer networks, the training failed due to interaction between the interlayer

weights. These results are discussed in Chapter 4.

8.2.3 Investigate new methods of training ANNs using Taguchi
Methods

A number of alternate training strategies were considered to train multi-layer

networks using Taguchi Methods. These methods mainly focused on overcoming

the interaction problem. A number of training strategies were developed to train

multi-layer networks. These were ‘Neuron-By-Neuron Training Method’ and

‘Polynomial (power series) neurons’. Taguchi Methods were successfully

demonstrated for neural network training using these techniques. Detailed

explanations of the techniques are given in Chapter 5.

8.2.4 Investigate use of custom-made OAs for training ANNs
It had been highlighted that selecting a suitable OA table for a given problem may

be difficult under some circumstances. Therefore, another new method of training

was also developed that uses custom-made OA tables. Chapter 6 discusses this

method ‘Coding the state of Neuron’ training.

8.2.5 Use the new methods developed to learn non-linear
functions

The ‘Coding the state of Neuron’ training method was successfully demonstrated

using non-linear training functions - Sigmoid, Reverse Sigmoid and Gaussian (bell

curve). A comparison is made between the theoretical and actual outputs of these

functions. Chapter 7 discusses the results obtained.
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8.2.6 Comparison against other published work
A comparison is made between the method and the standard back-propagation

algorithm in terms of their training speed. When compared with Back-

Propagation, the method reduces the network training time significantly. This is

discussed in Chapter 7.

8.3 Original Contributions
When assessing any research project, an inevitable question concerns the

contribution to new knowledge made by the researchers and their work. This

project has several original aspects to it, all of which are a product of the work.

These are:

 The origination and testing of an innovative ‘Neuron-By-Neuron Method

of Training’, which is based on Taguchi Methods, was developed to train

Artificial Neural Networks.

 To train Polynomial (power series) neurons, another unique training

method was developed using Taguchi Methods. The network error reduces

with each increasing input power as the approximation becomes more

accurate.

 A unique method of ‘Coding the state of Neuron’ training, also based on

Taguchi Methods, was developed and tested. This method uses custom-

made Orthogonal Array tables.

 When compared with traditional algorithms like Back-Propagation, the

new method reduces the network training time significantly. It was also

demonstrated in learning some non-linear functions.

Although the idea of using Taguchi Methods to train ANNs is not new, the

training strategies, which are listed above, are original and none had been tested in

depth until this project. These have been proved effective as a means of training

multi-layer ANNs.
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8.4 Suggestions for Further Work
There are two main areas in which further work could be carried out to extend this

project.

The first area is to explore ways of improving the training methods further. With

the new methods, it may not always be possible to reach the desired error level

after just one pass (iteration). Hence, the new methods may be used to reduce the

error level significantly after just one pass, and then a Gradient-Descent algorithm

such as Back-Propagation (which allows the weights to change in small

increments) may be used to ‘fine-tune’ the weights, so that the desired error level

may be achieved. However, Taguchi Methods can also be used iteratively, which

is demonstrated in Chapter 4.

It would be possible to combine Polynomial neurons with the Neuron-By-Neuron

method of training, so that each polynomial neuron can be trained, and then

another added. It is also possible to iterate this method to reduce the error to the

desired level.

Therefore, further work is suggested in this area to explore these possibilities.

The other area is, to implement the algorithm on a simple control system, for

example, controlling a DC motor. Although it is highly desirable to train the ANN

at a faster rate, irrespective of the application it is being used, it is very critical to

train such networks very quickly when used in certain Control Systems, the reason

being that these may be used as ‘disaster’ control. One well-known example of the

application of the scheme is the failure of an aerodynamic surface in an aircraft –

it may be possible to use this technique to bring such a potentially dangerous

system ‘back under control’. Therefore, further work is suggested to implement

the new training methods on simple control systems.
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8.5 Concluding Remarks
The project has been successful in that all the objectives have been met, and that

the scheme worked as expected.

The methods developed are powerful and useful for reducing the network error

significantly. Alternate training strategies have been developed to use in different

situations.

This work now joins a body of other research describing all training algorithms in

training ANNs.
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Appendix - A2

Methods Used to Obtain Results

All the experiments were performed using C++ programming and in MS Excel

using Macro programming.

Training polynomial neurons, Taguchi iterative training methods and Training

Back-Propagation networks have been coded in C++. The other training methods

using Taguchi Methods and the full factorial table results have been done in MS

Excel using Macro programming.

The levels in Orthogonal Array table for the experiment was used with quantised

weights for the first iteration. These have been modified based on Taguchi

Methods calculations, and the modified weights corresponding to the levels were

used for the subsequent iterations. These are performed automatically by a C++

program.

Training a network using Back-Propagation algorithm was done using C++

program. One can train the network until the desired error level is reached.

Coding the state of each neuron training method was developed using the custom-

made OA from Owen’s website. The OA table was transformed into spreadsheet

and the training was done using Macros. The program performs each of the

experiment from the OA table and calculates the network error. The program

updates the weights corresponding to the levels for further iterations. The other

training methods, neuron-by-neuron training and layer-by-layer training were

done in a similar way.

Coding of polynomial neurons training method was done in C++. The series for

different orders like squared term, cubed term etc. have been coded. The program

is also capable of computing network error with factorials.



Full factorial experiments

W1 W2 W3 W4 W5 W6 W7 W8 Total Error

Exp 1 -1 -1 -1 -1 -1 -1 -1 -1 1.446

Exp 2 1 -1 -1 -1 -1 -1 -1 -1 1.462

Exp 3 -1 1 -1 -1 -1 -1 -1 -1 1.445

Exp 4 1 1 -1 -1 -1 -1 -1 -1 1.462

Exp 5 -1 -1 1 -1 -1 -1 -1 -1 1.445

Exp 6 1 -1 1 -1 -1 -1 -1 -1 1.462

Exp 7 -1 1 1 -1 -1 -1 -1 -1 1.443

Exp 8 1 1 1 -1 -1 -1 -1 -1 1.462

Exp 9 -1 -1 -1 1 -1 -1 -1 -1 1.462

Exp 10 1 -1 -1 1 -1 -1 -1 -1 1.440

Exp 11 -1 1 -1 1 -1 -1 -1 -1 1.462

Exp 12 1 1 -1 1 -1 -1 -1 -1 1.442

Exp 13 -1 -1 1 1 -1 -1 -1 -1 1.462

Exp 14 1 -1 1 1 -1 -1 -1 -1 1.442

Exp 15 -1 1 1 1 -1 -1 -1 -1 1.462

Exp 16 1 1 1 1 -1 -1 -1 -1 1.443

Exp 17 -1 -1 -1 -1 1 -1 -1 -1 1.445

Exp 18 1 -1 -1 -1 1 -1 -1 -1 1.462

Exp 19 -1 1 -1 -1 1 -1 -1 -1 1.443

Exp 20 1 1 -1 -1 1 -1 -1 -1 1.462

Exp 21 -1 -1 1 -1 1 -1 -1 -1 1.443

Exp 22 1 -1 1 -1 1 -1 -1 -1 1.462

Exp 23 -1 1 1 -1 1 -1 -1 -1 1.442

Exp 24 1 1 1 -1 1 -1 -1 -1 1.462

Exp 25 -1 -1 -1 1 1 -1 -1 -1 1.462

Exp 26 1 -1 -1 1 1 -1 -1 -1 1.442

Exp 27 -1 1 -1 1 1 -1 -1 -1 1.462

Exp 28 1 1 -1 1 1 -1 -1 -1 1.443

Exp 29 -1 -1 1 1 1 -1 -1 -1 1.462

Exp 30 1 -1 1 1 1 -1 -1 -1 1.443

Exp 31 -1 1 1 1 1 -1 -1 -1 1.462

Exp 32 1 1 1 1 1 -1 -1 -1 1.445

Exp 33 -1 -1 -1 -1 -1 1 -1 -1 1.445

Exp 34 1 -1 -1 -1 -1 1 -1 -1 1.462

Exp 35 -1 1 -1 -1 -1 1 -1 -1 1.443

Exp 36 1 1 -1 -1 -1 1 -1 -1 1.462

Exp 37 -1 -1 1 -1 -1 1 -1 -1 1.443

Exp 38 1 -1 1 -1 -1 1 -1 -1 1.462

Exp 39 -1 1 1 -1 -1 1 -1 -1 1.442

Exp 40 1 1 1 -1 -1 1 -1 -1 1.462

Exp 41 -1 -1 -1 1 -1 1 -1 -1 1.462

Exp 42 1 -1 -1 1 -1 1 -1 -1 1.442

Exp 43 -1 1 -1 1 -1 1 -1 -1 1.462

Exp 44 1 1 -1 1 -1 1 -1 -1 1.443

Exp 45 -1 -1 1 1 -1 1 -1 -1 1.462

Exp 46 1 -1 1 1 -1 1 -1 -1 1.443

Exp 47 -1 1 1 1 -1 1 -1 -1 1.462

Exp 48 1 1 1 1 -1 1 -1 -1 1.445

Exp 49 -1 -1 -1 -1 1 1 -1 -1 1.443

Exp 50 1 -1 -1 -1 1 1 -1 -1 1.462



Exp 51 -1 1 -1 -1 1 1 -1 -1 1.442

Exp 52 1 1 -1 -1 1 1 -1 -1 1.462

Exp 53 -1 -1 1 -1 1 1 -1 -1 1.442

Exp 54 1 -1 1 -1 1 1 -1 -1 1.462

Exp 55 -1 1 1 -1 1 1 -1 -1 1.440

Exp 56 1 1 1 -1 1 1 -1 -1 1.462

Exp 57 -1 -1 -1 1 1 1 -1 -1 1.462

Exp 58 1 -1 -1 1 1 1 -1 -1 1.443

Exp 59 -1 1 -1 1 1 1 -1 -1 1.462

Exp 60 1 1 -1 1 1 1 -1 -1 1.445

Exp 61 -1 -1 1 1 1 1 -1 -1 1.462

Exp 62 1 -1 1 1 1 1 -1 -1 1.445

Exp 63 -1 1 1 1 1 1 -1 -1 1.462

Exp 64 1 1 1 1 1 1 -1 -1 1.446

Exp 65 -1 -1 -1 -1 -1 -1 1 -1 1.000

Exp 66 1 -1 -1 -1 -1 -1 1 -1 1.000

Exp 67 -1 1 -1 -1 -1 -1 1 -1 1.000

Exp 68 1 1 -1 -1 -1 -1 1 -1 1.000

Exp 69 -1 -1 1 -1 -1 -1 1 -1 1.000

Exp 70 1 -1 1 -1 -1 -1 1 -1 1.000

Exp 71 -1 1 1 -1 -1 -1 1 -1 1.000

Exp 72 1 1 1 -1 -1 -1 1 -1 1.000

Exp 73 -1 -1 -1 1 -1 -1 1 -1 1.000

Exp 74 1 -1 -1 1 -1 -1 1 -1 1.000

Exp 75 -1 1 -1 1 -1 -1 1 -1 1.000

Exp 76 1 1 -1 1 -1 -1 1 -1 1.000

Exp 77 -1 -1 1 1 -1 -1 1 -1 1.000

Exp 78 1 -1 1 1 -1 -1 1 -1 1.000

Exp 79 -1 1 1 1 -1 -1 1 -1 1.000

Exp 80 1 1 1 1 -1 -1 1 -1 1.000

Exp 81 -1 -1 -1 -1 1 -1 1 -1 1.000

Exp 82 1 -1 -1 -1 1 -1 1 -1 1.000

Exp 83 -1 1 -1 -1 1 -1 1 -1 1.000

Exp 84 1 1 -1 -1 1 -1 1 -1 1.000

Exp 85 -1 -1 1 -1 1 -1 1 -1 1.000

Exp 86 1 -1 1 -1 1 -1 1 -1 1.000

Exp 87 -1 1 1 -1 1 -1 1 -1 1.000

Exp 88 1 1 1 -1 1 -1 1 -1 1.000

Exp 89 -1 -1 -1 1 1 -1 1 -1 1.000

Exp 90 1 -1 -1 1 1 -1 1 -1 1.000

Exp 91 -1 1 -1 1 1 -1 1 -1 1.000

Exp 92 1 1 -1 1 1 -1 1 -1 1.000

Exp 93 -1 -1 1 1 1 -1 1 -1 1.000

Exp 94 1 -1 1 1 1 -1 1 -1 1.000

Exp 95 -1 1 1 1 1 -1 1 -1 1.000

Exp 96 1 1 1 1 1 -1 1 -1 1.000

Exp 97 -1 -1 -1 -1 -1 1 1 -1 1.000

Exp 98 1 -1 -1 -1 -1 1 1 -1 1.000

Exp 99 -1 1 -1 -1 -1 1 1 -1 1.000

Exp 100 1 1 -1 -1 -1 1 1 -1 1.000

Exp 101 -1 -1 1 -1 -1 1 1 -1 1.000

Exp 102 1 -1 1 -1 -1 1 1 -1 1.000

Exp 103 -1 1 1 -1 -1 1 1 -1 1.000

Exp 104 1 1 1 -1 -1 1 1 -1 1.000

Exp 105 -1 -1 -1 1 -1 1 1 -1 1.000



Exp 106 1 -1 -1 1 -1 1 1 -1 1.000

Exp 107 -1 1 -1 1 -1 1 1 -1 1.000

Exp 108 1 1 -1 1 -1 1 1 -1 1.000

Exp 109 -1 -1 1 1 -1 1 1 -1 1.000

Exp 110 1 -1 1 1 -1 1 1 -1 1.000

Exp 111 -1 1 1 1 -1 1 1 -1 1.000

Exp 112 1 1 1 1 -1 1 1 -1 1.000

Exp 113 -1 -1 -1 -1 1 1 1 -1 1.000

Exp 114 1 -1 -1 -1 1 1 1 -1 1.000

Exp 115 -1 1 -1 -1 1 1 1 -1 1.000

Exp 116 1 1 -1 -1 1 1 1 -1 1.000

Exp 117 -1 -1 1 -1 1 1 1 -1 1.000

Exp 118 1 -1 1 -1 1 1 1 -1 1.000

Exp 119 -1 1 1 -1 1 1 1 -1 1.000

Exp 120 1 1 1 -1 1 1 1 -1 1.000

Exp 121 -1 -1 -1 1 1 1 1 -1 1.000

Exp 122 1 -1 -1 1 1 1 1 -1 1.000

Exp 123 -1 1 -1 1 1 1 1 -1 1.000

Exp 124 1 1 -1 1 1 1 1 -1 1.000

Exp 125 -1 -1 1 1 1 1 1 -1 1.000

Exp 126 1 -1 1 1 1 1 1 -1 1.000

Exp 127 -1 1 1 1 1 1 1 -1 1.000

Exp 128 1 1 1 1 1 1 1 -1 1.000

Exp 129 -1 -1 -1 -1 -1 -1 -1 1 1.000

Exp 130 1 -1 -1 -1 -1 -1 -1 1 1.000

Exp 131 -1 1 -1 -1 -1 -1 -1 1 1.000

Exp 132 1 1 -1 -1 -1 -1 -1 1 1.000

Exp 133 -1 -1 1 -1 -1 -1 -1 1 1.000

Exp 134 1 -1 1 -1 -1 -1 -1 1 1.000

Exp 135 -1 1 1 -1 -1 -1 -1 1 1.000

Exp 136 1 1 1 -1 -1 -1 -1 1 1.000

Exp 137 -1 -1 -1 1 -1 -1 -1 1 1.000

Exp 138 1 -1 -1 1 -1 -1 -1 1 1.000

Exp 139 -1 1 -1 1 -1 -1 -1 1 1.000

Exp 140 1 1 -1 1 -1 -1 -1 1 1.000

Exp 141 -1 -1 1 1 -1 -1 -1 1 1.000

Exp 142 1 -1 1 1 -1 -1 -1 1 1.000

Exp 143 -1 1 1 1 -1 -1 -1 1 1.000

Exp 144 1 1 1 1 -1 -1 -1 1 1.000

Exp 145 -1 -1 -1 -1 1 -1 -1 1 1.000

Exp 146 1 -1 -1 -1 1 -1 -1 1 1.000

Exp 147 -1 1 -1 -1 1 -1 -1 1 1.000

Exp 148 1 1 -1 -1 1 -1 -1 1 1.000

Exp 149 -1 -1 1 -1 1 -1 -1 1 1.000

Exp 150 1 -1 1 -1 1 -1 -1 1 1.000

Exp 151 -1 1 1 -1 1 -1 -1 1 1.000

Exp 152 1 1 1 -1 1 -1 -1 1 1.000

Exp 153 -1 -1 -1 1 1 -1 -1 1 1.000

Exp 154 1 -1 -1 1 1 -1 -1 1 1.000

Exp 155 -1 1 -1 1 1 -1 -1 1 1.000

Exp 156 1 1 -1 1 1 -1 -1 1 1.000

Exp 157 -1 -1 1 1 1 -1 -1 1 1.000

Exp 158 1 -1 1 1 1 -1 -1 1 1.000

Exp 159 -1 1 1 1 1 -1 -1 1 1.000

Exp 160 1 1 1 1 1 -1 -1 1 1.000



Exp 161 -1 -1 -1 -1 -1 1 -1 1 1.000

Exp 162 1 -1 -1 -1 -1 1 -1 1 1.000

Exp 163 -1 1 -1 -1 -1 1 -1 1 1.000

Exp 164 1 1 -1 -1 -1 1 -1 1 1.000

Exp 165 -1 -1 1 -1 -1 1 -1 1 1.000

Exp 166 1 -1 1 -1 -1 1 -1 1 1.000

Exp 167 -1 1 1 -1 -1 1 -1 1 1.000

Exp 168 1 1 1 -1 -1 1 -1 1 1.000

Exp 169 -1 -1 -1 1 -1 1 -1 1 1.000

Exp 170 1 -1 -1 1 -1 1 -1 1 1.000

Exp 171 -1 1 -1 1 -1 1 -1 1 1.000

Exp 172 1 1 -1 1 -1 1 -1 1 1.000

Exp 173 -1 -1 1 1 -1 1 -1 1 1.000

Exp 174 1 -1 1 1 -1 1 -1 1 1.000

Exp 175 -1 1 1 1 -1 1 -1 1 1.000

Exp 176 1 1 1 1 -1 1 -1 1 1.000

Exp 177 -1 -1 -1 -1 1 1 -1 1 1.000

Exp 178 1 -1 -1 -1 1 1 -1 1 1.000

Exp 179 -1 1 -1 -1 1 1 -1 1 1.000

Exp 180 1 1 -1 -1 1 1 -1 1 1.000

Exp 181 -1 -1 1 -1 1 1 -1 1 1.000

Exp 182 1 -1 1 -1 1 1 -1 1 1.000

Exp 183 -1 1 1 -1 1 1 -1 1 1.000

Exp 184 1 1 1 -1 1 1 -1 1 1.000

Exp 185 -1 -1 -1 1 1 1 -1 1 1.000

Exp 186 1 -1 -1 1 1 1 -1 1 1.000

Exp 187 -1 1 -1 1 1 1 -1 1 1.000

Exp 188 1 1 -1 1 1 1 -1 1 1.000

Exp 189 -1 -1 1 1 1 1 -1 1 1.000

Exp 190 1 -1 1 1 1 1 -1 1 1.000

Exp 191 -1 1 1 1 1 1 -1 1 1.000

Exp 192 1 1 1 1 1 1 -1 1 1.000

Exp 193 -1 -1 -1 -1 -1 -1 1 1 0.554

Exp 194 1 -1 -1 -1 -1 -1 1 1 0.538

Exp 195 -1 1 -1 -1 -1 -1 1 1 0.555

Exp 196 1 1 -1 -1 -1 -1 1 1 0.538

Exp 197 -1 -1 1 -1 -1 -1 1 1 0.555

Exp 198 1 -1 1 -1 -1 -1 1 1 0.538

Exp 199 -1 1 1 -1 -1 -1 1 1 0.557

Exp 200 1 1 1 -1 -1 -1 1 1 0.538

Exp 201 -1 -1 -1 1 -1 -1 1 1 0.538

Exp 202 1 -1 -1 1 -1 -1 1 1 0.560

Exp 203 -1 1 -1 1 -1 -1 1 1 0.538

Exp 204 1 1 -1 1 -1 -1 1 1 0.558

Exp 205 -1 -1 1 1 -1 -1 1 1 0.538

Exp 206 1 -1 1 1 -1 -1 1 1 0.558

Exp 207 -1 1 1 1 -1 -1 1 1 0.538

Exp 208 1 1 1 1 -1 -1 1 1 0.557

Exp 209 -1 -1 -1 -1 1 -1 1 1 0.555

Exp 210 1 -1 -1 -1 1 -1 1 1 0.538

Exp 211 -1 1 -1 -1 1 -1 1 1 0.557

Exp 212 1 1 -1 -1 1 -1 1 1 0.538

Exp 213 -1 -1 1 -1 1 -1 1 1 0.557

Exp 214 1 -1 1 -1 1 -1 1 1 0.538

Exp 215 -1 1 1 -1 1 -1 1 1 0.558



Exp 216 1 1 1 -1 1 -1 1 1 0.538

Exp 217 -1 -1 -1 1 1 -1 1 1 0.538

Exp 218 1 -1 -1 1 1 -1 1 1 0.558

Exp 219 -1 1 -1 1 1 -1 1 1 0.538

Exp 220 1 1 -1 1 1 -1 1 1 0.557

Exp 221 -1 -1 1 1 1 -1 1 1 0.538

Exp 222 1 -1 1 1 1 -1 1 1 0.557

Exp 223 -1 1 1 1 1 -1 1 1 0.538

Exp 224 1 1 1 1 1 -1 1 1 0.555

Exp 225 -1 -1 -1 -1 -1 1 1 1 0.555

Exp 226 1 -1 -1 -1 -1 1 1 1 0.538

Exp 227 -1 1 -1 -1 -1 1 1 1 0.557

Exp 228 1 1 -1 -1 -1 1 1 1 0.538

Exp 229 -1 -1 1 -1 -1 1 1 1 0.557

Exp 230 1 -1 1 -1 -1 1 1 1 0.538

Exp 231 -1 1 1 -1 -1 1 1 1 0.558

Exp 232 1 1 1 -1 -1 1 1 1 0.538

Exp 233 -1 -1 -1 1 -1 1 1 1 0.538

Exp 234 1 -1 -1 1 -1 1 1 1 0.558

Exp 235 -1 1 -1 1 -1 1 1 1 0.538

Exp 236 1 1 -1 1 -1 1 1 1 0.557

Exp 237 -1 -1 1 1 -1 1 1 1 0.538

Exp 238 1 -1 1 1 -1 1 1 1 0.557

Exp 239 -1 1 1 1 -1 1 1 1 0.538

Exp 240 1 1 1 1 -1 1 1 1 0.555

Exp 241 -1 -1 -1 -1 1 1 1 1 0.557

Exp 242 1 -1 -1 -1 1 1 1 1 0.538

Exp 243 -1 1 -1 -1 1 1 1 1 0.558

Exp 244 1 1 -1 -1 1 1 1 1 0.538

Exp 245 -1 -1 1 -1 1 1 1 1 0.558

Exp 246 1 -1 1 -1 1 1 1 1 0.538

Exp 247 -1 1 1 -1 1 1 1 1 0.560

Exp 248 1 1 1 -1 1 1 1 1 0.538

Exp 249 -1 -1 -1 1 1 1 1 1 0.538

Exp 250 1 -1 -1 1 1 1 1 1 0.557

Exp 251 -1 1 -1 1 1 1 1 1 0.538

Exp 252 1 1 -1 1 1 1 1 1 0.555

Exp 253 -1 -1 1 1 1 1 1 1 0.538

Exp 254 1 -1 1 1 1 1 1 1 0.555

Exp 255 -1 1 1 1 1 1 1 1 0.538

Exp 256 1 1 1 1 1 1 1 1 0.554



Full factorial experiments

W1 W2 W3 W4 W5 W6 W7 W8 Total Error

Exp 1 -1 -1 -1 -1 -1 -1 -1 -1 1.290

Exp 2 1 -1 -1 -1 -1 -1 -1 -1 1.449

Exp 3 -1 1 -1 -1 -1 -1 -1 -1 1.209

Exp 4 1 1 -1 -1 -1 -1 -1 -1 1.381

Exp 5 -1 -1 1 -1 -1 -1 -1 -1 1.381

Exp 6 1 -1 1 -1 -1 -1 -1 -1 1.530

Exp 7 -1 1 1 -1 -1 -1 -1 -1 1.300

Exp 8 1 1 1 -1 -1 -1 -1 -1 1.462

Exp 9 -1 -1 -1 1 -1 -1 -1 -1 1.449

Exp 10 1 -1 -1 1 -1 -1 -1 -1 1.584

Exp 11 -1 1 -1 1 -1 -1 -1 -1 1.381

Exp 12 1 1 -1 1 -1 -1 -1 -1 1.530

Exp 13 -1 -1 1 1 -1 -1 -1 -1 1.530

Exp 14 1 -1 1 1 -1 -1 -1 -1 1.653

Exp 15 -1 1 1 1 -1 -1 -1 -1 1.462

Exp 16 1 1 1 1 -1 -1 -1 -1 1.598

Exp 17 -1 -1 -1 -1 1 -1 -1 -1 1.209

Exp 18 1 -1 -1 -1 1 -1 -1 -1 1.381

Exp 19 -1 1 -1 -1 1 -1 -1 -1 1.119

Exp 20 1 1 -1 -1 1 -1 -1 -1 1.300

Exp 21 -1 -1 1 -1 1 -1 -1 -1 1.300

Exp 22 1 -1 1 -1 1 -1 -1 -1 1.462

Exp 23 -1 1 1 -1 1 -1 -1 -1 1.209

Exp 24 1 1 1 -1 1 -1 -1 -1 1.381

Exp 25 -1 -1 -1 1 1 -1 -1 -1 1.381

Exp 26 1 -1 -1 1 1 -1 -1 -1 1.530

Exp 27 -1 1 -1 1 1 -1 -1 -1 1.300

Exp 28 1 1 -1 1 1 -1 -1 -1 1.462

Exp 29 -1 -1 1 1 1 -1 -1 -1 1.462

Exp 30 1 -1 1 1 1 -1 -1 -1 1.598

Exp 31 -1 1 1 1 1 -1 -1 -1 1.381

Exp 32 1 1 1 1 1 -1 -1 -1 1.530

Exp 33 -1 -1 -1 -1 -1 1 -1 -1 1.381

Exp 34 1 -1 -1 -1 -1 1 -1 -1 1.530

Exp 35 -1 1 -1 -1 -1 1 -1 -1 1.300

Exp 36 1 1 -1 -1 -1 1 -1 -1 1.462

Exp 37 -1 -1 1 -1 -1 1 -1 -1 1.462

Exp 38 1 -1 1 -1 -1 1 -1 -1 1.598

Exp 39 -1 1 1 -1 -1 1 -1 -1 1.381

Exp 40 1 1 1 -1 -1 1 -1 -1 1.530

Exp 41 -1 -1 -1 1 -1 1 -1 -1 1.530

Exp 42 1 -1 -1 1 -1 1 -1 -1 1.653

Exp 43 -1 1 -1 1 -1 1 -1 -1 1.462

Exp 44 1 1 -1 1 -1 1 -1 -1 1.598

Exp 45 -1 -1 1 1 -1 1 -1 -1 1.598

Exp 46 1 -1 1 1 -1 1 -1 -1 1.707

Exp 47 -1 1 1 1 -1 1 -1 -1 1.530

Exp 48 1 1 1 1 -1 1 -1 -1 1.653

Exp 49 -1 -1 -1 -1 1 1 -1 -1 1.300



Exp 50 1 -1 -1 -1 1 1 -1 -1 1.462

Exp 51 -1 1 -1 -1 1 1 -1 -1 1.209

Exp 52 1 1 -1 -1 1 1 -1 -1 1.381

Exp 53 -1 -1 1 -1 1 1 -1 -1 1.381

Exp 54 1 -1 1 -1 1 1 -1 -1 1.530

Exp 55 -1 1 1 -1 1 1 -1 -1 1.290

Exp 56 1 1 1 -1 1 1 -1 -1 1.449

Exp 57 -1 -1 -1 1 1 1 -1 -1 1.462

Exp 58 1 -1 -1 1 1 1 -1 -1 1.598

Exp 59 -1 1 -1 1 1 1 -1 -1 1.381

Exp 60 1 1 -1 1 1 1 -1 -1 1.530

Exp 61 -1 -1 1 1 1 1 -1 -1 1.530

Exp 62 1 -1 1 1 1 1 -1 -1 1.653

Exp 63 -1 1 1 1 1 1 -1 -1 1.449

Exp 64 1 1 1 1 1 1 -1 -1 1.584

Exp 65 -1 -1 -1 -1 -1 -1 1 -1 1.000

Exp 66 1 -1 -1 -1 -1 -1 1 -1 0.812

Exp 67 -1 1 -1 -1 -1 -1 1 -1 1.094

Exp 68 1 1 -1 -1 -1 -1 1 -1 0.906

Exp 69 -1 -1 1 -1 -1 -1 1 -1 0.906

Exp 70 1 -1 1 -1 -1 -1 1 -1 0.724

Exp 71 -1 1 1 -1 -1 -1 1 -1 1.000

Exp 72 1 1 1 -1 -1 -1 1 -1 0.818

Exp 73 -1 -1 -1 1 -1 -1 1 -1 1.188

Exp 74 1 -1 -1 1 -1 -1 1 -1 1.000

Exp 75 -1 1 -1 1 -1 -1 1 -1 1.276

Exp 76 1 1 -1 1 -1 -1 1 -1 1.094

Exp 77 -1 -1 1 1 -1 -1 1 -1 1.094

Exp 78 1 -1 1 1 -1 -1 1 -1 0.906

Exp 79 -1 1 1 1 -1 -1 1 -1 1.182

Exp 80 1 1 1 1 -1 -1 1 -1 1.000

Exp 81 -1 -1 -1 -1 1 -1 1 -1 0.906

Exp 82 1 -1 -1 -1 1 -1 1 -1 0.724

Exp 83 -1 1 -1 -1 1 -1 1 -1 1.000

Exp 84 1 1 -1 -1 1 -1 1 -1 0.812

Exp 85 -1 -1 1 -1 1 -1 1 -1 0.812

Exp 86 1 -1 1 -1 1 -1 1 -1 0.637

Exp 87 -1 1 1 -1 1 -1 1 -1 0.906

Exp 88 1 1 1 -1 1 -1 1 -1 0.724

Exp 89 -1 -1 -1 1 1 -1 1 -1 1.094

Exp 90 1 -1 -1 1 1 -1 1 -1 0.906

Exp 91 -1 1 -1 1 1 -1 1 -1 1.188

Exp 92 1 1 -1 1 1 -1 1 -1 1.000

Exp 93 -1 -1 1 1 1 -1 1 -1 1.000

Exp 94 1 -1 1 1 1 -1 1 -1 0.812

Exp 95 -1 1 1 1 1 -1 1 -1 1.094

Exp 96 1 1 1 1 1 -1 1 -1 0.906

Exp 97 -1 -1 -1 -1 -1 1 1 -1 1.094

Exp 98 1 -1 -1 -1 -1 1 1 -1 0.906

Exp 99 -1 1 -1 -1 -1 1 1 -1 1.188

Exp 100 1 1 -1 -1 -1 1 1 -1 1.000

Exp 101 -1 -1 1 -1 -1 1 1 -1 1.000

Exp 102 1 -1 1 -1 -1 1 1 -1 0.812

Exp 103 -1 1 1 -1 -1 1 1 -1 1.094

Exp 104 1 1 1 -1 -1 1 1 -1 0.906



Exp 105 -1 -1 -1 1 -1 1 1 -1 1.276

Exp 106 1 -1 -1 1 -1 1 1 -1 1.094

Exp 107 -1 1 -1 1 -1 1 1 -1 1.363

Exp 108 1 1 -1 1 -1 1 1 -1 1.188

Exp 109 -1 -1 1 1 -1 1 1 -1 1.188

Exp 110 1 -1 1 1 -1 1 1 -1 1.000

Exp 111 -1 1 1 1 -1 1 1 -1 1.276

Exp 112 1 1 1 1 -1 1 1 -1 1.094

Exp 113 -1 -1 -1 -1 1 1 1 -1 1.000

Exp 114 1 -1 -1 -1 1 1 1 -1 0.818

Exp 115 -1 1 -1 -1 1 1 1 -1 1.094

Exp 116 1 1 -1 -1 1 1 1 -1 0.906

Exp 117 -1 -1 1 -1 1 1 1 -1 0.906

Exp 118 1 -1 1 -1 1 1 1 -1 0.724

Exp 119 -1 1 1 -1 1 1 1 -1 1.000

Exp 120 1 1 1 -1 1 1 1 -1 0.812

Exp 121 -1 -1 -1 1 1 1 1 -1 1.182

Exp 122 1 -1 -1 1 1 1 1 -1 1.000

Exp 123 -1 1 -1 1 1 1 1 -1 1.276

Exp 124 1 1 -1 1 1 1 1 -1 1.094

Exp 125 -1 -1 1 1 1 1 1 -1 1.094

Exp 126 1 -1 1 1 1 1 1 -1 0.906

Exp 127 -1 1 1 1 1 1 1 -1 1.188

Exp 128 1 1 1 1 1 1 1 -1 1.000

Exp 129 -1 -1 -1 -1 -1 -1 -1 1 1.000

Exp 130 1 -1 -1 -1 -1 -1 -1 1 1.188

Exp 131 -1 1 -1 -1 -1 -1 -1 1 0.906

Exp 132 1 1 -1 -1 -1 -1 -1 1 1.094

Exp 133 -1 -1 1 -1 -1 -1 -1 1 1.094

Exp 134 1 -1 1 -1 -1 -1 -1 1 1.276

Exp 135 -1 1 1 -1 -1 -1 -1 1 1.000

Exp 136 1 1 1 -1 -1 -1 -1 1 1.182

Exp 137 -1 -1 -1 1 -1 -1 -1 1 0.812

Exp 138 1 -1 -1 1 -1 -1 -1 1 1.000

Exp 139 -1 1 -1 1 -1 -1 -1 1 0.724

Exp 140 1 1 -1 1 -1 -1 -1 1 0.906

Exp 141 -1 -1 1 1 -1 -1 -1 1 0.906

Exp 142 1 -1 1 1 -1 -1 -1 1 1.094

Exp 143 -1 1 1 1 -1 -1 -1 1 0.818

Exp 144 1 1 1 1 -1 -1 -1 1 1.000

Exp 145 -1 -1 -1 -1 1 -1 -1 1 1.094

Exp 146 1 -1 -1 -1 1 -1 -1 1 1.276

Exp 147 -1 1 -1 -1 1 -1 -1 1 1.000

Exp 148 1 1 -1 -1 1 -1 -1 1 1.188

Exp 149 -1 -1 1 -1 1 -1 -1 1 1.188

Exp 150 1 -1 1 -1 1 -1 -1 1 1.363

Exp 151 -1 1 1 -1 1 -1 -1 1 1.094

Exp 152 1 1 1 -1 1 -1 -1 1 1.276

Exp 153 -1 -1 -1 1 1 -1 -1 1 0.906

Exp 154 1 -1 -1 1 1 -1 -1 1 1.094

Exp 155 -1 1 -1 1 1 -1 -1 1 0.812

Exp 156 1 1 -1 1 1 -1 -1 1 1.000

Exp 157 -1 -1 1 1 1 -1 -1 1 1.000

Exp 158 1 -1 1 1 1 -1 -1 1 1.188

Exp 159 -1 1 1 1 1 -1 -1 1 0.906



Exp 160 1 1 1 1 1 -1 -1 1 1.094

Exp 161 -1 -1 -1 -1 -1 1 -1 1 0.906

Exp 162 1 -1 -1 -1 -1 1 -1 1 1.094

Exp 163 -1 1 -1 -1 -1 1 -1 1 0.812

Exp 164 1 1 -1 -1 -1 1 -1 1 1.000

Exp 165 -1 -1 1 -1 -1 1 -1 1 1.000

Exp 166 1 -1 1 -1 -1 1 -1 1 1.188

Exp 167 -1 1 1 -1 -1 1 -1 1 0.906

Exp 168 1 1 1 -1 -1 1 -1 1 1.094

Exp 169 -1 -1 -1 1 -1 1 -1 1 0.724

Exp 170 1 -1 -1 1 -1 1 -1 1 0.906

Exp 171 -1 1 -1 1 -1 1 -1 1 0.637

Exp 172 1 1 -1 1 -1 1 -1 1 0.812

Exp 173 -1 -1 1 1 -1 1 -1 1 0.812

Exp 174 1 -1 1 1 -1 1 -1 1 1.000

Exp 175 -1 1 1 1 -1 1 -1 1 0.724

Exp 176 1 1 1 1 -1 1 -1 1 0.906

Exp 177 -1 -1 -1 -1 1 1 -1 1 1.000

Exp 178 1 -1 -1 -1 1 1 -1 1 1.182

Exp 179 -1 1 -1 -1 1 1 -1 1 0.906

Exp 180 1 1 -1 -1 1 1 -1 1 1.094

Exp 181 -1 -1 1 -1 1 1 -1 1 1.094

Exp 182 1 -1 1 -1 1 1 -1 1 1.276

Exp 183 -1 1 1 -1 1 1 -1 1 1.000

Exp 184 1 1 1 -1 1 1 -1 1 1.188

Exp 185 -1 -1 -1 1 1 1 -1 1 0.818

Exp 186 1 -1 -1 1 1 1 -1 1 1.000

Exp 187 -1 1 -1 1 1 1 -1 1 0.724

Exp 188 1 1 -1 1 1 1 -1 1 0.906

Exp 189 -1 -1 1 1 1 1 -1 1 0.906

Exp 190 1 -1 1 1 1 1 -1 1 1.094

Exp 191 -1 1 1 1 1 1 -1 1 0.812

Exp 192 1 1 1 1 1 1 -1 1 1.000

Exp 193 -1 -1 -1 -1 -1 -1 1 1 0.710

Exp 194 1 -1 -1 -1 -1 -1 1 1 0.551

Exp 195 -1 1 -1 -1 -1 -1 1 1 0.791

Exp 196 1 1 -1 -1 -1 -1 1 1 0.619

Exp 197 -1 -1 1 -1 -1 -1 1 1 0.619

Exp 198 1 -1 1 -1 -1 -1 1 1 0.470

Exp 199 -1 1 1 -1 -1 -1 1 1 0.700

Exp 200 1 1 1 -1 -1 -1 1 1 0.538

Exp 201 -1 -1 -1 1 -1 -1 1 1 0.551

Exp 202 1 -1 -1 1 -1 -1 1 1 0.416

Exp 203 -1 1 -1 1 -1 -1 1 1 0.619

Exp 204 1 1 -1 1 -1 -1 1 1 0.470

Exp 205 -1 -1 1 1 -1 -1 1 1 0.470

Exp 206 1 -1 1 1 -1 -1 1 1 0.347

Exp 207 -1 1 1 1 -1 -1 1 1 0.538

Exp 208 1 1 1 1 -1 -1 1 1 0.402

Exp 209 -1 -1 -1 -1 1 -1 1 1 0.791

Exp 210 1 -1 -1 -1 1 -1 1 1 0.619

Exp 211 -1 1 -1 -1 1 -1 1 1 0.881

Exp 212 1 1 -1 -1 1 -1 1 1 0.700

Exp 213 -1 -1 1 -1 1 -1 1 1 0.700

Exp 214 1 -1 1 -1 1 -1 1 1 0.538



Exp 215 -1 1 1 -1 1 -1 1 1 0.791

Exp 216 1 1 1 -1 1 -1 1 1 0.619

Exp 217 -1 -1 -1 1 1 -1 1 1 0.619

Exp 218 1 -1 -1 1 1 -1 1 1 0.470

Exp 219 -1 1 -1 1 1 -1 1 1 0.700

Exp 220 1 1 -1 1 1 -1 1 1 0.538

Exp 221 -1 -1 1 1 1 -1 1 1 0.538

Exp 222 1 -1 1 1 1 -1 1 1 0.402

Exp 223 -1 1 1 1 1 -1 1 1 0.619

Exp 224 1 1 1 1 1 -1 1 1 0.470

Exp 225 -1 -1 -1 -1 -1 1 1 1 0.619

Exp 226 1 -1 -1 -1 -1 1 1 1 0.470

Exp 227 -1 1 -1 -1 -1 1 1 1 0.700

Exp 228 1 1 -1 -1 -1 1 1 1 0.538

Exp 229 -1 -1 1 -1 -1 1 1 1 0.538

Exp 230 1 -1 1 -1 -1 1 1 1 0.402

Exp 231 -1 1 1 -1 -1 1 1 1 0.619

Exp 232 1 1 1 -1 -1 1 1 1 0.470

Exp 233 -1 -1 -1 1 -1 1 1 1 0.470

Exp 234 1 -1 -1 1 -1 1 1 1 0.347

Exp 235 -1 1 -1 1 -1 1 1 1 0.538

Exp 236 1 1 -1 1 -1 1 1 1 0.402

Exp 237 -1 -1 1 1 -1 1 1 1 0.402

Exp 238 1 -1 1 1 -1 1 1 1 0.293

Exp 239 -1 1 1 1 -1 1 1 1 0.470

Exp 240 1 1 1 1 -1 1 1 1 0.347

Exp 241 -1 -1 -1 -1 1 1 1 1 0.700

Exp 242 1 -1 -1 -1 1 1 1 1 0.538

Exp 243 -1 1 -1 -1 1 1 1 1 0.791

Exp 244 1 1 -1 -1 1 1 1 1 0.619

Exp 245 -1 -1 1 -1 1 1 1 1 0.619

Exp 246 1 -1 1 -1 1 1 1 1 0.470

Exp 247 -1 1 1 -1 1 1 1 1 0.710

Exp 248 1 1 1 -1 1 1 1 1 0.551

Exp 249 -1 -1 -1 1 1 1 1 1 0.538

Exp 250 1 -1 -1 1 1 1 1 1 0.402

Exp 251 -1 1 -1 1 1 1 1 1 0.619

Exp 252 1 1 -1 1 1 1 1 1 0.470

Exp 253 -1 -1 1 1 1 1 1 1 0.470

Exp 254 1 -1 1 1 1 1 1 1 0.347

Exp 255 -1 1 1 1 1 1 1 1 0.551

Exp 256 1 1 1 1 1 1 1 1 0.416
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