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Abstract

ENVIRNONMENTAL RISK MANAGEMENT OF CONTAMINATION OF MARINE
BIOTA BY HYDROCARBONS SPECIFICALLY THOSE ARISING FOLLOWING AN
OIL SPILL

Marine pollution resulting from oil spillage has received much attention mostly due to the
damaging effectsiit has on fisheries and aquacultures. One component of oil that iswidely
studied due to its toxic and carcinogenic propertiesis the polycyclic aromatic
hydrocarbons. The physical and chemical properties of these compounds control their
distribution into the various phases of the environment. The rates of elimination of these
compounds from impacted organisms were investigated in laboratory and field experiments
using selected marine organisms (Mytilus edulis and Salmo salar).

The elimination of individual PAH compounds followed first order kinetics. Elimination
rate varied among compounds and generaly decreased with increase in molecular weight
and degree of akylation. Elimination rate constants (ky) and biological half-lives (ty)
evaluated from chronically exposed mussels (collected from Aberdeen harbour) in separate
laboratory and field studies were comparable but differed from those evaluated from
acutely exposed mussels. Shorter t;/, were obtained from acutely exposed mussels. Thety),
ranged between 0.5- 22 d (acute exposure) and 3.8- 31.5 d (chronic exposure). The longer
apparent ty, calculated for the chronically impacted mussels was attributed to the retention
of the compounds in a stable compartment due to long period of exposure that limited
exchange with the surrounding water.

Contrary to expectation, ti, for similar compounds was higher in salmon than in mussels.
The reason for this was unknown but attributed to the route of elimination. A good
correlation (r? > 0.72) was found between PAHSs tissue concentration and taint intensity in
salmon.

Comparison of the results from this study with literature data showed that tank water
replacement time and exposure duration affects rate of PAHs elimination. The data
generated in this study and some of the reviewed studies will find application in different
oil spill scenarios.

The usefulness and limitations of the n-al kanes profile, PAH distribution and concentration
ratios, and specific biomarker ratios from organismsin oil spill source identification was
also demonstrated.
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Chapter One: Introduction

CHAPTER ONE

I ntroduction

1.1 Background

In recent years, the distribution of polycyclic aromatic hydrocarbons (PAHS) in the
environment has been widely studied due to their well known toxic, mutagenic and
carcinogenic characteristics (IARC 1983; WHO 2005). PAHs present in crude oils and
derived products enter the terrestrial and aguatic environment through petroleum
production and consumption related activities such as offshore exploration, petroleum
refining, petroleum transportation and consumption. PAHs are also produced during
combustion of wood and other organic materials. In the event of oil pollution, say an
accidental oil spill, aprimary concern is the contamination of marine biota, including
commercial fish and shellfish species. Contamination can be so severe asto giverise
directly to concern for human health, for example from high concentrations of carcinogenic
PAHs including benz[a]anthracene, benzo[a]pyrene, diben[a,h]anthracene (UK Committee
on Toxicology and Chemicals, EU Standing Committee on Food SCH Sc/CNTM/PAH/29,
Commission Recommendation 2005/108/EC, Commission Regulation (EC) No 208/2005),
to lighter PAHSs (e.g. naphthal ene and substituted naphthal enes) which can taint the edible
tissues of fish and shellfish, thereby rendering these produce unsuitable for the market.

Following arecent review of the European Union Commission Regulation setting the
maximum limit for contaminants in food as regards PAHs [Commission Regulation (EC)
No 466/2001], a number of additional compounds was incorporated into the list of priority
PAHSs for reporting in environmental assessment due to their perceived carcinogenic
properties. These include cyclopentgc, d] pyrene and various isomeric forms of
dibenzopyrene: dibenzo[a,e]pyrene, dibenzo[a,h]pyrene, dibenzo[a,i]pyrene, and

dibenzo[a,|]pyrene.

Current approachesto oil spill mitigation and management (closure of fisheries and

harvesting areas accompanied by chemica analysis and taint assessment) provide the
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security that potentially toxic products (bivalve molluscs — benzo[a]pyrene 10 ng g™* wet
weight; crustaceans — benzo[a]pyrene 5 ng g™ wet weight; muscle meat of fish —
benzo[a]pyrene 2 ng g wet weight) or tainted products, do not enter the human food chain
[Commission Regulation (EC) No 208/2005]. However, if harvesting and/or marketing are
prevented, the question isimmediately raised by producers as to when normal commercial

activity could be resumed.

At present, the ability to predict the rate of loss of PAH compounds from fish and shellfish
(and consequently the likely persistent of taint) islimited, and at times the rates of loss
have been considered in relation to “total” PAHSs rather than individual compounds of

particular tainting or toxicological significance.

In the past, severa studies have examined the dynamics of uptake and depuration of PAHs
in aquatic organisms (for example, Pruell et al., 1986; Guilherme 1998; Sericano et al .,
1996; Mclntosh et al., 2004; Richardson et al., 2005). However, the result is that, arange
of conflicting reports have been published on the rates of elimination of PAHs from marine

organisms; clams, oysters and mussels (Table 1.1).

Pruell et al. (1986) monitored the elimination of PAHs from blue mussels exposed to PAH-
contaminated sediment in aquaria for 40 days and observed elimination of PAHS with
biological half life between 14-30 days. Richardson et al. (2005) reported a most compl ete
elimination of PAHs in 2 days from mussels contaminated with specific PAH standards,
while Mclntosh et al. (2004) reported ~ 50 % reduction in PAHS concentration over 122
days from mussels chronically contaminated from PAHs originating from an aluminium
smelter. Boehm et al. (1977) reported only slight elimination after 120 days in chronically
contaminated Clams while Tenacredi & Cardenas (1991) observed no elimination after 45
days in the same specie of organism exposed to specific PAH standards for 2 days. Blumer
et al. (1970) and Stegeman and Teal (1973) both exposed Oystersto No. 2 fuel oil for 60
days and 49 days respectively. However, while Blumer reported little elimination of PAHs
in 180 days, Stegeman and Teal reported almost complete elimination in 28 days.
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Table 1.1: Summary of experimental results reported by different authors on depuration

rates of PAHs from organisms (especialy bivalves) over the last 4 decades

) Exposure _ .
Bivalve ) _ Observation Reference Details
Medium/Time
Ovet N°2 Fuel Qil Little depuration Blumer et al. Mar. Biol. 5, 195
ers
Y (60days) after 180 days (1970) 202
. _ Nearly complete
N° 2 Fue Qil o Stegeman and Teal )
Oysters depurationin Mar. Biol. 22, 37-44
(49days) (2973)
28days
Ql Chronically Slight depuration Boehm and Quinn | Mar. Biol. 44, 227-
ams
polluted after 120days (2977) 233
. Nearly complete PhD Dissertation,
Chronically . _ . .
Oysters uted depuration with Wormell (1979) Rutgers University,
u
PO BHLs = 4.4days NJ
Analytes below - . :
o Pittinger et al. Environ. Toxicol.
Oysters | PAHs (15day) | detection limits
(1985) Chem. 4, 379-387
after 4 days
Depuration with )
PAHs Mar. Biol. 91, 497-
Mussels BHL between 14- Pruell et al. (1986)
(40 days) 507
30days
o _ Environmental
No depuration in 45 | Tanacredi and _
Clams PAHSs (2 days) Science Tech. 25,
days Cardenas (1991)
1453 -1461
Chronic Significant _ _
_ o _ Sci. Total. Environ.
Oysters | pollution depuration in 50 Sericano et al. 1996
179, 149- 160.
(48days) days
Depuration very . ,
o ) Marine pollution
rapidin 2daysand | Richardson B.J et _
Mussels | PAHs (20 days) Bulletin, 51, 975-
then reduced to al. (2005) 993
minimum thereafter
Mussel Chronically Total PAHsfal - Mclntosh et al. J. Environ. Monit.,
ussels
polluted 50% in 122days (2004) 6, 209 - 218
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The reasons for the variations in the reports are not well known but may be attributed to the
differencesin the experimenta designs and PAH compounds studied. It has been noted that
the rate of elimination of hydrophobic compounds decreases with increasein
hydrophobicity (Gewurtz et al., 2002). Other factors such as seasona changes, the animal
specie used, physical factors, and the presence of other contaminants may well affect the
elimination rates. Webster et al. (2003) has noted that apart from the concentration of PAH
in the organisms’ surrounding environment and the duration of exposure of an organism to
it, seasonal changes can aso affect the observed tissue burden in organisms. Moreover,
while some authors acutely exposed organisms to specific PAHs standards or petroleum

products, others depurated chronically contaminated organisms.

1.2 Hydrocarbon input to the marine environment.

Hydrocarbons found in the environment originate from diverse sources. Hydrocarbons are
naturally present in fossil fuels, woods and organic materials, However, anthropogenic
activities such as combustion of organic matter, industrial activity, natural fires and
petroleum consumption are mainly responsible for the hydrocarbon contamination reported
in many areas around the world (e.g. see; Bence et al., 1996; Boehm et al., 1997 Burns et
al., 1997; and Page et al., 1999)" Hydrocarbons enter into the marine environment by
severa different pathways. These compounds are major constituents of unburned
petroleum and can be released directly into the environment either by natura seepage or
through series of petroleum production activities ranging from offshore exploration to
transportation. About 43, 000 metric tons of petroleum is discharged into the atmosphere
each year, and another 230, 000 tons enter aquatic environments (Eisler, 1987). Petroleum
hydrocarbons can also find their way into the aquatic environment through discharges from
human activities such as industrial and domestic sewage effluents: run-offs from paved
roads and parking lots. Although petroleum substances occur in relatively low
concentrations in urban run-off, but total amount discharged isrelatively high dueto the
large volumes involved (UNEP, 2003).
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NRC (2003) recognized that petroleum hydrocarbons enter the environment through four
different routes; natural seeps, petroleum extraction, petroleum transportation, and

petroleum consumption.

Natural oil seepage is apurely natural phenomenon that occurs when crude oil seeps from
the geological strata beneath the seafloor to the overlying water column. These seeps
release vast amount of crude oil annually, yet these volumes are released at the rate low
enough that the surrounding ecosystem can adapt and even thrive in their presence (NRC
2003). According to Wang (2006), natural oil seeps are a worldwide phenomenon that

contributes petroleum to the environment more than all other sources combined.

Contamination from petroleum extraction results from the activities of man associated with
the effort to explore and produce petroleum such as seen in produce water (e. g. Jacobs et
al., 1992). Petroleum transportation can result in the release of varying amount of
petroleum product; ranging from major spills during vessel accident [Torrey Canyon
(Cornwall) UK, 1967; Amoco Cadiz 1978; Qualida 1986; Exxon Vadez, 1989; Persian
Gulf, 1991; Shetland Island, UK, 1993; Prestige (Spanish Coast), 2002; etc.] to minor
operational discharges. Annua worldwide spills exceed 1,300,000 metric tons (NRC 2002).
Petroleum consumption can result in the release of components of petroleum and their
oxidative components in the environment and therefore contributes to the greater

percentage that enters the marine environment (Blumer et al., 1975).

1.3 Composition of petroleum products

Crude oil isanatura occurring complex mixture of thousands of different organic
compounds formed from a variety of organic materials that are chemically converted under
differing geologica conditions over long period of time (Peters and Moldowan, 1993). The
physical properties and exact chemical composition of crude oil varies from one locality to
another. In general, crude oil components are classified in bulk group as saturates, olefins,
aromatics, resin and asphaltenes (Wang et al., 2006). Saturates are the predominant class of
hydrocarbons in most crude oils. They include straight chain, branched chain and cyclo-

alkanes. Biomarker terpanes and steranes are branched cyclo-alkanes consisting of multiple

5
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condensed five- or six- carbon rings. Sterane and terpanes bear intrinsic fingerprints of their
source rocks (Peters and Moldowan 1993) and have played an important role in the
fingerprinting of spilled oils e.g. in the Nordtest system (Nordtest Method NT CHEM 001)

Aromatic hydrocarbons are cyclic planar compounds that resemble benzene in electronic
configuration and chemical behaviour. Aromatics in petroleum include the more volatile
mono-aromatic hydrocarbons BTEX; benzene, toluene, ethyl benzene and xylene (NRC,
1985; Speight 1993), alkyl substituted benzene compounds, and the polycyclic aromatic
hydrocarbons (PAHSs). PAHs are also known as polynuclear aromatic hydrocarbons (PNA).

PAHSs are ubiquitous in the environment and persist even when its input has ceased. Some
PAHSs has been implicated to be toxic and carcinogenic (IARC 1983; WHO 2003). It isnot
surprising that over the years, PAHs has been the chemical species within petroleum that
are most frequently discussed in terms of toxicity (Aas et al., 2000; Aas et al., 2001,
Cavalieri and Rogan 1992). Subsequent sections will be dedicated to the discussion of the
environmental fate of PAHs in the marine environment and the relevance of geochemical

biomarkersin PAH source identification.

1.3.1 Geochemical Biomarkers.

Geochemical biomarkers are non-toxic hydrocarbon components of crude oil that bears
fingerprints of the source rock from which the oil originates (Peters et al., 2005).
Biomarker fingerprinting has historically been used by petroleum geochemistsin
characterisation of marine oilsin terms of source rock, genetic family, migration and
maturation properties, and in identification of petroleum deposits (Peters and Moldowan
1993). Terpanes and steranes biomarker are composed of six monomer units called
isoprene [2-methyl-1, 3-butadiene, [CH2 = C(CH3) — CH = CH;] (Wang et al., 1999).
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The structures of some biomarkers are shown below.

T
- Ty
] T
) H 13| H 21,00 bde
11~ = § = ¥ T
S @8 M1z = TIT rde
p W= | M= |, Me | 0
N B S L e
r/ lﬁ,f”ngv
I | B
e e
= = =
P W
LA Rl
ey &
Gammacerane Oleanane

Fig.1.1: Chemical structures of gammacerane and oleanane

1.3.2 Polycyclic Aromatic Hydrocar bons

Polycyclic aromatic hydrocarbons constitute a wide class of compounds composed of two
or more aromatic rings in aplanar configuration. Within the group, the compound range
from semi-volatile molecules to molecules with high boiling points. The compound may
exist with agreat number of structures and depending on the complexity of the PAH, ina
large number of isomers e.g. dibenzopyrene. Wise and Sander (1997) published the
chemical structures and nomenclature of 660 PAHSs.

The abundance of PAHs in petroleum usually decreases with increasing molecular weight.
In most cases one ring through to three-ring aromatic hydrocarbons, and related
heterocyclic aromatic hydrocarbons such as dibenzothiophene, account for at least 90
percent of the aromatic hydrocarbons that can be resolved in crude petroleum by
conventional analytical methods (Neff, 1990). These compounds are generally
hydrophobic, meaning that they have higher tendency to associate with particles than to
dissolve in water; a property that increases with increase in water-octanol partition
coefficient, Kqoy. This property of PAHs is further discussed in detailsin section 1.4.
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PAHSs can be divided into two groups based on their physical, chemical, and biological
characteristics. The lower molecular weight PAHs (e.g., 2- to 3- ring PAHs such as

naphthal enes, fluorenes, phenanthrenes, and anthracenes) which have significant acute
toxicity to aquatic organisms; and the high molecular weight PAHS, 4- to 7- ring (from

chrysenes to coronenes) which do not but many have been known to be carcinogenic.

Naphthalene Phenanthrene

Benzo[c]anthracene

-

Chrysene

Benzo[a]pyrene

Benzo[g,h,i]perylene Perylene

Fig. 1.2: Chemical names and sructures of some common PAH compounds
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The most commonly studied PAHs are the 2- to 6-ring compounds with their alkylated

homologues. The structures of some common unsubstituted PAHs are shown in Fig. 1.2

1.3.2.1 PAHs Sour ce Recognition

There are three mgjor types of sources of hydrocarbons found in the environment;
petrogenic, biogenic and pyrolytic sources (Blumer and Y oungblood, 1997; Limaet al.,
2005; Wang et al., 1999).

Hydrocarbons released from un-burnt petroleum are generally referred to as petrogenic
hydrocarbons. PAHs occur naturally in bituminous fossil fuels, such as coal and crude oil
deposits, as aresult of diagenesis (i.e. the low temperature, 100-150 °C, combustion of
organic material over asignificant span of time). This process favours the formation of
alkylated PAHSs; the un-substituted (or the parent) compounds being relatively low in
abundance in these sources (NRCC, 1983).

Hydrocarbons generated from the incomplete combustion of fossil fuels (coal and oil) and
organic materials such as wood are generally termed pyrolytic hydrocarbons (Page et al .,
1999). In areview of the formation of polycyclic aromatic hydrocarbons combustion
processes, Lima et al. (2005) indicated that during combustion, the organic compounds
present in the fuel are fragmented into free radicals that can react in anumber of different
chemical pathways to produce the first aromatic ring. Further reaction of this aromatic ring
with small compounds (2- to 3- carbons; e.g. C,H, — ethyne) leads to formation of larger
and more stable rings. The type of fuel and the combustion conditions both affects the
quantitative composition of hydrocarbons produced during combustion (Blumer, 1976;
Mastral et al., 1998) although qualitative mixtures may be similar.

Biogenic hydrocarbons are generated by biological processes or by early stages of
digenesisin recent marine sediments (Wang et al., 1999). Biological sourcesinclude land
plants, phytoplankton, animals, bacteria, macroal gae and microa gae. It has been reported
(Cretney et al., 1987; Barrick et al., 1980; Requejo et al., 1983; Wang et al., 1995; Wang et
al., 1998) that the biogenic hydrocarbons have the following chemical composition

characteristics: (1) n-alkanes show a distribution pattern of odd carbon-numbered alkanes
9
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being much abundant than even carbon-numbered alkanes in the range of n-Cy—n-Css,
resulting in unusually high carbon preference index (CPI) values, which is defined as the
sum of the odd carbon-numbered alkanes to the sum of the even carbon-numbered alkanes
(2) notable absence of the *unresolved complex mixture (UCM)" hump in the
chromatograms; (3) pristane is often more abundant than phytane, suggesting a
phytoplankton input (Blumer et al., 1971; Peters and Moldowan 1983; Kennicutt Il et al .,
1994) and resulting in abnormally high pristane/phytane ratio values; (4) wide distribution
of the biogenic PAH perylene, an unsubstituted PAH produced in subtidal sediments by a
process known as early diagenesis (Peters and Moldowan 1983). Biogenic source is one of
the potential sources contributing to background hydrocarbons in the environment (\Wang
et al., 1999).

With increased enforcement of oil spill and other pollution laws, it has become extremely
important that measures are in place to identify the sources of oil pollution, for legal and
liability purposes. Several methods have been in use for the tracing of PAHs found in the
environment to the sources. Some of these methods include the matching of the n-alkane
profile of the samples, (Yunker et al., 1999; Stella et al., 2002, Webster et al., 2003), use of
PAH distribution profile and PAH source diagnostic ratios (Budzinski et al., 1997; Wang
et al., 1999; Yunker et al., 2002; Webster et al., 2003) and most recently, geochemical
biomarker fingerprinting (e.g. Boehm et al., 1997 and Barakat et al., 2002; Faksness et al .,
2002; Dahlmann, 2003).

The chemical composition of organic matter and the operating temperature affect the yield
and distribution of PAHs formed during incompl ete combustion of organic matter (Lima et
al., 2005). Aswas explained by Budzinski et al. (1999), thermal PAH formation can occur
over awide range of temperatures. At low temperatures, the compound distribution is
governed by thermal stability and the most stable isomers are formed, while at high
temperatures, PAHs of higher formation enthalpy can be generated.

In general, pyrolytic PAHSs are characterised by the dominance of awide range of un-
substituted (parent) compounds over their corresponding a kylated homologues and the
dominance of the high molecular mass (4- to 6-ringss) compounds over the low molecular
mass (2- and 3-ringss) compounds. In contrast, petrogenic patterns, such as those obtained
10
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during the slow maturation of petroleum are characterised by dominance of the alkylated
compounds over their corresponding un-substituted homol ogues and the high abundance of
the 2- and 3-rings PAHSs relative to the 4- to 6-ringss. For the petrogenic PAHS, their
distribution profilein the environment are readily modified to Co< C1< C, <C3 by
weathering or degradation processes (Wang et al., 1999; Y unker et al., 2002).

In addition to this qualitative characteristic, source diagnostic indices; a quantitative
approach; such asratio of phenanthrene to anthracene (P/A), fluoranthene to pyrene
(FI/Py), sum of methyl-phenanthrene and methyl-anthracene to phenanthrene (> MP/P)
have aso been developed in the past and is being used extensively in discriminating
between PAH sources in sediment samples (e.g. Budzinski et al., 1997; Baumard et al.,
1998; Dahleet al., 2003; and Webster et al., 2004). These indices which are based on
thermodynamic stability of specific PAH compounds are used to characterise compounds
distribution according to the process underlying their generation. Considering the ratio P/A,
Phenanthrene (P) is more thermodynamically stable than anthracene (A). Pyrolysis of
organic matter at very high temperature generates PAH compounds of low P/A ratio, while
the slow maturation of petroleum at lower temperatures produces PAHs with large P/A
ratio (Raoux, 1991). The same is applicable to fluoranthene and pyrene index, fluoranthene
is less thermodynamically stable than pyrene and dominates if source is petrogenic
(Budzinski et al., 1997).

Webster et al. (2003) extended the use of these indices to the study and assignment of
sources to PAHs determined in mussels from various locations in Scotland. A summary of

the definitions of some commonly applied ratiosin PAHSs studies are shown in Table 1.2.

Table 1.2: PAH diagnostic ratios used for source discrimination (A = Anthracene, P =
Phenanthrene, MP = methyl phenanthrene, FI = Fluoranthene and Py = Pyrene).

Diagnostic ratio Pyrolytic Petrogenic
Phenanthrene/Anthracene (P/A) <10 >10
Fluoranthene/Pyrene (FI/Py) >1 <1
[Methyl phenanthrenes]/Phenanthrene <2 >2
Huoranthene + pyrene/ methyls
[(F+Py)/(MH+MPy)] 3 <3

11
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However, according to Yunker et al. (2002), the use of these ratios for source
characterizations requires an understanding of the relative discrimination ability (relative
thermodynamic stability) of the different parent PAHS, the characteristics of the different
PAH sources and the relative stability of different PAH isomers.

Geochemical biomarker fingerprinting has aso found unique application in distinguishing
petrogenic PAH sources from other sources. Geochemical biomarkers are organic
compounds characterised by their source specificity and molecular stability that maintain
the fingerprint of their origins (Medeiros and Bicego, 2004). In field samples, it is often
difficult to absolutely identify which PAHs have been introduced from petrogenic or
pyrolytic source using PAH distribution ratios alone (Webster et al., 2003). Thisis because
the many ways in which PAHs are introduced into the environment may result in PAH
signature from one source being masked by PAHSs from other sources (Y unker et al., 2002).
Therefore, since PAHs are commonly found in the environment as complex mixtures
deriving from multiple sources, the confident discrimination of petrogenic PAHs from
other PAH sources requires use of various geochemical biomarkers (Y unker et al., 2002).
Peters and Moldowan (1993) noted that petroleum biomarkers are resistant to degradation
by weathering and therefore remains relatively unchanged over time, in contrast to the
losses during weathering of n-alkanes, PAHs and eventually their alkyl homol ogues.
Analysis of samples for geochemical biomarkers, such as the pentacyclic triterpanes
(hopanes) and the tetracyclic steranes, has proved useful in oil pollution source
identification (e.g. Wang et al., 1998). Biomarkers are distinctive features of oil and vary
from ail to ail, hence have also been successfully applied to discriminate against oil sources
(e.0. Boehm et al., 1997; Barakat et al., 2002; Abboud et al., 2005). Crude oils differ from
one another depending on where they were formed (source rock) and how this process
occurred. Oil from terrestrial materialsis thus different from oil from e.g. marine materials.
The composition of the oil is also affected by how rapidly it had formed, the geological
processes after formation, the oxygen content of the atmosphere, the age of the oil, and so
on (Faksness, 2002). A gas chromatogram of oil from a certain specific deposit has its own
identifiable fingerprint. Therefore the criteria used in sample correl ations are based on
matching the distribution pattern of steranes and hopanes and similarities of the molecular

parameters of these biomarker compounds. Correlation can be a matter of the presence of
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certain compounds in a certain type of oil or a specific concentration ratio of two
compounds (Wang et al., 1999).

Specific biomarker diagnostic ratios which are in use (e.g. Nordtest method) in oil source
identification are summarized in the table below.

Table 1.3: Some diagnostic ratios used oil source correlations

Diagnostic ratio Definition
DR-27Ts 27T927Tm
DR-28ab 28ab/30ab
DR-29Ts 29T</30ab
DR-300 300/30ab
DR-30G 30G/30ab
DR-29ab 29ab/30ab
DR-30d 30d/30ab

DR-29aaS 29aaS/29aaR
DR-29bb 29bb(S+R)/29aa(S+R)

where 27Ts = 18a(H)-22,29,30-trinorhopane, 27Tm = 17a(H)-22,29,30-trisnorhopane,
29ab =170(H),21p(H)-30-norhopane, 28ab = 17a(H), 21p—28,30-bisnorhopane, 29Ts = 18
a(H)-30 -nornechopane, 30d = diahopane, 300 = 18u(H) oleanane, 30G = gammacerane,
30ab = 17 a(H), 21p(H)-hopane, 31abS = 17a(H), 218(H)-22S-homohopane, 31abR =
170(H), 21B(H)-22R-homohopane, 32abS = 17a(H), 21p(H)-22S-bishomohopane, 32abR =
17a(H), 21B(H)-22R-bishomohopane, 33abS = 17a(H), 21p(H)-22S-trishomohopane,
33abR = 17a(H), 21p(H)-22R-trishomohopane, 34abS = 17a(H), 21p(H)-22S
tetrakishomohopane, 34abR = 17a(H), 21B(H)-22R-tetrakishomohopane, 35abS = 17a(H),
21B(H)-22S-pentakishomohopane, 35abR = 17a(H), 21p(H)-22R-pentakishomohopane,
29aaS = 50(H), 14a(H), 17a(H)-24-ethylcholestane (20S), 29aaR = 5a(H), 14a(H),
17a(H)-24-ethylcholestane (20R), 29bbS = 5a(H), 14B(H), 17p(H)-24-ethylcholestane
(20S), 29bbR = 50(H), 148(H), 17B(H)-24-ethylchol estane (20R).

13
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1.4 Distribution and fate of PAHs in the marine environment

The behaviour and distribution of PAHs in the marine environment is fundamental in the
control of their movement and impact on marine organisms (King et al., 2004). Due to their
varying degrees of resistant to oxidation, reduction, and vaporization which increases with
increasing molecular weight and aqueous solubility which decreases with increase in
molecular weight, PAHs differ in their behaviour, distribution in the environment, and their
effects on biological systems (Eisler, 1987).

Oil spilled into the marine environment is susceptible to spreading, evaporation,
dissolution, microbia degradation, photo oxidation, and interaction between oil and
sediment. The combination of these processes termed “weathering” reduces the
concentration of hydrocarbons (and hence PAHS) in sediment and water and at the same
time aters the composition of the spilled oil (Payne et al., 2003). The ateration in the
composition of spilled oil (e.g. by biodegradation) has profound effect in the oil’ stoxicity
and biologica impact over time. Before formation of non-toxic and harmless end products
by various enzymatic and nonenzymatic reactions, PAHs are converted to arene oxide
intermedi ates followed by formation of derivatives of trans-dihydrodiols, phenols, and
quinones. These intermediate products are known to be toxic, carcinogenic, and/or

mutagenic (Limaet al., 2005)

In the study of water and sediment samples from Brighton marina to quantify the intensity,
spatial and temporal variation of PAH contamination, King et al. (2004) reported that the
PAH behaviour in the marine systems is highly complex, and controlled by the interplay of
PAH sources, field conditions, compound’ s physicochemical properties and biological
factors. The structure and physical properties of PAHs can greatly impact their volatility,
solubility, sorption, and decomposition behaviours (Lima et al., 2005). The more volatile
compounds (e.g. naphthalene) are lost through evaporation which is one of the short-term

weathering processes.

Solubility is another property that governs and defines the fate of PAHSs released from
spills. In the marine environment, PAHs are distributed into the water and sediment phases

due to the partial dissolution of selected lower molecular weight 2- to 3-ring compounds
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with log Ko, values between 3.7 and 4.8 (Payne et al., 2003). Physical transport and
mechanical factors accounts for the PAHs distribution observed in sediments. Aswas
reported by Moore and Ramamoorthy (1984), due to their hydrophobic nature, PAHs
entering the aquatic environment exhibit a high affinity for suspended particulates in the
water column. As PAHSs tend to sorb to these particles, they are eventually settled out of the
water column onto the bottom sediments. Thus, the PAH concentrations in water are

usualy quite low relative to the concentrations in the bottom sediments.

Parameters such as octanol-water partition coefficient (Kqy), the sorption coefficient (Koc),
equilibrium partition theory (EPT), bioconcentration factor and biota-sediment
accumulation factor (BSAF) have been used by different authors to explain the fate and

distribution of organic trace pollutants in the marine environment.

The octanol-water partition coefficient is defined simply by;

where Coctndl jsthe molar concentration of the organic compound in the octanol phase,

and Cva jsthe molar concentration of the organic compound in water when the system is

at equilibrium.

The logarithm of water/octanol partition coefficient (log Koy) gives ameasure of a
compounds’ hydrophobicity, with large values reflecting relative insol ubility in agueous
solutions. This model has been used by many authors (for example, Pruell et al., 1986;
Baumard et al., 1999; King et al., 2004; Gourlay et al., 2005; Oen et al., 2006) to describe
the interaction of organic contaminants with the marine environment assuming

equilibration.

Equilibrium partition theory; the most relevant hypothesis was initially proposed by Sheain
1988, and further developed by DiToro et al.(1991), who proposed that organic chemicals
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which sorbed to soil or sediment are in equilibrium with the aqueous phase or pore water,
the same aqueous phase to which benthic and terrestrial organisms are exposed.
According to Mitra et al. (1999), in a two-phase aqueous system at equilibrium, the
concentration of achemical in afreely dissolved phase (Cw, mg/l) relative to that in a

sorbed phase (Cs, mg/kg), is described by alinear equation —

where Ko jsthe sediment to pore water distribution coefficient.

However, it has been established that the partition behaviour of hydrophobic chemicals,
Polychlorinated biphenyls (PCBs), Organochloro pesticides (OCPs), and PAHS, in
sediment, water and biotais mainly determined by the lipid and organic carbon content; the
more hydrophobic a compound, the greater the partition to the lipid and organic carbon
content (Van der Oost et al., 2003). Hence, the use of bioconcentration factor (BCF) to
explain the relationship between organism and pore water. BCF of a chemical has been
defined as the ratio of its concentrations in the organism to that in water during steady state
equilibrium.

BCF = Ky - C%
Ke Cw (1.3)

If sorption of hydrophobic chemicalsis considered as a partitioning between water and the
organic fraction of the sediment, then equilibrium sorption coefficient (Koc) can be
expressed as:

Koc = ky = C/
Ks Cw (1.4)

where w and s refer to water and sediment respectively.
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If the processes of bioconcentration (1.3) and sorption on sediment (1.4) have both reached
equilibrium, then biota to sediment accumulation factor (BSAF) isdescribed whichisthe
relationship between a chemical sorption to sediment and organism (Van der Oost et al.,
2003).

BSAF — c% — BCF
SAF =20, Koc oo, (L5)

Hence, once available in the water phase or adsorbed on particul ate matter, filter feeding
organisms like mussels can accumul ate PAHs to concentrations higher than are present in
the water phase due their relatively poor ability to rapidly metabolize PAHs. As agenerad
rule, water is the dominant source of exposure for organic compounds with low log Kqw
(<5) while sediment particles (as food) can contribute substantially to bioaccumulation for
those with high log Koy (>5) (Belfoid et al., 1996). Since these compounds are biologically
available, PAH retained in sediment can also adversely affect biota or result in high

concentrations in the tissues of indigenous organisms (Yim et al., 2002).

1.4.1 PAHsin marine organisms

The presence of a xenobiotic compound in a segment of an aquatic ecosystem does not, by
itself, indicate injurious effects. Connections must be established between external levels of
exposure, internal levels of tissue contamination and adverse effects (Van der Oost et al.,
2003). Over the years, researchers have used living organisms to monitor the concentration
and effect of pollutantsin the environment. PAHs are lipophilic and therefore are
preferentially accumulated in the lipids of organisms where they cause a variety of
sublethal effects. The interest in using organisms to monitor marine pollution relies on the
fact that analyses of the tissues give an indication of the bioavailable fraction of the
environmental contaminant (Gourlay et al., 2005) and the biological effect (e.g. Kennicutt
et al., 1994; Aaset al., 2000; Aas et al., 2001). For example, the mussel watch project in
USA and the Roseau National d° Observation (RNO) in France have been devel oped using
mussel and oysters to monitor spatial and temporal trends of contaminant concentrationsin

coastal and estuarine regions (Cantilo, 1991).
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In marine organisms, the resultant tissue burden is controlled primarily by the uptake and
elimination kinetics (Davies et al., 1997). While uptake is governed primarily by
bioavailability, elimination of PAH is governed by its metabolism and biotransformation

processes. These concepts are discussed in details in subsequent sections.

1.4.1.1 Bioavailability

The concept of bioavailability is extremely important in understanding and describing the
environmental fates and biological effects of PAHs in the marine environment. In areview
by Belfroid et al. (1996), bioavailability was defined as the fraction of the bulk amount of
the chemical present in sediment and water that can potentially be taken up during an
organism’ s lifetime into the organism’ s tissues (excluding the digestive tract). Also, in
agquatic toxicology, bioavailability is defined as the extent to which a chemical can be
absorbed or adsorbed by aliving organism by active (biological) or passive (physical or
chemical) processes. A chemical is said to be bioavailableif it isin aform that can move
through or bind to the surface coating (e.g., skin, gill epithelium, gut lining, cell membrane)
of an aquatic organism (Kleinow et al., 2000).When measuring bioaccumulation behaviour,

the bioavailability of the substanceis considered a crucia parameter for valid results.

Various methods have been used to measure the bioavailable concentrations of PAH in
environmental studies and these have included the direct measurement of agqueous PAH
concentration in water (e.g. Neff, 1991); measurements of tissue PAH concentrationsin
sentinel organisms such as mussels and oysters in the context of routine monitoring
(Sericano et al., 1996; Bender et al., 1987; Grundy et al., 1996; Baumard et al., 1999; King
et al., 2004) and in ail spill assessments (Page et al., 1999; Page et al., 2005; Johansson et
al., 1980); and the use of semi-permeable membrane devices (SPMDs) (Gourlay et al.,
2005; Boehm et al., 2005; Richardson et al., 2005) and silicone rubbers (Y ates et al., 2007)
as passive abiotic samplers. The concept of bioavailability his has been atopic for scientific
debate in recent times. Organismsrespond only to the bioavailable fraction of
contaminants. However, most extraction methods used to analyse soil and sediment
samples for PAHSs are exhaustive. This means that, these methods measure the total

concentration of the contaminant in a given environmental sample even when their
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availability to living organisms has been limited by ageing. According to Harmsen (2007),
the bioavailable fractions of contaminants are dependent on soil properties and various
processes varying with time and on the behaviour of the target organism. Bioavailability is
apromising tool inrisk assessment when viewed as the determination and assessment of
exposure and measuring and assessment of effects. The working group ‘Bioavailability’ of
|SO/TC190-Soil Quality has developed a guidance document for development and
selection of methods to assess bioavailability for different target species with regard to

several classesof contaminants.

1.4.1.2 Bioaccumulation

The concentration of trace pollutants in the tissue burden of an organism is dependent on
the biological availability of the compound, the length of exposure of an organism to it, and
the organism’ s capacity for metabolic transformations (Van der Oost et al., 2003). Apart
from bioavailability, another key factor that affects organisms' tissue burden is the uptake
route (feeding mode). Elaborating on the feeding mode, Van der Oost et al. (2003) and
Guilherme (1998) reported that persistent hydrophobic chemicals may accumulatein
aquatic organisms through different mechanisms: viathe direct uptake from water by the
gills or skin (bioconcentration), via uptake of suspended particles (ingestion) and via
consumption of contaminated food (biomagnifications). When organisms are exposed to
only the dissolved phase, they tend to accumulate more of the soluble fraction of
contaminant available in the water column. Whereas, organisms exposed to high turbidity
water column or located close to the sediment tend to accumulate high molecular weight
PAHSs and less soluble compounds from the sediment and particul ate matters (King et al .,
2004).

Different model s have been used to study the bioaccumulation of contaminants. Baumard
et al. (1999) used the bioaccumulation factor (BAF) model; which isthe ratio of organism
concentration of a compound to the sediment concentration of the compound, to access the
PAH tissue burden of mussels from different marine environments. They concluded that

the location (habitat) of an organism within an aquatic environment govern the major
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uptake route of a contaminant and therefore should be a determinant factor in the selection

of appropriate model in estimating bioaccumulation.

1.4.1.3 Metabolism and Biotransfor mation of PAHs

Invertebrates have less ability to metabolise xenobiotics than vertebrates and this can result
in tissue burden of invertebrates been relatively high even when the contaminant has
virtually disappeared from the environment (Gobas et al., 1988). However, Wiel et al
(1989); Stegeman (2000); and Pearce (1997) have reported that vertebrates have ahigh
capacity for metabolizing aromatic hydrocarbons including PAHs through cytochrome
P450 1A mediated oxidation. Therefore, elevation of cytochrome P450 1A levelsin fish
may indicate exposure to some aromatic hydrocarbons, even though tissue levels may not
show elevated concentrations. Measurement of hydrocarbon metabolitesin tissues where
elevated cytochrome P450 1A is observed has provided evidence of the relationship
between hydrocarbon exposure, metabolism and cytochrome P450 1A activity (Aas et al.,
2001; Ferreiraet al., 2006; Wirgin et al., 1995). Metabolism of hydrocarbon mixtures may
result in excretion of some compounds but aso activation of other compounds to toxic
metabolites including DNA adducts (Wirgin et al., 1995). According to Van der Oost et al.
(2003), an organism has two magjor ways of eliminating a chemical, which is either;
excretion of the chemical in itsoriginal form or biotransforming the chemical into a
metabolite (Fig. 1.3).

Biotransformation is another important factor in examining tissue burdens and biological
effects. An organism'’s capacity for biotransformation of hydrocarbons has been used in
many instances as an estimate of exposure in the absence of measurable hydrocarbon
concentrations. Biotransformation generally leads to the formation of a more hydrophilic
compound which is more easily excreted than the original compound (Vermeulen, 1996).
However, biotransformation may also alter the toxicity of the compound, which may be
either beneficial or harmful to the organism. In case of a detoxification reaction, the

toxicity of the compound is reduced while excretion rate is generaly elevated (Fig. 1.4)

20



Chapter One: Introduction

In case of bioactivation, however, the compound is transformed into a reactive metabolite,

which is more toxic than the parent compound (Cavalieri and Rogan, 1995).

‘O Ctp P450
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Fig. 1.3: Pathway involved in the activation of benzo[a]pyrene to areactive intermediate;
B[a]P-7,8-dihyrodiol, an ultimate carcinogen. (1) benzo[a]pyrene; B[a]P, (2) B[a]P-7,8-
dihyrodial, (3) B(a)P-7,8-dihydrodiol-9,10 epoxide
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Fig. 1.4: Pathway involved in the phase 1 metabolism (detoxification) of benzo[a]pyrene.

1 2
(1) benzo[a]pyrene, B[a]P; (2) B[a]P-7,8-dihyrodiol, (3) 1-hydroxyl B[a]P, (4) 3-hydroxyl
B[a]P.

However, not all PAHs are metabolically activated and relatively a few have been shown to
be carcinogenic, e.g. Benzo[a]pyrene, benzo[a]anthracene, dibenz[a,h]anthracene (WHO
2000). Moreover not al organisms have sufficiently well developed mixed function
oxidase (MFO) capable of activating such compounds. Biotransformation process is thus
important in determining the biological activity of a compound, the effect and duration of

that activity, and the half-life of the compound in the body.

Biota sediment accumulation factor (see section 1.3) one of the partitioning models used in
monitoring uptake of PAHs in the environment may be distorted by biotransformation (see
section 1.3). Increased clearance of contaminants through effective biotransformation may
cause severe deviations in BSAFs from the expected values. However, when uptake rates

are significantly higher than metabolic clearance rates bioaccumulation can still occur even
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though the substance is readily biodegradable (Van der Oost et al., 2003). Pollutants
concentrations in tissues and differences in excretion of metabolites can be a function of
tissues and conditions controlling the activity of biotransformation enzymes. Measurements
of metabolitesin bile and liver tissues of fish are also being used as biomarkers to assess

exposure of these organismsto PAHSs (e.g. Gagnon and Holdway, 2002)

142 Theory of kinetics of eimination of PAHS

Different kinetic models have been applied to investigate the kinetics of elimination PAHS
from marine organisms (Pruell et al., 1986, MclIntosh et al., 2004, Richardson et al., 2005).
Rate constant models relate the concentration of a compound in one compartment with that
in another. Generally, one compartment models, where the organism istreated as a
homogenous compartment, and two compartment models, which assumed a central
compartment and a slowly exchanging compartment, have been used. However, severa
authors have reported the adequacy of first order one-compartment model in estimating the
kinetic of elimination of hydrophobic contaminants (PAHs, PCBs and OCPs) from
organisms (Sericano et al., 1996, Gewurtz et al., 2002). In his study, Sericano used first

order kinetics to describe the accumulation and elimination of PAHs from American oyster

as follows-
@ = ku Cu— kd Ci
dt (1.6)

whereCt isthe concentration (ng g in the mussel at timet, K, and Ky are the uptake and
depuration rate constants respectively, and C,, is the concentration (ng mi™) in the
seawater.

If concentration in the seawater (Cy,) is regarded as zero during depuration, then equation

one reduces to

dcCt

i Y O T 17
" k2Ci (1.7)
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Integration of equation (1.7) gives

INCi=—Kot+INCp vevvvvniiiiiiiiiias (1.8), or the log transformed equivalent

l0gC: =109Co— (K75 gyt +vvvvvvevvninns (L9),

where Cpisthe PAH concentration in mussels prior to depuration.

The depuration constant (k;) of individual PAH can be evaluated from equation (1.8), and
half-life from equation 1.10

| In2 0.693
halflife (t%): T o (1.10)

Note: Kq = ko

1.5 Regulation, toxicity and effects of PAHs

PAHs are amongst the compounds present on the Oslo and Paris (OSPAR) Commission
List of Chemicalsfor Priority Action (OSPAR- 02/21/1-E, Annex 5) and the EU Water
Framework Directive List of Hazardous Substances (Directive - 2000/60/EC). Also the
United States Environmental Protection Agency (US EPA) identified 16 priority PAHS,

some of which are considered possible or probable human carcinogens.

PAHSs have been implicated in various plants, animals and human tissue disorders and this
has raised awareness on the need for monitoring and regulation of these chemicalsin the
environment. In order to safeguard public health, anumber of national and international
bodies have a so set guidelines to monitor the level of PAHs especially benzo[a]pyrenein

consumer goods.
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In 1974, United States Congress (US) passed the Safe Drinking Water Act; this prompted
the United States Environmental Protection Agency (USEPA) to set the maximum
contaminant level (MCL) for benzo[a]pyrene to 0.2 ppb in potable water which became
effectivein 1994. And, in December 2000, the European Union adopted the Water
Framework Directive (WFD) which purpose was to protect the inland surface waters,
coastal and groundwater, and estuaries from hazardous contaminants (Directive
2000/60/EC).

In addition, European Commission Regulation (EC) 466/2001, which sets maximum limits
for certain contaminants in foodstuffs, has applied across the European Union since April
2002. The aim of the Regulation is to keep contaminants at levels that are toxicologically
acceptable and to exclude grossly contaminated food from entering the food chain. On 4
February 2005, the European Commission amended this regulation as regards PAHs in
Commission Regulation (EC) No 208/2005. The later regulation sets the maximum limit
for benzo[a]pyrene in fish and shellfish as follows — muscle meat of fish (2.0 ng g%,
muscle meat of smoked fish (5.0 ng g™*) and bivalves molluscs (10.0 ng g™%). The
commission also advised the measurement of the following compounds —

benz[ a]anthracene, benzo[a]fluoranthene, benzolj]fluoranthene, benzo[ K] fluoranthene,
benzo[g,h,i]-perylene, chrysene, cyclopenta]c,d]pyrene, dibenz[a,h]anthracene,
dibenzo[a,e]pyrene, dibenzo[a,h]pyrene, dibenzo[a,i]pyrene, dibenzo[a,l]pyrene,
indeno[1,2,3-c, d]pyrene and 5-methyl chrysene in consumer products as a necessity which
will inform afuture review of the suitability of maintaining benzo[a]pyrene as a marker.

The 2- and 3-rings PAHs (naphthalenes and phenanthrenes) are acutely toxic and have been
implicated in tainting of fish and shellfish (Heras et al., 1992), while the 4- to 6-rings PAHs
have been reported as probable human carcinogens e.g. benz[a]anthracene,
dibenz[a,h]anthracene and Benzo[a] pyrene which is an established human carcinogen
(Cavdlieri and Rogan 1992; IARC 1983). In fish and mammal's, the immunotoxic effects of
PAHSs have been widely demonstrated (Galvan et al., 2005; Roos et al., 2004; Platt et al.,
2004; and Hu et al., 2006). It has been estimated that exposure to environmental chemical
carcinogens may contribute significantly to the causation of a sizable fraction, perhaps a
majority, of human cancers, when exposures are related to "life-style" factors such as diet,

tobacco use, etc (Wogan et al., 2004). In most cases, the polar bio-chemically reactive
24



Chapter One: Introduction

electrophilic species (ultimate carcinogenic metabolites) interacts with cellular

macromolecules, particularly nucleic acids and proteins (Xue and Warshawsky, 2005).

According to the EU Scientific Committee on Food Directive (Directive 2005/108/EC),
benzo[a]pyrene (B[a]P) can be used as a marker for the occurrence and effect of
carcinogenic PAH in food. The frequent use of B[a]P as amode compound to assess the
potentia risk of PAHs stems from the fact that it has been established beyond doubt to be a
carcinogen (Cavalieri and Rogan, 1992; IARC, 1983). Based on this, the B[a] P toxic
equivalency approach was devel oped to relate the capacity of priority PAHsto induce
cancer to that of B[a]P. The potencies relative to B[a]P of other PAHs are based primarily
on animal bioassay studies. The potencies suggested by different authors are summarised in
Table 1.4.
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Table 1.4 Relative PAH potency estimate derived from various sources (adapted from

Yender et al., 2002).

Relative PAH Potency

Compound ICHIEPA® | USEPA® | FDA® | ca Epad | NVISPE f‘
Lagoy
Benzo[a]pyrene 1.0 1.0 1.00 1.00 1
Dibenzo[a,h]anthracene 1.11 1.0 1.05 0.36 5
Indeno[1,2,3-c,d]pyrene 0.232 0.1 0.25 0.10 0.1
Pyrene 0.081 0.13* 0.001
Benzo[b]fluoranthene 0.140 0.1 0.11 0.10 0.1
Benzo[K]fluoranthene 0.066 0.01 0.07 0.10 0.1
Benzo[g,h,i]perylene 0.022 0.03 0.01
Fluoranthene 0.02* 0.001
Benz[a]anthracene 0.145 0.1 0.014 0.10 0.1
Chrysene 0.0044 0.001 | 0.013 0.01 0.01
Anthanthrene 0.320**
Benzolj]fluoranthene 0.061
Benzo[e]pyrene 0.004
Cyclopentadieno[ c,d]-pyrene 0.023
Anthracene 0.01
Acenaphthene 0.001
Acenaphthylene 0.001
Fluorene 0.001
2-Methylnaphthalene 0.001
Naphthalene 0.001
Phenanthrene 0.001

& |CF-Clements Associates (1988).

** |dentified in Nisbet and LaGoy (1992) as anthracene.

b U.S. Environmental Protection Agency (1993).
“U.S. Food and Drug Administration, Contaminants Standards Monitoring and Programs
Branch, Centre for Food Safety and Applied Nutrition (Bolger et a. 1996)
* Division of Mathematics, Centre for Food Safety and Applied Nutrition.
d California Environmental Protection Agency (1997).

®Nisbet and LaGoy (1992).
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1.6 Managing risks from petrogenic PAHs.

Aswas mentioned in section 1.2, PAHs are the major components of crude oils and derived
products that have been found to constitute serious environmenta hazard. The challenges
and complexities of trying to assess and then manage the environmental risks associated
with PAHs in the environment should not be underestimated. From the outset, assessing the
risks posed by a single compound and identifying what can be readily achieved in terms of
controlsis acomplex task. One of the challenges with PAHs isthat they occur naturally
and also result from anthropogenic activities; consequently PAHs have numerous sources
other than those that can be directly attributable to the oil industry. This leads to problems
when attempting to identify and prioritize al the relevant sources and assess their potential
environmental risk. To further complicate the issue, the range of species of PAH isvast and
thereisalack of clarity asto how long each PAH lingersin the environment and the extent

of risk individual PAH poses to human health and the environment.

In a publication by the European Environmental Agency, risk assessment was defined as
the procedure by which the risks posed by inherent hazards involved in processes or
Situations are estimated either quantitatively or qualitatively (Fireman et al., 1998). Van der
Oo<t et al. (2003), in areview of PAHs biomarkers also defined Environmental Risk
Assessment (ERA) as the procedure by which the likely or actual adverse effects of
pollutants and other anthropogenic activities on the ecosystem and their components are
estimated with known degree of certainty using scientific methodologies.

Risk assessments vary widely in scope and application. Some look at singlerisk in arange
of exposure scenarios while otherslook at the range of risks. However, a serious
shortcoming of most environmental risk assessment processes is the absence of baseline
data. According to (Fireman et al., 1998), environmental monitoring seeks to generate

relevant information and accomplishes the following:

i.  Determine theindicators to be used in monitoring activities,
ii.  Collection of meaningful and relevant information,
iii.  Application of measurable criteriain relation to chosen indicators,

iv.  Reviewing objective judgments on the information collected,
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v.  Draw tangible conclusions based on the processing of information,
vi. Making rational decision based on the conclusion drawn, and

vii.  Recommendation of improved mitigation measures to be undertaken

One problem beginning to face the regul atory agencies is differentiating between perceived
risks as opposed to actual risk of environmental contaminants. Both are important and need
to be managed. This problem has occurred more frequently in recent years asa
consequence of the increased focus on environmental issues and the demands to reduce the
release of hazardous chemicalsinto the environment. Therefore, in any environmental risk
assessment, it is necessary to establish whether any potential exposure routes exist (i.e.
essentialy establishing a source—pathway—receptor). The concept of bioavailability is
therefore arelevant approach in risk assessment of PAH contamination in the marine

environment.

1.8 Research Application

Effective determination of the fate of spilled oil in the environment and the successful
identification of source(s) of spilled oil and petroleum products is extremely important in
oil related environmental studies and liability cases (Wang et al., 1999). Samples collected
from the suspected spill sites are analysed to:

i.  Assess both the short term and long term environmental impacts on the biological
communities within the area.
ii.  Toevauate the chemical changes that occurs during weathering, as these processes
can ater the distribution of the oil components

iii.  Tracethe source(s) of the spilled ail.

It isthe responsibility of FRSto provide expert scientific and technical advice and
information on marine and freshwater fisheries, on aquaculture and on the protection of the
aquatic environment and its wildlife. Thisisto ensure as far as possible, that Government
policy and its regulatory and statutory activities are informed by afull and up-to-date

knowledge of marine and freshwater fisheries, of aquaculture and of agquatic environment.
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One of the functions of the |aboratory isto protect the marine environment from pollution
through routine monitoring and measuring of priority contaminants and then proffer advice

on their control.

The ability to predict the fate of individual PAH compound after spills and to trace spilled
oil to its source would be invaluable in monitoring exercises and environmental risk
management. The data generated from this study and similar studies at FRS will form the
basis for the development of procedures for emergency responses during oil spill and
accidental discharge incidents.

1.9 Project Aim

The purpose of this research work is to improve the underlying knowledge base of the
occurrence and behaviour of PAHs in the marine environment and thereby enhance the
reliability of management responsesto oil spills and related incidents. The current study
focused on the evaluation of the depuration kinetics of selected priority PAH compounds
by monitoring the elimination rates of these compounds from both naturally incurred and
artificially exposed mussel. In addition, the changes in geochemical biomarker profile
(steranes and triterpaes) were also investigated to ascertain the suitability of using the

biomarkersin living organisms for oil spill source identification.

Project Milestones

1 Review of works relating to sources, behaviour and fate of PAHs in the

environment to gain background knowledge on the subject of study.
2 Evaluate procedures and methods used in PAHSs studies to select an appropriate

method for the present study, and devel op new methods or procedures where

necessary, to suit the study objective.
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3 Develop and validate methodol ogies to allow measurement of the additional PAHS:
cyclopentg[c, d] pyrene and isomeric forms of dibenzopyrene for environmental

monitoring.

4 Investigate and compare the rates of elimination of individual PAHs from naturally
contaminated blue lipid mussels (Mytilus edulis) depurated in alaboratory flow-
through systems with that depurated in the field.

5 Investigate the depuration rates of individual priority PAHs and geochemical
biomarkers from salmon (Salmo salar) and blue lipid mussels artificially exposed to
crude ail.

6 Investigate the biomarker profilesin farmed mussels artificially exposed to crude
oils from different geological source rocks and also compare the changesin
biomarker profilesin mussels resulting from the laboratory and field depuration

experiments.
7 Calculate the depuration rate of each PAH studied and therefore develop

recommendations for improving oil spill response based on results obtained and
literature data.
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CHAPTER TWO

General Analytical M ethods

Several anaytical procedures involving extraction, clean up, fractionation and
guantification, have been described in literature for the determination of PAHs in different
matrices. These are reviewed below and specific FRS methods used for the thesis given in
subsequent paragraphs.

2.1 Extraction

Thefirst step in analytical procedure is dways the isolation of the interest analyte from its
matrix and hence from interferences. Several methods of extraction have been devel oped
and reported in the literature for the isolation of priority PAHs for determination depending
on the matrix involved. Common extraction methods used for PAHs analysis have ranged
from liquid-iquid extraction (LLE) as described by Lin et al. (2005), solid-phase
extraction (SPE) as reported by Garcia-Falcon et al. (2005), solid-phase micro-extraction
(SPME) (Cortazar et al.., 2002), and stir bar sorptive extraction (SBSE) (Zuin et al., 2005)
in wastewater samples, Microwave assisted extraction (Baumard et al., 1999a and 1999b),
Soxhlet extraction (Martinez et al., 2004; Medeiros and Bicego 2004) and sonication
(Martinez et al., 2004) in sediment and biota samples; while saponification followed by two
steps solvent extraction has been predominantly used for biota analysis (Webster et al.,
1997; Hyotylainen et al., 2002; MclIntosh et al., 2004; Martinez et al., 2004).

2.2 Determination

Common methods to analyze PAHs in solid samples (sediments, soils, biota) are based on
US Environmental Agency (EPA) methods 8310 (HPLC-UV or HPLC-F) and 8270C (GC-
MS). Liquid chromatography has been widely applied to the analysis of PAHs, mainly due

to the specificity and low detection limits of fluorescence detection (HPLC-F).

31



Chapter Two: General analytical methods

However, the analysis by GC-MS has the advantages of its selectivity, high
chromatographic resolution and sufficiently low detection limits for trace analysis
purposes. Along with the ability to make qualitative determinations, the method is aso an
invaluable tool for providing quantitative results (US EPA). GC-MS can be used to analyze
the parent as well as the akylated PAH compounds, and because its selectivity enables
positive identification of compounds without additional sample processing, GC-MSin the
selective ion monitoring mode (SIM) has been widely used in environmental analyses.
Therefore this method is used in the present study.

2.3 FRS standard methods

The sections below briefly describe the standard analytical methods used in this thesis.
These methods are well established at FRS Marine Laboratory (FRS ML) and are
accredited by the United Kingdom Accreditation Service (UKAS) to ISO 17025. Detailed
outline of the methods are available in the FRS ML standard operating procedures given as

Appendix 1.

2.3.1 Quality assurance

Environmental trace analysis of persistent organic pollutants (POPs) requires consideration
of quality control and assurance. Consequently, particular care was taken in cleaning
glassware, checks on contamination of solvents and correct handling of the samples and
equipment to avoid problems of contamination. Where necessary, work was carried out
using dedicated laboratory space (environment) and equipment. The procedures described
in this chapter are UKAS accredited under 1SO 17025 (Webster et al., 2005). Samples
were kept in designated freezers and properly logged into the FRS quality system for
traceability and also to maintain their integrity. Procedural, field blanks and laboratory
reference materials (LRM) were included in analyses and where necessary, monitored

using control charts as a check for recovery and contamination, as well as the use of
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Fisheries Research Services
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Fig. 2.1: Example of a Shewhart control chart for phenanthrene showing warning and
action control limits, based on = 2 x and * 3 x the standard deviation of results obtained.

Each data point on the plot represents avalue from a single analysis of an LRM in a batch.

internal standards. Shewhart control charts (Fig. 2.1) are used to monitor the performance
of amethod (LRM or ablank) for individual compounds by updating the data after each
analysis with warning and action limits drawn at + 2 x and = 3 x the standard deviation of
results obtained respectively. As part of the quality assurance, the laboratory participates
successfully in the external, Quality Assurance of Information for Marine Environmental
Monitoring in Europe (QUASIMEME) laboratory performance study scheme for PAHs
(Law et al., 1997).
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2.3.2 PAH analysisof biota

This method is used to analyse tissue samples collected from living organisms for PAHSs.
The tissues analysed in the study include, mussel muscle tissue and salmon muscle tissue.
The method involves the saponification of a known weight of the tissue with 40 ml of 10 %
methanolic sodium hydroxide followed by liquid-liquid extraction of the organic portion
with iso-hexane and methanol-water. The extract is concentrated and HPL C separated into

aliphatic and aromatic fractions before GC analysis and determination.

2.3.2.1 Treatment of Glassware

Hydrocarbon analysis was carried out in a clean environment avoiding contamination of
samples and reagents. To avoid carry over of contamination from previous samples, al
glassware used were either washed in Decon® 180 solution and rinsed with distilled water
or washed inaCAMLAB GW 4050 glassware washer and dried in an oven at 100 + 5 °C.
Before use, the glassware were rinsed twice each with dichloromethane (DCM) and iso-

hexane, and the latter was allowed to evaporate to dryness prior to use.

2.3.2.2 Solvent and PAH standard purity checks

HPL C grade solvents (dichloromethane, ethyl acetate, acetone, methanol and iso-hexane)
are purchased from Rathburn Chemicals Ltd, Scotland, UK. An aliquot of each new batch
of dichloromethane or iso-hexane (100 + 5 ml) are measured using a measuring cylinder
and transferred to a round bottom flask. To thisis added the aliphatic standard (100 £ 5 pl)
containing heptamethylnonane and squalane. The DCM or iso-hexane solution is reduced to
asmall volume (~0.5 ml) by rotary evaporation. In the case of iso-hexane this solution is
transferred to a gas chromatography vid insert, with washings, using a Socerex pipettor and
reduced further to + 50 pl under a steam of scrubbed nitrogen prior to GC-FID analysis.
The DCM has to be replaced with iso-hexane. Thisis carried out by addition of the solvent

(25 £ 2 ml) followed by rotary evaporation to asmall volume (~0.5 ml). Thisisthen

34



Chapter Two: General analytical methods

transferred to a GC vid, with washings and reduced further to ~50 pl under a steam of

scrubbed nitrogen.

The GC-FID chromatogram is qualitatively and quantitatively assessed to ensure it does not
contain more than 100 ng of individual hydrocarbon components. If there are unexpected
peaks, or individual hydrocarbons are at levels higher than 100 ng that particular batch of
solvent is rejected.

Certified solid standards for PAHs (including deuterated PAHS) were obtained from QM X
Laboratories, Essex, UK. Chemical standards used in the preparation of calibration
solutions are of high quality and dissolved in iso-hexane to obtain required concentrations

of standard and spiking solutions. Concentrations were adjusted for purity where necessary.

2.3.2.3 Anhydrous sodium sulphate

The anhydrous sodium sulphate used for drying organic extracts of biotawas prepared by
washing sodium sulphate in dichloromethane and iso-hexane. A 500 ml conical flask is
filled to % with the anhydrous sodium sulphate (Na,SO,) powder and DCM added to cover
the sodium sulphate and the flask covered with aluminium foil and ultra sonicated for 15
min. The DCM is then decanted to waste and the washing procedure repeated using iso-
hexane covering the sodium sulphate and the washings a so decanted to waste. The washed
anhydrous sodium sulphateis dried for 16 + 2 hiin an oven set at 60 °C. The solvent washed
NaSO, is stoppered, stored at room temperature and marked with expiry date of one month
from the day of washing.

2.3.2.4 Methanolic sodium hydroxide

Methanolic sodium hydroxide (10 %) used for the saponification of all biota samples was
prepared in afume cupboard by dissolving 50 g £ 1 g of anaytical grade anhydrous sodium
hydroxide (NaOH) pelletsin 50 ml + 5 ml of distilled water in a Duran bottle. The bottle

content was continuously stirred using a magnetic stirrer until all the pellets have dissolved.
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450 ml = 10 ml of analytical grade methanol was slowly added to the resulting solution
with stirring until completely mixed. This solution is stable for 3 months.

2.3.2.5 Extraction of biotafor PAHs and biomar kers

Extractions of biotafor organic contaminants analysis was carried out using UKAS
accredited method (ML M 690). This method describes the determination of polycyclic
aromatic hydrocarbons (PAHS) in biota. The analysis incorporates two- to six-ring
compounds, both parent and a kylated PAHs but does not cover all of the many PAH

compounds that exist.

2.3.25.1 Saponification of biota samples

Theisolation of hydrocarbons from biota (mussel and salmon) was as described in Webster,
et al. (1997). Biota (~ 10 g for mussels and 4.5 g for salmon) was accurately weighed into a
250 ml round bottom flask and 200 ul £ 10 pl of aliphatic internal standard (containing
approximately 3.2 pg each of heptamethylnonane and squalane) and 100 pl + 10 pl
deuterated PAH aromatic internal standard containing Dg-naphthalene, Do-biphenyl, Dg-
dibenzothiophene, D1g-anthracene, D1o-pyrene and D;,-benzo[a]pyrene (100 pl;
approximately 1 pug mi™ each) were then added to the sample. Sodium hydroxide sol ution
[10 %, 40 ml £ 4 ml; 50 g + 1 g NaOH (g in methanol/H,0O (90:10 “/,)] and afew anti-
bumping granules were also added to the flask and a cleaned reflux condenser fitted to the
flask and lowered onto a heated sand bath (maintained at 75 + 5 °C, monitored using a
calibrated thermometer in a beaker of water). Each sample was saponified for 225 min and
distilled water (10 ml + 0.1 ml) then added and further heated for 15 min.

2.3.25.2 Liquid - liquid extraction

The hot solution was transferred to a 250 ml separating funnel containing iso-hexane (80 ml

+ 5 ml) and methanol: water (4:1"/,. 40 + 4 ml) was used to rinse the round bottom flask
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and added to the separating funnel. The mixture was thoroughly shaken and the lower
aqueous layer transferred to a second separating funnel containing iso-hexane (80 ml £5
ml) and the solution thoroughly mixed. The first iso-hexane extract was washed with 40 ml
+ 4 ml methanol: water (1:1"/,) by shaking vigorously and allowed to separate. The
agueous layer from the second iso-hexane extraction was run-off to waste and the
methanol/water layer from the first separating funnel added to the second separating funnel.
This was shaken, allowed to settle and the aqueous layer was drained to waste. The extracts
from the two separating funnels were then re-combined and washed three times with 40 ml
+ 4 ml distilled water, each time draining the bottom agqueous layer to waste. The washed
extract was then passed through anhydrous sodium sul phate columns to remove any trace
of water (drying) and collected in a250 ml round bottomed flask, and the column rinsed
with 50 ml £ 5 ml of iso-hexane. The eluate from the Na,SO, column was concentrated by
rotary evaporation at a water bath temperature of 30 °C followed by nitrogen blow down to
500 £ 10 pl.

2.3.25.3 Clean- up and isocratic HPL C separation of extract

The reduced extract was fractionated into the aliphatic and aromatic hydrocarbons by
isocratic normal-phase high performance liquid chromatography (HPLC). HPLC
fractionation is performed on an aliquot (150 ul = 10 pl) measured using a calibrated 250 pl
syringe on a Genesis metal free HPLC column (25 cm x 4.6 mm). Elution is by iso-hexane
at aflow rate of 2 ml = 0.1 ml min™. The aiphatic fraction was collected from injection to
the split time and the aromatic fraction collected from the split time to 20 min. of injection.
The HPLC is cleaned after every 7 samples. The split time used (2 min 30 sec — 2 min 45
sec.) is determined after every 84 samples using 150 + 10 pl of a mixture containing 200 pl
+ 10 pl each of concentrated deuterated standard, aliphatic standard and PAH internal
standard. The aromatic and aliphatic fractions were concentrated separately in 25 ml round
bottom flasks using the rotary evaporator, transferred to GC vials and subsequently reduced
further to 50 pl £ 10 pl and 25 pl + 5 pl respectively, under a stream of scrubbed nitrogen
gas. The aromatic fractions were analysed for PAHs using Gas Chromatography-Mass
Selective Detection (GC-MSD) and the aliphatic fractions were analyses for geochemical

biomarkers and n-alkanes using GC-MSD and Gas Chromatography-Flame lonisation
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Detection respectively. Recoveries of > 82 % with precision <9 % were obtained for
mussel samples spiked with 1, 10 and 100 ng g* PAH solution, for individua PAHS.

2.3.2.6 Deter mination and quantification

Prior to using the GC-FID, the aliphatic reference sample are anaysed and the retention
times, peak areas and peak shapes assessed. Analysis of samples are continued only if
thereis no peak tailing, the retention times are within the time windows of the data system
and peak areas are within + 3 SD of the “correct” figure. The GC-MSD is calibrated
biannually and results are calculated using the HP data analysis software. A check is made
on the continuing validity of the calibration by running two calibration check solutions with

each batch of samples.

2.3.2.6.1 Gaschromatography- flameionization detection (GC-FID) of n-alkanes

The diphatic portions were analysed for n-alkanes by GC-FID using an HP 5890 series |
gas chromatograph equipped with an HP 7673 automated on-column injector and fitted
with anon-polar, ultracolumn (25 x 0.2 mm i.d., film thickness 0.33 um. The carrier gas
was helium (16 psi), injections were made at 60 °C and the oven temperature held constant
for 3 minutes. Thereafter the temperature was raised at 4 °C min™ up to 280 °C and held at
this temperature until the end of the run. Data were processed using Turbochrom Navigator

software.

2.3.2.6.2 Gas chromatography-mass selective detection (GC-M SD) of PAHs

The concentrations and composition of the PAHs were determined by GC-MSD using an
HP6890 Series Gas Chromatograph interfaced with an HP5973 M SD fitted with a cool on-
column injector (Webster et al., 2005). Briefly, anon-polar HP5 (30 m x 0.25 mm id, 0.25
pum film thickness; Agilent Technologies, Stockport, England) column was used for the

analyses with helium as the carrier gas, controlled using the constant flow mode at 0.7 ml
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min™. The MSD was set for selective ion monitoring (SIM) with adwell time of 50 min.
Injections was made at 50 °C and the oven temperature held constant for 3 min. Thereafter,
the temperature was raised at 20 °C min™ up to 100 °C, followed by a slower ramp of 4 °C
min™ up to afinal temperature of 270 °C. A total of 31 ion (46 compounds) (Table 2.1) plus
the six internal standard ions were measured over the analysis period, thus incorporating 2-
to 6- ring, parent and branched PAHSs. Limits of detection based on multiplying the
standard deviation of the mean of the lowest standard (0.005 ng mi™) by 4.65 were found to
be < 0.2 ng g* for chrysene and < 0.1 ng g™ for benzo[a]pyrene. The GC-MSD is
calibrated using seven different concentrations of a solution containing 33 PAHS.
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Table 2.1: List of ions measured using the GC-MSD in SIM mode

Molecular Weight/ Da
PAH Parent Alkylated PAH
PAH Cl C2 C3 C4
Naphthalene 128 142 156 170 | 184
Phenanthrene 178 192 206 220
Dibenzothiophene 184 | 198** | 212** | 226**
Fluoranthene/ Pyrene 202 216 230 | 244**
Benzo[ c]phenanthrene/Benz[a]anthracene/ 228 242 256
Benz[b]anthracene* * /Chrysene+Triphenylene
Benzofluoranthene/Benzo[ €] pyrene/ 252 266 | 280**
Benzo[a]pyrene/ Perylene
Benzo[g,h,i]perylene/ 276 | 290** | 304**
Indeno[1,2,3-c,d]pyrene
Acenaphthylene 152
Acenaphthene 154
Fluorene 166
Dibenz[a,h]anthracene 278
Cyclopenta[c,d]pyrene (226)* * 226
Dibenz[a,|]pyrene (302)** 302
Dibenz[a,e]pyrene (302)** 302
Naphtho[2,1-a]pyrene (302)** 302
Dibenz[a,i]pyrene (302)** 302
Dibenz[a,h]pyrene (302)** 302
Dg- Naphthalene’ 136
D10~ Biphenyl” 164
D1o- Anthracene 188
Dg- Dibenzothiophene 192
Dio- Pyrene 212
D1,-Benzo[a]pyrene 264

" Deuterated PAHs used asinternal standards
" Determination not UKAS accredited to the Laboratory

2.3.2.6.3 Gas chromatography-mass selective detection (GC-M SD) geochemical
biomarkers
The diphatic fractions were analysed for steranes and triterpanes by GC — MSin selective

ion monitoring mode using an HP6890 Series gas chromatograph interfaced with an
HP5973 MS and fitted with an on-column injector. Injections were made at 60 °C and the
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oven temperature held constant for 0.5 minutes after which it was increased at 40 °C min™

up to 150 °C. This was followed by a slower ramp at 5 °C min™ up to afina temperature of

300 °C and held at this temperature for 22 minutes. The carrier gas was helium set at a

constant flow of 0.7 ml min™*. Geochemical biomarker analysis was carried out using the

selected ion monitoring mode (SIM). Triterpanes were monitored at m/z 191 while steranes
were monitored at m/z 217 and 218 (Webster et al., 2004).

Table 2.2: List of triterpane and sterane geochemica biomarkers measured using the GC-

MSD in SIM mode (o and B signify geometrical isomers)

Qlon | Molecular

ID Name Formula
Ts 18a/(H)-22,29,30-trinorhopane 191 CoHas
Tm 170(H)-22,29,30-trisnorhopane 191 CoHus
28af 170(H), 21p—28,30-bisnorhopane 191 CoHaus
293 170(H),21B(H)-30-norhopane 191 CaoHso
29Ts 18a/(H)-norneohopane 191 CooHso
30d Diahopane 191 CsoHs2
300 Oleanane 191 CsoHs;
3003 170(H), 21B(H)-hopane 191 CaoHs2
30Ba 17B(H), 21a -(H)-hopane 191 CsoHs
31apS 170(H), 21B(H)-22S-homohopane 191 CsiHsp
310pR 170(H), 21B(H)-22R-homohopane 191 CaiHsy
30G Gammacerane 191 CsoHs2
Diploptene 178 (H),21 B H)-hop-22(29)-ene 191 CsoHso
320P3S 17a(H), 21p(H)-22S-bishomohopane 191 CaoHss
320pR 170(H), 21B(H)-22R-bishomohopane 191 CaoHss
33aPS 17a(H), 21B(H)-22S-trishomohopane 191 CasHsg
33upR 170(H), 21B(H)-22R-trishomohopane 191 CssHss
340fS 170(H), 21B(H)-22S-tetrakishomohopane 191 CasHeo
34apR 170(H), 21B(H)-22R-tetrakishomohopane 191 CaHeo
350PS 17a(H), 21B(H)-22S-pentakishomohopane 191 CssHe
350BR 170(H), 21B(H)-22R-pentakishomohopane 191 CssHep
C29aS | 5a(H), 14a(H), 17a(H)-24-ethylcholestane (20S) | 217 CxoHs)
C29B8BS | 5a(H), 14B(H), 17p(H)-24-ethylcholestane (20S) | 217 CaoHs;
C29BBR | 5a(H), 14B(H), 17p(H)-24-ethylcholestane (20R) | 217 CaoHs)
C29aR | 5a(H), 14a(H), 17a(H)-24-ethylcholestane (20R) | 217 CaoHs;
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2.3.3 Method re-validation

Method validation is the process to confirm that the analytical procedure employed for a
specific test is reproducible and rugged over the specified range that an analyte will be

analyzed and is suitable for its intended use.
Methods need to be validated or revalidated

« beforetheir introduction into routine use

« whenever the conditions change for which the method has been validated, e.g.,
instrument with different characteristics

« whenever the method is changed, and the change is outside the original scope of the
method.

The introduction of cyclopenta]c,d]pyrene, dibenzo[a,e]pyrene, naphtho[2,1-a]pyrene,
dibenzo[a, h]pyrene, dibenzo[a, i]pyrene, and dibenzo[a, I]pyrene, to the PAH suite
analysed by FRS necessitated the re-validation of the method to allow measurement of

these PAHSs. The parametersre-validated for are as follows —

e Method Recovery
e Method limit of detection
e Instrument limit of detection

e Methods reproducibility

2.3.3.1 Preparation of the stock solution
Stock solution (20pg mi™) used for the re-validation exercise was prepared by weighing out

approximately 5 mg each of the PAH compound given in Table 2.3 and dissolving themin

250 ml of iso-hexane.
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Table 2.3: The PAH compounds used for the preparation of the stock solution

Compound Purity Wt. (mg) Conc. (ug/ml)
Naphthalene 99+ 5.24 21.0
2-Methylnaphthalene 99.5 4.90 19.6
1-Methylnaphthalene (Liquid) 99.5 5.67 22.7
2,6-Dimethylnaphthalene 99.8 4.44 17.8
2,3,5-Trimethylnaphthalene (Liquid) 99.4 6.00 24.0
1,4,6,7-Tetramethylnaphthalene 99.0 6.43 25.7
Phenanthrene 99.5 5.85 234
Anthracene 99.9 6.38 255
2-Methylphenanthrene (C1-178) 98.4 4.53 17.8
3,6-Dimethyl phenanthrene (C2-178) 99.8 5.91 23.6
2,6,9-Trimethylphenanthrene (C3-178) 99.3 6.58 26.3
Dibenzothiophene 99+ 7.70 30.8
Fluoranthene 99.8 512 20.5
Pyrene 99.9 5.60 224
1-Methylfluoranthene (C1-202) 99.7 4.74 19.0
2,7-Dimethylpyrene (C2-202) 97.2 4.52 17.6
Benzo[ c] phenanthrene 99.9 4.48 17.9
1,2-Benz[a]anthracene 99.4 4.97 19.9
Chrysene 99.9 4.70 18.8
2-Methylchrysene (C1-228) 99.5 4.37 175
Dimethylbenz[a]anthracene (C2-228) 99.8 4.61 184
Benzo[b]fluoranthene 99.9 6.10 24.4
Benzo[K]fluoranthene 99.9 4.61 184
Benzo[€e]pyrene 994 6.53 26.1
Benzo[ a]pyrene 99.8 6.84 27.4
Perylene 99.6 5.66 22.6
7-Methylbenzo[a] pyrene (C1-252) 99.0 5.08 20.3
Indenopyrene 99.6 4.44 17.8
Benzo[g,h,i]perylene 99.7 5.73 22.9
Acenaphthylene 99.5 517 20.7
Acenaphthene 99.5 6.63 26.5
Fluorene 99.8 5.93 23.7
Dibenz[ah]anthracene 994 5.76 23.0
4-methyldibenzothiophene* 96.0 10.45 40.1
5-methylchrysene 99.5 4.72 18.9
Dibenz[a,e]pyrene 99.8 4.70 18.8
Dibenz[a,i]pyrene 99.9 4.30 17.2
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Dibenz[a,h]pyrene 99.8 5.05 20.2
Dibenz[a,|]pyrene 99.8 4.74 19.0
Cyclopenta[c,d]pyrene 99.5 4.45 17.8
Naphtho-[2,1-a]pyrene 98.9 4.35 17.2
Benz[b]anthracene 98.0 5.56 21.8
D12-chrysene 99.5 4.47 17.9
D10-fluoranthene 99.5 4.84 194
D12-benzo[ €] pyrene 99.9 514 20.6
D10-fluorene 99.0 4.75 19.0

Compound in bold were corrected for purity.

100 ml of the stock solution was transferred to 200 ml flask with addition of 10 ml of

toluene and ultra-sonicated for 5 minutes to completely dissolve the PAH compounds. The

dissolved solution was made up to the 200 ml mark with iso-hexane. From the resulting

solution (10pg/ml™), the working sol utions were made.

Table 2.4: Volumes of solvent (iso-hexane) used in preparing the working solutions

Levels Volume of stock Final volume (ml) Concentration
solution (ml) (ng/ml)
2+0.1 20+£0.1 1000
B 2+0.1(A) 20+0.1 100

2.3.3.2. Analysisfor method recovery

Low matrix mussels from Loch Etive shellfish farm was used to analyze for the method
recovery. Approximately 10 g of the homogenized mussel tissuesin 250 ml round bottom

flasks were spiked with the PAH standard solutions to achieve anominal concentrations of

1ng g*, 10 ng g and 100 ng g™*. The extraction was carried out as detailed in section

2.3.2.5.
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Table 2.5: Methods recovery of PAHs determined from triplicate analysis of spiked low

matrix biota samples.

Compounds % Recovery
100ngg* | 10ngg? 1ngg*’
Naphthalene 97.5 96.0 102.4
2-Methyl Naphthalene 119.9 115.6 1194
1-Methyl Naphthalene 117.9 114.7 116.1
C2 Naphthal enes 108.7 123.5 76.7
C3 Naphthal enes 95.6 90.3 72.0
C4 Naphthal enes 103.1 99.2 98.7
Phenanthrene (178) 98.9 99.4 95.0
Anthracene (178) 98.4 98.3 97.8
C1-Phenan/anthracene 114.4 110.5 45.1
C2-Phenan/anthracene 101.5 91.4 30.1
C3-Phenan/anthracene 106.3 98.4 27.6
Dibenzothiophene 93.9 94.2 93.4
C1-Dibenzothiophenes 106.4 112.3 99.7
Fluoranthene (202) 92.1 90.7 92.8
Pyrene (202) 89.4 89.6 98.2
C1-Fouranthene/Pyrene 102.0 85.2 0.0
C2-Flouranthene/Pyrene 114.5 96.9 0.0
Benzo[ c] phenanthrene (228) 102.6 106.1 112.1
Benz[a]anthracene (228) 106.0 104.7 94.2
Chrysene/Triphenylene (228) 98.4 99.5 88.9
Benz[ b]anthracene (228) 62.9 26.6 54
C1-228 117.9 103.7 0.0
C2-228 95.6 85.1 0.0
Benzo[b] fluoranthene (252) 100.8 99.1 55.5
Benzo[K]fluoranthene (252) 88.2 96.3 113.1
Benzo[ e]pyrene (252) 88.7 94.7 95.7
Benzo[a] pyrene (252) 89.3 90.5 84.6
Perylene (252) 95.4 95.9 98.8
C1-252 105.5 97.6 35.1
Indenopyrene (276) 111.4 106.7 110.7
Benzoperylene (276) 97.0 96.5 97.1
Acenaphthylene (152) 110.7 112.6 100.9
Acenaphthene (154) 110.1 117.6 104.1
Fluorene (166) 89.7 84.7 81.8
Dibenz[a,h]anthracene (278) 110.5 105.4 90.5
Cyclopenta[ c,d]pyrene (226) 193.7 155.7 162.1
Dibenz[a,|] pyrene (302) 97.5 88.9 85.3
Dibenz[a,e]pyrene (302) 107.4 73.4 60.0
Naphtho[2,1-a]pyrene (302) 90.1 142.5 83.5
Dibenz[a,i]pyrene (302) 99.5 85.3 69.5
Dibenz[a,h]pyrene (302) 71.6 55.0 58.3
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2.3.3.3 Instrument limit of detection

The instrument limit of detection was determined by running 7 replicate determinations of a

low standard on the same day and the standard deviation expressed as a concentration.

LOD = 4.65 x the standard deviation of the replicate standards.

2.3.3.4 Method limit of detection

The method limit of detection was determined by running 7 replicated determinations of a
low matrix sample over several days. The extraction procedure was the same used for the

recovery determination.

2.3.3.5 Reproducibility

This was determined by the GC- MSD analysis of 7 replicate determinations of standards at
the upper end (90 %) and lower end (10 %) of the calibration range. The analysis was

carried out on separate days and expressed as concentrations.

The results obtained from the validation process gave good recoveries for most of the PAH
compounds except for the additional suite of PAHs (cyclopenta[c, d] pyrene,

dibenzo[a,e] pyrene, dibenzo[a,h]pyrene, dibenzo[a,i]pyrene, and dibenzo[a,l]pyrene). The
method and instrument limits of detection obtained were greater than 1 ng g™ for most
compounds. The reason for the poor results was traced to the batch of PAH standards used
for the preparation of the stock solution. Therefore, the validation procedure was repeated

with a new batch of PAH standards but however, not as part of this project.
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CHAPTER THREE

Investigation of PAH depuration kineticsin blue mussels (Mytilus edulis)

3.1 Introduction

Shellfish farming in Scottish coastal waters is almost exclusively concerned with mollusc
production. The main species are blue lipid mussels (Mytilus edulis), native oysters (Ostrea
edulis), pacific oysters (Crassostrea gigas), and king and queen scallops (Pecten maximus
and Aequipecten opercularis). There were approximately 183 producing shellfish farming
companies in Scotland (FRS, 2005). Most suitable sites are found in the West Coast of
Scotland; the Hebrides, Orkney and Shetland islands.

In this study, wild mussels collected from Aberdeen harbour were used as indicator
organism in experiments devised to determine the rate of elimination of polycyclic aromatic
hydrocarbons (PAHs) from aquatic organisms. It has been shown that invertebrates
(especialy bivalves) have less devel oped mechanisms to metabolize xenobiotics than
vertebrates (Suteau and Narbonne, 1988; McElroy et al., 2000; Meador, 2003). Vertebrates
(e.g. fish), which have strongly devel oped mechanism for PAH metabolism, may assimilate
large amounts of the compounds, for example through ingestion or exchange across
external surfaces, show biological responses, but still not contain large concentrations of
the parent compounds. These species of organisms are therefore best suited for monitoring
effects of contaminants as the mutagenic metabolites often formed are more toxic than the
parent compounds.

The study was carried out in two separate environments. A laboratory experiment in flow-
through tank systems, and afield study in an open sealoch. The rationae for the field
experiment was to compare the elimination rates obtained in the laboratory with that
obtained in the field. Although generally, kinetic data measured in the laboratory are
directly applied to the field environment (Thorsen et al., 2004), the presence of different
variablesin the field may influence results. For example, the effect of temperature and
presence of other xenobiotics on the filtering rate of mussels have been reported (Gossiauix
et al., 1996).
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Farmed mussels are usually rope-grown in open waters; areas with potential to be affected
by accidental oil spill incidents. Their sedentary state compared to mobile organisms like
fish and birds makes them more vulnerable to point contaminations and hence applicable to
spatia surveys. Knowledge of the fate and elimination rate of hazardous components of oils
(e.g0. PAHS) from affected organisms will be very useful in protecting consumer safety and
in formulating oil spill mitigation policies. The data obtained with mussels can be
appropriately extended to other shellfish. Aswas discussed in Chapter 1, the concentration
of an environmental contaminant in the tissues (tissue burden) of an organismis agood
indication of the bioavailable fraction of that contaminant. Therefore, aswell as being
susceptible to oil pollution as aresult of accidental discharges, mussels areideal organisms
for monitoring the concentration and fate of trace organic pollutants and have been widely
used in environmental risk assessments and monitoring of trace contaminants (Blumer et
al., 1970; Webster et al., 2004; Mclntosh et al., 2004; Richardson et al., 2005; Page et al.,
2005). The characteristics of mussel that makes it suitable for monitoring spatial

contamination are summarized bel ow.

» |t accumulates pollutants in sufficient amount without being killed by the
concentrations encountered in the environment

» |tisrepresentative of the study area becauseit is sedentary

» ltisavailableal year round and hence enable continuation of survey

= |tisof reasonable size therefore gives adequate tissue for anaysis

» Itisvery easy to sample and adaptive and hence survivesin alaboratory

environment

3.2 Experimental design

The test and control mussels for the laboratory and the field experiments were collected
from areas within Scotland. For the laboratory experiment, wild mussels from Aberdeen
harbour and rope-grown mussels from a shellfish farm in Loch Etive were used as the test
and control samples respectively. Aberdeen harbour isaworld class port situated in the
heart of Aberdeen city and handling around 5 million tonnes of cargo, for a wide range of

industries, including the offshore oil and gasindustry. Loch Etiveislocated in the West
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Coast of Scotland; a site remote from industrial activities. The rationale behind using Loch
Etive mussels as control relies on the fact that previous analysis carried out by Fisheries
Research Services (FRS), Marine |aboratory, Aberdeen, have shown that Loch Etive
mussels have very low PAH concentrations (typicaly < 50.0 ng g™ wet weight); values
which are regarded as background levels in environmental samples (\Webster et al., 2003,
and Mclntosh, et al., 2004).

Loch Ewe
|

Aberdeen
Harb-our

Loch Etive

Loch Leven
[ ]

‘n 0 40 80 Kilometers
Y T |

Fig. 3.1: Map of Scotland showing the approximate locations of the sampling sites.

For the field experiment, wild mussels from Aberdeen harbour and rope-grown mussels
from a shellfish farm in Loch Leven were used as the test mussels while native mussels
from Loch Ewe were used as the control sample. In the past, mussels sampled from areasin
Loch Leven have shown elevated concentrations of the high molecular weight PAHSs (4- to
6-rings) dominated by the five ring compounds (Mclntosh et al., 2004). The source of these
compounds has been linked to the effluent resulting from an aluminum smelter which was
sited close to the shellfish farm. Loch Eweisaso arelatively clean site also in the West
Coast asshownin Fig. 3.1.

49



Chapter Three: Investigation of PAHdepuration kinetics in blue mussels (Mytilus edulis)

3.2.1 Sampletransportation and deployment

The mussels for the laboratory and field experiments were transported in insulated boxes to
FRS Aberdeen and FRS Autbea respectively. Cool packs were placed at the bottom of the
containers and seaweed placed over the mussels. The mussels were delivered to FRS within
8 h of being removed from the water. Sub-samples were removed from both sample sites
before deployment to analyse for the initial concentration (t = 0) of analytes prior to
depuration. The remaining mussels were placed in net bags of 25-30 mussels and deployed
for depuration. The samples for the laboratory study were placed in glass fibre tanks (360 |)
equipped with aflow-through supply (flow rate: 0.6 + 0.05 | s™) of filtered seawater from
Nigg Bay; atank each for the test and control mussels. The temperature of the seawater
(13.0 £ 6°C), sdlinity (35 parts per thousand) and pH (8.3 £ 0.25) were measured
throughout the depuration period. The mussels were fed with Isocrysis and Paviova lutheri
(from Ardtoe Marine laboratory) on aternate days at a density of 500 ml of culture per day.
The experiment lasted for 56 days.

Upon delivery to Loch Ewe Aultbea, the samples for the field experiment were placed in
holding tanks overnight. The mussels were subsequently deployed on the body of water,
suspended from net bags. Each sample site was marked with a colour coded buoy and
anchored to prevent the sample being swept away by waves/currents. The native mussels

from Aultbea (control samples) were aso deployed the same way as the test sampl es.

3.2.2 Sub — Sampling ad sample preparation

Mussels were removed from each sample site prior to depuration (time = 0) and
subsequently after 7, 21, 35 and 56 days of depuration for the laboratory experiment, and
after 5, 12, 19, 26, 33, 47 and 68 days for the field experiment. The mussels were opened,
the entrained water drained off onto atissue paper and the total soft tissue excised into
solvent washed aluminum cans, homogenized by Ultraturrax{™ and frozen at -18 to - 20

°C in adedicated freezer until required for analysis.
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3.3 Analytical methods

The extraction, clean-up and determination methods are detailed in chapter 2. Briefly, the
defrosted mussel tissues (5 -10 g) were saponified for 4 h in methanolic sodium hydroxide
(NaOH) and liquid-liquid extracted in iso-hexane. The extracts were dried with solvent
washed sodium sul phate (NaxSO,4) powder and fractionated into the aliphatic and aromatic
portions by isocratic normal phase HPLC. The aiphatic fractions collected between after
150 swere analyzed for n-alkanes and geochemical biomarkers using GC-FID and GC-
MSD respectively. The aromatic fractions, collected in the second fraction were analyzed
for PAHs using GC-M SD.

3.4 Resultsand Discussion

The polycyclic aromatic hydrocarbons measured in both studies consist primarily of the 2-
to 6-ring compounds and include the following families of compounds; naphthal ene,
phenanthrene/anthracene, fluoranthene/pyrene, fluorene, dibenzothiophene,
chrysene/triphenylene, benzofluoranthenes/benzopyrenes, perylene, indonenopyrene/
benzoperylene, and their alkylated compounds. The sum of PAHs as used in thisthesisis
the total concentrations of the individual compounds determined (see Table 2.2 for details).
The PAH concentrations and elimination kinetics determined in both studies are discussed
separately in sections 3.4.1 and 3.4.2 and the results compared in section 3.4.3.

34.1 Laboratory experiment

34.1.1 PAH concentration and distribution profile

Fig. 3.2 shows the graphical representation of the total PAH concentrations determined for
the Harbour and Loch Etive mussels. As mentioned earlier, total PAH as used in this study
relates to the sum of the 2- to 6-rings parent compounds and their alkylated compounds as
givenin Table 2.2. The harbour mussels returned a total PAH concentration of 1492.8 ng

g™ wet weight, prior to depuration (t = 0). This site showed an initial PAH profile
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dominated by the 2- and 3-rings PAHs compounds (naphthal enes and alkylated compounds
(C1-C4):11.8 %, phenanthrene/ anthracene and alkylated compounds (C1-C3): 48.2 %, and
dibenzothiophene and alkylated compound (C1-C3): 17.6 %) with phenanthrene/anthracene
and their alkylated compounds accounting for ~ 50 % of the total PAHs determined (Table
3.1). Thetotal PAH concentration determined for the reference mussels at time (t = 0) was
17.2 ng g™ wet weight. Thisis likely expected considering the time of the year the samples
were collected. It has been shown that seasonal variations affect the PAH tissue burden of
mussels and that concentrations are highest during the winter season and lowest during the
summer season. The result obtained for the reference musselsisin within the values
determined by Mclntosh et al. (2004) between April 1999 and March 2002 for this site
which ranged from 17.0 ng g™ to 150.6 ng g™ wet weight with the highest concentrations

found between January and March 2001 during the winter season.

Thetotal PAH concentration (1492.8 ng g% of the harbour musselsis considerably higher
than those determined for mussels in other locations in Scottish coastal waters by Webster
et al. (2003) in a 3 months survey carried out between October and December in 1999. The
survey showed concentrations ranging from 91.1 ng g** (Shuna Sound) to 344 ng g™* wet
weight (Granton East) , for wild mussel beds, and 8.4 ng g* (Loch Kentra) to 138 ng g™
wet weight (Olna Firth - Shetland) for cultivated rope grown mussels, respectively (Table
3.2). The PAH concentration found in the Aberdeen harbour mussels was also higher than
the maximum (1450 ng g™ wet weight) determined for mussels within the designated FEPA
exclusion zone following the Braer oil spill in January 1993 (Davies and Topping, 1997).
Although most of these sites are remote areas from the cities and hence expected to have
low contaminant burden arising from industries, sites like Eden estuary, Granton East, and
Fairlie are closer to industries. Therefore, the concentration observed for the harbour
mussels is higher than is naturally found in Scottish coastal waters and must have been

introduced through anthropogenic sources.
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800 O total naph
~ %7 W total 178
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Fig. 3.2: Distribution of PAHs sub-groups in Aberdeen Harbour mussels depurated over a
period of 56 days in laboratory flow-through tank system.

Note: [Y Naph = naphthalenes (parent and C1-C4); > 178 = Phenanthrene/anthracene
(parent and C1-C3); > DBT = Dibenzothiophene (parent and C1-C3); >202 =
Fluoranthene/pyrene (parent and C1-C3); > 228 = Benzanthracenes/benzophenanthrene
[chrysene/triphenylene (parent and C1-C2); >252 =
Benzofluoranthenes/benzopyrenes/perylene (parent and C1-C2); >276 =
Indenopyrene/benzoperylene (parent and C1-C2)].
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Table 3.1: % PAH subgroups, % of parent PAHs, and sum of parent PAHs in Aberdeen

harbour and Loch Etive mussals.

Depuration time (days)
PAH compound Aberdeen Harbour LO_Ch
Etive
0 7 21 35 56 0
% 128 11.6 6.4 11 10 1.0 111
% 178 48.2 47.2 41.8 | 38.7 34.2 331
% DBTs 17.6 22.1 232 | 211 10.0 6.4
% 202 13.8 14.2 174 | 20.2 27.2 21.5
% 228 4.5 5.2 8.0 94 12.0 8.7
% 252 3.0 3.9 7.1 8.2 13.0 151
% 276 0.5 0.8 12 14 25 2.9
% Acenaphthylene (152) 0.0 - - - - -
% Acenaphthene (154) 0.5 - - - - -
% Fluorene (166) 0.30 0.04 | 0.08 - - 1.2
% Dibenz[a,h]anthracene 0.02 0.04 | 0.08 - - -
(278)
> Parent 1741 717 309 | 185 13.8 6.5
% Parent 11.7 9.5 125 | 16.0 23.0 37.8
% 2- and 3-ring 78.1 75.6 66.4 | 61.3 45.2 51.7
% 4- to 6-ring 21.9 244 | 336 | 387 | 548 48.3
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Table 3.2: Total PAH concentrations (ng g™ wet weight) in mussels collected around

Scotland over athree month period in 1999

L ocation Total [PAH]/ng g™ wet weight
*Fairlie 300.3
Loch Drovinish 13.8
*Scapa Flow (Orkney) 140.5
* Shuna Sound 9.1
*Granton East 344.1
Loch Eishort 45.2
Loch Caroy 27.3
OlnaFirth (Shetland) 138.8
*Eden Estuary 178.8
Bracadale 333
Loch Greshornish 18.6
Loch Torranish 47.5
Glenuig Bay 16.8

Loch Kentra 8.4

Milovaig 28.6
Barraglom 44.2
Loch Beag 225

*denotes cultivated rope-grown mussels beds (Webster et al., 2003).

However, higher PAH concentrations have been reported in some areas around Scotland
and these have been traced successfully to their input sources. Mclntosh et al. (2004)
reported a PAH concentration of 8256 ng g™ wet weight in mussels collected from a
shellfish farm in Kinlochleven in September 1999 before the closure of an aluminum
smelter located near the commercial mussel farm. According to their report, this high

concentration was as a result of effluent discharged from the aluminum smelter and the

PAH profile was dominated by the 5-ring compounds. In another instance, Webster et al.

(2003) reported a PAH concentration of 1537 ng g* and 7177 ng g* wet weight
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respectively in mussels collected from Long Hope (Orkney) and Dury Voe (Grunna) in
Shetland island in 1998. According to the report, the aliphatic, PAHs and geochemical

biomarker profile of the samples suggest petrogenic contamination of these sites.

3.4.1.2 Kineticsof loss of PAHS

Upon transfer of the harbour mussels to the flow through system, PAHs exhibited arapid
decrease in concentrations over the first 3 weeks after which the decrease becomes gradual
and then reduced to a minimum (Fig. 3.2), except for the DBTs which maintained a faster
and steady rate of elimination throughout the depuration period compared to other PAH
subgroups. Over 70 % reduction in concentration was observed for the naphthal enes (98
%), phenanthrenes (85.7 %), and the DBTs (78.2 %) within 21 days of depuration. The total
PAHSs concentration decreased from 1492.8 ng g™* wet weight to 59.9 ng g™* wet weight
during the 56 days of depuration (Appendix 2).

Various rate constant models as described in chapter 1 have been used to evauate the
kinetics of elimination of hydrophobic contaminants in invertebrates (Sericano et al., 1996;
Gewurtz et al., 2002). In one compartment model, the organism is treated as a homogenous
compartment, and many authors have reported the adequacy this model in estimating the
kinetic of elimination of hydrophobic contaminants (PAHs, PCBs and OCPs) from
organisms, for example Pruell et al., 1986, Mclntosh et al., 2004 and Richardson et al.,
2005). In this study first order kinetics as described by Sericano and Richardson was used

and assuming no uptake from the seawater during depuration.

In atwo component model described by Zitko (1980), and modified in Richardson et al.,
(2005), the uptake (k;) and eimination (ky) rate constants were given as

ky

Water (dissolved phase) = mussel
ka
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The equation for the exposure is given as:

Cin=Cu-Kaoel—=e K o (a)
where Cp,and C,, are contaminant concentrations in mussels (ng g* wet weight) and in

dissolved phase (ng mL™), respectively, and t is the exposure time (day). From this the

equilibrium bioconcentration factor was defined as

Koe= CL =K )

Combining equations (a) and (b) gives

The elimination rate constant (k) is estimated from the depuration period, during which C,,
= 0 and equation (a) is altered to an exponentia decay equation.

where C,p istheinitial analyte concentration in mussel prior to depuration. This curvilinear

relationship was simplified by transformation into alogarithmic linear equation to give
INCr = —Kol TN Cg e verrernernmeenmmmmniimienesiesseeseesesseessensens (€)

The depuration rate constants for individual PAH compound was evaluated from a plot of

In C,, against depuration time, t (days) (see example graph in Fig. 3.3)
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Fig. 3.3: Logarithmic graph representing the elimination kinetics of the C2 and C3

dibenzothiophenes (where C,, = PAH concentration in ng g™ wet weight).

The elimination rate constants (kz), correlation coefficients (r%) and biological half-lives
(t12) of 28 PAH are presented in (Table 3.3). The k; for naphthalene, 1-methyl naphthalene,
2-methyl naphthalene, dibenzothiophene, acenaphthalene, and acenaphthylene could not be
evaluated because they were rapidly loss within the first two weeks of depuration.
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Table 3.3: Elimination rate constant (ky), correlation coefficient (r*) and biological half-
lives (t12) determined for individual PAH assuming first order depuration.

p-values
PAH Compounds % 0g Kow r? k2 (n=5) (t)
C2-Naphthalenes 4.37 0.71 0.056| 0.071 12.4
C3-Naphthalenes 5.00 0.80 | 0.093| 0.040 75
C4-Naphthalenes 5.55 0.99 0.184| 0.006 3.8
Phenanthrene (178) 4.57 0.59 0.051| 0.127 13.6
Anthracene (178) 4.54 0.89 0.050 | 0.056° 13.9
C1-Phenan/anthracene 514 0.79 0.062 | 0.044 11.2
C2-Phenan/anthracene 551 094 | 0.068| 0.007 10.2
C3-Phenan/anthracene 6.00 0.99 0.061| 0.000 11.3
C1-Dibenzothiophenes 4.86 095 | 0.059| 0.024° 11.7
C2-Dibenzothiophenes 5.50 0.99 0.087 | 0.000 7.9
C3-Dibenzothiophenes 5.73 1.00 0.058 | 0.000 12.0
Fluoranthene (202) 5.22 085 | 0.067| 0.027 10.4
Pyrene (202) 5.18 0.79 0.044| 0.044 15.8
C1-FHuoranthene/Pyrene 5.72 0.90 0.049| 0.014 14.2
C2- Fluoranthene/Pyrene 6.03 0.96 0.043 | 0.003 16.2
C3- Huoranthene/Pyrene* - 0.97 0.034| 0.003 20.3
Benzo[ c]phenanthrene (228) 5.76 0.96 0.043| 0.003 16.2
Benz[a]anthracene (228) 591 0.81 0.034| 0.038 20.6
Chrysene/Triphenylene (228) 5.86 0.91 0.048| 0.011 145
Benz[b]anthracene (228) * - 0.90 0.059 | 0.013° 11.7
C1-228 6.42 0.98 0.040| 0.002 17.4
C2-228 6.88 0.93 0.032| 0.007 22.0
Benzofluoranthenes (252) - 0.94 0.041| 0.006 16.9
Benzo[€e]pyrene (252) 6.20 0.96 0.022| 0.003 31.0
Benzo[a]pyrene (252) 6.04 0.75 0.037 | 0.057 18.7
Perylene (252) 6.30 0.93 0.030| 0.008 231
C1-252 - 0.92 0.029| 0.010 235
C2-252* - 0.87 0.029| 0.022 24.1
Indeno[ 123, cd]pyrene (276) 7.00 0.89 0.039| 0.019 17.7
Benzo[ghi]perylene (276) 6.50 0.88 0.024| 0.017 29.5
C1-276* - 0.81 0.034| 0.037 20.3

* Compounds not UKAS accredited to FRS, #Log Ko of PAHSs are from Sangster (2005),
Pfrom Neff and Burns (1996), n = number of data points making up plot, (¢ n = 4).
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Elimination rate constants of other compounds ranged from 0.02 day ™ for benzo[e]pyrene
to 0.18 day™ for C4- naphthalene. The correlation coefficient of al compounds were good
(> 0.71, p-values < 0.07) with the exception of phenanthrene (r* = 0.59, p-value 0.127). The
high r? valuesimplied that the actual elimination kineticsis in good agreement with the
mathematical model [equation (d)] applied. The rate of loss was found to decreases with
increase in molecular weight and hence hydrophobicity e.g. from naphthal enes (2-rings) to
benzo[ €] pyrene (5-rings) and thisisin agreement with literature reports (e.g. Mclntosh et
al., 2004, Gewurtz et al., 2002). However, the k, values are different from those reported by
Gewurtz et al. (2002) and Thorsen et al. (2004) for the individual compounds in freshwater
mussels (Elliptio Complanata). While Gewurtz et al. (2002) reported k; range of 0.10 to
0.22 day™, Thorsen et al., (2004) reported values of 0.04 to 0.26 day™ The reason for the
differences observed between the values obtained in this study with the values obtained in
the studies mentioned may be due to the differencesin the specie of mussels used and the
length of exposure of the organism to the contaminant. Thorsen et al. (2002) depurated
mussel s exposed for 10 days to creosote contaminated sediment and while Gewurtz et al.
(2002), depurated mussels exposed to PAH compounds for 5 days. Jackim and Wilson
(1977), and Sericano et al. (1996) reported lower depuration rates of PAHs from
chronically exposed bivalves than those from acute exposure. The mussels from Aberdeen
harbour have been exposed to chronic contamination, and this may account for the lower
depuration rates observed.

The biological half-lives (t3,) evaluated for individual PAH compound in this study ranged
from 3.8 days for C4-naphthaene to 31 days for benzo[e]pyrene. Gewurtz et al. (2002),
reported ty, of 3.2 days for flourene to 18.7 days for benzo[k]fluoranthrene (benzo[ e]pyrene
was not measured in that study). However, the half-lives measured in this study are close to
those reported by Pruell et al. (1986) and Sericano et al. (1996). While Pruell et al. (1986)
reported PAH half-lives range of 14 — 30 days for benzo[ €] pyrene, chrysene,
benzo[a]pyrene, indeno[ 1,2,3-cd]pyrent, benz[a]anthracene and Fluoranthene in blue
mussels (Mytilus edulis) exposed for 40 days to contaminated sediment, Sericano et al.
(1996), reported haf-lives of 9 to 26 days and 10-32 days for the same group of compounds
in transplanted (exposed for 48 days) and chronically exposed indigenous American Oyster

(Crassostrea virginica) .
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The implication of the variationsin the reported results may be that in addition to the effect
of the compounds hydrophobicity, other factors such as the specie of organism used, the
PAH sources, and the length of exposure of organism to the contaminant may effect the

depuration of these compounds.

To assess the role of chemical hydrophobicity on elimination kinetics of PAHS, k, values
for 24 compounds except C4-naphthal ene (value obtained not very reliable) obtained in this
study were plotted as a function of the octanol/water partition coefficient water (Kow) (Fig
3.5). Thelinear regression equation for this plot gives the relationship; k, = 0.1305 -
0.0143(log Kow)- The plot shows a declining trend of k, values with increasing values of log
Kow and therefore the dependency of PAH elimination on hydrophobicity (p-value = 0.001,
r?=0.37). Thistrend is similar to the trend observed in most literature reports as presented
in Table 3.4.

0.10 - . y =-0.0143x + 0.1305
. 2 _
0,08 R’ =0.3674
. 0.06 -
g
o 004 .
4
0.02 - ¢ *
O.CD T T T T T T 1
40 45 5.0 55 6.0 65 7.0 75

log Kow

Fig. 3.4: A regression plot of elimination rate constants (k») against log Koy 0f 25 PAH
compounds for the harbour mussels. The mussels were depurated for 56 days in a flow-
through tank system in the laboratory.
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Table 3.4: Relationship between elimination rate constants (kz) and log Koy of hydrophobic

organic contaminants in different species of invertebrates. Table adopted from Gewurtz et

al. (2002).

Species Com | n | Regressionequation re Experimental Ref
conditions .

Eastern Elliptio | PAHs | 11 | k,=0.34-0.04logKow | 0.44 | Lab studies, exposure | ab

(Elliptio , through water for 5 and

complanata) PCBs, 11 days, temperature =

OCs 17°C and 20 °C

Zebra mussel PCB |35 | k,=0.39-0.05log Koy | 0.59 | Labstudy, exposedin | C

(Dreissena field for 2 days,

polymor pha) temperature = 13 °C

Green lipid PCB |72 | kp=0.39-0.05lo0g Koy, | 0.50 | Field study, 17 days D

mussel (Perna exposure

viridis)

Asian clam PAH |4 |k;=0.50-0.08logK,, |0.46 | Lab study, exposurevia | E

(Corbicula sediment for 30 days,

fluminea) temperature = 20 °C

Eastern oysters PAH |7 |ko=0.60-0.09o0gKoy |0.75 | Lab study, exposurevia | F

(Crassostrea sediment for 28 days

virginica) temperature = 25° C

Hard clam PAH |7 |k:=0.60-0.090gKey |0.01 |Labstudy, exposurevia | F

(Merceneria sediment for 28 days

mercerneria) temperature = 25 °C

Eastern oysters PAH |7 |k,=-0.05+0.02logKq, | 0.26 | Field study, 48 days G

(Crassostrea exposure

virginica)

Eastern oysters PAH |7 | k>y=-0.06+ 0.02logK., | 0.32 | Field study, chronic G

(Crassostrea exposure

virginica)

Bluemussds(M | PAH |9 | ky=-0.04+ 0.0llog Kow | 0.33 | 40 days exposureinlab | H

.edulis) through sediment,
temperature = 15 °C

*Unionid mussel | PAH k. = -0.056 + 0.44log 0.83 | Lab exposure to I

(Elliptio Kow creosote contaminated

complanata) sediment for 10 days

*Blue mussels PAH k. =0.13-0.02 (log Kow) | 0.37 | Lab depuration of J

(Mytilius edulis) Chronically exposed
organisms

3Gewurtz et al.(2002), "Russell and Gobas, (1989), “Morrisson et al.(1995), “Tanabe et
al.(1987), ®Narbonne et al.(1999), ‘Bender et al.(1988), %Sericano et al.(1996), "Pruell et al.

(1986), '"Thorsen et al. (2004), 'this study, *not in the original table.
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34.2 TheFidd study

3.4.2.1 PAH concentration and distribution profile

Thetotal PAH concentration determined in mussels from the three sites studied; Aberdeen
harbour, Loch Leven and Loch Ewe are summarized in Table 3.4. When this study was
initiated in October 2006, the total PAH concentration found in mussels collected from
Aberdeen harbour, Loch Leven shellfish farm and Loch Ewe were 3734.8 + 216.0 ng g%,
124.1 + 3.6 ng g* and 23.9 + 2.0 (n = 3) respectively. The harbour mussels’ initia (t = 0)
PAH profile showed dominance of the 2- and 3-ringss compounds (naphthal enes 8.6 %,
phenanthrenes 54.4 %, dibenzothiophenes 14.8 %) over the 4- to 6-rings compounds, with
phenanthrene/anthracene and their a kylated compounds accounting for over 50 % of the
total PAHs determined (Table 3.5). In contrast, atotally different PAH distribution was
observed for the Loch Leven mussels (t = 0). Theinitial profile of these mussels showed
dominance of the 4- to 6-ring compounds (95.5 %), with the 5-ring compounds accounting
for ~ 60 % of the total PAH determined (Table 3.5). The proportion of the 5-ring compound
found in the Loch Leven musselsin this study is in agreement with former studies carried
out around Loch Leven pre-and post closure of the aluminium smelter sited close to the
sample sites (Mclntosh et al., 2004).
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Fig. 3.5: Distribution of PAHs subgroupsin Aberdeen Harbour mussels depurated over a
period of 68 daysin Loch Ewe.

The total PAH concentration determined for the reference mussels at time (t = 0) was 23.9
+ 2.0 ng g wet weight. Thisistypical for Loch Etive mussels, collected at this time of
year. Loch Etive has been used as reference site by FRS for environmental monitoring
since 1999 (Mclntosh et al., 2004)

Upon deployment of the mussels to Loch Ewe, arapid loss of PAHs from the harbour (> 79

%) and Loch Leven mussels (> 56 %) was observed within 12 days of depuration (Fig. 3.5
and 3.6), and subsequently, a slower reduction in total PAHS.
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Table 3.5: % by concentration of PAH sub-groups, % 2-and 3-ring PAHS, % 4-to 6-ring PAHs for Aberdeen harbour and Loch Leven

mussels.
PAHSs groups/ Dep. Aberdeen Har bour Loch Leven
time (days) 0 5 12 19 26 33 47 68 0 5 12 19 26 33 47 68
% 128 8.6 4.9 15 5.3 4.9 3.9 2.9 2.7 10 [ 21 | 26 6.8 8.3 7.5 8.7 3.7
% 178 54.4 537 | 53.0 | 495 | 495 | 493 | 47.7 | 454 | 31 | 46 | 81 | 11.8 | 189 | 174 | 183 | 12.8
% DBT 14.8 16.7 | 166 | 187 | 189 | 198 | 182 | 161 | 06 | 15 | 22 3.7 6.9 5.9 6.0 5.9
% 202 14.0 153 | 170 | 160 | 159 | 161 | 185 | 181 | 99 | 75 | 83 90 | 130 | 151 | 211 | 20.2
% 228 4.7 5.5 7.1 6.3 6.3 6.5 80 | 100 | 120 | 112 | 118 | 110 | 125 | 16.0 | 13.7 | 18.2
% 252 2.9 3.5 4.3 3.8 4.0 4.1 4.4 7.2 | 599 [ 611 | 587 | 484 | 343 | 331 | 306 | 352
% 276 0.4 0.3 0.4 0.3 0.4 0.3 0.1 05 | 113 [ 104 | 7.7 8.4 5.4 4.2 1.6 4.0
% Acenaphthylene 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 | 00 | 0.0 0.0 0.0 0.0 0.0 0.0
% Acenaphthene 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 | 00 | 00 0.0 0.0 0.0 0.0 0.0
% Fluorene 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.0 00 | 00 | 0.0 0.0 0.0 0.0 0.0 0.0
Total PAHs 3734.8 | 2097.0 | 752.2 | 485.3 | 437.8 | 352.7 | 146.0 | 83.0 | 89.8 | 538 | 358 | 308 | 149 | 127 | 105 | 8.6
% parent 9.3 8.8 8.8 8.1 8.1 8.3 10.1 | 124 | 724 | 704 | 66.0 | 56.7 | 438 | 44.1 | 498 | 474
% 2- and 3-rings 78.0 753 | 712 | 735 | 733 | 731 | 689 | 642 | 46 | 82 | 128 | 223 | 341 | 309 | 33.0 | 224
% 4 to 6 rings 22.0 247 | 289 | 265 | 26.7 | 269 | 31.1 | 358 | 955 | 919 | 872 | 77.7 | 659 | 69.1 | 670 | 776
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However, an overal gradual decrease in total PAHSs concentration was observed throughout
the depuration period for the test mussels. The total PAHs concentration of the harbour
mussels decreased from 3734.8 + 216.05 ng g™ to 83.03 + 0.5 ng g™ wet weight and Loch
Leven mussels from 124.1 + 3.6 ng g™ to 18.17 + 0.68 ng g™* wet weight after 68 days of
depuration.

N w Eay [$2] D ~l [ee]
o o o o o o o
I I I I I I |

Total PAHS (ng g™ wet weights)

Depuration time (days)

Fig. 3.6: Distribution of PAHs subgroupsin Loch Leven mussels depurated over a period
of 68 days

3.4.2.2 Kineticsof loss of PAHs

Aswith the laboratory experiment, first order kinetics was applied to calcul ate the rate of

depuration of individual PAH compound (see the details of the theory and any assumptions
in section 3.4.1.2).
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The elimination rate constants (k), correlation coefficients (r%) and biological half-lives
(t12) of 30 PAH investigated are presented in (Table 3.6). Elimination rate constants

cal culated from the harbour mussels ranged from 0.06 day™ for pyrene to 0.04 day™ for
Benzo[a]pyrene. The k; for naphthalene, 1-methyl naphthal ene, 2-methyl naphthalene,
phenanthrene, dibenzothiophene, acenaphthal ene, and acenaphthylene could not be
evaluated because they were rapidly loss within the first two weeks of depuration. The
correlation coefficients of al compounds were good (> 0.63). As with the laboratory
experiment, the high r? valuesimplied that the actual imination kineticsisin good
agreement with the mathematical model applied. The biologica half-lives (ty,) evaluated
for individua PAH compound from the harbour mussels ranged from 11.1 days for pyrene
to 19.6 days for benzo[a] pyrene.

The elimination rate constants of individual PAHs obtained from the Loch Leven mussels
are aso presented in Table 3.2. Apart from the 5-ring and 6-ring compounds which
returned half life values close to those obtained from the harbour mussel's, a number of the
compounds returned values that are unreliable. The ty, (shown in italics) are unreliable and
may be as aresult of theinitial concentration of these compounds prior to depuration which
were already close to the background concentrations found in mussels (Y202 —12.5ng g,
Y228 —15.4 ng g™ wet weight, etc).

The ty, for some of the compounds are close to the values obtained by Mclntosh et al.
(2004) from 122 days depuration of mussels from two Loch Leven shellfish farmsin the
laboratory aquaria, e.g. chrysene, benzo| c]phenanthrene, C2-Naphthal enes and C4-
Naphthalenes (Table 3.7)
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Table 3.6: PAHs eimination rate constant (k,), correlation coefficient (r?) and biological half-lives (ty,) determined fro Aberdeen

mussels and mussel s collected fro Loch Leven ad depurated in clean environment in Loch Ewe.

PAH Compounds L og Kow Aberdeen harbour Loch Leven
r? K, tas) p-values r? K, tws p-values

Naphthalene 3.37 ND ND ND ND ND ND ND ND

2-methynaphthalene 4.00 ND ND ND ND ND ND ND ND

1-methylnaphthalene 3.87 ND ND ND ND ND ND ND ND
C2-Naphthalenes 4.37 0.63 0.045 15.3 0.019 0.38 0.012 57.0 0.104
C3-Naphthalenes 4.73° 0.76 0.062 11.2 0.005 0.02 0.004 1715 0.716
C4-Naphthalenes 5.55 0.79 0.065 10.6 0.003 0.12 0.010 718 0.399
Phenanthrene (178) 4.57 0.67 0.046 151 0.013 0.74 0.009 76.1 0.006

Anthracene 4.54 ND ND ND ND ND ND ND ND
C1-Phenan/anthracene 5.14 0.83 0.062 11.2 0.002 0.27 0.009 76.2 0.190
C2 -Phenan/anthracene 5.51 0.91 0.060 115 0.000 0.02 0.004 188.3 0.719
C3-Phenan/anthracene 6.00 0.95 0.050 13.7 0.000 0.04 0.003 270.0 0.657

Fluorene 4.18 0.67 0.059 11.7 0.046 ND ND ND ND

Dibenzothiophene 4.49 0.634 0.058 119 0.058 ND ND ND ND
C1 Dibenzothiophenes 4.86 0.88 0.065 10.7 0.001 0.18 0.005 147.9 0.296
C2 Dibenzothiophenes 5.50 0.94 0.057 12.1 0.000 0.04 0.003 204.1 0.605
C3 Dibenzothiophenes 5.73 0.95 0.047 14.7 0.000 0.21 0.010 69.5 0.255
Fluoranthene (202) 5.22 0.78 0.054 12.9 0.004 0.23 0.008 85.9 0.234
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Pyrene (202) 5.18 0.86 | 0.062 | 11.2 0001 | 044 | 0.014 | 499 0.072
C1-Flouranthene/Pyrene 5.72 095 | 0.056 | 123 0000 | 040 | 0.011 | 66.0 0.092
C2-Flouranthene/Pyrene - 093 | 0044 | 158 0000 | 045 | 0.012 | 56.3 0.069
C3-Flouranthene/Pyrene - 093 | 0.043 | 162 0000 | 060 | 0.015 | 46.1 0.024

Benzo[c]phenanthrene (228) 5.76 094 | 0.045 | 154 0000 | 059 | 0.017 | 411 0.027
Benz[a]anthracene (228) 5.01 0.87 | 0.049 | 143 0001 | 060 | 0.017 | 404 0.025
Chrysene/Triphenylene (225) 5.86 0.88 | 0.049 | 141 0001 | 064 | 0.018 | 382 0.017
Benz[b]anthracene (228) - 091 | 0.046 | 151 0.001 ND | ND ND ND
C1-228 6.42 094 | 0.046 | 152 0000 | 083 | 0.027 | 259 0.002
C2-228 6.88 0.86 | 0.037 | 186 0001 | 055 | 0.020 | 34.1 0.035
Benzofluoranthenes (252) - 0.86 | 0.046 | 152 0001 | 0.83 | 0.043 | 160 0.002
Benzo[e] pyrene (252) 6.20 091 | 0.038 | 184 0000 | 089 | 0.033 | 211 0.000
Benzo[a]pyrene (252) 6.04 068 | 0.035 | 196 0012 | 070 | 0.030 | 228 0.010
Perylene (252) 6.30 0.85 | 0.036 | 19.4 0001 | 073 | 0.024 | 287 0.015
C1-252 - 0.84 | 0.047 | 147 0001 | 0.86 | 0.042 | 165 0.001
C2-252 - 0.88 | 0.055 | 125 0002 | 029 | 0.005 | 139.4 | 0.216
Indenopyrene (276) 7.00 0.83 | 0.046 | 151 0005 | 0.84 | 0.044 | 158 0.001
Benzoperylene (276) 6.90° 0.87 | 0.048 | 145 0001 | 079 | 0.049 | 141 0.003
C1-276 ND ND ND ND ND 060 | 0.053 | 13.1 0.125

2From Neff and Burns (1996), ° Sangster, 2005, ND -not determined
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Table 3.7: Comparison of thety, values of individual PAH compounds obtained for Loch
Leven in this study with values by Mclntosh et al. (2004).

PAH compound Thisstudy | Kinlochleven Ballachulish
Naphthalene NC 35 44
2-Methynaphthalene NC 276 210
1-Methylnaphthal ene NC 83 141
C2-Naphthalenes 57.0 68 67
C3-Naphthalenes 1715 46 36
C4-Naphthalenes 71.8 78 102
Phenanthrene (178) 76.1 14 16
Anthracene NC 10 13
C1-Phenan/anthracene 76.2 14 21
C2-Phenan/anthracene 188.3 26 40
C3-Phenan/anthracene 270.0 47 50
Fluorene NC 39 42
Dibenzothiophene 147.9 21 27
C1-Dibenzothiophenes 204.1 26 70
C2-Dibenzothiophenes 69.5 43 139
C3-Dibenzothiophenes 85.9 116 159
Fluoranthene (202) 499 13 20
Pyrene (202) 66.0 19 28
C1-Flouranthene/Pyrene 56.3 29 37
C2- Houranthene /Pyrene 46.1 34 43
Benzo[ c]phenanthrene (228) 41.1 40 63
Benz[a]anthracene (228) 40.4 62 59
Chrysene/Triphenylene (228) 38.2 45 41
Benz[b]anthracene (228) NC 28 49
C1-228 25.9 48 45
C2-228 34.1 68 66
Benzo[b]fluoranthenes (252) 16.0° 130 22
Benzo[K]fluoranthenes (252) 62 57
Benzo[e]pyrene (252) 21.1 54 67
Benzo[a]pyrene (252) 22.8 48 41
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Perylene (252) 28.7 91 141
C1-252 16.5 0 94
C2-252 139.4 66 161

Indenopyrene (276) 15.8 36 46
Benzoperylene (276) 14.1 47 87
C1-276 13.1 79 153

*measured as benzofluoranthenes, NC; no value cal cul ated

To assess the role of chemical hydrophobicity on elimination kinetics of the PAHS, k,

values of 26 compounds of known log Ko, obtained in this study (from the harbour

mussels) were plotted as afunction of chemical Kow (Fig. 3.3). The plot shows a declining

trend of k, values with increasing values of log Koy and the linear regression analysis of k,

versus log Koy shows a dependency of PAH elimination on hydrophobicity (r?= 0.35, p-

value 0.001) with a regression equation: k, = 0.0899-0.007(log Koy). Thistrend issimilar

to that reported by Pruell et al. (1986) who found that k, = 0.011(log Koy) -0.04 from the
depuration of Mytilus edulis exposed to contaminated sediment for 40 days.

0.08 - y = -0.007x+ 0.0899
. R’ =0354
0.06 - ¢ 3
L 4
B o o % . ®e
© 0.04 n *
X o %o
0.02 -
0.00 ‘ ‘ ‘ ‘ ‘ ‘
4.0 45 5.0 55 6.0 6.5 7.0
log K,

7.5

Fig. 3.7: A regression plot of elimination rate constants (ky) and log ko, of 26 PAH
compounds for the harbour mussels. The mussels were depurated for 68 days in the field.
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34.3 Comparison of thefield result with thelaboratory depuration result

The following sections compare the result obtained in this field study with that obtained in
the laboratory study. The comparison will concentrate on the PAH distribution pattern and
depuration kinetics.

3.4.3.1 PAH concentration and distribution profile

Aberdeen harbour mussels used in the laboratory and field studies showed different total
PAH concentrations; 1492.8 ng g* and 3734.8 + 216.0 ng g * respectively. However, the
initidl PAH distribution profiles observed in these mussels were similar, and characterized
by dominance of the 2- and 3-rings compounds. These groups of compounds accounted for
78.1 % (laboratory) and 78.0 % (field) of the total PAHs determined. There was aso
dominance of the akylated homologues over the parent compounds. The contribution of
the parents compounds to the total PAH concentration was very low; between 11.7- 23.0
%( laboratory) and 8.1 -12.4% (field) throughout the depuration period (Table 3.2 and 3.5).

The similarity in the PAH profile suggest asimilar but persistent input source.

The reason for the observed increase in mussels' PAHSs tissue burden between June and
October could be attributed to the different time of the year the mussels were sampled.
Seasonal variation in mussels' PAHSs tissue burden has been reported, with generally higher
concentrations in the winter, early spring and late autumn (Webster et al., 1997, Mclntosh
et al., 2001). For example, Mclintosh et al. (2004) reported an increase in PAHS
concentrations in mussels from Kinlochleven shellfish farm during October 1999 to
February 2000, which decreased after the mussals' spawning. Mussels are known to

accumulate PAHs in their lipid tissues which are laid down prior to spawning.
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3.4.4 Thedimination kinetics

A reduction of 43.8 % and 49.7 % in total PAH concentrations were observed after 5 and
and 7 days of depuration from the laboratory and field studies respectively. At the end of
the depuration studies, mussels depurated in the laboratory for 56 days lost 95.5% of the
initial PAH tissue burden while those depurated in the field lost atotal of 97.7% within the
68 days. Thetrend in PAH loss from both studies suggest asimilar PAH elimination

pattern.
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Fig. 3.8: Comparison of the plots of linear regression analysis of k, versus log Ko obtained
from depuration of Aberdeen harbour musselsin alaboratory and the field experiments (n

= 24 and 27 respectively)

In line with the pattern of reduction in total PAHs discussed above, the elimination rate
constants (ky) determined in the field study were similar to those determined from the
laboratory study. The k, values carried through to the values of the biological half-lifves
obtained (Fig 3.9). For example, biological half-lives were 15.1/13.6 (phenanthrene),
11.2/11.2 d (C1-phenanthrene/anthracenes), 10.7/11.7 d (C1-dibenzothiophenes), 15.8/16.2
d (C2-flouranthene/pyrene), 19.6/18.7 d (benzo[a]pyrene), 15.4/16.2 d

(benzo[ c]penanthrene, 14.1/14.5 d (chrysene/triphenylene), etc., for the field and laboratory
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studies respectively. However, some of the vaules varied; e.g. 18.4/31 d (benzo[e]pyrene),
12.1/7.9d (C2-DBT) and 10.6/3.8 d (C4-naphthal enes), respectively for the field and
laboratory studies (Table 3.8).

Table 3.8: Comparison of the elimination rate constant (k»), correlation coefficient (r%) and
biological half-lives (t1,) obtained for the laboratory and field depuration studies.

Field Lab
PAH Compound re ko tyo R Ko tupo
C2-Naphthalenes 0.63 | 0.045 153 | 0.71 | 0.056 12.4
C3-Naphthalenes 0.76 | 0.062 112 | 0.8 | 0.093 75
CA-Naphthalenes 0.79 | 0.065 106 | 0.99 | 0.184 3.8
Phenanthrene (178) 0.67 | 0.046 151 | 059 | 0.051 13.6
Anthracene ND ND ND | 0.89 | 0.050 13.9

C1-Phenan/anthracene 0.83 0.062 11.2 0.79 | 0.062 11.2

C2-Phenan/anthracene 0.91 0.060 115 0.94 | 0.068 10.2

C3-Phenan/anthracene 0.95 0.050 13.7 1.00 | 0.061 11.3

Fluorene (166) 0.67 0.059 11.7 ND ND ND

Dibenzothiophene 0.63 0.058 119 ND ND ND

C1-Dibenzothiophenes 0.88 0.065 10.7 0.95 | 0.059 11.7

C2-Dibenzothiophenes 094 | 0.057 121 1.00 | 0.087 7.9

C3-Dibenzothiophenes 095 | 0047 | 147 | 1.00 | 0.058 12
Fluoranthene (202) 078 | 0054 | 129 | 0.85| 0.067 103
Pyrene (202) 086 | 0062 | 112 | 079 | 0044 | 159

C1- Houranthene/Pyrene 095 | 0.056 12.3 0.9 | 0.049 14.2

C2- Houranthene/Pyrene 0.93 0.044 15.8 0.96 | 0.043 16.2

C3- Houranthene/Pyrene 0.93 0.043 16.2 0.97 | 0.034 20.4

Benzo[c]phenanthrene (228) | 0.94 | 0.045 154 | 096 | 0.043 16.2

Benz[a]anthracene (228) 0.87 0.049 14.3 0.81 | 0.034 20.6

Chrysene/Triphenylene (228) | 0.88 | 0.049 | 141 | 0.91 | 0.048 145
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Benz[b]anthracene (228) 091 [ 0.046 151 [ 097 [ 0.038 11.7
C1-228 0.94 0.046 15.2 0.98 | 0.040 17.4

C2-228 0.86 | 0.037 18.6 | 0.93 | 0.031 22
Benzofluoranthenes (252) 0.86 0.046 15.2 0.94 | 0.041 16.9

Benzo[e]pyrene (252) 0.91 0.038 18.4 0.96 | 0.022 31
Benzo[a]pyrene (252) 0.68 0.035 19.6 0.75 | 0.037 18.7
Perylene (252) 0.85 | 0.036 194 | 0.93 | 0.030 23.2
C1-252 0.84 0.047 14.7 0.92 | 0.030 235

C2-252 0.88 | 0.055 125 | 0.87 | 0.029 24
Indenopyrene (276) 0.83 0.046 15.1 0.88 | 0.039 17.7
Benzoperylene (276) 0.87 0.048 14.5 0.89 | 0.024 29.5
C1-276 ND ND ND 0.81 | 0.034 20.3

The half lives determined for individual PAHs in both experiments ranged from 3.8 days to

31 days. A closelook at Fig. 3.8 indicates that the heavier compounds (5- and 6-rings) were

eliminated at a slower rate in the laboratory experiment, while the converse is the case for

the lower rings.
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Conclusion

The rates of elimination of individual polycyclic aromatic hydrocarbon compoundsin
marine bivalves were investigated in a separate |aboratory and field studies using naturally
impacted blue mussels (Mytilius edulis). The eimination rates determined varied among
individual PAH compounds, but were similar for the laboratory and field studies. The
similarity between the kinetic data obtained from the two studies shows that |aboratory data
can be directly applied to field situations. Elimination pattern generally followed first order
kinetics and estimated biological half-lives ranged between 3.8 and 31 days. This shows
that mussels can eliminate PAHs and impacted mussels can return to safe concentrations
within arelatively short period of time. The higher molecular weight compounds were
eliminated at a much slower rate than the lower molecular weight compounds, suggesting
that hydrophobicity has effect on rate of elimination. A regression analysis of k, against log
Kow Shows up to 35 % dependency of elimination rate on compound’ s hydrophobicity.
However, the low percentage obtained in this study indicates that k, cannot be accurately
estimated from the log Ko, assuming a perfect linear relationship. This further suggests
that, apart from the compound’ s hydrophobicity, other factors could be responsible for the

variations in the elimination rate of individual compounds obtained in this study.
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CHAPTER FOUR

Sour ce of PAH input to Aberdeen harbour and investigation of changes

in geochemical biomarkersin blue mussels (Mytilus edulis)

4.1 Introduction

Polycyclic aromatic hydrocarbons (PAHS) are introduced into the environment mainly from
human related activities. Over the years, the PAH compounds found in the environment
have been commonly classified as pyrolytic or petrogenic. As has been elaborately
discussed in chapter 1, some other sources of PAHs which occur naturaly in the
environment are classified as being of biogenic origin. However, the chronic release of
pyrolytic PAHs into the environment (from combustion of fossils fuels) can result in PAH
profiles being dominated by these pyrolytic PAHs, and any petrogenic input in the
environment may be masked (Y unker et al., 2002). Some methods have been devised to
distinguish PAHSs of petrogenic origin from pyrolytic sources. These methods use
information from the n-alkanes distribution, PAHs distribution profile, specific PAH
concentration ratios and the presence or absence of geochemical biomarkers (geochemical
biomarkers are present if source is petrogenic) in the environmental matrix being analysed
to characterise the PAH source. The use of this approach has proved very successful in the
characterization of PAHs determined in sediment and water samples (Baumard et al., 1998;
Wang et al., 1998; Webster et al., 2004).

However, petroleum products when rel eased into the environment are susceptible to
changes due to degradation which can in effect ater the chemical composition (Payne et

al., 2003). In such situations, the alteration can render PAH source identification using only
the n-alkanes and PAH distribution profiles alone unreliable. Therefore where the n-alkanes
and PAHs profiles have been severely weathered, the presence or absence of geochemical
biomarkers can further provide useful information. The use of geochemical biomarkersin
tracing petrogenic contamination to their input source is well documented. Geochemical
biomarkers are source specific compounds which bear fingerprints of the contributing

materialsin oil source rocks (Peters and Moldowan 1993). Also, in oil spill investigation,
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oil correlations have been made by either the presence or absence of specific biomarker
compounds and the rel ative abundances of specific biomarker compounds to Czy-hopanein
the suspect sample compared to the spilled sample. These ratios are generally referred to as
Diagnostic ratios or indices (DR). Geochemical biomarker diagnostic ratios (DRs); which
originate from geochemistry are currently in use for oil spill studies and environmental
forensics. These ratios widely used by geochemists for oil-oil correlation, determination of
organic input, assessment of thermal maturity and evaluation of in-reservoir oil
biodegradation (Peters et al., 2005). The merit of comparing diagnostic ratios of spilled oil
and suspected oil sources is that concentration effects are minimized. In addition, the use of
ratio tends to induce a self-normalizing effect on the data because, the influence of
operational differences, instrumental fluctuations and matrix effects are minimized.
Previous reports have shown that these ratios are stable over timein oil and sediment
samples (e.g. Wang et al., 1995, Wang et al., 1998, Wang et al., 1999; Webster et al., 2003,
Webster et al., 2004) collected from spill sites. However, no research to date has looked
into the stability of these ratios in living organisms affected by oil spill incidents.

The current study therefore evaluates the hydrocarbon composition of Aberdeen harbour
mussels in order to classify the PAH contamination source. The relevant components
studied were the n-alkanes, PAH distributions and concentration ratios, and the biomarkers
(steranes and triterpanes) profiles. The results presented in this chapter were obtained from
analysis of mussels used for laboratory and field PAH kinetic studies reported in Chapter 3.

4.2 The n-alkanes profile of the harbour mussels.

The n-alkanes distribution and concentrations (ng g™* wet weight) in Aberdeen mussels,
Loch Etive mussels (used for the laboratory experiment), and Hutton crude oil (North Sea
oil) are presented in Fig. 4.1. The figure shows the relative distribution of the odd and even
numbered normal alkanes ranging from C11 to C33. The digits represent the number of
carbon atoms in one molecule of the compounds. Carbon preference index (CPl) isa
measure of the relative abundance of odd verses even carbon numbered n-alkanes and can
be used to assess whether a hydrocarbon input source is predominantly biogenic or

petrogenic (Eganhouse and Kaplan, 1982). It has been established that n-alkanes from
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petrogenic sources have a CPI approximately equal to 1.0 while those from biogenic
sources have CPI greater than 1.0 (Eganhouse and Kaplan, 1982; Peters and Moldowan
1993; Webster et al., 2004).

CPI is calculated from:

CP| = (Cs+ Cas) + 2(Cps+ Cpy+ Coo+ Can) ((Bray and Evans, 1961))

2(C24+Caxs+Caxps+Ca+Cx)

As expected the Hutton crude oil profile is an even distribution of n-alkanes and returned a
CPI value of 1.0. Aberdeen harbour mussels show dominance of the even numbered n-
alkanes over the odd numbered akanes and with a CPI of 1.0. Loch Etive mussels returned
aCPI of 7.2 (Table 3.2). A CPI value greater than 1.0 from the Loch Etive mussels and
dominance of the odd numbered carbon akanesistypical of aterrestrial or vascular plant

input.

Petroleum also contains a substantial proportion of hydrocarbons which are not properly
resolved by conventional gas chromatography. These components are often referred to as
the unresolved complex mixture (UCM), and are especially pronounced for biodegraded
petroleum and certain refined fractions such as lubricating oils (Gough and Rowland,
1990). According to Wang et al. (1999), UCM is a common feature of weathered petroleum
products. Thisfeatureis also present in the harbour mussels' n-alkane chromatogram but
absent in the control mussels' chromatogram and virtually not noticeable in the fresh
Hutton crude oil.

Some other interesting deductions can be made from the pattern revealed in the GC-FID
chromatography profile of the mussels analyzed (Fig. 4.1 (a)). The largest peaksin this plot
are the more reca citrant iso-alkanes of which the two most abundant, pristane and phytane
areidentified.
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According to Peters et al. (2005), pristane/phytane ratio reflects the nature of the
contributing organic matter in crude oils and increases with therma maturation. The ratio
of pristane/phytane (Table 4.1) determined in Aberdeen harbour musselsis 1.2. Thisvalue
is comparable to that calculated for the Hutton crude (1.1). The close value for thisratio is
indicative of asimilar contributing organic matter for the oil and the source of the harbour

mussels' contaminant.

However, there are differencesin the pristane/n-C,7 (0.10 and 1.23) and phytane/n-Cig
(0.20 and 1.19) ratios observed for the harbour mussels and Hutton crude oil respectively.
The huge difference in these ratios; known as the biodegradation indicators may be as a
result of microbial degradation of the petroleum content in the harbour mussels and other
factors relating to weathering which has been shown to alter the composition of aliphatic
hydrocarbon compounds in oils (e.g. Boehm et al., 1997; Boehm et al., 2001; Nordtest
2001; Wang et al., 2004). Considering the similarities in the CPI values and the
pristine/phytane ratios of the Hutton crude oil and the harbour mussels and the differences
in the biodegradation indices (pristane/n-C;7 and phytane/n-Cyg), it will belogical to
suggest that the contributing oil component in the harbour mussels have undergone a fair

degree of weathering or biological degradation.

Table 4.1: n-alkanes ratios determined for Aberdeen harbour mussals, Loch Etive mussels
and Hutton crude oil.

Loch Etive Harbour Hutton Crude
Indicators mussels mussels oil
CPI 7.20 1.00 1.00
Pristane/phytane - 1.20 1.10
n-C17/pristane 0.49 0.10 1.23
n-C18/phytane - 0.20 1.19
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A serious limitation of using the n-alkane profile alone in PAH source classification or oil
source correlation is the ease with which n-alkane profiles are altered in the environment.
The weathering processes that petroleum products are subjected to upon release to the
environment include evaporation, water washing and dissolution, and biodegradation.
These processes cause the chemica composition of the product to change, asit weathersin
some cases quickly and drastically. n-alkanes are among the most biodegradable
hydrocarbons, so they are readily broken down and preferentially depleted from the
environment. Therefore, the uncertai nties surrounding the compositional changes of the n-
alkane pattern due to weathering renders this approach inadequate and requires
consideration of the more refractory classes of hydrocarbons such as the PAHs and
geochemical biomarkers (Galperin and Camp, 2002).

4.3 PAH distribution profile and concentration ratios

Aswas explained in Section 1.3.2.1, the PAH distribution profile is auseful qualitative tool
in distinguishing between PAH sources. In genera, pyrolytic PAHs are characterized by the
dominance of the un-substituted (parent) compounds over their corresponding alkylated
homologues and the dominance of the high molecular mass (4- to 6-ring) compounds over
the low molecular mass (2- and 3-ring) compounds. In contrast, petrogenic patterns are
characterized by dominance of the alkylated compounds over their corresponding parent
homol ogues and the high abundance of the 2- and 3-ring PAHs over the 4- to 6-rings
(Dahleet al., 2003 and Budzinsky et al., 1997). Webster et al. (2003) also noted that
phenanthrene and pyrene are more thermodynamically stable than anthracene and
fluoranthene, and dominate if the sourceis petrogenic.
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Table 4.2: % PAH subgroups, % of parent PAHSs, Total parent PAHs, and % of 2- and 3-
rings and 4- to 6-rings PAHs in Loch Leven, Loch Etive, Loch Ewe and Aberdeen harbour
mussels used for the laboratory and field experiments.

Aberdeen | Aberdeen
PAH sub-groups Harbour Harbour och LO_Ch -och
(1) (field) Leven | Etive | Ewe
% 128 11.6 8.6 1.0 111 17.6
% 178 48.2 54.4 31 331 | 20.8
% DBTs 17.6 14.8 0.6 6.4 6.9
% 202 13.8 14.0 9.9 21.5 30.7
% 228 4.5 4.7 12.0 8.7 94
% 252 3.0 2.9 59.9 151 10.3
% 276 0.5 04 11.3 2.9 35
% Acenaphthene (154) 0.5 0.0 0.0 0.0 0.0
% Fluorene (166) 0.30 0.1 00 | 1.2 | 08
% Dibenz[a,h]anthracene (278) 0.02 0.0 0.0 0.0 0.0
> Parent 1741 345.8 89.8 6.5 8.6
% Parent 11.7 9.3 724 | 37.8 35.8
% 2- and 3-rings 78.1 78.0 4.6 51.7 | 46.3
% 4- to 6-rings 21.9 22.0 955 | 483 | 538

Theinitial PAH profiles (Table 4.2) of the harbour mussals used for both the laboratory and
the field experiments showed a high abundance of the 2- and 3-rings PAHs (~ 78 %) and
low proportions of parent PAHs (< 12 %) relative to their alkylated homologues. For the
samples used in the laboratory study, the profile observed contained (naphthal enes and
alkylated compounds (C1-C4):11.8 %, phenanthrene/ anthracene and akylated compounds
(C1-C3): 48.2 %, and dibenzothiophene and akylated compound (C1-C3): 17.6 %), while
that for the field experiment showed (naphthal enes and alkylated compounds (C1-C4): 8.6
%, phenanthrene/ anthracene and alkylated compounds (C1-C3): 54.4 %, and
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dibenzothiophene and alkylated compound (C1-C3): 14.8 % (Table 4.2). The PAH profile
obtained for the Loch Leven musselsis different from that of the harbour mussels. Loch
Leven profile showed dominance of the parent PAH compounds (72.4 %) over their
alkylated homol ogues and a high abundance (95.5 %) of the 4- to 6-rings compounds
(Table 4.2) relative to the 2- and 3-rings compounds (4.5 %). The control samples show an
even spread of the lighter and heavier PAH compounds (51.7/46.3 % of the 2- and 3-rings
and 48.3/53.8 % of the 4- to 6-rings) for the Loch Etive and Loch Ewe mussels

respectively.

Specific PAH ratios; P/A, FI/Py, > MP/P and (F1+Py)/MFI+MPy described in Chapter 1
Section 1.3.2.1 and given in Table 4.3 were also evaluated. These PAH source diagnostic
indices have been used extensively to differentiate between PAH sources, especialy in
sediment samples (Budzinki et al., 1997; Baumard et al., 1998; Baumard et al., 1999;
Yunker et al., 2002; Webster et al., 2004). Webster et al. (2003) extended the use of this
ratio to the source classification in mussels' samples from the Scottish sealoch. However,
the stability of these ratios in organisms (especially mussels) and hence the reliability of use
has not properly been investigated.

The values of these ratios calculated for the harbour and the Loch Leven mussels are
presented in Table 4.4. The plots of the values of the MP/P vs. F/Py ratios calculated for

each sample point during the depuration experiment are also presented in Fig. 4.2.

Table 4.3: PAH diagnostic ratios used for source discrimination (A = Anthracene, P
Phenanthrene, MP = methyl phenanthrene, Fl = Fluoranthene and Py = Pyrene).

Diagnostic ratio Pyrolytic Petrogenic
P/A <10 >10
F/Py >1 <1
MP/P <2 >2
(FI+Py)/(MFI+MPy) 3 <3
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Fig. 4.2(a): The FH/Py vs. MP/P ratio of Loch Leven mussels depurated in an open seain

Loch Ewe.

If the plots are considered as quadrants, the areawith MP/P >2 and FI/Py <1 defines
petrogenic character while the converse istrue for pyrolytic character. The areas opposite
these quadrants define probable mixed sources (Wang et al., 1999; Y unker et al., 2002,

Webster et al., 2003).

Aberdeen harbour mussels used in the laboratory study returned all five points on the
petrogenic quadrant (Fig 4.2b), and the field study (Fig. 4.2c) returned seven points on the

petrogenic quadrant and a point on the mixed input source quadrant. Therefore the two

plots suggest a predominantly petrogenic PAH input to the harbour. Fig. 4.2 (a), whichis

an equivalent plot for the Loch Leven mussels showed five points on the mixed input

guadrant, one point on the pyrolytic quadrant, and two points on the petrogenic quadrant;

suggesting a mixed input source.
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Fig. 4.2: The FI/Py vs. MP/P ratio determined for of Aberdeen harbour mussels depurated

in (b) the laboratory for 56 days and (c) in thefield for 68 days.
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The plots also reveal the susceptibility of these ratios to changes in specific PAH compound
concentration (hence with depuration time). The trends in variation of the indices with time
seem inconsistent (Table 4.4). The P/A ratio varied from about 9.9 at the beginning of
depuration to 2.3 at 35 days of depuration and thereafter could not be evaluated because
anthracene (A) concentration reduced to values below the detection limit. From Table 4.4,

it can be seen that the value of this ratio determined within 5 days of depuration (field
study) indicate petrogenic contamination but subsequent values do not. The values of FI/Py
and MP/P for the Loch Leven mussels also suggest different sources at different time points
(Table4.4). AsLimaet al. (2005) pointed out; source diagnostic ratios should be used with
care and in the context of the study area. Asis evident from the current study, isolated
values from different sample time points can suggest different sources and therefore result
in misleading inferences. The observed variations suggest that the ratios can be affected by

the rate of elimination or degradation of the compounds by organisms.
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Table 4.4: Ratios [phenanthrene/anthracene (P/A), methyl phenanthrene/phenanthrene (MP/P), Fluoranthene/pyrene (FI/Py) and
[Fluoranthene + Pyrene / methylfluoranthene + methylpyrene) (H + Py)/ MFl + MPy)]] of PAH compounds found in the test

mussdl's from Aberdeen harbour and Loch Leven.

Depuration time (days)

Sample site Diagnostic ratio 0 7 21 35 56
Aberdeen PIA 9.9 2.9 15 2.3 NV
harbour Fl/Py 0.8 0.6 0.4 0.3 0.2
mussel in MP/P 59 16.7 8.8 6.3 52
|aporatory 0.8 05 04 05 0.6
study (FI+Py)/MH+MPy)
0 5 12 19 26 33 47 68
Aberdeen PIA 104 +02 | 247+68 | 38 +04 | NV NV NV NV NV
harbour FI/Py 0.6 0.7 05+0.1 0.7 0.8 0.8 08+01 | 1.2+0.1
mussel in MP/P 143+03 [209+0.4(173+02| 109+1.6 | 139+09 | 13.0+28 | 7.8+16 | 62+18
fildstudy | (FI+Py)/MFI+MPy) 0.7 0.5 0.2 0.3 0.3 0.3 05 04+10
PIA NV NV NV NV NV NV NV NV
Loch Leven FI/Py 0.8 0.6 +0.1 0.9 0.8+0.1 0.9 1.2 0.9 1.0+0.2
mussel in MP/P 13+01 | 14+03 | 1.9+01 | 30+02 | 29+05 | 23+02 | 1.7+01 | 15+0.2
fieldstudy | (FI+Py)/MFI+MPy) 1.0 0.9+0.1 1.0 0.8 0.9 1.0 1.7+01 | 0.7+03
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4.4 Geochemical Biomarkers (Steranesand Triter panes)

441 Triterpane

Fig. 4.3 (a), and (b) show the distribution/abundance of triterpanes (m/z = 191)
geochemical biomarkers of the Aberdeen harbour mussels (t = 0) in the laboratory
experiment and Hutton crude oil, respectively (see Table 4.5 for peak full identities). The
m/z 191 chromatogram of Hutton crude oil showed the five doublet peaks due to the Cg; -
Css homohopane diastereoisomers (22S and 22R). It has been widely recognized (Peters
and Moldowan 1993; Boehm et al., 1997; Barakat et al., 2002; Webster et al., 2004) that
the five doublet peaks which decrease in size with increasing carbon number are
characteristic features of most crude oils. These hopane peaks are also present in the
harbour mussels' chromatogram. There is aso the presence of bisnorhopane (28ab) peak in
the Hutton crude oil and harbour chromatograms. According to Dahlmann (2003), the
broader platform area of the North Sea seems to be especially characterised by relatively
high concentrations of the C,g- bisnorhopane, a compound, which is not a member of the
regular hopane series. This triterpane compound (28ab) is therefore a unique characteristic
of the North Sea oils and the presence in the harbour mussels suggest an oil input from this
source. The homohopane doublet peaks and the bisnorhopane peak are completely absent in
the reference mussels from Loch Etive (Fig. 4.3 (¢)). It has also been established that
Middle Eastern oils do not contain bisnorhopane. The ratio of norhopane to hopane (30ab)
normally found in Middle Eastern oilsis> 1 whereas those of the North Seacilsare< 0.5
(Dahlmann, 2003; Webster et al., 2004, Wang et al., 2006). Theratio of bisnorhopane to
norhopane (29ab) ratio found in the harbour mussels was 0.13 and the norhopane to hopane
ratio was 0.81. These values are not typical either for the North Sea oils or the Middle
Eastern oils. A most probable explanation why the norhopane to hopane ratio (0.81) found
in the harbour musselsis greater than normally found in the North Sea oils (< 0.5) but less
than that characteristic of Middle Eastern oils (> 1) is mixed contamination from both
sources. In addition, a bisnorhopane to hopane ratio of < 0.20 for the harbour mussels also

suggest a greater contribution from oil which does not contain this specific biomarker.
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Fig. 4.3: Triterpane (m/z 191) profile of (a) Aberdeen harbour mussel (b) Hutton crude oil
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Table 4.4: Peak identifications for chromatograms in figures 4.5 and 4.6, and diagnostic

ratio descriptions.

Peak |abel Compound m'z
Ts 18a(H) -22, 29, 30-trinorhopane 191
Tm 170(H)-22, 29,30-trisnorhopane 191
28ab 170(H),21B(H)-28,30-bisnorhopane 191
29ab 17a(H), 21B(H)-30-norhopane 191
29Ts 18a/(H)-norneohopane 191
30d 150-methyl-17 o (H)-27-norhopane (diahopane) 191
29%ba 17 B(H)-21a(H)-30norhopane (normoretane) 191
30G Gammacerane 191
30ab 17 a(H), 21(H)-hopane 191
3lab (S& R) | 17 a(H), 21B(H)-homohopane (22S & 22R) 191
32ab (S& R) | 17 a(H), 21B(H)-bishomohopane (22S & 22R) 191
33ab (S& R) | 17 a(H), 21B(H)-trishomohopane (22S & 22R) 191
34ab (S& R) | 17 a(H), 21B(H)-tetrahomohopane (22S & 22R) 191
35ab (S& R) | 170(H), 21B(H)-pentakishomohopane (22S & 22R) 191
27dbS (a) 13B (H), 17a(H) diacholestane (20S) 217
27dbR (b) 13B (H), 17a(H) diacholestane(20R) 217
28aaS () 5a(H), 14a(H), 17a(H)-24-methylchol estane (20S) 217
28bbR (d) 5a(H), 14B(H), 17B(H)-24-methylchol estane (20R) 217
28bbS (e) 5a(H), 14B(H), 17B(H)-24-methylchol estane (20S) 217
28aaR (f) 5a(H), 14a(H), 170(H)-24-methylchol estane (20R) 217
29aaS (Q) 5a(H), 140(H), 170(H)-24-ethylchol estane (20S) 217
29bbR (h) 5a(H), 14B(H), 17B(H)-24-ethyl cholestane (20R) 217
29bbS (i) 5a(H), 14B(H), 17B(H)-24-ethyl cholestane (20S) 217
29aaR (j) 5a(H), 14a(H), 170(H)-24-ethylchol estane (20R) 217
%DR-27Ts | [27Td (27Ts+27Tm)]* 100

%DR-28ab [28ab/ (28ab +30ab)]* 100

%DR-29Ts | [29T¢/ (29Ts +30ab)]* 100

%DR-30G [30G/ (30G +30ab)]* 100

%DR-29ab [29ab/ (29ab +30ab)]* 100

%DR-30d [30d/ (30d+30ab)]* 100

%DR-32abS | [32abS/32ab (S+R)]* 100

%DR-29aaS | [29aaY (29aaS + 29aaR)]* 100

%DR-29bb [29bb(S+R)/[ 29bb (S+R) + 29aa(S+R)]]* 100
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The profile of the control mussels (Loch Etive) is also dominated by diploptene. Diploptene
isanatural triterpane, and is also present in the harbour mussels' m/z 191 chromatogram
[Fig. 3.6 (a)] but somehow concealed by the presence of the more pronounced peaks arising
from petroleum contamination. This peak is totally absent in the Hutton my/z 191

chromatogram.
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Fig. 4.3(c): Triterpane (m/z 191) profile of Loch Etive mussel.

The mVz chromatograms of the test and control mussels used in the field experiment are also
presented. Fig. 4.5 (a), (b), and (c) show the triterpane biomarker distribution/abundance of
Aberdeen harbour, Loch Leven, and the Loch Ewe mussels are respectively. The peak

identitiesare as given in Table 4.5.
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Fig. 4.4(a): Triterpane (m/z 191) profile of Aberdeen harbour mussel
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The my/z 191 chromatogram of Aberdeen harbour mussels used for the field experiment
(Fig. 4.4(a)) showed similar compounds identified in the mussels used for the laboratory
experiment; the only difference been the relative intensities of individual compound which
is higher in the former. Thiswas also reflected in the PAH tissue burden of the mussels.
The total PAH concentration of the mussels used in the laboratory experiment was lower
(1492.8 ng g*) than that used in the field experiment (3734.8 + 216.0 ng g*). However, the
bi snorhopane/norhopane and norhopane (Czo)/hopane (Cso) ratios wre less than determined
in the laboratory experiment; 0.07 and (0.71 £ 0.05) respectively but still suggests mixed
input from the North Sea and Middle Eastern oils.

The nV/z 191 profile of the Loch Leven mussels (Fig. 4.4b) showed no identifiable
petroleum related triterpane peak. The chromatogram was dominated by the diploptene
peak which is anatural triterpane also available in all mussel samples analysed. Therefore,
the profile of these mussels portrays that the PAH contamination may be predominantly

from a pyrolytic source.
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Fig. 4.4 (c): Triterpane (M/z 191) profile of Loch Ewe mussel

The chromatogram of the Loch Ewe mussels used as the control mussels (Fig. 4.4 (¢))
showed traces of all the petroleum biomarkers determined in the harbour mussels, including

the homohopane doublet peaks. Thisis not expected but not surprising as Loch Eweisvery
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famous for its salmon fishing and the loch is always busy with sailing activities especially
during the summer when the area attracts large pools of tourists. Therefore, oil |eakages
from boats or washings may have contributed to the trace petroleum contamination
observed in this area.

44,2 Steranes

The sterane (mV/z 217) chromatogram of Aberdeen harbour mussel and Hutton crude oil are
presented in Fig. 4.5 (a) and (b) respectively. The figures show that all the labelled peaks (a
—J) present in the Hutton oil chromatogram are also present in the harbour mussels
chromatogram. However, the relative abundance of the compounds in Aberdeen harbour
mussels differs from those of the pure oil sample. The Loch Leven mussels' sterane profiles
presented in (Fig. 4.6 (a)) like the m/z 191 profile, shows no identifiable petroleum related
sterane compound. Therefore, the absence of sterane peaksin the Loch Leven musselsisa
good indication that the differencesin the relative abundances of the sterance compounds
between the Hutton and harbour mussels' myz 217 did not arise from the mussels, but rather
may be as aresult of additional oil input source. Likeits n/z 191 profile, the sterane profile
of the Loch Ewe mussels (Fig. 4.6 (b)), aso showed peaks; Cy7, Cog and Cyg that are
characteristics of petroleum products. However, the percentage abundances of these
compounds are relatively small compared to the abundances found in the harbour mussels.
The probable reasons why there exist trace biomarker compounds in the reference musseals

profile has been discussed in the preceding section.
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Fig. 4.5: Sterane (m/z 217) profiles of (a) Aberdeen harbour mussels and (b) Hutton crude
oil. Where a= 27dbS, b = 27dbR, ¢ = 28aaS, d = 28bbR, e = 28bbS, f = 28aaR, g = 29aaS,
h = 29bbR, i = 29bbS and j = 29aaR
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Fig. 4.6: Sterane (m/z 217) profile of (a) Loch Leven mussels (b) Loch Ewe and (a=
27dbS, b = 27dbR, ¢ = 28aaS, d = 28bbR, e = 28bbS, f = 28aaR, g = 29aaS, h = 29bbR,
i =29bbSand j = 29aaR)
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4.5 Changesin biomarker profile with depuration time.

The relative abundance (intensity) of individual biomarker was found to decrease with
depuration time for a given weight of sample (see Appendix 3). Although the biomarkers
were not absolutely quantified, a decrease in intensity (abundance) of individual
compounds relative to diploptene (a non crude oil biomarker) was observed. The intensity
of diploptene increased progressively until it became the dominant peak in the m/z 191
chromatograms of the mussels as intensities of the compounds approach that of the control
samples (see Appenxdix 3). Therefore to better characterize the changes in the biomarker
profile, biomarker diagnostic ratios were used. The ratios reported are calculated using the
relative abundances of the peak areas for the triterpanes and the peak heights for the
steranes. Measuring diagnostic ratios based on peak heights and peak areas (semi-
guantitative) within the same molecular ion has been recommended and is being used by
Nordtest (Faksness et al., 2002) in environmental forensics. The ratios are of the type

Hasn) 190

where aand b are peak heights or peak areas within the same molecular ion.

The accuracy of the instrumental analysis and diagnostic ratio calculation relies on the
measured variability among triplicate analysis (Nordtest, 2002). For the field experiment,
the relative variation at a 95 % confidence interval was calculated for thefirst triplicate
samples using the “student’s t” test. The confidence interval is an expression stating that the
true mean |, islikely to lie within a certain distance from the measured mean, x. The
confidence interval of p is given by

ﬂ‘%+i§
N
where sis the measured standard deviation between triplicate samples, X is the mean value,

tisthe Student’st and N is the number of observations. For thet’ table, the number of
degrees of freedom equals N-1. The DR ratios obtained in both the laboratory and field
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studies are presented in Table 4.5 and correlation plots of the time zero sample and

subsequent samples using the Nordtest methodology are presented in Fig. 4.7.

Table 4.5 shows that, over the study period, the value of the triterpane DRs remains
relatively stable with only alittle enhancement except for DR-30G which ranged from 6.4
to 12.4. The compound Gammacerene; which is the numerator in this ratio co-elutes with
an unknown compound and therefore the values obtained for this DR are not very reliable.
The result from the current study suggests that although the studied triterpane biomarkers
are eliminated by organisms (absol ute abundance decreases with depuration time), the ratio

of specific compounds remains relatively stable over time.

The studied sterane diagnostic ratios % DR29aaS and %DR29bb showed continuous
decrease with depuration time (Table 4.5). A regression analysis of the sterane DRs and
depuration time showed a strong positive correlation (p < 0.001), with r? for each
diagnostic ratio approaching unity. This casts doubt on the reliability of using specific

sterane ratiosin oil pollution assessments.
However, Fig. 4.7 shows that the according to the Nordtest method of spill identification,

the DRs are stable over 12 days during the depuration. Such a plot cannot be given for the

laboratory experiment as the initial samples were not analyzed in triplicate.
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Table 4.5: Hopane and sterane diagnostic ratios evaluated from Aberdeen harbour mussels

Dep | % DR-| % DR-| % DR- | % DR- % DR- % DR- % DR- % DR-
time 27Ts 28ab 29Ts 30G 29ab 30d % DR32abS 29aaS 29bb
Lab
0 49 10 15 7.1 45 4.7 59 41 53
48 9.2 15 12 45 5.1 59 39 52
21 49 8.4 16 12 45 7.8 59 31 47
35 51 13 18 12 48 5.7 60 24 40
56 52 14 18 6.4 47 5.8 57 17 34
Field
0 44 6.7 12 16 41 5.0 58 38 53
5 43 7.6 14 13 41 8.9 59 40 51
12 41 8.0 15 14 41 5.9 59 32 46
19 46 14 17 11 44 6.9 60 26 42
26 47 14 18 11 46 6.5 61 25 41
33 45 16 17 13 46 6.9 62 22 39
47 47 14 17 10 45 5.9 66 17 33
68 47 11 18 10 45 5.9 68 21 39
89 41 14 18 8.7 48 10 68 18 35
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Fig. 4.7: Correlation between biomarker DRs of Aberdeen harbour mussels collected at

time 0 and subsequent samples collected at the given time points, using 95% confidence

interval.
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4.6 Conclusion

The n-alkane profile of Aberdeen harbour mussels contains unresolved complex mixture,
gave aCPI of 1 and showed a kane distribution with no dominance of either the odd or the
even numbered carbon atoms; therefore has a chemical fingerprints similar to those of
weathered crude oils. The PAHs distribution and concentration ratios were similar to that
described by petrogenic sources. The presence of geochemical biomarkers (sterane and
triterpanes) in the mussels biomarker fingerprint further indicates that the PAH
contamination is from a petrogenic source. Geochemical biomarker compounds are unique
features of crude oils and derived products and have been used to discriminate agaist oil
sources. The presence of specific biomarker compounds (bishnorhopane) and biomarker
ratios characteristic features of the Norths Sea and Middle Eastern oils indicate contribution
from both sources. A decrease in the intensities of triterpanes with depuration time relative
to diploptene was also observed and this suggests that similar to PAHs, these compounds
are eliminated by the organisms. The change in biomarker profile monitored using specific
biomarker diagnostic indices showed alittle enhancement of the triterpane ratios with time
while specific sterane ratios studied showed continuous decrease with depuration time.
However, a good correl ation was obtai ned between the DR profile of the time zero sample
and samples collected within 12 days of depuration using the Nordtest approach. The
retention of theinitial biomarker fingerprint by the mussels for a period of time outside of
the contamination zone indicates that mussels collected from oil spill sites can provide
useful information regarding the oil source. However, this study shows that the biomarker

information from mussels may not be very reliable after along period of spill incident.
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CHAPTER FIVE

Chemical fingerprinting of different oil samples (Gullfaks, Forties,
Hutton and Arabian light crude oils) to aid classification of Aberdeen
harbour PAH input source.

5.1 Introduction

Chemical fingerprinting is the application of chemistry to identify the sources of complex
environmental pollutants, including petroleum. This practice has advanced into a science
where the original source(s) of complex mixtures (e.g. crude oil) can often be identified by
the relative abundance of major individual compounds (e.g. n-alkanes) forming a chemical
pattern by ratio of specific constituents or by identifying source-specific compounds or
markers (e.g. triterpanes) in the environmental sample being investigated. In oil spill
chemical fingerprinting, saturated hydrocarbons (n-alkanes and isoprenoids), PAH
distributions, and geochemical biomarkers (steranes and triterpanes) are usually the
important parameters considered (e.g. Faksness et al., 2002; Dahlmann, 2003; Peters et al.,
2005).

The geochemical biomarker approach has been used for the exploration of fossil fuels and
reservoir geochemistry (Peters and Moldowan 2003; Peters et al., 2005). In recent times,
this approach has been carried over to oil spill investigations (environmental forensics);
where extensive weathering of the more labile compounds (n-alkanes and PAHS) often
leave biomarkers as primary analytical chemistry aternative for use in fingerprinting of
spilled oils (Boehm et al., 1997; Requejo and Boehm, 1985; Barakat et al., 2001). To
unambiguoudy identify spilled oils and petroleum products and to link them to the known
sources is extremely important in settling questions of environmental impact and legal
liability (Wang et al., 1999). The chemical fingerprinting of petroleum is made possible by
the numerous individual hydrocarbons present and the great variability in the relative
abundances of these compounds in different crude oils, and between crude oils and their
refined products (as described by Faksness et al., 2002). The variability is asaresult of the

differing geologica environment and conditions under which the oils are formed and the
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biological makeup of the oils. According to Faksness et al. (2002), defensible chemical
fingerprinting isacritical part of oil spill investigation and site assessments. Forensic
identification of marine oil spillsin Scandinavia and in many other countries has in the last
10 years followed the Nordtest methodology (1991), using the biomarkers for the
characterization of spilled oils and the identification of their source by qualitative
comparisons of isomer patternsin GC-MS chromatograms of the spilled oil and those of
the suspect sources. Thisis normally done by comparing the patterns in specific biomarker
diagnostic ratios (Table 5.1). These biomarker diagnostic ratios have been shown to be
stable (show little or no change) over timein studies relating to; spilled oil samples, slightly
weathered oils, and in sediment samples collected from spill sites (Poulsen et al., 2002,
Wang et al., 1999, Faksness et al., 2002; Peters et al., 2005). However, the stability of

these diagnostic ratios in organisms exposed to oil contamination has not been explored.

The complex geochemical biomarker profile obtained from the Aberdeen harbour mussels
led to further analysis of common crude oil samples to attempt to classify the pollution
source. The sources considered were restricted to crude oils due to the presence of
pronounced Cz; — C3s homohopane doubl et peaks (characteristic feature of al crude oils) in
the mussels' triterpane profile. However, the presence of BNH (28ab) peak; a unique
triterpane feature of the North Sea oilsand a Cye/C3o- hopane ratio approximating those of
the Middle Eastern oils as found in pure samples of these crude oils reduced the possible
suspect sources to the North Sea and Middle Eastern oils. Therefore, the following oil
samples were analyzed for the geochemical biomarkers; Gulfaks crude oil (Norwegian
Sector, North Sea); Forties crude oil, Hutton crude oil (UK Sector, North Sea); and Arabian
light crude oil (Middle Eastern oil).

5.2. Analytical methods.
The oil samples were prepared, separated into the aliphatic and aromatic components and

analyzed with GC-M S using the same method as samples as detailed in FRS laboratory
manual for biomarker determination (SOPs, 1265, 1625, 1640, and 1660, see appendix 1).
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5.2.1. Oil sample preparation

The crude oil samples used for the analysis were prepared by adding 2 ml of iso-hexane to
approximately 0.5 mg of each crude oil samplein avial and shaking vigorously to
homogenize the solution. Various combinations of the oils were also prepared by mixing
1:1, 1:3 and 3:1 (v/v) of specific oils using a dedicated syringe. The oil mixtures prepared
were Forties/Arabian light oils and Gulfaks/Hutton oils in the volumetric ratios described

above.

5.2.2. HPLC clean-up and fractionation

Approximately 150 ul of the oil in iso-hexane (and aso their mixtures - see Table 5.1) was
injected into the HPLC and eluted with iso- hexane at aflow rate of 2 ml min™. The
aliphatic fraction was collected within 2 min 30 seconds of injection and reduced to 500 pl
using the rotary evaporator with awater bath temperature set at 30 °C. The reduced eluate
was transferred to avial and further reduced to 25 pl under stream of purified nitrogen gas
before analysisby GC — MS.

5.2.3. GC-MSD deter mination of biomarkers

The sterane and triterpanes compositions were determined by GC-M S fitted with a cool on-
column injector. Geochemical biomarker analysis was carried out using the selected ion-
monitoring mode (SIM). Triterpanes were monitored using m/z 191 and steranes using nvz
217. ldentification of compounds was carried out by matching the retention time and peaks
of compounds in the test samples with those in reference oil analyzed with each batch of 12

samples.
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5.3. Results and discussion

The results obtained from the chemical fingerprinting of the individual crude oil and their
mixtures are presented in Section 5.3.1 and the result from this study is compared with the

biomarker profile of Aberdeen harbour musselsin Section 5.3.2.

5.3.1. Individual oil biomarker profiles

5.3.1.1. Triter panes

The nVz 191 chromatograms of the analysed crude oil samples; Forties, Gulfaks, Hutton
and Arabian light crude oils are presented in Fig. 5.1 to 5.4 respectively. The
chromatograms showed the five doublet peaks (Cs;-Css homohopane peaks) identified as
(31abS - 35abR), which are characteristic features of crude oils (Peters et al., 2005). The
North Sea oils: Hutton, Gulfaks and Forties crude oils aso show 170 (H), 218 (H)-28, 30-
bisnorhopane peak (28ab, BNH). As expected, BNH is a unique characteristic of the North
Seaoils (Faksness et al., 2002; Dahlmann, 2003; Russell et al., 2005). In contrast, this
compound is absent in the m/z 191 chromatogram of the Arabian light oil. BNH absent in
Middle Eastern oilsis well documented (Dahlmann, 2003; Russell et al., 2005). Another
distinguishing feature of the North Sea oilsisthe relative abundance of 17a(H), 218 (H)-
30-norhopane (Cao-hopane; 29ab) to 17 a(H), 21B(H)-hopane (Cso-hopane; 30ab). The Cyo-
hopane to Czp-hopane ratio of the North Sea oils reported in the literature is always < 50 %.
The Cyg-hopane to Czy-hopane values determined in this study for the North Sea oils are
0.41, 0.42 and 0.39 for Forties, Hutton and Gulfaks respectively, thisisin agreement with
literature values (Russell et al., 2005). These values (0.41, 0.42 and 0.39) are comparable
but obviously different from that determined for the Arabian light oil (1.16). The value of
C29/Cgp 0btained for the Arabian light oil collaborated reports that Cyg hopane is more
abundant than Cgp hopane in Middle Eastern oils (Webster et al., 2003; Dahlmann, 2003;
Russell et al., 2005).
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Table 5.1: Biomaker peak identifications and diagnostic ratio description

Peak label Compound m/z
27Ts 18a(H) -22, 29, 30-trisnornechopane 191
27Tm 170(H)-22, 29,30-trisnorhopane 191
28ab 170(H),21B(H)-28,30-bisnorhopane 191
29ab 170(H), 21B(H)-30-norhopane 191
29Ts 180.(H)-norneohopane 191

30d 15a-methyl-17 o (H)-27-norhopane (diahopane) 191
29ba 17 B(H)-21a(H)-30norhopane (normoretane) 191
30G Gammacerane 191
30ab 170(H), 21B(H)-hopane 191
3lab (S& R) 170(H), 21B(H)-homohopane (22S & 22R) 191
32ab (S& R) 170(H), 21B(H)-bishomohopane (22S & 22R) 191
33ab (S& R) 17a(H), 21B(H)-trishomohopane (22S & 22R) 191
34ab (S& R) 17a(H), 21B(H)-tetrahomohopane (22S & 22R) 191
35ab (S& R) 170(H), 21B(H)-pentakishomohopane (22S & 22R) 191

27dbS (a) 13 (H), 17a(H) diacholestane (20S) 217

27dbR (b) 13 (H), 17a(H) diacholestane(20R) 217

28aaS (c) 50(H), 14a(H), 170(H)-24-methyl chol estane (20S) 217

28bbR (d) 5a(H), 14B(H), 17B(H)-24-methylcholestane (20R) 217

28bbS (e) 5a(H), 14B(H), 17p(H)-24-methylchol estane (20S) 217

28aaR (f) 5a(H), 140(H), 17a(H)-24-methyl chol estane (20R) 217

29aaS (g) 5a(H), 140(H), 170(H)-24-ethyl cholestane (20S) 217

29bbR (h) 5a(H), 14B(H), 17p(H)-24-ethylcholestane (20R) 217

29bbS (i) 5a(H), 14B(H), 17p(H)-24-ethyl cholestane (20S) 217

29aaR (j) 5a(H), 14a(H), 17a(H)-24-ethyl cholestane (20R) 217
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Fig. 5.1: Capillary column gas chromatogram the triterpane profile of Forties crude oil.
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Fig. 5.3: Capillary column gas chromatogram of the triterpane profile of Hutton crude oil.
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Fig. 5.4: Capillary column gas chromatogram of the triterpane profile of Arabian light

crude ail.
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The variations in the relative abundances of biomarkers observed in the analyzed ail
samples support the fact that they are controlled by the make-up of the contributing source
rock, and hence their usefulnessin oil source investigation. The value of C,o/Csp for the
Arabian light oil reported in this study is similar with the values from Poulsen, et al. (2006)
who reported a C,y/Csp hopane average of 1.18 from triplicate analysis o Arabian light oil
standards (1.22, 1.15, and 1.22), and 1.30 for Kuwait oil standards (1.30, 1.32, and 1.27).
Therefore, the absence of BNH in the m/z 191 chromatogram of the Arabian light oil and
the relative abundances of Cy9/C3p hopane in these chromatograms clearly distinguishes the
North Sea oils from the Arabian light oil (and probably the Middle Eastern oils)

5.3.1.2.Steranes

The sterane profiles of the individual oil samples are presented in Fig. 5.5 (a-d). The
labeled peaks are the Cy7, Cagand Cyg Steranes (Table 5.1). The North Sea oils; Forties,
Gulfaks and Hutton crude oils show similar sterane fingerprint; a pronounced C,; steranes
peaks [identified as (a) and (b] in addition to the dominant C,g Ssteranes (g-j). The Arabian
light ail’ s sterane profile on the other hand, showed dominance of the C,g Steranes over the
C,7 and Cyg steranes. The Cy7, Cogand Cyg Steranes are maturity indicators and their specific
ratios have been widely applied in petroleum geochemistry to investigate the state of
maturity of oils, especialy the epimer ratio of 20S/(20S+20R).
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Fig. 5.5(a): Capillary column gas chromatogram of the sterane (nVz 217) profile of Forties
crude oil
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Fig. 5.5(b): Capillary column gas chromatogram of the sterane (m/z 217) profile of Hutton
crude oil
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Fig. 5.5(c): Capillary column gas chromatogram of the sterane (m/z 217) profile of Gulfaks

crude oil
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Fig. 5.5(d): Capillary column gas chromatogram of the sterane (m/z 217) profile of Arabian

light crude oil
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5.3.2. Oil mixtures profiles

Figures 5.6 to 5.11 show the m/z 191 chromatograms of the different mixtures of the
studied crude oils.
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Fig. 5.6: Triterpane (m/z 191) profile of Gullfaks crude and Hutton crude oil mixture in the
ratio 1:1.
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Fig. 5.7: Triterpane (m/z 191) profile of Gullfaks crude and Hutton crude oil mixture in the
ratio 3:1.respectively.
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Fig. 5.10: Terpane (m/z 191) profile of Forties crude and Arabian light crude oil mixturein
the ratio 3:1 respectively.
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5.3.3. Comparison of the geochemical biomarker profile of Aberdeen harbour with

those of the crude oils

It was established in previous chapters using the n-alkanes, PAHs distribution and the
biomarker profile that the mussels collected from Aberdeen harbour and used for the
laboratory and field PAH kinetics studies showed petrogenic contamination. The sections
below compare the geochemical biomarker profiles of the harbour mussels with those

measured in the different crude oils and their various mixtures

5.3.3.1. Harbour mussels versusthe crude ail triterpane and sterane biomarkers

The harbour mussels (Fig. 5.12) showed all the triterpanes identified in the various crude

oil samples but in different percentage abundances (Fig. 5.1-5.4). Aswith the North Sea
oils (Fig. 5.1-5.3), the harbour mussels showed a bisnorhopane (BNH) peak. The presence
of thisunique triterpane in the mussels’ chromatogram is indicative of a contribution from
the North Sea oils, however, the relative abundance of BNH to hopane (30ab) present in the
harbour mussels (0.11) isless than is normally found in the North Sea oils (Faksness et al .,
2002, Dahlmann, 2003) typified by the values determined in this study for the individual
North Sea oils and their mixtures (0.24 — 0.34). The mussels a so showed C,y/Czp — hopane
ratio which is not close to what is characteristics of neither the North Sea oils nor the
Arabian light oil (Middle Eastern ail). Therefore, based on these specific biomarkers, the

mussels' profileis not an exact match to any of the individual oils analyzed.
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Fig. 5.12: Triterpane (m/z 191) profile Aberdeen harbour mussel

5.3.3.2. Aberdeen harbour mussdls ver sus crude oil mixtures

All the biomarker triterpane and sterane compounds identified in the habour mussels
chromatogram are aso present in the oil mixtures chromatogram except diploptene.
Diploteneis anatural triterpene component of most plants and animal and therefore its
absence in the crude oils samples is expected. Fig. 5.6 -5.11 show that the oil mixtures have
similar biomarker profile but in varying compositions. The uptake and accumulation of
contaminants by organisms is dependent on arange of complex biological processes
affecting absorption, distribution, metabolism and elimination of contaminants. Research
has shown that factors like partition coefficient, route of uptake, etc, affects contaminant
tissue burden. It follows that due to these reasons, some compounds may be preferentialy
accumulated over others. Compared to the habour mussels' profile, some of the similarities
observed in the oil mixtures profilesinclude;

(8) %DR 28ab which is 10 for the habour mussels and the 10 for the 1:3 mixture of

Arabian light oil and Forties crude oil (Table 5.2).
(b) % DR 29ab which is 45 for the harbour mussels and 47 and 41 respectively for

the 1:3 and 1:1 mixtures of Arabian light oil and Forties crude oil.
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(c) %DR 30d whichis 4.7 for the habour musselsand 3.7 and 5.91:3 and 1:1
mixtures of Arabian light oil and Forties crude oil.
(d) %DR29aaS which is 41for the habour mussels and 40 for the 1: 1mixture of of
Arabian light oil and Forties crude ail
(e) % DR29bb which is 53 for the harbor mussels and 53 for both the 3:1 and 1:1
mixtures of Arabian light oil and Forties crude oil.
The sterane chromatograms of Aberdeen harbour mussels and those of the various mixtures
of Forties crude oil and the Arabian light oil are also presented in Fig. 5.13. The individual
oil sterane chromatograms are presented in Section 5.3.1.2 (Fig. 5.5). A close visual
examination of the chromatograms portrays similarity in the sterane fingerprint of the
harnour mussels and the mixtures of Forties and Arabian light crude oils. Further
qualitative deductions could not be made from the sterane profiles because of their
complexities and poor GC-MS resolution. It is noteworthy that, while n-alkanes and the
PAHs aretypically well resolved by low resolution GC-M S, steranes are not well resolved

and often yield chromatograms with numerous co-eluting peaks.

From the triterpane and the sterane fingerprints, the crude oil mixtures that bear close
resemblance in profile to the profile of Aberdeen harbour mussels’ arethe 1:1 and 1:3
mixtures of Forties and Arabian light oil respectively. The similaritiesin profile between
the harbour mussels’ profile and the 1:1 and 1:3 mixtures F/A crude oils support the
proposition of a possible contribution from the Middle Eastern oil made in Chapter 4. As
was discussed in section 5.3.1.1, the presence of specific North Sea and Middle Eastern
biomarker characteristics and the deviation from pure North Sea crude oil compositions

suggest a mixed petrogenic contamination from these sources.

119



Chapter Five: Chemical fingerprinting of crude oilsto aid PAH source characterization

Abundance

40000

35000

30000

25000

20000

15000

10000

5000

lon 217.00 (216

@

.70 to 217.70): RF122.D\data.ms

Time--=>

Abundance

24000
23000
22000
21000
20000
19000
18000
17000
16000
15000
14000
13000
12000
11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

T T T T T T T T T 7
22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00

Aberdeen harbour mussel

lon 217.00 (216

©

a

.70 to 217.70): REO67.D\data.ms

rime--=

T T T T T T T
22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00

T
30.00

Forties/ Arabian light oil mixturein theratio 3:1

Abundance

36000
34000
32000
30000
28000
26000
24000
22000
20000
18000
16000
14000
12000
10000

8000

6000

4000

2000

©

lon 217.00 (216.70 to 217.70): REO66.D\data.ms

a

Time-->

andance

aso000
4ae000
44000
42000
40000
38000
36000
34000
32000
30000
28000
26000
24000
22000
20000
18000
16000
14000
12000
10000
8000
6000
aoo00
2000
o

T T T T T T T T
22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00

Forties/ Arabian light oil mixtureintheratio 1:1

(d)

Ll

lon 217.00 (216.70 to 217.70): REO65.D\data.ms

a

o=

T
22.00

T T T T T T
23.00 24.00 25.00 26.00 27.00 28.00 29.00

Forties/Arabian light mixture 1:3

Fig. 5.13: Sterane profiles of Aberdeen harbour mussels and various mixtures of Forties and Arabian crude oil.
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5.3.3.3. Evaluation of the biomarker diagnostic ratios

To further classify the harbour contaminant input source, biomarker diagnostic ratios of the
harbour mussels, individual crude oils samples, and their mixtures were calculated. The
results obtained are presented in Table 5.2. According to Wang et al. (2007), genetic oil —
oil correlations are based on the concept that the composition of biomarkersin spill samples
does not differ from those of the candidate source oils. The seven hopane and two sterane
diagnostic ratios used in this study are among the ratios currently in use by Nordtest in ail
spill investigations.

The ratios reported are calculated using the relative peak areas for the triterpanes and the
peak heights for the steranes. Measuring diagnostic ratios based on peak heights and peak
areas (semi-quantitative) within the same molecular ion has been recommended and is
being used by Nordtest in environmental forensics (Faksness et al., 2002). The ratios are of
the type

Hasn) 190

where a and b are peak heights or areas within the same molecular ion (see Table 5.1).

Table 5.2 shows the values of the diagnostic ratios (DR) obtained for the Aberdeen harbour
mussels and the various oil sample combinations analyzed. The ratio of %DR27Ts
calculated for individual oils were 53 for Hutton (H) crude oil, 54 for Gullfaks (G)and
Forties (F) crude oil and 57 for the Arabian light oil (A), and 53 -55 for the oil mixtures.
Thisratio isan oil maturity ratio which increases from 0 at immaturity to 50 % in the il
window, and tend to increase to 80-90% at late maturity. The ratio is influenced by source
type (Faksness et al., 2002). This ratio distinguishes the North Sea oils from the Arabian
light oils but not the oil mixtures. The %DR27Ts values obtained for al the oil mixtures
followed unexpected trend, especially 1:1 G/H (55) and 3:1 F/A (53) crude oils. The former
is higher while the later is lower than the values obtained from individual oil samples.
Conventionally, it is expected that the values will lie between those of the constituting pure
oil samples. The value of %DR 27Ts for Aberdeen harbour musselsis|ower than that
determined for the oil samples. This may be connected to the abnormal trend observed for
this DR. %DR 28ab, which is the ratio of 28,30-bisnorhopane /C30-hopane is different for
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the North Sea ails; ranging from 19 for Gulfaks crude to 26 for Hutton crude. As 28,30-
bisnorhopane is completely absent in Arabian light oil, thisratio is 0. Thisratio is agood
reflection of the changesin oil composition among the oil mixtures; with increase in the

proportion of the Arabian light oil decreasing the value of %DR28ab.

Table 5.2: Summary of selected nVz 191 and nV/z 217 diagnostic ratios measured for Forties
crude oil, Hutton crude oil, Gulfaks crude oil, Arabian light oil and Aberdeen harbour
mussels.

Sampleld %DR- | %DR- | %DR- | %DR- | %DR- | %DR- | % DR- | %DR- | % DR-
27Ts | 28ab |29Ts | 30G 29ab | 30d 32abS | 29aaS | 29bb

Forties Crude 54 24 15 10.5 29 9.5 57 39 54

Hutton Crude 53 26 14 9.2 30 7.3 57 48 60

Gullfaks Crude | 54 19 12 7.0 28 8.3 58 39 52

Arabian Light

Crude 57 0 21 13.9 54 10 57 52 59
G/H 31 54 20 12 7.5 28 7.6 58 38 51
GH11 55 22 13 8.3 29 7.1 58 39 50
G/H 1:3 54 24 14 9.1 29 6.9 59 38 52
F/A 3:1 53 21 16 12.1 35 8.7 57 39 53
F/A 11 54 16 17 11.7 41 5.9 57 40 53
F/A 1:3 55 10 18 12.8 47 3.7 57 50 59
Aberdeen

Harbour mussel | 49 10 15 7.1 45 4.7 59 41 53

G (Gullfaks crude), H (Hutton crude), F (Forties crude), A (Arabian light crude)

The %DR 29ab for the North Sea oils (Gullfaks, Hutton, and Forties) and mixtures of
Gulfaks and Hutton oils (G/H) ranged between 28 and 30 while those for mixtures
containing the Arabian light oil ranged between 35 and 54 with the highest value being that
of the pure sample of Arabian crude oil. The ratio separates the samples into two distinct
groups: the group with > 50 % Arabian light oil (% DR-29ab range 41 -54) and the group
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with < 50 % Arabian light oil (% DR-29ab range 28-30). According to this classification,

Aberdeen Harbour mussels can be said to contain up to 50 % of the Arabian light oil.

The DR results highlighted a close similarity between the biomarker profiles of the
Aberdeen harbour mussels and the 1:1 ratio of the Forties crude and Arabian light oil (F/A
1:1).

5.3.3.4. Comparison of the DRs of the oilswith A.H mussels using the Nor dtest

approach.

The diagnostic ratio approach is the method used by Nordtest to compare spill samples with
the suspect sources. The accuracy of the instrumental analysis and diagnostic ratio
calculation relies on the measured variability among triplicate analysis (Nordtest, 2002).
Nordtest recommends that atriplicate analysis, preferably that of the spill source be used to
establish the confidence interval of the mean. The confidence interval isan expression
stating that the true mean 1, islikely to lie within a certain distance from the measured

mean, X. The confidence interval of [ is given by

ﬂ=x+ii
N
where sis the measured standard deviation between triplicate samples, x is the mean value,
tisthe Student’st and N is the number of observations. For the t-table, the number of

degrees of freedom equals N-1for triplicate anaysis.

A regression analysis of the profiles of the spill versus the suspect sample should give a
straight line with x =y for a‘perfect match’ or have the error bars of the DRs overlapping
the line for a positive match within the analytical variations. The classification in usein the

Nordtest system is summarized bel ow:
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Table 5.3: suggested criteriafor classification of spill samples from correlation studies of

diagnostic ratios

Classification Definition

Positive match All DR with the CL 95 %
Possible match All DR with the CL 98 %

No match Any key DR outside of CL 98 %

Figs. 5.14 (a-j) below show the correlation between the DRs of the harbour mussels with

each of the oil sample and mixtures analyzed using 95 % confidence interval. According to

the Nordtest classification, all the DRs of the spill sample and the suspect sample should be

in astraight line for a perfect match or have the error bars overlapping the line for a

positive match. The plots of pure samples of the North Sea oils (Forties, Gullfaks, and

Hutton) and all mixtures of Gullfaks and Hutton (G/H) have some of the DRs outside of the

x=y line. Also pure sample of the Arabian light oil and its various mixtures with Forties

crude oil show no positive match with the harbour mussels. However, the 1:1 mixture of

Forties and Arabian light oil show a possible match with the harbour mussels [Fig. 5.14(i)].
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Fig. 5.14 (a): Correlation between Aberdeen harbour mussels and Forties crude oil.
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Fig. 5.14 (b): Correlation between Aberdeen harbour mussels and Hutton crude oil
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Fig. 5.14 (c): Correlation between Aberdeen harbour mussels and Arabian light crude oil
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Fig. 5.14 (d): Correlation between Aberdeen harbour mussels and Gullfaks crude oil
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Fig. 5.14 (e): Correlation between Aberdeen harbour mussels and 1:3 mixture of Gullfaks

and Hutton crude ails.
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A.H. mussels versus G/H1:1
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Fig. 5.14 (f): Correation between Aberdeen harbour mussels and 1:1 mixture of Gullfaks

and Hutton crude ails.
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Fig. 5.14 (g): Correlation between Aberdeen harbour mussels and 3:1 mixture of Gullfaks

and Hutton crude ails.
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A.H. mussels versus F/A 1:3
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Fig. 5.14 (j): Correation between Aberdeen harbour mussels and 1:3 mixture of Forties and
Arabian light crude ails.

However, in the Nordtest system, some specific PAH indices are also used together with

the geochemical biomarker indices for oil spill source classification.

Although the results from this study indicate that the harbour mussels were contaminated
from a combination of North Sea oil and of Middle Eastern ail, it does not clearly indicate
the exact percentage contributions of each suspect oil to the contamination reported. The
lack of a perfect match between Aberdeen harbour mussel and the mixtures of Arabian light
and Forties (especialy F/A 1.1) suggests that either the % contribution from each oil less or
more proposed or that the components of the oil has undergone some alteration within the

spill environment and/or the organism or both.
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5.4. Conclusion.

Geochemical biomarker fingerprints of the harbour mussels has proved very useful in the
classification of the source of PAHs determined in the mussels. The presence of specific
geochemical biomarker compounds (steranes and triterpanes) characteristics of crude oilsin
the harbour mussdl indicates that the PAHs found in these mussels has some petrogenic
origin. The sterane and triterpane distributions show specific fingerprints characteristics of
both the North Sea and Middle Eastern crude oils, indicating possible contribution of oils
from both areas to the harbour contamination. Specific biomarker diagnostic ratios studied
(%DR-27Ts, %DR-29Ts, %DR-28ab, %DR-29ab, %DR-30G, %DR-30d, and %DR-
32abS) showed variability among pure oil samples, their mixtures and the harbour mussels.
However, apossible match (at a 95% confidence interval of the mean) was established
between the test samples and the 1:1 (v/v) mixture of Forties and Arabian light crude oils.
The dlight deviations observed between these two samples may be due to weathering
effects or differencesin the actua and proposed oil % compositions. Although there was no
documented evidence of a spill involving these crude oils around the harbour in recent
times, contributors of petrogenic contamination to the harbour environment may include
operational discharges from tankers, leaky tanks, minor accidental spills, etc. This kind of
situation is not unexpected of the harbour area considering the density of cargo using the
harbour. Being at the centre of activity for the offshore oil and gas industry's marine
support operations in the North-west Europe; Aberdeen harbour is characterized by high

shipping traffic.
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Chapter Six

Investigation of PAH elimination kinetics and the changesin the

geochemical biomarker profilein mussels exposed to crude oils

6.1 Introduction

Elimination kinetics of specific PAHs were estimated from wild mussels collected from
Aberdeen harbour and depurated in relatively clean seawater in the laboratory. The
depuration kinetics calculated from these mussels differed from values reported in the
literature for acutely exposed mussels but were close to literature values for chronically
exposed mussels. The reason for the differencesin the k; values calculated from chronically
and acutely exposed organisms could be attributed to the PAH contamination source and
duration of exposure of the organismsto it. The present study, therefore, uses mussels
exposed to acute artificial oil contamination and depurated in the same laboratory condition
as the Aberdeen harbour mussels to investigate the elimination kinetics of specific PAH
compound from acutely exposed musselsin order to compare the rates obtained in both
experimental conditions with literature values. In addition, the changesin geochemical

biomarkers (steranes and triterpanes) with PAHs elimination were a so investigated.

6.1.1 Experimental design

Mussels accumul ate hydrophobic contaminants readily due to their ability to filter high
volumes of water (high water filtration rate). Musselsfilter, on average, 7.5 litres of sea
water/hour (Reed, 2002). As a consequence of this, they accumulate and concentrate
pollutants from sea water, particularly those associated with particles. This ability to
accumulate materials facilitates the detection and measurement of pollutants that are
sparingly soluble in water and may be in the water column at very low concentrations.

The experiment was designed to expose mussels to artificia oil contamination and measure

the rate of clearance of PAHs and changes in geochemica biomarker profile with clearance
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of PAHSs. In thisexperiment, the mussels were either exposed to Arabian light oil, Gullfaks

crude oil or Brent crude oil mechanically dissolved in water for 2 days.

6.1.2 Sample collection

The mussels used for the experiment were collected from Loch Etive shellfish farm. Loch
Etiveisarelatively clean site located on the west coast of Scotland, where industrial
activities are minimal. The mussels were transported to FRS within six hours of being
removed from water and kept in a holding tank supplied with continuous flow of filtered
sea water overnight before exposure to oil contamination.

6.1.3 Oil exposure

The mussels were divided into 3 groups and transferred to 3 separate 100 litre glass fibre
tanks containing 100 litres of filtered seawater. Using a calibrated pipette, 2.5 ml of either
Gulfaks crude, Brent crude or Arabian light crude oils was added to the exposure tanks and
mechanically mixed with the water. The mussels were shielded from direct sunlight by
covering the tanks with opague materials, and supplied with continuous aeration. The
exposure period lasted for two days and no mussel died during this period.
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Figure 6.1: Experimental set-up showing the exposure of mussels to crude oils

6.1.4 Sampledepuration

At the end of the two days exposure, the mussels were removed from the exposure medium
and transferred to clean tanks for depuration; a separate tank for mussel s exposed to each of
the crude oils. The depuration tanks (360 litres) were continuously supplied with filtered
seawater (0.6 £ 0.051/s). The depuration phase lasted for 11 days. An aiquot of 25-30
mussel s was removed to measure the background PAH and biomarker concentration in the
mussels prior to exposure to the crude oils. Sub-samples were also removed at the end of
the exposure period, prior to depuration and at 0.25, 1, 2, 4, 7, and 11days of depuration.
The mussels were opened, the entrained water drained off onto atissue paper and the total
soft tissue excised into solvent washed aluminum cans, homogenized by Ultraturrax™ and
frozen at -18 to - 20 °C in adedicated freezer until required for analysis.
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6.2 Analytical methods

The extraction, isocratic HPL C fractionation and GC-M S determination were as detailed in
Chapter 2.

6.3 Resultsand discussion

6.3.1 Polycyclic aromatic hydrocarbons

The background total PAH (2- to 6- ring parent compounds and their alkylated
homologues) concentrations found in the mussels prior to exposure was 15 + 0.3 ng g™* wet
weight. Mussels accumul ated different concentrations of PAH from the three crude oils
used. Thetotal PAH concentrations were 26932.3 + 1376.1 ng g™ for mussels exposed to
Gullfaks crude oil, 16124.6 + 113.1 ng g™ for Arabian light oil and 9109.9 + 105.0 ng g™
for Brent crude oil (Table 6.1). The naphthal enes (parent and alkylated compounds)
contributed 77.3 %, 48.1 % and 78.3 respectively of these totals.

The similarity of the North Sea crude oils (Gullfaks and Brent) is reflected in the
percentages of specific PAH sub-groups accumulated by the mussels (Table 6.1). For
example, total naphthalenes (77.3 % and 78.3%); total phenanthrene/anthracenes (12.9%
and 12.9%), total DBTs (6.0% and 5.3%), etc, for Gullfaks and Brent respectively. The
percentage concentration of the 2- and 3-rings compounds relative to the 4- to 6-rings

compounds found in mussels exposed to either of the two crude oils are also similar.

The PAH pattern in the mussels exposed to the Arabian light oil was different to those of
the North Sea crudes. The naphthal enes accounted for only 48 % of the total concentration
determined compared to >75 % found in samples exposed to the North Sea oils. The
percentage of DBTs (38.4 %) in mussels exposed to Arabian light oil is aso more than six
times greater than found in mussels exposed to the North Sea oils.

Surprisingly, the cumulative percentages of the 2- and 3-rings compounds found in all the
mussels are similar; 97.4%, 97.1% and 97.7% for mussels exposed to Arabian light oil,
Gullfaks and Brent crude oils respectively. It aso follows that the percentage compositions
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of the heavier (4- to 6-ring) compounds in the three sample sets are similar (2.7%, 2.9%

and 2.3%) respectively, irrespective of the source (Fig. 6.2).
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Table 6.1: The sum and % composition of various PAH subgroups determined in control mussels exposed to 2.5 ml of PAH of ether

Arabian light crude oil, Gullfaks crude oil or Brent crude oil for 2 days (details of al PAH compounds measured are given in Table
2.2 in Chapter 2)

PAH subgroups PAH concentration (ngg™) n=3 % PAH concentration
Arabian Arabian
Light Gullfaks Brent light Gullfaks | Brent
Total 128 7763.9+ 457 20816.7 £ 1084.3 7137.1+ 75.8 48.1 77.3 78.3
Total 178 1683.9+ 32.9 3474.2 £ 160.7 1177.4+22.2 104 12.9 12.9
Total DBTs 6196.4 + 113.8 1608.7 + 83.2 485.7 £ 16.3 38.4 6.0 5.3
Tota 202 2485+ 7.4 480.4 + 23.8 1235+55 15 1.8 1.4
Tota 228 134.3+2.7 2342+ 120 716+20 0.8 0.9 0.8
Tota 252 41.3+0.9 53.1+3.8 149+0.7 0.3 0.2 0.2
Tota 276 27+0.2 50+0.1 1.0+0.2 0.02 0.02 0.01
Acenaphthylene - 0.5+00 - - 0.002 -
Acenaphthene 76+0.2 34.7+24 9.1+0.3 0.05 0.13 0.10
Fluorene 4463+ 0.4 2240+9.0 89.3+17 0.28 0.83 0.98
Dibenz[a,h]anthracene 02+0.1 06+0.0 0.2 £0.0 0.001 0.002 0.002
Total PAH 161246 + 113.1 26932.3 £ 1376.1 9109.9 + 105.0
% parent PAH 4.1 6.1 9.2
% 2- and 3-rings 97.3 97.1 97.7
% 4- to 6-rings 2.7 2.9 2.3
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Fig.6.2: A plot showing the relative % composition of PAH sub-groups and % composition
of the lighter and heavier PAH compounds determined in mussel s exposed to Arabian light
oil, Gullfaks crude oil and Brent crude oil.

The 2- and 3-rings PAHs are acutely toxic and are often associated with taint in fish and
shellfish species (Heras et al., 1992 and Davies et al., 2002). These compounds were
accumulated in concentrations exceeding values that have been reported to induce taint in
shellfish (Topping et al., 1997)). The concentration of benzo[a]pyrene (an established
carcinogen) and some of the priority PAHs benz[a]anthracene, dibenz[a,h]anthracene, and
benzofluoranthenes found in the mussels were lower than the limits set by the European
Union for these compounds in shellfish. Other priority compounds; pyrene and their
alkylated compounds (C1-C3) and chrysene and (C1-C2) were accumulated in
concentrations 30-100 times higher than found in the control mussels. The new suite of
PAHSs (cyclopentd[c, d] pyrene, dibenzo[a,e]pyrene, dibenzo[a,h]pyrene,
dibenzo[a,i]pyrene, and dibenzo[a,|]pyrene) recently included as priority chemicals by the
EU [Commission Regulation (EC) No 466/2001] were rarely detected in all samples.
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6.3.1.1 Investigation of PAHs elimination kinetics

PAHs were lost quickly from the mussels during the depuration period. After 6 hours,
decreases of 5.9 %, 17.0 % and 10.1 % in total PAH concentration were observed for
mussels exposed to Arabian light oil (AL), Gullfaks crude (GU) and Brent crude oils (BR)
respectively.. Concentrations continued to fall, such that after 2 days of depuration, 43.9 %
(AL), 55.9 % (GU) and 53.0 % (BR) had been lost, and after 11 days depuration period
75.2% (AL), 89.7 % (GU) and 95.0 % (BR) had been lost.

Elimination rate constants were evaluated by fitting the depuration datainto first order
kinetics. The background PAH concentrations in the mussels (prior to oil exposure) were
subtracted from the measured concentration at each sample point. The elimination rate
constants obtained ranged between 0.003 and 1.923 day™* (Appendix 4). The 2- to 4- ring
compounds exhibited a perfect linear relationship between In-transformed concentration
and time (Fig 6.3), This can be seen in the values of the correlation coefficient (r> > 0.95)
and p-values (<0.001) recorded for these compounds (Appendix 4). The good regression
lines obtained show that the first order kinetics model used in this study is appropriate for

describing the elimination rates of these compounds from the test organisms.

Generaly, the estimated elimination rate constants (k) were similar anong the three sets of
test samples. Elimination was faster for the lighter compounds; naphthal enes,
phenathrenes/anthracenes, and dibenzothiophenes (Table 6.2), giving half-lives of
0.6/0.5/0.4 d (naphthalene), 1.0/1.0 /0.9 d (2-methyl naphthalene), 1.0/1.0/0.8 d (1-methly
naphthalene) 5.3/5.5/3.5 d (C4 naphthalenes), 2.6/2.7/2.0 d (phenanthrene), etc, in mussels
exposed to Gullfaks, Arabian light and Brent crude oils respectively. Although these
compounds were accumulated in higher concentrations, they were also readily eliminated
from the organisms. Elimination rate constant was found to decrease with increase in
alkylation (Table 6.2). It follows that the biological half-lives (t,) of a homologues series
increases with increase in akylation, for examples, 0.6 days for naphtha ene and 5.3 days
for C4-naphthalene.
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Some of the 4-, 5- and 6-ring compounds e.g. benzo[ €] pyrene, benz[a]anthracene, perylene,
indeno[1,2,3,c,d]pyrene, benzo[g,h,i]perylene returned inconsistent depuration pattern
wheretheinitial concentration was low (< 4 ng g* wet weight), and generally exhibited

biological half-lives higher than the lower rings.
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Fig. 6.3: Example elimination plots (INCm versus time) of individual PAH compound. Plots

taken from the data of mussels exposed to Brent crude oil.
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Table 6.2: Median elimination rate constants (k) and biological half-lives (t;,) determined
for individual PAH from mussels exposed to each of Arabian light, Gullfaks and Brent

crude oils assuming first order depuration.

Compounds AL GU BR Mediank, | Medianty,
Naphthalene 0.5 0.6 04 1.4167 0.5
2-Methyl Naphthal ene 1.0 1.0 0.9 0.6993 1.0
1-Methyl Naphthaene 1.0 1.0 0.8 0.6873 1.0
C2-Naphthalenes 1.9 17 15 0.3980 17
C3-Naphthalenes 34 31 25 0.2217 31
C4-Naphthalenes 55 5.3 35 0.1310 5.3
Acenaphthene 18 2.0 17 0.3853 18
Fluorene 2.1 18 16 0.3910 18
Phenanthrene 2.6 25 2.0 0.2783 25
Anthracene 96.3 2.7 39 0.2168 3.2
C1-Phenan/Anthracenes 5.0 4.6 31 0.1500 4.6
C2-Phenan/Anthracenes 9.3 8.6 4.9 0.0803 8.6
C3-Phenan/Anthracenes 13.8 111 59 0.0622 111
Dibenzothiophene 2.4 2.3 19 0.2967 2.3
C1-Dibenzothiophenes 4.4 4.2 3.0 0.1633 4.2
C2-Dibenzothiophenes 8.4 8.7 4.6 0.0828 8.4
C3-Dibenzothiophenes 12.8 135 6.3 0.0542 12.8
Fluoranthene (202) 4.1 18.1 124 0.0557 124
Pyrene (202) 171 8.1 7.2 0.0853 8.1
C1-Flouranthene/Pyrene 12.2 9.5 5.6 0.0730 9.5
C2-Flouranthene/Pyrene 18.8 12.2 6.1 0.0568 12.2
C3-Flouranthene/Pyrene 17.0 10.4 6.5 0.0667 104
Benz[a]anthracene 15.0 6.2 4.1 0.1120 6.2
Chrysene/Triphenylene 13.6 10.9 6.4 0.0638 10.9
Benz[b]anthracene 0.0564 12.3
C1-Chrysenes 16.6 11.6 6.9 0.0595 116
C2-Chrysenes 9.7 7.4 4.7 0.0932 7.4
Benzofluoranthenes (252) 22.3 12.8 9.1 0.0540 12.8
Benzo[ €] pyrene (252) 232.3 49.3 22.0 0.0315 22.0
Benzo[a]pyrene (252) 10.3 5.4 2.1 0.1287 5.4
Perylene (252) ND 19.8 ND 0.0350 19.8
C1-252 2.7 7.1 5.7 0.1223 5.7
C2-252 116 6.1 55 0.1137 6.1
Indeno[ 123cd]pyrene 103.4 8.5 15.7 0.0442 15.7
Benzo[ ghi]perylene 43.0 10.3 18.0 0.0385 18.0
C1-276 6.2 4.2 18.3 0.1110 6.2
Dibenz[ a,h] anthracene 6.4 0.1076 6.4
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6.3.1.2 Relationship between k, and log Koy

The k values obtained in this study were plotted against log Koy, to assess the role of
hydrophobicity on the elimination rate of PAH compounds. The plot shows that the
relationship between k; and log Kow is not best described by alinear relationship (Fig.6.4).
There was aninitial decrease in k; with increasing log Ko, until log Ke, of about 5.5, and
thereafter a plateau effect causing a deviation from alinear relationship.
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Fig.6.4: Trend in k; versuslog Ko, deterined for mussels acutely exposed to crude oil
contamination and depurated in flow-through tank systems in the laboratory.

Gewurtz et al. (2002) and Thorsen et al. (2004) observed similar plateau effect for PAHs
with log Koy values > 5.5 and 6.0 respectively (Fig. 6.5b). Kaya and Connell (1990) also
found that aregression analysis of log Ko versus log Koy gave a maximum value at log Koy,
value of about 5.5, and thereafter yielded a parabola. This apparent plateau in k; values for
PAHSs of log Koy > 5.5 may be as aresult of steric hindrance of the larger cross-sectional

diameter of higher molecular PAHSs as explained by Luellen and Shea (2002).
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Therefore, to accurately describe the relationship between k; and log Koy, in this study, a
simple regression was performed using the logarithm of the median valuesof the combined
k. data. The regression yielded arelationship which is best described by alogarithmic

function as shown in Fig. 6.5 below.
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Fig. 6.5: Log k; versuslog Ko, Wherelog k, = log of median k; value obtained in this
study; the equation of the plot islog k, = 2.5895 — 4.833 [log (log Kow)]

6.3.2 Steranesand triterpane biomarker distribution

The triterpane (m/z 191) and sterane (m/z 217) fingerprints of the mussels before and after
the oil exposure are shown in Fig. 6.6 and 6.7 respectively. The chromatogram of the test
samples were derived from the GC-M S analysis of ~ 10 g of samples diluted threefold,
while that of the control sample was undiluted. The biomarker abundances in the test
mussels followed the pattern Gullfaks > Arabian light > Brent. Thistrend is similar to that
reported for the total PAHs (Section 6.3.1), indicating the same mode of accumulation of
PAHs and biomarkers by the mussels.
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The triterpane fragmentogram of the control mussels showed dominance of diploptene, a
natural terpane present in most animal and plant species. There were a so traces of
norhopane (29ab) and hopane (30ab). The homohopane doubl ets peaks were however
absent but present in the test samples. These compounds labeled as 31abS - 35abR [Fig. 6.6

(a-c)]; are characteristic features of crude oils.

All test mussels contains the same range of biomarker compounds (Fig. 6.6 (a-c)) except
for bisnorhopane (28ab) which is completely absent in the mussels exposed to Arabian light
oil. Thisis expected as Middle Eastern oils have been characterized by the absence of this
specific triterpane (Dahlmann, 2003). However, the relative abundance (intensity) of
individual triterpane compound varied among samples. Mussels exposed to the North Sea
oils showed a higher abundance of C30-hopane (30ab) over 28,30-norhopane (29ab). A
difference in pattern is seen in the mussels exposed to Arabian light oil, with norhopane
dominating. It can be seen from the biomarker fingerprints that the ratio of 29ab/30ab is< 1
in mussel's exposed to the North Seaoils and > 1 in those exposed to Arabian light oil. This
specific triterpane index has been used to distinguish between pure samples of North Sea
oils and Middle Eastern oils (Dahlmann, 2003; Webster et al., 2004)

The sterane distributions (Fig. 6.7) of all test mussels show the C27 and C29 regular
steranes. Those exposed to Gullfaks and Brent crude oils show profiles dominated by the
C27 steranes while the C29 steranes dominated the profile of the mussels exposed to the
Arabian light oil. The control mussels show sterane fingerprint close to the patterns
observed in mussels exposed to the North Seaoil but in percentage abundances that could
be referred to as background, typified by total PAHs determined in these mussels.

Although the biomarkers were not absolutely quantified, a decrease in intensity
(abundance) of individual compounds relative to diploptene (a non crude oil biomarker)
was observed. The observed trend suggest that the geochemical biomarker compounds are
either eliminated (actively or passively) or degraded by the mussels.
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Fig. 6.6: Thetriterpane (m/z 191) of mussels exposed to (a) Gullfaks crude oil, (b) Brent crude ail (c) Arabian light oil (d) control

mussels. The extract from ~ 10g of sample was diluted 3x for samples a, b and c.
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6.3.3 Biomarker diagnostic ratios

In the absence of absolute biomarker quantification, the trend in specific biomarker ratios
with depuration time in the mussels was monitored to investigate the link between
clearances of PAH compounds and changes in geochemical biomarker profile. As already
explained in chapter 4, these biomarker diagnostic indices have been found to be stable
over timein oil and sediment samples and are used by Nordtest in oil spill source
identification by matching the relative peak areas or peak heights in the test sample with

those of the suspect samples.

147



Chapter Sx: PAH depuration and geochemical biomarkersin oil contaminated mussels

Table 6.3: Hopane and sterane biomarker diagnostic ratios of Loch Etive mussels artificially exposed to a specific crude oil crude
oil (Arabian light, Gullfaks and Brent crude for 48 hours)

Exposure oil pep. %DR- %DR- %DR- %DR- %DR-30G %DR- %DR- DR- DR- Tota PAHs
Time 27Ts 28ab 29Ts 32abS 29ab 30d 29aaS 29bb (ng/g)
Arabian light 0 52 0.0 23 60 12 54 3.3 54 60 16108.8
0.25 51 0.0 26 61 17 58 2.0 54 60 15157.7
1 51 0.0 27 63 11 57 45 53 62 13159.0
2 50 0.0 24 61 13 56 21 52 61 9029.1
4 51 0.0 28 60 18 60 1.6 53 61 ND
7 57 0.0 25 71 11 57 26 50 60 4352.0
11 50 0.0 24 68 12 56 24 44 58 3987.0
Gullfaks 0 51 21 15 60 5.3 31 8.3 48 57 26916.5
0.25 51 20 14 62 111 31 7.6 50 58 22329.4
51 20 14 61 5.3 30 75 50 57 18936.6
52 22 14 60 8.0 31 7.8 49 58 11872.7
52 21 14 61 8.2 30 7.3 48 58 7749.7
7 59 22 15 69 5.1 33 7.4 49 60 4892.6
11 53 21 15 67 5.1 33 6.9 46 57 2753.8
Brent 0 49 24 15 66 15.9 34 11.9 51 54 9094.1
0.25 49 22 16 69 20.2 34 8.4 48 56 8178.3
51 21 14 69 16.0 33 7.6 49 57 6139.0
49 21 15 63 9.3 34 9.0 50 57 42635
51 22 15 64 115 29 8.1 48 57 2008.3
7 58 19 16 77 5.9 36 7.0 51 59 1010.7
11 56 18 15 76 6.5 37 6.3 a7 58 437.8
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Similar information was obtained from Aberdeen harbour mussels depurated in the
laboratory and field studies reported in Chapter 4 sections 4.5. The hopane indices showed
enhancements with loss of PAHs while the sterane indices showed continuous decrease
with loss of PAHs and hence depuration time. A direct stepwise comparison between the
two studiesis difficult due to the sampling intervals. However, the decrease in the sterane
DR for the harbour mussels was small within the first 7 days (Iaboratory) and 12 days
(field) depuration experiments. Therefore, the shorter depuration period, coupled with the
high initial concentration of the compounds may be afactor contributing to the observed
trend in the present study.

In applying the Nordtest method, the val ues of the DRs obtained from the time zero
samples was plotted against the subsequent sampl e points to investigate whether the
profiles of the latter samples are different from the initial sample. The plots for the mussels
exposed to Arabian light oil, Gullfaks and Brent crude oils are presented in Fig. 6.8, 6.9,
and 6.10 respectively, alowing for the 95 % confidence interval of mean. The plots show
that all the DRs (with the error bars) are overlapping the line (x = y), and therefore gave
positive matches to the time zero sample. This indicates that the profiles of the mussels
sampled at other times were not very different from that of theinitial sample. The
illustrations show that the observed changes in the DRs were not significant as they do not
affect the final inference using the Nordtest methodology. A similar trend was aso
observed with the harbour mussels used in the field studies. The DRs of subsequent
samples correlated well with the time zero samples until after 12 days of depuration. Itis
worth mentioning, however, that for oil spill source correlation studies, Nordtest method
uses samples collected on site from the area affected by the spill and not samples from
continuous monitoring program. In contrast, results reported in this study were obtained
from organisms removed from the contaminant source and subjected to depuration in a
clean environment. The retention of the specific biomarker indices by the mussels outside
of the contaminant zone for a period of time shows that mussels collected in-situ can be a

good indicator of the contaminant source, but only for about two weeks.
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at different time intervals during depuration of mussels expose to Arabian light crude oil.
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6.4 Conclusion

The elimination rates of polycyclic aromatic hydrocarbons (PAHSs) were investigated in
Mytilus edulis experimentally exposed to crude oil contamination for 48 h. The water- only
exposure study has shown that mussels readily accumulate a wide range of PAH
compounds from the dissolved phase within short exposure duration. Thisis an indication
that the dissolved phase is an important PAH uptake route for this species. The 2-and 3-
ring compounds dominated the PAH profile found in the mussels. These compounds are
acutely toxic and often associated with taint. Although the concentration of the EU
regulated compound; benzo[a]pyrene did not exceed the maximum limit in shellfish, other
priority compounds such as chrysene and pyrene (and their alkylated homologues, C1-C3)

were accumulated in high concentrations.

Elimination of the PAH compounds upon transfer of the organisms to a clean environment
was rapid and followed first order kinetics. Elimination rate constants were comparable
among the three crude oils used in the exposures, but varied among PAH compound. The
estimated biological half-lives decreased with increase in molecular weight and degree of
alkylation for the 2- to 4- ring compounds. Biologica half-lives of naphthal enes (parent and
C1-C4) were generally lower (0.5 —5.3 d) than literature values (> 3.5 d) but followed the
same trend as literature reports. A regression analysis of k; and log Koy, Show anon linear
relationship but high dependency of k, on hydrophobicity (r? > 0.75). The kinetic data
obtained in this study can be directly applied to field conditions provided the source of

contamination is not persistent and there is no re-suspension from the underlying sediment.

The biomarker patterns found in the mussels exposed to the North Sea crude oils (Gullfaks
and Brent) differed from that of the mussels exposed to the Arabian light oil; but reflected
major characteristics of the exposure oils. Specific biomarker ratios studied were relatively
stable over the depuration period except %DR-30d and 29aaS that showed slight decreases
with time. However, the Nordtest approach adopted in this study indicates that the
biomarker profile of the mussels sampled at different intervals within the 11 days
depuration period correlated well with the time zero samples.
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This study therefore indicates that biomarker information of mussels collected within a

short period from spill sites can provide useful information on the source (s) of the spill.
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CHAPTER SEVEN

Investigation of PAH depuration kinetics and changesin geochemical
biomarkersin Atlantic salmon (Salmo Salar) artificially exposed to PAH

compound and petroleum contamination

7.1 Introduction

The definition of salmon under the “Salmon Act 1986” includes the Atlantic salmon (Salmo
Salar) and Seatrout (Salmo trutta); a migratory form of brown trout. Both species of fish
are economically important and also form acentral part of Scotland’ s natural heritage. As
migratory organisms, salmon and sea trout spend part of their life in freshwater and part in
the sea. In both species, adults migrate from the seato freshwater to spawn. Salmon fishing
isvital to the Scottish economy. Atlantic salmon iswidely regarded as Scotland's most
iconic freshwater fish species (Scottish Government, 2008).

According to asurvey report published by the Scottish Executive Environment and Rural
Affairs Department, coarse and game angling in Scotland results in the Scottish economy
producing (after displacement) over £100 million worth of annual output, which supports
around 2,800 jobs and generates close to £50 million in wages and self employment into
Scottish households, many of which arein rural areas (SEERAD, 2004).

Consequently, the effect of large quantities of oil on commercial salmon farms can have a
devastating effect on farm owners as well as significance for the national economy. A
typical exampleis during the Braer oil spill in Shetland where avessal ran aground spilling
up to 85 000 t of Norwegian Gullfaks crude and some bunker fuel oil. The incident led to
the destruction of two year classes (1991 & 1992) of salmon within the affected zone
(Whittle et al., 1997). Chemical and sensory analyses (taint analyses) have been jointly
used to make informed decision regarding the lifting of bans on harvesting of fish and
shellfish in areas affected by oil spills. According to the International Standards
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Organisation (1S0), taint is described as a flavour or odour foreign to the product. In afood
product, taint may cause consumers to believe that the food is possibly contaminated and
therefore loss of confidence in the product. Taint is a sensory experience and can only be
detected and measured by sensory procedures, i.e. by smelling or tasting the fish or
shellfish suspected of being tainted. Chemical tests can be useful for monitoring but,
ultimately, a sensory test is needed because chemical data can only predict that afood
might be tainted (Davis et al., 2002). During the Braer oil spill, salmon due to be harvested
in 1992 were destroyed after testing positive to taint assessment, even though the PAH
concentrations had declined (Whittle et al., 1997).

Reported adverse effects of petroleum hydrocarbons on farmed and wild salmon

communitiesinclude:

i.  Tainting of the edible tissue (e.g. Heras et al., 1992; Davis et al., 2002; Whittle
et al., 2005).

ii.  Induction of hepatic 7-ethoxyresorufin O-deethylase (EROD) activity due to
increased tissue PAH concentration (e.g. Stagg et al., 1995, Wiedmer, et al,
1996).

iii.  Reduction in reproductive capability of the specie affected (e.g. Truscott et al.,
1983), etc.

The above effects have been linked directly to the polycyclic aromatic hydrocarbon (PAH)
tissue burden of the affected organisms. PAHSs are the major component of petroleum
extensively studied because of their toxicity and carcinogenicity. In some cases, sensory
assessment is used as a screening tool to eliminate or prioritize samples for more
sophisticated, costly and time consuming chemical analysis where awide areais being
assessed (Saxby, 1996; Whittle et al., 1997). It is therefore important to always compare
chemical data with sensory data to safeguard consumer confidence. FRS Marine Laboratory
isthe UK centre of expertise for organoleptic assessment. Taste testing of fish products in
FRSis carried out by a group of panelists trained to detect taint in edible parts of animals
that have been deliberately contaminated by hydrocarbonsin carefully controlled

environment.
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FRS sensory assessment panel got accreditation from the United Kingdom Accreditation
Service (UKAS) under international standard 1SO 17025 in 2003.

This study investigates the kinetics of elimination of PAH compounds accumulated by
salmon acutely exposed to petroleum contamination as areflection of field conditions
during oil spill incidents. The half-life of individua PAH compound and the relationship
between loss of taint and PAH tissue burden are investigated. The geochemical fingerprints

in the organisms were al so assessed.

7.2 Ethical requirement.

As part of the requirements of the protected animal right law, permission to use live
animals for experimental purposes was obtained from the Home Office before this study
commenced. The appropriate training courses on the planned procedures were received.
The project licence was received as an amendment on the existing licence held by FRS
under the animals (Scientific Procedures) Act 1986. The Animals (Scientific Procedures)
Act 1986 cameinto force on 1 January 1987 and makes provision for the protection of
animals used for experimenta or other scientific purposes in the United Kingdom. It
replaced the Cruelty to Animals Act 1876 and implements the requirements of the
European Directive 86/609/EEC on the approximation of laws, regulations and
administrative provisions of the Member States regarding the protection of animals used for
experimental or other scientific purposes. According to the details of the act, a“ protected
animal means any living vertebrate other than man and any invertebrate of the species
Octopus vulgaris from the stage of its development when it becomes capabl e of
independent feeding’. Details of the act can be found on the Home Office website under
[(Animals Scientific Procedures) Act 1986].

During the cause of this study, strict adherence to the provisions of the project licence was
maintained.
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7.3 Experimental design

This section describes the steps taken from sample collection to the completion of the
experiment. The experiment was carried out in the laboratory. The organisms were exposed
to PAH contaminated feed for 150 h, and subsequently to Forties crude oil for 6 h. The
PAH extract used for the pre-treatment of the salmon feed was obtained from sediment
samples collected from Loch Leven. These samples showed elevated PAHs concentrations
with predominantly the 4- to 6-rings compounds. The use of PAH treated feed was to
simulate the uptake of the heavier compounds which are not normally accumul ated by
organisms within a short period of exposure to petroleum products. In fact, exposing fish to
concentrations of crude oil for an extended period of time to allow weathering of the ail
components and hence accumulation of heavier compounds is neither practicable nor
desirable. Concentration of crude oil used for the exposure reflects concentrations detected
during the oil incidents such as the Braer grounding in Shetland.

7.3.1 Sample collection and transportation.

All salmon used for the experiment were collected from arelatively uncontaminated

environment. Salmon were bred in Aultbea, Gairloch in the West Coast of Scotland, from

stock collected from the River Don in Aberdeen and ranged in length from 295.0 to 435.0

mm and weight from 239.5 to 887.7 g. They were transported to FRS Aberdeen by road in

insulated tanks provided with aeration and oxygen.

7.3.2 Sample acclimation

The salmon were acclimatized for 3 weeks in aholding tank in the laboratory before the
experiment.
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7.3.2.1 Extraction of PAHsfor salmon feed pre-treatment

Sediment sub samples ~ 10 g were weighed into a centrifuge tube. Deuterated PAH
aromatic interna standard containing Dg-naphthal ene, D;o-biphenyl, Dg-dibenzothiophene,
D1o-anthracene, D1o-pyrene and D1,-benzo[a]pyrene (100 or 200 pl; approximately 1 pg
ml™ each) was added dependent on the estimated concentration of hydrocarbons. 200 + 10
pl of aliphatic standard (containing approximately 3.2 g each of heptamethylnonane and
squalane) was then added to the sample. 20 £ 2 ml of DCM and methanol respectively were
then added to the centrifuge tube and the solution thoroughly mixed by swirling to break up
the sediment. The sample was then sonicated for 5 min, followed by centrifugation at 1800
rev/sfor 10 minat 5+ 0.5 °C. The liquid layer was the decanted into a separating funnel
containing 18 + 2 ml of water and thoroughly shaken. The bottom DCM layer was
consequently transferred to a 100 ml flask containing 10 + 1 g of anhydrous sodium
sulphate. The sediment was re-extracted by sonication for 5 min with fresh 20 £ 2 ml of
DCM, centrifuged and the solvent layer decanted into the separating funnel. This was
thoroughly mixed, alowed to separate and the DCM layer combined with the first DCM
extract in the 100 ml conical flask. The extract was then dried over the anhydrous sodium
sulphate for ~ 10 min, concentrated by rotary evaporation and exchanged into iso-hexane

by the addition iso-hexane and further reduced by rotary evaporation to 100 ml.

7.3.2.2 Exposur e of salmon to PAH pre-treated feed

The resulting extract was mixed with the weighed salmon feed (1530 g) using a spraying
bottle in afume cupboard. The feed was allowed to dry at room temperature and stored in a

Teflon container and fed to the saimon as required. Analysis of the treatment feed showed
concentration ranging from 1623.7 to 2017.1 ng g feed.
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7.3.3 Exposur e of salmon to Forties crude ail

After 150 h of feeding with contaminated feed, the remaining 44 salmon were transferred to
four different rectangular Teflon tanks in buckets filled with water. The exposure tanks
containing 206 litres of freshwater and holding 11 fish per tank were supplied with
continuous aeration. The salmon were exposed to Forties crude oil by mechanically mixing
4.0 + 0.05 ml of the crude oil with the exposure water. Exposure of fish to the crude oil in
water |asted for 6 hours. Six salmon died during the exposure period probably due to stress
but none died during the depuration phase.

7.34 Transfer of salmon to the depuration tank

At the end of six hours, salmon were transferred as above to a clean tank supplied with

freshwater to depurate the accumulated PAH compounds.

7.3.5 Sub- sampling

Four control fish were removed prior to exposure of the organisms to contaminated feed
and crude oil. Also, sub-samples of four salmon each were removed at 54 h and 150 h
during exposure to feed and at the end of 6 hours oil exposure before transferring to the

depuration tank, and subsequently at 2, 4, 7, 12, 18, 25, and 32 during depuration.

7.3.6 Gutting, filleting and stor age of samples

Salmon were killed by concussion of the brain according to “Schedule 1” provision of the
project licence by ablow to the head. The dead fish was then dissected to remove the gut
and then preserved in ice in the fridge (setting 3.5 - 4.0 °C) overnight to allow rigor mortis.

Then fish was filleted and flesh samples collected for chemical and sensory analysis.
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The samples for the sensory analysis were wrapped in duminum foil and frozen within a
maximum of 1 hour from preparation. To optimize freezing conditions, the fillets were
frozen in asingle layer thickness by air blast freezing for 2 hours, and then stored in the
dedicated freezer until required for analysis. The samples for the chemical analysis were
stored in solvent washed aluminum cans and kept in a designated freezer at -20 °C until
required for analysis.

7.4 Analytical methods

7.4.1 Chemical Analysis

The samples were analyzed for PAHs and total lipid content using the methods described
below.

7.4.1.1 PAH Analysis

The saponification, liquid-liquid extraction, HPLC isocratic fractionation /clean up and GC-
MS determination for the PAHs were the same as has aready been described for musselsin
Chapter 2.

7.4.1.2 Lipid content deter mination

Thetotal lipid content of the sample was determinated using a method devel oped by
Smedes (1999). This method is capable of detecting lipid content up to 100%. Briefly, 3.0 +
0.5 g of the homogenized salmon sample was weighed into a solvent washed 100 ml
centrifuge tube. To thiswere added 20.0 + 1.0 ml and 18 .0 £ 1.0 ml of cyclohexane and
isopropanol respectively with ameasuring cylinder. Using an Ultra Turrax (13500 rpm), the
contents of the tube was mixed over ice for 2 minutes monitored by a calibrated timer. De-
ionised water (18 ml) was added and also mixed for 1 minute with the Ultra Turrax.
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The resulting mixture was centrifuged for 10 minutes at 1800 rpm and 10 + 0.5 ml of the
organic layer removed into a cleaned 100ml flask of known weight. The remaining portion
of the organic layer was removed by suction to waste. Further 20.0 + 1 ml of 13 %
isopropanol :cyclohexane mixture was then added to the agueous layer in the centrifuge and
mixed with the Ultra Turrax for 1 minute and centrifuged as above. Another, 10.0 + 1 ml of
the second organic layer was removed and mixed with the first extract in the 100 ml flask.
Thiswas rotary evaporated (75 °C + 2 °C) to remove all solvent and then transferred to dry
inan oven (80°C £ 5°C) for 1 hr. The flask was then cooled to room temperaturein a

dessicator and re-weighed to calculate the weight of the residue.

% lipid = [(weight of residue (g) /aliquot factor)/ weight of sample extracted (g)]* 100
Aliquot factor = (A+B) /(C+D)

Where A —Volume of organic layer removed from first extract
B - Volume of organic layer removed from second extract
C —Volume of solvent used in first extraction

D — Volume of solvent used in second extraction

74.2 Sensory Analysis

The frozen fish were thawed by leaving for 24 hours in afridge at 4 °C. Fish were cooked
in a casserole using a microwave for the required duration (probe temperature > 65 °C but
not > 80 °C). Fish were flaked with a fork at the end of cooking before presenting to the
panel. A reference fish was assessed alongside the test samples at each assessment session.
The reference is a sample of salmon supplied with the test samples and treated to the same

conditions as the test samples except for exposure to pre-treated feed or crude oil.

Samples were tasted (smell and taste) by individua member of the panel and the taint
intensity rated using the scale given below.
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0 = absence 3 =strong
1 =dlight 4 = very strong
2 = moderate 5 = extremely strong

7.5 Results and discussion

7.5.1 Polycyclic aromatic hydrocarbons

The mean total PAH concentrations (2- to 6- rings) found in the salmon after the feed
exposure (2.4 + 1.4 ng g'*) was not very different from those of the control samples (1.1 +
0.6 ng g1). This suggests no accumulation from the pre-treated feed. However, chemical
analysis of the pre-treated feed showed total PAHsin excess of 1600 ng g™ constituting the
whole range of the 2- to 6- ring compounds (up to 9.3 % of the 2- and 3-ring and 90.7 % of
the 4- to 6-ring PAH compounds). The reasons for this unexpected result was uncertain

but could possibly be due to the following-

I The method used in the extraction of the compound from the sediment was
an exhaustive method; therefore the PAHs may have associated with the
feed as in the sediment and be in the form that is not bioavailable such that

uptake from feed was extremely slow or non-existent.

Ii. The test fish did not feed during the duration of the experiment — thisis
unlikely as the presence of undigested feed in the guts of test samples during

sampl e preparations suggest otherwise.

iii. The PAHSs have been washed off the feed when introduced into the
experimental tanks; the probability of this happening is also very low as
extraction using homogenized (ground) feed yielded higher total PAH
concentration (2017.1 ng g™ ) than lump feeds (1623.7 ng g*); indicating
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that the PAH compounds were strongly bound to the feed.

Four salmon sampled immediately after the oil exposure were analyzed individually. The
total PAH found in the fish varied considerably and were 485.4, 717.0, 752.1 and 1018.0 ng
g™ wet weight; giving amean of 743.1ng g and a standard deviation of 218.1 ngg™. The
variations show heterogeneity among organisms and followed no particular trend with the
organism’sweight or lipid content (Table 7.1). Of the total PAHs determined, the

naphthal enes (parent and a kylated compounds; C1-C4) accounted for >93 %,
phenanthrene/anthracene and (C1-C3) accounted for 2.71 to 3.75 %, while the
dibenzothiophenes (parent and C1-C3) ranged between 1.44 and 2.08 % in the samples
analyzed. The naphtha enes have relatively high aqueous solubility (log Koy 3.37- 5.55) and
arereadily available in the water phase. The % distribution of the naphthalenes found in the
salmon isrepresented in Fig. 7.1. The C1-naphthal enes (1-methyl naphthalene and 2-
methyl naphthalene) were 43.3 - 46.2 % of the total PAHSs, and the C2-naphthal ene about
27.8-29.1%. Thisrelative distribution is similar to that reported by Whittle et al., (1997) in
caged salmon sampled following the Braer oil incident. The latter reported over 90 % of
total naphthalenes, of which C1-naphthalenes accounted for up to 41% of total PAH
determined. The heavier and more persistent compounds (4- to 6-rings) were below
detection limits and some were probably not accumulated within the short exposure
duration. Dominance of the naphthalenes over phenanthrenes/anthracene and the
dibenzothiophenes, and very low concentrations of the heavier ring compounds has also
been reported in salmon samples collected from Scalloway in Shetland after an emergency
towing vessel (Anglian Sovereign) struck rock and spilt ~ 80 tonnes of marine diesel on 3"
September 2005. The profiles of PAH observed in this study and Whittle et al. (1997)

suggest similar route and mode of PAH accumulation by salmon.
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Table 7.1: Tota naphthal enes concentration and sensory data obtained from salmon

exposed to crude oil contamination.

Dep.

Total

Mean Taint

FieldID Time L Pl'd naphthal enes L?.l nt Scores Tngn t
days | 9) | nggh | 9| (n=4)

Day 6.25 feed exposure 1 - 0.031 1.5 125 0.25 0.46
Day 6.25 feed exposure 2 - 0.030 1.6 0.0 0.00 0.00
Day 6.25 feed exposure 3 - 0.023 1.7 111 0.13 0.35
Day 6.25 feed exposure 4 - 0.023 1.3 444 0.67 0.87
6 hour oil exp. (0 Dep.) 1 0 0.005 667.3 100.0 3.75 1.16
6 hour oil exp.(0 Dep.) 2 0 0.020 451.9 80.0 3.00 1.87
6 hour oil exp. (0 Dep.) 3 0 0.021 962.6 100.0 261 1.50
6 hour oil exp. (0 Dep.) 4 0 0.035 711.5 100.0 294 1.27
Day 2 depuration 1 2 0.020 332.6 100.0 222 1.20
Day 2 depuration 2 2 0.015 513.9 100.0 1.56 1.12
Day 2 depuration 3 2 0.021 512.9 80.0 1.90 2.07
Day 2 depuration 4 2 0.015 136.1 100.0 1.81 0.13
Day 4 depuration 1 4 0.007 101.5 444 0.50 0.61
Day 4 depuration 2 4 0.010 105.5 87.5 1.25 0.71
Day 4 depuration 3 4 0.020 101.1 80.0 1.20 1.10
Day 4 depuration 4 4 0.017 269.7 33.3 0.50 0.76
Day 7 depuration 1 7 0.017 196.3 44.4 111 1.54
Day 7 depuration 2 7 0.024 164.0 375 0.38 0.52
Day 7 depuration 3 7 0.074 210.3 25.0 0.40 0.89
Day 7 depuration 4 7 0.021 158.8 222 0.25 0.46
Day 12 depuration 1 12 | 0.030 81.2 12.5 0.22 0.67
Day 12 depuration 2 12 0.033 26.1 25.0 0.25 0.46
Day 12 depuration 3 12 | 0.031 53.0 40.0 0.40 0.55
Day 12 depuration 4 12 | 0.021 222.1 11.1 0.25 0.71
Day 18 depuration 1 18 0.046 25.1 22.2 0.19 0.37
Day 18 depuration 2 18 0.033 38.6 333 0.44 0.73
Day 18 depuration 3 18 | 0.038 98.1 12.5 0.13 0.35
Day 18 depuration 4 18 0.028 27.0 0.0 0.00 0.00
Day 25 depuration 1 25 0.014 235 0.0 0.00 0.00
Day 25 depuration 2 25 0.027 33.1 111 011 0.33
Day 25 depuration 3 25 0.026 10.3 25.0 0.25 0.46
Day 25 depuration 4 25 0.021 18.0 0.0 0.00 0.00
Day 32 depuration 1 32 | 0.022 12.3 40.0 0.30 0.45
Day 32 depuration 2 32 |0.033 11.6 12.5 0.13 0.35
Day 32 depuration 3 32 0.016 7.4 22.2 0.56 1.13
Day 32 depuration 4 32 | 0.021 8.1 11.1 0.25 0.71
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Fig.7.1: The naphthalenes (parent and C1-C4) distribution in salmon (Salmo Solar)

experimentally exposed to crude oil for 6 h.

7.5.2 Assessment of PAHs concentrations and implications for food safety

Some PAHSs are known to cause taint; others have recognized carcinogenic and mutagenic
potential. The European commission, in 2005 established a standard guideline for PAHs in
food products to ensure consumer safety. The commission regulation (EC) No 208/2005 set
the maximum limit of benzo[a]pyrene in muscle meat of un-smoked fish and bivalve
mollusks, at 2.0 ng g™* and 10.0 ng g™* wet weights respectively. Prior to this limit, the UK
Food Standard Agency did adopt an interim pragmatic guideline based on advice from UK
committee on Toxicity of Chemical in Food, Consumer Products and Environment (COT),
for benzo[a] pyrene, benz[a]anthracene and benzo[a,h]anthracene. This limit was 15 ng g™
for each of the indicated PAHs and concentration above this renders the product unfit for
human consumption. These compounds were below detection limitsin the test samples, and
therefore pose no food safety concern. Another quality of fish and shellfish product that

impactsits desirability and fit for purposeis‘taint’. Thisis discussed in the next section.
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7.5.2.1 Sensory assessment

The test samples were aso subjected to taint analysis and the result is also presented in
Table 7.1. The sensory panel in this study constituted 5 to 9 analysts. Where up to 50% of
the panel scores are 1 or above, the sample is deemed to be tainted; between 20% and 50%
the sample is regarded as suspect; and less than or equal to 20%, not tainted. Table 7.1
shows that the salmon devel oped strong petrogenic taint (80-100%) after the oil exposure.
The percentage of taint positives were 100% for three of the four samples collected
immediately after the oil exposure, and 80% for the remaining one. These salmon were
rated very strongly tainted by most of the panelist (3 > score < 5), giving an average taint
intensity score of 3.75 (Table 7.1). It is very surprising that such low petrogenic PAH
concentration (717-1018 ng g*) as determined in this study can render commercial fish
product undesirable, while field spill incidents have recorded as high as 14 000 ng g™ in
caged sailmon (Whittle et al., 1997).

7.5.2.2 Depuration of taint

Upon transfer of the salmon to the depuration tank, adecline in taint was observed. Taint
decreased progressively with increased depuration time (Fig. 7.2). The salmon moved from
“tainted” (between 50-100 %) to “suspect” (between 20-50 %) in 7 days and thereafter
returned to “not tainted” (between 0-20%) in about 18 days of depuration. An exceptional
result was observed for samples collected on the 32 days of depuration. These samples
were classified as “suspect” by the analysts. Although the mean PAH concentrations were
lowest in these sampl es, the average taint score result still show presence of slight taint.
This showsthat taint is not lost as rapidly asit develops, and further suggests that the return
to PAH background concentration in the aftermath of oil spill incident may not necessarily
mean the disappearance of taint. A typical example isthe report of Whittle et al. (1997)
where abatch of salmon was destroyed after testing positive to taint irrespective of PAH
concentration that is close to background concentrations. Therefore, the result from this
study emphasi zes the relevance of both chemical and sensory analysisin making informed

decisions concerning oil spill management.
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Fig. 7.2: Depuration of taint in salmon exposed to crude oil contamination. Error bars=1
standard deviation from the mean.

7.5.3 Reationship between the chemical and sensory data

A simple regression analysis of the total PAH concentration of a sample against the
assigned taint intensity isshownin Fig 7.3. The plot yielded alinear relationship with
increase in PAH concentration generally resulting in increased petrogenic taint intensity.
The plot shows good correl ation between the sensory and the chemical data. Naphthalene
and the alkylated compounds; the group of hydrocarbons often associated with taint
accounted for over 93% of the PAH total in each case. The equation describing the
relationship between taint intensity and total PAH concentration is - total PAHs=211.13
(taint intensity) + 16.83 with r® of 0.72. The equation can be rearranged to give

35

168



Chapter Seven: PAH depuration and geochemical biomarkersin oil contaminated Salmon

Taint intensity (y) = TotalPAH (y) - 16'83%11 130

1200 -
~ 1000 A L 2
o
D goo - y = 211.13x + 16.831
E’ R?2 = 0.7212 P
< 600 -
o ¢ o
T
£ 400
L
200 -
0 T T 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Mean taint intensity (0-5)

Fig. 7.3: A regression plot showing the relationship between taint intensity and total PAH

concentration in salmon exposed to acute crude oil contamination for 6 hours.

75.4 Kineticsof lossof PAHS

The PAH profile of the salmon as seen in section 7.5.1 contains only the 2- and 3-ring
compounds. Naphthalene was lost relatively faster than any other member of the
homologues series, with an average of 90.5% and 99.8 % decrease after 4 and 25 days of
depuration respectively. C2, C3 and C4-naphthalenes showed slower rate of decrease with
average loss of 62.4%, 55.0%, 73.9% and 94.7%, 89.8 %, 93.6% after 4 and 25 days
respectively. Phenanthrene/anthracene and dibenzothiophene together with their alkylated
compounds were almost lost within the first 18 days of depuration.

The PAH concentrations were normalized for lipid content. The rate of loss of individual
compound was fitted into first order kinetics equation. A plot of the natura logarithm of the
lipid normalized concentration against time gave a graph with elimination rate constant (k)
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as the slope. Sample plots obtained from 1-methyl naphthalene and 2-methyl naphthal enes

are presented in Fig. 7.4 and the k, and the biological half-life for individual compounds

givenin Table 7.2. The depuration rate constant decreases with an increase in degree of

alkylation; with the parent compounds having shorter biological half-lives than the

alkylated compounds.
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Fig. 7.4: Elimination plot of PAH compounds (InCm versust) where Cm is the lipid

normalized concentration in ng g™ lipid in salmon and t is the depuration time in days.
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Table 7.2: The depuration constant (k,), correlation co-efficient (r?), and biological half-

lives (t12) determined in salmon exposed to Forties crude oil contamination.

Compounds logKow | r? ko ty, | p-value
Naphthalene 3.37 0.76 | 0.186 37 0.005
2-Methyl Naphthalene 4.00 094 | 0.157 4.4 0.000
1-Methyl Naphthalene 3.87 0.95 | 0.166 4.2 0.000
C2-Naphthalenes 4.37 091 | 0.115 6.0 0.000
C3-Naphthalenes 5.00 0.91 | 0.102 6.8 0.001
C4-Naphthalenes 555 0.84 | 0.119 58 0.004
Acenaphthene 3.92 0.79 | 0.078 89 0.003
FHuorene 4.18 092 | 0.124 5.6 0.000
Phenanthrene 457 0.89 | 0.161 4.3 0.002

Anthracene 4.54 ND ND ND ND

C1-Phenanthrene/anthracene 5.14 0.69 | 0.137 51 0.020

C2-Phenanthrene/anthracene 551 0.42 | 0.092 7.7 0.165

C3-Phenanthrene/anthracene 6.00 0.06 | 0.022 315 0.646

Dibenzothiophene 4.49 0.89 | 0.150 4.6 0.001
C1-Dibenzothiophenes 4.86 0.70 | 0.247 2.8 0.078
C2-Dibenzothiophenes 5.50 0.36 | 0.078 8.9 0.205
C3-Dibenzothiophenes 5.73 029 | 0.059 | 118 0.346

7.5.5 Comparison of the profilesin salmon and mussels

7.5.5.1 PAH Accumulation

Control mussels (Mytilius edulis) exposed to acute PAH concentration showed PAH profile
quite different from that observed in salmon. Mussels exposed to 2.5 ml of crude oil in 100
ml of water for 2 days accumulated the whole range (2- to 6-ring) of PAH compounds and
in higher concentrations (> 9000 ng g*) than found in the salmon (485.4 - 1018.0ng g*).
Although the PAH profiles of mussels were aso dominated by the 2- and 3-ring
compounds as observed in salmon (Table 7.3), the 4- to 6-rings compounds were
accumulated to ~ 2.3 %; ranging in concentration from aslow as 0.5 ng g for
benzo[a]pyreneto ~ 126 ng g* for C2-chrysene/triphenylene. The differencesin the suite of
PAHs accumulated in these two species of organisms may be specifically due to the uptake
route controlled by the organism’ s feeding mechanisms (Bjork, 1995; Meador et al., 1995),

however, thisis not covered in this study. Vertebrates are known to rapidly metabolize
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PAHSs, especialy the higher molecular weight compounds. This was not the case why lower

PAh concentrations were found in the salmon as ethoxyresorufin-O-deethylase (EROD)

activity measured using the liver samples collected from the salmon showed no significant

positive effect (Fig.7.5)

Table 7.3: Differences and similaritiesin PAH profile of mussels and salmon exposed to

crude oil contamination.

Mussels exposed to crude oils

PAH subgroups Arabian light Gullfaks Brent Salmon
% Naphthalenes 48.1 77.3 78.3 94.0
% 178 10.4 12.9 12.9 31
% DBTs 384 6.0 5.3 17
% 202 15 1.8 14 -
% 228 0.8 0.9 0.8 -
% 252 0.3 0.2 0.2 -
% 276 0.0 0.0 0.0 -
% Acenaphthylene - 0.0 - -
% Acenaphthene 0.1 0.1 0.1 01
% Fuorene 0.3 0.8 1.0 0.6
%
Dibenz[a,hanthracene 0.001 0.002 0.002 -
Total PAH 101245% | 26032313761 | 9100.9+ 1050 | 7431218
% parent PAH 4.1 6.1 9.2 14.7
% 2- and 3-rings 97.4 97.1 97.7 >99.0
% 4- to 6-rings 2.7 29 2.3 <0.001
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Fig. 7.5: Induction of ethoxyresorufin-O-deethylase (EROD) activity measured in salmon
exposed to contaminated feed and Forties crude oil .

7.5.5.2 Elimination kinetics.

The elimination kinetics (ko) of specific PAH compounds in both studies followed first
order kinetics. The k, and the biological half-lives obtained in both studies are presented in
Table 7.4. Elimination of the compounds followed similar trend with increase in alkylation
resulting in increased biological half-life. The biological half-life ranged between 0.5 —
12.8 and 2.8-31.5 days for the mussels and salmon respectively. Generally, elimination was
slower in salmon than in mussels; for example, the half-lives for naphthalene and 1-methyl
naphthal ene/2-methyl naphthal ene were up to 6 and 4 times lower respectively in mussels

than in salmon. Thisis contrary to expectation.

Vertebrates have been known to possess devel oped mixed-function oxidase (MFO) system.
This system enabl es fast and efficient metabolism and excretion of PAH compounds from
the latter than invertebrates (SGC, 2001). However, literature report hasit that the low

mol ecular weights PAHSs are eliminated much slower in fish (Meador et al., 1995).
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Thisis because, these groups of compounds are not biotransformed but eliminated through
the gills, and to alesser extent through the skin of the organism (Varanasi, 1987). This

possibly explains the result obtained in these studies.

Table 7.4: Comparison of PAH elimination kinetics measured in mussels and salmon

experimentally exposed differently to acute crude oil contamination

Mussels(median value) Salmon (n=4)

PAH compound ko tuo ko tue
Naphthalene 1.417 0.5 0.186 37
2-Methyl Naphthalene 0.699 1.0 0.157 4.4
1-Methyl Naphthalene 0.687 1.0 0.166 4.2
C2-Naphthalenes 0.398 1.7 0.115 6.0
C3-Naphthalenes 0.222 3.1 0.102 6.8
C4-Naphthalenes 0.131 5.3 0.119 5.8
Acenaphthene 0.278 25 0.078 8.9
Fluorene 0.385 1.8 0.124 5.6
Phenanthrene 0.391 1.8 0.161 4.3
Anthracene 0.217 3.2 ND ND
C1-Phen/Anthracenes 0.150 4.6 0.137 51
C2-Phen/Anthracenes 0.080 8.6 0.092 7.7
C3-Phen/Anthracenes 0.062 111 0.022 315
Dibenzothiophene 0.297 2.3 0.150 4.6
C1-Dibenzothiophenes 0.163 4.2 0.247 2.8
C2-Dibenzothiophenes 0.083 8.4 0.078 8.9
C3-Dibenzothiophenes 0.054 12.8 0.059 11.8

7.5.5.3 Relationship between k;, and log Ko

Thetrend in k, values with increase in compound’ s hydrophobicity (log Kow) was plotted
for the mussels and salmon. The relationship presented in Fig 7.7 shows a declining trend
in ky with increase in log Ko, in both species of organisms. However, the dependency of
elimination rate constant on log K, is more pronounced for the mussels than for salmon.
The equations of the plots are: 1og k; = -0.0498 log Kow +1.717 and log k, = -0.202 log Kow
-0.021 with correlation coefficients (r?) of 0.90 and 0.48 for mussels and salmon

respectively.
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Fig. 7.6: Relationship between elimination constant (k;) and partition coefficient (log Kow)
determined in mussels (Mytilius edulis) and salmon (Salmo salar) exposed to artificial

crude oil contamination.

7.5.5.4 Geochemical biomarker Profile (Steranesand Triter panes)

The sterane and triterpane fingerprints of the salmon before and after oil exposure are
presented in Fig 7.7 (a-€) and the peak identities are presented in Table 7.5. The biomarker
profile of the control fish (Fig 7.7 (a)) show no distinct petroleum related biomarker
compound. The fish sampled after the oil exposure showed specific petroleum biomarker
compounds (Fig 7.7 (b-€). For example, all the fish showed the 17a(H)-22, 29,30-
trisnorhopane, 170(H)-22, 29,30-trisnorhopane, 17a(H), 21(H)-30-norhopane, 18a(H)-
norneohopane, 17 a(H), 213(H)-hopane peaks labelled as 1, 2, 3, 4, and 5 respectively.
Thereis aso the presence of the homohopane doublet peaks due to the C31 to C35
homohopane diastereoisomers (22S and 22R) labelled as peaks (6-15), which are distinct
characteristic features of all crude ails.
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Fig.7.7 (a): Thetriterpane (m/z 191) and sterane (m/z 217) chromatograms of control
salmon (prior to oil exposure)
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Fig. 7.7 (b): The triterpane (m/z 191) and sterane (m/z 217) chromatograms of salmon (Fish

1) exposed to Forties crude oil for 6 hours.
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Fig. 7.7 (c): Thetriterpane (m/z 191) and sterane (m/z 217) chromatograms of salmon (Fish
2) exposed to Forties crude oil for 6 hours.
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Fig. 7.7 (d): The triterpane (m/z 191) and sterane (m/z 217) chromatograms of salmon (Fish
3) exposed to Forties crude oil for 6 hours.
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Fig. 7.7 (e): Thetriterpane (m/z 191) and sterane (m/z 217) chromatograms of salmon (Fish

4) exposed to Forties crude oil for 6 hours.
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Table 7.5: Peak identifications for chromatograms in figures 7.7, and diagnostic ratio

descriptions

Peak label | Abbrev. Compound m/z
1 27Ts 18a(H) -22, 29, 30-trsinorhopane 191
2 27Tm 170(H)-22, 29,30-trisnorhopane 191

28ab 170(H),21p(H)-28,30-bisnorhopane 191
3 29ab 170(H), 21B(H)-30-norhopane 191
4 29Ts 18a(H)-nornechopane 191
5 30ab 17 a(H), 21B(H)-hopane 191
6& 7 3lab (S& R) | 17 a(H), 21B(H)-homohopane (22S & 22R) 191
8&9 32ab (S& R) | 17 a(H), 21B(H)-bishomohopane (22S & 22R) 191
10& 11 33ab (S& R) | 17 a(H), 21B(H)-trishomohopane (22S & 22R) 191
12 &13 3ab (S& R) | 17 a(H), 21p(H)-tetrahomohopane (22S & 22R) 191
14 &15 35ab (S& R) | 17a(H), 21B(H)-pentakishomohopane (22S & 22R) | 191
16 27dbS 13B (H), 17a(H) diacholestane (20S) 217
17 27dbR 13 (H), 17a(H) diacholestane(20R) 217
18 29aaS 5a(H), 140(H), 170(H)-24-ethylcholestane (20S) 217
19 29bbR 5a(H), 14B(H), 17p(H)-24-ethyl cholestane (20R) 217
20 29bbS 5a(H), 14B(H), 17B(H)-24-ethyl cholestane (20S) 217
21 29aaR 5a(H), 14a(H), 17a(H)-24-ethylcholestane (20R) 217

However, the 17a(H), 21B(H)-30-norhopane(3) to 17 a(H), 21B(H)-hopane (5) ratio

observed in the fish (>0.9) is higher than normally found in pure samples of North Seaoils.

Also, the absence of a pronounced bisnorhopane peak in the m/z 191 chromatograms of the

fish is surprising. Bisnorhopane is a distinct characteristics of the North Sea oils and are

normally found in ~> 0.5 ratio to norhopane. This means that salmon preferentially

accumulated some biomarker compounds over others within the given exposure duration.

In oil spill source investigations, use is made of the relative abundances, presence and/or

absence of specific biomarker compoundsin tracing spill oil sample to the sourceoil. Itis

therefore expected that the spill sample will contain identical biomarker compounds as the

source oil and in relative abundances similar to that of the source oil. Thisis because

geochemical biomarker compounds are resistant to degradation and bears fingerprints of

their origin. The triterpane fingerprint observed in the fish is therefore not a true reflection
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of the known characteristic features of Forties crude oil as one of the North Sea oils and

could lead to migudgement in oil spill source classification.

7.5.5.5 Comparison of biomarker profilewith that found in mussels

The triterpane biomarker profile of the control mussels (Fig 6.7(d)) differed from that of
the control fish (e.g. Fig.7.7 (a)). The former showed nVz 191 chromatogram dominated by
diploptene; anatural triterpane, which according to Naraoka et al., (2000) are derived from
cyanobacteria and chemotrophic bacteria. Diploptene was absent in the control salmon nvz
191 chromatogram. This distinct difference could be linked to the feeding habit of both
species of organisms. The test mussels (Fig. 6.7 [a-c]) showed relative biomarker
composition similar to those of the exposure oils. For example, the mussals exposed to the
Arabian light oil showed norhopane to hopane ratio typical of the Middle Eastern oils and
no bisnorhopane peak, while those exposed to the North Sea oils showed distinct

bi snorhopane peaks and a norhopane to hopane relative abundance typica of the North Sea
oils. The test salmon showed biomarker fingerprint that is different from the profile of the
exposure oil. The pronounced differences between the biomarker compositions of the crude
oil and the salmon observed in this study suggest that salmon may not accurately indicate
environmental contaminant loading and therefore not areliable indicator in oil source

assessment.

7.6 Conclusion.

Salmon exposed to PAH pre-treat feed and crude oil dissolved in water for 150 h and 6 h
respectively showed no evidence of PAH accumulation from the feed. Although analysis of
the pre-treated feed showed PAH concentration in excess of 1600 ng g™ and comprising of
the whol e range of the 2- to 6- ring compounds; no difference was observed in the PAH
tissue burden of the test samples after the feed exposure. This suggests that either the PAHs
are probably not in the form readily available for accumulation by the salmon or that the
exposure duration was not sufficient to impact on the PAH tissue burden of the organisms.

Exposure of the organismsto crude oil in the dissolved phase enabled the accumulation of
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only the lighter PAH compounds; naphthalenes, phenanthrene/anthracene,
dibenzothiophene and their alkylated compounds within the exposure duration. Preferential
accumulation of lighter PAHs from the dissolved phaseis typical and in agreement with
literature reports from the immediate aftermath of oil spill incidents. These compounds,
especially naphthal ene and alkylated compounds have high aqueous solubility and are
therefore readily available in the dissolved phase. Although individual fish showed
heterogeneity in total PAH tissue burden, similar naphthalene % composition was found in
all samples analyzed immediately after the oil exposure. This finding indicates that similar
factors control the accumulation of this group of PAH compounds in salmon. All fish
sampled immediately after oil exposure tested positive to taint, this aso may be due to the
high naphthal ene concentration.

Elimination of PAHs was rapid upon transfer of the fish to relatively clean environment and
followed first order kinetics. Biological half-lives of individual PAH compounds increased
with increase in akylation and were less than 32 days for the lighter PAH compounds.
Taint was not lost asrapidly asit developed, however, arelatively good correlation was

found between the taint intensity and PAH tissue burden of organisms.

Salmon aso showed unique crude oil geochemical biomarker compounds (steranes and
triterpanes) after exposure to the crude oil. However, the composition and relative
abundances of some of the compounds in salmon differed greatly from the known profilein
the exposure oil. The absence of 17a(H),213(H)-28,30-bisnorhopane; a unique feature of
the North Sea oilsand a 17a(H), 21p(H)-30-norhopane to 17 a(H), 21p(H)-hopane ratio of
>0.9 show that salmon preferentially accumulated some of the biomarker compounds over
others. The biomarker information derived from salmon in this study is misleading and
suggest that salmon is not a good indicator of comtaminant loading and are therefore not a

reliable matrix in oil spill source investigation.
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CHAPTER EIGHT

Comparison of depuration constants (k,) and biological half-life (ty,)
obtained in this study with literatur e data and the development of

recommendations for improving marine oil spill response

8.1 Introduction

In an event of ail spill, concern is aways raised regarding seafood safety. The potentia and
actual contamination of seafood by toxic and carcinogenic petroleum components can
effect harvesting of seafood for commercial, recreational or subsistence use. In the last 3
decades, severa studies have investigated the dynamics of uptake and depuration of PAHs
from marine organisms. PAHs are one component of oilsthat is of major toxicological
significance. These studies have used various species of marine organisms, PAH sources,
length and route of exposure of the organism to the PAH source, variable environmental
conditions and other experimental designs. Most of the reported studies used bivalve
molluscs (oysters, clams, mussels) as sentinel organisms. While some studies monitored
organisms chronically exposed to contaminants, others experimentally exposed organisms
to acute PAH contamination using various PAH sources. However, the result is that diverse
kinetic information has been reported regarding the elimination of PAHs from bivalves. A
brief summary of the results from some of the studiesis givenin Table 8.1.

A major limitation of most of the studies listed in Table 8.1 is that the change in PAH tissue
burden of the organisms over time were reported in terms of ‘total PAHS' instead of
individual compounds of toxicological significance. This generalisation can be misleading.
As the current studies have shown, the rate of eimination of PAH compounds from
organisms vary even among isomers of the same compound. Consequently, a study
investigating the elimination kinetics of a suite of PAHs dominated by only the 2- to 3- ring
compoundsis likely to observe a more rapid reduction in total PAH concentration over time
than a study using a higher proportion of 4- to 6-rings compounds. Thisis because factors
which have been reported to affect PAH eimination rate include partition co-efficient and

molecular weight amongst others, and these parameters increase from the 2- to 6- ring
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compounds. Therefore, it is expected that the lower ring compounds would be eliminated
faster than the higher ring compounds. Hence in comparing PAH eimination results quoted
as ‘total PAHS' consideration should be given to the suite of PAHs making up the total
compounds studied.

In the current research study, the elimination kinetics of individual PAH compounds were
investigated in mussels (Mytilius edulis) and Atlantic salmon (Salmo salar). Four separate

studies were carried out and these include:

.  Laboratory depuration of chronically contaminated indigenous mussels collected
from Aberdeen harbour.
Il.  Fied depuration study using mussels collected from the same site as above
I11.  Laboratory depuration of mussels experimentally exposed to petroleum products;
Arabian light, Gulfaks or Brent crude oils, for 2 days.
IV. Laboratory depuration of Atlantic salmon experimentally exposed to PAH

contaminated feed and Forties crude oil.
Therefore, for clarity, in this chapter, only the studies which reported elimination kinetics

of individual PAH compounds are compared with the results from the current studies.

However, reference is also made to real spill incidents where data are available.
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Table 8.1: Summary of literature reports on the rate of elimination of PAHs from bivalves,
and data obtained from current studies (BHL = biological haf-life)

Bivalve | Exposure Exposure Tank water | Observation Reference
medium route/time | replacement
time
Oysters | No. 2 fuel oil Water and | In-situ Little depuration | Blumer et al.
spill sediment after 180 days (1970)
(60 d)
Oysters | No. 2 fuel ail in | Water- only | Every 2 Nearly complete | Stegeman
|aboratory (49 d) days depurationin28 | and Ted
days (1973)
Clams | Chronically Water and | 37 times Slight depuration | Boehm and
polluted particulate | per day after 120 days Quinn (1977)
Mussels | PAH Sedimentin | - Half-lives Pruell et al.
contaminated water (40 d) between 14-30 (1986)
sediment days
Clams | PAH standards | Water-only | Used No depurationin | Tanacredi
(2d) carbon 45 days and Cardenas
filters (1991)
Oysters | Chronic (48d) Significant Sericano et
pollution depurationin50 | al. (1996)
days
Mussels | PAHs Water — Daily Depuration very | Richardson et
only (20 rapidin2dand | al. (2005)
days) then reduced to
minimum
thereafter
Mussels | Chronic Water Onceevery | Tota PAHsfal Mclntosh et
pollution /particulate | 30 hours 50% in 122 d al. (2004)
Mussels | PAH standards | Water — Used Good depuration | Gewurtz et
only. (5 carbon with BHL of 3.2 | al. (2002)
days) filters -18.7d
Mussels | Creosote Sediment— | 6timesa Rapid depuration | Thorsen et al.
contaminated water (10 d) | day with BHL of 2.9 | (2004).
sediment -16.5d
Mussels | Chronic Water Every 0.2h | Good depuration | Thisstudy |
pollution /particulate with BHL
3.8-31d
Mussels | Chronic Water Field Good depuration | Thisstudy Il
contamination | /particulate with BHL
10.6-19.6d
Mussels | Crude oil Water-only | Every 0.2 h | Rapid depuration | Thisstudy I11
with BHL
0.5-22d
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8.2 Comparison of the rate constants and half-times derived from mussels with

literature values.

8.2.1 Depuration rate constants

Table 8.2 gives the k, values obtained from the present studies; studies|, 11 & 111 and other
literature reports. k, varied among the PAH compounds and amng the studies. These
variations are likely due to the variations in the experimental designs; the PAH sources,
route and length of exposure, and water replacement rates which varied among the studies.
To enhance understanding of subsequent sections, abrief summary of the experimental

conditions used in each study is given below.

The experimental designs used for studies| & 1, and study 111 have already been given in
Chapters 3 and 6 respectively.

Thorsen et al. (2004)

Relatively clean mussels (Elliptio complanata) were exposed to creosote contaminated
sediment for 10 days. 6-7 musselswere placed in 4 L jars containing 1 kg sediment and 3 L
water. The mussels were depurated in 70 L tanks with the depuration water replaced 6
times per day. Mussels were not fed during the experiment. Single mussels were analyzed

as sample.

Gewurtz et al. (2002)

Mussels (Elliptio complanata) were exposed to solution of PAH standards (Table 8.2) in
DCM evaporated onto glass wool for 5 days. The mussels were depurated in 30 L tanks
filled with tap water. Carbon and power filters were placed in the tank to prevent recycling
of eliminated compounds by the organisms. Temperature ranged from 16.5 °C to 18 °C

during the experiment. Single mussels were analyzed as sample.
Mclntosh et al. (2004)

Mussels (Mytilus edulis) were collected from a contaminated areain Loch Leven and
depurated in the laboratory (150 L tanks) for 122 days. The flow rate of the depuration

187



Chapter Eight: Comparison of research data with previous studies

water was 5 | per hour giving areplacement time of 30 hours. The temperature of the water
was 10 + 2 °C. Mussels were analyzed as aiquots of 20 mussels.

The main similarity in the reported values is that k, generally decrease with increase in
molecular weight and alkylation (Table 8.2). The k; values obtained from the harbour
mussels depurated in the laboratory (study |) are comparable to the values obtained in the
field (study I1) irrespective of theinitial concentration of the contaminants. For example,
biological half-lives were 15.1/13.6 (phenanthrene), 11.2/11.2 (C1-
phenanthrene/anthracenes), 10.7/11.7 (C1-dibenzothiophenes), 15.8/16.2 (C2-
flouranthene/pyrene), 19.6/18.7 (benzo[a]pyrene), 15.4/16.2 (benzo[ c] penanthrene,
14.1/14.5 (chrysene/triphenylene), etc., for the field and laboratory studies respectively
(see Chapter 3, Table 3.8). Thisindicates that the laboratory study can be directly applied to
field situations. The harbour mussels n-a kane profile, PAH concentration ratios and
geochemical biomarker profile suggest petrogenic PAH contamination. However, the k;
values determined from these mussels differed from those obtained in study 111 and Thorsen
et al. (2004) that used similar (petrogenic) PAH source of contamination and similar water
replacement times. k, values obtained in studies| & |1 are consistently lower than those of
study 111 and Thorsen et al. (2004). The differences may be due to the length of exposure of

the organisms to the contaminant source.
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Table 8.2: Comparison of the depuration rate constants (k. day™)obtained in the present studies with those obtained by Thorsen
et al. (2004), Getwurtz et al. (2002) and Mclintosh et al. (2004) (note water replace decreases fro right to left except for study |1
which isafield depuration study).

Log Study | Study | Thorsenet | Gerwurtzetal | Mcintosh et al, | Mclntosh et al.
Compounds Kow | Study | I i al. (2004) (2002) (2004)a (2004)b
Naphthalene 3.37 1.4167 0.2217 0.0198 0.0158
2-Methyl Naphthalene 4.00 0.6993 0.2059
1-Methyl Naphthaene 3.87 0.6873 0.2486
C2-Naphthalenes 4.37 | 0.0560 | 0.0453 | 0.3980 0.2124
C3-Naphthalenes 5.00 | 0.0926 | 0.0620 | 0.2217 0.1793 0.0151 0.0193
C4-Naphthalenes 5.55 0.0652 | 0.1310 0.1543
Acenapthylene 0.1847 0.0460
Acenaphthene 3.92 0.2783 0.2372 0.0950
Fluorene 4.18 0.0592 | 0.3853 0.1902 0.2170 0.0178 0.0165
Phenanthrene 457 | 0.0510 | 0.0458 | 0.3910 0.1707 0.1170 0.0495 0.0433
Anthracene 454 | 0.0500 0.2168 0.1792 0.1630 0.0693 0.0533
C1-Phenan/Anthracenes 5.14 | 0.0619 | 0.0620 | 0.1500 0.1656 0.0495 0.0330
C2-Phenan/Anthracenes 5,51 | 0.0678 | 0.0605 | 0.0803 0.1318 0.0267 0.0173
C3-Phenan/Anthracenes 6.00 | 0.0612 | 0.0505 | 0.0622 0.0939 0.0147 0.0139
Dibenzothiophene 4.49 0.0582 | 0.2967 0.1611 0.0347 0.0257
C1-Dibenzothiophenes 4.86 | 0.0594 | 0.0647 | 0.1633 0.1473 0.0267
C2-Dibenzothi ophenes 5,50 | 0.0873 | 0.0573 | 0.0828 0.0821 0.0161
C3-Dibenzothiophenes 5.73 | 0.0578 | 0.0473 | 0.0542 0.0687 0.0060
Fluoranthene (202) 5.22 | 0.0675 | 0.0536 | 0.0557 0.1257 0.1300 0.0533 0.0347
Pyrene (202) 5.18 | 0.0437 | 0.0621 | 0.0853 0.1635 0.1440 0.0365 0.0248
C1-Flouranthene/Pyrene 5.72 | 0.0487 | 0.0563 | 0.0730 0.0919 0.0239 0.0187
C2-Flouranthene/Pyrene 0.0428 | 0.0439 | 0.0568 0.0204 0.0161
C3-Flouranthene/Pyrene 0.0667 0.0131 0.0108
Benzo[ c]phenanthrene (228) 576 | 0.0428 | 0.0450 0.0173 0.0110
Benz[a]anthracene 5.91 | 0.0337 | 0.0485 | 0.1120 0.0924 0.1480 0.0112 0.0117
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Chrysene/Triphenylene 5.86 | 0.0477 | 0.0490 | 0.0638 0.0836 0.1050 0.0154 0.0169
Benz[b]anthracene (228) 0.0248
C1-Chrysenes 6.42 | 0.0397 | 0.0455 | 0.0564 0.0838 0.0144 0.0154
C2-Chrysene 6.88 | 0.0315 | 0.0373 | 0.0595 0.0697 0.0102 0.0105
Benzo[ b]fluoranthene 5.8 0.0827 0.0370 0.0315
Benzo[K]fluoranthene 6.00 0.0589 0.1030 0.0112 0.0122
Benzofluoranthenes (252) 6.00 0.0932
Benzo[e]pyrene (252) 6.20 | 0.0224 | 0.0377 | 0.0540 0.0727 0.0128 0.0103
Benzo[a]pyrene (252) 6.04 | 0.0371 | 0.0353 | 0.0315 0.0755 0.0144 0.0169
Perylene (252) 6.30 | 0.0299 | 0.0357 | 0.1287 0.0421 0.0076 0.0049
C1252 0.0350 0.0077 0.0074
C2252 0.1223 0.0105
Indeno[123cd] pyrene 7.00 | 0.0391 | 0.0458 | 0.1137 0.0471 0.1620 0.0193 0.0151
Benzo[ ghi]perylene 6.50 | 0.0235 | 0.0478 | 0.0442 0.0599 0.0800 0.0147 0.0080
C1276 0.0385
Dibenz[a,h]anthracene (278) 6.75 0.1110 0.0687 0.0480 0.0136 0.0128
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The mussels collected from Aberdeen harbour had been chronically exposed to the
contaminant source for an unknown (but long) period of time. Decrease in k, with increased
exposure duration have been reported in American oysters. Sericano et al. (1996) reported
higher k, values for indigenous oysters than oysters transplanted to the same location even
when their tissue burden were similar. This, according to Stegeman and Teal (1973), may
be due to the retention of the hydrocarbon in a stable compartment within the organism that
prevents loss of these compounds, hence increasing half-lives. In the study with Aberdeen
harbour mussels, initial rapid elimination of the PAHs was followed by a slower
elimination as concentrations approached background levels (Chapter 3)

The k; values reported by Mclntosh et al. (2004) are consistently higher than those obtained
in all the other studies. A major difference which exists in the experimental designs used in
Mclntosh et al. (2004) and the other studies is the replacement time of the depuration water.
Mclntosh et al. (2004) used aflow-rate (5 L h™* in 150 L tank); areplacement time of 30
hours. Musselsfilter high volumes of water and hence are capable of re-absorbing PAH
compounds available in the surrounding water. If the flow rate of the depuration water is
not fast enough to enable efficient flushing of the contaminants away from the mussels as
soon as they are eliminated from the organisms, opportunity will exist for the compounds to
be recycled back into the organisms, resulting in increased apparent half-lives. By contrast,
the flow rates used in studies | and I11 (36 L min™) and in Thorsen et al. 2004 (0.3 L min™)
replaced the depuration water in 0.2 h and 5.6 h respectively, and these may have been high
enough to prevent recycling of the eliminated PAH compounds by the organisms. Gewurtz
et al. (2002) aso used a carbon filter to capture the PAH compounds as they are eliminated,
making them unavailable in the water phase for possible re-absorption by the mussels.
Study Il was afield depuration study, with high water flow rate. Therefore, the replacement
time used by MciIntosh et al. (2004) was very long compared to other studies and could
have led to re-cycling of the eliminated compounds by the mussels and this may be why the
half-lives reported by the latter are consistently higher than those reported in the other
studies.

In addition, the mussels monitored by McIntosh et al. (2004) had been chronically exposed
to PAH of pyrolytic origin arising from the effluent discharge of an aluminum smelter

situated close to the sample site. The longer duration of exposure also contributed to the
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extended half-lives observed for individual PAH compounds relative to similar compounds

in other studies.

8.2.1.1 Relationship between k, and log Koy

Previous studies have shown that the rate of elimination of hydrophobic contaminants from
organismsis influenced by the hydrophobicity of the compounds. Therefore, the k, values
obtained in these studies are plotted against the log Ko values of the compounds to
compare the influence of hydrophobicity on elimination constants for each study. The plot
shows high dependency of k, on hydrophobicity, with increase in log Ko, leading to

decreasein k, value.

In study 11, between log Ko, of about 3.3 and 5.5, k, decreases strongly with increasing log
Kow- Thereisno clear trend in k; at higher values of log Key, (5.5 —7.0). The observed
plateau in k; values from log Koy > 5.5 is @so common among the other studies, but less
pronounced for some. In Thorsen et al. (2004) and Gewurtz et al. (2002), only small
changesin k; were observed for PAHs with log Koy Values > 5.5 and 6.0 respectively. The
same effect isseen in studies| & 11 for log Koy > 6.0. In Mcintosh et al. (2004), this effect
is aso seen but less pronounced than the others because of the variability in the k, values
for compounds of lower K,,. A similar trend has aso been reported by Kayal et al. (1990)
where aregression analysis of log Ko versus log Ko, aso gave a maximum value at log Koy,
value of about 5.5, and thereafter yielded a parabola. Therefore, the observed relative
constancy of k;values for PAHs of log Kqy > 5.5 is common observation in many studies
and may be as aresult of steric hindrance of the larger cross-sectional diameter of higher
molecular PAHS, as described by Lullen and Shea (2002).
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0,0 1.0 20 3.0 7.0 logK,, 8.0

# This study Il W Thorsen et al. 2004 A Gewurtz et al. 2002 B Mcintosh et al. (2004})a

i Mcintosh et al. (2004)b @ This study 11 This study |

Fig. 8.1: log ko versus log Koy Obtained in studies|, 11 and I11, and those cal culated for
Thorsen et al. (2004), Gewurtz et al. (2002), and Mclntosh et al. (2004). [aand b are
samples collected from Kinlochleven and Ballachulish respectively]

8.2.2 Biological half-lives (t1)

The similarities and differences between the k, values from the current and previous studies
are very clear in the estimated biological half-lives (t1). For example, ty, for study 111 and
Thorsen et al. (2004) respectively were 3.1/3.9 d (C3-napthaene), 2.52.9d
(acenaphthene), 3.2/3.9 d (anthracene), 4.6/4.2 d (C1-phenanthrene/anthracene), 4.2/4.7d
(C1-dibenzothiophenes), 8.4/8.4 d (C2- dibenzothiophenes) and 15.7/14.7 d
[benzo(g,h,i)peryleng], etc, (Table 8.3). However, some of the values were higher than
Thorsen et al. (2004). For example, ty, for naphthalene and 2-methyl naphthal ene/1-methyl
naphthal ene are, respectively, more than 6 and 2 times greater than those of Thorsen et al.
(2004).
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Table 8.3: Comparison of the biological half-lives (ty,, days) obtained in the present studies with those obtained by Thorsen et
al. (2004), Getwurtz et al. (2002) and MclIntosh et al. (2004).

Thisstudy | This study This Thorseneta. | Gewurtzetal. | Mcintosh et a. | Mclntosh et al.
Compounds I I study 111 (2004) (2002) (2004)a (2004)b
Naphthalene 0.5 3.1 35 14
2-Methyl Naphthalene 10 34
1-Methyl Naphthalene 1.0 2.9
C2-Naphthalenes 124 15.3 17 3.3
C3-Naphthalenes 75 112 31 39 46 36
C4-Naphthalenes 3.8 10.6 5.3 4.5
Acenapthylene 3.8 151
Acenaphthene 18 29 7.3
Fluorene 117 18 3.6 3.2 39 12
Phenanthrene 136 151 25 4.1 59 14 16
Anthracene 139 3.2 39 4.3 10 13
C1-Phen/Anthracenes 11.2 112 4.6 4.2 14 21
C2-Phen/Anthracenes 10.2 115 8.6 5.3 26 40
C3-Phen/Anthracenes 11.3 13.7 111 7.4 47 50
Dibenzothiophene 11.9 2.3 4.3 20 27
C1-Dibenzothiophenes 11.7 10.7 4.2 4.7 26
C2-Dibenzothiophenes 7.9 121 8.4 8.4 43
C3-Dibenzothiophenes 12.0 14.7 12.8 101 116
Fluoranthene (202) 10.3 129 12.4 55 5.3 13 20
Pyrene (202) 159 112 8.1 4.2 4.8 19 28
C1-Flouranthene/ Pyrene 14.2 12.3 9.5 7.5 29 37
C2-Flouranthene/Pyrene 16.2 15.8 12.2 34 43
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C3-Flouranthene/Pyrene 104 33 64
Benzo[ c]phenanthrene
(228) 16.2 154 40 63
Benz[a]anthracene 20.6 14.3 6.2 7.5 4.7 62 59
Chrysene/Triphenylene 145 14.1 10.9 8.3 6.6 45 41
Benz[b]anthracene (228) 28
C1-Chrysenes 174 152 116 8.3 48 45
C2-Chrysenes 220 18.6 74 9.9 68 66
Benzo[ b]fluoranthene 11.8 18.7 22
Benzo[K]fluoranthene 8.4 6.7 62 57
Benzofluoranthenes (252) 12.8
Benzo[e]pyrene (252) 31.0 184 22.0 9.5 54 67
Benzo[a]pyrene (252) 18.7 19.6 54 9.2 48 41
Perylene (252) 232 194 198 16.5 91 141
C1-252 5.7 90 o7}
C2-252 6.1 66
Indeno[123,cd]pyrene 17.7 151 15.7 4.3 4.3 36 46
Benzo[ ghi]perylene 29.5 145 18.0 14.7 8.7 47 87
C1-276 6.2
Dibenz[a,h]anthracene
(278) 6.4 10.1 144 51 54
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Thety, datafrom study 111 aso differed from those of Gewurtz et al. (2002). Apart from
anthracene (3.2/4.3 d), benz[a]anthracene (6.2/4.7d), and chrysene/triphenylene (8.3/6.6 d)
which returned values that are similar in study I11 and Gewurtz et al. (2002) respectively,
the values obtained for other compounds varied considerably (Table 8.3). Again, thety,
values reported by Mclntosh et al. (2004) are consistently higher than obtained in al other
studies. The different data generated from the mussels affected by petrogenic contamination

can be applied in different spill scenarios. Thisis discussed in section 8.5.

8.3 Comparison of the salmon data with literatur e values.

The profile of PAHs found in saimon in this study (Chapter 7) compares well with
literature reports from real spill situations. Whittle et al. (1997) and Law and Kelly (2004)
reported dominance of the 2- and 3-ring PAH compounds in caged and wild salmon
affected by two mgor oil spills; the Braer and the Sea Empress respectively. The 2- and 3-
rings compounds (naphthal enes and C1-C4, phenanthrene/anthracene and C1-C3, and
dibenzothiophene and C1-C3) have higher agueous solubility than the higher molecular
weight compounds and are available in the water phase. This indicates that the dissolved

phase is the mgor route of uptake by this specie of organismsin the short term.

Study V1 shows half-life range of 2.8 to 31.5 for the 2- and 3-ring compound with C3-
phenanthrene/anthracene persisting longer (Table 7.2). The PAH tissue burden of salmon
reduced from 743.13 + 218.13 ng g * to 22.7+ 10.68 ng g™* wet weight (Chapter 7) and
14,000 ng g™ to 1000 ng g* (Whittle et al., 1997) within 25 days; giving areduction in
total PAHs of 97 % and 93 % respectively. Although the reduction in PAH tissue burden of
salmon were reported as total PAHS (3. PAHs = sum of compounds in the first paragraph of
this section) by Whittle et al. (1997) and Law and Kelly (2004) (Table 8.4), the patterns of

decrease in total PAH concentration were similar to that observed in this study.

In the current study (study 1V), it was observed that samples were generally free of taint
and suspicion of taint when the total PAH tissue burden declined below 200 ng g™* (Fig.
8.2). Likewise, all salmon sampled from the affected area during the Sea Empress
grounding in 1996 were free of taint, and total PAH tissue burden ranged between 12-186
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ng g (Law and Kelly, 2004). However, some of the caged salmon affected by the Braer
spill incident still tested positive to taint even when the PAH tissue burden had reduced to
less than 20ng g™*. This suggests that taint is not lost as rapidly asit devel ops, probably due
to its conversion and retention in aform different from the contributing compounds The
absence of taint in al samples analyzed by Law and Kelly (2004) further suggests that the
compounds responsible for inducing taint must reach a certain threshold in an organism
before taint can be detected and thisis governed not by the PAHs tissue burden of organism
at agiven time point but by theinitial concentration in an impacted organism. Davies et al.
(2002) reported that increase in oil concentration and duration of exposure increases the
persistence of taint. The statement above is further supported by the fact that salmon
samples analyzed after 32 days of depuration in the current study came out as suspect to
taint while the samples collected at 18 and 25 days with higher PAH tissue burden were
free of taint. The reason for this could have been as aresult of theinitial PAH
concentrations in these salmon. The report of Whittle et al. (2004) has shown that the
higher the intensity of taint, the longer it takes to depurate.
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Fig.8.2: Depuration of taint in salmon exposed to crude oil contamination. Error bars = 1

standard deviation from the mean.
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Table 8.4: PAHs tissue burden and persistence of taint in organisms affected by some major spill incidents (Adopted from Y ender et

al., 2002)

Spill Name

Tissue PAH Concentration (ng/g or ppb wet weight) and Persistence

Taint Persistence

Finfish

T/V Sea Empress

Wild salmon: 12-186 Declined “rapidly”

Wild salmon: No taint

T/V Braer

Cod: 1.3-74 Haddock: 8-262 Plaice: 15-184 Whiting: 9-2,650 Lemon sole: 6-1,240
Dab: 25-2,160

All but dab reached background in 1 month; dab in 2 months

Caged salmon: up to 14,000; rapid loss to 1,000 in 25 days, reached background in
5 months

Cod: No taint

Haddock: 1 month

Plaice: Suspect taint 2 months
Whiting: No data

Dab: 1 month, Lemon sole: No taint
Caged salmon: 7 months

T/B North Cape

Finfish: 5-1,100; 0 months because no increase over background was observed

All finfish: No taint in 416 samples

Crustaceans
M/V Kure Rock crab: 5-350; 0.5 months Crab: No taint
M/V New Carissa Dungeness crab: < 15 No sensory testing conducted
TIV Braer Lobster: 112-1,060; 1 month Velvet crab: 94-308; 2 months Edible crab white Lo_bster: 1 month .
meat: 19-281; brown meat: 104-1,390; 12 months for crabs Edible crab: No taint
T/B North Cape Lobster: 0-33,150; 2.5-5 months Lobster: 2.5-5 months
Bivalves
M/V Kure Oyster: 264-4,467; 0.5 months Oyster: No taint

M/V New Carissa

Oyster: 70-1,200; 3 weeks

Oyster: No taint

T/V Sea Empress

Whelk: 50-3,800; 4 months Mussel: up to 19,500; 2.5-5 months Cockle: similar to
mussels

Whek: No taint
Mussel: No data

T/V Braer

Whelk: 45-1,130; 12 months
Scallop: 223-3,580; 17 months

Whelk: No data
Scallop: Suspect taint 2 months

T/B North Cape

Steamer clam: 8,500-18,400; 3 months
Oyster: 1,400-13,500; 3 months
Mussdl: 4,200-24,300; 3 months

Steamer clam: No taint
Oyster: No taint
Mussel: No taint

Refinery Spill, El Salvador

Qysters: 30,000; <1 month

Oysters: No data

T/V Exxon Vadez

Bivalves from four small areas were above 100; 1 year

All other areas < 100

Bivalves: No data

199



Chapter Eight: Comparison of research data with previous studies

8.4 Review of current oil spill response procedure

In the United Kingdom, the Maritime and Coastal Agency (MCA) isthe lead agency in oil spill
response. MCA isresponsible for activating the national contingency plan in cases requiring a
national response and resources. Other organisations are a so involved in the response to oil or
chemical spill but at the regional levels. The chain of different groups and agenciesinvolved in ail
spill response therefore depends on the category of the spill. In the UK, spills are categorised by the
internationally adopted Tier system as.

Tier 1. A small operational spill employing loca resources during any clean-up

Tier 2: A medium sized spill, requiring regional assistance and resources

Tier 3: Large ail spill, requiring anationa response and resources, the National Contingency Plan
(NCP) isactivated in this case (EA, 2004).

Theroles of the many agencies and organizations at all levelsinvolved in oil spill mitigation are
specified in the oil spill national contingency plan. For an oil spill requiring regional attention,
various regional environmenta groups are contacted. For example, The Department for Environment
Food and Rural Affairs regulates the use of dispersantsin England and Wales, and this function is
carried out by the Scottish Executive Environment and Rural Affairs Department in Scotland. The
responsibilities and functions of the Environment Agency (in England and Wales) are similar to
those of the Scottish Environment Protection Agency. However for the purpose of this research,
attention will only be given to the role and practices of the environmental monitoring agencies

responsible for advising on fisheries and aguaculture.

Aquaculture (fish and shellfish farming) is an important sector in many countries of the world.
According to areport published by the Scottish Executive's Environment and Rural Affairs
Department (SEERAD) in 2006, the United Kingdom is the third highest producer of farmed salmon

after Norway and Chile and Scotland is responsible for 80 per cent of UK’ s aguaculture production.
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In Scotland, the responsibility of advising Ministers on policy relating to fisheries (in both inshore
waters and in EU waters) falls on SEERAD. In relation to fisheries, SEERAD is assisted by the
Fisheries Research Services (FRS) and the Scottish Fisheries Protection Agency (SFPA). The
Fisheries Research Services monitors and advises on fish stocks and on issues which may affect the
marine environment, while the Scottish Fisheries Protection Agency has the remit of enforcing the
UK and EU sea fisheries regulations in ports and at sea within British Fishery Limits around
Scotland. They also monitor compliance by the industry.

According to the National Contingency Plan published by the Maritime and Coastal Agency, “Under
Part | of the Food and Environment Protection Act 1985 (FEPA), Departments or Agencies with
food safety responsibilities can prohibit the taking of fish and edible plants from a designated sea
area. They may do this when the consumption of contaminated food from that area could present a
health risk to consumers. They may therefore restrict fishing, on a precautionary basis, if resources
are, or are likely to become, contaminated” (MCA, 2007)

This approach is aimed at protecting consumers’ interests and the ban is normally initiated by the
Food Standard Agency (FSA) according to the Food and Environment Protection Act, 1985, based
on substantial information on the nature and extent of the spill. Typical examples where temporary
bans have been imposed on harvesting of fish and shellfish were the Braer oil spill incident in 1993
and the Sea Empress grounding in 1996 (Whittle et al., 1997; Law and Kelly, 2004).

The guide to practices, procedures and methodol ogies following oil spill contamination incidents
was published by the Standing Committee of Analysts (SCA) for the Environmental Agency in 2004.
This ensures that adequate and representative samples are collected from the affected area and
analyzed with standard methods. The documented guide published as ‘Blue book’ contains
guidelines for sampling and methodologies for analysis of different environmental matrices relevant
for making informed decision regarding imposition and lifting of harvesting bans and other spill

mitigating actions.
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8.5 Recommendation for improving oil spill response

Credible decision-making regarding oil spill response strategies should be based on sound scientific
principles. In marine oil spill response regarding aquaculture, knowledge of fisheries management is
essential. The understanding of the composition and fate of different oil componentsis also
important in managing the aftermath of oil spill. Also important is background information on
different important species and matrices that may be used as relevant indicators of spill loadings and
effects, e.g. indigenous biota, sediment, water, etc., while not neglecting the impact of seasona
variations on these matrices. The sections below discuss how these factors can be properly managed

to ensure efficient response to spill in the marine environment.

8.5.1 Background information

Baseline datais vital in advising response to and monitoring recovery from spill incidents, as
mentioned in the bluebook (EA, 2004). Lack of baseline data was among the setbacks suffered in
coordinating the scope of sampling during the Braer incident in 1993 (Whittle et al., 1997). Asthis
was not available for the wild species within the FEPA exclusion zone, it was difficult to know when
the PAH concentration returned to background levels. However, the Fisheries Research Services
(FRS) currently undertakes monitoring programs that covers the relevant matrices in most Scottish
Coastal waters and relevant aquaculture farming areas in Scotland (Webster et al., 2003; Webster et
al., 2004; Russell et al., 2005). The information from such monitoring excercises will be of crucial
value when a spill or other damaging event occurs. Additionally, there is need for the continuous
monitoring of several commercia species (e.g. mussels, oysters, crustaceans, and finfish) in areas
affected by oil spill to determine the long-term impact of the contamination. Whilst some of these
data may seem to be only primarily of local relevance, the results could be of wider significancein
relation to understanding the effects of oil spills on fisheries, given the quality of the baseline data
generated by FRS for some of these populations.
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8.5.2 Developing comprehensive sampling plan

The blue book (EA, 2004; section 6) explicitly explained the merits of atimely, comprehensive and
representative sample in assessing the impact of spills. However, it did not discuss the statistical
aspects of sampling plan. A key factor to be considered in selecting appropriate number of samplesis
the heterogeneity of contaminant tissue burden that occurs within same species of organisms. In this
study, where Atlantic salmon were exposed to Forties crude oil, four fish sampled immediately after
the oil exposure showed variable tissue concentrations (485.4, 717.0, 752.1 and 1018.0 ng g* wet
weight), giving amean of 743.1ng g and a standard deviation of 218.1 ng g*. The difference
between the lower and the upper range was very wide (532.6 ng g™). Such variationsin tissue burden
among species should be documented and made available to the appropriate authorities so that such

variations can be taken into consideration in designing sampling plans to suit specific incidents.

Another limitation to developing an appropriate sampling plan is the knowledge of when exposure
has ceased so that the kinetic data obtained in this study can be applied. For finfish that can move
away from the contaminant zone and at the same time readily metabolize PAHs, exposure to such
contaminants is short lived and depuration isfast. In their report on the effect of the Braer ail
incident on caged salmon, Whittle et al. (1997) reported that the salmon reached the maximum PAHs
concentration within 10 days of the incident and subsequently rapidly depurated the accumul ated
compounds. However, areport by Topping et a., on the impact of the same incident on wild finfish
showed consistent reduction in the tissue burden of the fish. This suggests that for penned finfish and
sessile molluscs (e.g. mussels), exposure to the oil components can last longer so far as the source of
contaminant persists.

Therefore, the modelled kinetic equations (section 8.5.4) can only be used with confidence when it
has been established through analysis that exposed has ceased.
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8.5.3 Theunderstanding of the composition of variousail fractions.

Vast oil database exist that gives the various physical and chemica properties of the different
fractions of petroleum products. However, the information therein seems to be of little relevance to
the sort of information required in managing spill response. Crude oils and derived products differ in
composition according to their sources and refining processes. Knowledge of the composition of the
spilled oil and the physical and chemical properties of its constituents will help in the prediction of
the expected short-term and long-term effects of the oil on the marine environment. For example,
according to Dahlmann 2003), very light fuel oil contains compounds that are highly volatile, toxic
and readily weathered. The composition of this oil suggests that impacted species will be more
susceptible to taint than pollution from heavy PAH compounds. On the other hand, heavy oils
(Heavy crude ails, No. 6 fuel oils, Bunker C) show little or no dissolution over time, have high
aromatic contents, weathers slowly and have the possibility of long-term contamination of
underlying sediment (NOAA, 2005). Therefore, organisms affected by heavy oils will likely suffer
risk of contamination from heavy PAH compounds which can persist for longer duration. Diesdl is
regarded as the most toxic petroleum fraction but grouped together with the No. 2 fuel oil and light
crude oils (NOAA, 1994). These groups of oils are moderately volatile, contins moderate
concentrations of the toxic (soluble) compounds and will leave residue for some days. Contamination

of intertidal resource can be long-term especialy in turbulent waters.

Theinfluence of oil composition and prevailing atmospheric conditions on the impact and
persistence of oil spill is probably reflected by the Braer and the Sea Empress incidents. The Braer
spilled 84, 700 t of light Gulfaks crude oil and up to 1,500 t of bunker oil (Ritchie 1997), while the
Sea Empress spilled 72, 000 t of Forties blend crude oil and 480 t of heavy fuel oil (Law and Kelly,
2004).

Thisissue should be well discussed in the blue book and case studies properly documented as the

information are very vital in spill management.
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8.5.4 Understanding thefate of oil componentsin different marine organisms and matrices.

Understanding the fate of specific oil components that are of toxicological significant (e.g. PAHS) in
different environmental matrices is vitd in predicting the effect and persistence of these
contaminants. According to Payne et al. (2003), oil released into the marine environment is
immediately subject to short-term weathering processes including spreading, evaporation, dispersion
of whole oil droplets into the water column, and partial dissolution of selected lower molecular
weight 2- to 3- ring polycyclic aromatic hydrocarbons with log Ko, values between 3.7 and 4.8. The
partition co-efficient of the various compounds to some extent govern their distribution into the

various phases of the environment; water, sediment, biota, and air.

The current studies and previous studies (Table 8.3) have shown that these compounds are
preferentially accumulated and depurated by living organisms. The real spill case studies (Table 8.4)
show that different species of organisms exposed to similar concentration of specific contaminants
show variable tissue burdens. Thisis supported by the result from the current studies. For example,
Mytilus edulis exposed to crude oil accumulated the whole range of PAH compounds while Salmo
salar exposed to similar concentration of crude oil accumulated only the 2- and 3-rings PAH
compounds and in lower concentrations than found in mussels. Similar trend in PAH accumulation
was reported by Topping et al. (1997) for samples collected after the Braer incident. The mean
concentrations of PAHs found in wild fish (cod, lemon sole, dab, plaice, etc.) which ranged between
384 and 794 ng g-* generally contained |ess than 5% of the 4- to 6-rings compounds, while higher
mean PAH concentrations were found in bivalve molluscs with % compositions of the 4- to 6-rings
compounds reaching up to 60%. Therefore, finfish rarely accumulate the high molecular weight
carcinogenic compounds during short term acute oil exposures such as occurred during vessel
accidents.
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From the past and present studies being discussed, it is evident that shellfish (particularly the bivalve
molluscs) are the species of organisms that are mostly at risks of severe contamination by both the
acutely toxic (2- and 3-rings) and the carcinogenic (4- to 6-rings) PAH compounds. Concentrations
of PAH compounds found in mussels, oysters, lobster, scallops, whelks, etc., during vessel accidents
have always posed food safety concerns (Topping et al., 1997; Law and Hellou, 1999)

The results of the current and previous studies presented inTable 8.3 will find application in the
management of different spill scenarios. Therefore, it isrecommended that the kinetic data obtained
in studies |11 and Thorsen et al. (2004) (for mussels), and IV (for salmon) is used for the prediction
of the duration of persistence of PAHs in the mentioned species if contamination is from:

e A small and non-persistent operational spill in low turbulent weather condition.

e Medium ail spill affecting only wild speciesin low turbulent waters.

For large spills, like the Braer incident where the oil was still present in the zone for over one month,
resulting in simultaneous accumulation and elimination, and severe weather conditions prevailed
during the period, the kinetic data from studies | and Il can be applied with caution for shellfish

species, being weary of the possibility of re-suspension from the underlying sediment.

Table 8.5 presents a guideline which can be used to predict the duration of persistence of individual
PAH compound in mussels (bivalve molluscs) affected by oil spill. The figures were generated by
fitting the ky values into first order decay equation. The k, values used were a combination of the
values obtained from the different studies as explained in Table 8.5. The critica compounds
presented in italics, these compounds seem to persist longer than others in the environment and have

been implicated as probable carcinogens.
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Table 8.5: Modelled kinetic equations for the estimation of the duration of persistence of individual

PAH compounds in musselsin oil spill management.

Compounds

Spill type |

Spill typell

Naphthalene

t = (In Co-ln C)/0.2217

2-Methyl Naphthalene

t = (In Co-In C;)/0.2059 #

1-Methyl Naphthalene

t = (In Co-In C)/0.2486

C2-Naphthalenes

t = (In Co-ln C)/0.2124

t = (In CoIn C;)/0.0560°

C3-Naphthalenes

t = (In Co-ln C)/0.17932

t = (In Cg-In C)/0.0620°

C4-Naphthalenes

t = (In Co-In C)/0.1543°

t = (In Co-In C)/0.0652°

Acenapthylene

t = (In Co-In C;)/0.18472

Acenaphthene

t = (In Co-In C,)/0.23722

Fluorene

t = (In Co-In C/0.19022

t = (In Co-In C,)/0.0592¢

Phenanthrene

t = (In Co-In CY/0.17072

t = (In C-In C/0.0510°

Anthracene

t = (In Co-In CY/0.17922

t = (In Co-In C/0.0500°

C1-Phenan/Anthracenes

t = (In Co-In C)/0.1500 °

t = (In Co-In C,)/0.0620¢

C2-Phenan/Anthracenes

t = (In Co-In C)/0.0803°

t = (In Co-In C,)/0.0605 ¢

C3-Phenan/Anthracenes

t = (In Co-In C)/0.0622°

t = (In Cg-In C)/0.0505¢

Dibenzothiophene

t = (In Co-In C)/0.16112

t = (In Cg-In C)/0.0582¢

C1-Dibenzothiophenes

t = (In Co-ln C)/0.14732

t = (In Co-In C)/0.0647°

C2-Dibenzothiophenes

t = (In Co-In C;)/0.0828"

t = (In Cg-In C)/0.0573¢

C3-Dibenzothiophenes

t = (In Cg-In C)/0.0542°

t = (In Co-In C)/0.0473¢

Fluoranthene (202)

t = (In Cg-In C)/0.0557°

t = (In Co-In C)/0.0536¢

Pyrene (202)

t = (In Co-In C)/0.0853°

t = (In Co-In C)/0.0437°

C1-Fluoranthene/Pyrenes

t = (In Co-In C)/0.0730°

t = (In Co-In C)/0.0487°

C2-Fluoranthene/Pyrenes

t = (In Co-In C)/0.0568"°

t = (In C-In C)/0.0428°

C3-Fluoranthene/Pyrenes

t = (In Co-In C)/0.0667°

Benzo[c]phenanthrene
(228)

t = (In Co-In C,)/0.0428°

Benz[a]anthracene

t = (In Co-ln C))/0.0924

t = (In Co-In C,)/0.0337°¢

Chrysene/Triphenylene

t = (In Co-In C)/0.0638"°

t = (In Co-In C)/0.0477°

Benz[b]anthracene (228)

t = (In Cg-In C)/0.0564 "

C1-Chrysenes

t = (In Cg-In C)/0.0595"

t = (In Co-In C,)/0.0397°¢

C2-Chrysenes

t = (In Co-In C)/0.0697°

t = (In Co-In C))/0.0315°

Benzo[b] fluoranthene

t = (In Co-In C,)/0.08272

Benzo[K]fluoranthene

t = (In Co-In C)/0.0589%

Benzofluoranthenes (252)

t = (In Cg-In C)/0.0540°

Benzo[ € pyrene (252)

t = (In Co-In C)/0.0315°

t = (In Co-In C/0.0224°

Benzo[ a] pyrene (252)

t = (In Cy-In C)/0.0755°

t = (In Co-In C)/0.0353°

Perylene (252)

t = (In Co-In C)/0.0350°

t = (In Co-In C)/0.0299°

C1-252

t = (In Co-In C)/0.1223°
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C2-252 t = (In Co-In C)/0.1137°
Indeno[ 1,2,3-cd] pyrene | t = (In Co-In C)/0.0442° | t = (In Cy-In C;)/0.0391°
Benzo[ ghi] perylene t = (In Co-In C)/0.0385° | t = (In Co-In C)/0.0234°¢

C1-276 t = (In Co-In C{)/0.1110°
Dibenz[a,h]anthracene
(278) t = (In Cy-In C,)/0.0687 2

Where C; = desired PAHs concentration, Cp = initial concentration of the PAH compound in the
organism, and t = time required to reach the desired PAH concentration.

%, value obtained from Thorsen et al. (2004)

Pk, value obtained from study 111 (Chapter 6)

%, value obtained from study | (Chapter 3)

%, value obtained from study 11 (Chapter 3)

Spill type |: Non- persistent operational spillsinvolving small amounts of oil and medium spillsin
low turbulent waters, where contamination of the underlying sediment is minimal.

Spill type I1: Medium spillsin turbulent waters resulting in severe contamination of the underlying
sediment, large spills with oil persisting for longer duration like the Braer incident (Davies et al,
1997).

8.5.5 Understanding the relationship between taint and PAH tissue burden.

The knowledge of the relationship between taint and PAH tissue burden is vital when taint isto be
used as a screening tool to prioritize samples for more comprehensive chemical analysis. The present
study (Chapter 4), Heras et al. (1992), Davies et al. (2002), Topping et al. (1997) and Whittle et al.
(1997) have shown that petrogenic taint has adirect relationship with petrogenic PAH concentration
in the immediate aftermath of oil exposure. However, taint threshold was also found to vary between
species and different oil fractions (Davies et al., 2002). The same authors aso reported that while
the lowest taint threshold was found in mussels (0.032 mg/l) exposed to Forties crude oil, crab
exposed to similar concentration of oil was resistant to taint (> 7.7 mg/l). This suggests that

petrogenic taint data for crab cannot be accurately applied as an indicator of the PAH tissue burden.
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The naphthalenes, and in some instances phenanthrenes/anthracenes, and dibenzothiophens have
been implicated in petrogenic tainting of fish and shellfish (Heras et al., 1992; Davies et al., 2002;
Whittle et al., 1997). These groups of compounds dominate the profile of PAHs found in organisms
exposed to oil contamination. While shellfish are capable of accumulation the whole range of PAH
compounds within a short period of time, finfish profiles are normally dominated by the 2- and 3-
rings compounds and rarely contains the 4- to 6-rings compounds (Topping et al., 1997; Whittle et
al., 1997; Law and Kelly, 2004, and this study Chapters 3, 6 and 7)). Therefore, it isright to state
that in the immediate aftermath of oil spill incident; sensory analysisis the easiest, cost effective and
areliable approach of safeguarding consumer confidence with regards to finfish. Chemical analysis
of the affected organisms can be carried out later to access the PAH tissue burden when taint

declines.

Moreover, taint intensity can be used as an estimate of the PAH tissue burden if the relationship
between taint intensity and PAH tissue burden is known for an organism.

Equation 8.1 can be used to estimate the PAH tissue burden of salmon recovering from oil spill
incident from the sensory data. A sample pattern is shown in Table 8.6. The figures used were
generated from the exposure experiment (study 1V) reported in Chapter 7. A mgjor limitation of this
approach in oil spill management will be the absence of baseline data and the variability that exist
among species of the same organisms. Since taint is known to result from petrogenic PAH
contamination, organisms with (unknown) high background PAHs will generate grosdy inaccurate
results. Thisis because, PAHs of pyrolytic origin normally comprise the 4- to -6-ring compounds
which do not contribute to taint. For example, during the T/B North Cape oil spill, all 416 finfish
samples analyzed tasted negative to taint although the PAH tissue burden ranged between 5 and
1,100 ng g'* wet weight. This concentration according to the Mauseth et al. (1997) was however
within the background concentration determined before the spill and therefore not a direct impact
from the spill. Consequently, in the absence of background PAH data before an oil spill incident,
relying on sensory data alone can lead to misjudgment of the actual PAH tissue burden of organisms.
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Table 8.6: Sample table showing the relationship between average taint intensity and mean PAH

concentration calculated using equation 8.1

Mean Taint *Mean Total
intensity PAHs (ng g™)
5.0 >1072.3
49 1051.2
4.8 1030.1
35 755.7
3.2 692.3
3.0 650.1
2.8 607.9
2.6 565.7
2.2 481.2
2.0 439.0
1.8 396.8
1.6 354.6
14 312.3
1.2 270.1
1.0 227.9
0.8 185.7
0.6 1435
0.5 122.4
04 101.2
0.3 80.1
0.2 50.0
0.1 37.9

* = Sum of naphthalenes (parent and C1-C4), phenanthrene/anthracene (parent and C1-C3) and
dibenzothiophenes (parent and C1-C3)

Mean total PAHs concentration (M TPC) was calculated from the relationship:
MTPC = 211.1mean taint intensity (MTI) + 16.2 .............. (8.2)
(See Chapter 7 section 7.5.3)

Equation 8.1 isjust a guide, as previous reports have shown that the persistence of taint increases

with increase in oil concentration and duration of exposure (Davies et al., 2002).
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8.6 Conclusion

Every action taken in responding to oil spill is geared towards protecting the natural environment
from the long-term effects of the spill and safeguarding consumers’ interests. Spilled oil affects
living organisms within its pathway. The current and previous studies show that the degree to which
an organism is contaminated is not a measure of the amount of oil in its pathway but the extent to
which it can absorb and retain oil components. Therefore, the duration of persistence of PAHsIn

organisms is affected by the following factors:

I The duration of exposure of organism to the contaminant (point or continuous
exposure). Elimination rate decreases with increase in exposure duration.

i. The rate at which an organism can eliminate the compounds.

iii. The exposure pathway; this controls the suite of compounds accumulated by
organisms. Individual PAHs are eliminated at different rates.

iv. The oil fraction spilled; this affects the partitioning behaviour.

Although each oil spill is unique and affected by the prevailing weather and physical factors, the
current research has provided an insight into the fate of toxic hydrocarbons in selected marine
organisms. The kinetic data generated from this study will answer some of the important questions
normally raised by farmers and consumers as to when atemporary ban can be lifted. The modelled
kinetic equations (Table 8.5) will find application in the estmation of the duration of persistence of
PAH compounds in musselsif spill is:

¢ A non- persistent operational spillsinvolving small amounts of oil or medium spillsin low

turbulent waters, where contamination of the underlying sediment is minimal (Spill typel).
e Medium spill in turbulent waters resulting in severe contamination of the underlying

sediment, large spills with oil persisting for longer duration (spill typeI1).

A table is also presented (Table 8.6) which relates the sensory data from Atlantic salmon to the PAH
tissue burden. In the immediate aftermath of spills, the information therein will be auseful guide in
the estimation of the PAH tissue burden of an impacted salmon community from the sensory data.

However, this cannot be accurately applied in long monitoring programs.
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Chapter Nine

Overall Conclusonsand Future Work

9.1 Background

The fate and effect of polycyclic aromatic hydrocarbons (PAHS) in the marine environment
have been widely studied in the last 3 decades (Blumer et al., 1970; Baumard et al., 1999b;
Dahle et al., 2003). Thisis due to their persistence and the perceived environmental health
risks (IARC 1983; Heras et al., 1992; Aas et al., 2000; Aaset al., 2001). PAHs are
introduced into the marine environment through diverse sources which include natural
(forest fires, volcanic eruptions, etc.) as well as anthropogenic sources (automobile exhaust,
combustion of fossil fuels and exploration and transportation of petroleum products).
Petroleum exploration and consumption rel ease varying amounts and composition of
hydrocarbons into the marine environment in the form of operational discharges, leaks or
vessel accidents. Oil spill arising from vessel accidents have always received international
attention due to the volumes of oil discharged at atime (Huijer, 2005) and the increased
risksto commercial fisheries and aguaculture (Topping et al., 1997, Whittle et al., 1997,
Law and Hellou, 1999). Oil spills present the potentia for enormous harm to deep Ocean
and coastal fishing and fisheries. The immediate effects of toxic oil components may be
mass mortality and contamination of fish and other food species, but long-term ecological

effects may be worse (Embach, 2008).

The potentia costs of ail spill on commercial fisheries can be economically damaging. This
may include loss of consumer confidence in fish and shellfish products as a result of
detectable petrogenic taint, economic losses due to imposition of fishing bans,
compensation costs to tanker owners and their insurers, and the concern for public health

due to carcinogenic PAH compounds in food.

The elimination rates of selected priority PAH compounds investigated in naturally
incurred and experimentally exposed Mytilus edulis and also in experimentally exposed
Salmo salar in separate laboratory and field studies showed that these organisms depurate
PAH compounds. The data generated will be useful in future prediction of the duration of
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persistence of these compounds in commercial speciesimpacted by oil spills. The
relationship between PAH tissue burden, taint and changes in geochemical biomarkers were
also studied.

9.2 Conclusion on PAH depuration studies

The contaminated mussel s when transferred to clean environments depurated the PAHs
within arelatively short period of time. The pattern in the loss of PAH compounds with
time observed for mussels depurated in separate |aboratory and field studies (Chapter 3)
were similar. The elimination kinetics (depuration constant and biological half-lives)
calculated for individual compounds varied among the homologues series but was
comparabl e between the two studies. Thisis an indication that laboratory data can be

directly applied to the field provided the source of contamination is not persistent.

Similarly, farmed mussels experimentally exposed to equal concentrations of Arabian light
oil, Gullfaks crude oil or Brent crude oil (Chapter 6) showed similar PAH percentage
compositions (2.3-2.9% of the 2- aand 3- ring compounds and 97.1-97.7% of the 4- to 6-
rings compounds) and depuration patterns. Elimination of PAHs from the musselsin all the
studies (Chapters 3 & 6) followed first order kinetics. Generally, elimination was faster for
the lower molecular weight compounds than the higher molecular weight compounds.
Biologica half-livesincreased with increase in molecular weight and degree of akylation
and ranged between 3.8 d (C4-naphthalene) to 31 d (Benzo[e]pyrene) for the Aberdeen
harbour mussels (chronic exposure) and 0.5 d to 22 d for the mussels exposed to acute
crude oil contamination. The k, values determined from the harbour mussels (Chapter 3)
were consistently higher than the val ues obtained from the mussels exposed to acute crude
oil contamination (Chapter 6), suggesting that increase in exposure duration increases the
apparent half-lives. Similar observation was reported by Sericano et al. (1996), from the
depuration of chronically (indigenous) and acutely (transplanted) exposed American
oysters. At the end of 50 days of depuration in a clean environment, the authors reported
that the tissue burden of the indigenous oysters was 40% higher than found in the

transplanted oysters, therefore returning longer apparent half-lives for the similar
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compounds. This again suggests that the duration of exposureis acritical factors affecting

the rate of PAH elimination from organisms.

Atlantic salmon exposed to crude oil contamination only accumul ated the 2- and 3-rings
PAH compounds [the naphthalenes (parent and C1-C4), phenanthrenes/anthracenes (parent
and C1-C3) and dibenzothiophenes (parent and C1-C3), acenaphthene and fluorene] within
the exposure period (Chapter 7). The naphthal enes accounted for over 93% of the total
PAHSs found in salmon (743.1+ 218.1 ng g™). Four salmon sampled immediately after
exposure showed similar PAH % composition suggesting similar mode of uptake. Similar
observation was reported by Topping et al. (1997) in finfish affected by the Braer oil spill
incident. The PAH distribution and % compositions found in the salmon were also similar
to other literature reports from spill incidents (Whittle et al., 1997; Law and Kelly, 2004).

Similar to mussels, salmon eliminated the accumul ated PAHs upon transfer to a clean water
flow-through system but with longer biological half-livesfor similar compounds than
mussel s exposed to acute crude oil contamination. This was unexpected, but may be as a
result of the route of elimination in both species. Elimination followed first order kinetics,
and biologica haf-lives ranged between 2.8 and 31.5 d. The k; value was aso found to
decrease with increased hydrophobicity and degree of akylation.

The kinetic data obtained from this study and previous studies were modelled into kinetic
equations (Table 8.5). These equations will be a useful guide for predicting the duration of

persistence of PAHs compounds in the management of specific il spillsincidents.

9.3 Conclusion on the links between PAH concentration and taint

Salmon samples collected immediately after the oil exposure showed strong petrogenic
taint (80-100% taint positives). Thisis possibly due to the concentration of naphthalenes (>
93 %) accumulated by the salmon (Chapter 7). These compounds have been implicated in
petrogenic tainting of edible parts of fish and shellfish (Heras et al., 1992; Davieset al .,
2002). Taint decreased progressively with loss of PAH upon transfer to the clean flow-

through system. A regression analysis of the lipid normalized PAH concentration and taint
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rating gave arelatively good correlation (r?= 0.72). Suggesting that, if contamination is
sorely petrogenic, non tainted salmon species need not be analysed for PAH tissue
concentration.

Sensory datais good indicator of PAH tissue burden of salmon in the immediate aftermath
of oil spill and can be used in screening and prioritizing samples for further costly and time
consuming chemical analysis. However, PAH tissue burden of salmon cannot be accurately
estimated from taint data in along monitoring program as studies have shown that taint is

not lost as rapidly asit develops.

9.3.1 Conclusion on the use of n-alkanes, PAH distribution profile and concentration

ratios and geochemical biomarkersin oil spill source identification

The profiles of PAH compounds can be diagnostic of the sources of hydrocarbon
contamination, as can the patterns of geochemical biomarkers; steranes and triterpenes
(Bence et al., 1996; Y unker et al., 2002; Webster et al., 2004). The n-alkane profile of the
mussels collected from Aberdeen showed a profile similar to that characteristics of
weathered crude oil and returned a CPI of 1(Chapter 4). The PAH distribution was also
similar to that described for petrogenic sources (Wang et al., 1999; Yunker et al., 2002),
and the PAH concentration ratios; H/Py and MP/P indicate predominantly petrogenic input
source (Chapter 4). Although fractionation, through the differential uptake that occurs as
hydrocarbons are transferred from water/sediment phases into organisms, metabolism and
excretion processes can alter the original composition of the more labile n-alkanes and
PAHS, the presence of geochemical biomarkersin the mussels' profile indicate that the
PAH contamination originated from petrogenic sources (Chapter 4). The geochemical
biomarker (triterpane and sterane) profile of the harbour mussels suggests a contribution
from both the North Sea and the Middle Eastern oils. Further analysis of crude oils from
these areas and their mixtures (Chapter 5) suggest that the harbour mussels were possibly
contaminated by mixture of a North Sea and Middle Eastern crude oils.
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Similarly farmed mussels experimentally exposed to Gullfaks, Arabian light or Brent crude
oils reflected the geochemical characteristics of the exposure oils (Chapter 6). Thisisan
indication that mussels are good indicators of contaminant loadings and that the result

obtained from the harbour mussels was not by chance.

Contrary to the result observed with the mussels, Atlantic salmon exposed to Forties crude
oil showed biomarker fingerprint quite different from that of the exposure oil (Chapter 7).
This suggests that salmon are not good indicators of spill source and geochemical

biomarker information from this source can give mideading information on spill source.

9.4 Conclusion on changes in geochemical biomarker profile in musselswith loss of
PAHs

Geochemical biomarker compounds (e.g. steranes and triterpanes) are used in geochemistry
and environmental forensics to correlate oil and spilled samples to their sources. The
stability of specific ratios of these compounds over timein spill samplesis well
documented (Wang et al., 1995, Wang et al., 1996; Barakat et al., 2002, Wang et al .,
2005). Mussels used in the current studies retained their original biomarker fingerprint
when transferred to depurate in clean environment for only a short period of time (Chapter
4 and 6).The relative abundances (intensity) of the biomarker compounds was found to
decrease relative to diploptene; anon oil biomarker (Appendix 2). This suggests that these
compounds like PAHs are also eliminated by mussels.

The changes in biomarker profile monitored using specific triterpane (Y%DR27Tm,
%DR28ah, %DR30d, %DR29ab,%DR30G, %DR32abS) and sterane (%DRs29aaS and
%DR29bb) diagnostic indices, showed a change from the initia profile after about 12 days
of depuration, especidly in the %DR32abS, %DR29aaS and %DR29bb indices. Thisisan
indication that biomarker information from mussels may not be very reliable after along
period of time after spill. However, given the consideration that samples used in oil spill
correlaions are collected from the vicinity of the spill, it follows that mussels collected at
spill sites can provide useful information on the source of the spilled oil due to continuous

exposure.
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9.5 Recommendationsfor futurework.

PAHSs have been identified as a component of petroleum products that is of major food
safety concern (NRC, 1983; NRCC, 1985, Davies and Topping, 1997). The problem posed
by these compoundsin oil spill management is the different environmental, physical and

biological factors that affect their distribution in various phases of the marine environment.

Several studies have shown that marine organisms depurate PAHs at different rates
depending on their metabolic capacities and other environmental factors. Further studies are
needed to investigate the rates of PAHSs elimination from various species of commercial
relevance. Such studies can be carried out simultaneously using different species of
organisms and subjecting them to similar experimental conditions, the outcome of such
studies will enable accurate comparison of the rates of depuration in the species used.
Interpolations can be made using such datain cases where the data relating to some species

are not readily available.

Therate of reaction in chemical and biological processes generally increases 2- to 4-fold
for a10°C increase in temperature (Kennedy et al., 1989; French 2000). The elimination
curves from which the kinetic data was modelled was obtained at a given temperature. This
follows that a deviation from the calculated kinetics may be observed if the organisms were
monitored at a different temperature. Therefore, it will be important to investigate and
measure the effect of changes in water temperature on the uptake and elimination kinetics

of PAHs by the specific species monitored.

Sensory data can be used as a good indicator of PAH loading in finfish (Davis et al., 2002,
study 1V), however this does not hold in along monitoring program as taint is not lost in
direct proportion with PAHs concentration. The relationship between |oss of petrogenic
hydrocarbons and taint in finfish should be further investigated to determine if the
compounds responsible for taint are transformed by organisms.

In addition, astaint threshold differs among organisms, similar studies need to be carried
out with other species of organisms; mussels, oysters, crustaceans, etc., to generate a
database which can aid prediction of when taint intensity in impacted organism has

disappeared.
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Several studies have reported the stability of geochemical biomarker compounds (sterane
and triterpane) in spill samples (Peters and Moldowan, 1993; Wang et al., 1995; Wang et
al., 1998; Barakat et al., 2002). The current study aso demonstrated the relative stability
over 12 days of specific biomarker diagnostic ratios in mussels exposed to crude oils (see
Chapters 4 and 6). However, as the relative abundance of all petroleum related biomarkers
were found to decrease with depuration time relative to diploptene; anon- oil biomarker
compound, further studies which will measure the absolute concentrations of individual
biomarker compound in both mussels and sediment samples are required to accurately
establish how absolute individual biomarker concentrations change with changesin PAH
concentration.

In addition, samples for scientific investigation should be representative of the sample area.
Therefore, the stability of the specific biomarker compounds in mussels will need to be
monitored on site to verify if the change in the biomarker profile was due to the isolation of

the organism from the contaminant zone.

219



References

References

Ass, E., Baussant, T., Balk, L., Liewenborg, B., Andersen, O.K. 2000. PAH metabolitesin
bile, cytochrome P4501A and DNA adducts as environmental risk parameters for chronic
oil exposure: alaboratory experiment with Atlantic cod. Aquat. Toxicol., 51(2), pp. 241-
258.

Ass, E., Beyer, J., Jonsson, G., Reichert, W. L., Andersen, O. K. 2001. Evidence of uptake,
biotransformation and DNA binding of polycyclic aromatic hydrocarbonsin Atlantic cod
and corkwing wrasse caught in the vicinity of an aluminium works. Mar. Environ. Res,,
52(3), pp. 213-229.

Abboud, M., Philp, R. P., Allen, J. 2005. Geochemical correlation of oils and source rocks
from central and NE Syria, Journal of Petroleum Geology, 28 (2), pp. 203-216.

Alan, R., Riddington, G., Anderson, J., Gibson, H. 2004. The Economic Impact of Game
and Coarse Angling in Scotland; A report prepared for Scottish Executive Environment and
Rural Affairs Department, Scottish Executive 2004.

Anyakora, C., Ogbeche, A., Palmer, P., Coker, H. 2005. Determination of polynuclear
aromatic hydrocarbons in marine samples of Siokolo fishing settlement. Journal of
Chromatography A, 1073(1-2), pp. 323-330.

Barakat, A.O., Mostafa A. R., Qian Y., Kennicutt |1, M.C. 2002. Application of petroleum
hydrocarbon chemical-fingerprinting in oil spill investigations — Gulf of Suez, Egypt. Spill
ci. Technol Bull., 7(5-6), pp. 229-239.

Barrick, R. C., Hedges, J. |., and Petersen, M. L. 1980. Hydrocarbon geochemistry of the

Puget Sound region-I. Sedimentary acyclic hydrocarbons, Geochim. Cosmochim. Acta 44
(9) pp. 1349-1362

220



References

Baumard, P., Budzinski, H., Garrigues, P., Dizer, H., Hansen, P. D. 1999b. Polycyclic
aromatic hydrocarbons (PAH) burden of mussels (Mytilus sp.) in different marine
environment in relation with sediment PAH contamination, and bioavailability. Marine

Environmental Research, 47, pp. 415-439.

Baumard, P., Budzinski, H., Michon, Q., Garrigues, P., Burgeot, T., Bellocqg, J. 1998.
Origin and Bioavailability of PAHs in the Mediterranean Seafrom Mussel and Sediment
Records, Estuarine, Coastal and Shelf Science, 47(1), pp. 77-90

Baumard, P., Lattimore, P.J., Butterworth, M., Budzinski, H., Garrigues, P., Dizer,
H., Hansen, P. D. 1999a. Polycyclic aromatic hydrocarbons in recent sediments and
mussels (Mytilus edulis) from the Western Baltic Sea: occurrence, bioavailability and
seasonal variations. Mar. Environ. Res,, 47(1), pp. 17-47.

Bence, A. E., Kvenvolden, K. A., Kennicutt 1, M. C., 1996. Organic geochemistry applied
to environmenta assessments of Prince William Sound, Alaska, after the Exxon Vadez oil

spill —areview. Org. Geochem., 24, 7- 42.

Bjork, M. 1995. Bioavailability and uptake of hydrophobic contaminantsin bivalve filter-
feeders, Ann. Zool. Fennici, 32, pp. 237-245.

Blumer, M., and Y oungblood, W.W. 1975. Polyacyclic aromatic hydrocarbons in soils and
recent sediment, Science, 188, pp. 53-55.

Blumer, M., Guillard, R. R. L., Chase. T. 1971. Hydrocarbons of marine phytoplankton,
Marine Biology, 8, pp. 183-189.

Blumer, M., Souza, G., and Sass, J., 1970. Hydrocarbon pollution of edible shellfish by an
oil spill, Marine Biology, 5, pp. 195-202.

Blumer, M.1976. Polycyclic aromatic compounds in nature, Scientific American, 234, pp.
35-45.

221



References

Boehm, P. D. and Quin, J. G. 1977. The persistence of chronically accumulated
Hydrocarbonsin the hard shell Clam Mercenaria mercenaria. Marine Biology, 44, pp. 227-
233.

Boehm, P.D., Douglas, G.S., Burns, A.W., Mankiewicz, P.J., Page, D.S., Bence, A.E. 1997
Application of petroleum hydrocarbon chemical fingerprinting and allocation techniques
after the Exxon Vadez oil spill, Marine Pollution Bulletin, 34, pp. 599-613.

Boehm, P. D., Page, S. D., Burns, W. A., Bence, A. E., Mankiewicz, P. J. 1998. Resolving
the origin of the petrogenic hydrocarbon background in Prince William Sound, Alaska.
Environmental Science and Technology, 35 pp. 471-479.

Bray, E. E. and Evans, E. D. 1961. Distribution of n-paraffins as a clue to recognition of

source beds. Geochimica Cosmochimica Acta 22, pp. 2-15.

Budzinski, H., Jones, 1., Bellocq, J., Pierard, C., Garrigues, P. 1997. Evaluation of sediment
contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine
Chemistry 58(2), pp. 85-97.

Burns, W.A, Mankiewicz, P. J, Bence, A. E, Page, D. S, Parker, K. R. 1997: A principa-
component and | east-squares method for allocating polycyclic aromatic hydrocarbonsin

sediment to multiple sources. Environmental Toxicology and Chemistry 16, pp. 1119-1131.

Cantillo, Y. A. 1991. Mussel watch worldwide literature survey, Rockville, Md. : U.S.
Dept. of Commerce, National Oceanic and Atmospheric Administration, National Ocean
Service.

Cavdlieri, E. L. and Rogan, E.G. 1992. The approach to understanding aromatic
hydrocarbon carcinogenesis: the central role of radical cations in metabolic activation.
Pharmacology & Therapeutics, 55(2), pp. 183-199.

Christensen, J. H., Tomasi, G., Hansen, A. B. 2005. Chemical Fingerprinting of Petroleum
Biomarkers Using Time Warping and PCA, Environ. Sci. Technol., 39, (1), pp. 255-260.

222



References

Christopher, M., Reddy, C.M., Xu, L., Timothy I., Eglinton, T. I., Jan, P., Boon, J .P.,
Faulkner, J.D. 2002. Radiocarbon content of synthetic and natural semi-volatile
hal ogenated organic compounds Environmental Pollution 120 (2), pp.163-168

Commission Recommendation, Journal of the European Union pp.34/35
COMMISSION REGULATION (EC) No 208/2005 of 4 February 2005 amending

Regulation (EC) No 466/2001 as regards polycyclic aromatic hydrocarbons [online]
available from: http://faoclex.fao.org/docs/pdf/eur49927.pdf [accessed on 04 April 2006)

Cortazar, E., Zuloaga, O., Sanz, J., Raposo, J.C., Etxebarria, N., Ferna' ndez, L.A. 2002,
MultiSimplex optimization of the solid-phase microextraction—gas chromatographic—mass
spectrometric determination of polycyclic aromatic hydrocarbons, polychlorinated
biphenyls and phthal ates from water samples, Journal of Chromatography A, 978 (1-2) pp.
165-175.

Cretney, J. W., Green, D. R., Fowler, B. R., Humphrey, B., Fiest, D. L. and Boehm, P. D.
1987. Hydrocarbon biogeochemical setting of the Baffin Island oil spill experimental sites.
1 sediments. Arctic, 40 pp. 51-55.

Dahle, S, Savinov, V. M., Matishov, G.G., Evenset, A. and Naes, K., 2003. Polycyclic
aromatic hydrocarbons (PAHS) in bottom sediments of the Kara Sea shelf, Gulf of Ob and
Yenisal Bay. The Science of the Total Environment, 306(1-3), pp. 57-71.

Dahlmann, G. 2003: Characteristic Features of Different Oil Typesin Oil Spill
Identification. Berichte des BSH, Nr. 31, 48pp

Daling, P.S., Faksness, L.G. 2002. Laboratory and reporting instructions for the

CEN/BT/TF 120 Oil Spill Identification, Round Robin Test. SINTEFF report STF66
A02027

223



References

Davies, J. M., Mclntosh, A. D., Stagg, R., Topping, G., Rees, J. 997, The fate of the Braer
oil in marine and terrestrial environments. In J.M. Davies and G. Topping (eds.). The
Impact of an Oil Spill in Turbulent Waters: The Braer. Edinburgh: The Stationery Office
LTD. pp. 26 -40.

Davies, J. M. and Topping, G. 1997. The Impact of an Oil Spill in Turbulent Waters: The
Braer. Edinburgh: The Stationery Office LTD. pp. 121-143.

Davis, H. K., Moffat, C. F. and Shepherd, N. J. 2002. Experimental tainting of marine fish
by three chemical dispersed petroleum products, with comparisons to the Braer oil spill.
Soill Sci. Technol. Bull., 7, 2, pp. 57-278.

Di Toro, D. M., Zarba, C. S., Hansen, D. J,, Berry, W. J, Swartz, R. C., Cowan, C. E.,
Pavlou, S. P., Allen, H. E., Thomas, N. A., Paguin, P. R. 1991. Technica basis for
establishing sediment quality criteriafor nonionic organic chemicals using equilibrium

partitioning, Environmental Toxicology and Chemistry, 10, pp. 1541-1583

Eganhouse, R. P., and Kaplan, I. R. 1982. Extractable organic matter in municipal
wastewaters, 2. Hydrocarbons: molecular characterization, Environmental Science and
Technology, 16, p. 541-551.

Eidler, R. 1987. Polycyclic aromatic hydrocarbon hazards to fish, wildlife, and
invertebrates: a synoptic review. U.S. Fish and Wildlife Service Biological Report 85(1.11).

Embach, C. Oil Spills: Impact on the Ocean [online] Available from:
http://www.waterencycl opedia.com/Oc-Po/Oil - Spill s-lmpact-on-the-Ocean.html [accessed:
19 December 2008]

ENVIRONMENTAL AGENCY, 2004. A guide to practices, procedures and
methodol ogies following oil spill contamination incidents, Environmental Agency,
Southampton, Blue book no. 193, [onling], available form: http://www.environment-

agency.gov.uk/research/commercial/32874.aspx [accessed 08 June 2008]

224



References

Fairman, R., Mead, C.D., and Williams, W.P. 1998. Environmental Risk Assessment -

Approaches, Experiences and Information Sources, Environmental issue report No 4.

Faksness, L.G., Daling, P.S., Hansen, A.B. 2002. CEN/BT/TF 120 Oil Spill Identification,
Summary Report: Round Robin Test Series B. SINTEFF report STF66 A02038.

Faksness, L.G., Hansen, A.B., Stout, S,, Viitala, N., Gjos, N., Johansson, J., and Daling,
P.S. 2001. Oil spill identification. Nordtest Round Robin testing Series A (Fiels samples),
summary report, SINTEFF report STF66 A01003.

Ferreira, M., Moradas-Ferreira, P. and Reis-Henriques, M. A., 2006. The effect of long-
term depuration on phase | and phase Il biotransformation in mullets (Mugil cephalus)
chronically exposed to pollutants in River Douro Estuary, Portugal. Marine Environmental
Research, 61(3), pp. 326-338.

French, D. P. 2000. Estimation of oil toxicity using an additive toxicity model. In
Proceedings of the 23rd Arctic Marine Oil Spill Program Technical Seminar, Environment
Canada, Ottawa, 1, pp. 561-600

Gagnon, M. M. and Holdway, D.A. 2002. EROD activity, serum SDH and PAH biliary
metabolites in sand flathead (Platycephalus bassensis) collected in Port Phillip Bay,
Australia. Marine Pollution Bulletin, 44(3), pp. 230-237.

Galperin, Y., and Camp, H. 2002. Petroleum Product Identification in Environmental
Samples: Distribution Patterns of Fuel-Specific Homologous Series, Cambridge,

Massachusetts.

Galvan, N., Teske, D. E., Zhou, G., Moorthy, B., Macwilliams, P.S., Czuprynski, C.J. and
Jefcoate, C.R., 2005. Induction of CYP1A1l and CYPI1B1l in liver and lung by
benzo(a)pyrene and 7,12-d imethylbenz(a)anthracene do not affect distribution of
polycyclic hydrocarbons to target tissue: role of AhR and CYP1B1 in bone marrow

cytotoxicity. Toxicology and Applied Pharmacology, 202(3), pp. 244-257.

225



References

Garc'ia-Falc’on, M.S., Cancho-Grande, B., Simal-G andara, J. 2005. Minimal clean-up
and rapid determination of polycyclic aromatic hydrocarbons in instant coffee, Food Chem,
90(4), pp. 643-647.

Gewurtz, S. B., Drouillard, R. L., and Haffner, G.D, 2002. Quantitative biomonitoring of
PAHs using the Barnes mussel (Elliptio complanata). Arch. Environ. Toxicol., 43, pp. 497-
504.

Gobas, F. A. P. C., Muir, D. C. G., and Mackay, D. 1988. Dynamics of dietary
bioaccumulation and fecal elimination of hydrophobic organic chemicalsin fish.
Chemosphere 17, pp. 943-962.

Gough, M. A and Rowland, S. J. 1990. Characterization of unresolved complex mixtures of

hydrocarbons in petroleum, Nature, 334, pp. 648-650.

Goulay, C., Miege, C., Noir, A., Ravelet, C., Garric, J. and Mouchel, J. 2005. How
accurately do semi-permeable membrane devices measure the bioavailability of polycyclic
aromatic hydrocarbons to Daphnia magna? Chemosphere, 61(11), pp. 1734-1739.

Guilherme, R. L., 1998. Boiaccumulation of sediment-associated fluoranthene in benthic

copepods: uptake, elimination and biotransformation. Aquatic Toxicology, 44, pp. 1-15.

Gossiaux, D. C., Landrum, P. F., Fisher, S. W. 1996. Effect of temperature on the
accumulation kinetics of PAHs and PCBs in the zebra mussel, Dreissena polymorpha. J
Great Lakes, Res., 22, pp. 379-388.

Harmsen, J., 2007. Measuring Bioavailability: From a Scientific Approach to Standard
Methods, J Environ Qual., 36, pp.1420-1428

Heras, H., Ackman, R.G., Macpherson, E.J. 1992. Tainting of Atlantic salmon (Salmo

salar) by petroleum hydrocarbons during a short-term exposure, Marine Pollution
Bulletin, 24(6), pp. 310-315.

226



References

Hirohide, K., Uchida. M., Okuda, T., Yoneda, M., Takada, H., Yasuyuki, S., and
Masatoshi, M. 2004. Compound-specific radiocarbon anaysis of polycyclic aromatic
hydrocarbons (PAHSs) in sediments from an urban reservoir, Nuclear Instruments and
Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 223-
224, p.545-554.

Hu, S, Chen, C., Kuo, C., Lin, W., Pinpin, L. 2006. Increased cytochrome P4501B1 gene
expression in peripheral leukocytes of municipal waste incinerator workers. Toxicology
Letters, 160(2), pp. 112-120.

Huijer, K. 2005. Trendsin Oil Spillsfrom Tanker Ships 1995-2004 (2005) [online] Paper
presented at the 28th Arctic and Marine Oilspill Program (AMOP) Technical Seminar, 7-9
June 2005, Calgary, Canada[accessed: 19 December 2008]

Hyotyldinen, T., Karels, A., Oikari, A. 2002. Assessment of bioavailability and effects of
chemicals due to remediation actions with caging mussels (Anodonta anatina) at a
creosote-contaminated lake sediment site. Water Res, 36, pp. 4497 — 4504.

International Agency for Research on Cancer, 1973. |ARC Monographs on the Evaluation
of Carcinogenic risksto Humans, Vol. 3, Available from:
http://monographs.iarc.fr/ENG/monographs/vol 3/volue3.pdf [accessed 07 August 2006]

International Agency for Research on Cancer, 1983. |ARC Monographs on the Evaluation
of Carcinogenic risks to Humans, Vol. 32, Available from:
http://monographs.iarc.fr/ENG/monographs/vol 32/volue32.pdf [accessed 07 August 2006]

Johansson, S., Larsson, U. and Boehm, P., 1980. The Tsesis oil spill impact on the pelagic
ecosystem, Marine Pollution Bulletin, 11(10), pp. 284-293.

Kayal, S. |. and Connell, D. W.1990, 'Partitioning of unsubstituted PAH's between surface

sediments and the water column in the Brisbane River estuary’, Australian Journal of
Marine and Freshwater Research, 41, pp. 443-456

227



References

Kennedy, C. J,, Gill, K. A., and Walsh, P. J. 1989. Thermal modulation of benzo[a]pyrene
uptake in the gull toadfish, Opsanus beta. Environmental Toxicology and Chemistry, 8, pp.
863-869.

Kennicutt II, M. C., Wade, T. L., Presley, B. J,, Requejo, A. G., Brooks J. M., and Denoux.
G. J. 1994. Sediment contaminantsin Casco Bay, Maine: Inventories, sources, and
potential for biological impact, Environ. Sci. Technol., 28, pp. 1-15.

King, A. J., Readman, JW., and Zhou, J. L. 2004. Dynamic behaviour of polyaromatic
hydrocarbons in Brighton marina, UK. Marine Pollution Bulletin, 48, pp. 229-239.

Kleinow, K., Baker, J., Nichals, J., Gobas, F., Parkerton, T., Muir, D., Monteverdi, G.,
Mastrodone, P. 2000. Exposure, uptake, and disposition of chemicalsin reproductive and
developmental stages of selected oviparous vertebrates. In Di Giulio RT, Tillitt DE, eds,
Reproductive and Devel opmental Effects of Contaminantsin Oviparous Vertebrates.
SETAC, Pensacola, FL, USA, pp 9-111.

Kolattukudy, P.E 1976. Chemistry and Biochemistry of Natural Waxes, Elsevier,

Amsterdam

Law, R. J. and Kdlly, C. 2004. The impact of the “Sea Empress’ oil spill, Aquatic Living
Resources, 17, pp. 389-394.

Law, R. J,, Klungsayr, J., and Freriks, I. L. 1997. The QUASIMEME Laboratory
Performance Study of polycyclic aromatic hydrocarbons (PAH): Assessment of the first

three rounds, 1994-1995, Marine Pollution Bulletin, 35(1-6), pp.64-77.

Law, R.J. and Hellou, J. 1999. Contamination of fish and shellfish following oil spill

incidents. Environmental Geoscience, 6, pp. 90-98.

Lima, A., Farrington, J., Reddy, C. 2005. Combustion-Derived Polycyclic Aromatic

Hydrocarbons in the Environment -A Review, Environmental Forensics, 6(2), pp. 109-131.

228



References

Lin,D., Tu, Y., Zhu, L. 2005. Concentrations and health risk of polycyclic aromatic
hydrocarbons in tea, Food Chem. Toxicol. 43(1), pp. 41-48.

Luellen, D. R. and Shea. D. 2002. Calibration and Field Verification of Semi permeable
Membrane Devices for Measuring Polycyclic Aromatic Hydrocarbonsin Water. Environ.
i. Technol., 36, pp.1791-1797.

Maritime and Costal Agency, 2007. National Contingency Plan for Marine Pollution from
Shipping and Offshore Installations. MCA [online], available from:
http://www.mcga.gov.uk/cAmca/mcgal7-home/emergencyresponse/mecga-

pollutionresponse/mcga-dops cp environmental -counter-pollution/mcga2007-
ncp/mcga2007-ncp-section6.htm, [accessed 05 November 2008]

Martinez, E., Gros, M., Lacorte, S., Barcel"o, D. 2004. Simplified procedures for the
analysis of polycyclic aromatic hydrocarbons in water, sediments and mussels, Journal of
Chromatography A, 1047 (2) pp.181-188.

Mastra, A., Calen, M., Murillo, R., and GartiaT. 1998. Assessment of PAH emissions as
afunction of coal combustion variablesin fluidized bed, Fuel, 77, pp.3195-3207.

Mauseth, G. S, Martin, C.A. and Whittle. K. 1997. Closing and reopening fisheries
following oil spills; three different cases with similar problems. In Proceedings of the 21st
Arctic and Marine Oil Spill Program Technical Seminar, Vancouver, British Columbia,
Canada, June 11-13, 2, pp. 1283-1303.

McElroy, A.E., Leitch, K., Fay, A. 2000. A survey of in vivo benzo[a] pyrene metabolismin

small benthic marine invertebrates. Marine Environmental Research, 50, 33-38.

Mclintosh, A. D., Moffat, C. F., Packer G., Webster, L. 2004. Polycyclic aromatic
hydrocarbon (PAH) concentration and composition determined in farmed blue mussels
(Mytilus edulis) in asealoch pre- and post-closure of an aluminium smelter, J. Environ.
Monit., 2004, 6, 209 — 218.

229



References

Mclntosh, A. D; Moffat, C. F; and Webster, L. 2002. The source and fate of polycyclic
aromatic hydrocarbons (PAHS) in wild mussels (Mytilus edulis) and winkles (Littorina
littorea) from Loch Leven, FRS Marine Laboratory, Aberdeen Report No 05/02

Meador, J. P. 2003. Bioaccumulation of PAHs in Marine Invertebrates: In Douben, P.T.E:
PAHs: An Ecotoxicological Perspective, Ecological and Environmental Toxicology Series,
John Wiley & Sons, Ltd.

Meador, J. P,, Stein, R. Reichert, W. L., and Varanasi, U. 1995. Bioaccumulation of
polycyclic aromatic hydrocarbons by marine organisms. Reviews of Environmental
Contamination and Toxicology, 143, pp. 79-165.

Medeiros, M. P. and Bicego, C. M. 2004. Investigation of natural and anthropogenic
hydrocarbon inputs in sediments using geochemical markers. 1. Santos, SP - Brazil. Marine
Pollution Bulletin, 49, pp. 761-769.

Michel, J. 2005. Qil behaviour and toxicity Seattle: Hazardous Materials Response
Division, Office of Response and Restoration, National Oceanic and Atmospheric
Administration.

Minegishi, T., Crimmins, B., Baker, J., 664 (MIN-1117-833741) Characterization of PAH
composition patternsin diesel emissions. Environmental Science in Global Society:
SETAC rolein next 25 years.

Mitra, S., Bhowmik, P. C., Xing, B. 1999. Sorption of isoxaflutole by five different soils
varying in physical and chemical properties. Pest i, 55:935-942

Moore, J. W. and Ramamoorthy, S. 1984. Aromatic Hydrocarbons-Polycyclics. In: Organic

Chemicalsin Natural Waters: Applied Monitoring and Impact Assessment. Springer-
Verlag, New York, NY. p. 67-87.

230



References

Morrisson, H., Yankovich, T., Lazar, R., Haffner, G. D. 1995. Elimination rate constants of
36 PCBs in zebra mussels (dreissena pol ypha) and exposure dynamicsin the Lake St. Clair-
Lake Erie corridor. Can. J. Fish Aquat Sci., 52, pp. 2574-2582.

Nagpal, N.K (Ph.D.) 1993. Ambient Water Quality Criteria For Polycyclic Aromatic
Hydrocarbons (PAHS) Ministry of Environment, Lands and Parks
Province of British Columbia.

Naraoka, H., Yamada, K., and Ishiwatari, R., 2000. Recent sedimentary hopanoidsin the
northwestern Pacific alongside the Japanese I1slands — their concentrations and carbon

isotopic composition, Organic geochemistry, 31(10), pp.1023-1029.

National Oceanic and Atmospheric Administration (NOAA) and American Petroleum
Institute (API). 1994. Inland oil spills: Options for minimizing environmental impacts of
freshwater spill response. American Petroleum Institute Publ. No. 4558. Seattle and
Washington, D.C.: NOAA and API.

National Research Council (NRC). 1985. Qil in the Sea: Inputs, Fates, and Effects.
National Academy Press, Washington, D.C.

Nationa Research Council of Canada (NRCC). 1983. Polycyclic Aromatic Hydrocarbons
in the Aquatic Environment: Formation, Sources, Fate and Effects on Aquatic Biota. NRCC
Report No. 18981.

Nationa Research Council, 2002. Oil inthe sea I1l Inputs, Fates, and Effects, The National
Academies Press, Washington, D.C.

Nationa Research Council, 2003. Oil inthe sea I1l Inputs, Fates, and Effects, The National
Academies Press, Washington, D.C.

Neff, J. M. 1990. Composition and fate of petroleum and spill-treating agents in the marine
environment. Pages 1-33, In: J. R. Geraci and D. J. St. Aubin, Eds., Sea Mammals and Oil:
Confronting the Risks. Academic Press, San Diego.

231



References

Nordtest Method NT CHEM 001, Oil Spill Identification, Edn. 2, Approved 1991-02.)
NRC (National Research Council) Oil inthe Sealll: Inputs, Fates and Effects. USA: The
national Academy Press, Washington DC.

Oen, A.M.P., Schaanning, M., Ruus, A., Cornelissen, G., Kallqvist, T. and Breedveld, G.D.
2006. Predicting low biotato sediment accumulation factors of PAHs by using infinite-sink
and equilibrium extraction methods as well as BC-inclusive modeling. Chemosphere,
64(8), pp.1412-1420

Page, D. S, Boehm, P. D., Brown, J. S., Neff, J. M., Burns, W. A., Bence, A. E. 2005.
Mussels document loss of bioavailable polycyclic aromatic hydrocarbons and the return to
baseline conditions for oiled shorelinesin Prince William Sound, Alaska. Marine
Environmental Research, 60(4), pp. 422-436

Page, D. S, Boehm, P. D., Douglas, G. S., Bence, A. E., Burns, W. A., Mankiewicz, P.J.

1999. Pyrolytic Polycyclic Aromatic Hydrocarbons in Sediments Record Past Human

Activity: A Case Study in Prince William Sound, Alaska, Marine Pollution Bulletin, 38(4),
pp. 247-260.

Paul Read, School of Life Sciences, Napier University, 17 March 2002, page made Paul
Tett, updated 20 March 2002.

Payne, R. J,, Clayton, Jr., J. R., and Kirstein, B. E. 2003. Oil/Suspended Particulate
Material Interactions and Sedimentation, Spill Science & Technology Bulletin 8(2), pp. 201-
221.

Pearce, J. 1997. Proceedings of the Exxon Valdex oil spill symposium : S. D. Rice, R. B.
Spies, Da A. Wolfe and B. A. Wright (eds). American Fisheries Society, Bethesda, MD,
1996, Marine Pollution Bulletin, 34(7), pp. 588-588.

Peters, K. E., Moldowan, J. M. 1993. The Biomarker Guide, Interpreting Molecular Fossils

in Petroleum and ancient Sediments. Englewood Cliffs, New Jersey: Prentice Hall.

232



References

Peters, K. E., Walters, C. C., Moldowan, J. M. 2005. The Biomarker Guide (2™ Ed.)
Cambridge, Cambridge University Press.

Philip, R. P. 1985. Fossil Fuel Biomarkers: Application and Spectra (Methodsin
Geochemistry and Geophysics, 23 Elsevier, New Y ork

Pittinger, C. A., Buikema Jr. A.L., Hornor, S. G., and Young R. W. 1985. Variation in
tissue burdens of polycyclic aromatic hydrocarbons in indigenous and relocated oysters,

Environmental Toxicology and Chemistry, 4(3) pp. 379-387.

Patt, K. L., Dienes, H. P., Tommasone, M., and Luch, A. 2004. Tumor formation in the
neonatal mouse bioassay indicates that the potent carcinogen dibenzo[def,p]chrysene
(dibenzo[a,|]pyrene) is activated in vivo viaits trans-11,12-dihydrodiol. Chemico-
Biological Interactions, 148(1-2), pp. 27-36.

Prudll, R. J.,, Lake, J. L., Davis, W. R., and Quinn, J. G. 1986. Uptake and depuration of
organic contaminants by blue mussels (Mytilus edulis) exposed to environmentally
contaminated sediment. Marine Biology, 91, pp. 497-507.

Raoux, C. 1991: In Budzinski, H., Jones, |., Bellocg, J., PieA rard, C., Garrigues, P. 1997.
Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde
estuary. Marine Chemistry, 58, pp. 85-97.

Jacobs, R., Grant, R., Kwant, J., Marqueine, J., Menizer E., 1992. In: Ray, J. P and
Engehardt, F. R. (eds), Produced Water: Technological/Environmental 1ssues and
Solutions, Environmental Science Research, 46, pp. 13-22.

Requegjo, A. G and Quinn, J. G. 1983. Geochemistry of Cys and Cs biogenic alkenesin

sediments of the Narragansett Bay estuary, Geochim. Cosmochim. Acta, 47 (6), pp. 1075—
1090.

233



References

Richardson, B. J., Tse, E. S., De Luca-Abbott, S. B., Martin, M., Lam, P. K. 2005. Uptake
and depuration of PAHs and chlorinated pesticides by semi-permeable membrane devices
(SPMDs) and green-lipped mussels (Perna viridis). Marine Pollution Bulletin, 51(8-12),
pp. 975-993.

Roos, P. H., Tschirbs, S., Pfeifer, F., Welge, P., Hack, A., Wilhelm, M., Bolt, H. M. 2004.
Risk potentials for humans of original and remediated PAH-contaminated soils. application
of biomarkers of effect. Toxicology, 205(3), pp. 181-194.

Russdl, M., Webster, L., Walsham, P., Packer, G., Dalgarno, E.J., MclIntosh, A.D., Fryer,
R. J.,, Moffat, C.F. 2005. The effect of oil exploration and production in the East Shetland:
Composition and concentration of hydrocarbons in sediment samples collected in 2002
using a stratified random sampling design in their comparison with historic data (FRS
internal Report No 13/05).

Salmon Conservation (Scotland) Bill 2001.The Scottish Parliamentary Corporate Body
2001
Edinburgh: the stationery office, ISBN 0-33-820150-5

Sander, L.C and Wisg, S. A. 1997. Polycyclic aromatic hydrocarbon structure index.
Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National
Institute of Standards and Technology.

Sangster, J. 2005. Sangster Research Laboratories, under the auspices of CNC/CODATA;
[Online] Available from: http://logkow.cisti.nrc.ca/l ogkow/index.jsp [Accessed 03 09,
2005]

Saxby, M. J., 1996. Food Taints and Off-flavours, 2°. Blackie Academic and Professional,

London.

Scottish Parliament — Information centre RESEARCH PAPER 00-17, October 2000
Scottish shellfish production survey 2005 by FRS

234



References

Sediment Guidance Compendium (SGC), EPRI, Palo Alto, CA: 2001. 1005216 [online:
available from

http://www.deg.state.or.us/l g/cu/nwr/johnsonl ake/l nvesti gationWorkPlanAttachment02a.pd
f [accessed on: 08 November, 2008].

Segal, M., Auerbach, J. M., Boehm, P. D., Douglas, G. S., Burns, W.A., Mankiewicz P.
J, PageD. S, Bence A. E. 1997. Application of petroleum hydrocarbon chemical
fingerprinting and all ocation techniques after the Exxon Vadez oil spill. Marine Pollution
Bulletin, 34(8), pp. 599-613.

Sericano, J. L., Wade, T. L. and Brooks, J. M., 1996. Accumulation and depuration of
organic contaminants by the American oyster (Crassostrea virginica). Science of the Total
Environment, 179(1-3), pp. 149-160.

Shea, D. 1988. Developing national sediment quality criteria: Equilibrium partitioning of
contaminants as a means of evaluating sediment quality, Environ. Sci. Technol. 22, pp.
1256-1261.

Speight, J.G, 1993. The chemistry and technology of petroleum, 2™ ed., Narcel Dekker,
New Y ork.

Stegeman, J. J. 2000. Cytochrome P450 gene diversity and function in marine animals:

past, present, and future. Marine Environmental Research, 50(1-5), pp. 61-62.

Stella, A., Piccardo, M. T., Coradeghini, R., Redadlli, A., Lanteri, S., Armanino, C.,
Vaerio, F. 2002. Principal component analysis application in polycyclic aromatic
hydrocarbons “mussel watch” analyses for source identification. Analytica Chimica Acta
461(2), pp. 201-213.

Suteau, P. M., and Narbonne, J. F. 1988. Preliminary data on PAH metabolismin the
marine mussel Mytilus galloprovincialis from Arcachon Bay, France, 98(3), pp. 421-425.

235



References

Tanabe, S, Tatsukawa, R., Phillips, D. J. 1987. Mussels as bioindicators of PCB pollution:
a case study on uptake and release of PCB isomers and congenersin green-lipped mussels

(Pernaviridis) in Hong Kong waters, Environmental Pollution, 47(1), pp. 41-62.

Tenacredi, J. T., and Cardenas, P. R., 1991. Bio-depuration of polynuclear Aromatic
Hydrocarbons from a bivalve mollusc, Mercenaria mercenaria L. Environ. Sci. Technal .,
25, pp. 1453-1461.

The Samon Act 1986 (Commencement and Transitional Provisions) Order 1992. The
Stationery Office Limited, Edinburgh, ISBN 0110249739.

The Scottish Government, June 2008. A Strategic Framework for Scottish Freshwater
Fisheries [onling], Available from:
http://www.scotland.gov.uk/Publications/2008/06/26110733/0, [accessed on 07 Sept. 2008]

Topping, G., Davies, J. M., Mackie, P. R., Moffat. C. F. 1997. The impact of the Braer spill
on commercia fish and shellfish. In J. M. Davies and G. Topping (eds.). The Impact of an
Oil Spill in Turbulent Waters: The Braer. Edinburgh: The Stationery Office LTD. pp. 121-
143.

Truscott, B., Walsh, J. M., Burton, M. P., Payne, J. F., Idler, D. R. 1983. Effect of acute
exposure to crude petroleum on some reproductive hormones in salmon and flounder,
Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 75(1), pp.
121-130.

Tuler, S, Seager, T. P., Kay, R. 2006. Environmental performance metrics for oil spill
response. A technical report submitted to the Coastal Response Research Centre,
NAO4NOS4190063, 05-983.

UNEP 2003 - Agenda 21. Available on:

http://www.unep.org/Documents.Multilingual/Default.asp?Documentl D=52& Articlel D=65
&l=en [Accessed: February 16, 2006].

236



References

US Environmental Protection Agency, Method 8270C, Semivolatile organic compounds by
gas chromatogrmass spectrometry (GC/MS), 1996.

Van de Widl, J. A. G,, Fijneman, P. H. S, Teeuw, K. B., Van Ommen, B., Noordhoek, J,
Bos,R. P. 1989. The influence of acohol consumption on benzo[a]pyrene
biotransformation in the rat. Mutation Research/Environmental Mutagenesis and Related
Subjects, 216(5), pp. 282-292.

Van der Oogt, R., Beyer, J., Vermeulen, N.P.E. 2003. Fish bioaccumulation and biomarkers
in environmental risk assessment: areview. Environmental Toxicology and Pharmacology,
13, pp. 57-149.

Varanasi, U., Stein, J.E., Nishimoto, M., Rcichert, W.L., and Collier, T. 1987. Chemical
carcinogenesisin feral fish-uptake, activation, and detoxication of organic xenobiotics,

Environmental Health Perspectives, 71, pp. 150-170

Wang, Z., Fingas, M., and Page, S. D. 1999. Qil spill identification, Journal of
Chromatography A, 843 (2), pp. 369-411.

Wang, Z., Stout, A. S, and Fingas, M. 2006. Forensic fingerprinting of biomarkers for ail
spill characterization and source identification, Environmental Forensics, 7(2), pp. 105-
146.

Wang, Z. D., Fingas, M., and Sergy, G. 1995. Chemical Characterization of Crude Oil
Residues from an Arctic Beach by GC/MS and GC/FID, Environ. Sci. Technol. 29 (10), pp.
2622—-2631.

Wang, Z. D., Fingas, M., Blenkinsopp, S., Sergy, G., Landriault, M., Sigouin, L. Lambert,
P. 1998. Study of the 25-Y ear-Old Nipis Oil Spill: Persistence of Oil Residues and
Comparisons between Surface and Subsurface Sediments. Environ. Sci. Technol. 32(15),
pp. 2222-2232.

237



References

Webster, L., Angus, L., Topping, G., Dalgarno, E. J., Moffat, C. F. Long-term monitoring
of polycyclic aromatic hydrocarbons in mussels (Mytilus edulis) following the Braer oil
spill, Analyst, 1997, 122, pp.1491-1495.

Webster, L., Fryer, R. J.,, Megginson, C., Dalgarno, E. J., Mclntosh, A.D., Moffat, C. F
2004. The polycyclic aromatic hydrocarbons and geochemical biomarker composition of
sediment from sea lochs on the west coast of Scotland. J Environ. Monit., 6, pp. 219-228.

Webster, L., Mclntosh, A. D., Dagarno, E. J., Megginson, C., Shepherd, N. J., and Moffat,
C. F. 2003. The polycyclic aromatic hydrocarbon composition of mussels (Mytilus edulis)
from Scottish coastal waters, J. Environ. Monit., 5, pp. 150 — 159.

Whale, G., Lethbridge, G., Paul, V., Martin, E. 2003. PAHs. An Ecotoxicological
Per spective. John Wiley & Sons, Ltd. Belgium pp. 357 - 377.

Whittle, K.J., Anderson, D.A., Mackie, P.R., Moffat, C.F., Shepherd, N.J., and McVicar.
A.H. 1997. The impact of the Braer oil on caged salmon. In J.M. Davies and G. Topping
(eds.). The Impact of an Oil Spill in Turbulent Waters. The Braer. Edinburgh: The
Stationery Office LTD. pp. 144-160.

WHO 2003. Polynuclear aromatic hydrocarbons in drinking-water. Background document
for preparation of WHO Guidelines for drinking-water quality. Geneva, World Health
Organization (WHO/SDE/WSH/03.04/59).

WHO Regional Office for Europe, Copenhagen, Denmark, 2000.

Wiedmer, M., Fink, M. J., Stegeman, J. J.,, Smolowitzm, R., Marty, G. D., and Hinton,
D.E. 1996. Cytochrome P-450 Induction and Histopathology in Preemergent Pink Salmon
from Oiled Spawning Sites in Prince William Sound, In: Am.Fish.Soc.Symp.

Stanley D. Rice et a eds. Proceedings of the Exxon Valdez oil spill symposium,
Anchorage, Alaska. 2-5 February, 1993, 18, pp. 509-517.

238



References

Williams, U. P., Kiceniuk, J. W., Fancey, L. L., Botta, J.R. 2006. Tainting and Depuration
of Taint by Lobsters (Homarus americanus) Exposed to water Contaminated with aNo. 2
Fuel Oil: Relationship with Aromatic Hydrocarbon Content in Tissue, Journal of Food
Science, 54 (2), pp.240 — 243.

Wogan, G.N., Hecht, S.S., Felton, J.S.,, Conney, A.H., and Loeb, L.A. 2004. Environmental
and chemical carcinogenesis, Seminarsin Cancer Biology, 14(6), pp. 473-486.

Wormell, R. L., 1979. Petroleum Hydrocarbon Accumulation Patternsin Crossostrea

Virginica: Analysis and Interpretations. PhD Dissertation, Rutgers University, NJ, pp. 189.

Xue, W. and Warshawsky, D. 2005. Metabolic activation of polycyclic and heterocyclic
aromatic hydrocarbons and DNA damage A review. Toxicology and Applied
Pharmacology, 206(1), pp. 73-93.

Yates, K., Davies, .M., Webster, L., Pollard, P., Lawton, L., Moffat, C. 2007, Passive
sampling: partitioncoefficients for a silicone rubber reference phase, J. Environ. Monit., 10,
pp. 1116-1121.

Yender, R., Michel, J.,, Lord. C. 2002. Managing Seafood Safety after an Oil Spill. Sesttle:
Hazardous Materia s Response Division, Office of Response and Restoration, National

Oceanic and Atmospheric Administration.

Yim, U. H., Oh, J. R, Hong, S. H., Lee, S. H., Shim, W. J,, Shim, J. H. 2002. Identification
of PAHs sources in bivalves and sediments 5 years after the Sea Prince oil spill in Korea.
Environ. Forensics, 3, pp.357-366.

Yunker, M. B., Macdonald, R. W., Goyette, D., Paton, D.W., Fowler, B.R., Sullivan, D.
1999. Natural and anthropogenic inputs of hydrocarbons to the Strait of Georgia, Sci. Total
Environ., 225, pp. 181-2009.

Yunker, M. B., Macdonald, R. W., Vingarzan R., Mitchell, L, R. H., Goyette, D., Sylvester,
S. 2002. PAHs in the Fraser River basin: acritical appraisal of PAH ratios as indicators of

PAH source and composition. Organic Geochemistry, 33(4), pp. 489-515.

239



References

Zuin, V.G., Montero, L., Bauer, C., Popp, P. 2005. Stir bar sorptive extraction and high-
performance liquid chromatography-fluorescence detection for the determination of
polycyclic aromatic hydrocarbonsin Mate teas, J. Chromatography A, 1091 (1-2), pp. 2-10.

1994 Annual report of theCommittees on Toxicity Mutagenicity Carcinogenicity of the
chemicalsin food, Consumer products and the environment, HMSO ISBN 0113219121

240



References

APPENDIX 1

FISHRIESRESEARCH SERVICE, MARINE
LABORATORY STANDARD OPERATING
PROCEDURES (SOPs)

(SEE THE ATTAHED CD)

241



Appendix2

APPENDIX 2

TABLE FROM CHAPTER THREE

242



Appendix2

Appendix 2

PAH concentrations (ng g™*) found in Aberdeen harbour depurated in the laboratory for 56

days
PAH Compounds Oday | 7days | 21 days | 35days | 56 days
Naphthalene 2.2 2.0 0.2 TR TR
2-Methyl Naphthalene 4.3 0.5 TR TR TR
1-Methyl Naphthalene 2.6 0.3 TR TR TR
C2 Naphthalenes 14.9 2.1 0.7 0.5 04
C3 Naphthalenes 46.2 8.3 0.5 0.4 0.2
C4 Naphthalenes 102.2 354 14 0.2 ND
Total Naphthalenes 172.4 48.6 2.8 11 0.6
Phenanthrene (178) 18.9 2.3 0.6 0.7 0.6
Anthracene (178) 1.9 0.8 0.4 0.3 TR
C1 Phenan/anthracene 111.1 38.3 5.3 4.4 3.1
C2 Phenan/anthracene 2935 | 138.8 31.2 13.6 6.8
C3 Phenan/anthracene 2944 | 1774 65.5 25.7 10.0
Total 178 719.8 | 3576 | 103.0 44.7 20.5
Dibenzothiophene 2.2 0.6 0.2 TR ND
C1 Dibenzothiophenes 26.3 12.0 5.1 3.1 ND
C2 Dibenzothiophenes 109.3 68.6 16.2 6.8 0.8
C3 Dibenzothiophenes 125.1 86.2 35.8 14.5 5.2
Total DBTs 262.9 | 1674 57.3 24.4 6.0
Fluoranthene (202) 25.0 7.6 1.3 0.8 0.5
Pyrene (202) 315 12.6 3.7 2.9 24
C1 Houran/pyrene 73.2 39.5 12,5 6.8 4.9
C2 Houran/pyrene 51.0 31.8 155 7.4 4.8
C3 Fouran/pyrene 25.1 16.2 10.0 55 3.7
Total 202 205.8 | 107.7 43.0 234 16.3
Benzo| c]phenanthrene (228) 3.1 2.2 0.9 0.5 0.3
Benz[a]anthracene (228) 7.4 2.9 1.5 1.2 0.9
Chrysene/Triphenylene (228) | 24.8 10.3 4.2 2.5 1.5
Benz[b]anthracene (228) 1.6 1.0 0.6 0.4 ND
C1 228 18.2 11.9 6.5 3.3 2.0
C2 228 12.3 11.2 6.1 3.0 2.5
Total 228 67.4 39.5 19.8 10.9 7.2
Benzofluoranthenes (252) 19.9 11.9 6.4 2.8 2.1
Benzo[e]pyrene (252) 10.6 8.8 6.2 3.9 3.2
Benzo[a]pyrene (252) 4.0 1.2 0.7 04 0.4
Perylene (252) 2.8 24 1.3 0.7 0.6
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C1 252 5.6 3.8 2.2 13 1.1

C2 252 1.7 1.5 0.7 0.4 0.4

Total 252 44.6 29.6 17.5 9.5 7.8
Indenopyrene (276) 3.1 2.1 0.9 04 0.4
Benzoperylene (276) 3.3 24 1.4 1.0 0.9
C1276 1.3 0.8 0.3 0.2 0.2

C2 276 0.4 0.9 0.3 TR ND

Total 276 8.1 6.2 2.9 1.6 1.5
Acenaphthylene (152) 0.3 TR ND ND ND
Acenaphthene (154) 6.7 TR ND ND ND
Huorene (166) 4.5 0.3 0.2 TR TR
Dibenz[a h]anthracene (278) 0.3 0.3 0.2 TR TR
Cyclopenta[c,d]pyrene (226) NM ND ND ND ND
Dibenz[a,|]pyrene (302) NM 0.6 0.2 ND ND
Dibenz[a,e]pyrene (302) NM TR 0.2 TR ND
Naphtho[2,1-a]pyrene (302) NM 0.2 TR ND ND
Dibenz[a,i]pyrene (302) NM ND ND ND ND
Dibenz[a,h]pyrene (302) NM ND ND ND ND
Total PAHs 1492.8 | 758 2471 | 1156 59.9

NM = not measured, ND = not detected, TR = trace
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Abundance
lon 191.00 (190.70 to 191.70): RE226.D\data.ms
350000
300000 4
1

250000

200000

©o

12
150000

100000 10

50000 17 19

L B L A o S L B e e I e B e
24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00

Time-->

Abundance

lon 217.00 (216.70 to 217.70): RE226.D\data.ms

80000
70000
60000

50000

40000

30000

20000

10000

T T T T S T R E A R A SR St
24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00
Time-->

Time O depuration
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Abundance

200000

180000

160000

140000

120000

100000

80000

60000

40000

20000

Time-->
Abundance

50000

45000

40000

35000

30000

25000

20000

15000

10000

5000

Time-->

5 days depuration

lon 191.00 (190.70 to 191.70): RE235.D\data.ms

7

11

12

13 14

17 18 19

L e e
24.00 26.00

L LA B s e T
28.00 30.00 32.00 34.0 36.00 38.00

T
40.00

lon 217.00 (216.70 to 217.70): RE235.D\data.ms

A s e s T AL A o R B A A e e e & S B
24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00
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Abundance

lon 191.00 (190.70 to 191.70): RE242.D\data.ms

45000
40000 4
35000
30000
25000 8
20000 5
15000
10000

5000 MM]VMMW

e e e e e e N L A e L e e A
24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00

Time-->
Abundance

lon 217.00 (216.70 to 217.70): RE242.D\data.ms

18000
16000
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12000
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BN R R R D P N
24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00

Time-->

12 days depuration

248



Appendix 3

Abundance
lon 191.00 (190.70 to 191.70): RE344.D\data.ms

14000 7
12000 4
10000 11
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6000 L2
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3 6
2000 m

22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00

Time-->
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lon 217.00 (216.70 to 217.70): RE344.D\data.ms
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5000
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1000

22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00
Time-->

19 days depuration
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Abundance

lon 191.00 (190.70 to 191.70): RE347.D\data.ms
13000

12000 4 / 1
11000
10000
9000
8000
7000 9
6000 2
5000
4000 1

3000 5

2000 3 - 15 16

17 18 19

L e e e e —— T T T T T
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Time-->
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lon 217.00 (216.70 to 217.70): RE347.D\data.ms
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Time-->

26 days depuration
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Abundance

lon 191.00 (190.70 to 191.70): RE350.D\data.ms
11000

10000 1
9000
8000
7000
6000
5000 9
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3000 12

2000 6 10 14
3 L/\M 15 16 17 18
1000 13

22.00 24.00 26.00

. . T T T T
28.00 30.00 32.00 34.00 36.00
Time-->

Abundance

lon 217.00 (216.70 to 217.70): RE350.D\data.ms
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Time-->

33 days depuration
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Abundance

lon 191.00 (190.70 to 191.70): RE362.D\data.ms
11
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Time-->
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lon 217.00 (216.70 to 217.70): RE362.D\data.ms
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68 days depuration
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Abundance

lon 191.00 (190.70 to 191.70): RE353.D\data.ms

11

16000
14000
12000
10000
8000
6000
4000
2000

'22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00
Time-->
Abundance

lon 217.00 (216.70 to 217.70): RE353.D\data.ms

9000
8000
7000
6000
5000
4000
3000
2000
1000

22,00 24.00 26.00 28.00 30.00 32.00 34.00 36.00

Time-->

89 days depuration
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Key to peak labels

Peak label Peak id Compound m'z
1 27Ts 18a(H) -22, 29, 30-trinorhopane 191

2 27Tm 17a(H)-22, 29,30-trisnorhopane 191

3 28ab 170(H),21B(H)-28,30-bisnorhopane 191

4 29ab 17a(H), 21B(H)-30-norhopane 191

5 29Ts 18a(H)-nornechopane 191

6 30d 150-methyl-17 o (H)-27-norhopane (diahopane) 191

7 30ab 17 a(H), 21B(H)-hopane 191
8&9 3lab (S& R) 17 a(H), 21p(H)-homohopane (22S & 22R) 191
10 30G Gammacerane 191
11 diploptene 191
12& 13 32ab (S& R) 17 a(H), 21p(H)-bishomohopane (22S & 22R) 191
14& 15 33ab (S& R) 17 a(H), 21p(H)-trishomohopane (22S & 22R) 191
16 & 17 34ab (S& R) 17 a(H), 21p(H)-tetrahomohopane (22S & 22R) 191
18& 19 3Bab (S& R) | 17a(H), 21B(H)-pentakishomohopane (22S & 22R) | 191
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Appendix 4: Elimination rate constants (k, day™), biological half-lives (ty, days) and correlation co-efficients (r?) determined from mussels

exposed to Arabian light, Gullfaks and Brent crude oils

PAH compounds

M ussels exposed to Arabian light oil

M ussels exposed to Gullfaks crude oil

M ussels exposed to Brent crude oil

2

2

2

ks, r tip p-value Kk, r tip p-value Kk, r tip p-value
Naphthalene 1.417+0.015 | 099 | 0.5 0.005 1.240+ 0.012 0.94 0.6 0.002 1.923+0.101 | 1.00 | 0.4 0.000
2-Methyl Naphthalene 0.699+ 0.006 | 0.99 | 1.0 0.000 0.660+ 0.010 0.97 1.0 0.000 0.761+0.038 | 0.98 | 0.9 0.000
1-Methyl Naphthalene 0.687+£0.006 | 0.99 | 1.0 0.000 0.665+ 0.011 0.97 1.0 0.000 0.847+0.002 | 0.90 | 0.8 0.000
C2-Naphthalenes 0.370£0.001 | 0.98 | 1.9 0.000 0.398+ 0.008 0.99 17 0.000 0.454+0.002 | 0.99 | 15 0.000
C3-Naphtha enes 0.203+0.002 | 0.98 | 3.4 0.000 0.222+ 0.011 0.99 3.1 0.000 0.279+0.002 | 1.00 | 25 0.000
C4-Naphthalenes 0.125£0.003 | 0.97 | 5.5 0.000 0.131+ 0.010 0.99 5.3 0.000 0.196+0.002 | 1.00 | 3.5 0.000
Acenaphthene 0.385+£ 0.062 | 0.95| 1.8 0.001 0.346+ 0.010 0.99 2.0 0.000 0.415+0.002 | 0.98 | 1.7 0.000
Fluorene 0.336+£0.004 | 0.97 | 2.1 0.000 0.391+ 0.011 0.98 1.8 0.000 0.445+0.001 | 0.99 | 1.6 0.000
Phenanthrene 0.269+ 0.003 | 0.98 | 2.6 0.000 0.278+ 0.007 0.99 2.5 0.000 0.345+0.001 | 1.00 | 2.0 0.000
Anthracene 0.007+0.004 | 0.30 | 96.3 0.911 0.256+ 0.293 0.36 2.7 0.156 0.177+0.008 | 0.66 | 3.9 0.027
C1-Phenan/Anhracene 0.138+0.003 | 0.97 | 5.0 0.000 0.150+ 0.007 0.99 4.6 0.000 0.222+0.002 | 1.00 | 3.1 0.000
C2-Phenan/Anhracene 0.075£0.004 | 0.55| 9.3 0.091 0.080+ 0.007 0.97 8.6 0.000 0.141+0.003 | 0.96 | 4.9 0.000
C3-Phenan/Anhracene 0.050+ 0.004 | 0.32 | 13.8 0.244 0.062+ 0.008 094 | 111 0.000 0.117+0.002 | 0.98 | 5.9 0.000
Dibenzothiophene 0.285+£0.002 | 0.98 | 2.4 0.000 0.297+ 0.007 0.98 2.3 0.000 0.365+0.003 | 0.99 | 1.9 0.000
C1-Dibenzothiophenes 0.158+0.002 | 0.97 | 4.4 0.000 0.163+ 0.007 0.98 4.2 0.000 0.232+0.001 | 1.00 | 3.0 0.000
C2-Dibenzothiophenes 0.083+0.003 | 0.95| 8.4 0.001 0.080+ 0.007 0.97 8.7 0.000 0.152+0.002 | 0.99 | 4.6 0.000
C3- Dibenzothiophenes 0.054+ 0.004 | 0.36 | 12.8 0.212 0.051+ 0.007 0.96 | 135 0.000 0.110+0.003 | 1.00 | 6.3 0.000
Fluoranthene (202) 0.171+£0.036 | 0.56 | 4.1 0.086 0.038+ 0.010 032 | 181 0.185 0.056+0.002 | 0.29 | 124 0.211

0.096

Pyrene (202) 0.041+ 0.009 | 0.20 | 17.1 0.373 0.085+ 0.005 0.90 8.1 0.001 +0.086 098 | 7.2 0.000
C1-Flouranthene/Pyrene 0.057+£0.004 | 0.37 | 12.2 0.198 0.073+ 0.006 0.96 9.5 0.000 0.125+0.003 | 0.99 | 5.6 0.000
C2 -Flouranthene/Pyrene 0.037+ 0.005 | 0.26 | 18.8 0.301 0.0568+ 0.007 092 | 122 0.001 0.113+0.003 | 0.97 | 6.1 0.000
C3-Flouranthene/Pyrene 0.041+ 0.003 | 0.22 | 17.0 0.349 0.067+ 0.007 092 | 104 0.001 0.106+0.003 | 0.99 | 6.5 0.001
Benz[a]anthracene 0.046+ 0.014 | 0.03 | 15.0 0.737 0.112+ 0.006 0.91 6.2 0.001 0.170+0.008 | 0.91 | 4.1 0.001
Chrysene/Triphenylene 0.051+ 0.005 | 0.28 | 13.6 0.285 0.064+ 0.007 0.90 | 109 0.001 0.108+0.002 | 0.98 | 6.4 0.000
C1-Chrysenes 0.042+ 0.004 | 0.21 | 16.6 0.362 0.060+ 0.006 090 | 116 0.001 0.100+£0.004 | 0.98 | 6.9 0.000
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C2-Chrysenes 0.072+£0.002 | 0.94 | 9.7 0.001 0.093+ 0.008 0.96 74 0.000 0.146+0.004 | 0.99 | 4.7 0.000
Benzofluoranthenes (252) | 0.031+ 0.005 | 0.31 | 22.3 0.254 0.054+ 0.012 095 | 128 0.000 0.076+0.003 | 0.93 | 9.1 0.000
Benzo[e]pyrene (252) 0.003+0.002 | 0.10 | 232.3 0.955 0.014+ 0.008 044 | 493 0.103 0.032+0.002 | 0.77 | 22.0 0.010
Benzo[a]pyrene (252) 0.067+0.037 | 0.48 | 10.3 0.128 0.129+ 0.021 0.96 5.4 0.000 0.336+0.180 | 0.82 | 2.1 0.005
Perylene (252) ND ND | ND ND 0.035+ 0.013 082 | 198 0.005 ND ND | ND ND
C1-252 0.256+0.330 | 0.88 | 2.7 0.005 0.097+ 0.008 0.94 7.1 0.000 0.122+0.009 | 0.96 | 5.7 0.000
C2-252 0.060+0.046 | 0.97 | 11.6 0.000 0.114+ 0.007 0.97 6.1 0.000 0.126+0.005 | 0.97 | 5.5 0.000
Indeno[1,2,3-cd]pyrene 0.007+0.012 | 0.04 | 103.4 0.739 0.082+ 0.008 0.84 8.5 0.004 ND ND | ND ND
Benzo[g,h,i]perylene 0.016+0.005 | 0.18 | 43.0 0.399 0.068+ 0.006 096 | 10.3 0.000 0.039+0.003 | 0.77 | 18.0 0.010
C1-276 0.111+0.008 | 0.53 | 6.2 0.101 0.166+ 0.020 0.98 4.2 0.000 0.038+0.020 | 0.10 | 18.3 0.549
Dibenz[a,h]anthracene ND ND | ND ND 0.108+ 0.012 0.88 6.4 0.062 ND ND | ND ND
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