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Abstract

This thesis identifies four novel techniques of improving plerformance of sentiment analysis of
text systems. Thes include feature extraction and sefectiarichment of the document represen-
tation and exploitation of the ordinal structure of ratingsses. The technigues were evaluated
on four sentiment-rich corpora, using two well-known cifisss: Support Vector Machines and
Naive Bayes.

This thesis proposes the Part-of-Speech Pattern Seld2®8)( which is a novel technique
for automatically selecting Part-of-Speech (PoS) patterfhe PPS selects its patterns from a
background dataset by use of a number of measures includingrident Frequency, Information
Gain, and the Chi-Squared Score. Extensive empirical teeshbw that these patterns perform
just as well as the manually selected ones. This has imgartgatications in terms of both the
cost and the time spent in manual pattern construction.

The position of a phrase within a document is shown to havenfimeince on its sentiment
orientation, and that document classification performararebe improved by weighting phrases
in this regard. It is, however, also shown to be necessargrigpke the distribution of sentiment
rich phrases within documents of a given domain prior to édgm phrase weighting criteria.

A key factor in choosing a classifier for an Ordinal Sentim@latssification (OSC) problem is
its ability to address ordinal inter-class similaritiesvoltypes of classifiers are investigated: Those
that can inherently solve multi-class problems, and thbae decompose a multi-class problem
into a sequence of binary problems. Empirical results skiave former to be more effective with
regard to both mean squared error and classification tinferpginces.

Important features in an OSC problem are shown to distriliéenselves across similar
classes. Most feature selection techniques are ignorantesfclass similarities and hence eas-
ily overlook such features. The Ordinal Smoothing Proced@SP), which augments inter-class
similarities into the feature selection process, is intit in this thesis. Empirical results show

the OSP to have a positive effect on mean squared error peafae.
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Chapter 1

Introduction

The simplicity of Internet publishing has resulted in usgostings up their thoughts and senti-
ments in a variety of different forms with incredible pratdicy. Furthermore, much of these post-
ings remain largely unmonitored. Blogs (short for web-)odsr instance, are particularly rich
in sentiment and are now published by millions of web-users daily basis. This has led them
to be considered as the latest form of self expression, aaceitident from their ever increasing
mass that they are changing the face of the web. MessagestmaddNewsgroups have also been
used to post comments on various issues and it is possibladio $pecific threads of discussion
for over several months. There also exists a number of apsites such as Epinions.com, Planet-
Feedback.com, and Rateitall.com which focus solely inectihg both professional and amateur
reviews on numerous issues ranging from basic home-warerpo@te level systems.

Aside from adding to the mass of sentiments already presetiteoweb, there have also been
a few attempts to mine these opinion rich resources as waelt. irfflStance, companies such as
BuzzMetrics.com offer the service of tracking web-user®wiitiate trends among thousands of
consumers online. This clearly has a great potential in tvdaof advertising. There also exists
specialised search engines such as BlogPulse.com, Tet¢hcmm, and BlogLines.com which
monitor and index blog posts on a daily basis. This enablessus search and tune into the latest
buzZ within the blogosphefe Furthermore, aside from the basic search, there alscsexista
analysis tools such as the “Trend Search” by BlogPulse.cbinhaallows users to create graphs

that visually track the online buzz over time. One can, fatance, compare the online buzz

LAn interesting discussion shared by many.
2A term that encompasses all blogs on the Internet.
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between “Hillary” and “Obama.” A hoard of other similar ogpn mining functionalities can also

be found on the web.

1.1 The Challenges of Sentiment Analysis

It is interesting to note that, although many of the previpdsscussed systems seem adequate for
opinion based search, a closer look would reveal that the ¢fpsearch they conduct is geared
towards miningtopic rather thansentiment For instance, when queried with the search term
“Tea,” three of the top ten posts returned by a popular opisearch engine were entitled: “The
History of Tea,” “A History of the Nations Favourite Beverggand “How White Tea Is Graded.”
Notice that these posts are likely to have tea as their tagter than as their main sentiment
focus. Ideally, the list should have contained titles sush“a Just Love Lebanese Tea,” or ‘I
Cannot Stand Milk Tea.” Another illustration of where thessstems deviate is in their type of
results. Most of the time, they return only one ranked lifitneg to the most relevant documents
to the query. This is not ideal for a sentiment oriented $edrecause sentiment is not based on
relevance but rather on polarity, i.e. how positive or niggathe documents are with respect to
the query. Consequently, a better option would be to retitheretwo ranked lists, positive and
negative, or offer the option of reversing a single bi-pdikst

The problems mentioned above are most likely due to thetdimgaortation of standard search
technology into solving Sentiment Analysis of Text (SAoTdlplems. They highlight at least two
of the many issues that differentiate SAoT from other clpselated disciplines, i.e. the difference
between a “Sentiment and a Topic,” and between “Polarity@ridogonality.”

In order to understand how to best address the challengesdrly SAOT, it is necessary to
first take a closer look at what it actually entails. It thercdoees possible to borrow ideas from

other related disciplines or develop new SAoT solutionsifseratch.

1.2 Sentiment Analysis of Text

SAOQT is a research area that generally aims to determineptiméon expressed within a given
text. Amongst some of the relevant areas that it covers aterdld_anguage Processing (NLP),

Information Retrieval (IR) and Text Classification. Eachtloése disciplines have an important
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significance to SA0T and the following sections provide &baverview of how they integrate

into the field.

1.2.1 Natural Language Processing

A sentiment has the interesting characteristic of beingeatioassociated with certain Part-of-
Speech (PoS) patterns. For instance, a PoS pattern cogtaini adjective followed by a noun
is almost always an indicator of a sentiment rich phrase, édishonest man,” “rude child,”
or “generous host.” It consequently follows that SAoT wobkl closely related to some of the
techniques developed in NLP such as PoS tagging which igtieegs of marking up words within
a given text as corresponding to a particular PoS. A standafitagset can consist of in excess
of a hundred PoS tags, which in turn means that several eliffezombinations of PoS patterns
are possible. The work done by Turney [2002] explores theafigeoS patterns in extracting
sentiment rich phrases. He, however, only uses a set of fimeiatig designed patterns, which is
a small number compared to the various combinations thgi@sgible. Nonetheless, his patterns
were carefully crafted, and previous studies have founthttefair well against automatically

generated patterns of greater number [see Mukras et alfa200

1.2.2 Information Retrieval

IR Technology [Rijsbergen, 1979] has also had a signifiaapeict on SAOT research. Itis centred
around the problem of identifying a set of documents, fronolagst a larger collection, which
are most relevant to a given query. IR has had its greatestdirgn the web in the form of
search engines such as Google, Yahoo, or AltaVista. Theriapoe of IR to SAoOT research is
mainly due to the fact that online information defines themsaiurce of sentiment rich text. This
is evident from web applications such as Blogs, NewsgroBp#ietin Boards, Web-diaries and
Review portals which all contain an abundance of sentimehtinformation. In addition to this,
the opinions expressed in such web applications are oftesyic” with current affairs, and this
factor makes them quite useful to industries such as pglitiarketing, or the media where direct
user feedback is an invaluable resource. Such are the $dmbind the motivation that drives the
development of IR systems for SAOT problems.

However, despite the advancements in IR Technology, thewa®rity of sentiment rich text
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on the web still remains hardly searchable. There are a nuoflfactors that can be attributed
to this, most of which revolve around the complex issue oelrance.” As was specified earlier,
most IR systems are designed with the main objective of findmcuments that are deemed to be
“relevant” to a users query. However, the precise metriet#ance is open to discussion. Up to
recent times more emphasis was given to the presence orcalsighe query terms in a document
rather than on the linguistic structures that the query $eemided in. The implication of this is that
standard IR systems became ill-equipped to decode langaigtructs, such as sentiment, which
require alternative methodologies in order to be manitestépon realising this, the IR research
community decided to take a number of measures to bridgeRHe-EA0T gap. Amongst the
main ones was the initiation of the Blog Track into the TextriRgal Conference (TREC) of
2006, which has now carried on to 2007 and 2008. The trackrhdgionally maintained the
opinion retrieval task which involves the retrieval of dowents that are opinionated about 50
predefined topics. The documents are retrieved from the FBRIBG collection which consists
of over 3,000,000 blog posts [see Macdonald and Ounis, 20P6}gress in this area has been
understandably minimal. Nonetheless, the competing sys&eem to improve with successive

conferences and the future could hold promising results.

1.2.3 Text Classification

Text Classification involves the task of automatically siBsng a set of documents into a set of
predefined classes. This is mostly done using Supervisedhibga which is a technique based
on Machine Learning Technology [Mitchell, 1997]. In the t®xt of SA0OT, a supervised learning
algorithm would be trained on a set of sentiment classifigititng documents. The documents are
typically represented as vectors that lie within a spaceselitimensions correspond to a sub-set of
selected featurédrom the original training documents. Once training is ctets the algorithm
would then be expected to correctly predict the class of giqusly unseen test document that
follows the same document-to-label distribution as thiming set.

One of the major differences between standard SAo0T and l@ssitication is that the former
normally consists of problems with ordinal classes, whetbase of the latter type are largely
orthogonal. A problem is said to be ordinal if the similatitgtween any two of its classes decays

with the linear distance between them. Such problems aeereef to here as Ordinal Sentiment

3A feature refers to either one word or a group of words.
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Objective 3 Objective 4
Objective 1 (datasets) Objective 2 (PPS) Objective 5 (OSP) (positional info) (OSC)

| |
i ' i

|

|

| Textual . . L

Text Dataset = . —=| Representation [—= Selection = Classification
Pre-Processing

Identification of
Document Polarity

|
|
|
|
|
|
|
|
|
Identification of Word Polarity |
|
I

Figure 1.1: The Objectives within a Typical SA0T Researdmniework

Classification (OSC) problems. As for an orthogonal problémclasses bear equal inter-class
similarities and thus have no explicit ordering. Most tebdssification problems are orthogo-
nal, and hence most of the methodologies designed for thertypgically ignorant of inter-class

similarities. A number of studies have illustrated thanffigant gains can be yielded by tak-
ing inter-class similarities into account in both featuegestion [Mukras et al., 2007b] and OSC

[Frank and Hall, 2001]. This is therefore one of the avenbasthis research aims to explore.

1.3 Objectives of this Research

Despite the fact that active SAoT research only commencéudmthe current decade, a consid-
erable amount of ground has been covered. There now exist$eyvof sub-problems in SAOT,
as opposed to the mid 90's where most studies were based dictprg either the orientation of
adjectives or the subjectivity of text [HatzivassiloglondaMcKeown, 1993 1997; Wiebe, 1994,
Wiebe et al., 1999]. Nonetheless, much work still lies aresadur understanding of how to solve
these newly unearthed problems is still quite limited.

Figure 1.1 provides a generic overview of a typical SAo0T aese framework. It also high-
lights the areas that are addressed by the objectives ofetbésirch. The first step is to obtain a
textual dataset with the correct properties (e.g. contaidsal classes). This dataset is then pre-
processed prior to mapping it onto a suitable representakeature selection is then performed,
after which the text is finally classified. Steps 2, 3, and Zegalty aim at identifying the polarity
of words (or features), whereas step 5 aims at identifyingudeent polarity. Having discussed
the general SAOT research framework, the following are thelgjectives that will be addressed

in this thesis:

1. To compile two ordinal SA0T datasets from the real-worldhere are currently very few

ordinal SAoT datasets reported in the literature (only onevkby Pang and Lee [2005]).
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It is thus important to provide supplementary datasets whihtsupport the experimental

findings of this research.

2. To research on a new technique of automatically selectirfg [patterns to be used for ex-
tracting sentiment rich text from test documernit$ie aim of this is to overcome the need

for manual generation of PoS patterns.

3. Toinvestigate the possible approaches of weighting theiitapce of a phrase with respect
its position within a documeniThe hypothesis here is that different regions of a document
contain different levels of sentiment. The goal is thus tplex these differences by use of

a weighting scheme.

4. To perform a comparative study of multi-class classificatiechniques as applied to OSC
problems. To also introduce and compare a new techniqu@gsardesigned for OS®iost
studies on OSC have only adopted a small subset of the ppssiliti-class classifiers. This
research aims to perform a more extensive study of the \vampwossibilities, which also

includes a new technique that is purpose designed for OSC.

5. To implement a novel strategy for selecting features fron® @®blems: OSC problems
posses ordinal inter-class similarities and most featelexton techniques are not designed

to accommodate this.

6. To evaluate the methodologies mentioned in objectives Phts involves a thorough em-

pirical evaluation.

A secondary objective of this research is to develop an ©piRetrieval System that will com-
pete in the Blog Track of the Text Retrieval Conference. Nui@ever that the demands of this
conference are more inclined towards competitive perfocearather than research excellence,

and hence this objective is mentioned separately from tte re

1.4 Overview of the Thesis

The next chapter presents a survey of SAOT in light of theatlves that will be addressed in this

research. Chapter 3 then presents the methodological irarkeof the experiments that are to
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be conducted in the research. It describes the dataseisaltpxe-processing techniques, feature
selection heuristics, classifiers, and performance meagshat were employed.

Chapter 4 discusses a technique that automatically gesdpaiS patterns for extracting senti-
ment rich phrases from a test document. The objective heéosoler a less expensive alternative
to manual pattern construction. Chapter 5 then looks at hevphrases that have been extracted
by the patterns can be weighted with respect to their locatithin the document.

Chapter 6 discusses various multi-class classificatidmigoes as applied to OSC problems.
The chapter also introduces the Binary Search Approach {B®&¥ch is a technique that is pur-
pose designed for OSC problems. The BSA recursively spiggraining set of an OSC problem
into equally sized halves, hence enabling it to maintainotfiginal linear ordering at each recur-
sion level. This aspect is immensely important when sol®&C problems.

Chapter 7 presents a new strategy for selecting feature83&@ problems. The chapter first
highlights the inability of standard feature selectionht@ques to utilise the ordinal information
within OSC problems. It then goes on to discuss the Ordinad@hing Procedure (OSP) which
tackles this problem explicating ordinal information, bemaking it possible for standard feature
selection techniques to efficiently handle OSC problems.

All the methodologies presented in Chapter 4, 5, 6, and haredvaluated in Chapter 8. Note
also that an account of the system that was developed for piredd Retrieval Task in the Blog
Track of the 2007 TREC is presented in the General Appendie tliesis is finally concluded in

Chapter 9 with a discussion on contributions and futurectives.



Chapter 2

Literature Survey

The aim of this chapter is to present a brief literature spofethe domain and its potential for
future scientific research. In addition to this, it also ssrthe purpose of introducing some of the
concepts that underpin the studies in this research.

The most fundamental question in SA0T is “How to classifysbatiment of a document?” At
the onset, the most basic algorithm that one would desigertopn this task would probably be
to count the number of positive and negative words that anéagwed within the text. A decision
as to whether the overall text portrays a positive or a negagntiment would then be made based
on the resulting majority. This basic strategy shall berrefto here as the “Naive Majority
algorithm.” Although this technique would probably be oslightly better than a random choice
baseline of 50%, at least two important questions arise itersimple architecture: How would
the sentiment polarity of (a) the words, and (b) the entireudeent be identified?

These two questions about the Naive Majority algorithncéosely linked to the problems that
are addressed in this research. Consequently, a signipeainthis chapter is aimed at reviewing
the manner in which previous studies have attempted to pteghto answer these questions. The

chapter also at highlights some of possible avenues fordwtork.

2.1 Identifying the Polarity of a Word

Although identifying the sentiment polarity of a word migggem straight forward to the human
mind, automating the process might not be quite as simpleetteless, there have been a num-

ber of studies that have attempted to address this problémanieasonable degree of success.
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The Literature reveals that these studies can roughly hdeathinto two main camps: Those that
employ either un-supervised [e.g. Hatzivassiloglou andKétwvn, 1997; Turney, 2002] or super-
vised [e.g. Pang et al., 2002] learning algorithms to idegnitie polarity of words. The main factor
that distinguishes these two groups is that only the la@isrdtcess to training examples that have
been labelled with respect to sentiment. Although thesellkedh examples give an advantage to
supervised algorithms, un-supervised ones have also hgenayccessful and are essential in

situations where the training examples lack sentimentidabe

2.1.1 Un-Supervised Approaches

Most un-supervised approaches to identifying the polartg word are based on Part-of-Speech
(PoS) pattern filtering [Justeson and Katz, 1995]. This isnpke but yet powerful technique that
was adopted from NLP. A precursor to PoS pattern filterindpas the words in the text to be fil-
tered need to be assigned with their corresponding PoSRagstagging, also called grammatical
tagging, is the process of marking up the words in a text aeesponding to a particular PoS,
based on both definition as well as context, i.e. its relatignwith adjacent and related words in
a phrase, sentence, or paragraph. PoS tagging was oncenpeifoy hand, but is now done in
the context of computational linguistics, using algorithwhich associate discrete terms, as well
as hidden PoS, in accordance with a set of descriptive tags.

Once the input text has been tagged, a PoS pattern can thesetigasfilter out words or
phrases that have certain properties. For example, a P¢Srpatich asJJ CC JJ” can be
used to identify opinionated phrases such as “strong atabtel which consist of an adjective
JJ a conjunctionCCand another adjective. Most of the studies described irsttion are based

on a similar kind of framework.

Conjunctions Constrain Sentiment Orientation

One possible approach to identifying the polarity of a worould be to create an exhaustive
reference table that contains all possible positive andthegwords. Such an enormous task could
be simplified by noting that adjectives tend to be the main@of sentiment rich words. This

would therefore reduce the problem to one of identifyinggletiment orientation of adjectives.
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Hatzivassiloglou and McKeown [1997] were amongst the estrlpioneers in automating the
prediction of the orientation of adjectives. They identdfeenumber of useful heuristics that could
aid in the task. For instance they showed that conjunctioich &s “and” and “or” almost al-
ways constrain the orientations of the two adjectives thaynect to be the same. The situation
is however reversed for the conjunction “but,” which usyi@bnnects two adjectives of differ-
ent orientation. These points are illustrated by the thiessiple completions of the following

sentence:
The tax proposal was

simpleandwell-received
simplistic but well-received
simplisticandwell-received

by the public

Note that the third completion is ambiguous as the two adgst'simplistic” and “well-received”
posses opposite sentiment orientations.

Hatzivassiloglou and McKeown [1997] utilised this infortioa to develop an algorithm for
identifying the orientation of adjectives. Firstly, thegatithm extracts all conjunctions of ad-
jectives from the given corpus. Information from differexnjunctions is then combined to de-
termine whether each two connected adjectives are of the sardifferent orientations. The
resulting information is then mapped onto a graph whose s\oejgresent adjectives, and whose
links represent the difference in orientation between thjedives. A clustering algorithm is then
used to separate the adjectives into two clusters of diffepeentation. This is done by trying
to place as many adjectives of the same orientation as pes#sib the same cluster. Finally, the
cluster with the highest average frequency of adjectivéisas labelled as positive. This labelling
follows from a heuristic that was derived in the same papad, [zased on at least two previous
studies [Hatzivassiloglou and McKeown, 1995; Lehrer, 198his algorithm proved to be quite
effective in classifying adjectives, yielding accuraaiasging from 78% to 92% depending on the

amount of available training data.

Using IR to Identify the Orientation of Phrases

Although Hatzivassiloglou and McKeown [1997] fully attaoh their objective of predicting the

orientation of adjectives, more information would still teguired in order to serve the current
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purpose of predicting the orientation of the larger encaaipey text. One problem in particular
is that although an adjective almost always expresses aioopit also has the potential of being
quite misleading if interpreted in isolation. For instanttee adjective “unpredictable” has a neg-
ative orientation in the context of “unpredictable stegfirt is however positive in the context of

“unpredictable plot” [Turney, 2002].

Envisaging this problem, Turney [2002] developed the PRilalgorithm which takes into
account the context of a word. Hence, rather than computiegtientation of a single adjective,
it would compute the orientation of a bi-graraontaining two words where one would either
be an adjective or an adverb, and the other would provideegtntThe PMI-IR algorithm is
based on both Pointwise Mutual Information (PMI) [Churchl &tanks, 1990] and Information
Retrieval (IR) [Rijsbergen, 1979]. It compares the co-oence between the selected bi-gram
and two manually predefined sets of oppositely oriented sudrdTurney’s study, the positive set
contained the word “excellent” whereas the negative onéatoed the word “poor.” If the bi-gram
was found to co-occur more frequently with the positive gen it would be classed as positive;
otherwise it would be negative. The co-occurrence betwherbi-gram and the two sets was
estimated over the World Wide Web via the AltaVista advansearch engirfe Turney [2002]
chose this search engine because oh#éar operator which constrains the search to documents
that contain the query terms within a distance of 10 wordsthreedirection of each other. This
technique has been shown to be more effective thansthd™ operator which simply retrieves all

documents containing the query terms [see Turney, 2001].

Possibilities for Future Work

Although the PMI-IR algorithm provided context to isolatadjectives, one aspect that Turney
[2002] overlooked was that it may be beneficial to retain asiesome of the adjectives in their
initial context-free form. A good example of this is whendtiPerson Narratives, such as the
adjective “undesirable” in the extract “When asked aboatttip he said it was “Undesirable.”.”
Note here that Turney’s PoS filters would overlook this jgattr adjective. Turney [2002] also did
not consider the possibility of retaining tri-grams such\asy fast car.” Retaining such entities

offers the flexibility of estimating the overall orientati@f the text from three different sources,

Two consecutive words.
2http:/iwww.altavista.com/sites/search/adv
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i.e. uni-grams, bi-grams, and tri-grams. Another aspecthwoting is that the PoS patterns that
Turney employed were manually crafted. This can be an eslpedifficult task [see Jackson and
Moulinier, 2002;Section 4.2], and a possible alternativeld be to automate the process. These
highlighted issues have the potential of improving senmtin@assification performance and are
amongst some of the avenues that shall be explored intoegrdetail during the course of this

research.

2.1.2 Supervised Approaches

One common property of the previously discussed algoritlentkat they were not designed to
utilise examples that have been labelled with respect tinsent. They are, therefore, classed as
un-supervised techniques that are employed in the eventhbdraining documents lack senti-
ment labels. However, with the availability of labelled dotents, it becomes possible to employ
supervised machine learning techniques to perform the saske Although this additional infor-
mation enables supervised techniques to generally ootperin-supervised ones, one weakness
with them is that they are typically based on non-linguigtimciples. They, therefore, do not pro-
vide any explicit linguistic explanations as to why the weond phrases that they retrieve should
be considered as being rich in sentiment. Any answers wardchally have to be interpreted ei-
ther from a statistical standpoint, or through manuallgitrg back the words and phrases to their
original contexts within the text. Nonetheless, the answkat one finds are often justified and

this makes it typically worthwhile to employ supervisedheitjues wherever possible.

Using Frequency to Identify Word Polarity

Amongst the first landmark studies on supervised technigu88oT research was the work done
by Pang et al. [2002]. In this study Pang et al. [2002] classifhe sentiments in movie reviews by
employing supervised techniques to first identify the ptlaf the words within the reviews, and
then classify the reviews themselves. As a preliminary sigpstify the need for supervised tech-
niques, Pang et al. [2002] performed a small experiment @ldyethey compared the performance
of two graduate students against that of a supervised wgeéniThe students were independently
asked to choose indicator words for positive and negatiagraents in movie reviews. Their re-

sponses were then used to develop decision functionsasitaithe Naive Majority algorithm, that
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Un-Supervised Supervised
Student A Student B Stats + Introspection
positive: negative: | positive: negative: positive: negative:
gripping bad dazzling suck love bad
mesmerising cliched | brilliant terrible wonderful  worst
riveting sucks phenomenal awful best stupid
spectacular  boring | excellent unwatchable great waste
cool stupid fantastic hideous superb boring
Words awesome slow still ?
thrilling beautiful !
badass
excellent
moving
exciting
Accuracy 64% 58% 69%
Ties 39% 75% 16%

Table 2.1: Comparison of Supervised and Un-Supervisednigegbs [Pang et al., 2002]

would essentially count the number of proposed positive resghitive words within a given test
document and classify it according to the majority. On theeohand, the supervised technique
gathered its list of positive and negative words based ajugrcy counts performed over a set of
positive and negative training documents respectivelye fvo resultant lists were then trimmed
and refined by introspection, after which they were fed ih®$ame decision functions as those
of the graduate students in order to compare the perforrsance

Table 2.1 illustrates the various word lists and their respe performance outcomes. Note
that the supervised technique yielded the highest accuw@bythe fewest ties. In addition to
this, some of the items in its list such as “?” or “still” do n@adily spring to mind as being
rich in sentiment. Although by tracing them back to theitialicontexts, one sees their merit:
The question mark tends to occur in sentences like “What taglirector thinking?” whereas
“still” appears in sentences like “Still, though, it was woseeing.” Pang et al. [2002] concluded
from these preliminary experiments that it was worthwhdeekplore supervised corpus-based
techniques to identify the polarity of words and to perfoentiment classification in general.

After having established the need for supervised techsigBang et al. [2002] proceeded
to perform their study on a corpus of 700 positive and 700 taganovie review documents.
They investigated various different techniques of idgimij the polarity of a word some of which
may not be entirely relevant to the current context. Howegae common aspect about these

techniques is that they were all based on the hypothesisitaatost frequent word in a sentiment
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B good
[ ] superb {

Word Frequency

T
positive class negative class

Figure 2.1: The Problem with the Frequency Hypothesis

rich corpus, after stop-words, should also be the richesemiment. That is to say that a word
would be labelled as positive if it occurred more frequeintlypositive reviews, and negative if it

was more commaon in negative reviews.

Using Information Theory to Identify Word Polarity

Although the Frequency hypothesis is sufficient in casesevindrds are relatively uni-polar, it
breaks down in scenarios where words occur frequently ih positive and negative reviews. To
illustrate this problem more clearly, consider the grapRigure 2.1 which shows the distribution
of the words “good” and “superb” across a positive and a megjatass. The word “good” occurs
more frequently in the positive class and hence the frequbgpothesis would rank it as being
more positive than the word “superb.” Note, however, thatddj’ also occurs frequently in the
negative class unlike “superb” which is almost absent hEnés clearly makes “superb” the more
positive word of the two but the frequency hypothesis is lm#dmake this distinction. A solution
to this problem requires a technique that not only checksateesat which a word occurs in a given
class, but also the rate at which it is absenttimer classes.

A good candidate solution to this problem is the Informati@ain (IG) measure [Cover and
Thomas, 1991]. IG is a measure that is based on Entropy, whiblasically a metric of how

surprising an entity is within its environment. For instance, an entiitjt occupies 98% of its
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environment is not as surprising as the one that occupiesethaining 2%. This is because the
former entity is common whereas the latter one is rare. &igjlthe word “good” in Figure 2.1

occurs frequently in both classes and hence is relatively $arprising to observe than the word
“superb.” IG is particularly good at identifying such andiea and would immediately rank the

word “superb” as being more positive than the word “gooddded several previous studies, both
in Sentiment Analysis and Text Classification in generabf&tiani, 2002; Yang and Pedersen,
1997; Mukras, 2004], have considered IG to be represeatafithe current state-of-the-art in the

field of feature selection.

Possibilities for Future Work

Despite the elegant manner in which 1G selects featuress 8idl exist a number of SAOT prob-
lems that still pose a real challenge to it. One such exansgleesi task of selecting features from
a SAoT problem with ordinal classes. The difficulty in accdistpng this task is that IG, as with
most feature selection heuristics, is based on the assumibtat all pairs of classes are equally
similar. This is however not true with an ordinal SAo0T prohlein that the similarity between
any pair of its classes is a function of the ordinal distane®vben them. For instance, a textual
review accompanied by a rating of 1 (on a 10 point scale) i®ebgul to be more similar to one
rated at 2 than another at 10. This consequently means thaiportant feature in an ordinal
SAOT problem is one that is distributed across similar @as$/ost feature selection techniques,
including IG, cannot easily detect such features pringigduie to their assumption that all classes
are equally similar. Under this assumption, features thatioin similar classes are considered to
have an equal importance to those that occur in dissimilas,oand hence the most appropriate
features could easily be overlooked.
One of the main objectives of this research is to develop atisal that will enable IG, and

other similar feature selection heuristics, to overcongeassumption of equal inter-class similar-

ities.

2.2 Identifying the Polarity of a Document

As with identifying the polarity of a word, the techniqueddentify the polarity of a document are

also divided into two groups, i.e. un-supervised and supedv Note, however, that the majority
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of the methods in this area are of the latter kind. This owemim#o the relative simplicity in

assigning a sentiment label to an entire document as opposaloelling its individual words.

2.2.1 Un-supervised Approaches

According to the Naive Majority algorithm, the polarity afdocument would equate to the sum
of the polarities of its individual words. This is probablgnangst the first options that one would
consider if faced with an un-supervised sentiment clasgifio problem. Indeed, as previously
mentioned, Turney [2002] adopts this procedure by summnipe semantic orientations of indi-
vidual phrases in order to obtain that of the whole documidntvever, in his conclusion, Turney
[2002] also stated that one main drawback with this appraatiat “the whole is not necessarily
the sum of the parts.” This becomes evident if, for instaacdpcument is excessively sarcastic
hence resulting in an overall positive aggregate, whilesadity the document should actually be

negative.

Exploiting Positional Information

One possible option for avoiding problems such as sarcasmegploit the positional informa-
tion of the phrases within the document. In a previous sthdy ¢mployed supervised learning
techniques, Pang and Lee [2004] observed that the end sestaiithin a movie review yielded
a higher performance accuracy than those at the front. Adthd?ang and Lee [2004] also found
that the full review yielded the best overall performandmirt study revealed the important fact
that the underlying sentiment of a document is not evenlgagbralong its text. This informa-
tion could have the potential of improving the performanteresupervised learning techniques
such as Turney’s PMI-IR algorithm in that different weightsild be assigned to the polarity of a
phrase depending on its position within the text. For insgagiven the observation by Pang and
Lee [2004], one could assign a higher weight to phrases ttaitron the rear part a document as
they would posses a better description of the overall semimNote, however, that this weight
assignment procedure must be performed with care becatifi@saesearch will later show, not
all domains can be treated in the same way. It may be necesséirgt manually label a sam-
ple of the documents in the domain and then use supervishditges, similar to Pang and Lee

[2004], to decide on the weighting criteria. This procedigramongst one the studies that will be
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investigated in greater detail during the course of thisaesh.

2.2.2 Supervised Approaches

Supervised Learning techniques have been quite succes$S@oT research. This owes mainly
to the availability of training documents, labelled witlspect to sentiment, which is a precursor to
employing these techniques. Most supervised learninghigabs are based on the Vector Space
Model [Salton et al., 1975] which is a technique for repréisgntext documents as vectors. Each
dimension of a document vector corresponds to a separdtededf a feature occurs times in

the document, then its value in the vectorisA collection of such vectors is known as a term-
document matrix whose rows and columns conventionallyesgrt documents and terms (i.e.
features) respectively. It is important to note that therinagpresents a feature space, and that the
vectors of each class tend to reside within separate regidinés space. The task of a supervised
learning algorithm would then be to identify the boundadéthese regions by learning them from
a sample of the document vectors. This sample is what cotestithe training documents. Once
the boundaries are identified, the supervised learningitigo is said to be trained, and would
then be expected to correctly classify the labels of preshiounseen documents to a reasonable

degree of accuracy.

Ordinal Sentiment Classification

In this research, supervised learning techniques are ynaggd to solve SA0T problems with
ordinal classes, commonly referred to here as Ordinal ®enti Classification (OSC) problems.
Such problems possess two important characteristics:H@y @re multi-class in nature with three
or more classes, and (2) Their classes exhibit similaritieé decay with the ordinal distance
between them. Some classifiers can inherently solve prableith multiple classes such as OSC,
while others can only solve two-class problems. Consetydot the latter type of classifiers, an
alternative technique is to decompose a multi-class pnolii¢o a collection of binary ones.

The Literature suggests that OSC has been a relatively loredpresearch area. This owes
mainly to the relative youth of SAOT in general. As a resultttus, there is a general lack of
clarity on which classifiers are best for OSC problems. Nuogless, there are a number of notable

pioneering studies that have looked into certain aspedtsegbroblem. The work by Koppel and
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Schler [2006], for instance, was quite fundamental in thating the need for specialised classifiers
to tackle OSC problems. Their basic argument was that mestireh on Sentiment Analysis, at
the time, often ignored “neutral” examples, and only foclisa examples of significant polarity,
i.e. positive or negative. To prove that neutral examplesevimportant, they performed OSC
on three ordinal datasets using a classifier that treatsl#éisses as unordered, and another that
respects class ordering. Their results clearly showed arowvement in classifiers that respected
class ordering over those that did not.

The study by Pang and Lee [2005] was also based on a similamarg as that of Koppel
and Schler [2006]. They, however, went a step further andqeed a purpose designed algorithm
called metric labelling. Metric labelling is a meta-cld&sithat is used in conjunction with a base
classifier. Given ann class problem, metric labelling basically maps both thaliptens of a
classifier, and the similarities between the classified o@mnis onto a graph. It then uses graph
theory to partition the graph inta parts and thereby relabelling the documents. In a sensecmet
labelling can be thought of as penalising the base clasifi@ssigning divergent labels to similar
documents.

Pang and Lee [2005] evaluated the metric labelling systencdmgparing its performance
against that of its base classifiers. Their results wereequteresting in that, in half of their
experiments, the metric labelling system was unable toreehthe performance of the Regression
based Support Vector Machine (SVM-reg) base classifies fi&s important implications because
SVM-reg is more suitable for regression rather than clasditin. Nonetheless, the nature of OSC
problems is that they posses an ordering similar to thatgression and this makes it possible for
one to treat them as regression problems as well. Unexpebttvations, such as that made by
Pang and Lee [2005], offer interesting insights on the bssilassifiers for OSC. There is still
very little literature on the most effective systems for Q&@d hence one of the objectives of this

research is to investigate a variety of classification tepies as applied to OSC problems.

2.3 Summary

This chapter presents a survey of SA0T in light of the stuthias are conducted in this research.
It identifies a number of techniques that exploit linguigtioperties to identify the orientation

of words. However, one aspect about many of these systerhatishie linguistic rules that they
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employ are normally hand crafted. This makes it difficult tieem to adapt to changing environ-
ments without human intervention, which is a setback in seofrboth time and cost. The chapter
also identifies a number of feature selection techniquels asdG and Feature frequency. It also
highlights their weakness with regard to their ignorancéntdr-class similarities, such as those
exhibited in OSC problems. Overcoming these limitationsstitutes a key motivation of this
thesis.

A number of document classification techniques were alskeld@t including the aggregation
of individual word polarities, and the use of standard tdassifiers. Again, as with the feature
selection techniques, a number document classifiers aveigaisrant of inter-class similarities
which greatly disadvantages them when addressing OSCeaonsblPurpose designed classifiers
such as the metric labelling algorithm were also discusdeavas however noted that insuffi-
cient literature exists in this area which motivates a ferrttontribution of this thesis in terms of

providing a thorough evaluation of various classifiers orCOS



Chapter 3

Background

One distinct aspect about sentiment classification prablisrtheir apparent difficulty relative to
standard topic based classification problems. Pang et @02]2for instance found that, under
similar conditions of uni-grams features, standard teassifiers would perform “at best” 12%
lower on sentiment classification than on other topic basetllipms. A similar observation was
also made when Chakraborti et al. [2007] appl&arinkledLatent Semantic Indexing (LSI) to
hierarchical, orthogonal, and ordinal text classificatiwoblems. Their results clearly indicated
significantly lower performances on the ordinal problem,chihranslates to a special case of
sentiment classification with ordered classes. The minimpenfiormance disparity in this case
was about 20% accuracy. The argument Chakraborti et al7]2f#¥e for this was that the classes
were not neatly separable, partly because the ordinalenafuproblem inherently results in the
use of different ratings to express similar judgements.il&maiews on the difficulty of sentiment
classification problems have also been reported in theditex and the following list provides a
sample of these studies [see Turney, 2002; Mukras, 2004; &ahLee, 2005; Koppel and Schler,
2006; Mukras et al., 2007b].

The objective of this chapter is to establish a frameworkwhthenable this research to inves-
tigate the reasons behind this relative lacklustre perdmee on sentiment classification problems.
The chapter begins by discussing the datasets used thnauifearesearch. These include at least
six different corpora, two of which were custom-compiledtfids research. The chapter then goes
on to discuss four important issues, namely: (1) The defaxttial pre-processing procedure, (2)

feature selection heuristics, (3) classifiers, and (4)qoernce metrics.

20
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Type of | Name of | Total | Docs per Total | Mean Doc
Dataset | Dataset | Classes Class Tokens Length
Bi-Polar | Polarity 2 1000 702,189 351.095
Ordinal | Actors 5 500 61,713 24.685
Ordinal | Edmunds| 28 100 113,576 40.563
Ordinal | Scale 8 100 161,404 201.755
Neutral | Reuters 2 1000 158,412 79.206
Query | TrecBlog n/a n/a 1,707,345,106§ 537.728
Lexical | WordNet n/a n/a n/a n/a

Table 3.1: Information and Statistics about the Datasets

3.1 The Datasets

Table 3.1 summarises the datasets that were used in therchseMost of these datasets were
sourced primarily from online opinion portals such as blagd review sites. The reason for this
was that such domains are mainly authored by independeividodls who aim at expressing
their views to the world. Consequently, such sources aiiedifp representative of genuine public
opinions, in that they are not biased towards the benefit pfcampany or organisation. This

factor makes them an excellent resource for SAoT Research.

3.1.1 The Problem Datasets

In this research the problem datasets where either bi-polardinal in nature. A bi-polar dataset
is essentially composed of two classes: sentiment positicesentiment negative. On the other
hand, an ordinal dataset can contain three or more classesatige from an extreme positive, to
an extreme negative sentiment. The similarity between anyctasses of an ordinal dataset can
be inferred from the labels. For example, a textual reviegoamanied by a rating of 1 (on a 10
point scale) is expected to be more similar to one rated a2 dmother at 10.

It is important to note that both types of datasets are polaraiure, and that the main dif-
ference between them is that ordinal datasets contain onmer intermediate classes between
the two poles. It is therefore possible to create a bi-poaset from an ordinal one by simply
dropping the intermediate classes. This approach was ysktlikras et al. [2007a] and has also

been adopted here.
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The Polarity Dataset

This datasétwas compiled by Pang and Lee [2004] and was initially bi-pmianature. It is based

on the movie review domain and is composed of 1000 positidel@a0 negative movie reviews. It
was chosen here as it is amongst the most popular benchntadetafor SA0T research. Another
reason for choosing it is that movie reviews have been natdu: tamongst the most difficult of

several domains for sentiment classification [Turney, 2002

The Actors, Edmunds, and Scale Datasets

These datasets were initially ordinal in nature, and wespeaetively compiled by Chakraborti
et al. [2007], Mukras et al. [2007b], and Pang and Lee [20085fe that the Actors and Edmunds
datasets were compiled as part of this research.

The Actors dataset is based on reviews about actors angsetrrom the Rateitall.com opin-
ion website. It contains 2500 documents distributed egwationgst 5 ordinal classes. The class
labels range from 1 to 5, where 1 is the most negative classtesl 5 is the most positive. The
classes were designed such that the number of reviews traitthar can contribute to any one
class is limited to a maximum of 15. This was done to avoid thesjble bias of any prolific author
from dominating the corpus [a similar approach was used log Baal., 2002].

The Edmunds dataset is based on consumer reviews about asedvehicles from the Ed-
munds.com website. It contains 2800 documents distribetgehlly amongst 28 ordinal classes.
The class labels range from 1 to 28, where 1 is the most negeligs, whereas 28 is the most
positive.

The Scale dataset was initially based on 5006 movie reviaefs eontaining an ordinal class
label in the range of 0 to 10 (where 0 is the most negative classreas 10 is the most positive).
It was later reconfigured to suit the purpose of this reseascfollows. Firstly, the labels were
used to partition the reviews into 10 ordinal classes,{iCel, 2-3..., 9-10}. An equal class dis-
tribution was then obtained by randomly selecting 100 segigFom each class. The first and last
classes were then dropped as they lacked enough documéigded to a total of 800 documents
distributed equally amongst 8 ordinal classes.

The Actors and Edmunds datagetgere compiled specifically for this research whereas the

available at http://iwww.cs.cornell.edu/People/pabofimaeview-data/
2pvailable at http://www.comp.rgu.ac.uk/staff/ram/ddeads.html
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Scale dataset was obtained from literature.

3.1.2 The Support Datasets

The support datasets included the Neutral dataset (usedamral), the Query dataset (used as a
background corpus), and the Lexical dataset (used as ameefor lexical information on words).

These have been described as follows.

The Neutral Dataset

In this research, a Neutral dataset refers to one that isgothal and does not contain sentiment
rich information. Orthogonal datasets contain classeskibar no explicit relationships to each
other. For example, the topic “sports” can be considere@ twrthogonal to the topic “computers.”
It is worth noting that although bi-polar datasets contgpasitely oriented classes, they are not
orthogonal. This is because their polar nature means the¢ #xists a similarity between their
two classes, and the degree of this similarity decreasésthdtaverse in orientation between their
classes.

The Reuters dataset was the only Neutral corpus that wadmusigd research. It was formed
by randomly selecting 1000 documents from the ACQ and EARISsds of the Reuters-21578
corpus such that each document belongs to at most one class. The ACBARN classes are
orthogonal to each other and contain little, if any, sentitmech information and hence satisfy
the neutral dataset requirements. In addition to this, omtyclasses were chosen as the neutral

dataset is to be compared against the polarity dataset wagotas two classes (see Chapter 4).

The Query Dataset

The Trec Blog collection [Macdonald and Ounis, 2006] waslessethe Query dataset. Its purpose
was to act as a background corpus for making inferences akatitment related usages of given
words and phrases (see Chapter 4). It was compiled by thestsitiyy of Glasgow and the resultant
collection that was used here after pre-processing cada®175,111 blog posts. A blog post
refers to an entry into a personal site that archives thespasa reverse chronological order.

Blogs are typically rich in opinion as they are authored liiiduals who aim at expressing their

SAvailable at http://www.daviddlewis.com/resourcestteiections/reuters21578/
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raw input text

|

Tokenization |—| PoS Tagging |— Stemming =

Conversion to L Stop Word
a Consistent Case Filtering

l

processed output text

Figure 3.1: The Textual Pre-Processing Pipeline

opinions to the world. The Trec Blog collection was meantéaalrealistic 11 week snapshot of
the blogsphere (the collective term for all blogs). This ewk an excellent dataset for sentiment

related queries.

The Lexical Dataset

WordNet [Fellbaum, 1998] was used as the Lexical datasemérsense, WordNet can be thought
of as a thesaurus in that its building block is a synset (symoget) of all words that express a
given concept. It, however, goes further than this and liegsh word in a given synset to other
words by various relationships such as hyponymy, meronamgy,entailment.

In this research, one of the uses of WordNet was to expand aligrgenerated sets of words
that formsentiment conceptsFor instance, the set of wordsuperb, excellent, brilliahtform
a concept that describes a strongly positive sentiments 3éii can then be expanded by use of
WordNet's synset facility. The familiarity score, a WordiNeeasure of the popularity of a word,
can then be used to filter out set members that are eitheryhasdd or too common. WordNet
could also, in a similar fashion, be used to generate cdmmgasentiment concepts by use of the
antonym facility. This feature is particularly useful in-labelled sentiment analysis whereby

oppositely oriented sentiment concepts need to be gederate

3.2 Textual Pre-Processing

Effective text classification is to a degree predicated endirality of textual pre-processing that
has been applied. There are, however, no hard and fast tubes the best pre-processing steps
to follow. Each problem is potentially different and heneguires special treatment. Little work

has been done to investigate the best pre-processingsaaétir SAOT and this research aims to
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Stage Resultant Sentence
1 | Initial Sentence Smoking can lead to impotence.
2 | Tokenization Smoking can lead to impotence .
3 | PoS Tagging SmokingVVG canVM lead_ VVO0 to_Il impotenceNNL1 ._.
4 | Stemming SmokeVVG canVM lead_VVO to_ll impotenceNN1 ...
5 | Convert to single case smokeVVG canVM lead VVO to_Il impotenceNNL1 ._.
6 | Stop-Word Removal | smokeVVG lead VVO0 impotenceNN1

Figure 3.2: The Stages in Textual Pre-Processing

address this problem.

Textual pre-processing is typically performed in severgps as shown in Figure 3.1 and 3.2.
First, the raw input text is tokenised so as to divide it inégilb words/tokens. Second, the resultant
tokens are tagged with their respective PoS tags. This steprmally bypassed for most classi-
fication approaches that employ the vector space model. vwRang et al. [2002] noted that
the application of PoS tags could improve the average paeoce for at least the Naive Bayes
classifier, and as a consequence this study aims to inviestigia claim. Third, lemmatisation
which is also known as stemming is performed on the PoS tafggeas. Fourth, the tokens are
converted to a consisted case. This avoids the machine fistimglishing between tokens such
as “HERE" and “Here.” It is, however, possible that a sentilmaassifier may benefit from this
distinction in that the emphasis of capitalisation in a tokeich as “AWESOME,” as compared
to “awesome,” would be appreciated. Finally stop-word ffiiftg, which eliminates words that are
poor discriminators, is performed.

Each of the steps in Figure 3.1 was empirically evaluatetiénGeneral Appendix. The steps
that were chosen for this research are as follows: Tokeaizé always performed, PoS tagging
and Stemming are only performed when specified, Conversianconsistent case and stopword

removal are always performed.

3.3 Feature Selection

A major characteristic of Text classification problems is thigh dimensionality of the feature
space. A moderate sized collection can easily result intafeapace containing several thousands
of dimensions. This is prohibitively high for most machieaining algorithms. Feature Selection

therefore aims to reduce the original feature space witkacttificing classification accuracy.
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Although most feature selection techniques have been welies!, the sheer number of possi-
ble feature combinations for any given collection makebnitest impossible for anyone to conclu-
sively recommend the “best feature selection techniquer’tliis reason, it is preferable to view
to feature selection techniques as a heuristics ratherdlgmithms. Nonetheless, despite the
apparent equivocal nature of feature selection, there haga a number of authoritative studies
[e.g. Yang and Pedersen, 1997; Sebastiani, 2002; Formag] #tat have given useful guide-
lines on which heuristics to employ. The majority of theselsts seem to agree on a decreasing
performance trend starting from Information Gain (I&)Chi-Square Score (CHB» Document
Frequency (DF)}- Term Strength (TS). This research employs the first threbaedd, which are

described as follows.

Information Gain

Let f;. be an arbitrary feature in a training dataset whose docwsrastdivided inton mutually

exclusive classes, i.&C = {ci,...,c,}. Information Gain would then assign a scoreftoas
follows:
P(f,c)
IG = P(f,c)log ——— 3.1
(=3 X P9l g5 (3.1)

Here P(c), P(f), and P(f,c) are calculated by sums over all documents — tha?(g) is the
number of documents with classlivided by the total number of documenf3( f) is the number
of documents containing one or more occurences of feafudésided by the total number of
documents; and’(f, c) is the number of documents with class labehat also contain worgf.
IG can be thought of as a test of independence between ttablesf andc. This is evident from
the sum of logarithms in Equation 3.1 which would yield a eati zero if P(f,c) = P(f)P(c),
meaning thaif andc are independent, and a value greater than zero otherwiseseGaently, the

larger the value of G( fi); the more useful the featurg would be for classification.

The Chi-Squared Score

The Chi-Squared score is also a test of independence thggazemobserved frequencies against
the expected ones. In order to describe it in the contextatfife selection, assume that one wishes

to test the independence of featyfiewith respect to occurring in one of the classes contained
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cl Cm Total
jik P(]ik,cl) P(]ikacm)
fr | P(fr.c1) P(fi,cm)
Total > Pf.c)

Figure 3.3: A Contingency Table for an Class Problem

inthe setC = {c1,...,cm}.

In order to do this, one would first set up a null hypothesis #tates that the featurg; is
independent of all the: classes. The Chi-Squared Test would then be used to tebifashesis.
The contingency Table in Figure 3.3 illustrates the valbes would need to be calculated. Once

these values are at hand, the test of independence can tipenfbened by calculating:

=Y 3 [P(f.¢) = E(f,e) (3.2)
c€C fe{ fi.fi} Elf:0)
Where P(f,c) is the observed frequency aid f, ¢) is the expected frequency asserted by the
null hypothesis.E( f, c) is computed as the column total for clas$imes the row total for feature
f, divided by the grand totaI:ﬁc P(f,c). Equation 3.2 has a value of zerofif is independent
of them classes, and its value grows with the level of dependence.

The Chi-Squared statistic computed in Equation 3.2/has1 degrees of freedom (CHL ;).
The reason for this is that the degrees of freedom correspmitide number of total possible
outcomes (or classes in this case) minus 1. Note also tisahiso possible to work with 1 degree
of freedom (CHJ). In this case the Table in Figure 3.3 would be reduced ®>a2 Table.

Equation 3.2 would also be greatly simplified to the follogvilormulation:

N [P(fr, ) P(fi: ©) = P(f, )P (i, )]

2 c) = _k»E_
X i) P PP P) ’

cecC (3.3)

Note that, since the Equation 3.3 only has 1 degree of freedomould be necessary to calculate
the independence of featuyfg separately for alln classes. Thesa computations would then
have to be aggregated into one global score. It is commoriiggdo take either the average or
the maximum of this value these computations, and the latter technique was employed in this

research.
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Document Frequency

Finally, Document Frequency is the number of documentsimwitfhich the featuref, has been
observed. Assuming tha&( fy) is estimated by only recognising the presence of a fegtune a

document, DF would be computed as follows.

DF(fx) =N - P(f) (3.4)

Although DF is the simplest of the three techniques, stromgetations have been found be-
tween the features selected by DF and the other two techsjtfaeg and Pedersen, 1997]. This
therefore means that it can be reliably used instead of IGHIrwthen the computation of these
heuristics is too expensive.

Most of the studies in this research reduce the initial feaspace by 98% using Information
Gain. These two heuristics have been used in a number ofopiegitudies [Yang and Pedersen,

1997; Wiratunga et al., 2004] and are considered as goos ofiidlaumb.

3.4 The Classifiers

Active research in Sentiment Classification began arouadnid 90’s. During that time, the main
themes were related to the prediction of either the oriemtaif adjectives [Hatzivassiloglou and
McKeown, 1995 1997], or the subjectivity of text [Wiebe, #19Wiebe et al., 1999]. However,
it was not until its adoption of Text Classification techregun the late 90’s did the field start
gaining the popularity that it currently enjoys.

Text classification has been around for much longer and,rites@ferences, Sentiment Clas-
sification has been suggested as being one of its subsets ¢Pah, 2002]. Until the late 80’s the
most popular approach to Text Classification was to manwalite a query for each category of
interest. The query could then be used to guide a searchhandbtuments retrieved from the
search could then be classified to the corresponding categogood example of this architec-
ture is the Construe/TIS System which assigns zero or mbedddo stories for a Reuters news
database [Hayes and Weinstein, 1991]. The core of the progra set of concept rules that iden-
tify key concepts in the text and trigger the assignment tdgry labels. For example, in order

to classify into say the “Australian dollar” category, aalptactitioner would design concept rules
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that would identify: (a) clear references of “Australianlldn’ or (b) references to “Australian”
and “dollar” without confounding references to the “US ddllor the “Singapore dollar.”

Although such systems are typically quite effective, thevalside to them is the manual cost
involved in their development which is clearly evident witie 6.5 person years that it took to com-
plete the Construe/TIS system. With the advent of the 9@Bcept rule systems gradually gave
way to text classifiers that were based on Machine learnicignigues which were significantly
cheaper to deploy.

A machine learning text classifier essentially operatesdigdsupplied with a set of training
documents{z; } ¥, whose labelgy; }\¥, could either be available (a supervised problem) or un-
available (an un-supervised problems). The documentypieatly represented as a vector whose
components are features, such as words or phrases occurtimgtext. The training documents
typically follow some unknown distribution that mapsto y;, and the task of the machine is to
use the documents in orderl&arn this distribution. Having done so, the machine is then etquec
to correctly predict the label of an unseen test documentftiiaws a similar distribution as the
training examples.

In this research, two main machine learning classifiers werployed: Naive Bayes and the
Support Vector Machine. These two classifiers are populaoiih SA0T [Pang et al., 2002; Wilson
et al., 2004] and Text Classification in general [Gabrilovand Markovitch, 2004; Sebastiani,
2002].

3.4.1 Nave Bayes

Naive Bayes, in spite of its name, is a very powerful classifthich is both simple and easy to
interpret. It is probabilistic in nature and operates byding statistical models of the classes it
assigns to. For instance, the Naive Bayes described hedelsnthhe distribution of words in a
document as a multinomial.

In order to describe this classifier, assume that the trgidimcuments are divided inta
mutually exclusive classe§, = {c1,c2,...,cn}. The parameters to the multinomial model for
classc € C would then be:@qc = [0c1,0c2,- .. ,0c], wheren is the number of features in the
vocabulary,y y 0.; = 1, andd,; is the conditional probability that featuyeoccurs in class. The
probability 6.; is normally smoothed by a Laplace count in order to avoidoitrfioeing zero. The

label of an unseen test documeht= [d, ds, .. ., d,], whered; is the frequency of featurgin
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document, is then predicted using the Bayes rule,

label(d) = argmax [P(C)P(d|c)] (3.5)

The probabilityP(d|c) is estimated by using a multinomial distribution, i.e.

ey

Pl = (dl d% L >H<9ca')dj (3.6)
) b n ]

The multinomial distribution assumes that théeatures in document are independent of each
other. This incorrect supposition is known as the NaiveeBayssumption and only holds because
of the stochastic nature in which words are used in languagenjngos and Pazzani, 1996].

The multinomial coefficients in Equation 3.6 can be droppH#d®e they are constant across
all classes. Similarly, the probabilit#(d) in Equation 3.5, can also be dropped off for the same

reasons. This simplifies Equation 3.5 to the following folation:

label(d) = argmax | P(c) H(Ocj)dj (3.7)

C ;
ce j

The multiple products in Equation 3.7 would most probabbdi¢o an arithmetic underflow and

thus it is a common practise to represent it in logarithm spac

label(d) = argmax

C
ce j

log P(c) + > djlog ecj] (3.8)

The label of document is then taken as the class that yields the maximum value akthdtant
Bayes rule formulation as shown in Equation 3.8.

Naive trains and classifies in linear time with respect ®rihmber of classes. This is ex-
plained by noting that, during training, Naive Bayes cotep|C|n conditional probabilities (i.e.
those contained ifi,, , ... ,d,, ) and hence trains i®(|C|n) = O(mn) = O(mn) time. Note that
n is the number of features and is taken as a constant. Siynianiing classification, Naive Bayes
makes/C| + |C|n calculations and hence classifiesM|C| + |C|n) = O(m +mn) = O(m) time.

The simplicity and robustness of the Naive Bayes classifisrled it to become amongst the

most popular of classifiers. It is a favourite choice for istlial applications as it is quite fast and
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A: Classification B: Regression
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Figure 3.4: Support Vector Machines: Classification andrBssion

its performance remains relatively stable under variouslitmns compared to other classifiers

[see Mukras, 2004].

3.4.2 The Support Vector Machine

The Support Vector Machine (SVM) belongs to a family of cifisss that perform classification
by building a separating boundary between the classesarestt A special property of the SVM
is that it simultaneously tries to minimise the generaisaerror while maximising the geometric
margin between the classes. For this reason, it is also kaswinemaximum margin classifier

The intuition behind SVMs can be explained by Figure 3.4Acahhilustrates a simplified
version of a linear SVM that has been trained on examples framrclasses. Here the SVM con-
structs a separating hyperplane and then tries to maximéstntargin” between the two classes.
To calculate the margin, the SVM constructs two paralleldmgtanes, one on each side of the
initial one. These hyperplanes are then “pushed” perpatatly away from each other until they
come in contact with the closest examples from either cla$gese examples are known as the
support vectorsaand are illustrated in bold in Figure 3.4A. Intuitively, thest separation is the
one with the largest margin between the two hyperplanes.hdpe in this is that, the larger the
margin; the lower the generalisation error.

SVMs can also be used for regression (SVM-reg). The intitiehind SVM-reg can be
explained by Figure 3.4B which illustrates a simplified ve@msof a linear SVM-reg fit over a set
of training data pointg(z;, ;) }Y,. Here the goal of SVM-reg is to find a functiof{x;) that

has a predefineshaximum thresholfrom the actual targetg; for all the training data points, and
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at the same time, is as flat as possible. In other words, dmviabetweenf(x;) andy; can be
tolerated, so long as they are less than the predefined thdesdiue.

The Support Vector Machine has been well studied and is dedaby many as the current
state-of-the-art in text classification [Joachims, 1998bovich and Markovitch, 2004]. It has
at least three properties that make it well suited for thé¢ dexnain. Firstly, SVMs are good at
handling the problem of high dimensionality which is a conmabaracteristic of the text domain.
Secondly, most text classification problems are linearnpasgble and the SVM classifier is espe-
cially designed for this kind of problem [Joachims, 1998hdily, the vectors in a term-document
matrix are typically sparse with very few non-zero entried Kivinen et al. [1997] provided both
theoretical and empirical evidence that SVM-like classsfigre well suited for such problems.

The details behind SVMs are complex and certainly beyonddtbee of this study. Nonethe-
less, there are a few SVM implementations that are publigyiable and amongst the most com-
mon ones is SV written in ¢ by Joachims [1998]. All SVM results in this reseaare based

on this implementatich

3.5 Performance Metrics

Although sentiment classification is, as is self explanatarclassification task, it is still possible
to approach it as a regression problem. The reason for thisaisthe classes in a sentiment
classification problem are typically ordered. Conseqyeimier-class similarity tends to be related
to this ordering in that, the closer the classes in the andetihe more similar they are. These
varying inter-class similarities are clearly visible ireth graphs of Figure 3.5. Here each graph
illustrates the Euclidean distance between the centroidlassc, wherec € {1,2,...,5}, and
those of all other classes. Here one can see, for instanbe setond graph from the left, that the
Euclidean distance between the centroid of class 2 is ctogkat of class 3 than to that of class 4.
Such varying inter-class similarities would therefore naat larger penalties to classifier pre-
dictions thatregressfurther away from the true class labels. The work by Chakralet al.
[2007] on confusion matrices was particularly insightiuliliustrating the need for unequal mis-
classification penalties. They found that classifiers egpeed more confusion in deciding be-

tween adjacent classes of an ordinal scale. Consequewpthsdigning an equal cost to all mis-

“pAvailable at http://svmlight.joachims.org/
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Figure 3.5: Inter-Class Euclidean Distance for each clafisecActors Dataset

classifications, they were essentially discarding all theatly correct” predictions made by the

classifier.

3.5.1 Mean Squared Error

One option of capturing these “nearly correct” predictioago employ Mean Squared Error
(MSE), which is a commonly used measure of regression. Asguthat {yi}f\il are the true
class labels, anflj;} Y, are the classifiers predictions, MSE would be computed as:

N

MSE =23 (i~ i) 39)
=1

Unlike accuracy, which only registers exact predictiohg, MSE tells us how far the predictions
regress from the true class labels. It assigns a smalleltpegna closer prediction and a larger
penalty to a further one. This makes it an excellent perfocaaneasure for the sentiment classi-

fication domain and thus was adopted as the default meastins iresearch.

3.5.2 Comparing Performance

In this research, the difference in performance betweeratgarithms was mostly compared using
two steps. Firstly, twenty paired samples of performandabealgorithms would be generated
using 20 fold cross validation. The statistical differefegween these two samples would then
be compared using the two tailedest at thep < 0.05 significance level. A further discussion on

this topic has been provided in the General Appendix.
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3.6 Summary

The outcomes obtained from the discussions and experintggitsvere conducted in this chap-
ter form the basis of the default parameters that are useddhout this thesis. The following
summarises this information.

The Polarity dataset was the only bi-polar dataset, theratdiatasets were Actors, Edmunds
and Scale, the Neutral dataset was Reuters, the Query dai@s¢he Trec Blog Collection, and
WordNet was the Lexical dataset. Note also that the ActodsEaimunds datasets were compiled
specifically for this research whereas the others were rmdafrom literature.

For textual pre-processing: Tokenization was compulsostliexperiments, PoS Tagging and
Stemming were only performed when specified, and finally @sien to a consisted case and
stop-word filtering were always performed.

Two classifiers are used in this research: Naive Bayes aniujpport Vector Machines. Naive
Bayes performs classification by employing word-to-classditional probabilities, whereas SVM
builds a hyperplane between the two classes. Three feadleetion heuristics are employed:
Information Gain, the Chi-Squared score, and Documentueneey. The default in this research
was to reduce the initial feature space by 98% using InfdomaBGain. These two combined
heuristics have been widely used and are considered as glesdof thumb [Yang and Pedersen,
1997; Wiratunga et al., 2004].

The default measure of performance is the Mean Squared @8M®E). This was chosen as
it tells us how far the predictions are from the true clasglgbThis is important as most of the
classes in the datasets used here possess misclassifimatisrthat increase with the magnitude
of disparity between the predictions and the true clasddalide two-tailed-test, at they < 0.05
level, was used to test whether two sets of paired sampleadifeeeent from each other. Most of

the tests employed 20 paired samples that were mostly eotdiom 20-fold cross validation.



Chapter 4

Sentiment Extraction with PoS Pattern

Analysis

Part-of-Speech (PoS) patterns are sets of consecutiveaBs $at can be used to filter out phrases
from a given input text [Justeson and Katz, 1995]. The pastare typically chosen such that they
filter out phrases that conform to a desired linguistic prigpeFor instance, a pattern formed
from an adjective followed by a singular noudJ( NN1) would extract sentiment rich phrases
such as “fast car,” “great person,” or “evil motive.” Theduistic property in this case is that the
first word evaluates the second hence yielding an opinidnpfaase. Other similar PoS pattern
combinations are also possible, and it is not difficult to theepotential that this approach could
offer, especially if the patterns are well designed.

A good example of a study that employs PoS patterns for senticiassification is the work
done by Turney [2002]. In this study, Turney addresses thblpm of un-supervised sentiment
classification by use of phrases extracted by manuallyett&fbS patterns. Table 4.1 lists a similar
set of PoS patterns as those that he used in his study (TreitiySp due to a difference is tagsets).
In this Table J refers to adjective formsl{ , JJT, or JJR), NN1andNN2to singular and plural
nouns respectivelyR to adverb formsRR RG RGA or RGR, andVVO0to verb forms. To describe
the patterns in Table 4.1, consider the fourth one which mdaat two consecutive words are
extracted if the first is a noun and the second is an adjedtivtehe third (not extracted) cannot be
a noun. The third word is checked so as to avoid extractinggadn such as “very fast” instead of

“fast car” from the initial phrase “very fast car.” Note afgwt Turney [2002] used phrases instead

35
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Tag 1 Tag 2 Tag 3 (Not Extracted)
1.3 NN1lorNN2 anything
2. R J notNN1or NN2
3.7 J notNN21or NN2
4. NN1orNN2 J notNN1or NN2
5 R VV0 anything

Table 4.1: Manually Selected PoS Patterns

of single words. The reason behind this is that phrasesenligrpreserve context. For instance,
“very good” and “not good” clearly posses opposing polastand this information would be lost
if the two preceding words, “very” and “not,” were discarded

An obvious drawback of using manually selected PoS pattethat they need to be created by
a domain expert in the first place. Furthermore, as anomdilsesissed in the previous paragraph
illustrate, this can be quite a demanding task even foreskiiractitioner. As an estimate, each
domain requires up to twenty PoS patterns and personalierpershows that it is not uncommon
for each pattern to take up to five hours of skilled labour sigie[see also Jackson and Moulinier,
2002;Section 4.2]. This can be a major setback, especiailydustries such as marketing or the
media where the data continuously changes.

This chapter attempts to address the problem of manuakpatastruction by proposing an
algorithm that automatically generates a set of PoS patfermrextracting sentiment rich phrases.
The algorithm, named the PoS Pattern Selector (PPS) antbdeddn this research, makes use of
a sentiment rich background dataset to learn the set of PwSms Each word in the background
dataset is replaced with its respective PoS tag after whentdard feature selection heuristics
such as Information Gain (IG), Document Frequency (DF),thedChi-Squared (CHI) score [Se-
bastiani, 2002; Yang and Pedersen, 1997] are applied totgbketop discriminative patterns of
lengths one, two, and three. The hypothesis behind thisaisphtterns that are predictive of a
particular orientation, should also extract phrases tleapeedictive of the same. The results were,
however, contrary to this in that IG and CHI, which are tradially known to yield more predic-
tive features than DF, resulted in the lowest performansee glso Mukras et al., 2007a]. This
led to the conclusion that the most effective PoS patteredtarse that occur frequently across
documents.

Prior to proceeding with the chapter, there is an issue oicjpie regarding the deployment
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Assign Part-of-Speech tags to Test Document

There is nothing great about the new movie DR

t t t t t t t t
EX VBZ PN1 JJ 1l AT JJ NN1 LR ]

'

Extraction of phrases

(Phase 2) Selection of PoS patterns from Background data (Phase 1)
Tagged Test ) .
Sentiment rich
document
Topmost PoS Patterns Background documents
l Tag 1| Tag 2
Extract phrases PN1| JJ
from input text JJ NN1
using PoS Patterns JJ 1. For each document e.g: Greatest movie ever made ....
l - . a. Tag: Greatest_J movie_NN1 ever_R made_VVN ....
Extacted phrases b. Remove words: J NN1R VVN ...
c. Form Patterns: J_NN1 NN1_R R_VVN ....
1. nothing great
2. new movie 2. Rank Patterns using: IG, CHI, or DF

\J
Predict overall sentiment orientation (Phase 3)

Phrase Orientation
1. nothing great -2.56
2. new movie +0.92
Aggregate -1.64

Prediction: Negative

Figure 4.1: The PPS Algorithm in a Sentiment Classificaticamiework

of background examples on a non-labelled problem, suchis®tie, that is worth noting here.
In such a scenario, there are at least two situations thatl @ise: The background examples
could either be labelled, or non-labelled. There is typycab restriction on applying non-labelled
background examples to a non-labelled problem. Howevenaiy be possible to criticise the
application of labelled background examples to a non-latigdroblem for the reason that it goes
against the principle of learning from non-labelled exagsplOne could, however, defend against
this by arguing that although the background examples &edléal, there would still exist some
uncertainty as to whether they follow the same distributisrihe non-labelled training examples.
This type of uncertainty is typically absent when learnirgti labelled examples. Consequently,
so long as this uncertainty exists, then the problem coe$ine be one of learning from non-

labelled examples.
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Table 4.2: Sample of top ranked PoS patterns selected uSi@HI and DF

The remainder of this chapter is organised as follows. 8eectil describes the manner in

which the PPS algorithm automatically identifies PoS pasteiThis section also walks through

Heuristic| Tagl Tag 2 | Examples of extracted phrases
NN1 ? shrug ?, glory ?, loser ?
NN1 ! joke I, understatement !, menace !, perfection !
IG VVZ NN2 | grate nerve, play scene, think woman
NN2 NN2 | work life, year job, concert movie
J VVG | good look, serious think, good fall
NN1 J guy worst, personality decent, spelling unattractive
NN1 ? shrug ?, moron ?, fear ?, glory ?, loser ?
CHI NN1 ! joke !, understatement !, menace !, perfection !
NN1 VVZ | planet act, man pray, character play
VVO NN1 | walk sunset, get sitcom, show emotion
J NN1 | worst actor, terrible actress, worst breakfast
NN1 NN1 | example non-talent, quality style, courage range
DF NN1 J guy worst, personality decent, spelling unattractive
NN1 NN2 | going look, education work, world affair
J NN2 cute star, decent performance, outspoken topic

the steps of how the resultant PoS patterns are used tofgldssiorientation of an arbitrary test

document. The chapter is then concluded in Section 4.2 wdteaussion and summary. Note that

the empirical evaluation of the PPS algorithm is discuseetie Evaluation chapter 8.

4.1 Overview of the System

The diagram in Figure 4.1 provides an overview of the systehis described by this chapter. As
illustrated, it is divided into three separate phases: Titsé fhase, which constitutes the contri-
bution of this chapter, involves PoS Pattern Selectionstét®nd phase deals with the Extraction
of Phrases, and the last phase is Un-supervised Sentimasgifiiation. In order to describe the

system, this chapter walks through each of its steps. NateRbS pattern selection is only per-

formed once, but it needs to be done prior to the other twesstEpis will therefore be the starting

point of the discussion.
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EXTRACT-PHRASES(d, @)

1. B—{}

2. M, m «— |LONGESFAND-SHORTESFPATTERN(Q)|
3. for i =1to |d| do

4 for j = mto M do

5 if i +j <|d| then

6. t = PART-OF-SPEECH(wj . . . ;)

7 if t € Q@ andw; ... w;y; ¢ Bthen

8 B<—Bu{wi...wi+j}

9. return B

Figure 4.2: Extraction of Phrases from the Test Docundent

4.1.1 Pattern Selection from a Background Dataset

The first step in the PPS algorithm is to establish a backgrolataset with two classes: sentiment
positive and sentiment negative. This dataset is fundaahémtthe algorithm as its underlying
structure implicitly contains the patterns that are reggiifor extracting sentiment rich phrases.
Once the dataset is in place, each of its documents are peates that all words ameplaced
by their corresponding PoS tdgsAssuming that, o, ..., t), is a sequence of PoS tags in an
arbitrary document of this dataset, a PoS pattern of lepgtbuld be defined as,, . . . ¢,,,+; where
m=1,2,..., M—j. All such patterns are then ranked using IG, CHI, or DF.

Once the PoS patterns have been ranked, they are then cHeclsaagular or plural proper
nouns (i.e.NP1or NP2) and those containing any instances of these are discaiidezireason
for this is that proper nouns tend to occur within positivegative, or even neutral phrases. For
instance, the proper noun “London” can be found within cristeuch as “I love London,” “I hate
London,” and “I don't mind London.” This makes it difficult &lassify the orientation of a proper

noun as its various contexts can be highly ambiguous [Tur2@§2].

4.1.2 Extraction of Phrases

Once the PoS patterns have been processed, the top rantegdpate then used to extract phrases
from thetest documentThe procedure is summarised in Figure 4.2. Hérethe test document
consisting of all its wordsuy, ..., wq, andQ is a set of PoS patterns of various lengths. In

addition to this, the statement/, m < |LONGESFAND-SHORTESFPATTERN(Q)| respectively

'Tagging was performed using the RASP system [Briscoe antblGavlay 2002] which utilises the CLAWS2
Tagset.
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Adjective Word Corresponding Antonyms
new (11,1268194)| old (8,354828), used (3,3)
good (21,719768) | awful (6,29714), terrible (4,38042), bad (14,4Q09)
general (6,574866) special (7,195450)

right (14,549695) | wrong (9,180121), erroneous (1,2660)
great (6,514301) | terrible (4,38042), ordinary (2,28635)
big (13,410606) | small (10,248872), little (8,505147)
simple (7,245606) | complex (1,44198), difficult (2,77048)
poor (6,113213) | rich (12,74127)

huge (1,109800) | small (10,248872), little (8,505147)
glad (4,103213) | sad (3,82949), bittersweet (2,4273)
smart (7,86815) | stupid (3,104053), weak (12,28502)
foolish (2,10510) | wise (4,32497), all-knowing (1,0)

Table 4.3: A Sample of the Adjectives used to Generate the7/Sahd

assigns the lengths of the longest and shortest patter@stinA/ andm, whereas the function
PART-OF-SPEECH(w; . .. w;4;) returns the PoS tags for the words. .. w;;;. The procedure
returns the seB which contains all phrases in documeithat match the patterns in sgt

Table 4.2 illustrates, for each feature selection hearistsample of the topmost PoS patterns
that were returned, along with a few of the phrases that thegaed. Note that phrases extracted
using DF such as “worst actor,” and “terrible breakfast” gglatively more intuitive, in terms of
sentiment richness, than those extracted by IG and CHI ssitshaug ?” and “moron ?.” It will

later be shown that classification performances also tefalltov the same trend.

4.1.3 Un-supervised Sentiment Classification

Once the sentiment rich phrases have been identified in ghedoeument, the next step is to
compute their respective sentiment orientations. U.dte the:*” extracted phrase from the test
documentd. The sentiment orientation of the phrdges computed by comparing its association
to a set of positive word®, against its association to a set of negative wovdgTurney, 2002].
The words in these two sets are normally based on antonyrs. gaar example, given an entry
“good” in setP, there would be a corresponding antonym such as “bad” ivsethe candidate
words were also filtered out by querying them against the YDataset and selecting the best
option. The following describes how the two séfsand N, were obtained in this thesis.

The two setsP and A/ were initially compiled from a list of manually selected ectjves

as adjectives are known to be good carriers of sentimentzjiessiloglou and Wiebe, 2000].
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The words were then recorded onto a list after which a numbsowrces (including WordNet,
thesauri, and plain intuition) were used to generate afisbomesponding antonyms for each word
in this list. The two columns in Table 4.3 depict an examplehef words that were compiled.
This Table also illustrates, for recorded each word, bathilté familiarity-score as an adjective,
and (2) Its Query dataset frequency which refers to its #®eqy in the Trec-Blog Collection [see
Macdonald and Ounis, 2006]. These two values are resphcsiiewn in the brackets that follow
each word in Table 4.3. The familiarity score was obtainedfiWordNet [Fellbaum, 1998], and
it is a measure of a words usage in nhormal language. Wordmepuies this score based on the
words polysemy count. A word is judged to be polysemous ifig two or more senses whose
meanings are related. Consequently, a words polysemy ®tim number of related meaning
that the word exhibits. The reasoning behind using the pohgscount is that a high score would
imply that the word has several adjective polysemes andehsrmommonly used, whereas a low
score would imply few adjective polysemes and hence is unoam Note that the lowest possible
familiarity score is 1, whereas there is no upper bound totimeber of polysemes that a word can
have.

Both the familiarity score and the Query dataset frequeneyraportant parameters in select-
ing the words that form the sef and N, as computing association is difficult with words that
are either uncommon or excessively common. For instaneeytind “good” in Table 4.3 occurs
too frequently. It would therefore not be wise to select ibamember of positive seed word as
it would most probably occur in both positive and negativategts. Similarly, the word “used”
occurs too infrequently to be present in any context, letel positive or a negative one. The two
setsP and N were finally chosen as follow®B = {glad, rich, smart, great, wise, hugeand\ =
{sad, poor, stupid, terrible, foolish, litfle

The association between two entities, sagndy, is computed using Pointwise Mutual Infor-

mation [Church and Hanks, 1990] defined as

I(z,y) = log [Lﬂ()]

P)P(y) *1)

As with 1G, Pointwise Mutual Information can also be thoughtis a measure of independence
inthatI(z,y) = 0 if and only if z andy are independent of each other, and its value increases

with the association between the two. This is easy to seaubedbr andy are independent, then
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SENTIMENT-ORIENTATION (d, Q, P, N)
1. DO=0

2. B «— EXTRACT-PHRASES(d, Q)

3. for eachb € B do

4 DO+ = PO(b,P,N)

5. return sign [DO)]

Figure 4.3: The Un-Supervised Sentiment Orientation Atgor

P(z,y) = P(z)P(y), and therefore Equation 4.1 will yield a value of zero; ottise its value
would increase with the association between the two.
This idea can be used to compute the sentiment orientatitiregshraseb; by comparing its

association with the two se® and\ as follows:

(4.2)

PO(bZ>P>N) = I(biy,P) - I(bi,./\/’) = log [W}

P(bi, N')P(P)
Note that ifb; is equally associated to both and \, then PO(b;, P, N') would yield a value
of zero. However, ifb; is more associated to eithét or A/, then the value ofPO(b;, P, N)
would either be positive or negative respectively. The philities in Equation 4.2 were estimated
by using the number of hits returned by a search engine inkdexer the Query dataset. This

technique was introduced by Turney [2002] and is perfornssibliows:

P(P) ~ hits(gladV ...V huge (4.3)
P(N) ~ hits (sadv ... V little) (4.4)
P(b;, P) ~ hits (b; near (gladV ...V huge) (4.5)
P(b;,N) ~ hits (b; near (sadV ...V little)) (4.6)

Herehits(-) is a function that returns the number of documents thatfgatssquery parameter,
andnear is a binary operator that constrains the search to docungentsining its two query
parameters, within 10 words of each other in any order. Tleeva0 was chosen as it is the
approximate length of a single sentence. These probaleiitynates form the basis of the un-
supervised classification technique. They determine ieftil orientation of the phrade as per
the evidence present in the Query dataset. It is therefor@atito employ a sentiment rich Query

dataset that can generate accurate probability estimaiteslly, the overall document orientation
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is then computed as follows:

DO(d) = sign 4.7)

> PO(b;, P.N)

A positive aggregate would imply a positive orientation vdas a negative aggregate would imply
a negative orientation. The algorithm is summarised in feégu3. The procedure first initialises
the orientation of the test document to zero. It then exdraltphrases that match the PoS patterns
contained in the saf) and places them into the sBt The orientation of each phrase in the set
B is then computed after which the orientation of the sum ophtbses is then returned as the

orientation of the overall document.

4.2 Discussion and Summary

This chapter presents the PPS algorithm which is a noveloapprto PoS pattern selection for
un-supervised sentiment classification. The PPS algorittomatically mines PoS patterns and
hence offers an important alternative to the common approelkiterature which involves manual
design of the PoS patterns.

The PPS algorithm is divided into three main steps: The fiegt mvolves the selection of PoS
patterns from a sentiment rich background dataset. Thi@vias tagging the words in the back-
ground dataset, omitting the words and retaining the Pa§ taguping the PoS tags into patterns,
and finally ranking the resultant patterns by use of IG, CHDB. The second step involves the
extraction of phrases from the test document and the Igstckssifies the test document based
on the extracted phrases.

The evaluation is presented in chapter 8 and involves thage experiments. The first exam-
ines the effectiveness of the three ranking criterion (I18),&nd DF), the second compares PPS
algorithm against manually crafted patterns, and the katnines the effect of a sentiment rich

background dataset.



Chapter 5

Positional Information

Despite the fact that positional information has been wideded in topic identification, only a
handful of studies in the sentiment analysis domain hawergted to exploit this resource. A
module that can propose the most likely locations of semitmieh phrases within a document
would be quite useful to an un-supervised sentiment classifhrases that occur in these locations
could be weighted in preference of others and this has thenpal of improving classification
performance.

The work by Edmundson [1969] was probably amongst the sasgtadies to utilise positional
information in the domain of topic identification. He statdat “topic sentences tend to occur
very early or very late in a document and its paragraphs.’s Baggests that introductions and
conclusions are the most probable locations to identifytapé. In another closely related study,
Baxendale [1958] observed a partly similar trend to thappsed by Edmundson. He found that
in 85 percent of paragraphs, the topic sentence was in ttial iséntence and in 7 percent in the
final one. Although this observation was at paragraph lévelearly suggests that the beginnings
or endings of a text are likely positions for topic contenawgver, there have also been a number
of reports in the literature that have had alternative vietsut the importance of an introduction
and/or a conclusion in topic identification. Donlan [198@}, instance, maintained that the topic
of a given text could be found anywhere within text or not bentimmed at all. Paijmans [1994]
from the Information Retrieval community also found thapiontant terms, as measured using the
tf.idf weighting scheme, do not cluster themselves in the firststiskentences of paragraphs. He

also mentioned that positional information of this natw@at valuable enough to be considered

44
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in the preparation of indices for Information Retrieval.

In the sentiment analysis domain, the study by Beineke ¢2@D4] provides useful insights
into how positional information has progressed in this fidltdey report that professional review
summarisers preferred to compile their summaries fromajiaots that originate from either the
early part or the final part of the full review. Their resultglicated that the summarisers were
particularly fond of the last 5% of the full review indicagirthat conclusions may be the most
indicative of sentiment. Pang and Lee [2004] also observathdar trend when they found that
the rearmost sentences in a review yielded a higher perfarendnan those at the beginning. This
gives further evidence in support of the hypothesis thatlksions are typically rich in sentiment,

and also that positional information can be a potentialdatdir of word polarity.

5.1 The Effects of Positional Information

The objective of this section is to examine the importancpagitional information and whether
it can be incorporated into the sentiment classificatiorcgdore. The current hypothesis is that
it could be used to guide feature selection such that femitinag are found within sentiment rich
sections of a document could be weighted in preference dbhers In order to investigate this
possibility, the distribution of sentiment rich words ass@ document was examined in an attempt
to find any existing trends that could be exploited. Shatiment richnessf a word was estimated
as its Information Gain score: The higher a words IG scoreritther its sentiment content. This
estimate is justified because it selects words that are negstigtive of the sentiment categories.

The examination was conducted using the standard Actor&dntinds datasets. Each doc-
ument, in the two datasets, was split into 20 equally sizetiqms along its text. The distribution
of the top 2% words, as ranked by IG, across the 20 demarcatédris was then recorded. This
process was then repeated for 20 folds of cross-validatmhtlze resultant average distribution
was mapped onto the graph shown on Figure 5.1.

Note in Figure 5.1 that sentiment rich words tend to lie mainlthe early parts of documents
within the Actors dataset. This supports previous obsematmade by Edmundson [1969] who
stated that topic sentences “tend to occur very early or kadeyin a document.” Beineke et al.’s
observations were also partly similar to this in that theynie professional summarisers to have a

preference to quotes originating from either the front ar parts of sentiment rich reviews. Note,
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Distribution of Sentiment Rich Words in Actors Dataset Distribution of Sentiment Rich Words in Edmunds Dataset
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Figure 5.1: Mean Distributions of Sentiment Rich Words asra Document

however in Figure 5.1, that the Edmunds dataset contraitietsbservations made in the Actors
dataset in that its distribution suggests thatdhatral bodyof a document is the main source of
sentiment rich words. This seems to suggest that diffei@pioca may have different distributions
of sentiment rich words along their respective documents.

In order to ascertain whether these distributions actuedlyslate into performance, a second
experiment that looks into the effect of document structumemean-squared-error performance
was conducted. The experiment investigated four diffesentions of a document: the introduc-
tion (intro), conclusion (con), introduction with conclos (intro+con), and the body (body). The
experiment involved training a classifier on 20 differentge@tages of a section, and then testing
it on full documents each time. The percentages were: 5%, 16% ..., 100%.

Figure 5.2 illustrates the average MSE results that werairdd over 20 folds of cross vali-
dation using SVM-reg. Note that the results are mostly ia livith the observations made in the
previous examination. In the Actors dataset, both the iatrd intro+con perform best for most
of the percentages that were used. This conforms to thetsesufigure 5.1 whereby sentiment
rich words in the Actors dataset were distributed mostlyhimfront half with a few spikes in the
conclusions. As for the Edmunds dataset, the body perforpoedest during its first 15%. It
however picked up to be the best performing section fromghbatt on, and this is roughly in line
with its distribution of sentiment rich words as shown in tig 5.1.

The conformance between the distributions in Figure 5.1thadnean-squared-error perfor-

mance in Figure 5.2 suggests that positional informatiop beauseful in un-supervised sentiment
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Figure 5.2: Performances of Four Main Sections of a Document

classification of documents. It is, however, important teertbat despite potential benefits in ex-
ploiting this information, not all corpora possess the sals&ribution of sentiment rich words.

This was clearly depicted in Figure 5.1 where the Actors adchinds datasets actually had
distributions that contradicted each other. Nonethelss results in Figure 5.2 show a strong
correlation between supervised sentiment classificatemfopnance and the previously charted
distributions in Figure 5.1. This therefore opens the ks that positional information could

be useful in an un-supervised sentiment classificationesbnjust so long as one is aware of the

underlying distribution of sentiment rich words in the cespf interest.

5.2 Weighting Phrases by Position

In order to weight a phrase by position, both its location @aadlocuments’ length need to be
recorded. A weighting functiom can then be defined to calculate an appropriate weight for the
phrase. Following previous sentiment analysis resultsdipéke et al. [2004] where introductions
and conclusions were presumed to be the best locations riitimrsant rich words, two different
implementations ofv were instantiated. The first implementatian,, gives preference to phrases
that occur in the introductions and conclusions of a docunvemereas the second oneg, prefers
those found within the main body. The boundaries of the thestions (introduction, conclusion,
and body) were determined by dividing the document into fgwal quarters. The first and last
quarters were then respectively taken as the introductioincanclusion, whereas the middle half

was taken as the body. These proportions were assigned badbéd heuristic that the body is
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generally the most lengthy part of a document.

In order to describe the two functions, andwg, let locq(b;) be a function that returns the
position of the phrasg; within the test document. Also let|d| represent the length of document
d, andF be an integer such that > 1. The first weighting functionu,, was then implemented as

follows:
1, if locq(b;) < 0.25|d|

we (b, d) =< 1, if locg(b;) > 0.75d| (5.1)
1/F, otherwise
Note here that the first and last quarters are weiglitdones as much as the middle half, i.e.

againstl /F. In contrast, the second functiary was weighted inverse to this as follows:

1/F, if locg(b;) < 0.25/d|
wg(bi,d) =< 1/F, if locg(b;) > 0.75|d| (5.2)

1, otherwise

Note here that middle half is now weightddtimes as much as the first and last quarters, li.e.
againstl/F. With the weighting functions in place, the computation otdment orientation in

Equation 4.7 of the previous chapter can then be revisedlawfo

DO(d) = sign | Y w(bs, d)PO(bi, P, N) (5.3)

%

Wherew can be chosen to be either, or wg.

5.3 Discussion and Summary

The hypothesis behind this chapter is that the location dfrage within its parent document has
an influence on its sentiment strength. The preliminary expnts conducted in this chapter
suggest that this hypothesis may be true. They, however, silswed that the probability of

finding a sentiment rich word at a specified location variesnfdomain to domain. For instance,
it is more likely to find a sentiment rich word in the first haifdalast quarter of a document from
the Actor dataset. The situation is, however, reversed aquihents from the Edmunds dataset,

where the body is the most likely source.
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The chapter utilises the results from the preliminary expents to present two weighting
function. The first function assigns a higher weight to pesasccurring in the introduction and
conclusion, whereas the second function gives priorityhi@pes occurring in the body.

The evaluation of the weighting functions is presented iaptér 8 and involves only one
main experiment. The experiment analyses the effect ofviloenteighting functions on the un-

supervised sentiment classification performance on therdeind Edmunds datasets.



Chapter 6

A Comparative Study of OSC

Learning to predict either discrete classes or real vahogs fraining data has long been an impor-
tant research topic in Machine Learning [Mitchell, 199'/.bletween these two problems, lies a
third kind of problem that involves prediction into ordirdsses, i.e. discrete classes with a linear
ordering. Surprisingly enough, not much attention has lypem to ordinal problems, which is
rather disappointing given that many classification pngiden the real world fall into this cate-
gory. A good example of such a problem is Ordinal Sentimeassification (OSC) which involves
predicting into classes that are ordered with respect tnsent, i.e. ranging from a positive to a
negative sentiment orientation.

OSC problems, as with ordinal ones in general, have also tdatively untended in the
SA0T community. This owes partly to the fact that until regrmost researchers viewed OSC
as being limited to only three classes, i.e. positive, negatnd neutral [Pang et al., 2002].
Furthermore, most studies tacitly assumed that classifieveloped for the more common bi-
polar problem would be sufficient to predict documents frowa neutral class as these would lie
on the boundary. However, the study by Koppel and SchlergR@&approves this assumption
in that they found classifiers designed for bi-polar proldémbe lacking on OSC. Through such
efforts, it is now widely accepted that OSC problems can hmwee than just three classes and
that special classifiers are required to address their needs

It is possible to view an OSC problem as a multi-class clasgitin task, whereby classifiers
are built for the purpose of predicting into three or moressés. Note, however, that in order to

identify a good classifier for OSC problemes, it is first neaggso understand that the distinguish-
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ing feature about them is that their classes exhibit siitiggrthat vary with the distance between
themselves. For instance, a textual review accompaniedragirey of 1 (on a 10 point scale) is
expected to be more similar to one rated at 2 than another.aTh® means that a candidate

classifier should focus on achieving two main goals:
1. Maximising the correct predictions.
2. Minimising the distances between actual and predictessels.

The literature on multi-class classification reveals a xiahety of classification techniques that
could be applied to OSC. Amongst these are classifiers thahbarently solve multi-class prob-
lems (e.g. Naive Bayes), and those that decompose thectads task into a collection of binary
problems, thereafter combining the binary results to fdateua multi-class prediction (e.g. One-
vs-All and All-vs-All). Note, however, that although a fegolated studies on OSC have adopted
one or more of these techniques [e.g. Koppel and Schler,, Zd&) and Lee, 2005], there are still
no comparative studies that illustrate the superiorityrad olassifier over the other. This makes it
difficult for anyone to make an informed guess regarding witiassifiers to employ on an OSC
problem.

The main objective of this chapter is to perform a compagasitudy of the performance of
various multi-class classification techniques on OSC sl The aim is to provide results that
can be used as a guide in selecting an appropriate claseifign OSC problem. In addition to this,
the Binary Search Approach (BSA), a multi-class classificetechnique that is purpose designed
for OSC problems is also introduced. The results indicaaetthe BSA performs as well as other
standard multi-class classification techniques. It, h@relvas a relatively low time complexity
which places it amongst the fastest classifiers of its kind.

This chapter proceeds as follows. The next Section dissubgedesign of the various clas-
sifiers that were employed. In this section, both classiftesis decompose a multi-class problem
and those that can inherently solve them are discussed.Bmper is then concluded with a sum-
mary of these classifiers in Section 6.2. Note that the etiahmare discussed in the Evaluation

chapter 8.
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Figure 6.1: The One-vs-All Classifier
6.1 Multi-Class Classifiers for OSC Problems

A standard multi-class classification problem involvesaining set consisting of documents be-
longing tom mutually exclusive classes. The goal is then to construdassifier which, given

a new unseen test document, will correctly predict the diasghich the new document belongs.
Most text classifiers are binary in nature, and hence can lvartylle the case where = 2, i.e.
binary classification. However, when > 2 then a typical approach is to break down the prob-
lem into a series of binary classification tasks whose datssare then combined to form single

multi-class decision.

6.1.1 The One-vs-All Scheme

Amongst the most simple, and well know multi-class classifan schemes is the One-vs-All, or
the OVA, scheme. Given an class problem, the OvA scheme would buitdreal-valued binary
classifiers, each one to distinguish the examples in a sitigks from those in all remaining
classes. An unseen document is then classified by passm¢hiesen classifiers and assigning
it the label of the classifier that returns the largest vaMidgspn, 1965]. This strategy has been
depicted in Figure 6.1 for a 4 class problem. The grey andeateigions respectively demarcate
the positive and negative classes that each binary classiti@ined on.

Most studies typically use the OvA scheme as a baseline stgatnich to illustrate the su-
periority of their own algorithms [e.g. Furnkranz, 2002afk and Hall, 2001]. One of its main
weaknesses is that its binary classifiers are trained osaddabat are inherently skewed in favour
of the negative class. Note, however, it is also possiblergoeathat the OvA scheme isolates

each class from the rest hence enabling it to build accuratels of each class. This would in
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Figure 6.2: The All-vs-All Classifier

turn increase its ability to makeorrect predictionswhich is one of the goals in solving an OSC
problem.

The One-vs-All scheme both trains and classifies in lingae tivith respect to the number of
input classes. This can been shown by noting that it builddassifiers for ann-class problem,
and hence trains i®(m) time. It then classifies an unseen example by querying.allassifiers,

and hence also classifiesdnm) time.

6.1.2 The All-vs-All Scheme

The All-vs-All (AvA) scheme is equally as common as the OvAeame. It basically converts
anme-class problem into a series of binary problems by learnimg real-valued binary classifier
for each pair of classes, using only training examples frbesé¢ two classes and ignoring the
rest. An unseen document is then classified by sending itdio eithem(m — 1)/2 classifiers
and combining their predictions by simple voting. Figur2 @ustrates this strategy for a 4 class
problem, where the grey and white demarcations respegtiepresent the positive and negative
classes that each binary classifier is trained on.

The AvA approach has clearly defined semantics, namely thgirehether a test case is more
likely to be of classe or classy. Unlike the OvA approach, its binary classifiers are gehefede
from class skew and hence its performance is relativelyfectafd by the number of classes in a
given problem [see Furnkranz, 2002]. The AvA approach iclams all pairs of classes separately.
This quality enables it to attain the two desired goals fériag an OSC problem: Firstly, it allows

the AvA scheme to build accurate models of each class, whiphdves its ability to makeorrect
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Figure 6.3: The Simple Ordinal Approach

predictions Secondly, it enables the AvA scheme to preserve intesdasilarities, which in turn
aids it in minimising the differences between t@tual and predicted classes

The AVA approach both trains and classifies in quadratic tioee O(m?). This can been
shown by noting that it builds:(m — 1)/2 classifiers for amn-class problem, and hence trains in
O(m?) time. It then classifies an unseen example by querying eaitteof(m — 1) /2 classifiers,
and hence also classifies (m?) time. Time complexity is an important factor in choosing
between the OvA and AvA techniques. Furnkranz [2002] ckrthat although AvA has a higher
time complexity, each of its classifiers have a reduced numbgaining examples, and hence it
works out to be just as fast as the OvA scheme. This is, howbighly dependent the mode of

implementation.

6.1.3 The Simple Ordinal Approach

The Simple Ordinal Approach (SOA) takes advantage of thearalass structure by dividing
the training data on the basis of the linear class orderingncand Hall, 2001]. Given a problem
with a set ofm ordinal classe$cy, . .., ¢, }, the SOA divides the training data inte — 1 pairs by
incrementally splitting it along the ordinal scale. Onelnesued binary classifier is then trained
on each split, resulting im — 1 classifiers. This idea is illustrated in Figure 6.3 for a folass
problem, where the grey and white demarcations respegtiepresent the positive and negative
classes that each binary classifier is trained on.

To classify an unseen documehtall m — 1 classifiers are queried. The prediction of ¥
classifier is then normalised to the rar{gel] and interpreted as the probability ; of document
d occurring in a class subsequentcto(i.e. the negative class). The probability that documént

belongs to class; is then determined by the location @fin the linear ordering. There are three
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main possibilities of where; could occur, and these have been illustrated as follows:

1— 04, if j =1
P(cjld) = S B 1— 04, Fl<j<m (6.1)

1—9d,j_1, If]:m

Documentd is then labelled with the class that yields the highest godita in Equation 6.1 as

follows:

label(d) = argmax [P(c;|d)], j=1,...,m. (6.2)

Cj

Note that the binary classifiers of the SOA are mostly traimedkewed data, except for when
the number of classes is even, during which the middle classifier is balanced. Nugless,
the level of skew varies with each classifier, and decreasedmost zero towards the central
classifiers. This feature was intentionally designed ireotd narrow down on a test cases’ true
class by exploiting the linear ordering. For instance, if\eeqg test case: belongs to class 1 in
Figure 6.3, then classifier 1 would be most likely to predi@s positive, followed by classifiers
2 and 3 in that order. This consequently enables the SOA tanise the distances between the
actual and predicted classes, which is one of the goals wngoan OSC problem. In contrast to
this, classifiers 2, 3, and 4 of the OvA approach in Figure @ald/all be equally likely to predict
x as positive. This inherently provides the SOA with an adagatover the OvA approach when
dealing with OSC problems.

The SOA trains and classifies in linear time with respect éorthmber of input classes. This
can been shown by noting that it builds — 1 classifiers for amn-class problem, and hence trains
in O(m) time. It then classifies an unseen example by querying eaitteei — 1 classifiers, and

hence also classifies @(m) time.

6.1.4 The Binary Search Approach

As with the Simple Ordinal Approach, the Binary Search Apgto (BSA) also takes advantage
of the ordinal class structure by dividing the training daethe basis of the linear class ordering.
This SAO0T classification technique was first developed ia thsearch. Given a problem with a

set ofm ordinal classe$cy, . . ., ¢, }, the BSA would recursively divide the training data into two
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Figure 6.4: The Binary Search Approach

equally sized halves (positive and negative) while re$pgdhe class ordering at each recursion
level. One real-valued binary classifier is then trained achesplit, resulting im» — 1 classifiers.
The general idea is illustrated in Figure 6.4 for a four clpssblem, where the grey and white
demarcations respectively represent the positive andinegadasses that each binary classifier is
trained on.

This divide and conquer strategy can be viewed as a binagytith m — 1 nodes. Assuming
this view, a test document would be classified by descendidgwn from the root node to one
of the leaf nodes. The direction of each descent is detedriyethe output of the classifier at
each respective node when queried with the test documeihiislbutput is positive, then the test
document would descend to the right, otherwise it would eleddo the left. Finally, the classifier
output at a leaf node is taken as the class of the test document

Note that when the number of classasis not a power of 2, then it may not be possible to
always split the training data into two equally sized halvEer instance, if a problem has three
ordinal classe$c;, c2, c3 }, then a decision would have to be made to include the middlectass
co into either the positive or the negative side of the splitoTechniques were employed in this
regard. In the first technique, the middle odd class was rahdassigned to either the positive
or the negative side. This technique was referred to as BNAIR the second technique, the
Kullback-Leibler (or KL) distance [see Cover and ThomafQ1%etween the middle odd class
and its two neighbouring classes was measured. The middielads was then assigned to the
side with the neighbour that had the shortest KL-distange tbhis technique was referred to as
BSA-KL.

The KL-distance is a measure of the difference between twbalnility distributions. For
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instance, given two distribution8 and (@, the KL-distance of) from P would be defined as:

D(PIQ) = X Pk ios ) (6.3)
k

Using this principle, the middle odd class would be mergett Wie side of the split whose distri-
bution is closest to its own.

The BSA progressively narrows down on the class of a givearcgese in a manner that would
minimise the ordinal distance between its prediction ardiéist cases true class. For instance, if
a given test case belongs to class 1 in Figure 6.4, then classifier 1 at the rodé would most
likely predict it as positive. This reduces the possibl@eim the final prediction from three units
to only one, which is essentially one of the goals of solvingsC problem. Note, however, that
a classification error in the higher nodes is more criticak iRstance, if classifier 1 predicisas
negative, then the final error would be at least two unitsae.sNonetheless, the BSA is designed
such that the upper classifiers are quite general and hemitéabe highly accurate. This reduces
the chances of such errors occurring. In addition to this,BSA hardly experiences any class
skew. In the worst case, the difference in size between thgiymand negative classes is at most
one, and this only occurs when the number of clagsésnot a power of 2. This therefore enables
the BSA to build accurate class models, hence improvinghilgyato make correct predictions
(another goal of solving an OSC problem).

The BSA trains in linear time and classifies in logarithmioei with respect to the number
of input classes. This can been shown by noting that it builds- 1 classifiers for ann-class
problem, and hence trains @(m) time. It then classifies an unseen example by querying at most
[log m] of its classifiers, and hence classifiegiflog m) time. This makes it amongst the fastest

multi-class decomposition techniques employed here.

6.1.5 The Single Classifiers

A single classifier is essentially one that is naturally ¢td@af handling multi-class classification
problems. In this research, two single classifiers were:uskilve Bayes and Regression based
Support Vector Machines (SVM-reg).

Naive Bayes is a simple but powerful classifier that is basethe Bayes Theorem. Given

an m-class problem, the Naive Bayes classifier would buildeparate Bayes models, one for
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each class. An unseen test document would then be classyfipdllng the m classifiers and
assigning it to the class whose model yields the largestaghibty. The fact that Naive Bayes
builds separate models for each class allows it to be botlrate; and appreciative of the ordinal
inter-class similarities that are present within OSC peoid. These two points can be explained
by noting that the models that it builds are separate, aral@isses the same linear ordering as
that of their respective underlying classes. This enablEsé\Bayes to either predict a test cases
correct class, or minimise the error of an incorrect préalictNote that these are the two goals of
solving an OSC problem.

SVM-reg approaches OSC from a regression perspective. nGineOSC training dataset,
SVM-reg builds a functiory that tries to map the training documents to their respedaivels as
closely as possible. Once this function is learnt, an untestrdocument would then be assigned
to the class: € C that is closest to the regression valtie:) € R. Note that this regression value
is rounded off because, although OSC can be approached fregression perspective, it is still
a classification problem. As with Naive Bayes, SVM-reg 8soappreciative of the ordinal class
structure in that it tries to map the ordinal relationshipsaeen the classes of an OSC problem.

Finally, the time complexity details for SVM-reg are beyatg scope of this study. Note,
however, that Naive Bayes trains and classifies in lineae tind the details of this can be found

in chapter 3.

6.2 Discussion and Summary

The objective of this study is to provide empirical resuliattcan used be in selecting an appro-
priate classifier for an OSC problem. Two different typeslatsifiers are explored: Those that
decompose a multi-class classification task into a seridsnairy problems, and those that are
inherently capable of handling a multi-class task withoatihg to decompose the classes. The
chapter also identifies that a suitable classifier for OSCavoave to be capable of maximising its
correct predictions, while minimising the error betweea #ttual and predicted classes. A total
of six different classifiers were investigated at altogethe

The OvVA scheme builds a binary classifier to separate eaacls flam the rest. This fact
enables it to build good models of each class, which in tutpshe maximising its correct pre-

dictions. Note, however, that each of its models is gredfigcted by class skew, especially if
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the problem has a large number of classes. This weakensithg atthe OvA approach to min-
imise the errors in its incorrect predictions. The OvA scheasrelatively fast in that it trains and
classifies in linear time.

The AvA scheme builds a binary classifier for each pair ofsgas This allows it to respect
the linear ordering between the classes, which in turn Helpsninimising the error in its incor-
rect predictions. In addition to this, the models are basegairs of classes and hence are not
affected by class skew. Note, however, that the AvA schenagnisngst the slowest multi-class
classification techniques in this study in that it trains alagsifies in quadratic time.

The SOA takes advantage of the class ordering by increntesialitting the data along the
ordinal scale. Thus given am class problem, the SOA would buileh — 1 binary classifiers,
each trained on one split. Note that the level of skew in thé S&ries with each classifier, and
decreases to almost zero towards the central classifieis.f@dture enables the SOA to narrow
down on a test cases’ true class by exploiting the linearrorgeThe SOA approach is relatively
fast in that it trains and classifies in linear time.

The BSA techniques successively split the training data tmto equal halves resulting in
binary tree. In the event that two equal halves cannot bersduta BSA-RN randomly assigns
the middle class to one half, whereas BSA-KL uses KL-distananake the same decision. The
divide-and-conquer strategy that the BSA techniques eyngt@ables them to respect the linear
class ordering, and hence effectively minimize the ermorheir incorrect predictions. They are
also quite fast in that they train and classify in linear asghrithmic time respectively.

Naive Bayes and SVM-reg are the two single classifiers tleaevwemployed. Naive Bayes
models each class separately and hence respects the lideang. The same is also true with
SVM-reg which tries to model the linear ordering betweendlasses. The time complexity for
SVM-reg is beyond the scope of this study. Naive Bayes, kiewérains and classifies in linear
time.

The evaluation of the classifiers is presented in chapted8raolves two main experiments.
The first experiment analyses their MSE performance on thiercEdmunds, and Scale datasets.

The second experiment analyses their classification spe#dtecsame datasets.



Chapter 7

Feature Selection for OSC Problems

One main characteristic of the Text Classification domaitésproblem of high dimensionality.
The original feature space in any dataset can easily compfiseveral thousand of features. Such
high dimensions are impractical for most text classifier&ctvican only handle a small fraction of
the original feature set. For example, the distance cortipantamade by thé Nearest Neighbours
classifier, quickly become intractable as the number ofufestincrease. Similar problems are
also encountered by other machine learners such as NapesBRecision Trees, and Neural
Networks, just to name a few. Nonetheless, the problem dfifeaelection has been well studied
by the text classification community [see Yang and Pederk@97; Forman, 2003; Wiratunga
et al., 2004]. There now exists several techniques that ffactigely reduce the original feature
space without sacrificing on classification performance.

Note, however, that despite the significant gains made iridiet of feature selection, there
are still some text classification problems that still posshallenge to the field. Such problems
normally stem from the fact that most feature selectionngples are based on the assumption
that all pairs of classes are equally similar. This is notagisvthe case in the real world, and a
good example of a problem that does not adhere to this assmumipthe task of Ordinal Sentiment
Classification (OSC). Now, being ordinal in nature, OSC fewois exhibit inter-class similarities
that decay with the ordinal distance between classes. Btarioe, a textual movie review rated
as positive bears a closer resemblance to one rated as matiamanother as negative. This
essentially means that the similarity between any pairagsgs is a function of the ordinal distance

between them. Consequently, by not exploiting this infarama most feature selection techniques
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Figure 7.1: Featurg; and f, posses Distributions that are Equally Important

are inherently incapable of realising their full potental OSC problems.

The thesis of this chapter is that OSC requires specialisatuife selection. The basic ar-
gument is that important features in an OSC problem are tti@galistribute themselves across
similar classes. Standard feature selection techniquasota@asily detect such features princi-
pally due to their assumption that all classes are equatijlas. Under this assumption, a feature
that occurs in two similar classes, would be considered g leguivalent to another that occurs
in two dissimilar ones, and hence the most appropriate fiesiare overlooked.

The solution that is proposed in this thesis tackles thelproliy capitalising on the fact that
the ordinal class labels are directly related to the ordimakr-class similarities. With this knowl-
edge, the probability weight of a given feature in a giversgls shared amongst neighbouring
classes in manner that decreases with inter-class distariie smoothing like technique is re-
ferred to as the Ordinal Smoothing Procedure (OSP). Theatole effect of performing the OSP
over all classes is that the distribution of the feature iasgion peaks if the feature is a member
of similar classes, and flattens if it is a member of dissinolges. The end result is that, a distri-
bution with a peak would have a higher information conteantbne that is flat [Shannon, 2001].
This therefore enables standard feature selection tewbsip prefer features that occur in similar
classes over those that do not.

This chapter proceeds as follows. The next Section dissubgeproblem of feature selection
for OSC into more detail, giving specific examples of whefails. It then goes on to discuss how
the OSP solves the problem. A final summary of the OSP is thesepted in Section 6.2. Note

that the evaluation of the OSP is discussed in the Evaluatiapter 8.
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Figure 7.2: Featurg; and f, are Distinguished by Ordinal Smoothing

7.1 Inter-Class Similarities

In an OSC problem, inter-class similarities, as reflectedhfthe class labels, play an important
role in feature selection. To illustrate this using an ex@anassume that one has two featurfs,
and f-, that are distributed across a set of equally sized ordiaskes in the proportions shown
in Figure 7.1.

If one were to disregard class ordering, and hence intesdanilarities, then these two fea-
tures would have the same information content, and hence sgeally important. However, with
the inclusion of inter-class similarities, then they ariéetlent. Clearly, featurg is descriptive of
two similar classes and hence is more important than fegiundich occurs in two relatively less
similar classes. The complication of performing featudec@n with algorithms like I1G and the
CHl score is that they do not exploit inter-class similastand hence would equate the importance

of the two features described in Figure 7.1.

7.1.1 A Solution by Modifying Information Content

The Ordinal Smoothing Procedure solves this problem by sirog the distributions of the fea-
tures prior to performing feature selection. This procedsrguided by ordinal inter-class sim-
ilarities which are inferred from the class labels. It baBicdisperses the probability weight
P(cj, f), of a given featuref; in a given class;, to neighbouring classes in proportions that de-
cay with inter-class similarity. The end result is a disitibn that peaks at clags and smoothes
off as it gets further away. The collective effect of perfangnthe OSP for all classes is that the
resultant distribution of featurg will tend to be “pyramid shaped” if; is descriptive of similar

classes, and “flat” if it is descriptive of dissimilar onesn &xample of this is given in Figure 7.2
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Figure 7.3: The OSP as Applied to a given Featfjre

which illustrates the outcome of performing the OSP on tis&ridiutions of featureg; and f> as
introduced in Figure 7.1.

The two shades of colour in this Figure depict the manner irchvthe probability weights
were distributed amongst the classes. Note, for fegfyrihat the cumulative effect of having two
peaks at two similar classes is a steep distribution withak pleat spans both classes. This is in
contrast to featurgy, whereby the combined effect of having two peaks in two distéasses is a
relatively flat distribution. The overall effect is that thesultant distribution”’ (¢, f») contains a
higher information content thaR’(c, f1). This enables both IG and the CHI score to distinguish

between the two features.

7.1.2 The Ordinal Smoothing Procedure

Figure 7.3 gives a general overview of the Ordinal SmootRirecedure as applied to an arbitrary
featuref;. As illustrated in Figure 7.3, the standard feature sadegirocedure is to estimate the
required probabilities and then compute the score for feafu Note, however, that the OSP
deviates slightly from this, in that it smoothes the disttibn of featuref; across the classes,

P(e, f+), prior to computing the feature score. There are two stegdvied in the OSP:

Step 1

The first step is performed prior to feature selection. lblags initializing the similarity function
S(¢4, ¢j) with the similarity values between all pairs of classgs; € C, whereC = {ci,..., ¢}
is a set of ordinal classes whose subscripts denote classraydNote that the functiod (c;, c;)

acts as a kernel that can be defined in a number of differens.wieally, it should model the
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Figure 7.4: Linear and Exponential Approximations of Int&ss Similarity

inter-class similarities of an OSC problem as closely asiptes

Most OSC problems are characterised by inter-class sitirelthat decay with the distance
between classes. These similarities represent the imnsitsentiment orientation from one class
to the next along the ordinal scale. However, while the eris¢ of this gradual shift in sentiment
across the classes is tacitly accepted, the quantificafida actual nature is still, at least for the
time being, an unsolved problem in NLP. Nonetheless, dukdméed to estimate the underlying
inter-class similarities, one could opt for an alternatiypgproximation.

In this research, the similarity functio#i(c;, c¢;) was implemented in two different ways. The
firstimplementation,S;, assumes that the similarity between classesdc; decays linearly with
the ordinal distance between them, i.e.

Si(ciyej) =1— “;L—"' (7.1)

The second implementatiors,, assumes that the similarity between classeand c; decays

exponentially, i.e.

Se(ci, ¢j) = exp (=[i = jl) (7.2)

The similarity curves for both functions have been illustdain Figure 7.4 for class; against
all other classes. Note that the linear function has a maxdugl slope that extends across all
classes. This has effect of distributing the weight of aueain a given class to all classes. It,

however, also means that the features weight in its classiginavould be much smaller. This
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could be disadvantageous if the feature only occurs in aaescllt is, however, quite useful in
flattening the distributions of features that occur in distdasses. The exponential function has a
much sharper slope that rapidly drops to zero. This has fheteff confining the distribution of a
features weight in a given class only to close neighbourss fids the advantage of sharpening, or
peaking, the distribution of a feature that occurs in onlgwa heighbouring classes. Itis, however,

relatively poor at flattening the distribution of a featunattoccurs in distant classes.

Step 2

The second step of the OSP is to smooth the distribution ¢difeg; across the classeB|c, f;),

so as to yield a new distributioR’(c, f;). This is performed at each classe C as follows:
P/(ijft) :ZP(Ck,ft)S(Ck,Cj) (73)
k

Where the functiorb can either assume a value$for S.. The effect of applying Equation 7.3 to
all classeg € C for all classes is that the resultant probability weightteaturef; at each class are
stacked against each other with varying proportions of tigér@al weight. If f; occurs in similar
classes, then these classes would inherit relatively arggortions of the original weight which
would thus boost the overall information content of featfireHowever, if f; occurs in dissimilar
classes, then the intermediate classes would receivesglygoroportional weights from either of
the two dissimilar classes. This would flatten the overatriiution of featuref; resulting in a
lower information content.

Note that the cumulative effect of Equation 7.3 over all sésscan be simplified into a single

matrix operation as follows:

Sll Slm P1
P =SP = R : (7.4)

Sml e qun Pqn

HereP, P’, andS respectively denote the original distribution, the smedtHdistribution, and the
similarity function. Note also thaf;; is used as a shorthand 8(c;, ¢;), andP; for P(c;, f¢). A
useful constraint is to normalize each columrSafo as to ensure that the area unBéequates

to that undefP.
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7.2 Discussion and Summary

This chapter identifies a new problem with the standard ambrdo feature selection for OSC
problems. ltillustrates that important features in OSChprms distribute themselves across sim-
ilar classes, and then goes on to show that standard featieetisn techniques are not designed
to identify such features. The reason it gives for this ig theer-class similarities are typically
not incorporated into the feature selection procedures Tierefore limits the capabality of dis-
tinguishing between important features, that occur inlsinulasses, and less important ones, that
occur in dissimilar classes.

As a solution to this problem, the chapter then proposes 8ie. The OSP is a novel feature
selection methodology that has the potential to be coupliéd any feature selection technique
that makes use of the joint distribution between a featudketlam classes. The OSP captures inter-
class similarities, implicit in the ordinal scale, into afere distribution hence enabling standard
algorithms to correctly rate the importance of a featurdnwatspect to OSC problems.

It has previously been argued by reviewers that the OSP @giarevised form of smoothing,
which has widely been applied in text classification to tadklsues such data sparseness [see
McCallum and Nigam, 1998; Vilar et al., 2004]. Note, howevat the application of smoothing
in this context differs from this type of usage in at least tways. Firstly, smoothing is used
here as a pre-bag-of-words procedure in that it is used tdkestt the words that actually from
the bag-of-words. In contrast to this, smoothing in dataspeess is used to avoid zero counts.
Assuming thatv is a random word and, a random class, the typical use of smoothing would be
to estimateP(w|c) wheneverw is unseen in class(meaning that’(w|c) = 0). Secondly, rather
that using smoothing to replace unseen word counts, thetdgenhere is to use it as a means of
distinguishing between words that are descriptive of similasses from those that are not. It
turns out that, in some cases, making this distinction reguor the OSP to increase word counts
in classes where it is already maximal!

The evaluation of the OSP is presented in chapter 8 and esane experiment which com-
pares the MSE performance of three feature sets. The fitsiréegset (Base) was generated from
unmodified feature distributions. The second feature sstfiwan OSP modified distributions us-
ing a linear §;) similarity kernel, and the last feature set was generas@tjan exponentiald,)

kernel.



Chapter 8

Evaluation

This chapter reports on the evaluation of the methodoldbigtswere discussed in chapters 4, 5, 6,
and 7. Although these evaluations were all performed seglgr#hey can still be roughly classed
into two main groups. Chapters 4 and 5 focus on the extracfieentiment rich phrases, whereas
chapters 6, and 7 are based on Ordinal Sentiment Classificalhe results obtained within the
two respective groups often influenced the subsequent&hdr instance, the optimal parame-
ters that were found in chapter 4 where used in chapter 5,ianddy those found in chapter 6
were used in chapter 7.

The methodology of these evaluations was discussed in de¢ail in chapter 3, and the fol-
lowing is a brief summary of the main points that were raisgike overall research employed six
real world text datasets: Polarity, Actors, Edmunds, Sdériters, and the Trec Blog Collection.
WordNet was also used as a reference dataset for obtaini@gllénformation. Pre-processing
of the datasets included tokenisation as a compulsory B@&p,Tagging and stemming were only
performed when specified, and finally conversion to a coegisase and stop-word filtering were
always performed. Feature selection was done using Intwmé&ain, the Chi-Squared score,
and Document Frequency. The default approach was to use $€l¢ot the top 2% of the fea-
ture set. Naive Bayes and Support Vector Machines werenthasupervised classifiers that were
used. They were mainly employed to solve OSC problems. THerpgance of the classifiers
was measured using either Mean Squared Error or Accuracgignificance was tested using the
two-tailedt-test, at they < 0.05 level. The samples for the significance tests were obtaisgdju

20-folds of cross validation.

67
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Figure 8.1: Comparison of the Pattern Selection Technique&ctors
8.1 Evaluation of the PPS Algorithm

Three main experiments were employed to evaluate the pattection procedures discussed
in chapter 4. The first experiment was a direct comparisowdxst the three automated pattern
selection techniques, i.e. 1G, CHI, and DF. The second éxget compared the performance
manual patterns against that of automatically generated.ofhe last experiment compared the
effect of a sentiment rich background dataset against frhon-sentiment rich one.

All three experiments employed bi-polar versions of theokstand the Edmunds datasets
as the un-labelled test examples. These bi-polar versi@ne derived as follows: For the Ac-
tors dataset, classes 1 and 5 were used as the negative dtinek prbasses respectively. For the
Edmunds dataset, the negative class was formed from classed 2 and the positive one was

formed from classes 27 and 28. The experiments also used¢geBlog Collection as a query
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Figure 8.2: Comparison of the Pattern Selection Techniqundsdmunds

dataset in order to obtain the probability estimates reguio compute the orientation of a phrase

as discussed in Equation 4.2.

8.1.1 Experiment 1: Comparison of Pattern Selection

Figures 8.1 and 8.2 respectively illustrate the averagélDelassification accuracies achieved
while selecting patterns using 1G, CHI, and DF. The pattemese selected from the Polarity
dataset, and then used to extract phrases from either th@sAot the Edmunds dataset. The
Polarity dataset was chosen as it has a large feature sehasidvbuld yield a larger variety of
patterns. Also note that the patterns consisted of uni{giggle PoS tags), bi-tags (two consecu-
tive PoS tags), tri-tags (three consecutive PoS tags), &tags (a mixture of all three).

The results show in both datasets that DF is mostly better@hél, which in turn is also mostly

better than IG. This contradicts several previous studiefeature selection that have reported
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Figure 8.3: Manual vs. Automated Pattern Selection

the opposite trend in performance [Yang and Pedersen, 1¥gstiani, 2002; Forman, 2003].
Both IG and CHI are known to return features that are relbtiveore discriminative than those
returned by DF [Forman, 2003]. These results strongly ssigbat the discriminative ability of a
PoS pattern does not directly influence that of the bi-grdarestracts.

The results also show that uni-tags and mix-tags tend to thevieest performance levels, fol-
lowed by bi-tags and finally tri-tags. Note that this goesirgiahe argument by Turney [2002]
which states that a phrase would provide more context thargkesvord. Nonetheless, it is possi-
ble that some information could be missed out by phrasesnbtance, the word “Absolutely” has
a positive orientation of 1.02. However, given the extrdab Yyou think it will work? Absolutely”

a bi-tag can only extract the word “Absolutely” within therpke “? Absolutely” which has a
lower orientation of 0.79. It is therefore preferable nobinit uni-tags all-together, and this prob-
ably explains the good performance of mix-tags. In additmthis, the number of phrases that

match bi-tags and tri-tags are expected to be fewer thae thas match uni-tags and mix-tags.

8.1.2 Experiment 2: Manual vs. Automated Pattern Selection

Figure 8.3 illustrates the average 20-fold classificatimrugacies achieved while using either man-
ually or automatically selected PoS patterns. The manutma were adopted from the study
by Turney [2002] and are listed in Table 4.1, whereas theraated ones were selected using the
DF of uni-tags, bi-tags, tri-tags, and mix-tags. Note that performance of the manual patterns

is independent of the-axis and hence is a straight line. As with the previous erpamt, the
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No of DF IG CHI
Patternsy SR | NSR | Diff SR | NSR | Diff SR | NSR | Diff

1 0.666 | 0.586| +0.080| 0.500| 0.515| -0.015| 0.500| 0.500| 0.000
2 0.655| 0.655| 0.000| 0.544| 0.548| -0.004| 0.500| 0.559| -0.059
3 0.657| 0.657| 0.000| 0.542| 0.548| -0.006 | 0.564 | 0.559| +0.005
4 0.662| 0.657| +0.005| 0.538| 0.537| +0.001| 0.596 | 0.568 | +0.028
5 0.659| 0.662| -0.003| 0.539| 0.536| +0.003| 0.600| 0.614| -0.014
6 0.662| 0.662| 0.000| 0.532| 0.536| -0.004 | 0.670| 0.610| +0.060
7 0.663| 0.661| +0.002| 0.568| 0.565| +0.003 | 0.669 | 0.609 | +0.060
8 0.663| 0.659| +0.004| 0.567| 0.567| 0.000| 0.668| 0.616 | +0.052
9 0.663| 0.664| -0.001| 0.569| 0.567| +0.002| 0.661 | 0.594 | +0.067

10 0.664 | 0.667| -0.003| 0.576| 0.570| +0.006 | 0.661 | 0.594 | +0.067
11 0.636| 0.664| -0.028| 0.574| 0.577| -0.003| 0.632| 0.596 | +0.036
12 0.637| 0.664| -0.027| 0.574| 0.578| -0.004 | 0.632| 0.596 | +0.036
13 0.637| 0.664| -0.027| 0.574| 0.579| -0.005| 0.641| 0.602 | +0.039
14 0.638| 0.636| +0.002| 0.574| 0.580| -0.006 | 0.639| 0.600| +0.039
15 0.639| 0.635| +0.004| 0.577| 0.579| -0.002 | 0.641| 0.594 | +0.047

Table 8.1: The Performance of Sentiment Rich Backgrouneé DatActors (uni-tags)

Polarity dataset was also employed as the sentiment ridigbaund corpus.

The results show that uni-tags are, on average, slighttgb#tan manual patterns on both
datasets whereas mix-tags are only better on the Actorsetatdhis therefore places uni-tags
as having the average best performance, followed by maratedrps, mix-tags, bi-tags, and fi-
nally tri-tags. The high performance of manual patternsoisumexpected as experience shows
that manual pattern construction is both rigorous and toresuming [see Jackson and Moulinier,
2002;Section 4.2]. Each pattern, once derived, must bedesjainst a representative collection
and fine tuned in light of the results. This is an iterativegess that must be done by a domain
expert. It is therefore not surprising to expect a bettefgperance when using such carefully
designed patterns. However, the advantage of the autorpategtns is that they reduce the de-
mand on the knowledge engineer. This makes it suitable ihcappns whereby the data structure

morphs rapidly making it infeasible to employ hand-craftechniques.

8.1.3 Experiment 3: Effects of a Sentiment Rich Background

Tables 8.1, 8.2, 8.3 and 8.4 illustrate the classificatiaukeries achieved on Actors and Edmunds
while using either a sentiment rich (SR) or a non-sentimigtit (NSR) background dataset. The

Polarity dataset was used as the SR background, whereasrfetds used as the NSR back-
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No of DF IG CHI

Patternsy SR | NSR | Diff SR | NSR | Diff SR | NSR | Diff

0.635| 0.520| +0.115| 0.500| 0.508| -0.008 | 0.500| 0.510| -0.010
0.580| 0.580| 0.000| 0.510| 0.562| -0.052| 0.500| 0.502| -0.002
0.625| 0.625| 0.000| 0.520| 0.562| -0.042| 0.540| 0.502| +0.038
0.630| 0.610| +0.020| 0.535| 0.540| -0.005| 0.595| 0.525| +0.070
0.635| 0.620| +0.015| 0.535| 0.562| -0.028 | 0.600| 0.528| +0.072
0.640| 0.620| +0.020| 0.540| 0.562| -0.022| 0.662 | 0.542 | +0.120
0.642| 0.618| +0.025| 0.555| 0.598| -0.042 | 0.660| 0.542| +0.118
0.650| 0.620| +0.030| 0.562| 0.578| -0.015| 0.660| 0.542| +0.118
0.645| 0.632| +0.012| 0.565| 0.575| -0.010| 0.610| 0.542| +0.068
10 0.638| 0.632| +0.005| 0.565| 0.582| -0.018 | 0.610| 0.542| +0.068
11 0.642| 0.638| +0.005| 0.570| 0.575| -0.005| 0.610| 0.552| +0.058
12 0.645| 0.638| +0.008| 0.572| 0.580| -0.008 | 0.610| 0.552| +0.058
13 0.650| 0.638| +0.012| 0.575| 0.580| -0.005| 0.628 | 0.545| +0.082
14 0.650| 0.642| +0.008| 0.570| 0.588| -0.018 | 0.620| 0.542| +0.078
15 0.652| 0.645| +0.008| 0.570| 0.582| -0.012| 0.620| 0.558 | +0.062

=

O©CoOoO~NOULhWN

Table 8.2: The Performance of Sentiment Rich Backgrouné DatEdmunds (uni-tags)

ground. Each cell in the SR and NSR columns represent thagaeaf 20 folds of cross valida-
tion. The difference between these two columns is shownarDiff column with all statistically
significant differenceé’sshown in bold. Uni-tags were used in the first two tables wimeMix-tags
were used in the last two. These were chosen as they were folelthe most effective in the
previous two experiments.

Note, in both test datasets, that both DF and CHI are on amarage effective when using
a sentiment rich background dataset. This is true for bothags and mix-tags. The effect is
more pronounced with CHI, which performs significantly betin almost all pattern sizes when
using a SR background dataset. IG on the other hand does riotrpesery well with SR data.
However, its performance is the lowest of the three pattelection techniques making it a less
attractive option. Nonetheless, the general trend is tikeaf@ CHI have the highest performances
and also that they perform better on a SR background datéket.offers strong evidence of the

importance of using a SR background dataset.

!Measured using the two tailgetest at thep < 0.05 level.
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No of DF IG CHI
Patternsj SR | NSR | Diff SR | NSR | Diff SR | NSR | Diff

1 0.666 | 0.586 | +0.080| 0.500| 0.501| -0.001| 0.500| 0.500| 0.000
2 0.655| 0.655| 0.000| 0.500| 0.502| -0.002| 0.500| 0.498 | +0.002
3 0.657| 0.645| +0.012| 0.548| 0.496| +0.052| 0.500| 0.497 | +0.003
4 0.644| 0.645| -0.001| 0.539| 0.495| +0.044| 0.566 | 0.497 | +0.069
5 0.648| 0.639| +0.009| 0.546 | 0.496 | +0.050| 0.600 | 0.496 | +0.104
6 0.644| 0.639| +0.005| 0.546| 0.506 | +0.040| 0.600| 0.495| +0.105
7 0.648| 0.639| +0.009 | 0.544| 0.548| -0.004| 0.616| 0.497| +0.119
8 0.658| 0.645| +0.013| 0.540| 0.548| -0.008| 0.625| 0.497 | +0.128
9 0.657| 0.636| +0.021| 0.536| 0.545| -0.009| 0.622| 0.498| +0.124

10 0.662| 0.631| +0.031| 0.531| 0.548| -0.017| 0.618| 0.498| +0.120
11 0.654| 0.625| +0.029| 0.530| 0.556| -0.026| 0.673| 0.498 | +0.175
12 0.652| 0.635| +0.017| 0.531| 0.556| -0.025| 0.669 | 0.504 | +0.165
13 0.649| 0.635| +0.014| 0.529| 0.594| -0.065| 0.670| 0.503 | +0.167
14 0.650| 0.635| +0.015| 0.538| 0.594| -0.056| 0.672| 0.504 | +0.168
15 0.647| 0.635| +0.012| 0.537| 0.594| -0.057| 0.669 | 0.504 | +0.165

Table 8.3: The Performance of Sentiment Rich Backgrouné DatActors (mix-tags)

8.2 Evaluation of Positional Information

The two positional weighting schemes discussed in chaptesrg evaluated by comparing their
unsupervised sentiment classification performance oolairpersions of the Actors and Edmunds
datasets. Following from the results in the previous sactaly uni-tags selected from the Polar-
ity dataset using DF were used here as these were largelyd toure the most effective. Most of
the other default experimental settings were the identa#iose in the previous section.

Figure 8.4 illustrates the average 20-fold classificaticcugacies achieved by the two weight-
ing functions for uni-tags of size 5, 11, and 15 (The compdetof results are given in Figure A.3
and A.4 of the General Appendix). The results indicate tlefgpmance on the Actors dataset
benefits withw,,, but looses withuvg. This clearly corresponds with the distribution in Figuré 5
of chapter 5 where sentiment rich words within Actors docat®@re mainly concentrated within
the front half with a few spikes in the conclusions. A simiarrespondence is also present within
the Edmunds dataset which benefits more fromuhéunction as most of its sentiment rich words
are concentrated in the central body of its documents.

Nonetheless, despite the apparent benefits suggested hjpdiie results, a pre-requisite to
weighting a phrase by its locality is knowledge of the disition of sentiment rich words within

documents of the domain of interest. Without this knowledgerformance improvements of
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No of DF IG CHI

Patternsj SR | NSR | Diff SR | NSR | Diff SR | NSR | Diff

0.635| 0.520| +0.115| 0.500| 0.498| +0.002| 0.500| 0.510| -0.010
0.580| 0.580| 0.000| 0.498| 0.498| 0.000| 0.500| 0.535| -0.035
0.625| 0.582| +0.042| 0.530| 0.478| +0.052| 0.500| 0.538| -0.038
0.608| 0.590| +0.018| 0.528 | 0.462| +0.065| 0.540| 0.530| +0.010
0.600| 0.590| +0.010| 0.528 | 0.470| +0.058 | 0.598 | 0.532 | +0.065
0.575| 0.598| -0.022| 0.528| 0.475| +0.052| 0.600| 0.532| +0.068
0.585| 0.592| -0.008| 0.538| 0.505| +0.032| 0.588| 0.535| +0.052
0.590| 0.602| -0.012| 0.532| 0.505| +0.028| 0.590| 0.538 | +0.052
0.608| 0.590| +0.018| 0.538| 0.492| +0.045| 0.592| 0.530| +0.062
10 0.610| 0.580| +0.030| 0.560| 0.490| +0.070| 0.590| 0.518 | +0.072
11 0.595| 0.582| +0.012| 0.552| 0.510| +0.042| 0.632| 0.505| +0.128
12 0.598| 0.575| +0.022| 0.562| 0.510| +0.052| 0.628 | 0.495| +0.132
13 0.600| 0.575| +0.025| 0.562 | 0.522| +0.040| 0.632| 0.482| +0.150
14 0.595| 0.585| +0.010| 0.548| 0.522| +0.025| 0.628 | 0.482 | +0.145
15 0.605| 0.585| +0.020| 0.548| 0.522| +0.025| 0.628 | 0.502 | +0.125

=

O©CoOoO~NOOUDWDN

Table 8.4: The Performance of Sentiment Rich Backgrouné DatEdmunds (mix-tags)

any weighting function would only be by chance. Consequeiitlis important to sample the

distribution of the domain, as was done here, prior to enmiptpgny weighting function.

8.3 A Comparative Study on OSC

The multi-class classification techniques that were disedisn chapter 6 were compared along
two main dimensions: (1) Their MSE performance, and (2) Tblaissification speed. The com-
parisons were performed between OVA, AvA, SOA, BSA, Naiagds, and SVM-reg. Note that
the underlying binary classifiers of OVA, AvA, SOA, and BSAr@®uilt using both Naive Bayes
and SVM-reg leading to a total of 12 multi-class classifmatchemes altogether. All the experi-

ments were performed on the three standard ordinal datasetactors, Edmunds, and Scale.

8.3.1 Experiment 1: Comparison of MSE Performance

Figure 8.5 illustrates the MSE performances achieved bylthenulti-class classification tech-
niques when evaluated on the three standard datasets. ifibefenture sets were reduced to
the indicated sizes using IG. Each point in the graphs repteghe average of 20 folds of cross

validation.
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Figure 8.4: Performance of the Weighting Functions on thex8kis
The most distinct feature about the results is that SVM-relgly the best performances in 2/3

datasets, and is only marginally outperformed by the SOA)émented using Naive Bayes, in

the Scale dataset. This outstanding performance is natisiagpbecause SVM-reg is well known
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Figure 8.5: MSE of SVM-reg and Naive Bayes based classifiel®SC

for its effectiveness and is considered to be the currete-sfathe-art in classification.
Another distinct feature about the results is that the S\&igldbased schemes tend to have a
more varied performance than the Naive Bayes based onéd) sidiggests that Naive Bayes is

more stable than SVM-reg. This result confirms observatioage in previous studies whereby
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Figure 8.6: Confusion Matrices for OvA on Actors and Edmunds

Naive Bayes was found to be highly robust when subjectedtmws test conditions [Mukras,
2004]. It is for this reason that Naive Bayes is a favourifteice for industrial applications that
require reliable classification techniques.

Note that the OvA approach generally had the poorest pediocain all datasets except Ed-
munds. Here, it performed quite well coming in third when iempented using SVM-reg, and first
when using Naive Bayes. This result is slightly unexpefitethe reason that the Edmunds dataset
has the highest class skew, and hence one would expected/ghagproach to perform poorest
here. In order to investigate this result further, the ceitiln matrices generated over 20-folds
of cross validation on the Actors and Edmunds datasets whileg 2% of the initial feature set
were plotted as shown in Figure 8.6. A confusion matrix corapa classifiers prediction against
expert judgements on a class-by-class basis. The entriessrian-diagonal cells are indicative of

the classifiers incorrect predictions, and hence the bestasio is when all entries are confined
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Figure 8.7: Comparison of SVM-reg and SOA on the Scale Datase

to the diagonal cells. In Figure 8.6, the entries in eacharellrepresented by a gray-scale colour
scheme; the darker the shade, the fewer the entries. Iddbdglls except those on the diagonal
should be dark, as this indicates total agreement betweeexibert and the classifier.

From the Actors confusion matrix, it is clear that the OvA eggzh has a high preference
for the two extreme classes, i.e. positive and negatives ptobably highlights the difficulty in
classifying neutral documents. In addition to this, the lkmargin of classes in the Actors dataset
means that most documents would most likely resemble throse the extreme classes [Koppel
and Schler, 2006]. Note also, in the Edmunds confusion rjdtrat there exists a broad band
along the main diagonal. Furthermore, this broad band isl&ivinto two main clusters, one at
each end of the main diagonal. These two clusters clearlyepiftat, as with the Actors dataset,
the OVA approach also prefers the extreme classes of the iEtiataset. However, the large
number of classes in this dataset means that the incorredictions are distributed over a large
area. This therefore reduces the overall MSE, and enal#edvA approach to perform relatively
well on the Edmunds dataset.

The performance of AvA does not fluctuate as much as that of,@ué it seems to be centred
around the average across all datasets. It is interestingtéothat AvA implemented using Naive
Bayes is identical in performance to Naive Bayes. This camxplained by noting that AvA
retains the original classes. Consequently, the class Iswdu it builds are identical to those of
Naive Bayes and hence their identical performance.

The SOA performs relatively well on most datasets and evepesiorms SVM-reg on the
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Figure 8.8: Confusion Matrices for SOA on Edmunds

Scale dataset when implemented using Naive Bayes. Ind-@urone can clearly see that al-
though the SOA confusion matrix has a broader diagonal rélaively more well aligned diag-
onal than that of SVM-reg. Note, however, that the SOA dropgarformance on the Edmunds
dataset. The confusion matrices in Figure 8.8 reveal thsiperformance drop is due to its un-
usual preference for classes 1, 10, 20, and 28. This is pholdaie to two reasons: Firstly, as
was experienced by the OVA approach, most documents teresémble to the two extremes
polarities and hence the preference of SOA for classes 1 &n&&condly, the high number of
predictions for classes 10 and 20 clearly mean that mosieidiate class documents resemble
these two classes to the SOA. One possible explanation ifoistthat the step-wise approach of
the SOA (see Figure 6.3) coupled with the high level of cl&esvin the Edmunds dataset causes
it bundle all intermediate class documents into the clattsgdie between the central class and the
extreme classes, i.e. classes 10 and 20. It would howeverdassary to perform further analysis
to ascertain these explanations and this is a possible aréadre work.

As for the two BSA techniques, it is clear that using KL-dista to assign the middle odd
class (i.e. BSA-KL) is better than simply doing so randonlg.(BSA-RN). BSA-KL performed
quite well, and its Naive Bayes implementation was obskteebe at par with SVM-reg on the
Scale dataset. It is worth noting that, in the Scale datémeh BSA techniques have the same
performance. The reason for this is that the Scale datased blasses, which is equal to the third
power of two, i.e23. This therefore means that all its binary splits are eveizesand hence both

BSA-RN and BSA-KL would yield the same binary trees.
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Classifier| Dataset | Single OvA AVA SOA | BSA-RN | BSA-KL
Scale 260.1| 1714.0| 1231.9| 1453.2 650.0 669.0
SVM-reg | Actors 748.1| 7066.4| 1640.8| 3986.6| 1643.0| 1736.3
Edmunds| 816.2| 13598.2| 12689.6| 25225.5| 2795.2| 2841.2
Scale 130.4| 382.8| 493.0f/ 351.0 284.0 304.1
NB Actors 136.2| 361.9| 360.8| 3124 276.2 294.8
Edmunds| 155.8| 2015.7| 5668.6| 1993.2 835.4 871.8

Table 8.5: Time Performance in Milliseconds Per Crosselaion Fold

8.3.2 Experiment 2: Comparison of Classification Speed

Table 8.5 illustrates the average time in milliseconds #aath classifier took to train and test on
over each of the 20 folds of cross validation. For each dgtdseinitial feature set was reduced
by 98% using IG. For each row of each dataset, the perfornsasigaificantly f < 0.05) better
than the rest are shown in bold.

The most distinct aspect of the results is that Naive Baggdemented as a single classifier,
attained the highest speed. The results also show that iaiesist twice as fast as any other
classifier on all respective datasets. In addition to this,Naive Bayes based classifiers are also
much faster than their respective SVM-reg based countstpd@hese results are highly encour-
aging, and serve to further support the evidence that Naiwe8is a highly robust classifier that
can be as good as other relatively much more complex alteesat

The second fastest classifiers were the BSA techniques. widssexpected as they had the
lowest time complexity, i.eO(log m). Understandably, BSA-RN was faster than BSA-KL which
had to contend with the overhead of computing the KL-distatNonetheless, its MSE was much
better than that of BSA-RN.

For the SVM-reg based techniques, the BSA schemes wergviadlly AvA approach. Note,
however, AvA was the slowest classifier for the Naive Bayaseld techniques. The reason for
this difference is that the speed of the SVM-reg on a givessifigation task is more dependent
on the number of documents, whereas that of Naive Bayestie dependent on the number of
classes. Hence, since AvA reduces the test setseteral small binary problem#s SVM-reg
based version is quite fast as the problems are quite smalveEsely, it's Naive Bayes based

version is much slower as the classes are numerous in number.
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Dataset | Vec IG CHI4 CHI,,,—1
size| Base| S Se Base| S Se Base| S Se
5| 55.57| 54.99| 56.61| 59.10| 55.94 | 60.83| 65.76| 64.60| 61.37
75| 41.92| 41.83| 41.81| 44.49| 42.80| 45.28 | 64.91 | 56.75| 44.55
150 | 40.74| 39.83| 40.22| 42.68| 40.46 | 42.67 | 64.83| 56.71| 42.57
Edmund| 600 | 39.02| 38.51| 39.09| 39.84| 39.23| 39.97| 60.57 | 48.16| 39.89
1100| 38.84| 38.81| 38.98| 39.05| 38.87| 39.41| 55.46 | 44.22| 39.40
1200| 38.86| 38.78| 38.98| 39.32| 38.92| 39.38| 55.45| 43.89| 39.37
3000| 39.30| 39.08| 39.19| 39.10| 38.88| 39.39| 53.31| 41.79| 39.38
5| 528 | 553 | 551 | 5.03| 492 | 550 | 517 | 5.35 | 5.55
75| 281 | 289 | 3.14 | 399 | 356 | 424 | 450 | 3.92 | 4.36
150| 253 | 265 | 274 | 3.34 | 280 | 3.73 | 3.98 | 3.37 | 3.54
Scale 600| 221 | 233 | 245 | 254 | 235 | 264 | 299 | 2.62 | 2.57
1100| 2.24 | 2.36 | 230 | 232 | 233 | 239 | 2.83 | 235 | 2.39
1200 2.21 | 237 | 232 | 230 | 232 | 236 | 2.83 | 2.32 | 2.33
3000| 226 | 229 | 229 | 229 | 229 | 231 | 231 | 229 | 2.32
51191 | 192 | 190| 190 | 190 | 199 | 1.89 | 1.98 | 1.99
75| 158 | 155 | 157 | 162 | 158 | 162 | 1.65| 1.67 | 1.63
150| 151 | 153 | 154 | 156 | 148 | 154 | 1.63 | 1.55 | 1.53
Actors 600| 147 | 148 | 146 | 149 | 153 | 151 | 155 | 1.51 | 1.50
1100| 145 | 147 | 147 | 151 | 149 | 149 | 150 | 1.48 | 1.47
1200| 1.46 | 1.47 | 147 | 148 | 1.49 | 1.49 | 1.53 | 1.48 | 1.47
3000| 152 | 149 | 146 | 149 | 146 | 146 | 150 | 1.48 | 1.50

Table 8.6: The Impact of the OSP while using SVM-reg

8.4 Evaluation of the OSP

The OSP was evaluated on three OSC datasets, i.e. Actorsurieidmand Scale. Its impact
was analysed by comparing Naive Bayes and SVM-reg perfwcenan three feature vectors that
differed only in the modifications made to the feature distiions that they were generated from.
The first feature vector (Base) was generated from unmodiidire distributions. However, the
second and third were generated from OSP modified distoibsitusing either a linears() or an
exponential §.) similarity kernel respectively. Note also that three freatselection heuristics
were used, i.e. IG, CHJ and CHJ,,_;. This resulted in a total of nine feature vectors per dataset
Table 8.6 and 8.7 respectively illustrate the results thatewobtained when SVM-reg and
Naive Bayes were applied to the three OSC datasets. Edcimdbese two Tables, represents the
average MSE that was obtained in 20 folds of cross valida#on each vector size of each feature
selection heuristic (IG, CH| or CHI,,_1), the performances significantly « 0.05) better than

the rest are shown in bold. The complete set of results fromwthose in Table 8.6 and 8.7 were
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Dataset | Vec IG CHI4 CHI,,,—1
size| Base| S Se Base| S Se Base| S Se
51200.1| 194.8| 152.0| 170.4| 136.5| 147.2| 245.3| 234.4| 148.2
75| 74.50| 75.94| 67.22| 74.73| 68.45| 73.57| 210.3| 129.3| 71.66
150 | 64.64| 63.90| 60.36| 67.44| 59.86| 66.85| 203.1| 127.9| 65.00
Edmund| 600 | 58.61| 54.87| 53.79| 58.30| 53.65| 59.61| 171.5| 87.83| 59.15
1100| 57.45| 54.98| 51.79| 57.36| 51.89| 57.63| 119.6 | 72.49| 56.45
1200 | 57.41| 54.77| 51.55| 58.79| 52.14| 56.25| 119.1| 70.10| 56.04
3000| 56.96| 55.47| 49.05| 55.81| 52.84 | 56.50| 105.3| 61.96| 55.71
51 10.75| 11.68| 9.12 | 10.29| 9.18 | 11.61| 16.92| 9.98 | 11.87
75| 431 | 3.82 | 407 | 547 | 498 | 6.29 | 10.95| 5.11 | 6.32
150| 3.05| 3.21 | 357 | 454 | 345 | 524 | 6.35 | 450 | 4.86
Scale 600| 262 | 243 | 291 | 335 | 250 | 297 | 4.11 | 3.17 | 3.17
1100| 2.88 | 255 | 287 | 276 | 2.63 | 2.84 | 3.82 | 2.71 | 2.77
1200| 2.84 | 258 | 280 | 281 | 254 | 292 | 3.74 | 2.66 | 2.84
3000| 248 | 233 | 237 | 266 | 225 | 2.74 | 275 | 248 | 2.55
5| 375 | 381 | 394 | 415 | 397 | 483 | 417 | 4.36 | 4.82
75| 244 | 240 | 246 | 254 | 237 | 241 | 267 | 251 | 2.37
150| 222 | 210 | 222 | 228 | 213 | 213 | 247 | 2.14 | 2.13
Actors 600| 198 | 188 | 1.88 | 197 | 187 | 1.85| 222 | 1.89 | 1.89
1100 196 | 1.81 | 1.77 | 194 | 181 | 1.79 | 200 | 1.84 | 1.82
1200 195 | 1.75| 180 | 192 | 181 | 1.78 | 1.97 | 1.83 | 1.79
3000| 1.87 | 1.74 | 181 | 191 | 1.76 | 1.74 | 209 | 1.74 | 1.81

Table 8.7: The Impact of the OSP while using Naive Bayes

obtained are respectively illustrated in Figure A.1 and @éf.the General Appendix.

Between the three feature selection heuristics, the effethe OSP was, on average, felt
most by CH},,_; then CHI, and finally 1G. Note, however, that an opposite trend was veske
with MSE performance in that IG was at the top, followed by ¢ldhd lastly CH}, ;. This
performance trend is not surprising as |G has been know forpebetter than CHI [Sebastiani,
2002; Yang and Pedersen, 1997]. In addition to this, thigdtiedso helps to explain the relatively
larger impact that the OSP had on the two CHI techniques. Whagsprobably because the OSP
manifests the information content within the distributioha feature, and this could have been
of benefit the CHI technique. However, being informatiorotie¢ic in nature, IG already has the
baseline capability of utilising information content arehice the OSP would have a lesser impact
on it.

As for the three datasets, the impact of the OSP is felt mogidunds followed by Scale

and finally Actors. This trend can be explained by noting thatEdmunds dataset extends across



8.4. Evaluation of the OSP 83

IG Between Class 28 and each of the Rest IG Between Class 8 and each of the Rest IG Between Class 5 and each of the Rest
0.

5 10 15 20 25 2 3 4 5 6 2 3 4
Classes (Edmunds Dataset) Classes (Scale Dataset) Classes (Actors Dataset)

Figure 8.9: IG between the Extreme Positive and all Othes<&la

a wider number classes, meaning that its inter-class siti@awould also possess an equivalently
larger range. This is clearly evident in Figure 8.9 wherehagraph illustrates the average 1G of
the top 2% features contained in the most positive class achi@ the other classes. Note that the
IG of the Edmunds dataset spans abfitx 10~2 units, whereas those of the Scale and Actors
datasets respectively cover ab@us x 10~2 and5.0 x 10~3 units. Consequently, one would
expect the Edmunds dataset to be relatively more respotsittee OSP as its wide inter-class
similarity bounds makes it easier to distinguish betweeaituies that occur in nearby classes over
those that do not. Conversely, at the other extreme, thd smext-class similarity bounds of the
Actors dataset makes its features resemble those of argorihbdataset. This makes it difficult
to distinguish between features that occur in nearby cafssen those that do not. Consequently,
the Actors dataset benefits least from the OSP due to thisrreas

The overall results suggest that the OSP has a positive iropabe performance of the Base
distributions. There are only 3 out of 126 instances in T&xeand 8.7 where the Base distribu-
tions were found to be significantly better than the OSP medlibines. This is overwhelmingly in
favour of the OSP. Consequently, there is strong evidensapport of the initial hypothesis that
important features in an OSC problem distribute themsedeesss similar classes.

A supplementary experiment was performed with the aim adstigating the individual fea-
tures that were affected by the OSP. The most outstandinigréethat was found was the word
“smoothest” from the Edmunds dataset which was promotedobyta2,300 positions up the IG
feature ranking by the OSP. A study of the corpus revealetthig feature was highly concen-
trated within positive reviews occurring in contexts sush‘léis without a doubt the smoothest
riding vehicle | have ever driveéh.Hence, due to its uni-polar occurrence, its distributioasw

revised so to yield an IG score that would be relatively highan if its presence was divided
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between distant classes.

8.5 Summary

This chapter evaluates all the methodologies that weraislstl throughout the thesis. The PPS
algorithm, which automates the process of PoS patternts®ieavas evaluated by a series of
3 experiments. The first of these investigated three pattelection techniques: IG, CHI, and
DF. DF was found to be most effective, followed by CHI, andha$G. This experiment also
found patterns of either unit length or a mixture of lengthse, two, or three) to yield the best
performances. The second experiment compared PPS gehpadtierns against manually formed
ones and found the two to be roughly equivalent. The lastraxgat compared the performance
of a sentiment rich dataset against that of a non-sentimantad found the former to be crucial
in the process of selecting PoS patterns.

The experiments on the effect of weighting phrases withaesip their locality in a document
found it to be useful to do so. However, it was also found to beessary to first sample the
distribution of sentiment rich words in a corpus prior to ptilag a weighting criterion.

The single classifiers (SVM-reg and Naive Bayes) were fdonge more effective than the
decomposition ones on OSC problems. This was true for exeets involving both MSE and
Time performance. The main reason behind this was that tigdestclassifiers were found to
be inherently capable respecting inter-class similaiti€his therefore meant that decomposing
them would probably degrade their natural predictions.ré&heere however a few cases, such as
the SOA implemented using Naive Bayes, where the decotigposiassifiers were significantly
better.

Amongst the decomposition classifiers, the BSA was founcttaverage with regard to MSE
performance. It was, however, the fastest with regard te performance. This was mainly due
to its superior time complexity, i.e. logarithmic as conmgghto others which were linear at best.

The experiments on the OSP found it to be capable of impraiagerformance of both IG
and CHI on OSC problems. The two similarity kernéfsandS., both had a positive effect on the
performance of one or more of the feature selection teclesiqirhis success rate has important
implications in that it offers the possibility of adoptinglatively more advanced kernels that could

yield further improvements.



Chapter 9

Conclusions and Future Work

This research has investigated the five objectives that ligteel out in the introduction, with the

sixth one being the evaluation. In this chapter, these tisgescare compared against the work
that was eventually achieved during the course of the stQdgnments and recommendations are
made regarding contributions of the methodologies that l@en presented. Finally, some issues

that deserve further investigation are discussed.

9.1 The Objectives Revisited

Each of the objectives that were undertaken in this resdaact yielded at least one contribution
to the discipline of Sentiment Analysis of Text. Firstly,dwew ordinal datasets have been added
to the community of OSC. These have both been employed imatienally published work and
have proven to be important test beds for OSC research. 8lgctime PoS pattern selector was
developed. Thirdly, the importance of position in sentitneassification of text was established.
Fourthly, a ranking of suitable classifiers for OSC was fdated. In addition to this the BSA
was also added into the research community. Lastly, then@r@moothing Procedure, which
revolutionises the manner in which feature selection iopered in OSC, is contributed.

In this section, each of the objectives that led to theseouarcontributions are revisited and
a summary of how they were addressed is given. In additiohiso tecommendations of how the

resultant methodologies should be employed.

1. To compile two ordinal SAOT datasets: Two ordinal SA0T datasets, i.e. Actors and Ed-

85
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munds, were successfully compiled. These two datasetsy aliih the Scale dataset devel-
oped by Pang and Lee [2005] in a separate research, servee psmary test-beds for all
experiments involving OSC. They have also been employedéaat two other publications

[see Chakraborti et al., 2007; Mukras et al., 2007].

. To research and develop an automated PoS pattern selectiongarithm: The PPS al-
gorithm, which automatically selects PoS patterns, wadampnted and evaluated. This
algorithm operates by first applying PoS tags to the words laiballed sentiment-rich-
corpus. The words in this corpus are then omitted, after kvhiarmal feature selection
techniques such as DF, CHI, and IG are used to select PoSngattevarious sizes. The
empirical results in Experiment 2 showed that the resufpatterns were at leaas good as

the manually selected ones. This consequently fulfils theentiobjective.

The results in Experiment 1 also revealed some interestiniintys regarding the effective-
ness of the feature selection techniques. DF was found torb&yerage, the most effective
followed by CHI and then IG. These results contradict presip observed trends in tra-
ditional feature selection where 1G and CHI have consistenitperformed DF [see Yang
and Pedersen, 1997; Forman, 2003]. One can therefore denthat document frequent

PoS patterns are better extractors of sentiment than mhisaiive ones.

Experiment 1 also showed that uni-tags and mix-tags tenétiomn best, followed by bi-
tags and finally tri-tags. This trend is possibly due to tHatiee sparsity of phrases that
match bi-tags and tri-tags as opposed to those that matetagmiand mix-tags. Lastly,
Experiment 3 showed that it was important to use a sentimeintbackground corpus as
opposed to a non-sentiment rich one. This was shown to bddrismth uni-tags and mix-

tags.

. To investigate possible approaches of weighting the impaahce of a phrase with re-
spect to its position: Two techniques of weighting phrases with respect to positvere
implemented. The first gave preference to phrases occuritige central body, whereas
the second gave preference to those occurring in the frahtrear. While the weighting
techniques were found to be beneficial to performance, theg @lso found to be domain
specific in that each domain required its own weighting dote It is thus necessary to

sample the domain prior to adopting a weighting scheme.
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Consequently, in as far as illustrating that the weightifglwrases can improve perfor-
mance, the current objective was met. Note, however, tleatebearch did not yield an all

purpose weighting algorithm, but rather presented a h#utigat can be used to do so.

. To perform a comparative study of multi-class classificatio techniques as applied to
OSC problems: Two types of classifiers for OSC problems were evaluated:sé&hbat
are naturally capable of handling multi-class problemsdlg classifiers), and those that
decompose the task into multiple of binary problems théeeafombining the resultant
decisions into one global decision. The BSA, a new decortipagechnique that is purpose

designed for OSC, was also amongst those evaluated.

Experiment 1 of the evaluation indicated that the singlssifeers, and in particular SVM-
reg, generally had a better MSE performance than the decsitigpotechniques. Exper-
iment 2 also showed the single classifiers to be much fastevetis Naive Bayes was
typically the fastest with classification times twice ad s any other classifier. As for the
BSA, its MSE performance was generally average. It was, liewéhe fastest amongst the
decomposition techniques due to its logarithmic time caxip}, as opposed to the others

which were either linear or quadratic.

. To implement a novel feature selection technique for OSCThe follow up study on this
objective illustrates that important features in OSC peoi8 distribute themselves across
similar classes. The study also shows that standard feaaleetion techniques would
equate the importance of such features against those thalisdributed across dissimilar

classes.

The Ordinal Smoothing Procedure (OSP) is then proposed akitos to this problem.
The OSP re-organises the distribution of a feature suchtthaformation content becomes
reflective of the classes across which it is distributed sThidone by dispersing the proba-
bility weight of each class to all other classes in a mannardiecays with ordinal distance.
The result is that features that occur in dissimilar clasgesld obtain flat distributions,
whereas those that occur in similar classes would obtadtively peaked distribution. This
then makes it possible for feature selection algorithmd g Information Gain and the
Chi-Squared score to distinguish between such featurgseriemental results on three real

world datasets confirm that important features in OSC probleccur in similar classes,
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and that utilising such features can lead to significantgserdnce improvements.

9.2 Future Work

The methods presented in this research constitute a semiftontribution to the domain of SA0T.
A complete understanding and robust implementation ofetlmesthods may assist researchers in
developing better SA0T algorithms, and also users in sgldifficult real world SAoT problems.
Nonetheless, there is still much scope for further develamrand the following sections highlight

a number of issues that have been identified for future work.

9.2.1 Beyond Tag Adjacency

The patterns selected by the PPS algorithm were found to st as good as the manually
selected ones. Note, however, that only uni-tags and ngixsaere able to significantly outperform
the manual patterns, whereas bi-tags and tri-tags werdyrpmgirer. This is possibly due to the
relative sparsity of phrases that match bi-tags and ts-taggomparison to those that match uni-
tags and mix-tags. A possible solution for this could be tex¢he consecutive tag constraint
within certain linguistic contexts. For instance, givee tentence “| felt confident and safe in
their company” the bi-tadJ NN would, after pre-processing, only extract one the phrasafge"
company.” However, if the algorithm were to detect the twojomed adjectivesgconfidentand
safe and relax the consecutive tag constraint, then the saneghivould extract two phrases,
“confident company” and “safe company.” Such rules coulahificantly reduce the sparsity of
the phrases extracted by bi-tags and possibly tri-tags.

The results illustrated the positive effects of weightifggses with respect to position. How-
ever, the main limitation of this was that the domain had tedrapled prior to adopting a weight-
ing criteria. One way of overcoming this could be to have #&ectibn of document templates with
learnt weighting distributions. A new document collectimould then be assigned the weighting
distribution of the template that is most similar to it. Okt possibly even use a Genetic Algo-
rithm to arrive at the optimal weighting distribution. Thiguld, however, require more than just

three divisions along the text as was done in this research.
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9.2.2 Beyond OSC

The BSA was implemented as two different variants, BSA-Kd &5A-RN. The MSE perfor-
mance of BSA-KL was found to be consistently better than di@SA-RN, probably because
BSA-KL uses the KL-distance to assign middle odd classesyeds BSA-RN does so randomly.
An interesting issue is whether further improvements irfqggarance could be achieved by em-
ploying other distance measures, such as cosine or Euglitieassign the middle odd classes. It
would also be interesting to see if any improvements can tlaerbg using the majority vote of
various distance measures.

The OSP disperses the probability weights of each featweadh class to neighbouring classes
in a manner dictated by the heuristic that models the ingsscsimilarity kernel. In this research,
this kernel was implemented to model either linear or exptiakinter-class similarities. Note
that both these heuristics are synthetic. An interestitgyrzdtive experiment would be to work
with with the actual, rather than synthetic, interclassilsinties. One possibility is to mine the
similarities directly from the data by use of some metrichsuter-class IG (such as was done
in Figure 8.9), or a measure based on the semantic diffesenithin the text contained in the
various ordinal classes. These measures would, howe\at,todbe mapped into some surrogate
representation to make them useable.

Another possibility of future work looks at extending the ©® areas other than just ordinal
problems. Given that one could mine inter-class simikesifrom the data, then it should be pos-
sible to work various other problems such as those that @rarchical, or those that constantly
morph with time (such as in news filters). So long as one cattljrinfer the inter-class similari-
ties, then our procedure can, at least in theory, be extetad@dost any type of problem. Clearly
there is much potential in exploring these avenues, ancethdts in this thesis suggest promising

returns.
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Appendix A

General Appendix

A.1 Comparing Performance

In this research, all significance tests were performedguisia two tailedi-test. The two paired
samples required for this test were typically were obtaimgdg 20 folds of cross validation. This

section discusses the manner in which these two conceptsecamplemented.

Cross Validation

Cross-validation, sometimes called rotation estimatisithe statistical practice of partitioning a
sample of data into subsets such that the analysis is ipipaiformed on a single subset, while
the other subset(s) are retained for subsequent use inroorgiand validating the initial analysis.
The initial subset of data is called the training set; theeptbubset(s) are called validation or
testing sets. There are several different variants of cralgsdation and the one used here is known
as K -fold cross validation.

In K-fold cross-validation, the original sample is partitidnato X subsamples. Of th&
subsamples, a single subsample is retained as the vafidddia for testing the model, and the
remaining K — 1 subsamples are used as training data. The cross-validatbmess is then re-
peatedK times (the folds), with each of thE subsamples used exactly once as the validation
data. TheK results from the folds then can be averaged (or otherwisebmd) to produce a

single estimation.

95
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The Two Tailed t-test

Given two sets of data-points, one can usetthest to determine whether the means are distinct,
provided that the underlying distributions can be assurodzetnormal. The data-points are nor-
mally paired, so that each member of one set has a uniqusnship with a particular member of
the other set (e.g., the performance of a classifier aftediff@rent feature selection heuristics).

The two tailedi-test is conducted by first assuming that the two sets haveatine mean. The
p-value is then looked up from the computedtatistic, and ifp < 0.05, then one can reject the
initial assumption and conclude that the means are diffef@ncontrast to this, the upper tailed
t-test has an initial assumption that first mean is greatert@second. Consequently, a rejection
of this assumption can only lead to the conclusion that tiserfiean is not larger than the second,
with the possibility that they could be statistically thersa

All results in this research were reported using the twethitest at they < 0.05 significance
level. An attempt was also made to have at least 20 pairedlsarfgr each test. This mainly

achieved using 20-fold cross-validation.

A.2 Supplementary Results

Supplementary Results on the OSP

Figure A.1 and A.2 respectively illustrate the results thate obtained when SVM-reg and Naive
Bayes were applied to the three OSC datasets. Each poihgse warious graphs, represents the

average MSE that was obtained in 20 folds of cross validation

Supplementary Results on Positional Weighting

Figure A.3 and A.4 respectively illustrate the results thete obtained on the Actors and Edmunds
datasets by the two weighting functions for uni-tags ofsikze3, 5, 7, 9, 11, 13, 15, and 17. Notice
that the Actors dataset generally benefits from dhefunction (i.e. intro+con weighting) but
looses with thews function (i.e. body weighting). This is inline with the digution in Figure 5.1

of chapter 5 where sentiment rich words within the Actorsueents were mainly concentrated
within the first half with a few spikes in the conclusions. fdar conformance is also observed

with the Edmunds dataset in that Figure A.4 suggests thdEdineunds dataset generally benefits
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Figure A.1: The Impact of the OSP while using SVM-reg

with the wg function but looses with the, function. This also matches up with the Edmunds
distribution in Figure 5.1 of chapter 5 where sentiment matrds of the Edmunds documents

were mainly concentrated in the body.

A.3 Opinion Retrieval of Blogs

This section provides an account of the system that was al@®@lin this research to participate
in the Opinion Retrieval Task in the Blog Track of the 2007 TRMacdonald et al., 2007]. The
theme of the task was Opinion Retrieval of Blogs.

A blog (a contraction of the term “Web log”) is a Web site, ugumaintained by an individual
with regular entries of opinions and descriptions of event®ngst other things. The key aspect of

Blogs that makes them attractive is that they are mainlyaethby independent individuals, with
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Figure A.2: The Impact of the OSP while using Naive Bayes

the sole purpose of making their opinions known to the wdtldnsequently, blogs are highly rich
in sentiment and this makes them an invaluable resourceXoll $esearch.

The Opinion Retrieval Task was first introduced in the TREQ@®6. It basically involves
retrieving opinionated documents that are relevant to eathe 50 predefined TREC topics re-
gardless of their opinion orientation. Each retrieved doent should, however, be assigned to a
real-valuedopinion scorein the range of0. .. 1], where 0 signifies a neutral opinion, whereas 1
signifies an extreme opinion that could be either positiveemative. The collection used in both
the 2006 and 2007 Blog Tracks [Macdonald and Ounis, 2006istsof over a three million blog
posts collected over 77 days. It was meant to be a realistigstiot of the blogosphere and hence
offers an excellent test-bed for the study.

The idea that was presented in this research to addresssthéstaomposed of two phases

that draw from both NLP and IR. The technique basically explthe context of opinion related
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Figure A.3: Performance of the Weighting Functions on theoAscDataset

language constructs, such as adjectives verbs and adieobder to identify and rank opinionated

texts within the collection. These language constructsevefiosen primarily because they are
commonly associated with opinion rich contexts. For ins¢amn adjective such as “great” would
typically occur within contexts such as “great player,” gréat disaster.”

In the first phase of the procedure, PoS tags are assigned fedtures contained in a set of
training documents that are labelled with respect to opinibhese documents are then pruned
such that only a set of selected words, along with their resmecontexts, are retained. Proper
nouns are also omitted as they tend to be domain specific ey, 2002]. This results in a
corpus with a high precision of opinion rich phrases thatralatively domain independent. The
documents of the resultant corpus are then mapped onto @repeice [Salton et al., 1975] after
an SVM-reg classifier is trained on the resultant documectiovs.

In the second and last phase, a Lucene search engine is usg#ddee all documents, from
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Figure A.4: Performance of the Weighting Functions on thekads Dataset

the TREC Blog collection, that are relevant to the currepidof interest. The SVM-reg classifier
is then used to assign each of these documents to an opiros, sad this completes a single

TREC run.

A.3.1 The Opinion Retrieval System

A complete overview of the opinion retrieval system has b#testrated in Figure A.5. A crucial
resource for this system is the background set of trainirgyohents that are labelled with respect
to opinion. Each of these labels assumes a value in the ardetéc;, . .., ¢, }, wheree; < ... <
¢, andey, ¢, respectively represent an extreme negative and positiveoop

These training documents offer a good estimate of the str@@nd content of opinion rich
texts. However, one limitation with them is that they may hetgeneral enough to suffice as

good document examples for each of the 50 TREC topics. Tdetélals problem, a procedure that
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Figure A.5: An Overview of the Opinion Retrieval System.

retains the relevant contexts of language constructs suatijactives verbs and adverbs is applied.
The hypothesis behind this is based on the fact that thes#raots act as the transmitters, rather
than the objects, of an opinion. Consequently, they woulddss in much the same way across
various domains. This type of pruning would therefore galiss the opinions expressed within
the training documents.

To retain the relevant contexts, PoS tags were first appidiokt text within the training docu-
ments by using the RASP PoS tagger [Briscoe and Carroll, M@2R A context of 10 words was
then retained on either side of each word that was tagged adjective, verb, or adverb i.e.: JJT,
JJ, JJR, VO, RR, RG, RGA, RGR. Singular and plural propensauvere, however, not retained
as these tend to be domain specific [see Turney, 2002]. Oadesihing documents were pruned,
they were then mapped onto a vector space whose dimensiofegtores, were determined by
using 1G. SVM-reg was then trained on the resultant documectors.

Finally, given a list of documents from the TREC Blog Corphattare relevant to a TREC
topic, the SVM-reg classifier was used to assigniffiedocument in this list to a scorg that
assumes a real-value in the range...c,]. Note, however, that the TREC rules require that
the scorey; be mapped onto the range [6f. . . 1], where O signifies a neutral opinion, whereas 1
signifies an extreme opinion that could be either positiveegative. In order to accomplish this,

the score of thé’* document was mapped to the va*ae(w> — 1‘ which satisfies the TREC

cn—C1
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Figure A.6: The Textual Pre-Processing Pipeline

requirement.

A.3.2 Implementation

In order to prepare the TREC Blog collection, the text wag éxdracted from the initial HTML
format discarding all tokens that contained non-printatilaracters. It was then pre-processed
using the sequence of tokenization, conversion to lowercsiemming and stopword removal
(The 50 TREC topics also went through the same pre-progessaps). The resultant collection
was finally indexed using the Lucehsearch engine. This entire procedure lasted 46 continuous
days on standard hardware running on an Ubuntu Linux platfor

The second task was to prepare the opinionated trainingetatarhese were four in number
namely: Edmunds with classg€s, . .., 26}, Rateitall with classe$l,...,5}, Scale with classes
{1,...,8}, and the documents that constituted the results of the TRID6 Rolarity task, which
had classe$0, ..., 4}. Note, however, only classes 2, 3, and 4 of the last datasetwsed. These
respectively correspond to a negative, a neutral, and &ymspinion. All four datasets were pre-
processed in the similar fashion using the sequence of izdigon, PoS tagging, conversion to
lower case, stemming, and stopword removal.

Once the four training datasets were ready, their contert® wruned as discussed in the
previous section. They were then used, in succession, ito ¥dM-reg classifier in order to
classify the documents that were relevant to the 50 TRE@g$opihe outcome of the four train-
classify sessions formed the basis of four of the runs tha¢ webmitted to TREC. The fifth run
was based on plain relevance retrieval. The following shisummary of all the five runs that

were submitted:

Yhttp://lucene.apache.org
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Classifier| PoS tagging Datasets
Used performed?| Actors | Edmunds| Polarity | Scale
SVM-reg No 1.4628| 40.0806 | 0.1436 | 2.2495
Yes 1.4833| 40.1345 | 0.1418 | 2.2346
NB No 2.1058| 61.7548 | 0.1580 | 2.7946
Yes 2.1988| 61.1400 | 0.1545 | 2.7378

Table A.1: The Effect of Part-of-Speech Tagging

1. rgu0: All opinion finding features turned off. Simply a Behnce run.
2. rgul: Edmunds dataset used as background training data.

3. rgu2: Rateitall dataset used as background training data

4. rgu3: Scale dataset used as background training data.

5. rgud: TREC Polarity dataset used as background trairéte. d

Although the official Robert Gordon University (RGU) TREGuéts were far from being the
best, the highest Mean Average Precision (MAP) of 0.2798avgxd significantly from the previ-

ous years result of 0.0001. Hopefully this trend will congirfor successive TREC competitions.

A.3.3 Discussion and Summary

Amongst the five runs that were submitted, the best one amthi@WMAP of 0.2798. It also took
seventeenth position among all the runs that were subnibiteéde 20 participants. Although this
performance leaves a great deal to be desired, the appréaotploiting the context of adjec-
tives, verbs, and adverbs to identify opinionated text wagegnnovative. Future work intends to
build upon this approach by investigating the effect of alale sized contexts. Another possible
improvement is to employ Case Based Reasoning (CBR) teabsign conjunction with NLP,
to determine the focal point of a context. The hope is thatsifsgem will undergo versions of

improvement through annual participating in the confeeenc

A.4 Textual Pre-Processing

This section empirically investigates the effect that eatlthe textual pre-processing modules

in Figure A.6 has on sentiment classification performanckis investigation shall be done on
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four datasets: Actors, Edmunds, Polarity, and the Scalade&. Note also that tokenization is

bypassed as it is compulsory in all experiments.

A.4.1 Part-of-Speech Tagging

Part-of-Speech tagging is the process of marking up the sviorch text as corresponding to a
particular PoS. This mark-up is based on both the word’s tiefi) as well as its context, i.e.,
relationship with adjacent and related words in a phrasgesee, or paragraph. Interpreted this
way, PoS tagging would therefore serve as a crude form of wende disambiguation. For in-
stance, it would distinguish between the different usagémee” in “| love this movie” (a verb
indicating a sentiment orientation) and “This is a love ned\a noun neutral of sentiment). In
order to investigate the effect of PoS tagging on sentimkassdication, the four datasets (Actors,
Edmunds, Polarity, and Scale) were subjected ¢ordrol and atestexperiment. The control did
not apply PoS tags to the datasets, whereas the test didth&Hl conditions were maintained con-
stant. Tagging was performed by using the RASP PoS tadBeiscoe and Carroll, May 2002]
which took on average about 5 seconds to tag each documestndtie of tagging was such that
each word was appended with its corresponding PoS tag. Btanice, if the word “house” was
found to be a common noun then it would be replaced with “hoN&& whereNNis the PoS tag
that represents common nouns.

Table A.1 illustrates the average MSE results that wereirddaover 20 folds of cross vali-
dation using both SVM regression (SVM-reg) and Naive Bd)). For each dataset-column of
each classifier, the performance that is significantly bétte< 0.05) than the other is shown in
bold. Note that PoS tagging did not have any significant eiagerformance. As a consequence
of both this and the time overheads associated to taggingpasat was opted not to employ PoS

tagging as a default pre-processing step.

A.4.2 Stemming

Stemming is related to the study of morphology which death wie various forms that a given
word can assume. A common question in morphology is whetheeparate or collapse word

forms such agjet gets andgot Intuitively, performing such a grouping seems like thehtig

2Employs the CLAWS?2 Tagset: http://www.comp.lancs.aaaiél/claws2tags.html
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Classifier| Stemming Datasets
Used | performed? Actors | Edmunds| Polarity | Scale
SVM-reg No 1.4684| 39.7385| 0.1391 | 2.3152
Yes 1.4656| 40.2771| 0.1438 | 2.2573
NB No 2.1778| 62.5465 | 0.1535 | 2.7893
Yes 2.1098| 62.0600 | 0.1650 | 2.8334

Table A.2: The Effect of Stemming

action to take as it would stem out redundant words that Igtgally refer to the same thing.
This grouping process is referred to stismmingor lemmatization as it resembles a process of
identifying members of a lexeme and replacing them with aesgntative word.

There has not been much study on the effect of stemming iimsemt analysis. Nonetheless,
studies within the Information Retrieval (IR) communitywkashown that stemming can be quite
useful in many types of queries [Hull, 1996]. However, thedthesis here is that stemming
might be slightly harmful to sentiment classification as #ymead to the loss of information.
For instance, when groups of terms such as “baddest” (uibga for best) and “bad” (standard
meaning of dislike) are accidentally grouped into one lexem order to investigate this, the four
standard datasets were subjected to a control experimagrdithnot include stemming, and a test
experiment that did. All other conditions were maintainedstant.

Table A.2 illustrates the average MSE results that wereirddaover 20 folds of cross val-
idation. For each dataset-column of each classifier, thiogmeance that is significantly better
(p < 0.05) than the other is shown in bold. As was envisaged, stemmangalslightly negative
effect on performance. This is clearly evident in the Pofadiataset where the application of
stemming significantly lowered the performance of the Wd@ayes classifier. Nonetheless given
that stemming is known to be useful for IR queries, and alab $hme of the later studies here
are based on IR queries, it was opted to apply stemming bytdwning these studies. Hence,
unless specified otherwise, all subsequent experimenkssimgsearch do not apply stemming as

a default procedure.

A.4.3 Conversion to a Consistent Letter Case

Letter case often contains a great deal of information thatle useful in decoding sentiment.

For instance, it can be used to distinguish between a prapem neutral of sentiment such as
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Classifier| Type of Datasets
Used | Letter case Actors | Edmunds| Polarity | Scale
SVM-reg | lower 1.4656| 40.2771 n/a n/a
original 1.4737| 40.3622 n/a n/a
NB lower 2.1098| 62.0600 n/a n/a
original 2.0986| 61.7360 n/a n/a

Table A.3: The Effect of using a Consistent Letter Case

“Black” in “James Black” from a sentiment rich adjective buas “black” in “black Monday.”
Another, perhaps more important, role that letter casesglayhis domain is in stressing a point.
Clearly the phrase “AWESOME RIDE” would send a more convigcmessage than “awesome
ride.” For this reason, the hypothesis held here is thatepvésy the original letter case may be
beneficial to performance. This hypothesis was investibbyesubjecting two of the four standard
datasets (Actors, Edmunds) to a control experiment théeshall letters to lower-case, and a test
experiment that maintained the original letter case. Aleotconditions were maintained constant.
Note that the Polarity and Scale datasets were not usedyag/ére originally in lower-case.
Table A.3 illustrates the average MSE results that wereirddaover 20 folds of cross val-
idation. For each dataset-column of each classifier, thioymeance that is significantly better
(p < 0.05) than the other is shown in bold. Note that maintaining thgioal letter case hurts the
performance of SVM-reg but improves that of Naive Bayesnélbeless, none of the differences
are statistically significant and hence there is no stromgeeee that preserving the original letter
case would be beneficial to performance. This is probablgimthere is too much variety in the
manner that capitalisation is used. It was therefore omtedidpt econsistent letter case policy

all subsequent experiments of the research.

A.4.4  Stop-Word Filtering

Stop-word filtering is a kind of data set reduction procedhat functions by eliminating tokens
that may deem to be redundant in the corpus. It is applied ldth PoS tagging and stemming
because these two processes depend on contextual infonmatich would be lost as a result of
stop-word filtering.

There are at least two main motives for performing stop-witteting. Firstly, it may lead to

an improvement in classifier performance. Secondly, theativdecrease in feature set size can
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ABOUT
ABOVE
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AFTER
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AGAIN
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BOTH

BUT

BY

CAN

result in advantages relating to storage space and corignatbtosts. This study only investigates

the first motive. The second one is beyond our scope as batgstand computational efficiency
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Figure A.7: A Standard Stop Word List

THUS :
TO "
TOGETHER (
TOO )
TOWARD -
TOWARDS B}
UNDER +
UNTIL {
uP }
UPON [
us ]
VERY :

VIA :
WAS @

WE :
WELL \
WERE
WHAT <
WHATEVER ,
WHEN >
WHENCE /
WHENEVER .
WHERE !
WHEREAFTER  ?

WHEREAS *
WHEREBY $

WHEREIN £
WHEREUPON &

WHEREVER =

WHETHER #
WHITHER -
WHICH %
WHILE g

WHO
WHOEVER
WHOLE
WHOM

WHOSE

WHY
WILL
WITH
WITHIN
WITHOUT
WOULD

YET
You
YOUR
YOURS
YOURSELF
YOURSELVES
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Classifier| Stop-word Datasets

Used list used | Actors | Edmunds| Polarity | Scale
SVM-reg | standard | 1.5075| 40.7649 | 0.1438 | 2.2567
modified | 1.4656| 40.2771 | 0.1438 | 2.2573
NB standard | 2.1832| 62.3118 | 0.1605 | 2.8624
modified | 2.1098| 62.0600 | 0.1650 | 2.8334

Table A.4: The Effect of a Modified Stop-Word List

are issues that are more relevant for applications thatfanelastrial proportions.

Although stop-word filtering is a widely accepted proceduareext classification, it has had a
fair share of criticism. Nigam et al. [2000] for instanceyifal it to be detrimental to performance
hence omitting it from their experiments. There have alsentet least two studies in sentiment
classification that have also cautioned against the inukcusage of stop-word list. In one of
them, Pang et al. [2002] found tokens such as “I" and “?” to im@mgst the most discriminative
features in a sentiment rich corpus. Interestingly, thekerts are also typical members of most
standard stop-word lists. In the other study, Mukras et200fa] also proposed that standard
stop-list members such as “not” should be retained in thpusas they are often used to negate a
sentiment orientation. For instance “not” negates thentaigon of the word “good” in “not good.”

The hypothesis regarding stop-word filtering is that oneuhase a specialised stop-word list
for the SAOT domain. In order to test this hypothesis, the &iandard datasets were subjected
to a control and a test experiment. The control employed twedard stop-word list shown in
Figure A.7, whereas the test employed a modified stop-wetdTihis modified list was the same
as the standard one but without the following tokens: cammatt !, ?, *, $,£, &, =, #,7, %, " .
These tokens were chosen based on both previous studiegdPaln 2002; Mukras et al., 20073a]
and intuition.

Table A.4 illustrates the average MSE results that wereirddaover 20 folds of cross val-
idation. For each dataset-column of each classifier, thiogmeance that is significantly better
(p < 0.05) than the other is shown in bold. Note that in 5 out of 8 ocaasittie modified list was
on average more effective than the standard one. In addditms, amongst these 5 occasions, 2
of them were statistically significant. These results d¢jesuggest positive benefits in employing

the customised list, and hence it was adopted as the dakult |
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A.5 List of Abbreviations

AVA: All-vs-All

BSA: Binary Search Approach
BSA-KL : BSA KL-distance
BSA-RN: BSA Random

CHI: Chi-Squared Score

DF: Document Frequency

IG: Information Gain

IR : Information Retrieval

MSE: Mean Squared Error

NLP: Natural Language Processing
NSR: Non-Sentiment Rich

OvVA: One-vs-All

OSC: Ordinal Sentiment Classification
OSP. Ordinal Smoothing Procedure
PoS Part-of-Speech

PPS PoS Pattern Selector

PMI: Pointwise Mutual Information
PMI-IR : PMI Information Retrieval
SAO0T: Sentiment Analysis of Text
SOA: Simple Ordinal Approach

SR: Sentiment Rich

SVM: Support Vector Machines
SVM-reg: Regression Based SVM
TREC: Text Retrieval Conference

Blog: Web Log
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