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Abstract

This thesis identifies four novel techniques of improving the performance of sentiment analysis of

text systems. Thes include feature extraction and selection, enrichment of the document represen-

tation and exploitation of the ordinal structure of rating classes. The techniques were evaluated

on four sentiment-rich corpora, using two well-known classifiers: Support Vector Machines and

Naı̈ve Bayes.

This thesis proposes the Part-of-Speech Pattern Selector (PPS), which is a novel technique

for automatically selecting Part-of-Speech (PoS) patterns. The PPS selects its patterns from a

background dataset by use of a number of measures including Document Frequency, Information

Gain, and the Chi-Squared Score. Extensive empirical results show that these patterns perform

just as well as the manually selected ones. This has important implications in terms of both the

cost and the time spent in manual pattern construction.

The position of a phrase within a document is shown to have an influence on its sentiment

orientation, and that document classification performancecan be improved by weighting phrases

in this regard. It is, however, also shown to be necessary to sample the distribution of sentiment

rich phrases within documents of a given domain prior to adopting a phrase weighting criteria.

A key factor in choosing a classifier for an Ordinal SentimentClassification (OSC) problem is

its ability to address ordinal inter-class similarities. Two types of classifiers are investigated: Those

that can inherently solve multi-class problems, and those that decompose a multi-class problem

into a sequence of binary problems. Empirical results showed the former to be more effective with

regard to both mean squared error and classification time performances.

Important features in an OSC problem are shown to distributethemselves across similar

classes. Most feature selection techniques are ignorant ofinter-class similarities and hence eas-

ily overlook such features. The Ordinal Smoothing Procedure (OSP), which augments inter-class

similarities into the feature selection process, is introduced in this thesis. Empirical results show

the OSP to have a positive effect on mean squared error performance.
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Chapter 1

Introduction

The simplicity of Internet publishing has resulted in userspostings up their thoughts and senti-

ments in a variety of different forms with incredible prolificacy. Furthermore, much of these post-

ings remain largely unmonitored. Blogs (short for web-logs), for instance, are particularly rich

in sentiment and are now published by millions of web-users on a daily basis. This has led them

to be considered as the latest form of self expression, and itis evident from their ever increasing

mass that they are changing the face of the web. Message boards and Newsgroups have also been

used to post comments on various issues and it is possible to track specific threads of discussion

for over several months. There also exists a number of opinion sites such as Epinions.com, Planet-

Feedback.com, and Rateitall.com which focus solely in collecting both professional and amateur

reviews on numerous issues ranging from basic home-ware to corporate level systems.

Aside from adding to the mass of sentiments already present on the web, there have also been

a few attempts to mine these opinion rich resources as well. For instance, companies such as

BuzzMetrics.com offer the service of tracking web-users who initiate trends among thousands of

consumers online. This clearly has a great potential in the world of advertising. There also exists

specialised search engines such as BlogPulse.com, Technorati.com, and BlogLines.com which

monitor and index blog posts on a daily basis. This enables users to search and tune into the latest

buzz1 within the blogosphere2. Furthermore, aside from the basic search, there also exists extra

analysis tools such as the “Trend Search” by BlogPulse.com which allows users to create graphs

that visually track the online buzz over time. One can, for instance, compare the online buzz

1An interesting discussion shared by many.
2A term that encompasses all blogs on the Internet.

1



1.1. The Challenges of Sentiment Analysis2

between “Hillary” and “Obama.” A hoard of other similar opinion mining functionalities can also

be found on the web.

1.1 The Challenges of Sentiment Analysis

It is interesting to note that, although many of the previously discussed systems seem adequate for

opinion based search, a closer look would reveal that the type of search they conduct is geared

towards miningtopic rather thansentiment. For instance, when queried with the search term

“Tea,” three of the top ten posts returned by a popular opinion search engine were entitled: “The

History of Tea,” “A History of the Nations Favourite Beverage,” and “How White Tea Is Graded.”

Notice that these posts are likely to have tea as their topic rather than as their main sentiment

focus. Ideally, the list should have contained titles such as: “I Just Love Lebanese Tea,” or “I

Cannot Stand Milk Tea.” Another illustration of where thesesystems deviate is in their type of

results. Most of the time, they return only one ranked list relating to the most relevant documents

to the query. This is not ideal for a sentiment oriented search, because sentiment is not based on

relevance but rather on polarity, i.e. how positive or negative the documents are with respect to

the query. Consequently, a better option would be to return either two ranked lists, positive and

negative, or offer the option of reversing a single bi-polarlist.

The problems mentioned above are most likely due to the direct importation of standard search

technology into solving Sentiment Analysis of Text (SAoT) problems. They highlight at least two

of the many issues that differentiate SAoT from other closely related disciplines, i.e. the difference

between a “Sentiment and a Topic,” and between “Polarity andOrthogonality.”

In order to understand how to best address the challenges raised by SAoT, it is necessary to

first take a closer look at what it actually entails. It then becomes possible to borrow ideas from

other related disciplines or develop new SAoT solutions from scratch.

1.2 Sentiment Analysis of Text

SAoT is a research area that generally aims to determine the opinion expressed within a given

text. Amongst some of the relevant areas that it covers are Natural Language Processing (NLP),

Information Retrieval (IR) and Text Classification. Each ofthese disciplines have an important
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significance to SAoT and the following sections provide a brief overview of how they integrate

into the field.

1.2.1 Natural Language Processing

A sentiment has the interesting characteristic of being closely associated with certain Part-of-

Speech (PoS) patterns. For instance, a PoS pattern containing an adjective followed by a noun

is almost always an indicator of a sentiment rich phrase, e.g. “dishonest man,” “rude child,”

or “generous host.” It consequently follows that SAoT wouldbe closely related to some of the

techniques developed in NLP such as PoS tagging which is the process of marking up words within

a given text as corresponding to a particular PoS. A standardPoS tagset can consist of in excess

of a hundred PoS tags, which in turn means that several different combinations of PoS patterns

are possible. The work done by Turney [2002] explores the useof PoS patterns in extracting

sentiment rich phrases. He, however, only uses a set of five manually designed patterns, which is

a small number compared to the various combinations that arepossible. Nonetheless, his patterns

were carefully crafted, and previous studies have found them to fair well against automatically

generated patterns of greater number [see Mukras et al., 2007a].

1.2.2 Information Retrieval

IR Technology [Rijsbergen, 1979] has also had a significant impact on SAoT research. It is centred

around the problem of identifying a set of documents, from amongst a larger collection, which

are most relevant to a given query. IR has had its greatest impact on the web in the form of

search engines such as Google, Yahoo, or AltaVista. The importance of IR to SAoT research is

mainly due to the fact that online information defines the main source of sentiment rich text. This

is evident from web applications such as Blogs, Newsgroups,Bulletin Boards, Web-diaries and

Review portals which all contain an abundance of sentiment rich information. In addition to this,

the opinions expressed in such web applications are often “in sync” with current affairs, and this

factor makes them quite useful to industries such as politics, marketing, or the media where direct

user feedback is an invaluable resource. Such are the factors behind the motivation that drives the

development of IR systems for SAoT problems.

However, despite the advancements in IR Technology, the vast majority of sentiment rich text
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on the web still remains hardly searchable. There are a number of factors that can be attributed

to this, most of which revolve around the complex issue of “relevance.” As was specified earlier,

most IR systems are designed with the main objective of finding documents that are deemed to be

“relevant” to a users query. However, the precise metric of relevance is open to discussion. Up to

recent times more emphasis was given to the presence or absence of the query terms in a document

rather than on the linguistic structures that the query terms resided in. The implication of this is that

standard IR systems became ill-equipped to decode languageconstructs, such as sentiment, which

require alternative methodologies in order to be manifested. Upon realising this, the IR research

community decided to take a number of measures to bridge the IR-to-SAoT gap. Amongst the

main ones was the initiation of the Blog Track into the Text Retrieval Conference (TREC) of

2006, which has now carried on to 2007 and 2008. The track has traditionally maintained the

opinion retrieval task which involves the retrieval of documents that are opinionated about 50

predefined topics. The documents are retrieved from the TREC-Blog collection which consists

of over 3,000,000 blog posts [see Macdonald and Ounis, 2006]. Progress in this area has been

understandably minimal. Nonetheless, the competing systems seem to improve with successive

conferences and the future could hold promising results.

1.2.3 Text Classification

Text Classification involves the task of automatically classifying a set of documents into a set of

predefined classes. This is mostly done using Supervised Learning, which is a technique based

on Machine Learning Technology [Mitchell, 1997]. In the context of SAoT, a supervised learning

algorithm would be trained on a set of sentiment classified training documents. The documents are

typically represented as vectors that lie within a space whose dimensions correspond to a sub-set of

selected features3 from the original training documents. Once training is complete, the algorithm

would then be expected to correctly predict the class of a previously unseen test document that

follows the same document-to-label distribution as the training set.

One of the major differences between standard SAoT and text classification is that the former

normally consists of problems with ordinal classes, whereas those of the latter type are largely

orthogonal. A problem is said to be ordinal if the similaritybetween any two of its classes decays

with the linear distance between them. Such problems are referred to here as Ordinal Sentiment

3A feature refers to either one word or a group of words.
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Text Dataset
      Textual

Pre-Processing
Representation Selection Classification

Objective 1 (datasets) Objective 5 (OSP)

Identification of Word Polarity
  Identification of 
Document Polarity

Objective 4Objective 3
(positional info) (OSC)Objective 2 (PPS)

Figure 1.1: The Objectives within a Typical SAoT Research Framework

Classification (OSC) problems. As for an orthogonal problem, its classes bear equal inter-class

similarities and thus have no explicit ordering. Most text classification problems are orthogo-

nal, and hence most of the methodologies designed for them are typically ignorant of inter-class

similarities. A number of studies have illustrated that significant gains can be yielded by tak-

ing inter-class similarities into account in both feature selection [Mukras et al., 2007b] and OSC

[Frank and Hall, 2001]. This is therefore one of the avenues that this research aims to explore.

1.3 Objectives of this Research

Despite the fact that active SAoT research only commenced within the current decade, a consid-

erable amount of ground has been covered. There now exists a variety of sub-problems in SAoT,

as opposed to the mid 90’s where most studies were based on predicting either the orientation of

adjectives or the subjectivity of text [Hatzivassiloglou and McKeown, 1993 1997; Wiebe, 1994;

Wiebe et al., 1999]. Nonetheless, much work still lies aheadas our understanding of how to solve

these newly unearthed problems is still quite limited.

Figure 1.1 provides a generic overview of a typical SAoT research framework. It also high-

lights the areas that are addressed by the objectives of thisresearch. The first step is to obtain a

textual dataset with the correct properties (e.g. containsordinal classes). This dataset is then pre-

processed prior to mapping it onto a suitable representation. Feature selection is then performed,

after which the text is finally classified. Steps 2, 3, and 4 generally aim at identifying the polarity

of words (or features), whereas step 5 aims at identifying document polarity. Having discussed

the general SAoT research framework, the following are the six objectives that will be addressed

in this thesis:

1. To compile two ordinal SAoT datasets from the real-world:There are currently very few

ordinal SAoT datasets reported in the literature (only one know by Pang and Lee [2005]).
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It is thus important to provide supplementary datasets thatwill support the experimental

findings of this research.

2. To research on a new technique of automatically selecting PoS patterns to be used for ex-

tracting sentiment rich text from test documents:The aim of this is to overcome the need

for manual generation of PoS patterns.

3. To investigate the possible approaches of weighting the importance of a phrase with respect

its position within a document:The hypothesis here is that different regions of a document

contain different levels of sentiment. The goal is thus to exploit these differences by use of

a weighting scheme.

4. To perform a comparative study of multi-class classification techniques as applied to OSC

problems. To also introduce and compare a new technique, purpose designed for OSC:Most

studies on OSC have only adopted a small subset of the possible multi-class classifiers. This

research aims to perform a more extensive study of the various possibilities, which also

includes a new technique that is purpose designed for OSC.

5. To implement a novel strategy for selecting features from OSC problems:OSC problems

posses ordinal inter-class similarities and most feature selection techniques are not designed

to accommodate this.

6. To evaluate the methodologies mentioned in objectives 2-5:This involves a thorough em-

pirical evaluation.

A secondary objective of this research is to develop an Opinion Retrieval System that will com-

pete in the Blog Track of the Text Retrieval Conference. Notehowever that the demands of this

conference are more inclined towards competitive performance, rather than research excellence,

and hence this objective is mentioned separately from the rest.

1.4 Overview of the Thesis

The next chapter presents a survey of SAoT in light of the objectives that will be addressed in this

research. Chapter 3 then presents the methodological framework of the experiments that are to
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be conducted in the research. It describes the datasets, textual pre-processing techniques, feature

selection heuristics, classifiers, and performance measures that were employed.

Chapter 4 discusses a technique that automatically generates PoS patterns for extracting senti-

ment rich phrases from a test document. The objective here isto offer a less expensive alternative

to manual pattern construction. Chapter 5 then looks at how the phrases that have been extracted

by the patterns can be weighted with respect to their location within the document.

Chapter 6 discusses various multi-class classification techniques as applied to OSC problems.

The chapter also introduces the Binary Search Approach (BSA) which is a technique that is pur-

pose designed for OSC problems. The BSA recursively splits the training set of an OSC problem

into equally sized halves, hence enabling it to maintain theoriginal linear ordering at each recur-

sion level. This aspect is immensely important when solvingOSC problems.

Chapter 7 presents a new strategy for selecting features forOSC problems. The chapter first

highlights the inability of standard feature selection techniques to utilise the ordinal information

within OSC problems. It then goes on to discuss the Ordinal Smoothing Procedure (OSP) which

tackles this problem explicating ordinal information, hence making it possible for standard feature

selection techniques to efficiently handle OSC problems.

All the methodologies presented in Chapter 4, 5, 6, and 7 are then evaluated in Chapter 8. Note

also that an account of the system that was developed for the Opinion Retrieval Task in the Blog

Track of the 2007 TREC is presented in the General Appendix. The thesis is finally concluded in

Chapter 9 with a discussion on contributions and future directions.



Chapter 2

Literature Survey

The aim of this chapter is to present a brief literature survey of the domain and its potential for

future scientific research. In addition to this, it also serves the purpose of introducing some of the

concepts that underpin the studies in this research.

The most fundamental question in SAoT is “How to classify thesentiment of a document?” At

the onset, the most basic algorithm that one would design to perform this task would probably be

to count the number of positive and negative words that are contained within the text. A decision

as to whether the overall text portrays a positive or a negative sentiment would then be made based

on the resulting majority. This basic strategy shall be referred to here as the “Naı̈ve Majority

algorithm.” Although this technique would probably be onlyslightly better than a random choice

baseline of 50%, at least two important questions arise fromits simple architecture: How would

the sentiment polarity of (a) the words, and (b) the entire document be identified?

These two questions about the Naı̈ve Majority algorithm areclosely linked to the problems that

are addressed in this research. Consequently, a significantpart this chapter is aimed at reviewing

the manner in which previous studies have attempted to attempted to answer these questions. The

chapter also at highlights some of possible avenues for future work.

2.1 Identifying the Polarity of a Word

Although identifying the sentiment polarity of a word mightseem straight forward to the human

mind, automating the process might not be quite as simple. Nonetheless, there have been a num-

ber of studies that have attempted to address this problem with a reasonable degree of success.

8
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The Literature reveals that these studies can roughly be divided into two main camps: Those that

employ either un-supervised [e.g. Hatzivassiloglou and McKeown, 1997; Turney, 2002] or super-

vised [e.g. Pang et al., 2002] learning algorithms to identify the polarity of words. The main factor

that distinguishes these two groups is that only the latter has access to training examples that have

been labelled with respect to sentiment. Although these labelled examples give an advantage to

supervised algorithms, un-supervised ones have also been quite successful and are essential in

situations where the training examples lack sentiment labels.

2.1.1 Un-Supervised Approaches

Most un-supervised approaches to identifying the polarityof a word are based on Part-of-Speech

(PoS) pattern filtering [Justeson and Katz, 1995]. This is a simple but yet powerful technique that

was adopted from NLP. A precursor to PoS pattern filtering is that the words in the text to be fil-

tered need to be assigned with their corresponding PoS tags.PoS tagging, also called grammatical

tagging, is the process of marking up the words in a text as corresponding to a particular PoS,

based on both definition as well as context, i.e. its relationship with adjacent and related words in

a phrase, sentence, or paragraph. PoS tagging was once performed by hand, but is now done in

the context of computational linguistics, using algorithms which associate discrete terms, as well

as hidden PoS, in accordance with a set of descriptive tags.

Once the input text has been tagged, a PoS pattern can then be used to filter out words or

phrases that have certain properties. For example, a PoS pattern such as “JJ CC JJ ” can be

used to identify opinionated phrases such as “strong and reliable” which consist of an adjective

JJ a conjunctionCCand another adjective. Most of the studies described in thissection are based

on a similar kind of framework.

Conjunctions Constrain Sentiment Orientation

One possible approach to identifying the polarity of a word would be to create an exhaustive

reference table that contains all possible positive and negative words. Such an enormous task could

be simplified by noting that adjectives tend to be the main source of sentiment rich words. This

would therefore reduce the problem to one of identifying thesentiment orientation of adjectives.
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Hatzivassiloglou and McKeown [1997] were amongst the earliest pioneers in automating the

prediction of the orientation of adjectives. They identified a number of useful heuristics that could

aid in the task. For instance they showed that conjunctions such as “and” and “or” almost al-

ways constrain the orientations of the two adjectives they connect to be the same. The situation

is however reversed for the conjunction “but,” which usually connects two adjectives of differ-

ent orientation. These points are illustrated by the three possible completions of the following

sentence:

The tax proposal was


















simpleandwell-received

simplisticbut well-received

simplisticandwell-received∗



















by the public

Note that the third completion is ambiguous as the two adjectives “simplistic” and “well-received”

posses opposite sentiment orientations.

Hatzivassiloglou and McKeown [1997] utilised this information to develop an algorithm for

identifying the orientation of adjectives. Firstly, the algorithm extracts all conjunctions of ad-

jectives from the given corpus. Information from differentconjunctions is then combined to de-

termine whether each two connected adjectives are of the same or different orientations. The

resulting information is then mapped onto a graph whose nodes represent adjectives, and whose

links represent the difference in orientation between the adjectives. A clustering algorithm is then

used to separate the adjectives into two clusters of different orientation. This is done by trying

to place as many adjectives of the same orientation as possible into the same cluster. Finally, the

cluster with the highest average frequency of adjectives isthen labelled as positive. This labelling

follows from a heuristic that was derived in the same paper, and based on at least two previous

studies [Hatzivassiloglou and McKeown, 1995; Lehrer, 1985]. This algorithm proved to be quite

effective in classifying adjectives, yielding accuraciesranging from 78% to 92% depending on the

amount of available training data.

Using IR to Identify the Orientation of Phrases

Although Hatzivassiloglou and McKeown [1997] fully attained their objective of predicting the

orientation of adjectives, more information would still berequired in order to serve the current



2.1. Identifying the Polarity of a Word 11

purpose of predicting the orientation of the larger encompassing text. One problem in particular

is that although an adjective almost always expresses an opinion, it also has the potential of being

quite misleading if interpreted in isolation. For instance, the adjective “unpredictable” has a neg-

ative orientation in the context of “unpredictable steering.” It is however positive in the context of

“unpredictable plot” [Turney, 2002].

Envisaging this problem, Turney [2002] developed the PMI-IR algorithm which takes into

account the context of a word. Hence, rather than computing the orientation of a single adjective,

it would compute the orientation of a bi-gram1 containing two words where one would either

be an adjective or an adverb, and the other would provide context. The PMI-IR algorithm is

based on both Pointwise Mutual Information (PMI) [Church and Hanks, 1990] and Information

Retrieval (IR) [Rijsbergen, 1979]. It compares the co-occurrence between the selected bi-gram

and two manually predefined sets of oppositely oriented words. In Turney’s study, the positive set

contained the word “excellent” whereas the negative one contained the word “poor.” If the bi-gram

was found to co-occur more frequently with the positive set,then it would be classed as positive;

otherwise it would be negative. The co-occurrence between the bi-gram and the two sets was

estimated over the World Wide Web via the AltaVista advancedsearch engine2. Turney [2002]

chose this search engine because of itsnear operator which constrains the search to documents

that contain the query terms within a distance of 10 words in either direction of each other. This

technique has been shown to be more effective than the “and” operator which simply retrieves all

documents containing the query terms [see Turney, 2001].

Possibilities for Future Work

Although the PMI-IR algorithm provided context to isolatedadjectives, one aspect that Turney

[2002] overlooked was that it may be beneficial to retain at least some of the adjectives in their

initial context-free form. A good example of this is when First Person Narratives, such as the

adjective “undesirable” in the extract “When asked about the trip he said it was “Undesirable.”.”

Note here that Turney’s PoS filters would overlook this particular adjective. Turney [2002] also did

not consider the possibility of retaining tri-grams such as“very fast car.” Retaining such entities

offers the flexibility of estimating the overall orientation of the text from three different sources,

1Two consecutive words.
2http://www.altavista.com/sites/search/adv
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i.e. uni-grams, bi-grams, and tri-grams. Another aspect worth noting is that the PoS patterns that

Turney employed were manually crafted. This can be an especially difficult task [see Jackson and

Moulinier, 2002;Section 4.2], and a possible alternative could be to automate the process. These

highlighted issues have the potential of improving sentiment classification performance and are

amongst some of the avenues that shall be explored into greater detail during the course of this

research.

2.1.2 Supervised Approaches

One common property of the previously discussed algorithmsis that they were not designed to

utilise examples that have been labelled with respect to sentiment. They are, therefore, classed as

un-supervised techniques that are employed in the event that the training documents lack senti-

ment labels. However, with the availability of labelled documents, it becomes possible to employ

supervised machine learning techniques to perform the sametask. Although this additional infor-

mation enables supervised techniques to generally outperform un-supervised ones, one weakness

with them is that they are typically based on non-linguisticprinciples. They, therefore, do not pro-

vide any explicit linguistic explanations as to why the words or phrases that they retrieve should

be considered as being rich in sentiment. Any answers would normally have to be interpreted ei-

ther from a statistical standpoint, or through manually tracing back the words and phrases to their

original contexts within the text. Nonetheless, the answers that one finds are often justified and

this makes it typically worthwhile to employ supervised techniques wherever possible.

Using Frequency to Identify Word Polarity

Amongst the first landmark studies on supervised techniquesin SAoT research was the work done

by Pang et al. [2002]. In this study Pang et al. [2002] classified the sentiments in movie reviews by

employing supervised techniques to first identify the polarity of the words within the reviews, and

then classify the reviews themselves. As a preliminary stepto justify the need for supervised tech-

niques, Pang et al. [2002] performed a small experiment whereby they compared the performance

of two graduate students against that of a supervised technique. The students were independently

asked to choose indicator words for positive and negative sentiments in movie reviews. Their re-

sponses were then used to develop decision functions, similar to the Naı̈ve Majority algorithm, that
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Un-Supervised Supervised
Student A Student B Stats + Introspection

positive: negative: positive: negative: positive: negative:
gripping bad dazzling suck love bad
mesmerising cliched brilliant terrible wonderful worst
riveting sucks phenomenal awful best stupid
spectacular boring excellent unwatchable great waste
cool stupid fantastic hideous superb boring

Words awesome slow still ?
thrilling beautiful !
badass
excellent
moving
exciting

Accuracy 64% 58% 69%
Ties 39% 75% 16%

Table 2.1: Comparison of Supervised and Un-Supervised Techniques [Pang et al., 2002]

would essentially count the number of proposed positive andnegative words within a given test

document and classify it according to the majority. On the other hand, the supervised technique

gathered its list of positive and negative words based on frequency counts performed over a set of

positive and negative training documents respectively. The two resultant lists were then trimmed

and refined by introspection, after which they were fed into the same decision functions as those

of the graduate students in order to compare the performances.

Table 2.1 illustrates the various word lists and their respective performance outcomes. Note

that the supervised technique yielded the highest accuracywith the fewest ties. In addition to

this, some of the items in its list such as “?” or “still” do notreadily spring to mind as being

rich in sentiment. Although by tracing them back to their initial contexts, one sees their merit:

The question mark tends to occur in sentences like “What was the director thinking?” whereas

“still” appears in sentences like “Still, though, it was worth seeing.” Pang et al. [2002] concluded

from these preliminary experiments that it was worthwhile to explore supervised corpus-based

techniques to identify the polarity of words and to perform sentiment classification in general.

After having established the need for supervised techniques, Pang et al. [2002] proceeded

to perform their study on a corpus of 700 positive and 700 negative movie review documents.

They investigated various different techniques of identifying the polarity of a word some of which

may not be entirely relevant to the current context. However, one common aspect about these

techniques is that they were all based on the hypothesis thatthe most frequent word in a sentiment
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Figure 2.1: The Problem with the Frequency Hypothesis

rich corpus, after stop-words, should also be the richest insentiment. That is to say that a word

would be labelled as positive if it occurred more frequentlyin positive reviews, and negative if it

was more common in negative reviews.

Using Information Theory to Identify Word Polarity

Although the Frequency hypothesis is sufficient in cases where words are relatively uni-polar, it

breaks down in scenarios where words occur frequently in both positive and negative reviews. To

illustrate this problem more clearly, consider the graph inFigure 2.1 which shows the distribution

of the words “good” and “superb” across a positive and a negative class. The word “good” occurs

more frequently in the positive class and hence the frequency hypothesis would rank it as being

more positive than the word “superb.” Note, however, that “good” also occurs frequently in the

negative class unlike “superb” which is almost absent here.This clearly makes “superb” the more

positive word of the two but the frequency hypothesis is unable to make this distinction. A solution

to this problem requires a technique that not only checks therate at which a word occurs in a given

class, but also the rate at which it is absent inotherclasses.

A good candidate solution to this problem is the InformationGain (IG) measure [Cover and

Thomas, 1991]. IG is a measure that is based on Entropy, whichis basically a metric of how

surprising an entity is within its environment. For instance, an entitythat occupies 98% of its
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environment is not as surprising as the one that occupies theremaining 2%. This is because the

former entity is common whereas the latter one is rare. Similarly, the word “good” in Figure 2.1

occurs frequently in both classes and hence is relatively less surprising to observe than the word

“superb.” IG is particularly good at identifying such anomalies and would immediately rank the

word “superb” as being more positive than the word “good.” Indeed several previous studies, both

in Sentiment Analysis and Text Classification in general [Sebastiani, 2002; Yang and Pedersen,

1997; Mukras, 2004], have considered IG to be representative of the current state-of-the-art in the

field of feature selection.

Possibilities for Future Work

Despite the elegant manner in which IG selects features, there still exist a number of SAoT prob-

lems that still pose a real challenge to it. One such example is the task of selecting features from

a SAoT problem with ordinal classes. The difficulty in accomplishing this task is that IG, as with

most feature selection heuristics, is based on the assumption that all pairs of classes are equally

similar. This is however not true with an ordinal SAoT problem, in that the similarity between

any pair of its classes is a function of the ordinal distance between them. For instance, a textual

review accompanied by a rating of 1 (on a 10 point scale) is expected to be more similar to one

rated at 2 than another at 10. This consequently means that animportant feature in an ordinal

SAoT problem is one that is distributed across similar classes. Most feature selection techniques,

including IG, cannot easily detect such features principally due to their assumption that all classes

are equally similar. Under this assumption, features that occur in similar classes are considered to

have an equal importance to those that occur in dissimilar ones, and hence the most appropriate

features could easily be overlooked.

One of the main objectives of this research is to develop a solution that will enable IG, and

other similar feature selection heuristics, to overcome the assumption of equal inter-class similar-

ities.

2.2 Identifying the Polarity of a Document

As with identifying the polarity of a word, the techniques inidentify the polarity of a document are

also divided into two groups, i.e. un-supervised and supervised. Note, however, that the majority
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of the methods in this area are of the latter kind. This owes mainly to the relative simplicity in

assigning a sentiment label to an entire document as opposedto labelling its individual words.

2.2.1 Un-supervised Approaches

According to the Naı̈ve Majority algorithm, the polarity ofa document would equate to the sum

of the polarities of its individual words. This is probably amongst the first options that one would

consider if faced with an un-supervised sentiment classification problem. Indeed, as previously

mentioned, Turney [2002] adopts this procedure by summing up the semantic orientations of indi-

vidual phrases in order to obtain that of the whole document.However, in his conclusion, Turney

[2002] also stated that one main drawback with this approachis that “the whole is not necessarily

the sum of the parts.” This becomes evident if, for instance,a document is excessively sarcastic

hence resulting in an overall positive aggregate, while in reality the document should actually be

negative.

Exploiting Positional Information

One possible option for avoiding problems such as sarcasm isto exploit the positional informa-

tion of the phrases within the document. In a previous study that employed supervised learning

techniques, Pang and Lee [2004] observed that the end sentences within a movie review yielded

a higher performance accuracy than those at the front. Although Pang and Lee [2004] also found

that the full review yielded the best overall performance, their study revealed the important fact

that the underlying sentiment of a document is not evenly spread along its text. This informa-

tion could have the potential of improving the performance of un-supervised learning techniques

such as Turney’s PMI-IR algorithm in that different weightscould be assigned to the polarity of a

phrase depending on its position within the text. For instance, given the observation by Pang and

Lee [2004], one could assign a higher weight to phrases that occur in the rear part a document as

they would posses a better description of the overall sentiment. Note, however, that this weight

assignment procedure must be performed with care because, as this research will later show, not

all domains can be treated in the same way. It may be necessaryto first manually label a sam-

ple of the documents in the domain and then use supervised techniques, similar to Pang and Lee

[2004], to decide on the weighting criteria. This procedureis amongst one the studies that will be
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investigated in greater detail during the course of this research.

2.2.2 Supervised Approaches

Supervised Learning techniques have been quite successfulin SAoT research. This owes mainly

to the availability of training documents, labelled with respect to sentiment, which is a precursor to

employing these techniques. Most supervised learning techniques are based on the Vector Space

Model [Salton et al., 1975] which is a technique for representing text documents as vectors. Each

dimension of a document vector corresponds to a separate feature. If a feature occursx times in

the document, then its value in the vector isx. A collection of such vectors is known as a term-

document matrix whose rows and columns conventionally represent documents and terms (i.e.

features) respectively. It is important to note that the matrix represents a feature space, and that the

vectors of each class tend to reside within separate regionsof this space. The task of a supervised

learning algorithm would then be to identify the boundariesof these regions by learning them from

a sample of the document vectors. This sample is what constitutes the training documents. Once

the boundaries are identified, the supervised learning algorithm is said to be trained, and would

then be expected to correctly classify the labels of previously unseen documents to a reasonable

degree of accuracy.

Ordinal Sentiment Classification

In this research, supervised learning techniques are mainly used to solve SAoT problems with

ordinal classes, commonly referred to here as Ordinal Sentiment Classification (OSC) problems.

Such problems possess two important characteristics: (1) They are multi-class in nature with three

or more classes, and (2) Their classes exhibit similaritiesthat decay with the ordinal distance

between them. Some classifiers can inherently solve problems with multiple classes such as OSC,

while others can only solve two-class problems. Consequently, for the latter type of classifiers, an

alternative technique is to decompose a multi-class problem into a collection of binary ones.

The Literature suggests that OSC has been a relatively unexplored research area. This owes

mainly to the relative youth of SAoT in general. As a result ofthis, there is a general lack of

clarity on which classifiers are best for OSC problems. Nonetheless, there are a number of notable

pioneering studies that have looked into certain aspects ofthe problem. The work by Koppel and
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Schler [2006], for instance, was quite fundamental in illustrating the need for specialised classifiers

to tackle OSC problems. Their basic argument was that most research on Sentiment Analysis, at

the time, often ignored “neutral” examples, and only focused on examples of significant polarity,

i.e. positive or negative. To prove that neutral examples were important, they performed OSC

on three ordinal datasets using a classifier that treats the classes as unordered, and another that

respects class ordering. Their results clearly showed an improvement in classifiers that respected

class ordering over those that did not.

The study by Pang and Lee [2005] was also based on a similar argument as that of Koppel

and Schler [2006]. They, however, went a step further and proposed a purpose designed algorithm

called metric labelling. Metric labelling is a meta-classifier that is used in conjunction with a base

classifier. Given anm class problem, metric labelling basically maps both the predictions of a

classifier, and the similarities between the classified documents onto a graph. It then uses graph

theory to partition the graph intom parts and thereby relabelling the documents. In a sense, metric

labelling can be thought of as penalising the base classifierfor assigning divergent labels to similar

documents.

Pang and Lee [2005] evaluated the metric labelling system bycomparing its performance

against that of its base classifiers. Their results were quite interesting in that, in half of their

experiments, the metric labelling system was unable to enhance the performance of the Regression

based Support Vector Machine (SVM-reg) base classifier. This has important implications because

SVM-reg is more suitable for regression rather than classification. Nonetheless, the nature of OSC

problems is that they posses an ordering similar to that in regression and this makes it possible for

one to treat them as regression problems as well. Unexpectedobservations, such as that made by

Pang and Lee [2005], offer interesting insights on the possible classifiers for OSC. There is still

very little literature on the most effective systems for OSC, and hence one of the objectives of this

research is to investigate a variety of classification techniques as applied to OSC problems.

2.3 Summary

This chapter presents a survey of SAoT in light of the studiesthat are conducted in this research.

It identifies a number of techniques that exploit linguisticproperties to identify the orientation

of words. However, one aspect about many of these systems is that the linguistic rules that they
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employ are normally hand crafted. This makes it difficult forthem to adapt to changing environ-

ments without human intervention, which is a setback in terms of both time and cost. The chapter

also identifies a number of feature selection techniques such as IG and Feature frequency. It also

highlights their weakness with regard to their ignorance ofinter-class similarities, such as those

exhibited in OSC problems. Overcoming these limitations constitutes a key motivation of this

thesis.

A number of document classification techniques were also looked at including the aggregation

of individual word polarities, and the use of standard text classifiers. Again, as with the feature

selection techniques, a number document classifiers are also ignorant of inter-class similarities

which greatly disadvantages them when addressing OSC problems. Purpose designed classifiers

such as the metric labelling algorithm were also discussed.It was however noted that insuffi-

cient literature exists in this area which motivates a further contribution of this thesis in terms of

providing a thorough evaluation of various classifiers on OSC.



Chapter 3

Background

One distinct aspect about sentiment classification problems is their apparent difficulty relative to

standard topic based classification problems. Pang et al. [2002] for instance found that, under

similar conditions of uni-grams features, standard text classifiers would perform “at best” 12%

lower on sentiment classification than on other topic based problems. A similar observation was

also made when Chakraborti et al. [2007] appliedSprinkledLatent Semantic Indexing (LSI) to

hierarchical, orthogonal, and ordinal text classificationproblems. Their results clearly indicated

significantly lower performances on the ordinal problem, which translates to a special case of

sentiment classification with ordered classes. The minimumperformance disparity in this case

was about 20% accuracy. The argument Chakraborti et al. [2007] gave for this was that the classes

were not neatly separable, partly because the ordinal nature of problem inherently results in the

use of different ratings to express similar judgements. Similar views on the difficulty of sentiment

classification problems have also been reported in the literature and the following list provides a

sample of these studies [see Turney, 2002; Mukras, 2004; Pang and Lee, 2005; Koppel and Schler,

2006; Mukras et al., 2007b].

The objective of this chapter is to establish a framework that will enable this research to inves-

tigate the reasons behind this relative lacklustre performance on sentiment classification problems.

The chapter begins by discussing the datasets used throughout the research. These include at least

six different corpora, two of which were custom-compiled for this research. The chapter then goes

on to discuss four important issues, namely: (1) The defaulttextual pre-processing procedure, (2)

feature selection heuristics, (3) classifiers, and (4) performance metrics.

20
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Type of Name of Total Docs per Total Mean Doc
Dataset Dataset Classes Class Tokens Length
Bi-Polar Polarity 2 1000 702,189 351.095
Ordinal Actors 5 500 61,713 24.685
Ordinal Edmunds 28 100 113,576 40.563
Ordinal Scale 8 100 161,404 201.755
Neutral Reuters 2 1000 158,412 79.206
Query TrecBlog n/a n/a 1,707,345,106 537.728
Lexical WordNet n/a n/a n/a n/a

Table 3.1: Information and Statistics about the Datasets

3.1 The Datasets

Table 3.1 summarises the datasets that were used in this research. Most of these datasets were

sourced primarily from online opinion portals such as blogsand review sites. The reason for this

was that such domains are mainly authored by independent individuals who aim at expressing

their views to the world. Consequently, such sources are typically representative of genuine public

opinions, in that they are not biased towards the benefit of any company or organisation. This

factor makes them an excellent resource for SAoT Research.

3.1.1 The Problem Datasets

In this research the problem datasets where either bi-polaror ordinal in nature. A bi-polar dataset

is essentially composed of two classes: sentiment positiveand sentiment negative. On the other

hand, an ordinal dataset can contain three or more classes that range from an extreme positive, to

an extreme negative sentiment. The similarity between any two classes of an ordinal dataset can

be inferred from the labels. For example, a textual review accompanied by a rating of 1 (on a 10

point scale) is expected to be more similar to one rated at 2 than another at 10.

It is important to note that both types of datasets are polar in nature, and that the main dif-

ference between them is that ordinal datasets contain one ormore intermediate classes between

the two poles. It is therefore possible to create a bi-polar dataset from an ordinal one by simply

dropping the intermediate classes. This approach was used by Mukras et al. [2007a] and has also

been adopted here.
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The Polarity Dataset

This dataset1 was compiled by Pang and Lee [2004] and was initially bi-polar in nature. It is based

on the movie review domain and is composed of 1000 positive and 1000 negative movie reviews. It

was chosen here as it is amongst the most popular benchmark datasets for SAoT research. Another

reason for choosing it is that movie reviews have been noted to be amongst the most difficult of

several domains for sentiment classification [Turney, 2002].

The Actors, Edmunds, and Scale Datasets

These datasets were initially ordinal in nature, and were respectively compiled by Chakraborti

et al. [2007], Mukras et al. [2007b], and Pang and Lee [2005].Note that the Actors and Edmunds

datasets were compiled as part of this research.

The Actors dataset is based on reviews about actors and actresses from the Rateitall.com opin-

ion website. It contains 2500 documents distributed equally amongst 5 ordinal classes. The class

labels range from 1 to 5, where 1 is the most negative class, whereas 5 is the most positive. The

classes were designed such that the number of reviews that anauthor can contribute to any one

class is limited to a maximum of 15. This was done to avoid the possible bias of any prolific author

from dominating the corpus [a similar approach was used by Pang et al., 2002].

The Edmunds dataset is based on consumer reviews about used motor vehicles from the Ed-

munds.com website. It contains 2800 documents distributedequally amongst 28 ordinal classes.

The class labels range from 1 to 28, where 1 is the most negative class, whereas 28 is the most

positive.

The Scale dataset was initially based on 5006 movie reviews each containing an ordinal class

label in the range of 0 to 10 (where 0 is the most negative class, whereas 10 is the most positive).

It was later reconfigured to suit the purpose of this researchas follows. Firstly, the labels were

used to partition the reviews into 10 ordinal classes, i.e.{0-1, 2-3, . . . , 9-10}. An equal class dis-

tribution was then obtained by randomly selecting 100 reviews from each class. The first and last

classes were then dropped as they lacked enough documents. This led to a total of 800 documents

distributed equally amongst 8 ordinal classes.

The Actors and Edmunds datasets2 were compiled specifically for this research whereas the

1Available at http://www.cs.cornell.edu/People/pabo/movie-review-data/
2Available at http://www.comp.rgu.ac.uk/staff/ram/downloads.html
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Scale dataset was obtained from literature.

3.1.2 The Support Datasets

The support datasets included the Neutral dataset (used as acontrol), the Query dataset (used as a

background corpus), and the Lexical dataset (used as a reference for lexical information on words).

These have been described as follows.

The Neutral Dataset

In this research, a Neutral dataset refers to one that is orthogonal and does not contain sentiment

rich information. Orthogonal datasets contain classes that bear no explicit relationships to each

other. For example, the topic “sports” can be considered to be orthogonal to the topic “computers.”

It is worth noting that although bi-polar datasets contain oppositely oriented classes, they are not

orthogonal. This is because their polar nature means that there exists a similarity between their

two classes, and the degree of this similarity decreases with the averse in orientation between their

classes.

The Reuters dataset was the only Neutral corpus that was usedin this research. It was formed

by randomly selecting 1000 documents from the ACQ and EARN classes of the Reuters-21578

corpus3 such that each document belongs to at most one class. The ACQ and EARN classes are

orthogonal to each other and contain little, if any, sentiment rich information and hence satisfy

the neutral dataset requirements. In addition to this, onlytwo classes were chosen as the neutral

dataset is to be compared against the polarity dataset whichalso has two classes (see Chapter 4).

The Query Dataset

The Trec Blog collection [Macdonald and Ounis, 2006] was used as the Query dataset. Its purpose

was to act as a background corpus for making inferences aboutsentiment related usages of given

words and phrases (see Chapter 4). It was compiled by the University of Glasgow and the resultant

collection that was used here after pre-processing contained 3,175,111 blog posts. A blog post

refers to an entry into a personal site that archives the posts in a reverse chronological order.

Blogs are typically rich in opinion as they are authored by individuals who aim at expressing their

3Available at http://www.daviddlewis.com/resources/testcollections/reuters21578/
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Tokenization PoS Tagging Stemming
  Conversion to 

a Consistent Case
Stop Word

  Filtering

raw input text

processed output text

Figure 3.1: The Textual Pre-Processing Pipeline

opinions to the world. The Trec Blog collection was meant to be a realistic 11 week snapshot of

the blogsphere (the collective term for all blogs). This makes it an excellent dataset for sentiment

related queries.

The Lexical Dataset

WordNet [Fellbaum, 1998] was used as the Lexical dataset. Inone sense, WordNet can be thought

of as a thesaurus in that its building block is a synset (synonym set) of all words that express a

given concept. It, however, goes further than this and linkseach word in a given synset to other

words by various relationships such as hyponymy, meronymy,and entailment.

In this research, one of the uses of WordNet was to expand manually generated sets of words

that formsentiment concepts. For instance, the set of words{superb, excellent, brilliant} form

a concept that describes a strongly positive sentiment. This set can then be expanded by use of

WordNet’s synset facility. The familiarity score, a WordNet measure of the popularity of a word,

can then be used to filter out set members that are either hardly used or too common. WordNet

could also, in a similar fashion, be used to generate contrasting sentiment concepts by use of the

antonym facility. This feature is particularly useful in un-labelled sentiment analysis whereby

oppositely oriented sentiment concepts need to be generated.

3.2 Textual Pre-Processing

Effective text classification is to a degree predicated on the quality of textual pre-processing that

has been applied. There are, however, no hard and fast rules about the best pre-processing steps

to follow. Each problem is potentially different and hence requires special treatment. Little work

has been done to investigate the best pre-processing practises for SAoT and this research aims to
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Stage Resultant Sentence
1 Initial Sentence Smoking can lead to impotence.
2 Tokenization Smoking can lead to impotence .
3 PoS Tagging SmokingVVG can VM lead VV0 to II impotenceNN1 . .
4 Stemming SmokeVVG can VM lead VV0 to II impotenceNN1 . .
5 Convert to single case smokeVVG can VM lead VV0 to II impotenceNN1 . .
6 Stop-Word Removal smokeVVG lead VV0 impotenceNN1

Figure 3.2: The Stages in Textual Pre-Processing

address this problem.

Textual pre-processing is typically performed in several steps as shown in Figure 3.1 and 3.2.

First, the raw input text is tokenised so as to divide it into basic words/tokens. Second, the resultant

tokens are tagged with their respective PoS tags. This step is normally bypassed for most classi-

fication approaches that employ the vector space model. However, Pang et al. [2002] noted that

the application of PoS tags could improve the average performance for at least the Naı̈ve Bayes

classifier, and as a consequence this study aims to investigate this claim. Third, lemmatisation

which is also known as stemming is performed on the PoS taggedtokens. Fourth, the tokens are

converted to a consisted case. This avoids the machine from distinguishing between tokens such

as “HERE” and “Here.” It is, however, possible that a sentiment classifier may benefit from this

distinction in that the emphasis of capitalisation in a token such as “AWESOME,” as compared

to “awesome,” would be appreciated. Finally stop-word filtering, which eliminates words that are

poor discriminators, is performed.

Each of the steps in Figure 3.1 was empirically evaluated in the General Appendix. The steps

that were chosen for this research are as follows: Tokenization is always performed, PoS tagging

and Stemming are only performed when specified, Conversion to a consistent case and stopword

removal are always performed.

3.3 Feature Selection

A major characteristic of Text classification problems is the high dimensionality of the feature

space. A moderate sized collection can easily result in a feature space containing several thousands

of dimensions. This is prohibitively high for most machine learning algorithms. Feature Selection

therefore aims to reduce the original feature space withoutsacrificing classification accuracy.
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Although most feature selection techniques have been well studied, the sheer number of possi-

ble feature combinations for any given collection makes it almost impossible for anyone to conclu-

sively recommend the “best feature selection technique.” For this reason, it is preferable to view

to feature selection techniques as a heuristics rather thanalgorithms. Nonetheless, despite the

apparent equivocal nature of feature selection, there havebeen a number of authoritative studies

[e.g. Yang and Pedersen, 1997; Sebastiani, 2002; Forman, 2003] that have given useful guide-

lines on which heuristics to employ. The majority of these studies seem to agree on a decreasing

performance trend starting from Information Gain (IG)→ Chi-Square Score (CHI)→ Document

Frequency (DF)→ Term Strength (TS). This research employs the first three of these, which are

described as follows.

Information Gain

Let fk be an arbitrary feature in a training dataset whose documents are divided intom mutually

exclusive classes, i.e.C = {c1, . . . , cm}. Information Gain would then assign a score tofk as

follows:

IG(fk) =
∑

c∈C

∑

f∈{fk ,f̄k}

P (f, c) log
P (f, c)

P (f)P (c)
(3.1)

HereP (c), P (f), andP (f, c) are calculated by sums over all documents – that isP (c) is the

number of documents with classc divided by the total number of documents;P (f) is the number

of documents containing one or more occurences of featuref divided by the total number of

documents; andP (f, c) is the number of documents with class labelc that also contain wordf .

IG can be thought of as a test of independence between the variablesf andc. This is evident from

the sum of logarithms in Equation 3.1 which would yield a value of zero ifP (f, c) = P (f)P (c),

meaning thatf andc are independent, and a value greater than zero otherwise. Consequently, the

larger the value ofIG(fk); the more useful the featurefk would be for classification.

The Chi-Squared Score

The Chi-Squared score is also a test of independence that compares observed frequencies against

the expected ones. In order to describe it in the context of feature selection, assume that one wishes

to test the independence of featurefk with respect to occurring in one of them classes contained
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c1 . . . cm Total
fk P (fk, c1) . . . P (fk, cm) . . .

f̄k P (f̄k, c1) . . . P (f̄k, cm) . . .

Total . . . . . . . . .
∑

f,c P (f, c)

Figure 3.3: A Contingency Table for anm Class Problem

in the setC = {c1, . . . , cm}.

In order to do this, one would first set up a null hypothesis that states that the featurefk is

independent of all them classes. The Chi-Squared Test would then be used to test thishypothesis.

The contingency Table in Figure 3.3 illustrates the values that would need to be calculated. Once

these values are at hand, the test of independence can then beperformed by calculating:

χ2(fk) =
∑

c∈C

∑

f∈{fk,f̄k}

[P (f, c)−E(f, c)]2

E(f, c)
(3.2)

WhereP (f, c) is the observed frequency andE(f, c) is the expected frequency asserted by the

null hypothesis.E(f, c) is computed as the column total for classc, times the row total for feature

f , divided by the grand total
∑

f,c P (f, c). Equation 3.2 has a value of zero iffk is independent

of them classes, and its value grows with the level of dependence.

The Chi-Squared statistic computed in Equation 3.2 hasm− 1 degrees of freedom (CHIm−1).

The reason for this is that the degrees of freedom correspondto the number of total possible

outcomes (or classes in this case) minus 1. Note also that it is also possible to work with 1 degree

of freedom (CHI1). In this case the Table in Figure 3.3 would be reduced to a2 × 2 Table.

Equation 3.2 would also be greatly simplified to the following formulation:

χ2(fk, c) =
N

[

P (fk, c)P (f̄k, c̄)− P (fk, c̄)P (f̄k, c)
]2

P (fk)P (f̄k)P (c)P (c̄)
, c ∈ C (3.3)

Note that, since the Equation 3.3 only has 1 degree of freedom, it would be necessary to calculate

the independence of featurefk separately for allm classes. Thesem computations would then

have to be aggregated into one global score. It is common practise to take either the average or

the maximum of this value thesem computations, and the latter technique was employed in this

research.
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Document Frequency

Finally, Document Frequency is the number of documents within which the featurefk has been

observed. Assuming thatP (fk) is estimated by only recognising the presence of a featurefk in a

document, DF would be computed as follows.

DF (fk) = N · P (fk) (3.4)

Although DF is the simplest of the three techniques, strong correlations have been found be-

tween the features selected by DF and the other two techniques [Yang and Pedersen, 1997]. This

therefore means that it can be reliably used instead of IG or CHI when the computation of these

heuristics is too expensive.

Most of the studies in this research reduce the initial feature space by 98% using Information

Gain. These two heuristics have been used in a number of previous studies [Yang and Pedersen,

1997; Wiratunga et al., 2004] and are considered as good rules of thumb.

3.4 The Classifiers

Active research in Sentiment Classification began around the mid 90’s. During that time, the main

themes were related to the prediction of either the orientation of adjectives [Hatzivassiloglou and

McKeown, 1995 1997], or the subjectivity of text [Wiebe, 1994; Wiebe et al., 1999]. However,

it was not until its adoption of Text Classification techniques in the late 90’s did the field start

gaining the popularity that it currently enjoys.

Text classification has been around for much longer and, in some references, Sentiment Clas-

sification has been suggested as being one of its subsets [Pang et al., 2002]. Until the late 80’s the

most popular approach to Text Classification was to manuallywrite a query for each category of

interest. The query could then be used to guide a search, and the documents retrieved from the

search could then be classified to the corresponding category. A good example of this architec-

ture is the Construe/TIS System which assigns zero or more labels to stories for a Reuters news

database [Hayes and Weinstein, 1991]. The core of the program is a set of concept rules that iden-

tify key concepts in the text and trigger the assignment of category labels. For example, in order

to classify into say the “Australian dollar” category, a data practitioner would design concept rules
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that would identify: (a) clear references of “Australian dollar,” or (b) references to “Australian”

and “dollar” without confounding references to the “US dollar” or the “Singapore dollar.”

Although such systems are typically quite effective, the downside to them is the manual cost

involved in their development which is clearly evident withthe 6.5 person years that it took to com-

plete the Construe/TIS system. With the advent of the 90’s, concept rule systems gradually gave

way to text classifiers that were based on Machine learning techniques which were significantly

cheaper to deploy.

A machine learning text classifier essentially operates by being supplied with a set of training

documents{xi}
N
i=1

whose labels{yi}
N
i=1

could either be available (a supervised problem) or un-

available (an un-supervised problems). The documents are typically represented as a vector whose

components are features, such as words or phrases occurringin the text. The training documents

typically follow some unknown distribution that mapsxi to yi, and the task of the machine is to

use the documents in order tolearn this distribution. Having done so, the machine is then expected

to correctly predict the label of an unseen test document that follows a similar distribution as the

training examples.

In this research, two main machine learning classifiers wereemployed: Naı̈ve Bayes and the

Support Vector Machine. These two classifiers are popular inboth SAoT [Pang et al., 2002; Wilson

et al., 2004] and Text Classification in general [Gabrilovich and Markovitch, 2004; Sebastiani,

2002].

3.4.1 Näıve Bayes

Naı̈ve Bayes, in spite of its name, is a very powerful classifier which is both simple and easy to

interpret. It is probabilistic in nature and operates by building statistical models of the classes it

assigns to. For instance, the Naı̈ve Bayes described here models the distribution of words in a

document as a multinomial.

In order to describe this classifier, assume that the training documents are divided intom

mutually exclusive classes,C = {c1, c2, . . . , cm}. The parameters to the multinomial model for

classc ∈ C would then be:~θc = [θc1, θc2, . . . , θcn], wheren is the number of features in the

vocabulary,
∑

j θcj = 1, andθcj is the conditional probability that featurej occurs in classc. The

probabilityθcj is normally smoothed by a Laplace count in order to avoid it from being zero. The

label of an unseen test documentd = [d1, d2, . . . , dn], wheredj is the frequency of featurej in
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documentd, is then predicted using the Bayes rule,

label(d) = argmax
c

[

P (c)
P (d|c)

P (d)

]

(3.5)

The probabilityP (d|c) is estimated by using a multinomial distribution, i.e.

P (d|c) =

(
∑

j dj

d1, d2, . . . , dn

)

∏

j

(θcj)
dj (3.6)

The multinomial distribution assumes that then features in documentd are independent of each

other. This incorrect supposition is known as the Naı̈ve Bayes Assumption and only holds because

of the stochastic nature in which words are used in language [Domingos and Pazzani, 1996].

The multinomial coefficients in Equation 3.6 can be dropped off as they are constant across

all classes. Similarly, the probabilityP (d) in Equation 3.5, can also be dropped off for the same

reasons. This simplifies Equation 3.5 to the following formulation:

label(d) = argmax
c∈C



P (c)
∏

j

(θcj)
dj



 (3.7)

The multiple products in Equation 3.7 would most probably lead to an arithmetic underflow and

thus it is a common practise to represent it in logarithm space:

label(d) = argmax
c∈C



log P (c) +
∑

j

dj log θcj



 (3.8)

The label of documentd is then taken as the class that yields the maximum value of theresultant

Bayes rule formulation as shown in Equation 3.8.

Naı̈ve trains and classifies in linear time with respect to the number of classes. This is ex-

plained by noting that, during training, Naı̈ve Bayes computes|C|n conditional probabilities (i.e.

those contained in~θc1, . . . ,
~θcm) and hence trains inO(|C|n) = O(mn) = O(m) time. Note that

n is the number of features and is taken as a constant. Similarly, during classification, Naı̈ve Bayes

makes|C|+ |C|n calculations and hence classifies inO(|C|+ |C|n) = O(m+mn) = O(m) time.

The simplicity and robustness of the Naı̈ve Bayes classifierhas led it to become amongst the

most popular of classifiers. It is a favourite choice for industrial applications as it is quite fast and
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Figure 3.4: Support Vector Machines: Classification and Regression

its performance remains relatively stable under various conditions compared to other classifiers

[see Mukras, 2004].

3.4.2 The Support Vector Machine

The Support Vector Machine (SVM) belongs to a family of classifiers that perform classification

by building a separating boundary between the classes of interest. A special property of the SVM

is that it simultaneously tries to minimise the generalisation error while maximising the geometric

margin between the classes. For this reason, it is also knownas themaximum margin classifier.

The intuition behind SVMs can be explained by Figure 3.4A which illustrates a simplified

version of a linear SVM that has been trained on examples fromtwo classes. Here the SVM con-

structs a separating hyperplane and then tries to maximise the “margin” between the two classes.

To calculate the margin, the SVM constructs two parallel hyperplanes, one on each side of the

initial one. These hyperplanes are then “pushed” perpendicularly away from each other until they

come in contact with the closest examples from either class.These examples are known as the

support vectorsand are illustrated in bold in Figure 3.4A. Intuitively, thebest separation is the

one with the largest margin between the two hyperplanes. Thehope in this is that, the larger the

margin; the lower the generalisation error.

SVMs can also be used for regression (SVM-reg). The intuition behind SVM-reg can be

explained by Figure 3.4B which illustrates a simplified version of a linear SVM-reg fit over a set

of training data points{(xi, yi)}
N
i=1. Here the goal of SVM-reg is to find a functionf(xi) that

has a predefinedmaximum thresholdfrom the actual targetsyi for all the training data points, and
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at the same time, is as flat as possible. In other words, deviations betweenf(xi) andyi can be

tolerated, so long as they are less than the predefined threshold value.

The Support Vector Machine has been well studied and is regarded by many as the current

state-of-the-art in text classification [Joachims, 1998; Gabrilovich and Markovitch, 2004]. It has

at least three properties that make it well suited for the text domain. Firstly, SVMs are good at

handling the problem of high dimensionality which is a common characteristic of the text domain.

Secondly, most text classification problems are linearly separable and the SVM classifier is espe-

cially designed for this kind of problem [Joachims, 1998]. Finally, the vectors in a term-document

matrix are typically sparse with very few non-zero entries and Kivinen et al. [1997] provided both

theoretical and empirical evidence that SVM-like classifiers are well suited for such problems.

The details behind SVMs are complex and certainly beyond thescope of this study. Nonethe-

less, there are a few SVM implementations that are publicly available and amongst the most com-

mon ones is SVMlight written in c by Joachims [1998]. All SVM results in this research are based

on this implementation4.

3.5 Performance Metrics

Although sentiment classification is, as is self explanatory, a classification task, it is still possible

to approach it as a regression problem. The reason for this isthat the classes in a sentiment

classification problem are typically ordered. Consequently, inter-class similarity tends to be related

to this ordering in that, the closer the classes in the ordering; the more similar they are. These

varying inter-class similarities are clearly visible in the 5 graphs of Figure 3.5. Here each graph

illustrates the Euclidean distance between the centroid ofclassc, wherec ∈ {1, 2, . . . , 5}, and

those of all other classes. Here one can see, for instance in the second graph from the left, that the

Euclidean distance between the centroid of class 2 is closerto that of class 3 than to that of class 4.

Such varying inter-class similarities would therefore warrant larger penalties to classifier pre-

dictions thatregressfurther away from the true class labels. The work by Chakraborti et al.

[2007] on confusion matrices was particularly insightful in illustrating the need for unequal mis-

classification penalties. They found that classifiers experienced more confusion in deciding be-

tween adjacent classes of an ordinal scale. Consequently, by assigning an equal cost to all mis-

4Available at http://svmlight.joachims.org/
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Figure 3.5: Inter-Class Euclidean Distance for each class of the Actors Dataset

classifications, they were essentially discarding all the “nearly correct” predictions made by the

classifier.

3.5.1 Mean Squared Error

One option of capturing these “nearly correct” predictionsis to employ Mean Squared Error

(MSE), which is a commonly used measure of regression. Assuming that{yi}
N
i=1

are the true

class labels, and{ŷi}
N
i=1

are the classifiers predictions, MSE would be computed as:

MSE =
1

N

N
∑

i=1

(ŷi − yi)
2 (3.9)

Unlike accuracy, which only registers exact predictions, the MSE tells us how far the predictions

regress from the true class labels. It assigns a smaller penalty to a closer prediction and a larger

penalty to a further one. This makes it an excellent performance measure for the sentiment classi-

fication domain and thus was adopted as the default measure inthis research.

3.5.2 Comparing Performance

In this research, the difference in performance between twoalgorithms was mostly compared using

two steps. Firstly, twenty paired samples of performances of the algorithms would be generated

using 20 fold cross validation. The statistical differencebetween these two samples would then

be compared using the two tailedt-test at thep < 0.05 significance level. A further discussion on

this topic has been provided in the General Appendix.
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3.6 Summary

The outcomes obtained from the discussions and experimentsthat were conducted in this chap-

ter form the basis of the default parameters that are used throughout this thesis. The following

summarises this information.

The Polarity dataset was the only bi-polar dataset, the Ordinal datasets were Actors, Edmunds

and Scale, the Neutral dataset was Reuters, the Query dataset was the Trec Blog Collection, and

WordNet was the Lexical dataset. Note also that the Actors and Edmunds datasets were compiled

specifically for this research whereas the others were obtained from literature.

For textual pre-processing: Tokenization was compulsory in all experiments, PoS Tagging and

Stemming were only performed when specified, and finally Conversion to a consisted case and

stop-word filtering were always performed.

Two classifiers are used in this research: Naı̈ve Bayes and the Support Vector Machines. Naı̈ve

Bayes performs classification by employing word-to-class conditional probabilities, whereas SVM

builds a hyperplane between the two classes. Three feature selection heuristics are employed:

Information Gain, the Chi-Squared score, and Document Frequency. The default in this research

was to reduce the initial feature space by 98% using Information Gain. These two combined

heuristics have been widely used and are considered as good rules of thumb [Yang and Pedersen,

1997; Wiratunga et al., 2004].

The default measure of performance is the Mean Squared Error(MSE). This was chosen as

it tells us how far the predictions are from the true class labels. This is important as most of the

classes in the datasets used here possess misclassificationcosts that increase with the magnitude

of disparity between the predictions and the true class labels. The two-tailedt-test, at thep < 0.05

level, was used to test whether two sets of paired samples aredifferent from each other. Most of

the tests employed 20 paired samples that were mostly obtained from 20-fold cross validation.
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Sentiment Extraction with PoS Pattern

Analysis

Part-of-Speech (PoS) patterns are sets of consecutive PoS tags that can be used to filter out phrases

from a given input text [Justeson and Katz, 1995]. The patterns are typically chosen such that they

filter out phrases that conform to a desired linguistic property. For instance, a pattern formed

from an adjective followed by a singular noun (JJ NN1) would extract sentiment rich phrases

such as “fast car,” “great person,” or “evil motive.” The linguistic property in this case is that the

first word evaluates the second hence yielding an opinion rich phrase. Other similar PoS pattern

combinations are also possible, and it is not difficult to seethe potential that this approach could

offer, especially if the patterns are well designed.

A good example of a study that employs PoS patterns for sentiment classification is the work

done by Turney [2002]. In this study, Turney addresses the problem of un-supervised sentiment

classification by use of phrases extracted by manually crafted PoS patterns. Table 4.1 lists a similar

set of PoS patterns as those that he used in his study (The disparity is due to a difference is tagsets).

In this Table,J refers to adjective forms (JJ , JJT , or JJR), NN1andNN2to singular and plural

nouns respectively,R to adverb forms (RR, RG, RGA, or RGR), andVV0 to verb forms. To describe

the patterns in Table 4.1, consider the fourth one which means that two consecutive words are

extracted if the first is a noun and the second is an adjective,but the third (not extracted) cannot be

a noun. The third word is checked so as to avoid extracting a bi-gram such as “very fast” instead of

“fast car” from the initial phrase “very fast car.” Note alsothat Turney [2002] used phrases instead

35
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Tag 1 Tag 2 Tag 3 (Not Extracted)
1. J NN1or NN2 anything
2. R J notNN1or NN2
3. J J notNN1or NN2
4. NN1or NN2 J notNN1or NN2
5. R VV0 anything

Table 4.1: Manually Selected PoS Patterns

of single words. The reason behind this is that phrases inherently preserve context. For instance,

“very good” and “not good” clearly posses opposing polarities and this information would be lost

if the two preceding words, “very” and “not,” were discarded.

An obvious drawback of using manually selected PoS patternsis that they need to be created by

a domain expert in the first place. Furthermore, as anomaliesdiscussed in the previous paragraph

illustrate, this can be quite a demanding task even for skilled practitioner. As an estimate, each

domain requires up to twenty PoS patterns and personal experience shows that it is not uncommon

for each pattern to take up to five hours of skilled labour to design [see also Jackson and Moulinier,

2002;Section 4.2]. This can be a major setback, especially in industries such as marketing or the

media where the data continuously changes.

This chapter attempts to address the problem of manual pattern construction by proposing an

algorithm that automatically generates a set of PoS patterns for extracting sentiment rich phrases.

The algorithm, named the PoS Pattern Selector (PPS) and developed in this research, makes use of

a sentiment rich background dataset to learn the set of PoS patterns. Each word in the background

dataset is replaced with its respective PoS tag after which standard feature selection heuristics

such as Information Gain (IG), Document Frequency (DF), andthe Chi-Squared (CHI) score [Se-

bastiani, 2002; Yang and Pedersen, 1997] are applied to select the top discriminative patterns of

lengths one, two, and three. The hypothesis behind this is that patterns that are predictive of a

particular orientation, should also extract phrases that are predictive of the same. The results were,

however, contrary to this in that IG and CHI, which are traditionally known to yield more predic-

tive features than DF, resulted in the lowest performances [see also Mukras et al., 2007a]. This

led to the conclusion that the most effective PoS patterns are those that occur frequently across

documents.

Prior to proceeding with the chapter, there is an issue of principle regarding the deployment
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Assign Part-of-Speech tags to Test Document

Predict overall sentiment orientation (Phase 3)

1. nothing great

2. new movie

Phrase Orientation

 -2.56

+0.92

Aggregate                    -1.64

Prediction: Negative

1. nothing great

2. new movie

Extacted phrases

Extract phrases

from input text

Selection of PoS patterns from Background data (Phase 1)

Tagged Test
document

Extraction of phrases

          (Phase 2)

using PoS Patterns

pos neg

a.  Tag:  Greatest_J movie_NN1 ever_R made_VVN ....

b.  Remove words:  J NN1 R VVN ....

c.  Form Patterns:  J_NN1 NN1_R R_VVN ....

1.  For each document e.g: Greatest movie ever made ....

2.  Rank Patterns using: IG, CHI, or DF

Sentiment rich 

Background documentsTopmost PoS Patterns

Tag 1 Tag 2

PN1     JJ
 JJ      NN1
JJ         

There is nothing great about the new movie

EX VBZ PN1 JJ II AT JJ NN1

Figure 4.1: The PPS Algorithm in a Sentiment Classification Framework

of background examples on a non-labelled problem, such as this one, that is worth noting here.

In such a scenario, there are at least two situations that could arise: The background examples

could either be labelled, or non-labelled. There is typically no restriction on applying non-labelled

background examples to a non-labelled problem. However, itmay be possible to criticise the

application of labelled background examples to a non-labelled problem for the reason that it goes

against the principle of learning from non-labelled examples. One could, however, defend against

this by arguing that although the background examples are labelled, there would still exist some

uncertainty as to whether they follow the same distributionas the non-labelled training examples.

This type of uncertainty is typically absent when learning from labelled examples. Consequently,

so long as this uncertainty exists, then the problem continues to be one of learning from non-

labelled examples.
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Heuristic Tag 1 Tag 2 Examples of extracted phrases
NN1 ? shrug ?, glory ?, loser ?
NN1 ! joke !, understatement !, menace !, perfection !

IG VVZ NN2 grate nerve, play scene, think woman
NN2 NN2 work life, year job, concert movie
J VVG good look, serious think, good fall
NN1 J guy worst, personality decent, spelling unattractive
NN1 ? shrug ?, moron ?, fear ?, glory ?, loser ?

CHI NN1 ! joke !, understatement !, menace !, perfection !
NN1 VVZ planet act, man pray, character play
VV0 NN1 walk sunset, get sitcom, show emotion
J NN1 worst actor, terrible actress, worst breakfast
NN1 NN1 example non-talent, quality style, courage range

DF NN1 J guy worst, personality decent, spelling unattractive
NN1 NN2 going look, education work, world affair
J NN2 cute star, decent performance, outspoken topic

Table 4.2: Sample of top ranked PoS patterns selected using IG CHI and DF

The remainder of this chapter is organised as follows. Section 4.1 describes the manner in

which the PPS algorithm automatically identifies PoS patterns. This section also walks through

the steps of how the resultant PoS patterns are used to classify the orientation of an arbitrary test

document. The chapter is then concluded in Section 4.2 with adiscussion and summary. Note that

the empirical evaluation of the PPS algorithm is discussed in the Evaluation chapter 8.

4.1 Overview of the System

The diagram in Figure 4.1 provides an overview of the system that is described by this chapter. As

illustrated, it is divided into three separate phases: The first phase, which constitutes the contri-

bution of this chapter, involves PoS Pattern Selection, thesecond phase deals with the Extraction

of Phrases, and the last phase is Un-supervised Sentiment Classification. In order to describe the

system, this chapter walks through each of its steps. Note that PoS pattern selection is only per-

formed once, but it needs to be done prior to the other two steps. This will therefore be the starting

point of the discussion.
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EXTRACT-PHRASES(d,Q)
1. B ← {}
2. M,m← |LONGEST-AND-SHORTEST-PATTERN(Q)|
3. for i = 1 to |d| do
4. for j = m to M do
5. if i + j ≤ |d| then
6. t = PART-OF-SPEECH(wi . . . wi+j)
7. if t ∈ Q andwi . . . wi+j /∈ B then
8. B ← B ∪ {wi . . . wi+j}
9. return B

Figure 4.2: Extraction of Phrases from the Test Documentd

4.1.1 Pattern Selection from a Background Dataset

The first step in the PPS algorithm is to establish a background dataset with two classes: sentiment

positive and sentiment negative. This dataset is fundamental to the algorithm as its underlying

structure implicitly contains the patterns that are required for extracting sentiment rich phrases.

Once the dataset is in place, each of its documents are processed so that all words arereplaced

by their corresponding PoS tags1. Assuming thatt1, t2, . . . , tM is a sequence of PoS tags in an

arbitrary document of this dataset, a PoS pattern of lengthj would be defined astm . . . tm+j where

m = 1, 2, . . . ,M−j. All such patterns are then ranked using IG, CHI, or DF.

Once the PoS patterns have been ranked, they are then checkedfor singular or plural proper

nouns (i.e.NP1 or NP2) and those containing any instances of these are discarded.The reason

for this is that proper nouns tend to occur within positive, negative, or even neutral phrases. For

instance, the proper noun “London” can be found within contexts such as “I love London,” “I hate

London,” and “I don’t mind London.” This makes it difficult toclassify the orientation of a proper

noun as its various contexts can be highly ambiguous [Turney, 2002].

4.1.2 Extraction of Phrases

Once the PoS patterns have been processed, the top ranked patterns are then used to extract phrases

from thetest document. The procedure is summarised in Figure 4.2. Hered is the test document

consisting of all its wordsw1, . . . , w|d|, andQ is a set of PoS patterns of various lengths. In

addition to this, the statementM,m ← |LONGEST-AND-SHORTEST-PATTERN(Q)| respectively

1Tagging was performed using the RASP system [Briscoe and Carroll, May 2002] which utilises the CLAWS2
Tagset.
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Adjective Word Corresponding Antonyms
new (11,1268194) old (8,354828), used (3,3)
good (21,719768) awful (6,29714), terrible (4,38042), bad (14,409)
general (6,574866) special (7,195450)
right (14,549695) wrong (9,180121), erroneous (1,2660)
great (6,514301) terrible (4,38042), ordinary (2,28635)
big (13,410606) small (10,248872), little (8,505147)
simple (7,245606) complex (1,44198), difficult (2,77048)
poor (6,113213) rich (12,74127)
huge (1,109800) small (10,248872), little (8,505147)
glad (4,103213) sad (3,82949), bittersweet (2,4273)
smart (7,86815) stupid (3,104053), weak (12,28502)
foolish (2,10510) wise (4,32497), all-knowing (1,0)

Table 4.3: A Sample of the Adjectives used to Generate the SetsP andN

assigns the lengths of the longest and shortest patterns inQ to M andm, whereas the function

PART-OF-SPEECH(wi . . . wi+j) returns the PoS tags for the wordswi . . . wi+j . The procedure

returns the setB which contains all phrases in documentd that match the patterns in setQ.

Table 4.2 illustrates, for each feature selection heuristic, a sample of the topmost PoS patterns

that were returned, along with a few of the phrases that they extracted. Note that phrases extracted

using DF such as “worst actor,” and “terrible breakfast” arerelatively more intuitive, in terms of

sentiment richness, than those extracted by IG and CHI such as “shrug ?” and “moron ?.” It will

later be shown that classification performances also tend tofollow the same trend.

4.1.3 Un-supervised Sentiment Classification

Once the sentiment rich phrases have been identified in the test document, the next step is to

compute their respective sentiment orientations. Letbi be theith extracted phrase from the test

documentd. The sentiment orientation of the phrasebi is computed by comparing its association

to a set of positive wordsP, against its association to a set of negative wordsN [Turney, 2002].

The words in these two sets are normally based on antonym pairs. For example, given an entry

“good” in setP, there would be a corresponding antonym such as “bad” in setN . The candidate

words were also filtered out by querying them against the Query Dataset and selecting the best

option. The following describes how the two sets,P andN , were obtained in this thesis.

The two setsP andN were initially compiled from a list of manually selected adjectives

as adjectives are known to be good carriers of sentiment [Hatzivassiloglou and Wiebe, 2000].
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The words were then recorded onto a list after which a number of sources (including WordNet,

thesauri, and plain intuition) were used to generate a list of corresponding antonyms for each word

in this list. The two columns in Table 4.3 depict an example ofthe words that were compiled.

This Table also illustrates, for recorded each word, both: (1) Its familiarity-score as an adjective,

and (2) Its Query dataset frequency which refers to its frequency in the Trec-Blog Collection [see

Macdonald and Ounis, 2006]. These two values are respectively shown in the brackets that follow

each word in Table 4.3. The familiarity score was obtained from WordNet [Fellbaum, 1998], and

it is a measure of a words usage in normal language. Wordnet computes this score based on the

words polysemy count. A word is judged to be polysemous if it has two or more senses whose

meanings are related. Consequently, a words polysemy countis the number of related meaning

that the word exhibits. The reasoning behind using the polyseme count is that a high score would

imply that the word has several adjective polysemes and hence is commonly used, whereas a low

score would imply few adjective polysemes and hence is uncommon. Note that the lowest possible

familiarity score is 1, whereas there is no upper bound to thenumber of polysemes that a word can

have.

Both the familiarity score and the Query dataset frequency are important parameters in select-

ing the words that form the setsP andN , as computing association is difficult with words that

are either uncommon or excessively common. For instance, the word “good” in Table 4.3 occurs

too frequently. It would therefore not be wise to select it asa member of positive seed word as

it would most probably occur in both positive and negative contexts. Similarly, the word “used”

occurs too infrequently to be present in any context, let alone a positive or a negative one. The two

setsP andN were finally chosen as followsP = {glad, rich, smart, great, wise, huge}, andN =

{sad, poor, stupid, terrible, foolish, little}.

The association between two entities, sayx andy, is computed using Pointwise Mutual Infor-

mation [Church and Hanks, 1990] defined as

I(x, y) = log

[

P (x, y)

P (x)P (y)

]

(4.1)

As with IG, Pointwise Mutual Information can also be thoughtof as a measure of independence

in that I(x, y) = 0 if and only if x andy are independent of each other, and its value increases

with the association between the two. This is easy to see because ifx andy are independent, then
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SENTIMENT-ORIENTATION(d,Q,P,N )
1. DO = 0
2. B ← EXTRACT-PHRASES(d,Q)
3. for eachb ∈ B do
4. DO+ = PO(b,P,N )
5. return sign [DO]

Figure 4.3: The Un-Supervised Sentiment Orientation Algorithm

P (x, y) = P (x)P (y), and therefore Equation 4.1 will yield a value of zero; otherwise its value

would increase with the association between the two.

This idea can be used to compute the sentiment orientation ofthe phrasebi by comparing its

association with the two setsP andN as follows:

PO(bi,P,N ) = I(bi,P) − I(bi,N ) = log

[

P (bi,P)P (N )

P (bi,N )P (P)

]

(4.2)

Note that if bi is equally associated to bothP andN , thenPO(bi,P,N ) would yield a value

of zero. However, ifbi is more associated to eitherP or N , then the value ofPO(bi,P,N )

would either be positive or negative respectively. The probabilities in Equation 4.2 were estimated

by using the number of hits returned by a search engine indexed over the Query dataset. This

technique was introduced by Turney [2002] and is performed as follows:

P (P) ≃ hits (glad∨ . . . ∨ huge) (4.3)

P (N ) ≃ hits (sad∨ . . . ∨ little) (4.4)

P (bi,P) ≃ hits (bi near (glad∨ . . . ∨ huge)) (4.5)

P (bi,N ) ≃ hits (bi near (sad∨ . . . ∨ little)) (4.6)

Herehits(·) is a function that returns the number of documents that satisfy its query parameter,

andnear is a binary operator that constrains the search to documentscontaining its two query

parameters, within 10 words of each other in any order. The value 10 was chosen as it is the

approximate length of a single sentence. These probabilityestimates form the basis of the un-

supervised classification technique. They determine the rightful orientation of the phrasebi as per

the evidence present in the Query dataset. It is therefore crucial to employ a sentiment rich Query

dataset that can generate accurate probability estimates.Finally, the overall document orientation
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is then computed as follows:

DO(d) = sign

[

∑

i

PO(bi,P,N )

]

(4.7)

A positive aggregate would imply a positive orientation whereas a negative aggregate would imply

a negative orientation. The algorithm is summarised in Figure 4.3. The procedure first initialises

the orientation of the test document to zero. It then extracts all phrases that match the PoS patterns

contained in the setQ and places them into the setB. The orientation of each phrase in the set

B is then computed after which the orientation of the sum of allphrases is then returned as the

orientation of the overall document.

4.2 Discussion and Summary

This chapter presents the PPS algorithm which is a novel approach to PoS pattern selection for

un-supervised sentiment classification. The PPS algorithmautomatically mines PoS patterns and

hence offers an important alternative to the common approach in literature which involves manual

design of the PoS patterns.

The PPS algorithm is divided into three main steps: The first step involves the selection of PoS

patterns from a sentiment rich background dataset. This involves tagging the words in the back-

ground dataset, omitting the words and retaining the PoS tags, grouping the PoS tags into patterns,

and finally ranking the resultant patterns by use of IG, CHI, or DF. The second step involves the

extraction of phrases from the test document and the last step classifies the test document based

on the extracted phrases.

The evaluation is presented in chapter 8 and involves three main experiments. The first exam-

ines the effectiveness of the three ranking criterion (IG, CHI, and DF), the second compares PPS

algorithm against manually crafted patterns, and the last examines the effect of a sentiment rich

background dataset.



Chapter 5

Positional Information

Despite the fact that positional information has been widely used in topic identification, only a

handful of studies in the sentiment analysis domain have attempted to exploit this resource. A

module that can propose the most likely locations of sentiment rich phrases within a document

would be quite useful to an un-supervised sentiment classifier. Phrases that occur in these locations

could be weighted in preference of others and this has the potential of improving classification

performance.

The work by Edmundson [1969] was probably amongst the earliest studies to utilise positional

information in the domain of topic identification. He statedthat “topic sentences tend to occur

very early or very late in a document and its paragraphs.” This suggests that introductions and

conclusions are the most probable locations to identify thetopic. In another closely related study,

Baxendale [1958] observed a partly similar trend to that proposed by Edmundson. He found that

in 85 percent of paragraphs, the topic sentence was in the initial sentence and in 7 percent in the

final one. Although this observation was at paragraph level,it clearly suggests that the beginnings

or endings of a text are likely positions for topic content. However, there have also been a number

of reports in the literature that have had alternative viewsabout the importance of an introduction

and/or a conclusion in topic identification. Donlan [1980],for instance, maintained that the topic

of a given text could be found anywhere within text or not be mentioned at all. Paijmans [1994]

from the Information Retrieval community also found that important terms, as measured using the

tf.idf weighting scheme, do not cluster themselves in the first or last sentences of paragraphs. He

also mentioned that positional information of this nature is not valuable enough to be considered

44
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in the preparation of indices for Information Retrieval.

In the sentiment analysis domain, the study by Beineke et al.[2004] provides useful insights

into how positional information has progressed in this field. They report that professional review

summarisers preferred to compile their summaries from quotations that originate from either the

early part or the final part of the full review. Their results indicated that the summarisers were

particularly fond of the last 5% of the full review indicating that conclusions may be the most

indicative of sentiment. Pang and Lee [2004] also observed asimilar trend when they found that

the rearmost sentences in a review yielded a higher performance than those at the beginning. This

gives further evidence in support of the hypothesis that conclusions are typically rich in sentiment,

and also that positional information can be a potential indicator of word polarity.

5.1 The Effects of Positional Information

The objective of this section is to examine the importance ofpositional information and whether

it can be incorporated into the sentiment classification procedure. The current hypothesis is that

it could be used to guide feature selection such that features that are found within sentiment rich

sections of a document could be weighted in preference over others. In order to investigate this

possibility, the distribution of sentiment rich words across a document was examined in an attempt

to find any existing trends that could be exploited. Thesentiment richnessof a word was estimated

as its Information Gain score: The higher a words IG score; the richer its sentiment content. This

estimate is justified because it selects words that are most descriptive of the sentiment categories.

The examination was conducted using the standard Actors andEdmunds datasets. Each doc-

ument, in the two datasets, was split into 20 equally sized portions along its text. The distribution

of the top 2% words, as ranked by IG, across the 20 demarcated portions was then recorded. This

process was then repeated for 20 folds of cross-validation and the resultant average distribution

was mapped onto the graph shown on Figure 5.1.

Note in Figure 5.1 that sentiment rich words tend to lie mainly in the early parts of documents

within the Actors dataset. This supports previous observations made by Edmundson [1969] who

stated that topic sentences “tend to occur very early or verylate in a document.” Beineke et al.’s

observations were also partly similar to this in that they found professional summarisers to have a

preference to quotes originating from either the front or rear parts of sentiment rich reviews. Note,
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Figure 5.1: Mean Distributions of Sentiment Rich Words across a Document

however in Figure 5.1, that the Edmunds dataset contradictsthe observations made in the Actors

dataset in that its distribution suggests that thecentral bodyof a document is the main source of

sentiment rich words. This seems to suggest that different corpora may have different distributions

of sentiment rich words along their respective documents.

In order to ascertain whether these distributions actuallytranslate into performance, a second

experiment that looks into the effect of document structureon mean-squared-error performance

was conducted. The experiment investigated four differentsections of a document: the introduc-

tion (intro), conclusion (con), introduction with conclusion (intro+con), and the body (body). The

experiment involved training a classifier on 20 different percentages of a section, and then testing

it on full documents each time. The percentages were: 5%, 10%, 15%, . . . , 100%.

Figure 5.2 illustrates the average MSE results that were obtained over 20 folds of cross vali-

dation using SVM-reg. Note that the results are mostly in line with the observations made in the

previous examination. In the Actors dataset, both the introand intro+con perform best for most

of the percentages that were used. This conforms to the results in Figure 5.1 whereby sentiment

rich words in the Actors dataset were distributed mostly in the front half with a few spikes in the

conclusions. As for the Edmunds dataset, the body performedpoorest during its first 15%. It

however picked up to be the best performing section from thatpoint on, and this is roughly in line

with its distribution of sentiment rich words as shown in Figure 5.1.

The conformance between the distributions in Figure 5.1 andthe mean-squared-error perfor-

mance in Figure 5.2 suggests that positional information may be useful in un-supervised sentiment
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Figure 5.2: Performances of Four Main Sections of a Document

classification of documents. It is, however, important to note that despite potential benefits in ex-

ploiting this information, not all corpora possess the samedistribution of sentiment rich words.

This was clearly depicted in Figure 5.1 where the Actors and Edmunds datasets actually had

distributions that contradicted each other. Nonetheless,the results in Figure 5.2 show a strong

correlation between supervised sentiment classification performance and the previously charted

distributions in Figure 5.1. This therefore opens the possibility that positional information could

be useful in an un-supervised sentiment classification context, just so long as one is aware of the

underlying distribution of sentiment rich words in the corpus of interest.

5.2 Weighting Phrases by Position

In order to weight a phrase by position, both its location andits documents’ length need to be

recorded. A weighting functionw can then be defined to calculate an appropriate weight for the

phrase. Following previous sentiment analysis results by Beineke et al. [2004] where introductions

and conclusions were presumed to be the best locations for sentiment rich words, two different

implementations ofw were instantiated. The first implementation,wα, gives preference to phrases

that occur in the introductions and conclusions of a document, whereas the second one,wβ , prefers

those found within the main body. The boundaries of the threesections (introduction, conclusion,

and body) were determined by dividing the document into fourequal quarters. The first and last

quarters were then respectively taken as the introduction and conclusion, whereas the middle half

was taken as the body. These proportions were assigned basedon the heuristic that the body is
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generally the most lengthy part of a document.

In order to describe the two functionswα andwβ, let locd(bi) be a function that returns the

position of the phrasebi within the test documentd. Also let |d| represent the length of document

d, andF be an integer such thatF ≥ 1. The first weighting functionwα was then implemented as

follows:

wα(bi, d) =



















1, if locd(bi) ≤ 0.25|d|

1, if locd(bi) ≥ 0.75|d|

1/F, otherwise

(5.1)

Note here that the first and last quarters are weightedF times as much as the middle half, i.e.1

against1/F . In contrast, the second functionwβ was weighted inverse to this as follows:

wβ(bi, d) =



















1/F, if locd(bi) ≤ 0.25|d|

1/F, if locd(bi) ≥ 0.75|d|

1, otherwise

(5.2)

Note here that middle half is now weightedF times as much as the first and last quarters, i.e.1

against1/F . With the weighting functions in place, the computation of document orientation in

Equation 4.7 of the previous chapter can then be revised as follows:

DO(d) = sign

[

∑

i

w(bi, d)PO(bi,P,N )

]

(5.3)

Wherew can be chosen to be eitherwα or wβ.

5.3 Discussion and Summary

The hypothesis behind this chapter is that the location of a phrase within its parent document has

an influence on its sentiment strength. The preliminary experiments conducted in this chapter

suggest that this hypothesis may be true. They, however, also showed that the probability of

finding a sentiment rich word at a specified location varies from domain to domain. For instance,

it is more likely to find a sentiment rich word in the first half and last quarter of a document from

the Actor dataset. The situation is, however, reversed in documents from the Edmunds dataset,

where the body is the most likely source.
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The chapter utilises the results from the preliminary experiments to present two weighting

function. The first function assigns a higher weight to phrases occurring in the introduction and

conclusion, whereas the second function gives priority to phrases occurring in the body.

The evaluation of the weighting functions is presented in chapter 8 and involves only one

main experiment. The experiment analyses the effect of the two weighting functions on the un-

supervised sentiment classification performance on the Actors and Edmunds datasets.



Chapter 6

A Comparative Study of OSC

Learning to predict either discrete classes or real values from training data has long been an impor-

tant research topic in Machine Learning [Mitchell, 1997]. In between these two problems, lies a

third kind of problem that involves prediction into ordinalclasses, i.e. discrete classes with a linear

ordering. Surprisingly enough, not much attention has beengiven to ordinal problems, which is

rather disappointing given that many classification problems in the real world fall into this cate-

gory. A good example of such a problem is Ordinal Sentiment Classification (OSC) which involves

predicting into classes that are ordered with respect to sentiment, i.e. ranging from a positive to a

negative sentiment orientation.

OSC problems, as with ordinal ones in general, have also beenrelatively untended in the

SAoT community. This owes partly to the fact that until recently, most researchers viewed OSC

as being limited to only three classes, i.e. positive, negative, and neutral [Pang et al., 2002].

Furthermore, most studies tacitly assumed that classifiersdeveloped for the more common bi-

polar problem would be sufficient to predict documents from the neutral class as these would lie

on the boundary. However, the study by Koppel and Schler [2006] disapproves this assumption

in that they found classifiers designed for bi-polar problems to be lacking on OSC. Through such

efforts, it is now widely accepted that OSC problems can havemore than just three classes and

that special classifiers are required to address their needs.

It is possible to view an OSC problem as a multi-class classification task, whereby classifiers

are built for the purpose of predicting into three or more classes. Note, however, that in order to

identify a good classifier for OSC problems, it is first necessary to understand that the distinguish-

50
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ing feature about them is that their classes exhibit similarities that vary with the distance between

themselves. For instance, a textual review accompanied by arating of 1 (on a 10 point scale) is

expected to be more similar to one rated at 2 than another at 10. This means that a candidate

classifier should focus on achieving two main goals:

1. Maximising the correct predictions.

2. Minimising the distances between actual and predicted classes.

The literature on multi-class classification reveals a richvariety of classification techniques that

could be applied to OSC. Amongst these are classifiers that can inherently solve multi-class prob-

lems (e.g. Naı̈ve Bayes), and those that decompose the multi-class task into a collection of binary

problems, thereafter combining the binary results to formulate a multi-class prediction (e.g. One-

vs-All and All-vs-All). Note, however, that although a few isolated studies on OSC have adopted

one or more of these techniques [e.g. Koppel and Schler, 2006; Pang and Lee, 2005], there are still

no comparative studies that illustrate the superiority of one classifier over the other. This makes it

difficult for anyone to make an informed guess regarding which classifiers to employ on an OSC

problem.

The main objective of this chapter is to perform a comparative study of the performance of

various multi-class classification techniques on OSC problems. The aim is to provide results that

can be used as a guide in selecting an appropriate classifier for an OSC problem. In addition to this,

the Binary Search Approach (BSA), a multi-class classification technique that is purpose designed

for OSC problems is also introduced. The results indicate that the BSA performs as well as other

standard multi-class classification techniques. It, however, has a relatively low time complexity

which places it amongst the fastest classifiers of its kind.

This chapter proceeds as follows. The next Section discusses the design of the various clas-

sifiers that were employed. In this section, both classifiersthat decompose a multi-class problem

and those that can inherently solve them are discussed. The chapter is then concluded with a sum-

mary of these classifiers in Section 6.2. Note that the evaluations are discussed in the Evaluation

chapter 8.
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Figure 6.1: The One-vs-All Classifier

6.1 Multi-Class Classifiers for OSC Problems

A standard multi-class classification problem involves a training set consisting of documents be-

longing tom mutually exclusive classes. The goal is then to construct a classifier which, given

a new unseen test document, will correctly predict the classto which the new document belongs.

Most text classifiers are binary in nature, and hence can onlyhandle the case wherem = 2, i.e.

binary classification. However, whenm > 2 then a typical approach is to break down the prob-

lem into a series of binary classification tasks whose decisions are then combined to form single

multi-class decision.

6.1.1 The One-vs-All Scheme

Amongst the most simple, and well know multi-class classification schemes is the One-vs-All, or

the OvA, scheme. Given anm class problem, the OvA scheme would buildm real-valued binary

classifiers, each one to distinguish the examples in a singleclass from those in all remaining

classes. An unseen document is then classified by passing it to thesem classifiers and assigning

it the label of the classifier that returns the largest value [Nilson, 1965]. This strategy has been

depicted in Figure 6.1 for a 4 class problem. The grey and white regions respectively demarcate

the positive and negative classes that each binary classifier is trained on.

Most studies typically use the OvA scheme as a baseline against which to illustrate the su-

periority of their own algorithms [e.g. Fürnkranz, 2002; Frank and Hall, 2001]. One of its main

weaknesses is that its binary classifiers are trained on classes that are inherently skewed in favour

of the negative class. Note, however, it is also possible to argue that the OvA scheme isolates

each class from the rest hence enabling it to build accurate models of each class. This would in
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Figure 6.2: The All-vs-All Classifier

turn increase its ability to makecorrect predictions, which is one of the goals in solving an OSC

problem.

The One-vs-All scheme both trains and classifies in linear time with respect to the number of

input classes. This can been shown by noting that it buildsm classifiers for anm-class problem,

and hence trains inO(m) time. It then classifies an unseen example by querying allm classifiers,

and hence also classifies inO(m) time.

6.1.2 The All-vs-All Scheme

The All-vs-All (AvA) scheme is equally as common as the OvA scheme. It basically converts

anm-class problem into a series of binary problems by learning one real-valued binary classifier

for each pair of classes, using only training examples from these two classes and ignoring the

rest. An unseen document is then classified by sending it to each of them(m − 1)/2 classifiers

and combining their predictions by simple voting. Figure 6.2 illustrates this strategy for a 4 class

problem, where the grey and white demarcations respectively represent the positive and negative

classes that each binary classifier is trained on.

The AvA approach has clearly defined semantics, namely to predict whether a test case is more

likely to be of classx or classy. Unlike the OvA approach, its binary classifiers are generally free

from class skew and hence its performance is relatively unaffected by the number of classes in a

given problem [see Fürnkranz, 2002]. The AvA approach considers all pairs of classes separately.

This quality enables it to attain the two desired goals for solving an OSC problem: Firstly, it allows

the AvA scheme to build accurate models of each class, which improves its ability to makecorrect
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Figure 6.3: The Simple Ordinal Approach

predictions. Secondly, it enables the AvA scheme to preserve inter-class similarities, which in turn

aids it in minimising the differences between theactual and predicted classes.

The AvA approach both trains and classifies in quadratic time, i.e. O(m2). This can been

shown by noting that it buildsm(m− 1)/2 classifiers for anm-class problem, and hence trains in

O(m2) time. It then classifies an unseen example by querying each ofthem(m−1)/2 classifiers,

and hence also classifies inO(m2) time. Time complexity is an important factor in choosing

between the OvA and AvA techniques. Fürnkranz [2002] claimed that although AvA has a higher

time complexity, each of its classifiers have a reduced number of training examples, and hence it

works out to be just as fast as the OvA scheme. This is, however, highly dependent the mode of

implementation.

6.1.3 The Simple Ordinal Approach

The Simple Ordinal Approach (SOA) takes advantage of the ordinal class structure by dividing

the training data on the basis of the linear class ordering [Frank and Hall, 2001]. Given a problem

with a set ofm ordinal classes{c1, . . . , cm}, the SOA divides the training data intom − 1 pairs by

incrementally splitting it along the ordinal scale. One real-valued binary classifier is then trained

on each split, resulting inm − 1 classifiers. This idea is illustrated in Figure 6.3 for a fourclass

problem, where the grey and white demarcations respectively represent the positive and negative

classes that each binary classifier is trained on.

To classify an unseen documentd, all m − 1 classifiers are queried. The prediction of thejth

classifier is then normalised to the range[0, 1] and interpreted as the probabilityθd,j of document

d occurring in a class subsequent tocj (i.e. the negative class). The probability that documentd

belongs to classcj is then determined by the location ofcj in the linear ordering. There are three
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main possibilities of wherecj could occur, and these have been illustrated as follows:

P (cj |d) =



















1− θd,j, if j = 1

θd,j−1 − θd,j, if 1 < j < m

1− θd,j−1, if j = m

(6.1)

Documentd is then labelled with the class that yields the highest probability in Equation 6.1 as

follows:

label(d) = argmax
cj

[P (cj |d)] , j = 1, . . . ,m. (6.2)

Note that the binary classifiers of the SOA are mostly trainedon skewed data, except for when

the number of classesm is even, during which the middle classifier is balanced. Nonetheless,

the level of skew varies with each classifier, and decreases to almost zero towards the central

classifiers. This feature was intentionally designed in order to narrow down on a test cases’ true

class by exploiting the linear ordering. For instance, if a given test casex belongs to class 1 in

Figure 6.3, then classifier 1 would be most likely to predict it as positive, followed by classifiers

2 and 3 in that order. This consequently enables the SOA to minimise the distances between the

actual and predicted classes, which is one of the goals in solving an OSC problem. In contrast to

this, classifiers 2, 3, and 4 of the OvA approach in Figure 6.1 would all be equally likely to predict

x as positive. This inherently provides the SOA with an advantage over the OvA approach when

dealing with OSC problems.

The SOA trains and classifies in linear time with respect to the number of input classes. This

can been shown by noting that it buildsm − 1 classifiers for anm-class problem, and hence trains

in O(m) time. It then classifies an unseen example by querying each ofthem − 1 classifiers, and

hence also classifies inO(m) time.

6.1.4 The Binary Search Approach

As with the Simple Ordinal Approach, the Binary Search Approach (BSA) also takes advantage

of the ordinal class structure by dividing the training dataon the basis of the linear class ordering.

This SAoT classification technique was first developed in this research. Given a problem with a

set ofm ordinal classes{c1, . . . , cm}, the BSA would recursively divide the training data into two
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Figure 6.4: The Binary Search Approach

equally sized halves (positive and negative) while respecting the class ordering at each recursion

level. One real-valued binary classifier is then trained on each split, resulting inm− 1 classifiers.

The general idea is illustrated in Figure 6.4 for a four classproblem, where the grey and white

demarcations respectively represent the positive and negative classes that each binary classifier is

trained on.

This divide and conquer strategy can be viewed as a binary tree withm − 1 nodes. Assuming

this view, a test document would be classified by descending it down from the root node to one

of the leaf nodes. The direction of each descent is determined by the output of the classifier at

each respective node when queried with the test document. Ifthis output is positive, then the test

document would descend to the right, otherwise it would descend to the left. Finally, the classifier

output at a leaf node is taken as the class of the test document.

Note that when the number of classesm is not a power of 2, then it may not be possible to

always split the training data into two equally sized halves. For instance, if a problem has three

ordinal classes{c1, c2, c3}, then a decision would have to be made to include the middle odd class

c2 into either the positive or the negative side of the split. Two techniques were employed in this

regard. In the first technique, the middle odd class was randomly assigned to either the positive

or the negative side. This technique was referred to as BSA-RN. In the second technique, the

Kullback-Leibler (or KL) distance [see Cover and Thomas, 1991] between the middle odd class

and its two neighbouring classes was measured. The middle odd class was then assigned to the

side with the neighbour that had the shortest KL-distance toit. This technique was referred to as

BSA-KL.

The KL-distance is a measure of the difference between two probability distributions. For
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instance, given two distributionsP andQ, the KL-distance ofQ from P would be defined as:

D(P ||Q) =
∑

k

P (k) log
P (k)

Q(k)
(6.3)

Using this principle, the middle odd class would be merged with the side of the split whose distri-

bution is closest to its own.

The BSA progressively narrows down on the class of a given test case in a manner that would

minimise the ordinal distance between its prediction and the test cases true class. For instance, if

a given test casex belongs to class 1 in Figure 6.4, then classifier 1 at the root node would most

likely predict it as positive. This reduces the possible error in the final prediction from three units

to only one, which is essentially one of the goals of solving an OSC problem. Note, however, that

a classification error in the higher nodes is more critical. For instance, if classifier 1 predictsx as

negative, then the final error would be at least two units in size. Nonetheless, the BSA is designed

such that the upper classifiers are quite general and hence tend to be highly accurate. This reduces

the chances of such errors occurring. In addition to this, the BSA hardly experiences any class

skew. In the worst case, the difference in size between the positive and negative classes is at most

one, and this only occurs when the number of classesm is not a power of 2. This therefore enables

the BSA to build accurate class models, hence improving its ability to make correct predictions

(another goal of solving an OSC problem).

The BSA trains in linear time and classifies in logarithmic time with respect to the number

of input classes. This can been shown by noting that it buildsm − 1 classifiers for anm-class

problem, and hence trains inO(m) time. It then classifies an unseen example by querying at most

⌈log m⌉ of its classifiers, and hence classifies inO(log m) time. This makes it amongst the fastest

multi-class decomposition techniques employed here.

6.1.5 The Single Classifiers

A single classifier is essentially one that is naturally capable of handling multi-class classification

problems. In this research, two single classifiers were used: Naı̈ve Bayes and Regression based

Support Vector Machines (SVM-reg).

Naı̈ve Bayes is a simple but powerful classifier that is basedon the Bayes Theorem. Given

an m-class problem, the Naı̈ve Bayes classifier would buildm separate Bayes models, one for
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each class. An unseen test document would then be classified by polling them classifiers and

assigning it to the class whose model yields the largest probability. The fact that Naı̈ve Bayes

builds separate models for each class allows it to be both accurate, and appreciative of the ordinal

inter-class similarities that are present within OSC problems. These two points can be explained

by noting that the models that it builds are separate, and also posses the same linear ordering as

that of their respective underlying classes. This enables Naı̈ve Bayes to either predict a test cases

correct class, or minimise the error of an incorrect prediction. Note that these are the two goals of

solving an OSC problem.

SVM-reg approaches OSC from a regression perspective. Given an OSC training dataset,

SVM-reg builds a functionf that tries to map the training documents to their respectivelabels as

closely as possible. Once this function is learnt, an unseentest documentx would then be assigned

to the classc ∈ C that is closest to the regression valuef(x) ∈ R. Note that this regression value

is rounded off because, although OSC can be approached from aregression perspective, it is still

a classification problem. As with Naı̈ve Bayes, SVM-reg is also appreciative of the ordinal class

structure in that it tries to map the ordinal relationships between the classes of an OSC problem.

Finally, the time complexity details for SVM-reg are beyondthe scope of this study. Note,

however, that Naı̈ve Bayes trains and classifies in linear time and the details of this can be found

in chapter 3.

6.2 Discussion and Summary

The objective of this study is to provide empirical results that can used be in selecting an appro-

priate classifier for an OSC problem. Two different types of classifiers are explored: Those that

decompose a multi-class classification task into a series ofbinary problems, and those that are

inherently capable of handling a multi-class task without having to decompose the classes. The

chapter also identifies that a suitable classifier for OSC would have to be capable of maximising its

correct predictions, while minimising the error between the actual and predicted classes. A total

of six different classifiers were investigated at altogether.

The OvA scheme builds a binary classifier to separate each class from the rest. This fact

enables it to build good models of each class, which in turn helps in maximising its correct pre-

dictions. Note, however, that each of its models is greatly affected by class skew, especially if



6.2. Discussion and Summary59

the problem has a large number of classes. This weakens the ability of the OvA approach to min-

imise the errors in its incorrect predictions. The OvA scheme is relatively fast in that it trains and

classifies in linear time.

The AvA scheme builds a binary classifier for each pair of classes. This allows it to respect

the linear ordering between the classes, which in turn helpsit in minimising the error in its incor-

rect predictions. In addition to this, the models are based on pairs of classes and hence are not

affected by class skew. Note, however, that the AvA scheme isamongst the slowest multi-class

classification techniques in this study in that it trains andclassifies in quadratic time.

The SOA takes advantage of the class ordering by incrementally splitting the data along the

ordinal scale. Thus given anm class problem, the SOA would buildm − 1 binary classifiers,

each trained on one split. Note that the level of skew in the SOA varies with each classifier, and

decreases to almost zero towards the central classifiers. This feature enables the SOA to narrow

down on a test cases’ true class by exploiting the linear ordering. The SOA approach is relatively

fast in that it trains and classifies in linear time.

The BSA techniques successively split the training data into two equal halves resulting in

binary tree. In the event that two equal halves cannot be obtained, BSA-RN randomly assigns

the middle class to one half, whereas BSA-KL uses KL-distance to make the same decision. The

divide-and-conquer strategy that the BSA techniques employ enables them to respect the linear

class ordering, and hence effectively minimize the errors in their incorrect predictions. They are

also quite fast in that they train and classify in linear and logarithmic time respectively.

Naı̈ve Bayes and SVM-reg are the two single classifiers that were employed. Naı̈ve Bayes

models each class separately and hence respects the linear ordering. The same is also true with

SVM-reg which tries to model the linear ordering between theclasses. The time complexity for

SVM-reg is beyond the scope of this study. Naı̈ve Bayes, however, trains and classifies in linear

time.

The evaluation of the classifiers is presented in chapter 8 and involves two main experiments.

The first experiment analyses their MSE performance on the Actors, Edmunds, and Scale datasets.

The second experiment analyses their classification speed on the same datasets.



Chapter 7

Feature Selection for OSC Problems

One main characteristic of the Text Classification domain isthe problem of high dimensionality.

The original feature space in any dataset can easily comprise of several thousand of features. Such

high dimensions are impractical for most text classifiers which can only handle a small fraction of

the original feature set. For example, the distance computations made by thek Nearest Neighbours

classifier, quickly become intractable as the number of features increase. Similar problems are

also encountered by other machine learners such as Naı̈ve Bayes, Decision Trees, and Neural

Networks, just to name a few. Nonetheless, the problem of feature selection has been well studied

by the text classification community [see Yang and Pedersen,1997; Forman, 2003; Wiratunga

et al., 2004]. There now exists several techniques that can effectively reduce the original feature

space without sacrificing on classification performance.

Note, however, that despite the significant gains made in thefield of feature selection, there

are still some text classification problems that still pose achallenge to the field. Such problems

normally stem from the fact that most feature selection techniques are based on the assumption

that all pairs of classes are equally similar. This is not always the case in the real world, and a

good example of a problem that does not adhere to this assumption is the task of Ordinal Sentiment

Classification (OSC). Now, being ordinal in nature, OSC problems exhibit inter-class similarities

that decay with the ordinal distance between classes. For instance, a textual movie review rated

as positive bears a closer resemblance to one rated as medium, than another as negative. This

essentially means that the similarity between any pair of classes is a function of the ordinal distance

between them. Consequently, by not exploiting this information, most feature selection techniques

60
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Figure 7.1: Featuref1 andf2 posses Distributions that are Equally Important

are inherently incapable of realising their full potentialon OSC problems.

The thesis of this chapter is that OSC requires specialised feature selection. The basic ar-

gument is that important features in an OSC problem are thosethat distribute themselves across

similar classes. Standard feature selection techniques cannot easily detect such features princi-

pally due to their assumption that all classes are equally similar. Under this assumption, a feature

that occurs in two similar classes, would be considered as being equivalent to another that occurs

in two dissimilar ones, and hence the most appropriate features are overlooked.

The solution that is proposed in this thesis tackles the problem by capitalising on the fact that

the ordinal class labels are directly related to the ordinalinter-class similarities. With this knowl-

edge, the probability weight of a given feature in a given class is shared amongst neighbouring

classes in manner that decreases with inter-class distance. This smoothing like technique is re-

ferred to as the Ordinal Smoothing Procedure (OSP). The collective effect of performing the OSP

over all classes is that the distribution of the feature in question peaks if the feature is a member

of similar classes, and flattens if it is a member of dissimilar ones. The end result is that, a distri-

bution with a peak would have a higher information content than one that is flat [Shannon, 2001].

This therefore enables standard feature selection techniques to prefer features that occur in similar

classes over those that do not.

This chapter proceeds as follows. The next Section discusses the problem of feature selection

for OSC into more detail, giving specific examples of where itfails. It then goes on to discuss how

the OSP solves the problem. A final summary of the OSP is then presented in Section 6.2. Note

that the evaluation of the OSP is discussed in the Evaluationchapter 8.
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Figure 7.2: Featuref1 andf2 are Distinguished by Ordinal Smoothing

7.1 Inter-Class Similarities

In an OSC problem, inter-class similarities, as reflected from the class labels, play an important

role in feature selection. To illustrate this using an example, assume that one has two features,f1

andf2, that are distributed across a set of equally sized ordinal classes in the proportions shown

in Figure 7.1.

If one were to disregard class ordering, and hence inter-class similarities, then these two fea-

tures would have the same information content, and hence seem equally important. However, with

the inclusion of inter-class similarities, then they are different. Clearly, featuref2 is descriptive of

two similar classes and hence is more important than featuref1 which occurs in two relatively less

similar classes. The complication of performing feature selection with algorithms like IG and the

CHI score is that they do not exploit inter-class similarities and hence would equate the importance

of the two features described in Figure 7.1.

7.1.1 A Solution by Modifying Information Content

The Ordinal Smoothing Procedure solves this problem by smoothing the distributions of the fea-

tures prior to performing feature selection. This procedure is guided by ordinal inter-class sim-

ilarities which are inferred from the class labels. It basically disperses the probability weight

P (cj , ft), of a given featureft in a given classcj , to neighbouring classes in proportions that de-

cay with inter-class similarity. The end result is a distribution that peaks at classcj and smoothes

off as it gets further away. The collective effect of performing the OSP for all classes is that the

resultant distribution of featureft will tend to be “pyramid shaped” ifft is descriptive of similar

classes, and “flat” if it is descriptive of dissimilar ones. An example of this is given in Figure 7.2
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Figure 7.3: The OSP as Applied to a given Featureft

which illustrates the outcome of performing the OSP on the distributions of featuresf1 andf2 as

introduced in Figure 7.1.

The two shades of colour in this Figure depict the manner in which the probability weights

were distributed amongst the classes. Note, for featuref2, that the cumulative effect of having two

peaks at two similar classes is a steep distribution with a peak that spans both classes. This is in

contrast to featuref1 whereby the combined effect of having two peaks in two distant classes is a

relatively flat distribution. The overall effect is that theresultant distributionP ′(c, f2) contains a

higher information content thanP ′(c, f1). This enables both IG and the CHI score to distinguish

between the two features.

7.1.2 The Ordinal Smoothing Procedure

Figure 7.3 gives a general overview of the Ordinal SmoothingProcedure as applied to an arbitrary

featureft. As illustrated in Figure 7.3, the standard feature selection procedure is to estimate the

required probabilities and then compute the score for feature ft. Note, however, that the OSP

deviates slightly from this, in that it smoothes the distribution of featureft across the classes,

P (c, ft), prior to computing the feature score. There are two steps involved in the OSP:

Step 1

The first step is performed prior to feature selection. It involves initializing the similarity function

S(ci, cj) with the similarity values between all pairs of classesci, cj ∈ C, whereC = {c1, . . . , cm}

is a set of ordinal classes whose subscripts denote class ordering. Note that the functionS(ci, cj)

acts as a kernel that can be defined in a number of different ways. Ideally, it should model the
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Figure 7.4: Linear and Exponential Approximations of Inter-class Similarity

inter-class similarities of an OSC problem as closely as possible.

Most OSC problems are characterised by inter-class similarities that decay with the distance

between classes. These similarities represent the transition of sentiment orientation from one class

to the next along the ordinal scale. However, while the existence of this gradual shift in sentiment

across the classes is tacitly accepted, the quantification of its actual nature is still, at least for the

time being, an unsolved problem in NLP. Nonetheless, due to the need to estimate the underlying

inter-class similarities, one could opt for an alternativeapproximation.

In this research, the similarity functionS(ci, cj) was implemented in two different ways. The

first implementation,Sl, assumes that the similarity between classesci andcj decays linearly with

the ordinal distance between them, i.e.

Sl(ci, cj) = 1−
|i− j|

m
(7.1)

The second implementation,Se, assumes that the similarity between classesci and cj decays

exponentially, i.e.

Se(ci, cj) = exp (−|i− j|) (7.2)

The similarity curves for both functions have been illustrated in Figure 7.4 for classc1 against

all other classes. Note that the linear function has a more gradual slope that extends across all

classes. This has effect of distributing the weight of a feature in a given class to all classes. It,

however, also means that the features weight in its class of origin would be much smaller. This
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could be disadvantageous if the feature only occurs in one class. It is, however, quite useful in

flattening the distributions of features that occur in distant classes. The exponential function has a

much sharper slope that rapidly drops to zero. This has the effect of confining the distribution of a

features weight in a given class only to close neighbours. This has the advantage of sharpening, or

peaking, the distribution of a feature that occurs in only a few neighbouring classes. It is, however,

relatively poor at flattening the distribution of a feature that occurs in distant classes.

Step 2

The second step of the OSP is to smooth the distribution of featureft across the classes,P (c, ft),

so as to yield a new distributionP ′(c, ft). This is performed at each classcj ∈ C as follows:

P ′(cj , ft) =
∑

k

P (ck, ft)S(ck, cj) (7.3)

Where the functionS can either assume a value ofSl or Se. The effect of applying Equation 7.3 to

all classesc ∈ C for all classes is that the resultant probability weights offeatureft at each class are

stacked against each other with varying proportions of the original weight. Ifft occurs in similar

classes, then these classes would inherit relatively largeproportions of the original weight which

would thus boost the overall information content of featureft. However, ifft occurs in dissimilar

classes, then the intermediate classes would receive inversely proportional weights from either of

the two dissimilar classes. This would flatten the overall distribution of featureft resulting in a

lower information content.

Note that the cumulative effect of Equation 7.3 over all classes can be simplified into a single

matrix operation as follows:

P
′ = SP =











S11 . . . S1m

...
. . .

...

Sm1 . . . Smm





















P1

...

Pm











(7.4)

HereP, P′, andS respectively denote the original distribution, the smoothed distribution, and the

similarity function. Note also thatSij is used as a shorthand forS(ci, cj), andPj for P (cj , ft). A

useful constraint is to normalize each column ofS so as to ensure that the area underP
′ equates

to that underP.
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7.2 Discussion and Summary

This chapter identifies a new problem with the standard approach to feature selection for OSC

problems. It illustrates that important features in OSC problems distribute themselves across sim-

ilar classes, and then goes on to show that standard feature selection techniques are not designed

to identify such features. The reason it gives for this is that inter-class similarities are typically

not incorporated into the feature selection procedure. This therefore limits the capabality of dis-

tinguishing between important features, that occur in similar classes, and less important ones, that

occur in dissimilar classes.

As a solution to this problem, the chapter then proposes the OSP. The OSP is a novel feature

selection methodology that has the potential to be coupled with any feature selection technique

that makes use of the joint distribution between a feature and the classes. The OSP captures inter-

class similarities, implicit in the ordinal scale, into a feature distribution hence enabling standard

algorithms to correctly rate the importance of a feature with respect to OSC problems.

It has previously been argued by reviewers that the OSP is simply a revised form of smoothing,

which has widely been applied in text classification to tackle issues such data sparseness [see

McCallum and Nigam, 1998; Vilar et al., 2004]. Note, however, that the application of smoothing

in this context differs from this type of usage in at least twoways. Firstly, smoothing is used

here as a pre-bag-of-words procedure in that it is used to establish the words that actually from

the bag-of-words. In contrast to this, smoothing in data sparseness is used to avoid zero counts.

Assuming thatw is a random word andc, a random class, the typical use of smoothing would be

to estimateP (w|c) wheneverw is unseen in classc (meaning thatP (w|c) = 0). Secondly, rather

that using smoothing to replace unseen word counts, the objective here is to use it as a means of

distinguishing between words that are descriptive of similar classes from those that are not. It

turns out that, in some cases, making this distinction requires for the OSP to increase word counts

in classes where it is already maximal!

The evaluation of the OSP is presented in chapter 8 and involves one experiment which com-

pares the MSE performance of three feature sets. The first feature set (Base) was generated from

unmodified feature distributions. The second feature set was from OSP modified distributions us-

ing a linear (Sl) similarity kernel, and the last feature set was generated using an exponential (Se)

kernel.



Chapter 8

Evaluation

This chapter reports on the evaluation of the methodologiesthat were discussed in chapters 4, 5, 6,

and 7. Although these evaluations were all performed separately, they can still be roughly classed

into two main groups. Chapters 4 and 5 focus on the extractionof sentiment rich phrases, whereas

chapters 6, and 7 are based on Ordinal Sentiment Classification. The results obtained within the

two respective groups often influenced the subsequent chapter. For instance, the optimal parame-

ters that were found in chapter 4 where used in chapter 5, and similarly those found in chapter 6

were used in chapter 7.

The methodology of these evaluations was discussed in greatdetail in chapter 3, and the fol-

lowing is a brief summary of the main points that were raised.The overall research employed six

real world text datasets: Polarity, Actors, Edmunds, Scale, Reuters, and the Trec Blog Collection.

WordNet was also used as a reference dataset for obtaining lexical information. Pre-processing

of the datasets included tokenisation as a compulsory step,PoS Tagging and stemming were only

performed when specified, and finally conversion to a consisted case and stop-word filtering were

always performed. Feature selection was done using Information Gain, the Chi-Squared score,

and Document Frequency. The default approach was to use IG toselect the top 2% of the fea-

ture set. Naı̈ve Bayes and Support Vector Machines were the two supervised classifiers that were

used. They were mainly employed to solve OSC problems. The performance of the classifiers

was measured using either Mean Squared Error or Accuracy andsignificance was tested using the

two-tailedt-test, at thep < 0.05 level. The samples for the significance tests were obtained using

20-folds of cross validation.

67
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Figure 8.1: Comparison of the Pattern Selection Techniqueson Actors

8.1 Evaluation of the PPS Algorithm

Three main experiments were employed to evaluate the pattern selection procedures discussed

in chapter 4. The first experiment was a direct comparison between the three automated pattern

selection techniques, i.e. IG, CHI, and DF. The second experiment compared the performance

manual patterns against that of automatically generated ones. The last experiment compared the

effect of a sentiment rich background dataset against that of a non-sentiment rich one.

All three experiments employed bi-polar versions of the Actors and the Edmunds datasets

as the un-labelled test examples. These bi-polar versions were derived as follows: For the Ac-

tors dataset, classes 1 and 5 were used as the negative and positive classes respectively. For the

Edmunds dataset, the negative class was formed from classes1 and 2 and the positive one was

formed from classes 27 and 28. The experiments also used the Trec-Blog Collection as a query
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Figure 8.2: Comparison of the Pattern Selection Techniqueson Edmunds

dataset in order to obtain the probability estimates required to compute the orientation of a phrase

as discussed in Equation 4.2.

8.1.1 Experiment 1: Comparison of Pattern Selection

Figures 8.1 and 8.2 respectively illustrate the average 20-fold classification accuracies achieved

while selecting patterns using IG, CHI, and DF. The patternswere selected from the Polarity

dataset, and then used to extract phrases from either the Actors or the Edmunds dataset. The

Polarity dataset was chosen as it has a large feature set and thus would yield a larger variety of

patterns. Also note that the patterns consisted of uni-tags(single PoS tags), bi-tags (two consecu-

tive PoS tags), tri-tags (three consecutive PoS tags), and mix-tags (a mixture of all three).

The results show in both datasets that DF is mostly better than CHI, which in turn is also mostly

better than IG. This contradicts several previous studies in feature selection that have reported
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Figure 8.3: Manual vs. Automated Pattern Selection

the opposite trend in performance [Yang and Pedersen, 1997;Sebastiani, 2002; Forman, 2003].

Both IG and CHI are known to return features that are relatively more discriminative than those

returned by DF [Forman, 2003]. These results strongly suggest that the discriminative ability of a

PoS pattern does not directly influence that of the bi-grams it extracts.

The results also show that uni-tags and mix-tags tend to havethe best performance levels, fol-

lowed by bi-tags and finally tri-tags. Note that this goes against the argument by Turney [2002]

which states that a phrase would provide more context than a single word. Nonetheless, it is possi-

ble that some information could be missed out by phrases. Forinstance, the word “Absolutely” has

a positive orientation of 1.02. However, given the extract “Do you think it will work? Absolutely”

a bi-tag can only extract the word “Absolutely” within the phrase “? Absolutely” which has a

lower orientation of 0.79. It is therefore preferable not toomit uni-tags all-together, and this prob-

ably explains the good performance of mix-tags. In additionto this, the number of phrases that

match bi-tags and tri-tags are expected to be fewer than those that match uni-tags and mix-tags.

8.1.2 Experiment 2: Manual vs. Automated Pattern Selection

Figure 8.3 illustrates the average 20-fold classification accuracies achieved while using either man-

ually or automatically selected PoS patterns. The manual patterns were adopted from the study

by Turney [2002] and are listed in Table 4.1, whereas the automated ones were selected using the

DF of uni-tags, bi-tags, tri-tags, and mix-tags. Note that the performance of the manual patterns

is independent of thex-axis and hence is a straight line. As with the previous experiment, the



8.1. Evaluation of the PPS Algorithm 71

No of DF IG CHI
Patterns SR NSR Diff SR NSR Diff SR NSR Diff

1 0.666 0.586 +0.080 0.500 0.515 -0.015 0.500 0.500 0.000
2 0.655 0.655 0.000 0.544 0.548 -0.004 0.500 0.559 -0.059
3 0.657 0.657 0.000 0.542 0.548 -0.006 0.564 0.559 +0.005
4 0.662 0.657 +0.005 0.538 0.537 +0.001 0.596 0.568 +0.028
5 0.659 0.662 -0.003 0.539 0.536 +0.003 0.600 0.614 -0.014
6 0.662 0.662 0.000 0.532 0.536 -0.004 0.670 0.610 +0.060
7 0.663 0.661 +0.002 0.568 0.565 +0.003 0.669 0.609 +0.060
8 0.663 0.659 +0.004 0.567 0.567 0.000 0.668 0.616 +0.052
9 0.663 0.664 -0.001 0.569 0.567 +0.002 0.661 0.594 +0.067
10 0.664 0.667 -0.003 0.576 0.570 +0.006 0.661 0.594 +0.067
11 0.636 0.664 -0.028 0.574 0.577 -0.003 0.632 0.596 +0.036
12 0.637 0.664 -0.027 0.574 0.578 -0.004 0.632 0.596 +0.036
13 0.637 0.664 -0.027 0.574 0.579 -0.005 0.641 0.602 +0.039
14 0.638 0.636 +0.002 0.574 0.580 -0.006 0.639 0.600 +0.039
15 0.639 0.635 +0.004 0.577 0.579 -0.002 0.641 0.594 +0.047

Table 8.1: The Performance of Sentiment Rich Background Data on Actors (uni-tags)

Polarity dataset was also employed as the sentiment rich background corpus.

The results show that uni-tags are, on average, slightly better than manual patterns on both

datasets whereas mix-tags are only better on the Actors dataset. This therefore places uni-tags

as having the average best performance, followed by manual patterns, mix-tags, bi-tags, and fi-

nally tri-tags. The high performance of manual patterns is not unexpected as experience shows

that manual pattern construction is both rigorous and time-consuming [see Jackson and Moulinier,

2002;Section 4.2]. Each pattern, once derived, must be tested against a representative collection

and fine tuned in light of the results. This is an iterative process that must be done by a domain

expert. It is therefore not surprising to expect a better performance when using such carefully

designed patterns. However, the advantage of the automatedpatterns is that they reduce the de-

mand on the knowledge engineer. This makes it suitable in applications whereby the data structure

morphs rapidly making it infeasible to employ hand-craftedtechniques.

8.1.3 Experiment 3: Effects of a Sentiment Rich Background

Tables 8.1, 8.2, 8.3 and 8.4 illustrate the classification accuracies achieved on Actors and Edmunds

while using either a sentiment rich (SR) or a non-sentiment rich (NSR) background dataset. The

Polarity dataset was used as the SR background, whereas Reuters was used as the NSR back-
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No of DF IG CHI
Patterns SR NSR Diff SR NSR Diff SR NSR Diff

1 0.635 0.520 +0.115 0.500 0.508 -0.008 0.500 0.510 -0.010
2 0.580 0.580 0.000 0.510 0.562 -0.052 0.500 0.502 -0.002
3 0.625 0.625 0.000 0.520 0.562 -0.042 0.540 0.502 +0.038
4 0.630 0.610 +0.020 0.535 0.540 -0.005 0.595 0.525 +0.070
5 0.635 0.620 +0.015 0.535 0.562 -0.028 0.600 0.528 +0.072
6 0.640 0.620 +0.020 0.540 0.562 -0.022 0.662 0.542 +0.120
7 0.642 0.618 +0.025 0.555 0.598 -0.042 0.660 0.542 +0.118
8 0.650 0.620 +0.030 0.562 0.578 -0.015 0.660 0.542 +0.118
9 0.645 0.632 +0.012 0.565 0.575 -0.010 0.610 0.542 +0.068
10 0.638 0.632 +0.005 0.565 0.582 -0.018 0.610 0.542 +0.068
11 0.642 0.638 +0.005 0.570 0.575 -0.005 0.610 0.552 +0.058
12 0.645 0.638 +0.008 0.572 0.580 -0.008 0.610 0.552 +0.058
13 0.650 0.638 +0.012 0.575 0.580 -0.005 0.628 0.545 +0.082
14 0.650 0.642 +0.008 0.570 0.588 -0.018 0.620 0.542 +0.078
15 0.652 0.645 +0.008 0.570 0.582 -0.012 0.620 0.558 +0.062

Table 8.2: The Performance of Sentiment Rich Background Data on Edmunds (uni-tags)

ground. Each cell in the SR and NSR columns represent the average of 20 folds of cross valida-

tion. The difference between these two columns is shown in the Diff column with all statistically

significant differences1 shown in bold. Uni-tags were used in the first two tables whereas Mix-tags

were used in the last two. These were chosen as they were foundto be the most effective in the

previous two experiments.

Note, in both test datasets, that both DF and CHI are on average more effective when using

a sentiment rich background dataset. This is true for both uni-tags and mix-tags. The effect is

more pronounced with CHI, which performs significantly better on almost all pattern sizes when

using a SR background dataset. IG on the other hand does not perform very well with SR data.

However, its performance is the lowest of the three pattern selection techniques making it a less

attractive option. Nonetheless, the general trend is that DF and CHI have the highest performances

and also that they perform better on a SR background dataset.This offers strong evidence of the

importance of using a SR background dataset.

1Measured using the two tailedt-test at thep < 0.05 level.
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No of DF IG CHI
Patterns SR NSR Diff SR NSR Diff SR NSR Diff

1 0.666 0.586 +0.080 0.500 0.501 -0.001 0.500 0.500 0.000
2 0.655 0.655 0.000 0.500 0.502 -0.002 0.500 0.498 +0.002
3 0.657 0.645 +0.012 0.548 0.496 +0.052 0.500 0.497 +0.003
4 0.644 0.645 -0.001 0.539 0.495 +0.044 0.566 0.497 +0.069
5 0.648 0.639 +0.009 0.546 0.496 +0.050 0.600 0.496 +0.104
6 0.644 0.639 +0.005 0.546 0.506 +0.040 0.600 0.495 +0.105
7 0.648 0.639 +0.009 0.544 0.548 -0.004 0.616 0.497 +0.119
8 0.658 0.645 +0.013 0.540 0.548 -0.008 0.625 0.497 +0.128
9 0.657 0.636 +0.021 0.536 0.545 -0.009 0.622 0.498 +0.124
10 0.662 0.631 +0.031 0.531 0.548 -0.017 0.618 0.498 +0.120
11 0.654 0.625 +0.029 0.530 0.556 -0.026 0.673 0.498 +0.175
12 0.652 0.635 +0.017 0.531 0.556 -0.025 0.669 0.504 +0.165
13 0.649 0.635 +0.014 0.529 0.594 -0.065 0.670 0.503 +0.167
14 0.650 0.635 +0.015 0.538 0.594 -0.056 0.672 0.504 +0.168
15 0.647 0.635 +0.012 0.537 0.594 -0.057 0.669 0.504 +0.165

Table 8.3: The Performance of Sentiment Rich Background Data on Actors (mix-tags)

8.2 Evaluation of Positional Information

The two positional weighting schemes discussed in chapter 5were evaluated by comparing their

unsupervised sentiment classification performance on bi-polar versions of the Actors and Edmunds

datasets. Following from the results in the previous section, only uni-tags selected from the Polar-

ity dataset using DF were used here as these were largely found to be the most effective. Most of

the other default experimental settings were the identicalto those in the previous section.

Figure 8.4 illustrates the average 20-fold classification accuracies achieved by the two weight-

ing functions for uni-tags of size 5, 11, and 15 (The completeset of results are given in Figure A.3

and A.4 of the General Appendix). The results indicate that performance on the Actors dataset

benefits withwα, but looses withwβ . This clearly corresponds with the distribution in Figure 5.1

of chapter 5 where sentiment rich words within Actors documents are mainly concentrated within

the front half with a few spikes in the conclusions. A similarcorrespondence is also present within

the Edmunds dataset which benefits more from thewβ function as most of its sentiment rich words

are concentrated in the central body of its documents.

Nonetheless, despite the apparent benefits suggested by theabove results, a pre-requisite to

weighting a phrase by its locality is knowledge of the distribution of sentiment rich words within

documents of the domain of interest. Without this knowledge, performance improvements of
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No of DF IG CHI
Patterns SR NSR Diff SR NSR Diff SR NSR Diff

1 0.635 0.520 +0.115 0.500 0.498 +0.002 0.500 0.510 -0.010
2 0.580 0.580 0.000 0.498 0.498 0.000 0.500 0.535 -0.035
3 0.625 0.582 +0.042 0.530 0.478 +0.052 0.500 0.538 -0.038
4 0.608 0.590 +0.018 0.528 0.462 +0.065 0.540 0.530 +0.010
5 0.600 0.590 +0.010 0.528 0.470 +0.058 0.598 0.532 +0.065
6 0.575 0.598 -0.022 0.528 0.475 +0.052 0.600 0.532 +0.068
7 0.585 0.592 -0.008 0.538 0.505 +0.032 0.588 0.535 +0.052
8 0.590 0.602 -0.012 0.532 0.505 +0.028 0.590 0.538 +0.052
9 0.608 0.590 +0.018 0.538 0.492 +0.045 0.592 0.530 +0.062
10 0.610 0.580 +0.030 0.560 0.490 +0.070 0.590 0.518 +0.072
11 0.595 0.582 +0.012 0.552 0.510 +0.042 0.632 0.505 +0.128
12 0.598 0.575 +0.022 0.562 0.510 +0.052 0.628 0.495 +0.132
13 0.600 0.575 +0.025 0.562 0.522 +0.040 0.632 0.482 +0.150
14 0.595 0.585 +0.010 0.548 0.522 +0.025 0.628 0.482 +0.145
15 0.605 0.585 +0.020 0.548 0.522 +0.025 0.628 0.502 +0.125

Table 8.4: The Performance of Sentiment Rich Background Data on Edmunds (mix-tags)

any weighting function would only be by chance. Consequently, it is important to sample the

distribution of the domain, as was done here, prior to employing any weighting function.

8.3 A Comparative Study on OSC

The multi-class classification techniques that were discussed in chapter 6 were compared along

two main dimensions: (1) Their MSE performance, and (2) Their classification speed. The com-

parisons were performed between OvA, AvA, SOA, BSA, Naı̈ve Bayes, and SVM-reg. Note that

the underlying binary classifiers of OvA, AvA, SOA, and BSA were built using both Naı̈ve Bayes

and SVM-reg leading to a total of 12 multi-class classification schemes altogether. All the experi-

ments were performed on the three standard ordinal datasets, i.e. Actors, Edmunds, and Scale.

8.3.1 Experiment 1: Comparison of MSE Performance

Figure 8.5 illustrates the MSE performances achieved by the12 multi-class classification tech-

niques when evaluated on the three standard datasets. The initial feature sets were reduced to

the indicated sizes using IG. Each point in the graphs represents the average of 20 folds of cross

validation.
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Figure 8.4: Performance of the Weighting Functions on the Datasets

The most distinct feature about the results is that SVM-reg yields the best performances in 2/3

datasets, and is only marginally outperformed by the SOA, implemented using Naı̈ve Bayes, in

the Scale dataset. This outstanding performance is not surprising because SVM-reg is well known
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Figure 8.5: MSE of SVM-reg and Naı̈ve Bayes based classifierson OSC

for its effectiveness and is considered to be the current state-of-the-art in classification.

Another distinct feature about the results is that the SVM-reg based schemes tend to have a

more varied performance than the Naı̈ve Bayes based ones, which suggests that Naı̈ve Bayes is

more stable than SVM-reg. This result confirms observationsmade in previous studies whereby
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Figure 8.6: Confusion Matrices for OvA on Actors and Edmunds

Naı̈ve Bayes was found to be highly robust when subjected to various test conditions [Mukras,

2004]. It is for this reason that Naı̈ve Bayes is a favourite choice for industrial applications that

require reliable classification techniques.

Note that the OvA approach generally had the poorest performance in all datasets except Ed-

munds. Here, it performed quite well coming in third when implemented using SVM-reg, and first

when using Naı̈ve Bayes. This result is slightly unexpectedfor the reason that the Edmunds dataset

has the highest class skew, and hence one would expected the OvA approach to perform poorest

here. In order to investigate this result further, the confusion matrices generated over 20-folds

of cross validation on the Actors and Edmunds datasets whileusing 2% of the initial feature set

were plotted as shown in Figure 8.6. A confusion matrix compares a classifiers prediction against

expert judgements on a class-by-class basis. The entries inits non-diagonal cells are indicative of

the classifiers incorrect predictions, and hence the best scenario is when all entries are confined
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Figure 8.7: Comparison of SVM-reg and SOA on the Scale Dataset

to the diagonal cells. In Figure 8.6, the entries in each cellare represented by a gray-scale colour

scheme; the darker the shade, the fewer the entries. Ideallyall cells except those on the diagonal

should be dark, as this indicates total agreement between the expert and the classifier.

From the Actors confusion matrix, it is clear that the OvA approach has a high preference

for the two extreme classes, i.e. positive and negative. This probably highlights the difficulty in

classifying neutral documents. In addition to this, the small margin of classes in the Actors dataset

means that most documents would most likely resemble those from the extreme classes [Koppel

and Schler, 2006]. Note also, in the Edmunds confusion matrix, that there exists a broad band

along the main diagonal. Furthermore, this broad band is divided into two main clusters, one at

each end of the main diagonal. These two clusters clearly prove that, as with the Actors dataset,

the OvA approach also prefers the extreme classes of the Edmunds dataset. However, the large

number of classes in this dataset means that the incorrect predictions are distributed over a large

area. This therefore reduces the overall MSE, and enables the OvA approach to perform relatively

well on the Edmunds dataset.

The performance of AvA does not fluctuate as much as that of OvA, and it seems to be centred

around the average across all datasets. It is interesting tonote that AvA implemented using Naı̈ve

Bayes is identical in performance to Naı̈ve Bayes. This can be explained by noting that AvA

retains the original classes. Consequently, the class models that it builds are identical to those of

Naı̈ve Bayes and hence their identical performance.

The SOA performs relatively well on most datasets and even outperforms SVM-reg on the
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Figure 8.8: Confusion Matrices for SOA on Edmunds

Scale dataset when implemented using Naı̈ve Bayes. In Figure 8.7 one can clearly see that al-

though the SOA confusion matrix has a broader diagonal, it isrelatively more well aligned diag-

onal than that of SVM-reg. Note, however, that the SOA drops in performance on the Edmunds

dataset. The confusion matrices in Figure 8.8 reveal that this performance drop is due to its un-

usual preference for classes 1, 10, 20, and 28. This is probably due to two reasons: Firstly, as

was experienced by the OvA approach, most documents tend to resemble to the two extremes

polarities and hence the preference of SOA for classes 1 and 28. Secondly, the high number of

predictions for classes 10 and 20 clearly mean that most intermediate class documents resemble

these two classes to the SOA. One possible explanation for this is that the step-wise approach of

the SOA (see Figure 6.3) coupled with the high level of class skew in the Edmunds dataset causes

it bundle all intermediate class documents into the classesthat lie between the central class and the

extreme classes, i.e. classes 10 and 20. It would however be necessary to perform further analysis

to ascertain these explanations and this is a possible area for future work.

As for the two BSA techniques, it is clear that using KL-distance to assign the middle odd

class (i.e. BSA-KL) is better than simply doing so randomly (i.e. BSA-RN). BSA-KL performed

quite well, and its Naı̈ve Bayes implementation was observed to be at par with SVM-reg on the

Scale dataset. It is worth noting that, in the Scale dataset,both BSA techniques have the same

performance. The reason for this is that the Scale dataset has 8 classes, which is equal to the third

power of two, i.e.23. This therefore means that all its binary splits are even is size and hence both

BSA-RN and BSA-KL would yield the same binary trees.
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Classifier Dataset Single OvA AvA SOA BSA-RN BSA-KL
Scale 260.1 1714.0 1231.9 1453.2 650.0 669.0

SVM-reg Actors 748.1 7066.4 1640.8 3986.6 1643.0 1736.3
Edmunds 816.2 13598.2 12689.6 25225.5 2795.2 2841.2
Scale 130.4 382.8 493.0 351.0 284.0 304.1

NB Actors 136.2 361.9 360.8 312.4 276.2 294.8
Edmunds 155.8 2015.7 5668.6 1993.2 835.4 871.8

Table 8.5: Time Performance in Milliseconds Per Cross-Validation Fold

8.3.2 Experiment 2: Comparison of Classification Speed

Table 8.5 illustrates the average time in milliseconds thateach classifier took to train and test on

over each of the 20 folds of cross validation. For each dataset, the initial feature set was reduced

by 98% using IG. For each row of each dataset, the performances significantly (p < 0.05) better

than the rest are shown in bold.

The most distinct aspect of the results is that Naı̈ve Bayes,implemented as a single classifier,

attained the highest speed. The results also show that it wasat least twice as fast as any other

classifier on all respective datasets. In addition to this, the Naı̈ve Bayes based classifiers are also

much faster than their respective SVM-reg based counterparts. These results are highly encour-

aging, and serve to further support the evidence that Naive Bayes is a highly robust classifier that

can be as good as other relatively much more complex alternatives.

The second fastest classifiers were the BSA techniques. Thiswas expected as they had the

lowest time complexity, i.e.O(log m). Understandably, BSA-RN was faster than BSA-KL which

had to contend with the overhead of computing the KL-distance. Nonetheless, its MSE was much

better than that of BSA-RN.

For the SVM-reg based techniques, the BSA schemes were followed by AvA approach. Note,

however, AvA was the slowest classifier for the Naı̈ve Bayes based techniques. The reason for

this difference is that the speed of the SVM-reg on a given classification task is more dependent

on the number of documents, whereas that of Naı̈ve Bayes is more dependent on the number of

classes. Hence, since AvA reduces the test set intoseveral small binary problems, its SVM-reg

based version is quite fast as the problems are quite small. Conversely, it’s Naı̈ve Bayes based

version is much slower as the classes are numerous in number.
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Dataset Vec IG CHI1 CHIm−1

size Base Sl Se Base Sl Se Base Sl Se

5 55.57 54.99 56.61 59.10 55.94 60.83 65.76 64.60 61.37
75 41.92 41.83 41.81 44.49 42.80 45.28 64.91 56.75 44.55

150 40.74 39.83 40.22 42.68 40.46 42.67 64.83 56.71 42.57
Edmund 600 39.02 38.51 39.09 39.84 39.23 39.97 60.57 48.16 39.89

1100 38.84 38.81 38.98 39.05 38.87 39.41 55.46 44.22 39.40
1200 38.86 38.78 38.98 39.32 38.92 39.38 55.45 43.89 39.37
3000 39.30 39.08 39.19 39.10 38.88 39.39 53.31 41.79 39.38

5 5.28 5.53 5.51 5.03 4.92 5.50 5.17 5.35 5.55
75 2.81 2.89 3.14 3.99 3.56 4.24 4.50 3.92 4.36

150 2.53 2.65 2.74 3.34 2.80 3.73 3.98 3.37 3.54
Scale 600 2.21 2.33 2.45 2.54 2.35 2.64 2.99 2.62 2.57

1100 2.24 2.36 2.30 2.32 2.33 2.39 2.83 2.35 2.39
1200 2.21 2.37 2.32 2.30 2.32 2.36 2.83 2.32 2.33
3000 2.26 2.29 2.29 2.29 2.29 2.31 2.31 2.29 2.32

5 1.91 1.92 1.90 1.90 1.90 1.99 1.89 1.98 1.99
75 1.58 1.55 1.57 1.62 1.58 1.62 1.65 1.67 1.63

150 1.51 1.53 1.54 1.56 1.48 1.54 1.63 1.55 1.53
Actors 600 1.47 1.48 1.46 1.49 1.53 1.51 1.55 1.51 1.50

1100 1.45 1.47 1.47 1.51 1.49 1.49 1.50 1.48 1.47
1200 1.46 1.47 1.47 1.48 1.49 1.49 1.53 1.48 1.47
3000 1.52 1.49 1.46 1.49 1.46 1.46 1.50 1.48 1.50

Table 8.6: The Impact of the OSP while using SVM-reg

8.4 Evaluation of the OSP

The OSP was evaluated on three OSC datasets, i.e. Actors, Edmunds, and Scale. Its impact

was analysed by comparing Naı̈ve Bayes and SVM-reg performance on three feature vectors that

differed only in the modifications made to the feature distributions that they were generated from.

The first feature vector (Base) was generated from unmodifiedfeature distributions. However, the

second and third were generated from OSP modified distributions using either a linear (Sl) or an

exponential (Se) similarity kernel respectively. Note also that three feature selection heuristics

were used, i.e. IG, CHI1, and CHIm−1. This resulted in a total of nine feature vectors per dataset.

Table 8.6 and 8.7 respectively illustrate the results that were obtained when SVM-reg and

Naı̈ve Bayes were applied to the three OSC datasets. Each cell, in these two Tables, represents the

average MSE that was obtained in 20 folds of cross validation. For each vector size of each feature

selection heuristic (IG, CHI1, or CHIm−1), the performances significantly (p < 0.05) better than

the rest are shown in bold. The complete set of results from which those in Table 8.6 and 8.7 were
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Dataset Vec IG CHI1 CHIm−1

size Base Sl Se Base Sl Se Base Sl Se

5 200.1 194.8 152.0 170.4 136.5 147.2 245.3 234.4 148.2
75 74.50 75.94 67.22 74.73 68.45 73.57 210.3 129.3 71.66

150 64.64 63.90 60.36 67.44 59.86 66.85 203.1 127.9 65.00
Edmund 600 58.61 54.87 53.79 58.30 53.65 59.61 171.5 87.83 59.15

1100 57.45 54.98 51.79 57.36 51.89 57.63 119.6 72.49 56.45
1200 57.41 54.77 51.55 58.79 52.14 56.25 119.1 70.10 56.04
3000 56.96 55.47 49.05 55.81 52.84 56.50 105.3 61.96 55.71

5 10.75 11.68 9.12 10.29 9.18 11.61 16.92 9.98 11.87
75 4.31 3.82 4.07 5.47 4.98 6.29 10.95 5.11 6.32

150 3.05 3.21 3.57 4.54 3.45 5.24 6.35 4.50 4.86
Scale 600 2.62 2.43 2.91 3.35 2.50 2.97 4.11 3.17 3.17

1100 2.88 2.55 2.87 2.76 2.63 2.84 3.82 2.71 2.77
1200 2.84 2.58 2.80 2.81 2.54 2.92 3.74 2.66 2.84
3000 2.48 2.33 2.37 2.66 2.25 2.74 2.75 2.48 2.55

5 3.75 3.81 3.94 4.15 3.97 4.83 4.17 4.36 4.82
75 2.44 2.40 2.46 2.54 2.37 2.41 2.67 2.51 2.37

150 2.22 2.10 2.22 2.28 2.13 2.13 2.47 2.14 2.13
Actors 600 1.98 1.88 1.88 1.97 1.87 1.85 2.22 1.89 1.89

1100 1.96 1.81 1.77 1.94 1.81 1.79 2.00 1.84 1.82
1200 1.95 1.75 1.80 1.92 1.81 1.78 1.97 1.83 1.79
3000 1.87 1.74 1.81 1.91 1.76 1.74 2.09 1.74 1.81

Table 8.7: The Impact of the OSP while using Naı̈ve Bayes

obtained are respectively illustrated in Figure A.1 and A.2of the General Appendix.

Between the three feature selection heuristics, the effectof the OSP was, on average, felt

most by CHIm−1 then CHI1 and finally IG. Note, however, that an opposite trend was observed

with MSE performance in that IG was at the top, followed by CHI1 and lastly CHIm−1. This

performance trend is not surprising as IG has been know to perform better than CHI [Sebastiani,

2002; Yang and Pedersen, 1997]. In addition to this, this trend also helps to explain the relatively

larger impact that the OSP had on the two CHI techniques. Thiswas probably because the OSP

manifests the information content within the distributionof a feature, and this could have been

of benefit the CHI technique. However, being information theoretic in nature, IG already has the

baseline capability of utilising information content and hence the OSP would have a lesser impact

on it.

As for the three datasets, the impact of the OSP is felt most byEdmunds followed by Scale

and finally Actors. This trend can be explained by noting thatthe Edmunds dataset extends across
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Figure 8.9: IG between the Extreme Positive and all Other Classes

a wider number classes, meaning that its inter-class similarities would also possess an equivalently

larger range. This is clearly evident in Figure 8.9 where each graph illustrates the average IG of

the top 2% features contained in the most positive class and each of the other classes. Note that the

IG of the Edmunds dataset spans about3.5 × 10−2 units, whereas those of the Scale and Actors

datasets respectively cover about2.5 × 10−2 and5.0 × 10−3 units. Consequently, one would

expect the Edmunds dataset to be relatively more responsiveto the OSP as its wide inter-class

similarity bounds makes it easier to distinguish between features that occur in nearby classes over

those that do not. Conversely, at the other extreme, the small inter-class similarity bounds of the

Actors dataset makes its features resemble those of an orthogonal dataset. This makes it difficult

to distinguish between features that occur in nearby classes from those that do not. Consequently,

the Actors dataset benefits least from the OSP due to this reason.

The overall results suggest that the OSP has a positive impact on the performance of the Base

distributions. There are only 3 out of 126 instances in Table8.6 and 8.7 where the Base distribu-

tions were found to be significantly better than the OSP modified ones. This is overwhelmingly in

favour of the OSP. Consequently, there is strong evidence insupport of the initial hypothesis that

important features in an OSC problem distribute themselvesacross similar classes.

A supplementary experiment was performed with the aim of investigating the individual fea-

tures that were affected by the OSP. The most outstanding feature that was found was the word

“smoothest” from the Edmunds dataset which was promoted by about 2,300 positions up the IG

feature ranking by the OSP. A study of the corpus revealed that this feature was highly concen-

trated within positive reviews occurring in contexts such as “It is without a doubt the smoothest

riding vehicle I have ever driven.” Hence, due to its uni-polar occurrence, its distribution was

revised so to yield an IG score that would be relatively higher than if its presence was divided
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between distant classes.

8.5 Summary

This chapter evaluates all the methodologies that were discussed throughout the thesis. The PPS

algorithm, which automates the process of PoS pattern selection, was evaluated by a series of

3 experiments. The first of these investigated three patternselection techniques: IG, CHI, and

DF. DF was found to be most effective, followed by CHI, and lastly IG. This experiment also

found patterns of either unit length or a mixture of lengths (one, two, or three) to yield the best

performances. The second experiment compared PPS generated patterns against manually formed

ones and found the two to be roughly equivalent. The last experiment compared the performance

of a sentiment rich dataset against that of a non-sentiment one and found the former to be crucial

in the process of selecting PoS patterns.

The experiments on the effect of weighting phrases with respect to their locality in a document

found it to be useful to do so. However, it was also found to be necessary to first sample the

distribution of sentiment rich words in a corpus prior to adopting a weighting criterion.

The single classifiers (SVM-reg and Naı̈ve Bayes) were foundto be more effective than the

decomposition ones on OSC problems. This was true for experiments involving both MSE and

Time performance. The main reason behind this was that the single classifiers were found to

be inherently capable respecting inter-class similarities. This therefore meant that decomposing

them would probably degrade their natural predictions. There were however a few cases, such as

the SOA implemented using Naı̈ve Bayes, where the decomposition classifiers were significantly

better.

Amongst the decomposition classifiers, the BSA was found to be average with regard to MSE

performance. It was, however, the fastest with regard to time performance. This was mainly due

to its superior time complexity, i.e. logarithmic as compared to others which were linear at best.

The experiments on the OSP found it to be capable of improvingthe performance of both IG

and CHI on OSC problems. The two similarity kernels,Sl andSe, both had a positive effect on the

performance of one or more of the feature selection techniques. This success rate has important

implications in that it offers the possibility of adopting relatively more advanced kernels that could

yield further improvements.



Chapter 9

Conclusions and Future Work

This research has investigated the five objectives that werelisted out in the introduction, with the

sixth one being the evaluation. In this chapter, these objectives are compared against the work

that was eventually achieved during the course of the study.Comments and recommendations are

made regarding contributions of the methodologies that have been presented. Finally, some issues

that deserve further investigation are discussed.

9.1 The Objectives Revisited

Each of the objectives that were undertaken in this researchhave yielded at least one contribution

to the discipline of Sentiment Analysis of Text. Firstly, two new ordinal datasets have been added

to the community of OSC. These have both been employed in internationally published work and

have proven to be important test beds for OSC research. Secondly, the PoS pattern selector was

developed. Thirdly, the importance of position in sentiment classification of text was established.

Fourthly, a ranking of suitable classifiers for OSC was formulated. In addition to this the BSA

was also added into the research community. Lastly, the Ordinal Smoothing Procedure, which

revolutionises the manner in which feature selection is performed in OSC, is contributed.

In this section, each of the objectives that led to these various contributions are revisited and

a summary of how they were addressed is given. In addition to this, recommendations of how the

resultant methodologies should be employed.

1. To compile two ordinal SAoT datasets:Two ordinal SAoT datasets, i.e. Actors and Ed-

85
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munds, were successfully compiled. These two datasets, along with the Scale dataset devel-

oped by Pang and Lee [2005] in a separate research, served as the primary test-beds for all

experiments involving OSC. They have also been employed in at least two other publications

[see Chakraborti et al., 2007; Mukras et al., 2007].

2. To research and develop an automated PoS pattern selection algorithm: The PPS al-

gorithm, which automatically selects PoS patterns, was implemented and evaluated. This

algorithm operates by first applying PoS tags to the words of alabelled sentiment-rich-

corpus. The words in this corpus are then omitted, after which normal feature selection

techniques such as DF, CHI, and IG are used to select PoS patterns of various sizes. The

empirical results in Experiment 2 showed that the resultantpatterns were at leastas good as

the manually selected ones. This consequently fulfils the current objective.

The results in Experiment 1 also revealed some interesting findings regarding the effective-

ness of the feature selection techniques. DF was found to be,on average, the most effective

followed by CHI and then IG. These results contradict previously observed trends in tra-

ditional feature selection where IG and CHI have consistently outperformed DF [see Yang

and Pedersen, 1997; Forman, 2003]. One can therefore conclude that document frequent

PoS patterns are better extractors of sentiment than discriminative ones.

Experiment 1 also showed that uni-tags and mix-tags tend to perform best, followed by bi-

tags and finally tri-tags. This trend is possibly due to the relative sparsity of phrases that

match bi-tags and tri-tags as opposed to those that match uni-tags and mix-tags. Lastly,

Experiment 3 showed that it was important to use a sentiment rich background corpus as

opposed to a non-sentiment rich one. This was shown to be truefor both uni-tags and mix-

tags.

3. To investigate possible approaches of weighting the importance of a phrase with re-

spect to its position: Two techniques of weighting phrases with respect to position were

implemented. The first gave preference to phrases occurringin the central body, whereas

the second gave preference to those occurring in the front and rear. While the weighting

techniques were found to be beneficial to performance, they were also found to be domain

specific in that each domain required its own weighting criterion. It is thus necessary to

sample the domain prior to adopting a weighting scheme.
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Consequently, in as far as illustrating that the weighting of phrases can improve perfor-

mance, the current objective was met. Note, however, that the research did not yield an all

purpose weighting algorithm, but rather presented a heuristic that can be used to do so.

4. To perform a comparative study of multi-class classification techniques as applied to

OSC problems: Two types of classifiers for OSC problems were evaluated: Those that

are naturally capable of handling multi-class problems (single classifiers), and those that

decompose the task into multiple of binary problems thereafter combining the resultant

decisions into one global decision. The BSA, a new decomposition technique that is purpose

designed for OSC, was also amongst those evaluated.

Experiment 1 of the evaluation indicated that the single classifiers, and in particular SVM-

reg, generally had a better MSE performance than the decomposition techniques. Exper-

iment 2 also showed the single classifiers to be much faster aswell. Naı̈ve Bayes was

typically the fastest with classification times twice as fast as any other classifier. As for the

BSA, its MSE performance was generally average. It was, however, the fastest amongst the

decomposition techniques due to its logarithmic time complexity, as opposed to the others

which were either linear or quadratic.

5. To implement a novel feature selection technique for OSC:The follow up study on this

objective illustrates that important features in OSC problems distribute themselves across

similar classes. The study also shows that standard featureselection techniques would

equate the importance of such features against those that are distributed across dissimilar

classes.

The Ordinal Smoothing Procedure (OSP) is then proposed as a solution to this problem.

The OSP re-organises the distribution of a feature such thatits information content becomes

reflective of the classes across which it is distributed. This is done by dispersing the proba-

bility weight of each class to all other classes in a manner that decays with ordinal distance.

The result is that features that occur in dissimilar classeswould obtain flat distributions,

whereas those that occur in similar classes would obtain relatively peaked distribution. This

then makes it possible for feature selection algorithms such as Information Gain and the

Chi-Squared score to distinguish between such features. Experimental results on three real

world datasets confirm that important features in OSC problems occur in similar classes,



9.2. Future Work 88

and that utilising such features can lead to significant performance improvements.

9.2 Future Work

The methods presented in this research constitute a significant contribution to the domain of SAoT.

A complete understanding and robust implementation of these methods may assist researchers in

developing better SAoT algorithms, and also users in solving difficult real world SAoT problems.

Nonetheless, there is still much scope for further development and the following sections highlight

a number of issues that have been identified for future work.

9.2.1 Beyond Tag Adjacency

The patterns selected by the PPS algorithm were found to be atleast as good as the manually

selected ones. Note, however, that only uni-tags and mix-tags were able to significantly outperform

the manual patterns, whereas bi-tags and tri-tags were mostly poorer. This is possibly due to the

relative sparsity of phrases that match bi-tags and tri-tags in comparison to those that match uni-

tags and mix-tags. A possible solution for this could be to relax the consecutive tag constraint

within certain linguistic contexts. For instance, given the sentence “I felt confident and safe in

their company” the bi-tagJJ NN would, after pre-processing, only extract one the phrase, “safe

company.” However, if the algorithm were to detect the two conjoined adjectives,confidentand

safe, and relax the consecutive tag constraint, then the same bi-tag would extract two phrases,

“confident company” and “safe company.” Such rules could significantly reduce the sparsity of

the phrases extracted by bi-tags and possibly tri-tags.

The results illustrated the positive effects of weighting phrases with respect to position. How-

ever, the main limitation of this was that the domain had to besampled prior to adopting a weight-

ing criteria. One way of overcoming this could be to have a collection of document templates with

learnt weighting distributions. A new document collectioncould then be assigned the weighting

distribution of the template that is most similar to it. One could possibly even use a Genetic Algo-

rithm to arrive at the optimal weighting distribution. Thiswould, however, require more than just

three divisions along the text as was done in this research.
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9.2.2 Beyond OSC

The BSA was implemented as two different variants, BSA-KL and BSA-RN. The MSE perfor-

mance of BSA-KL was found to be consistently better than thatof BSA-RN, probably because

BSA-KL uses the KL-distance to assign middle odd classes, whereas BSA-RN does so randomly.

An interesting issue is whether further improvements in performance could be achieved by em-

ploying other distance measures, such as cosine or Euclidean, to assign the middle odd classes. It

would also be interesting to see if any improvements can be made by using the majority vote of

various distance measures.

The OSP disperses the probability weights of each feature ineach class to neighbouring classes

in a manner dictated by the heuristic that models the inter-class similarity kernel. In this research,

this kernel was implemented to model either linear or exponential inter-class similarities. Note

that both these heuristics are synthetic. An interesting alternative experiment would be to work

with with the actual, rather than synthetic, interclass similarities. One possibility is to mine the

similarities directly from the data by use of some metric such inter-class IG (such as was done

in Figure 8.9), or a measure based on the semantic differences within the text contained in the

various ordinal classes. These measures would, however, need to be mapped into some surrogate

representation to make them useable.

Another possibility of future work looks at extending the OSP to areas other than just ordinal

problems. Given that one could mine inter-class similarities from the data, then it should be pos-

sible to work various other problems such as those that are hierarchical, or those that constantly

morph with time (such as in news filters). So long as one can directly infer the inter-class similari-

ties, then our procedure can, at least in theory, be extendedto almost any type of problem. Clearly

there is much potential in exploring these avenues, and the results in this thesis suggest promising

returns.



References

P. Baxendale. Machine-Made Index for Technical Literature—An Experiment. IBM Journal,

pages 54–361, 1958.

P. Beineke, T. Hastie, C. Manning, and S. Vaithyanathan. An Exploration of Sentiment Summa-

rization. InAAAI Spring Symposium on Exploring Attitude and Affect in Text: Theories and

Applications (AAAI Technical Report SS-04-07), pages 12–15, 2004.

T. Briscoe and J. Carroll. Robust Accurate Statistical Annotation of General Text. InProc. of

LREC, pages 1499–1504, Las Palmas, Canary Islands, May 2002.

S. Chakraborti, R. Mukras, R. Lothian, N. Wiratunga, S. Watt, and D. Harper. Supervised Latent

Semantic Indexing using Adaptive Sprinkling. InProc. of IJCAI, pages 1582–1587. AAAI

Press, 2007.

K. W. Church and P. Hanks. Word association norms, mutual information, and lexicography.

Comput. Linguist., 16(1):22–29, 1990. ISSN 0891-2017.

T. M. Cover and J. A. Thomas.Elements of Information Theory. John Wiley, 1991.

P. Domingos and M. J. Pazzani. Beyond Independence: Conditions for the Optimality of the

Simple Bayesian Classifier. InProc. of ICML, pages 105–112, 1996.

D. Donlan. Locating Main Ideas in History Textbooks.Journal of Reading, 24(2):135–140, 1980.

H. P. Edmundson. New methods in automatic extracting.Journal of the ACM, 16(2):264–285,

1969.

C. Fellbaum, editor.WordNet: An Electronic Lexical Database. MIT Press, 1998.

90



REFERENCES 91

G. Forman. An Extensive Empirical Study of Feature Selection Metrics for Text Classification.

JMLR, 3:1289–1305, 2003.

E. Frank and M. Hall. A Simple Approach to Ordinal Classification. In Proc. of EMCL, pages

145–156, London, UK, 2001. Springer-Verlag.

J. Fürnkranz. Pairwise Classification as an Ensemble Technique. InProc. of ECML, pages 97–110,

London, UK, 2002. Springer-Verlag.

E. Gabrilovich and S. Markovitch. Text Categorization withMany Redundant Features: Using

Aggressive Feature Selection to Make SVMs Competitive withC4.5. InProc. of ICML, pages

321–328, Banff, Alberta, Canada, 2004. Morgan Kaufmann.

V. Hatzivassiloglou and K. McKeown. Towards the Automatic Identification of Adjectival Scales:

Clustering Adjectives According to Meaning. InProc. of the ACL, pages 172–182, 1993.

V. Hatzivassiloglou and K. McKeown. A quantitative evaluation of linguistic tests for the auto-

matic prediction of semantic markedness. InProc. of the 33rd annual meeting on ACL, pages

197–204, Morristown, NJ, 1995. ACL.

V. Hatzivassiloglou and K. R. McKeown. Predicting the Semantic Orientation of Adjectives. In

Proc. of EACL, pages 174–181. ACL, 1997.

V. Hatzivassiloglou and J. M. Wiebe. Effects of Adjective Orientation and Gradability on Sentence

Subjectivity. InProc. of Computational Linguistics, pages 299–305, Morristown, NJ, USA,

2000. ACL.

P. J. Hayes and S. P. Weinstein. CONSTRUE/TIS: A System for Content-Based Indexing of a

Database of News Stories. InProc. of IAAI, pages 49–64. AAAI Press, 1991.

D. A. Hull. Stemming algorithms: a case study for detailed evaluation. J. Am. Soc. Inf. Sci., 47

(1):70–84, 1996.

P. Jackson and I. Moulinier.Natural Language Processing for Online Applications: TextRetrieval,

Extraction, and Categorization. John Benjamins, 2002.

T. Joachims. Text Categorization with Support Vector Machines: Learning with Many Relevant

Features. InProc. of ECML, pages 137–142, London, UK, 1998. Springer-Verlag.



REFERENCES 92

J. S. Justeson and S. M. Katz. Technical Terminology: Some Linguistic Properties and an Algo-

rithm for Identification in Text.Natural Language Engineering, 1:9–27, 1995.

J. Kivinen, M. K. Warmuth, and P. Auer. The Perceptron algorithm vs. Winnow: linear vs. loga-

rithmic mistake bounds when few input variables are relevant. Artif. Intell., 97(1-2):325–343,

1997.

M. Koppel and J. Schler. The Importance of Neutral Examples in Learning Sentiment.Computa-

tional Intelligence, 22(10):100–109, 2006.

A. Lehrer. Markedness and Antonymy.Journal of Linguistics, 31(1):397–421, September 1985.

C. Macdonald and I. Ounis. The TREC Blogs06 Collection : Creating and Analysing a Blog

Test Collection. Technical report, Department of Computing Science, University of Glasgow,

Glasgow, UK, 2006.

C. Macdonald, I. Ounis, and I. Soboroff. Overview of the TREC-2007 Blog Track. InProc. of the

TREC, 2007.

A. McCallum and K. Nigam. A Comparison of Event Models for Naive Bayes Text Classification.

In Proc. of AAAI-98 Workshop on Learning for Text Categorization, pages 41–48. AAAI Press,

1998.

T. M. Mitchell. Machine Learning. McGraw Hill, 1997.

R. Mukras. A Comparison of Machine Learning Techniques Applied to Sentiment Classification.

Master’s thesis, University of Sussex, Falmer, Brighton, UK, 2004.

R. Mukras, N. Wiratunga, and R. Lothian. Selecting Bi-Tags for Sentiment Analysis of Text. In

Proc. of AI-2007, pages 181–194, Cambridge, England, 2007a. Springer.

R. Mukras, N. Wiratunga, R. Lothian, S. Chakraborti, and D. Harper. Information Gain Feature

Selection for Ordinal Text Classification using Probability Re-distribution. InProc. of IJCAI

Textlink Workshop, 2007b.

R. Mukras, N. Wiratunga, and R. Lothian. The Robert Gordon University at the Opinion Retrieval

Task of the 2007 Trec Blog Track. InProc. of Trec, 2007.



REFERENCES 93

K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell. Text Classification from Labeled and

Unlabeled Documents using EM.Machine Learning, 39(2-3):103–134, 2000.

N. Nilson. Learning Machines. McGraw Hill, 1965.

J. J. Paijmans. Relative weights of words in documents. In L.G. M. Noordman and W. A. M.

de Vroomen, editors,STINFON, 1994.

B. Pang and L. Lee. A Sentimental Education: Sentiment Analysis Using Subjectivity Summa-

rization Based on Minimum Cuts. InProc. of ACL, pages 271–278, 2004.

B. Pang and L. Lee. Seeing stars: Exploiting class relationships for sentiment categorization with

respect to rating scales. InProc. of ACL, pages 115–124, 2005.

B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up? Sentiment Classification using Machine

Learning Techniques. InProc. of EMNLP, pages 79–86, 2002.

C. J. V. Rijsbergen.Information Retrieval. Butterworth-Heinemann, 1979.

G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing. Commun.

ACM, 18(11):613–620, 1975. ISSN 0001-0782.

F. Sebastiani. Machine Learning in Automated Text Categorization.ACM Computing Surveys, 34

(1):1–47, 2002.

C. E. Shannon. A Mathematical Theory of Communication.Mobile Computing and Communica-

tions Review, 5(1):3–55, 2001.

P. D. Turney. Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL. InProc. of EMCL,

pages 491–502, London, UK, 2001. Springer-Verlag.

P. D. Turney. Thumbs Up or Thumbs Down? Semantic OrientationApplied to Un-supervised

Classification of Reviews. InProc. of ACL, pages 417–424, Morristown, NJ, USA, 2002. ACL.

D. Vilar, H. Ney, A. Juan, and E. Vidal. Effect of Feature Smoothing Methods in Text Classifica-

tion Tasks. InProc. of PRIS, pages 108–117, Porto, Portugal, 2004.

J. M. Wiebe. Tracking point of view in narrative.Comput. Linguist., 20(2):233–287, 1994.



REFERENCES 94

J. M. Wiebe, R. F. Bruce, and T. P. O’Hara. Development and useof a gold-standard data set for

subjectivity classifications. InProc. of the 37th annual meeting of the ACL on Comp. Ling.,

pages 246–253, Morristown, NJ, USA, 1999. Association for Computational Linguistics.

T. Wilson, J. Wiebe, and R. Hwa. Just How Mad Are You? Finding Strong and Weak Opinion

Clauses. InProc. of AAAI, pages 761–769. AAAI Press, 2004.

N. Wiratunga, I. Koychev, and S. Massie. Feature Selection and Generalization for Retrieval of

Textual Cases. InProc. of ECCBR, pages 806–820. Springer-Verlag, 2004.

Y. Yang and J. O. Pedersen. A Comparative Study on Feature Selection in Text Categorization. In

Proc. of ICML, pages 412–420. Morgan Kaufmann, 1997.



Appendix A

General Appendix

A.1 Comparing Performance

In this research, all significance tests were performed using the two tailedt-test. The two paired

samples required for this test were typically were obtainedusing 20 folds of cross validation. This

section discusses the manner in which these two concepts canbe implemented.

Cross Validation

Cross-validation, sometimes called rotation estimation,is the statistical practice of partitioning a

sample of data into subsets such that the analysis is initially performed on a single subset, while

the other subset(s) are retained for subsequent use in confirming and validating the initial analysis.

The initial subset of data is called the training set; the other subset(s) are called validation or

testing sets. There are several different variants of crossvalidation and the one used here is known

asK-fold cross validation.

In K-fold cross-validation, the original sample is partitioned into K subsamples. Of theK

subsamples, a single subsample is retained as the validation data for testing the model, and the

remainingK − 1 subsamples are used as training data. The cross-validationprocess is then re-

peatedK times (the folds), with each of theK subsamples used exactly once as the validation

data. TheK results from the folds then can be averaged (or otherwise combined) to produce a

single estimation.
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The Two Tailed t-test

Given two sets of data-points, one can use thet-test to determine whether the means are distinct,

provided that the underlying distributions can be assumed to be normal. The data-points are nor-

mally paired, so that each member of one set has a unique relationship with a particular member of

the other set (e.g., the performance of a classifier after twodifferent feature selection heuristics).

The two tailedt-test is conducted by first assuming that the two sets have thesame mean. The

p-value is then looked up from the computedt-statistic, and ifp < 0.05, then one can reject the

initial assumption and conclude that the means are different. In contrast to this, the upper tailed

t-test has an initial assumption that first mean is greater than the second. Consequently, a rejection

of this assumption can only lead to the conclusion that the first mean is not larger than the second,

with the possibility that they could be statistically the same.

All results in this research were reported using the two tailedt-test at thep < 0.05 significance

level. An attempt was also made to have at least 20 paired samples for each test. This mainly

achieved using 20-fold cross-validation.

A.2 Supplementary Results

Supplementary Results on the OSP

Figure A.1 and A.2 respectively illustrate the results thatwere obtained when SVM-reg and Naı̈ve

Bayes were applied to the three OSC datasets. Each point, in these various graphs, represents the

average MSE that was obtained in 20 folds of cross validation.

Supplementary Results on Positional Weighting

Figure A.3 and A.4 respectively illustrate the results thatwere obtained on the Actors and Edmunds

datasets by the two weighting functions for uni-tags of sizes 1, 3, 5, 7, 9, 11, 13, 15, and 17. Notice

that the Actors dataset generally benefits from thewα function (i.e. intro+con weighting) but

looses with thewβ function (i.e. body weighting). This is inline with the distribution in Figure 5.1

of chapter 5 where sentiment rich words within the Actors documents were mainly concentrated

within the first half with a few spikes in the conclusions. A similar conformance is also observed

with the Edmunds dataset in that Figure A.4 suggests that theEdmunds dataset generally benefits
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Figure A.1: The Impact of the OSP while using SVM-reg

with the wβ function but looses with thewα function. This also matches up with the Edmunds

distribution in Figure 5.1 of chapter 5 where sentiment richwords of the Edmunds documents

were mainly concentrated in the body.

A.3 Opinion Retrieval of Blogs

This section provides an account of the system that was developed in this research to participate

in the Opinion Retrieval Task in the Blog Track of the 2007 TREC [Macdonald et al., 2007]. The

theme of the task was Opinion Retrieval of Blogs.

A blog (a contraction of the term “Web log”) is a Web site, usually maintained by an individual

with regular entries of opinions and descriptions of eventsamongst other things. The key aspect of

Blogs that makes them attractive is that they are mainly authored by independent individuals, with
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Figure A.2: The Impact of the OSP while using Naı̈ve Bayes

the sole purpose of making their opinions known to the world.Consequently, blogs are highly rich

in sentiment and this makes them an invaluable resource for SAoT research.

The Opinion Retrieval Task was first introduced in the TREC of2006. It basically involves

retrieving opinionated documents that are relevant to eachof the 50 predefined TREC topics re-

gardless of their opinion orientation. Each retrieved document should, however, be assigned to a

real-valuedopinion scorein the range of[0 . . . 1], where 0 signifies a neutral opinion, whereas 1

signifies an extreme opinion that could be either positive ornegative. The collection used in both

the 2006 and 2007 Blog Tracks [Macdonald and Ounis, 2006] consists of over a three million blog

posts collected over 77 days. It was meant to be a realistic snapshot of the blogosphere and hence

offers an excellent test-bed for the study.

The idea that was presented in this research to address the task is composed of two phases

that draw from both NLP and IR. The technique basically exploits the context of opinion related
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Figure A.3: Performance of the Weighting Functions on the Actors Dataset

language constructs, such as adjectives verbs and adverbs,in order to identify and rank opinionated

texts within the collection. These language constructs were chosen primarily because they are

commonly associated with opinion rich contexts. For instance, an adjective such as “great” would

typically occur within contexts such as “great player,” or “great disaster.”

In the first phase of the procedure, PoS tags are assigned to the features contained in a set of

training documents that are labelled with respect to opinion. These documents are then pruned

such that only a set of selected words, along with their respective contexts, are retained. Proper

nouns are also omitted as they tend to be domain specific [see Turney, 2002]. This results in a

corpus with a high precision of opinion rich phrases that arerelatively domain independent. The

documents of the resultant corpus are then mapped onto a vector space [Salton et al., 1975] after

an SVM-reg classifier is trained on the resultant document vectors.

In the second and last phase, a Lucene search engine is used toretrieve all documents, from
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Figure A.4: Performance of the Weighting Functions on the Edmunds Dataset

the TREC Blog collection, that are relevant to the current topic of interest. The SVM-reg classifier

is then used to assign each of these documents to an opinion score, and this completes a single

TREC run.

A.3.1 The Opinion Retrieval System

A complete overview of the opinion retrieval system has beenillustrated in Figure A.5. A crucial

resource for this system is the background set of training documents that are labelled with respect

to opinion. Each of these labels assumes a value in the ordered set{c1, . . . , cn}, wherec1 < . . . <

cn andc1, cn respectively represent an extreme negative and positive opinion.

These training documents offer a good estimate of the structure and content of opinion rich

texts. However, one limitation with them is that they may notbe general enough to suffice as

good document examples for each of the 50 TREC topics. To tackle this problem, a procedure that
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Figure A.5: An Overview of the Opinion Retrieval System.

retains the relevant contexts of language constructs such as adjectives verbs and adverbs is applied.

The hypothesis behind this is based on the fact that these constructs act as the transmitters, rather

than the objects, of an opinion. Consequently, they would beused in much the same way across

various domains. This type of pruning would therefore generalise the opinions expressed within

the training documents.

To retain the relevant contexts, PoS tags were first applied to the text within the training docu-

ments by using the RASP PoS tagger [Briscoe and Carroll, May 2002]. A context of 10 words was

then retained on either side of each word that was tagged as anadjective, verb, or adverb i.e.: JJT,

JJ, JJR, VV0, RR, RG, RGA, RGR. Singular and plural proper nouns were, however, not retained

as these tend to be domain specific [see Turney, 2002]. Once the training documents were pruned,

they were then mapped onto a vector space whose dimensions, or features, were determined by

using IG. SVM-reg was then trained on the resultant documentvectors.

Finally, given a list of documents from the TREC Blog Corpus that are relevant to a TREC

topic, the SVM-reg classifier was used to assign theith document in this list to a scoreqi that

assumes a real-value in the range[c1 . . . cn]. Note, however, that the TREC rules require that

the scoreqi be mapped onto the range of[0 . . . 1], where 0 signifies a neutral opinion, whereas 1

signifies an extreme opinion that could be either positive ornegative. In order to accomplish this,

the score of theith document was mapped to the value
∣

∣

∣
2
(

qi−c1
cn−c1

)

− 1
∣

∣

∣
which satisfies the TREC
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Figure A.6: The Textual Pre-Processing Pipeline

requirement.

A.3.2 Implementation

In order to prepare the TREC Blog collection, the text was first extracted from the initial HTML

format discarding all tokens that contained non-printablecharacters. It was then pre-processed

using the sequence of tokenization, conversion to lowercase, stemming and stopword removal

(The 50 TREC topics also went through the same pre-processing steps). The resultant collection

was finally indexed using the Lucene1 search engine. This entire procedure lasted 46 continuous

days on standard hardware running on an Ubuntu Linux platform.

The second task was to prepare the opinionated training datasets. These were four in number

namely: Edmunds with classes{1, . . . , 26}, Rateitall with classes{1, . . . , 5}, Scale with classes

{1, . . . , 8}, and the documents that constituted the results of the TREC 2006 polarity task, which

had classes{0, . . . , 4}. Note, however, only classes 2, 3, and 4 of the last dataset were used. These

respectively correspond to a negative, a neutral, and a positive opinion. All four datasets were pre-

processed in the similar fashion using the sequence of tokenization, PoS tagging, conversion to

lower case, stemming, and stopword removal.

Once the four training datasets were ready, their contexts were pruned as discussed in the

previous section. They were then used, in succession, to train SVM-reg classifier in order to

classify the documents that were relevant to the 50 TREC topics. The outcome of the four train-

classify sessions formed the basis of four of the runs that were submitted to TREC. The fifth run

was based on plain relevance retrieval. The following list is a summary of all the five runs that

were submitted:
1http://lucene.apache.org
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Classifier PoS tagging Datasets
Used performed? Actors Edmunds Polarity Scale

SVM-reg No 1.4628 40.0806 0.1436 2.2495
Yes 1.4833 40.1345 0.1418 2.2346

NB No 2.1058 61.7548 0.1580 2.7946
Yes 2.1988 61.1400 0.1545 2.7378

Table A.1: The Effect of Part-of-Speech Tagging

1. rgu0: All opinion finding features turned off. Simply a Relevance run.

2. rgu1: Edmunds dataset used as background training data.

3. rgu2: Rateitall dataset used as background training data.

4. rgu3: Scale dataset used as background training data.

5. rgu4: TREC Polarity dataset used as background training data.

Although the official Robert Gordon University (RGU) TREC results were far from being the

best, the highest Mean Average Precision (MAP) of 0.2798 improved significantly from the previ-

ous years result of 0.0001. Hopefully this trend will continue for successive TREC competitions.

A.3.3 Discussion and Summary

Amongst the five runs that were submitted, the best one achieved a MAP of 0.2798. It also took

seventeenth position among all the runs that were submittedby the 20 participants. Although this

performance leaves a great deal to be desired, the approach of exploiting the context of adjec-

tives, verbs, and adverbs to identify opinionated text was quite innovative. Future work intends to

build upon this approach by investigating the effect of variable sized contexts. Another possible

improvement is to employ Case Based Reasoning (CBR) techniques, in conjunction with NLP,

to determine the focal point of a context. The hope is that thesystem will undergo versions of

improvement through annual participating in the conference.

A.4 Textual Pre-Processing

This section empirically investigates the effect that eachof the textual pre-processing modules

in Figure A.6 has on sentiment classification performance. This investigation shall be done on
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four datasets: Actors, Edmunds, Polarity, and the Scale Datasets. Note also that tokenization is

bypassed as it is compulsory in all experiments.

A.4.1 Part-of-Speech Tagging

Part-of-Speech tagging is the process of marking up the words in a text as corresponding to a

particular PoS. This mark-up is based on both the word’s definition, as well as its context, i.e.,

relationship with adjacent and related words in a phrase, sentence, or paragraph. Interpreted this

way, PoS tagging would therefore serve as a crude form of wordsense disambiguation. For in-

stance, it would distinguish between the different usages of “love” in “I love this movie” (a verb

indicating a sentiment orientation) and “This is a love movie” (a noun neutral of sentiment). In

order to investigate the effect of PoS tagging on sentiment classification, the four datasets (Actors,

Edmunds, Polarity, and Scale) were subjected to acontrol and atestexperiment. The control did

not apply PoS tags to the datasets, whereas the test did. All other conditions were maintained con-

stant. Tagging was performed by using the RASP PoS tagger2 [Briscoe and Carroll, May 2002]

which took on average about 5 seconds to tag each document. The mode of tagging was such that

each word was appended with its corresponding PoS tag. For instance, if the word “house” was

found to be a common noun then it would be replaced with “house_NN,” whereNNis the PoS tag

that represents common nouns.

Table A.1 illustrates the average MSE results that were obtained over 20 folds of cross vali-

dation using both SVM regression (SVM-reg) and Naı̈ve Bayes(NB). For each dataset-column of

each classifier, the performance that is significantly better (p < 0.05) than the other is shown in

bold. Note that PoS tagging did not have any significant effect on performance. As a consequence

of both this and the time overheads associated to tagging a corpus, it was opted not to employ PoS

tagging as a default pre-processing step.

A.4.2 Stemming

Stemming is related to the study of morphology which deals with the various forms that a given

word can assume. A common question in morphology is whether to separate or collapse word

forms such asget, gets, andgot. Intuitively, performing such a grouping seems like the right

2Employs the CLAWS2 Tagset: http://www.comp.lancs.ac.uk/ucrel/claws2tags.html
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Classifier Stemming Datasets
Used performed? Actors Edmunds Polarity Scale

SVM-reg No 1.4684 39.7385 0.1391 2.3152
Yes 1.4656 40.2771 0.1438 2.2573

NB No 2.1778 62.5465 0.1535 2.7893
Yes 2.1098 62.0600 0.1650 2.8334

Table A.2: The Effect of Stemming

action to take as it would stem out redundant words that linguistically refer to the same thing.

This grouping process is referred to asstemmingor lemmatization, as it resembles a process of

identifying members of a lexeme and replacing them with a representative word.

There has not been much study on the effect of stemming in sentiment analysis. Nonetheless,

studies within the Information Retrieval (IR) community have shown that stemming can be quite

useful in many types of queries [Hull, 1996]. However, the hypothesis here is that stemming

might be slightly harmful to sentiment classification as it may lead to the loss of information.

For instance, when groups of terms such as “baddest” (urban lingo for best) and “bad” (standard

meaning of dislike) are accidentally grouped into one lexeme. In order to investigate this, the four

standard datasets were subjected to a control experiment that did not include stemming, and a test

experiment that did. All other conditions were maintained constant.

Table A.2 illustrates the average MSE results that were obtained over 20 folds of cross val-

idation. For each dataset-column of each classifier, the performance that is significantly better

(p < 0.05) than the other is shown in bold. As was envisaged, stemming had a slightly negative

effect on performance. This is clearly evident in the Polarity dataset where the application of

stemming significantly lowered the performance of the Naı̈ve Bayes classifier. Nonetheless given

that stemming is known to be useful for IR queries, and also that some of the later studies here

are based on IR queries, it was opted to apply stemming but only during these studies. Hence,

unless specified otherwise, all subsequent experiments in this research do not apply stemming as

a default procedure.

A.4.3 Conversion to a Consistent Letter Case

Letter case often contains a great deal of information that can be useful in decoding sentiment.

For instance, it can be used to distinguish between a proper noun neutral of sentiment such as
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Classifier Type of Datasets
Used Letter case Actors Edmunds Polarity Scale

SVM-reg lower 1.4656 40.2771 n/a n/a
original 1.4737 40.3622 n/a n/a

NB lower 2.1098 62.0600 n/a n/a
original 2.0986 61.7360 n/a n/a

Table A.3: The Effect of using a Consistent Letter Case

“Black” in “James Black” from a sentiment rich adjective such as “black” in “black Monday.”

Another, perhaps more important, role that letter case plays in this domain is in stressing a point.

Clearly the phrase “AWESOME RIDE” would send a more convincing message than “awesome

ride.” For this reason, the hypothesis held here is that preserving the original letter case may be

beneficial to performance. This hypothesis was investigated by subjecting two of the four standard

datasets (Actors, Edmunds) to a control experiment that shifted all letters to lower-case, and a test

experiment that maintained the original letter case. All other conditions were maintained constant.

Note that the Polarity and Scale datasets were not used as they were originally in lower-case.

Table A.3 illustrates the average MSE results that were obtained over 20 folds of cross val-

idation. For each dataset-column of each classifier, the performance that is significantly better

(p < 0.05) than the other is shown in bold. Note that maintaining the original letter case hurts the

performance of SVM-reg but improves that of Naı̈ve Bayes. Nonetheless, none of the differences

are statistically significant and hence there is no strong evidence that preserving the original letter

case would be beneficial to performance. This is probably because there is too much variety in the

manner that capitalisation is used. It was therefore opted to adopt aconsistent letter case policyin

all subsequent experiments of the research.

A.4.4 Stop-Word Filtering

Stop-word filtering is a kind of data set reduction procedurethat functions by eliminating tokens

that may deem to be redundant in the corpus. It is applied after both PoS tagging and stemming

because these two processes depend on contextual information which would be lost as a result of

stop-word filtering.

There are at least two main motives for performing stop-wordfiltering. Firstly, it may lead to

an improvement in classifier performance. Secondly, the overall decrease in feature set size can
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Figure A.7: A Standard Stop Word List

result in advantages relating to storage space and computational costs. This study only investigates

the first motive. The second one is beyond our scope as both storage and computational efficiency
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Classifier Stop-word Datasets
Used list used Actors Edmunds Polarity Scale

SVM-reg standard 1.5075 40.7649 0.1438 2.2567
modified 1.4656 40.2771 0.1438 2.2573

NB standard 2.1832 62.3118 0.1605 2.8624
modified 2.1098 62.0600 0.1650 2.8334

Table A.4: The Effect of a Modified Stop-Word List

are issues that are more relevant for applications that are of industrial proportions.

Although stop-word filtering is a widely accepted procedurein text classification, it has had a

fair share of criticism. Nigam et al. [2000] for instance, found it to be detrimental to performance

hence omitting it from their experiments. There have also been at least two studies in sentiment

classification that have also cautioned against the injudicious usage of stop-word list. In one of

them, Pang et al. [2002] found tokens such as “!” and “?” to be amongst the most discriminative

features in a sentiment rich corpus. Interestingly, these tokens are also typical members of most

standard stop-word lists. In the other study, Mukras et al. [2007a] also proposed that standard

stop-list members such as “not” should be retained in the corpus as they are often used to negate a

sentiment orientation. For instance “not” negates the orientation of the word “good” in “not good.”

The hypothesis regarding stop-word filtering is that one should use a specialised stop-word list

for the SAoT domain. In order to test this hypothesis, the four standard datasets were subjected

to a control and a test experiment. The control employed the standard stop-word list shown in

Figure A.7, whereas the test employed a modified stop-word list. This modified list was the same

as the standard one but without the following tokens: cannot, not, !, ?, *, $,£, &, =, #, ˜ , %, ˆ .

These tokens were chosen based on both previous studies [Pang et al., 2002; Mukras et al., 2007a]

and intuition.

Table A.4 illustrates the average MSE results that were obtained over 20 folds of cross val-

idation. For each dataset-column of each classifier, the performance that is significantly better

(p < 0.05) than the other is shown in bold. Note that in 5 out of 8 occasions the modified list was

on average more effective than the standard one. In additionto this, amongst these 5 occasions, 2

of them were statistically significant. These results clearly suggest positive benefits in employing

the customised list, and hence it was adopted as the default list.
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A.5 List of Abbreviations

AvA : All-vs-All

BSA: Binary Search Approach

BSA-KL : BSA KL-distance

BSA-RN: BSA Random

CHI : Chi-Squared Score

DF: Document Frequency

IG : Information Gain

IR : Information Retrieval

MSE: Mean Squared Error

NLP: Natural Language Processing

NSR: Non-Sentiment Rich

OvA: One-vs-All

OSC: Ordinal Sentiment Classification

OSP: Ordinal Smoothing Procedure

PoS: Part-of-Speech

PPS: PoS Pattern Selector

PMI : Pointwise Mutual Information

PMI-IR : PMI Information Retrieval

SAoT: Sentiment Analysis of Text

SOA: Simple Ordinal Approach

SR: Sentiment Rich

SVM: Support Vector Machines

SVM-reg: Regression Based SVM

TREC: Text Retrieval Conference

Blog: Web Log
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