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ABSTRACT 

In the pulmonary circulation, alveolar hypoxia contributes to blood flow regulation. 

Hypoxic pulmonary vasoconstriction (HPV) involves both pulmonary arteries and 

veins, but little is known of the contractile mechanisms specific to the veins. The aim 

of these studies was to examine the hypoxic response in small porcine 

intrapulmonary veins in relation to the arterial response, and investigate the effects 

of hypoxia on ion conductances in single myocytes from intrapulmonary veins. 

In wire myography experiments, intrapulmonary veins contracted more than size-

matched arteries in response to hypoxia and agonists KCl and PGF2α. Venous 

contractions were inhibited by removal of extracellular Ca2+ or in the presence of Cl- 

channel blocker NFA, effects not seen in the arteries. To examine the mechanisms of 

venous contraction at cellular level, single pulmonary vein smooth muscle cells 

(PVSMC) were freshly isolated and characterised morphologically and 

electrophysiologically for the first time. In patch-clamp studies, hypoxia reversibly 

inhibited a whole-cell outward current in the presence of BKCa channel antagonist 

Penitrem A. By subtracting currents recorded in normoxia and hypoxia, a novel 

hypoxia-sensitive K+ current (IK(H)) was revealed in PVSMC. IK(H) was a rapidly 

activating, partially inactivating current and was sensitive to KV channel blocker 

4-AP. The biophysical properties of IK(H) revealed the voltage window of current 

availability with a peak near the resting membrane potential of PVSMC. 

In conclusion, these findings highlight differences between the contractile properties 

of veins and arteries and reveal a significant contribution of Ca2+ influx and an 

NFA-sensitive conductance during venous contraction to agonists and hypoxia. 

Furthermore, the results suggest that a novel hypoxia-sensitive KV current 

contributes to membrane potential under resting conditions in PVSMC and its 

inhibition by hypoxia may contribute to the initiation of HPV in porcine 

intrapulmonary veins. 
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Chapter 1.  

General Introduction 

The pulmonary circulation is a vascular bed adapted structurally and functionally to 

contribute to the lung’s primary function of respiratory gas exchange. Optimal blood 

oxygenation requires that, irrespective of cardiac output, capillary blood flow is 

delivered at an appropriate rate and that it also adequately matches the ventilation of 

each respiratory unit (alveolus). 

The process of gas exchange takes place by diffusion of O2 and CO2 through the 

alveolar-capillary membrane across concentration gradients. The alveoli are 

surrounded by a high density network of thin-walled capillaries – nearly 1000 

pulmonary capillaries per alveolus – which has been likened to a “sheet of blood”. 

This enables a vast contact surface between the alveolar and capillary membranes of 

approximately 50 to 100 m2 (Levitzky, 2002b) providing a very high capacity for gas 

diffusion. 

All segments of the pulmonary circulation – the arteries, the capillary network and 

the veins – function as a low-pressure and low-resistance circulatory system. The 

larger pulmonary vessels are thinner walled and have less smooth muscle than 

systemic vessels, making them less resistant to flow. Haemodynamically, this is 

reflected in blood pressure values in the pulmonary circulation that are 

approximately six times less than systemic values (Dembinski et al., 2004). 

Collapsed pulmonary capillaries have the ability to open in response to increased 

flow, contributing to decreased vascular resistance (Dembinski et al., 2004) and to 
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the prevention of stress damage on the very thin alveolar-endothelial membrane 

(Levick, 2003). The low vascular resistance and high compliance are particularly 

important during situations when raised metabolism (e.g. during exercise) increases 

cardiac output and, as a result, the pulmonary circulation must be able to 

accommodate large fluctuations in blood flow, ranging from resting values of 

4-6 l/min (adult human) to values of 20-25 l/min (maximum flow, non-athlete) 

(Levick, 2003). 

Equally important for efficient gas exchange is the need for blood flow in each area 

of the lungs to correspond to the degree of ventilation. When regional alveolar 

oxygen saturation is low, the adjacent pulmonary vessels constrict and blood is 

diverted to other, better ventilated, areas of the lungs. This physiological mechanism 

that achieves the optimisation of the ventilation-perfusion ratio is termed hypoxic 

pulmonary vasoconstriction (HPV). 

1.1. The pulmonary veins 

1.1.1. Anatomy 

The role of the pulmonary veins (PV) is to carry oxygenated blood from the 

pulmonary capillaries to the left atrium. The pulmonary venous network (shown in 

Figure 1.1) is the last segment of the pulmonary circulation and its vessels form a 

vascular tree comprising 15 branching orders (Hughes and Morrell, 2001). The first 

segment is formed by post-capillary venules, which collect the blood from the 

capillary bed. These join together and eventually form one vein for each lobule, 

followed by one for each segment, which in turn form trunks for each lobe (i.e. three 

for the right lung and two for the left lung). In humans, the veins take a course along 

the edges of the pulmonary lobules and segments in the interlobular septa, separate 

from the arteries that follow the bronchi in a centro-lobular position (Kay, 1983). 

The right middle and upper lobar veins normally unite and therefore two main 

pulmonary veins emerge from each lung (Gray, 1918). These four main 
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extrapulmonary veins pass through the fibrous layer of the pericardium and open 

separately into the superior and posterior walls of the left atrium and are named: 

right superior, right inferior, left superior, and left inferior pulmonary veins (see 

Figure 1.2). 

Occasionally, anatomical variations from this standard morphological position may 

occur. A frequent possibility is that the two main veins – superior and inferior – on 

either side open in a single ostium in the left atrium (Ho et al., 2001). Another, less 

common, alternative is that the right middle lobar vein does not join the upper one 

and opens through a fifth separate ostium in the wall of the left atrium (Wittkampf et 

al., 2003). 

1.1.2. Morphology 

1.1.2.1. Ultrastructure of the venous wall 

As in the systemic circulation, veins in the pulmonary vasculature have an 

endothelium, smooth muscle and adventitia and have less abundant smooth muscle 

than similar sized pulmonary arteries (PA) (Hughes and Morrell, 2001). 

In human pulmonary veins larger than 100 µm, the venous intima consists of an 

internal elastic lamina lined by the endothelium, the media is a disorganized 

arrangement of smooth muscle with collagen and elastic fibrils and there is no 

clearly demarcated adventitia (Kay, 1983). Post-capillary veins that have only 

occasional smooth muscle fibres have been termed ‘partially muscular veins’, while 

larger ones have a continuous muscle layer, but no external elastic lamina (Hislop 

and Reid, 1973). In small veins with an external diameter of less than 300 µm, the 

wall thickness expressed as a percentage of the vessel diameter was found to be 

significantly increased compared to larger veins (Hislop and Reid, 1973). 
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Figure 1.1. Schematic drawing of the pulmonary venous network. Anterior view 

of the lungs, venous network and the left atrium (used with permission from 

Uflacker, 2006 p. 271). 
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Figure 1.2. The main pulmonary veins. Macroscopic dorsal view of the base of the 

heart and main vessels with the main four pulmonary veins opening in the left atrium 

(used with permission from O'Riordan, 2005). 
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In the rat, veins lack an internal elastic lamina between the endothelial and smooth 

muscle layers and the smooth muscle is discontinuous, often only present in the form 

of “muscular pads” (Dingemans and Wagenvoort, 1978). The smooth muscle cells 

are surrounded by a matrix substance that also contains collagen fibrils and elastic 

lamellae and the external margin of the smooth muscle wall is delineated by 

attenuated fibroblasts (Ludatscher, 1968). Smooth muscle is present even in the 

smallest of veins, although the layer has a thickness of only one or two cells. The 

ultrastructure of venules was found to be very similar to arterioles, although they had 

even less smooth muscle and lacked the isolated patches of elastin that were present 

between the endothelium and media of arterioles. 

Kay (1983) carried out a comparative study on the morphology of the pulmonary 

vasculature in mammals and found marked variation in the structure of the 

pulmonary veins between species. Pulmonary veins with fibrous content such as in 

humans were also found in the cat, civet, dog, ferret, fox, goat, horse, monkey and 

rabbit. On the contrary, in the cow, guinea pig, llama, pig and rat, the pulmonary 

venous walls were muscular. 

1.1.2.2. The myocardial layer 

The architecture of the pulmonary venous wall differs from arteries in one other 

respect. In addition to the typical layers that form the wall of any blood vessel, the 

pulmonary veins have an external muscular layer of cells which resemble the cardiac 

myocytes in the atrial myocardium (Ludatscher, 1968). This feature of the 

pulmonary venous wall was confirmed in all species examined (Nathan and Gloobe, 

1970). The cardiac-like cells are arranged in a mesh-like pattern forming a 

“myocardial sleeve” around the pulmonary vein’s smooth muscle layer (Masani, 

1986). These pulmonary vein cardiomyocytes have the ability to initiate spontaneous 

electrical activity and induce atrial arrhythmias (Chen et al., 2000) and are thought to 

be involved alongside pulmonary vein smooth muscle cells (PVSMC) in modulating 

pulmonary venous tone in rats (Michelakis et al., 2001). Although speculations have 
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been made about a possible sphincter-like role for this myocardium (Burch and 

Romney, 1954, Nathan and Gloobe, 1970), no definitive evidence on the role it plays 

in vivo has emerged. 

However, in most large mammals including humans, the myocardial layer is limited 

to extrapulmonary sites (Nathan and Gloobe, 1970, Roux et al., 2004) and, therefore, 

the only type of muscle present in the wall of intrapulmonary veins is smooth 

muscle. 

1.1.3. Regulation of venous tone 

Within the pulmonary circulation, the veins have been traditionally regarded as 

passive conduits without significant haemodynamical influence in blood flow 

regulation or contribution to total vascular resistance. As a consequence, the 

pulmonary veins have historically received relatively little interest from researchers 

outside their role in cardiac arrhythmias. This is despite many studies that have 

shown significant vasoactivity of the pulmonary veins (reviewed below) and, in 

some cases, higher contractions than in similar sized arteries. For example, in 

guinea-pig lung explants, histamine and 5-HT induced greater contractions in the 

veins compared to the arteries (Shi et al., 1998). The same was shown for 

contractions by U46619 in piglets (Arrigoni et al., 1999) and by hypoxia in the rat 

(Zhao et al., 1993), while PAF contracted pulmonary veins while relaxing arteries in 

the ferret (Gao et al., 1995b). 

Such reports contradict existing dogma and represent important evidence that the 

pulmonary veins are capable of active vasomotion, suggesting a significant role for 

the vein in the regulation of pulmonary blood flow. 
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1.1.3.1. Contribution to total pulmonary vascular resistance 

The relative contributions of each vascular segment to total vascular resistance differ 

between the systemic and pulmonary circulation. While in the systemic circulation 

arteries account for approximately 70% of total vascular resistance, pulmonary 

resistance is distributed roughly equally between arteries, capillaries and veins 

(Levitzky, 2002a). As vascular resistance is a determinant of blood flow, the 

implication is that, in the pulmonary circulation, the veins are playing a relatively 

more important role in blood flow regulation (Fung and Huang, 2004). 

Existing studies looking at the relative contributions of each longitudinal segment – 

arteries, microcirculation and veins – to total vascular resistance in the pulmonary 

circulation were reviewed by Gao and Raj (2005b). There was some variation in the 

findings of the studies considered and this was attributed to the differences in 

measuring techniques, experimental conditions, as well as age and species of the 

animals being studied. However, the overall evidence suggested that the veins 

contribute significantly to vascular resistance in the lungs. Zhuang et al. (1983) 

attributed as much as 49% of total vascular resistance to the pulmonary veins, while 

Kadowitz et al. (1975) found that approximately 50% of the total increase in 

resistance caused by sympathetic nerve stimulation under conditions of steady flow 

was due to venoconstriction. Increased vascular tone in the pulmonary veins 

contributes to increased total pulmonary vascular resistance (Raj and Chen, 1986) 

and this can have implications during oedema formation when post-capillary 

venoconstriction raises upstream microvascular hydrostatic pressures and fluid 

filtration (Dauber and Weil, 1983). 

1.1.3.2. Neurotransmitters 

Kadowitz et al. (1975) studied the contribution of intrapulmonary lobar veins to the 

rise in vascular resistance induced by sympathetic nerve stimulation in pentobarbital-

anesthetised dogs. Under conditions of controlled blood flow, stimulation of the 

stellate ganglia at 3, 10, and 30 cycles/s increased the resistance to flow by 
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constricting pulmonary veins and vessels upstream to the small veins, and at each 

applied frequency venoconstriction contributed approximately 50% to total increase 

in vascular resistance. Furthermore, injected norepinephrine (10 µg) induced a 

pressure fall in the left atrium and large veins, while the pressure in the small lobar 

intrapulmonary veins increased (in both the apex and left lower lobe). 

Vasoactive neurotransmitters were also shown to induce contractions of isolated 

canine pulmonary veins in isometric tension experiments using organ baths. The 

contractions of canine intrapulmonary lobar veins in response to norepinephrine 

were blocked by phentolamine (Joiner et al., 1975a). Both selective adrenergic 

agonists ciralozine (α1) and B-HT 933 (α2) induced concentration-dependent 

vasoconstrictions suggesting that both subtypes of α-adrenergic receptors coexist and 

mediate contraction of pulmonary veins (Ohlstein et al., 1989). The application of 

ACh (0.1 to 10 µM) elicited contractile responses in third generation intralobar veins 

(1-2 mm internal diameter) mediated primarily through M3 muscarinic receptors 

(Ding and Murray, 2005b). 

1.1.3.3. Humoral substances 

Various circulating mediators and hormones induce vasoactive effects on pulmonary 

veins by acting on specific receptors (see Table 1.1). 

Histamine and 5-HT induced robust contractions in pulmonary veins (~ 300 µm 

external diameter) of guinea pigs which were greater than in the arteries (Shi et al., 

1998). Venous contractions to 5-HT were markedly inhibited by the 5-HT2 receptor 

antagonist ketanserin. The H1 receptor antagonist clorpheniramine abolished, while 

the H2 receptor antagonist cimetidine enhanced both the sensitivity and the maximal 

responses of venous responses to histamine. 

Metabolites of the cyclooxygenase pathway were also shown to mediate pulmonary 

venous contractions. In isolated lamb lungs perfused with low venous intraluminal 

pressures and moderate basal vasomotor tone, the thromboxane A2 (TxA2) analogue 
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U46619 given in a 5 µg/kg bolus followed by a steady infusion of 1 µg/kg/min 

induced a more than twofold rise in venous resistance (Raj and Anderson, 1990). In 

organ bath experiments, the same agonist (U46619, 0.1 µM) induced contractions of 

isolated rings of small intrapulmonary veins (1-2 mm inner diameter) from dogs 

(Ding and Murray, 2005a). Prostaglandin F2α (PGF2α) induced contractions of 

canine, sheep and human pulmonary venous strips (Joiner et al., 1975b) and the 

prostanoid receptor agonists sulprostone, 17-phenyl-PGE2 and iloprost contracted 

human PV rings (Walch et al., 2001). 

The potent inflammatory mediator platelet-activating factor (PAF) contracted 

pulmonary veins and relaxed arteries in the ferret (Gao et al., 1995b) and 

contractions induced by the parathyroid hormone-related protein were greater in the 

pulmonary veins compared to the arteries of the newborn lamb (Gao and Raj, 

2005a). 

1.1.3.4. Endothelium-derived factors 

In both the pulmonary and systemic vasculature, the endothelium plays a critical role 

in the regulation of vascular tone (Barnes and Liu, 1995). Endothelial cells have the 

ability to release a range of constrictor and dilator mediators with profound impact 

on vasomotion. 

The potent vasoactive peptide ET-1 contracted veins with a greater sensitivity than in 

arteries and venoconstriction contributed to oedema induced by ET-1 in lungs 

perfused with physiological salt solution (Rodman et al., 1992). The same 

observation on the sensitivity of veins to ET-1 was made on third-generation 

intrapulmonary vessels from sheep of all age groups (Toga et al., 1992). In the pig, 

venous contractions induced by ET-1 were mediated through both ETA and ETB 

receptors (Zellers et al., 1994). 
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Small pulmonary veins were also shown to be more responsive than arteries to 

vasodilator stimuli. In very small concentrations (1-100 pM), ET-1 caused 

endothelium-dependent relaxations in the veins and arteries, which were also larger 

in the veins (Zellers et al., 1994). In the same study, it was reported that the release 

of vasodilators from the endothelium, such as endothelium-derived nitric oxide 

(EDNO) and prostacyclin, was higher in the veins. 

Elsewhere, Gao et al. (1995a) reported similar findings in newborn lambs and 

suggested that the enhanced role of EDNO in modulation of vascular reactivity in the 

veins may be linked to varied levels of activity of soluble guanylate cyclase in 

vascular smooth muscle. 

1.1.3.5. Hypoxia 

Hypoxic pulmonary vasoconstriction, which is primarily thought to occur in small 

pulmonary arteries, was also demonstrated in the veins (for an extended review, see 

section 1.2). Using myography experiments, Tracey et al. (1989) showed that 

pulmonary venules (~1 mm diameter) from guinea pigs contracted in response to 

hypoxia and anoxia. In isolated perfused lungs, alveolar hypoxia induced a 40% rise 

in pulmonary venous pressure (10 to 60 µm diameter) of newborn pigs (Fike and 

Kaplowitz, 1992) and significantly increased the venous resistance in subpleural 20- 

to 50-µm-diameter venules of adult and 3- to 5-week old ferrets (Raj et al., 1990) 

and 20- to 80-µm-diameter venules of newborn lambs (Raj and Chen, 1986). 



CHAPTER 1. GENERAL INTRODUCTION 

 12

Table 1.1. Receptors mediating vasomotion in the pulmonary veins. 

 

Receptor Subtype Action Reference 

5-HT 5-HT2 Contraction (Shi et al., 1998) 

Adrenergic α1, α2 Contraction (Ohlstein et al., 1989) 

Endothelin ETA Contraction (Zellers et al., 1994) 

 ETB 

Contraction (smooth 

muscle mediated) 

Vasodilation 

(endothelium mediated) 

 

Histamine H1 Contraction (Shi et al., 1998) 

 H2 Vasodilation  

Muscarinic M3 Contraction 
(Ding and Murray, 

2005b) 

PAF-R  Contraction (Gao et al., 1995b) 

Prostanoid TP, EP1 Contraction (Walch et al., 2001) 

 DP, IP Vasodilation (Walch et al., 1999) 
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1.2. Hypoxic pulmonary vasoconstriction 

The constriction of vessels in response to hypoxia is a typical feature of the 

pulmonary circulation, as systemic vessels relax in response to decreasing oxygen 

saturation in the blood. Hypoxic pulmonary vasoconstriction (HPV) is a 

physiological reaction to regional alveolar hypoxia that helps the organism maintain 

the essential high oxygen levels in arterial blood, but which can also have a 

detrimental impact by contributing to pulmonary disease during acute and chronic 

global alveolar hypoxia. 

1.2.1. Initial reports 

Early published observations of hypoxic pulmonary vasoconstriction were made in 

1876 with the work of Lichtheim (cited by Bradford and Dean, 1894). He described 

an asphyxia-induced rise in pulmonary artery pressure without an accompanying rise 

in systemic pressure and concluded that this was due to vasomotor fibres in the 

pulmonary vessels. 

In 1894, Bradford and Dean induced asphyxia in curarised animals by discontinuing 

artificial respiration and observed a gradual, but considerable rise in pulmonary 

artery pressure. They also reported that “a greater effect is obtained on the 

pulmonary circulation by asphyxia than by any other mode of excitation” (Bradford 

and Dean, 1894 p. 75). 

However, the first ones to make a systematic assessment and propose a physiological 

mechanism for this response were von Euler and Liljestrand in 1946. In 

anaesthetised cats ventilated with 10.5% oxygen, they observed an acute rise in 

pulmonary artery pressure (see Figure 1.3) which was not affected by vagotomy or 

ablation of the stellate ganglia (von Euler and Liljestrand, 1946). 
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Following their observations, they hypothesized that this acute physiological 

response was a local regulatory mechanism, which acts to optimise the distribution 

of pulmonary blood flow through direct constricting action of hypoxia on pulmonary 

arterioles, independent of the autonomic nervous system. They postulated the 

following (von Euler and Liljestrand, 1946 p. 318): 

"oxygen want and carbon dioxide accumulation [...] call forth a contraction of 

the lung vessels, thereby increasing the blood flow to better aerated lung areas, 

which leads to improved conditions for the utilization of the alveolar air" 

One year later, Motley et al. (1947) reported hypoxic pulmonary vasoconstriction for 

the first time in humans. Five conscious spontaneously-breathing male subjects were 

given a low oxygen gas mixture (10 per cent O2 in N2) to breathe for short periods of 

approximately 10 minutes. Hypoxic breathing induced a significant degree of 

transient pulmonary hypertension, with a recorded rise in mean pulmonary artery 

pressure from 13.1 to 23 mm Hg and an almost twofold increase in pulmonary 

vascular resistance. 

These initial reports set the context for further research on HPV with later studies 

focused on elucidating the mechanism(s) responsible for sensing and initiating the 

pressor response to acute hypoxia and locating the exact site of action of hypoxia on 

pulmonary vessels (Fishman, 1976). 
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Figure 1.3. The first recording of hypoxic pulmonary vasoconstriction. 

Cat anesthetized with chloralose, 3.9 kg, kept on artificial ventilation, open thorax. 

LA, left atrium; PA, pulmonary artery. Bottom trace, systemic blood pressure. 

1 = O2 (from air); 2 = 6.5% CO2 in O2; 5 = O2; 6 = 10.5% O2 in N2; 7 = O2; t = 30 s. 

(used with permission from von Euler and Liljestrand, 1946). 
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1.2.2. The HPV response 

1.2.2.1. Physiological and pathological relevance 

Alveolar oxygen is an important regulator of vascular tone in the pulmonary 

circulation. When some of the alveoli are ventilated with a gas mixture lower in 

oxygen content than atmospheric air, blood flow in the surrounding capillaries is 

reduced through the contraction of nearby pulmonary vessels. As a result, local 

perfusion is adjusted to match alveolar ventilation and the ventilation/perfusion ratio 

is maintained close to its optimal value of 0.8 (Levick, 2003). Hence, by causing 

blood to be diverted away to the better oxygenated areas of the lungs, HPV helps 

improve gas exchange and keeps the blood supply to the systemic circulation highly 

saturated in oxygen. 

The level of alveolar oxygen tension required to trigger a hypoxic constriction in 

humans and adult animals is reportedly below 60 mm Hg (Hales, 2004). Harris and 

Heath (cited in Dumas et al., 1999) found that when the partial pressure of oxygen 

(Po2) in the alveolar air decreases below 50 mm Hg in humans, the pulmonary 

vascular resistance increases by 50% as a response. However, the recorded values 

may depend on the experimental model and technique used, as milder hypoxic 

conditions (70 mm Hg) have been reported to induce HPV in rabbit lungs 

(Weissmann et al., 1995). In addition, the level of hypoxia required to trigger 

maximal hypoxic contractions varies in different species investigated (Peake et al., 

1981). 

The HPV mechanism functions as a physiological shunt (Traber and Traber, 2002), 

with most blood flow by-passing the regions with hypoxic alveolar ventilation. One 

important consequence of this property of HPV is that it is more effective on a 

reduced scale. The smaller the region affected by hypoxia is, the greater the 

proportion of blood being diverted away will be as a result of HPV (Marshall et al., 

1981). 
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However, if hypoxia is generalised to one or both lungs, this response may become 

detrimental due to resulting the global hypoxic vasoconstriction. The 

vasoconstricting response that occurs during acute hypoxia is partially responsible 

for the development of high altitude pulmonary oedema (Hultgren et al., 1971). 

Prolonged generalised exposure to hypoxia can contribute to vascular remodelling 

and pathological states such as hypoxic pulmonary hypertension (Weitzenblum and 

Chaouat, 2001). 

1.2.2.2. Site(s) of hypoxic pulmonary vasoconstriction 

The site of action of hypoxia in the pulmonary circulation has been the subject of 

considerable debate. Finding out where hypoxia acts in the lungs has been a central 

objective in HPV research, as it would help explain the other important question of 

how hypoxia acts (Fishman, 1976). The main obstacle was represented by the 

difficulty of accessing the pulmonary circulation, especially pulmonary 

microvessels, for direct measurements of haemodynamic pressures. The 

interpretation and understanding of available evidence has developed over time, 

largely influenced by experimental techniques available. 

During the early years of work in the field of HPV, different investigators attributed 

the main role in turn to each segment of the pulmonary vasculature: the arteries (von 

Euler and Liljestrand, 1946, Lloyd, 1964), capillaries (Duke, 1954) and the veins 

(Rivera-Estrada et al., 1958). 

The first reports of HPV measured significant rises in pulmonary artery pressure 

during hypoxia (von Euler and Liljestrand, 1946, Motley et al., 1947). Coupled with 

the known fact that small resistance arteries are primarily responsible for vascular 

resistance in the systemic circulation, this lead investigators to assume that the 

hypoxic pressor effect takes place through vasoconstriction of precapillary vessels 

(Kuida et al., 1962, Lloyd, 1964). Others, however, reported a significant fall in 

pulmonary arterial blood volume concomitant with the hypoxia-induced increase in 

vascular resistance, which, they thought, could not be accounted for solely by the 
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reduction of volume in the arteriolar segment (Sackner et al., 1966). They interpreted 

these observations as evidence that hypoxic vasoconstriction occurred throughout the 

entire pulmonary arterial tree. 

A different proposition was put forward by Nisell (1951), who argued that the 

hypoxic constriction occurs on the venous side. Working with isolated perfused cat 

lungs, he observed a decrease in the pulmonary vascular resistance during perfusion 

with hypoxic or hypercapnic blood. He suggested that hypoxia acts by venous 

constriction and arterial vasodilation. Results from in vivo haemodynamic studies in 

anesthetised dogs (Hall and Hall, 1953) agreed with the findings of Nisell. When 

pulmonary lobes were perfused in situ with oxygenated blood from the carotid 

arteries, hypoxic ventilation caused an increase in vascular resistance, thought to be 

due to vasoconstriction distal to pulmonary arterioles. 

Further evidence to support hypoxic post-capillary vasoconstriction came from 

Rivera-Estrada et al. (Rivera-Estrada et al., 1958). Anesthetised dogs were exposed 

to 5 and 10 per cent oxygen, while pressures were measured in the pulmonary artery, 

left atrium and the pulmonary capillary wedge position, which was verified to be a 

good reflection of venous pressure both before and after hypoxia. Hypoxia increased 

both the capillary wedge pressure and the pulmonary arterial pressure, while only a 

minimal change was seen in left atrial pressure. More importantly, the gradient 

between the venous and the left atrial pressures rose significantly in the absence of 

left ventricular failure, which was interpreted to be due to hypoxia-induced 

venoconstriction. 

In the subsequent years, the theory that alveolar hypoxia affects primarily post-

capillary vessels gained some acceptance and the venous contribution to HPV was 

emphasised (reviewed in Fishman, 1961). 

Others agreed that HPV may take place distal to the pulmonary arterioles, but 

believed that pulmonary capillaries and not veins were the most important segment. 

Research by Duke (1954) on isolated cat lungs perfused with heparinised own blood 
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showed that hypoxic ventilation of alveoli cannot be replaced by hypoxic perfusion 

as a trigger of HPV. Her experiments found that perfusing air-ventilated lungs with 

partially de-oxygenated blood failed to induce a rise in pulmonary artery pressure, 

whereas ventilation with N2 during the same perfusion conditions did elicit a 

hypoxic pressor response. These findings suggested that the relevant HPV location is 

probably at or downstream of the site where gas exchange takes place. After further 

back-perfusion experiments gave a similar response to those in which perfusion was 

made through the pulmonary artery, Duke concluded that capillaries were most 

likely to be the site sensitive to low oxygen. This interpretation, however, did not 

receive a large amount of support, the main concern about it being the fact that the 

capillaries were known to lack smooth muscle and were not believed to contribute 

actively to the increase in pulmonary resistance (Fishman, 1961). 

A new turning point emerged when further research highlighted that small arteries 

are directly susceptible to alveolar hypoxia, since alveolar O2 content affects the 

oxygenation of blood in distal arteries (Sobol et al., 1963, Jameson, 1964). This 

previously missing link attracted more support for the role of arterioles as the main 

site of HPV (reviewed in Fishman, 1976). 

More compelling evidence to confirm the role of arteries was brought by the use of 

new techniques. Kato and Staub (1966) induced hypoxic constriction in 

anaesthetised cats and then rapidly froze the lower lung lobes at end inspiration with 

liquid propane. They then sectioned the tissue, measured internal diameters of distal 

muscular arteries (~ 100-200 µm) and found active constriction of arteries 

accompanying the terminal respiratory units, reflected in a 32 per cent decrease in 

their average internal diameter during hypoxia. Hirschman and Boucek (1963) used 

angiography to assess the vasomotor responses of dog distal pulmonary arteries (as 

small as 0.2 - 0.3 mm) by injecting a contrast substance directly into a branch of the 

pulmonary artery via a non-wedging catheter. Hypoxia induced a twofold rise in 

pulmonary artery pressure with corresponding angiographic changes in small 
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arteries. These consisted of collars of constriction appearing at sites of bifurcation, 

beading and spiralling of previously straight small arteries. 

More recent research indicates that the microcirculation, including both pre- and 

post-capillary small vessels, is predominantly responsible for the increase in tone 

during HPV. Shirai et al. (1986) used an X-ray TV system and contrast angiography 

to assess hypoxia-induced changes in volume and flow velocity and internal 

diameters of small vessels from the cat lungs. They found that hypoxia acted 

primarily on small arteries with an internal diameter of 200-300 µm, but small veins 

also constricted. Similarly, measurements of pressure gradients partitioned across the 

segments of the pulmonary circulation using occlusion techniques indicated that 

hypoxia constricted pre-capillary and, to a lesser extent, post-capillary vessels in 

canine lungs (Hakim, 1988). Hillier et al. (1997) used a videomicroscope to make 

direct and accurate measurements of the diameter of subpleural microvessels in 

isolated dog lungs. During hypoxia, the overall average diameter of 30- to 70-µm 

microvessels decreased by approximately 25 per cent and the reduction occurred in 

both arterioles and venules by a relatively similar amount. However, in some 

species, hypoxia only constricted 20- to 30-µm arterioles and not venules (rat, 

Yamaguchi et al., 1998). 

Finally, although – beginning with the first report by Nisell (1951) – veins have been 

repeatedly highlighted as an active participant in HPV and recent studies have 

brought new evidence to support this (Raj and Chen, 1986, Tracey et al., 1989, Raj 

et al., 1990, Hasebe et al., 1992, Zhao et al., 1993, Feletou et al., 1995, Uzun and 

Demiryurek, 2003), most current reviews choose to overlook their contribution and 

focus solely on the arterial side (Ward and Aaronson, 1999, Dumas et al., 1999, 

Sylvester, 2001, Moudgil et al., 2005, Weissmann et al., 2006), with few others 

emphasising the venous involvement (Gao and Raj, 2005b, Bonnet and Archer, 

2007). 
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1.2.2.3. Time course of HPV responses 

The profile of the hypoxia-induced response in the pulmonary vasculature depends 

to a large extent on the experimental model. In general, responses are monophasic in 

vivo, in intact lungs and isolated pulmonary veins, while in isolated pulmonary 

arteries hypoxia induces a biphasic increase in tone (Ward and Aaronson, 1999, 

Zhao et al., 1993). 

In humans, following the onset of hypoxic breathing, the pressure in the pulmonary 

vasculature begins to rise rapidly and reaches a maximum value after 2 to 4 minutes 

(Motley et al., 1947). The pressure remains raised during brief hypoxic breathing 

episodes (15 to 20 minutes) and returns promptly to normal values after switching to 

breathing ambient air. In calves exposed to low oxygen gas mixtures, Kuida et al. 

(1962) observed the pressure increasing within 15 to 30 seconds and reaching a 

plateau in the first 3 minutes, while in dogs the mean pulmonary artery pressure rose 

in the first 4 minutes and then stabilised for the duration of the hypoxic period 

(Rivera-Estrada et al., 1958, Malik and Kidd, 1973). 

Usually, in the isolated perfused lung preparation, HPV responses are similar to 

those seen under in vivo conditions (Madden and Gordon, 2004). In cat lungs, the 

rise in pulmonary arterial pressure occurs after 20-30 seconds, reaches its maximum 

value in approximately 2 to 4 minutes and remains raised until the lungs are again 

ventilated with air (Duke, 1954). Similarly, in rabbit lungs the HPV response is 

apparent after 28 seconds and achieves its half maximal value after approximately 2 

minutes (Weissmann et al., 1995). 

When isolated pulmonary arteries are challenged with hypoxia, they respond by 

eliciting isometric tension in a biphasic manner (Bennie et al., 1991). The first phase 

consists of a transient contraction within the initial 2 to 4 minutes and is followed by 

a partial relaxation towards baseline (Leach et al., 1994). The second phase usually 

involves a lesser amplitude sustained increase in tension, which develops gradually 
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over long periods of as much as 40 minutes (Leach et al., 1994) to 1 hour (Zhao et 

al., 1993). 

The distinction between the two phases of HPV in the arteries appears to be 

important, as they have been shown to have different underlying mechanisms. The 

two contractile phases are differently affected by endothelium modulation (Hoshino 

et al., 1994) and degree of stretch (Ozaki et al., 1998) and are seemingly reliant on 

distinct sources of intracellular free calcium (Salvaterra and Goldman, 1993). More 

importantly, the first phase is thought, due to its transient nature, to be less 

physiologically relevant than the sustained second phase (Ward and Aaronson, 

1999). 

In contrast, the contraction induced by hypoxia in rat pulmonary veins is monophasic 

and its magnitude is greater than either phase of the response of size-matched 

arteries (Zhao et al., 1993). The venous contraction peaks after approximately 10 

minutes and is followed by a relaxation, which however does not reach initial 

baseline tone even after 1 hour of hypoxia. 

1.2.3. HPV in different experimental models (in vivo & in vitro) 

The initial observations and the postulation of the physiological role of HPV were 

formulated following in vivo studies, but the understanding of HPV mechanisms has 

been advanced more recently through the use of reductive in vitro experimental 

models, such as isolated vessels contractile studies and single cell techniques 

(reviewed by Madden and Gordon, 2004). 

The large variety in findings and interpretations, sometime conflicting, reported on 

the effects of hypoxia on the pulmonary vasculature has to be attributed in a large 

part to the diversity of experimental setups and conditions used during investigations 

of HPV. In addition, the hypoxic response may be influenced by other factors such 

as species (Peake et al., 1981), age (Owen-Thomas and Reeves, 1969) and gender 

(Wetzel and Sylvester, 1983), making the overall picture a complex one. 
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1.2.3.1. In vivo models 

Hypoxic pulmonary vasoconstriction was first described under in vivo experimental 

conditions (Bradford and Dean, 1894, von Euler and Liljestrand, 1946). 

Subsequently, the exploration of the effects of hypoxic ventilation on the pulmonary 

circulation was also undertaken using in vivo models such as anaesthetised 

open-chested mechanically-ventilated animals (e.g. dogs, Rivera-Estrada et al., 1958, 

Peters and Roos, 1952), awake spontaneously breathing animals (e.g. calves, Kuida 

et al., 1962, dogs, Thilenius et al., 1964, lambs, Frostell et al., 1991) and, 

occasionally, humans (Motley et al., 1947). 

In such studies, the pulmonary haemodynamic changes in response to hypoxia were 

monitored and interpreted. Some or all of the following parameters were usually 

obtained during experiments. The pressures in the pulmonary artery, left atrium or 

pulmonary artery wedge position (illustrative of left atrial pressure) and sometimes 

pulmonary veins were recorded using intravascular catheters (Rivera-Estrada et al., 

1958, Aviado, 1960, Forrest and Fargas-Babjak, 1978). Measurements were made of 

oxygen consumption and oxygen content in the arterial and mixed venous blood, and 

these helped calculate total pulmonary blood flow (cardiac output) using the Fick 

principle (Peters and Roos, 1952). Alternatively, cardiac output was measured using 

the dye-dilution (Kuida et al., 1962, Thilenius et al., 1964) or thermodilution 

methods (Forrest and Fargas-Babjak, 1978). Pulmonary vascular resistance was 

indirectly determined by dividing the pressure gradient between the pulmonary 

artery and the left atrium to pulmonary blood flow (Sackner et al., 1966). 

These techniques helped assess the changes induced by hypoxia in the context of 

haemodynamic systemic influences. The hypoxic pressor response was found to 

occur independent of an increase in blood flow or backward pressure from the left 

atrium (Cournand, 1950) and was therefore believed to be due to increased tone in 

the pulmonary vessels. 
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The main disadvantage of the in vivo approach lies in the difficulty of completely 

separating the HPV response within the lungs from systemic factors. Another 

concern is that in intact animal studies, investigators normally assess the effects of 

global alveolar hypoxia, while HPV achieves its physiological purpose best during 

localised hypoxia (Marshall et al., 1981). There have been, however, some attempts 

to take this into account, by ventilating with low oxygen gas mixtures only a single 

lobe (Hall and Hall, 1953, Shirai et al., 1986) or different combinations of lobes 

(Marshall et al., 1981) in order to assess the effects of regional hypoxia. 

1.2.3.2. The isolated perfused lung 

The ability to elicit HPV in the isolated perfused whole-lung helped establish the fact 

that the hypoxic pressor response occurs within the lungs independent of any 

systemic influences. The technique also facilitated the study of the mechanisms of 

HPV under conditions of isolation from any potentially interfering neural, humoral 

and haemodynamic systemic factors. 

Duke and Killick (1952) used isolated cat lungs which were perfused at a constant 

rate of flow through the pulmonary artery with the heparinised blood of the animal 

and ventilated with intermittent positive pressure. Ventilation with N2 induced a 

prompt monophasic rise in pulmonary artery pressure, which was similar to the 

response observed in the intact animal. The response was still present, albeit 

sometimes in a reduced amount, when blood was partially or completely replaced 

with Ringer Locke solution or with Dextran, suggesting that no blood constituents 

are required to initiate HPV. 

The same experimental approach was used to propose or verify various mechanistic 

theories, such as: the role of various putative chemical mediators that would be 

synthesised and released within the lung (reviewed in Fishman, 1976), the 

involvement of K+ channels (Post et al., 1992) and the redox theory (Archer et al., 

1993). 



CHAPTER 1. GENERAL INTRODUCTION 

 25

Another important study using isolated lung experiments highlighted marked 

differences in the responses induced by hypoxia between species (Peake et al., 

1981). It reported the largest vasoconstrictor response in lungs from the pig and the 

ferret and smaller responses in cat and rabbit lungs. 

1.2.3.3. Contractile studies using isolated vessels 

The contractile properties of isolated pulmonary vessels under conditions of hypoxia 

have been extensively investigated using in vitro techniques such as tissue baths and 

myography for smaller vessels. This approach afforded more flexibility in the 

manipulation of extracellular conditions and made it possible to accurately correlate 

the tension response with the size of the vessel studied. 

Dissected segments of pulmonary vessels from various species mounted in tissue 

baths and attached to force transducers allowed researchers to measure the isometric 

tension elicited by the vascular wall under the influence of hypoxia (e.g. rabbit PA 

strips, Lloyd, 1968, Detar and Gellai, 1971, porcine PA strips, Holden and McCall, 

1984, human PA strips, Hoshino et al., 1988, rat PA rings, Rodman et al., 1989, rat 

PV and PA rings, Zhao et al., 1993, porcine PV and PA rings, Feletou et al., 1995). 

The reactivity of isolated vessels to hypoxia was sometimes investigated with 

different techniques, such as plethysmography (Smith and Coxe, 1951). Relatively 

large segments (~ several mm external diameter) from proximal pulmonary vessels 

were normally used in these experiments and the results were found to be 

inconsistent (Madden and Gordon, 2004). 

With the emergence of small vessel myography, it was possible to study the effect of 

hypoxia on small intrapulmonary vessels (below 1 mm external diameter), which are 

believed to contribute the greatest proportion to hypoxia-induced vasoconstriction 

(for discussion, see section 1.2.2). Madden et al. (1985) were able to show consistent 

and reproducible hypoxia-induced contractions in small (< 300 µm diameter) 

pulmonary arteries of the cat. Myography facilitated the characterisation of hypoxic 

contractions (Lee and Kim, 1999) and the investigation of HPV mechanisms, 
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including the involvement of extracellular Ca2+ influx (Harder et al., 1985a), Ca2+ 

release from intracellular stores (Dipp et al., 2001, Du et al., 2005) and reactive 

oxygen species (Thompson et al., 1998). Furthermore, it was also used to elicit HPV 

in pulmonary venules of guinea pigs and to demonstrate that the parenchyma 

surrounding the vessel wall is not required for the full expression of hypoxic 

contractions (Tracey et al., 1989). 

Myography was sometimes used in more complex setups in conjunction with other 

techniques, such as Ca2+ measurements with Ca2+-sensitive fluorophores, providing 

an excellent tool to monitor contractile force and levels of cytoplasmic free Ca2+ 

simultaneously (Robertson et al., 2003). 

1.2.3.4. Role of pretone in isolated vessel experiments 

In most preparations of isolated pulmonary arteries, a minimal level of agonist-

induced contraction normally precedes the application of hypoxia in order to achieve 

a hypoxic vasoconstrictor response (Aaronson et al., 2002). The role of pretone is to 

enhance, but not qualitatively affect the responses obtained (Dipp et al., 2001). In 

pulmonary arteries from various species, hypoxic pressor responses were found to be 

more robust after preconstriction, although responses were also seen without agonist-

induced pretone (e.g. cat, Madden et al., 1985, sheep, Demiryurek et al., 1991a, man, 

Demiryurek et al., 1993, rabbit, Dipp et al., 2001). However, when preconstriction 

was not used with rat tissue, pulmonary artery rings at passive resting tension 

contracted insignificantly or did not contract at all to hypoxia (Bennie et al., 1991). 

The same was seen by Leach et al. (1994), who observed very small responses to 

hypoxia in rat distal pulmonary arteries in the absence of pretone. 

With isolated pulmonary veins, however, significant responses to hypoxia can be 

evoked even in the absence of agonist-induced preconstriction (e.g. pig, Miller et al., 

1989, sheep, Uzun and Demiryurek, 2003). 
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The role of the agonist preconstrictor is the achievement of a small level of active 

tension and priming of vascular tissue for the hypoxic response. This could be 

physiologically relevant as it is thought to emulate the resting tone pulmonary 

vessels are subject to in vivo (Aaronson et al., 2006). However, the exact underlying 

mechanisms by which pretone enhances or makes HPV possible is not entirely 

understood (Ward and Aaronson, 1999, Aaronson et al., 2006), but may be linked to 

depolarisation (Turner and Kozlowski, 1997) or release of Ca2+ from intracellular 

stores (Gelband and Gelband, 1997). 

One of the agonists most commonly used to induce preconstriction is PGF2α in 

concentrations of 1 µM (Dipp et al., 2001), 3 µM (Robertson et al., 1995, Robertson 

et al., 2001), 5 µM (Thompson et al., 1998) or as much as 10 µM (Leach et al., 

1994, Rogers et al., 1997). Ozaki et al. (1998) assessed systematically the 

dependence of the hypoxic response on pretone in pulmonary arteries isolated from 

rat lungs. They found the largest hypoxic contractions when pretone was induced 

using EC25 and EC50 of PGF2α (for small pulmonary arteries, these were 0.27 and 

1.01 µM respectively). 

Other types of agonists that have been used with success include α-adrenoreceptor 

agonists, high extracellular [K+] induced depolarisation, angiotensin II, thromboxane 

analogues and 5-HT (Rodman et al., 1989, Bennie et al., 1991, Demiryurek et al., 

1991a, Uzun et al., 1998, Karamsetty et al., 2002). 

1.2.3.5. Studies on smooth muscle cells 

Murray et al. (1990) showed for the first time that hypoxia contracts pulmonary 

vascular smooth muscle directly. They cultured smooth muscle cells from foetal 

bovine pulmonary arteries on a flexible growth surface and found that exposing the 

cells to hypoxia (Po2 ~ 25 mm Hg) caused wrinkles and distortions to appear on the 

growth surface. The contractions were confirmed by detecting an increase of 45% in 

the level of phosphorylated MLC in response to hypoxia. 
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Non-dedifferentiated smooth muscle cells isolated from small intrapulmonary 

arteries of the cat were also shown to contract significantly to hypoxia (Madden et 

al., 1992). The greatest proportion of shortening was found in smooth muscle cells 

from arteries with diameters between 200 and 600 µm. In equivalent cells that were 

primary cultured, the level of cytoplasmic free Ca2+ increased by 64% during 

hypoxia (Vadula et al., 1993). 

These experiments demonstrated undeniably that pulmonary vascular smooth muscle 

cells are not only the effector in hypoxic pulmonary vasoconstriction, but are also 

able to sense low O2 and initiate HPV without the need for any intermediary 

mediator. 

In further studies on smooth muscle cells, the effects of lowering Po2 on membrane 

potential and whole cell currents were studied using patch-clamping techniques. 

Hypoxia was found to block potassium currents and significantly depolarise the 

membrane potential of fresh enzymatically dispersed canine pulmonary artery 

smooth muscle cells (PASMC) (Post et al., 1992) and of primary cultured PASMC 

from the rat (Yuan et al., 1993a). 

Through the use of selective pharmacological agents in patch-clamping studies and 

backing by immunohistochemistry, the susceptibility to low O2 was attributed to 

particular subtypes of voltage-gated K+ channels (KV) channels in rat PASMC (Patel 

et al., 1997, Archer et al., 1998). 

1.2.3.6. Other experimental models 

A number of other experimental approaches arose from the need to measure in vivo 

hypoxic constrictions in small pulmonary vessels that are difficult to reach via 

intraluminal catheterisation. The opportunity to achieve this was provided by 

imaging techniques such as standard contrast angiography (Hirschman and Boucek, 

1963, Shirai et al., 1986), videomicroscopy coupled to a computerized image-
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enhancement system (Hillier et al., 1997) or real-time confocal laser scanning 

luminescence microscopy (Yamaguchi et al., 1998). 

Another innovative technique was used by Kato and Staub (1966) who froze cat 

lungs during expression of HPV, which they sectioned in order to measure the 

diameters of distal pulmonary arteries. Similarly, Glazier and Murray (1971) used 

frozen dog lungs to evaluate changes in vascular tone by measuring the pulmonary 

capillary red blood cell concentration. 

More recently, HPV mechanisms were studied using transgenic animal models. 

Archer et al. (2001) employed gene targeting to create functional knockout mice for 

a subtype of KV channels and showed blunted hypoxic responses in the engineered 

animals. 

1.3. Effector mechanisms of acute HPV 

Since HPV was first reported, the link between the decrease of alveolar Po2 and the 

development of tension in the pulmonary vascular wall has been much investigated 

(reviewed in Dumas et al., 1999, Archer and Michelakis, 2002, Moudgil et al., 2005, 

Aaronson et al., 2006) and the substantial evidence accumulated has led to a 

significant overall increase in the understanding of HPV mechanisms. 

The hypotheses that HPV could be mediated through the autonomic nervous system 

or through a systemically-released circulating vasoactive substance were disproved 

relatively early. Since HPV was demonstrated in isolated lungs and vessels, any 

theory involving systemic factors could be safely ruled out (Fishman, 1976). The 

subsequent efforts to uncover the mechanisms of HPV were thus focused on two 

main directions, illustrated by the question raised more than 30 years ago (Fishman, 

1976) of whether the hypoxic pressor response develops through chemical mediators 

released or activated in the lung or through direct action of hypoxia on the vascular 

smooth muscle in the pulmonary circulation. 
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Multiple pathways have been identified to induce contraction by contributing to the 

rise of intracellular levels of free Ca2+ during the hypoxic response (McMurtry et al., 

1976, Gelband and Gelband, 1997, Wang et al., 2005a) and additional contractile 

mechanisms not requiring an increase of cytosolic Ca2+ have been found to play a 

role during sustained HPV (Robertson et al., 1995). Despite these advances, HPV 

still remains an incompletely elucidated physiological mechanism. Moreover, 

although a significant proportion of the overall HPV response occurs in the 

pulmonary veins (Gao and Raj, 2005b), relatively little is known about venous 

specific mechanisms during HPV. 

1.3.1. Mediators in HPV 

If a chemical mediator was central to HPV, it would have to be synthesised and 

released, or merely activated, in the lungs in response to hypoxia and then act to 

constrict vascular smooth muscle (Fishman, 1976). Such a mechanism would 

provide a simple explanation to the dilemma of opposing vasoactive actions of 

hypoxia on pulmonary and systemic vessels. 

The search for a mediator that could be responsible for inducing HPV focused on 

several vasoactive substances (Dumas et al., 1999). The main potential source of 

release of such mediators was thought to be represented by the endothelial cells 

(Holden and McCall, 1984, Kovitz et al., 1993), but cells in the lung parenchyma 

were also considered for this role (Lloyd, 1968). 

1.3.1.1. Role of endothelium 

The endothelium is an important source of vasoactive factors in blood vessels. 

Endothelium-derived vasoconstrictors and vasodilators contribute to vascular tone 

regulation and affect vascular resistance in the pulmonary circulation. 

Investigations into the role of the endothelium in HPV have generated contradictory 

results. Isolated smooth muscle cells and isolated vessels without endothelium 
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contract when exposed to low O2 (Madden et al., 1992, Marshall and Marshall, 

1992), suggesting the endothelium is not required for the expression of HPV. 

However, Ward and Aaronson (1999) made the case that, in these experiments, very 

short exposures to hypoxia were used, and the observations made only account for 

the transient hypoxic response and not for the longer, more physiologically relevant, 

phase. In studies which looked at sustained hypoxic vasoconstriction (> 20 minutes), 

the evidence suggests the presence of the endothelium is required for the 

development of full hypoxic vasoconstriction in pulmonary arteries from several 

species (e.g. man, Demiryurek et al., 1993, dog, Hoshino et al., 1994, rabbit, Dipp et 

al., 2001). In the pulmonary veins, the dependence of hypoxic responses on the 

endothelium was found to be less than in arteries (Feletou et al., 1995). 

1.3.1.2. Endothelin-1 

The endothelium-derived vasoconstrictor peptide endothelin-1 has been linked to the 

role of HPV mediator, but the evidence remains inconclusive. The hypoxic response 

of porcine PA was blocked by endothelial denudation, and restored when the vessels 

were primed with 0.1 nM ET-1 (Liu et al., 2001), suggesting a basal level of ET-1 

was required for the full expression of HPV. However, acute hypoxia increased 

(Oparil et al., 1995), did not change (Willette et al., 1997) or decreased (Medbo et 

al., 1998) ET-1 levels. Even in studies where a rise in ET-1 was detected during 

hypoxia, the increase occurred at a very slow rate suggesting ET-1 may participate, 

but not hold a primary role in HPV (Takeda et al., 1997). Selective ETA receptor and 

non-selective ETA/ETB receptor blockade inhibited HPV, but this effect was 

prevented by the addition of angiotensin II as a costimulator (Sato et al., 2000). 

These findings suggest that the effect of ET-1 on HPV is a generic priming role, the 

same as seen with other agonists (Aaronson et al., 2002). 
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1.3.1.3. Nitric oxide 

Alternatively, the hypoxic constrictor response could also develop through decreased 

release of vasodilator agents from the endothelium. EDNO is the most potent 

endothelium-derived relaxing factor, with an important role in the regulation of 

vessel tone and vascular resistance. In the pulmonary circulation, synthesis of EDNO 

is reduced during hypoxia (Le Cras and McMurtry, 2001) and it has been suggested 

that this could be the underlying mechanism of HPV (Rodman et al., 1990). 

However, suppression of NO synthesis does not mimic the HPV response (Shirai et 

al., 1997) and NO does not contribute significantly to pulmonary vascular resistance 

(PVR) during normoxia as would be expected if its inhibition was involved in the 

hypoxic response (Hasunuma et al., 1991, Leach et al., 1994). These and other 

inconsistent findings (reviewed in Aaronson et al., 2002) imply that EDNO is 

improbable to have a central role in HPV. 

1.3.1.4. Cyclooxygenase and lipooxygenase products 

The vasoactive products of the cyclooxygenase pathway have also been considered 

as possible HPV mediators. In canine isolated pulmonary arteries, HPV was 

inhibited by cyclooxygenase inhibitor indomethacin and a thromboxane 

A2/prostaglandin H2 receptor antagonist (Hoshino et al., 1994) suggesting an 

involvement of vasoconstricting prostanoids, but these findings failed to find support 

in other studies (Leach et al., 1994, Liu et al., 2001). A different mechanism, 

involving hypoxia-induced inhibition of the release of vasodilator prostacyclin 

(PGI2), was also suggested. Experiments with sheep and human pulmonary arteries, 

indicated that HPV was, at least in part, due to the inhibition of a vasodilator 

prostanoid (Demiryurek et al., 1991b, Demiryurek et al., 1993). Conversely, as most 

other studies did not find that inhibition of the cyclooxygenase pathway abolishes 

HPV (Aaronson et al., 2002), prostanoids are believed to be only modulators of the 

hypoxic response. 
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A role for leukotrienes in HPV was suggested in the rat, as leukotriene C4 (LTC4) 

induced a pressor response and leukotriene blockers inhibited HPV (Morganroth et 

al., 1984). Other studies did not confirm this proposition, LTC4 was rejected as an 

HPV mediator in the ferret (Tseng et al., 1990) and rat (Davidson et al., 1990) and 

the participation of the lipooxygenase pathway was also excluded in rabbit lungs 

(Weissmann et al., 1998). 

1.3.1.5. Other mediators 

Other vasoactive substances that have been put forward as HPV mediators include 

angiotensin II (Berkov, 1974), adenosine (Thomas and Marshall, 1993), histamine, 

5-HT and PAF (Wadsworth, 1994). Whilst these vasoactive agents modulate 

vascular tone and resistance in the lungs, there is not enough current evidence to 

support their role as HPV chemical mediators according to the criteria set by 

Fishman (1976). 

1.3.2. Intrinsic mechanisms 

With the observation of hypoxia-induced contractions in isolated pulmonary arterial 

smooth muscle cells from cows and cats (Murray et al., 1990, Madden et al., 1992), 

the balance of evidence tipped in favour of the concept that hypoxic pulmonary 

vasoconstriction is fundamentally an intrinsic property of smooth muscle cells. Thus, 

any locally synthesised or circulating vasoactive substance that may be influencing 

HPV is now considered merely a modulator, its role being not to initiate, but rather 

to shape the hypoxic response (Douglas et al., 1993, Dumas et al., 1999). 

In the pulmonary artery, hypoxia causes membrane depolarisation, raises the level of 

cytosolic free Ca2+ and induces an increase in vascular tone. Harder et al. (1985b) 

used electrophysiological recordings with glass microelectrodes to show hypoxia-

induced membrane depolarisation and generation of action potentials in small 

pulmonary arteries from the cat and suggested that reduced Po2 directly affected ion 



CHAPTER 1. GENERAL INTRODUCTION 

 34

conductances in the plasma membrane of smooth muscle cells. In cultured PASMC 

from foetal lambs (Cornfield et al., 1993) and rats (Salvaterra and Goldman, 1993), 

acute hypoxia induced a reversible rise in the intracellular concentration of Ca2+, 

which was partially dependent on both release of Ca2+ from SR stores and entry of 

extracellular Ca2+. 

Most investigators currently agree that the full expression of HPV requires the added 

participation of multiple interconnected cellular mechanisms (see Figure 1.4), 

however the identity of the initial event still raises much debate (Ward and 

Aaronson, 1999, Moudgil et al., 2005, Aaronson et al., 2006). Post et al. (1992) and 

Yuan et al. (1993a) found strong evidence that hypoxia causes direct inhibition of K+ 

channels in the plasma membrane of smooth muscle cells and proposed that this is 

the primary key event of the hypoxic response. Other studies support an initial role 

for Ca2+ release from intracellular stores (Jabr et al., 1997, Liu et al., 2001, Dipp et 

al., 2001) with subsequent activation of capacitative Ca2+ entry (CCE). During 

prolonged hypoxia, other mechanisms intervene, such as Ca2+ sensitisation of the 

contractile apparatus, which permits an increase in contractile force without a 

concomitant rise in the intracellular free calcium concentration ([Ca2+]i) (Robertson 

et al., 1995, Robertson et al., 2003). 
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Figure 1.4. Role of ion channels in HPV signalling in PASMC. 

Multiple ion channels participate in the signalling pathways involved in the hypoxic 

response in pulmonary arteries, the mechanisms are discussed in the text. 

KV, voltage-activated K+ channels, VGCC, voltage-activated Ca2+ channels, 

ClCa, Ca2+-activated Cl- channels; IP3-R, inositol-1,4,5-triphosphate receptors, 

RyR, ryanodine receptors, SOCC, store-operated Ca2+ channels. 
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1.3.3. Hypoxic inhibition of K+ channels 

The most established hypothesis for the initiation of HPV involves the hypoxic 

inhibition of O2-sensitive KV channels in the plasma membrane of pulmonary 

vascular smooth muscle cells (Archer and Michelakis, 2002, Moudgil et al., 2005). 

This primary event is thought to trigger an activation cascade with subsequent 

membrane depolarisation and rise of cytoplasmic Ca2+ by way of Ca2+ influx through 

voltage-gated Ca2+ channels (VGCC). 

1.3.3.1. Effect of hypoxia on IK(V) 

The first direct evidence that hypoxia reduces whole-cell K+ currents was provided 

by Post et al. (1992) in canine pulmonary artery smooth muscle cells. Using fresh 

smooth muscle cells enzymatically dispersed from second and third branches of 

pulmonary arteries of dogs, they showed that lowering the Po2 from 130 mm Hg to 

40 mm Hg depolarised the membrane and inhibited outward K+ currents elicited 

through voltage step and ramp depolarisations. The Ca2+ channel antagonist 

nisoldipine, as well as chelation of [Ca2+]i with BAPTA abolished the hypoxic 

inhibition of K+ currents, which was interpreted as indirect evidence that the hypoxia 

sensitive current was carried through Ca2+-activated K+ (KCa) channels. In the same 

study, hypoxic responses in isolated lung preparations and isolated vessels were 

mimicked by blockers of K+ channels. Finally, the inhibitory effect of hypoxia on K+ 

channels was not present in myocytes isolated from canine renal artery, showing it is 

probably unique to smooth muscle cells (SMC) in the pulmonary vasculature, as is 

HPV itself. 

The hypoxic inhibition of K+ channels was confirmed shortly thereafter in cultured 

rat pulmonary arterial smooth muscle cells (Yuan et al., 1993a), but the new 

evidence implied that specifically voltage-gated K+ channels (KV) and not KCa are 

the type of K+ channels that is sensitive to hypoxia. Under experimental conditions 

preventing KCa activation (i.e. Ca2+ free media and Ca2+ chelator EGTA present both 

in the intracellular and extracellular solutions), hypoxia (average Po2 = 44 Torr) 
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inhibited the outward voltage-activated K+ (IK(V)) current by approximately 60%. 

The activation potential of the O2-sensitive steady-state current was -52 mV, while 

the resting membrane potential (RMP) was -41 mV, suggesting a proportion of the 

respective channels were contributing to RMP and their inhibition by hypoxia could 

trigger hypoxia-induced depolarisation. The role of KV channels in HPV was 

confirmed in further studies (Post et al., 1995, Archer et al., 1996). 

The O2-sensitive IK(V) current has been described as slowly inactivating, carried 

through a delayed rectifier channel (Post et al., 1995, Archer et al., 2000). 

Pharmacologically, it was found to be sensitive to voltage-activated potassium 

channel blocker 4-AP, but not to the Ca2+-activated K+ antagonist charybdotoxin 

(Archer et al., 2000). 

1.3.3.2. Molecular identity of O2-sensitive KV channels 

The search for the molecular identity of the KV channel acting as a hypoxic sensor 

resulted in several subtypes of KV channels being proposed as candidates for the role 

of O2-sensitive KV in PASMC. 

Archer et al. (1998) investigated hypoxia sensitive channels in rat pulmonary 

arteries. Based on the previously reported pharmacological and electrophysiological 

properties of O2-sensitive KV, they selected the Kv2.1 and Kv1.5 channel subtypes 

as potential candidates. Using specific antibodies, they showed that these channels 

are expressed in rat PASMC and contribute to the whole-cell potassium current. 

Moreover, anti-Kv2.1 induced depolarisation and contraction of PA rings, while 

anti-Kv1.5 inhibited the increase in [Ca2+]i and contraction during hypoxia. These 

findings prompted the authors to suggest an involvement of these subtypes in a two 

step mechanism of HPV initiation, whereby hypoxia initially inhibits only Kv2.1, the 

resulting depolarisation activates Kv1.5 which is then further inhibited by hypoxia 

augmenting the HPV response. 



CHAPTER 1. GENERAL INTRODUCTION 

 38

More evidence to support the involvement of these two subtypes in HPV emerged 

later. Using a functional knockout mouse model, Archer et al. (2001) demonstrated 

diminished hypoxic vasoconstriction in Kv1.5 deficient animals. In rat PASMC, 

Patel et al. (1997) described a novel hypoxia-sensitive heteromer composed of the 

Kv2.1 α-subunit and the Kv9.3 β regulatory subunit. The Kv2.1/Kv9.3 channel is a 

delayed rectifier active at resting membrane potential, making it a suitable 

O2-sensitive KV channel candidate. In another study, hypoxia inhibited Kv1.2 and 

Kv2.1, but not Kv1.5 homomers transfected into a mouse L-cell line (Hulme et al., 

1999). However, co-expression of Kv1.2/Kv1.5 resulted in a hypoxia-sensitive 

channel active at resting membrane potential, as was the Kv2.1/Kv9.3 heteromer. 

Furthermore, in native rat PASMC, ablation of the Kv2.1 subtype with anti-Kv2.1 

antibody prevented the inhibition of IK(V) by hypoxia (Hogg et al., 2002) and in a 

heterogeneous population of rat PASMC the expression of the Kv1.5 subtype was 

correlated with the hypoxia sensitivity of the cells (Platoshyn et al., 2007). 

1.3.4. Ca2+ in HPV 

As in all types of muscle cells, the cytoplasmic concentration of free Ca2+ is the main 

determinant of smooth muscle contraction. At any time, the level of [Ca2+]i is 

achieved through the dynamic equilibrium of Ca2+ movement between the 

cytoplasmic compartment and the extracellular environment and intracellular Ca2+ 

stores, respectively (Karaki et al., 1997). 

In the pulmonary arterial smooth muscle, hypoxia induces a rise in intracellular free 

Ca2+ (Vadula et al., 1993), which is due to both influx of extracellular Ca2+ 

(Cornfield et al., 1994) and release from intracellular Ca2+ stores (Gelband and 

Gelband, 1997). 
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1.3.4.1. Ca2+ entry 

In smooth muscle cells, voltage-gated Ca2+ channels (VGCC) provide the main path 

for Ca2+ entry through the predominant subgroup of L-type Ca2+ channels. They are 

activated by depolarisation, blocked by dihydropyridines and are present in a lesser 

density in the veins compared to the arteries (Walker, 1995). 

During HPV, Ca2+ enters smooth muscle cells through VGCC. The hypoxic response 

in rat lungs was inhibited by VGCC blocker verapamil (McMurtry et al., 1976) and 

enhanced by VGCC agonist BAY K 8644 (McMurtry, 1985). 

In other studies, VGCC block resulted only in a decrease of HPV, suggesting influx 

through VGCC is not the only source of cytoplasmic Ca2+. The hypoxic responses of 

human pulmonary arterial strips were attenuated, but not abolished by VGCC 

antagonists nifedipinde, nicardipine and by the removal of extracellular Ca2+ 

(Hoshino et al., 1988). HPV was also only partial inhibited by verapamil in human 

pulmonary arteries (Ohe et al., 1992). 

However, in sheep pulmonary artery rings, verapamil had no effect on the HPV 

response with or without preconstriction (Demiryurek et al., 1993). Similarly, in rat 

intrapulmonary arteries, VGCC antagonists did not affect the sustained phase of 

HPV and partially inhibited the transient phase (Robertson et al., 2000b), suggesting 

depolarisation-mediated Ca2+ entry is not prevalent and an alternative, voltage 

independent Ca2+ influx pathway may contribute to HPV. 

In addition, there is evidence that hypoxia promotes Ca2+ channel activity not only 

indirectly through depolarisation-induced activation of VGCC. In rabbit PASMC 

isolated from distal arteries, Franco-Obregon and Lopez-Barneo (1996a) observed 

hypoxia-induced potentiation of the amplitude of Ca2+ currents. In PASMC from 

larger, conduit arteries the effect was opposite, and there were also differences in 

Ca2+ channel density between the two types of cell. 
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1.3.4.2. Ca2+ release and capacitive entry 

In human pulmonary arterial strips, an alternative source for the rise in [Ca2+]i that 

occurs during HPV is the release of Ca2+ from intracellular stores into the cytoplasm 

(Hoshino et al., 1988). By depleting intracellular Ca2+ stores, the hypoxic pressor 

response in canine pulmonary arteries was significantly inhibited (Jabr et al., 1997). 

Ryanodine receptor (RyR) (Morio and McMurtry, 2002) and inositol 1,4,5-

trisphosphate receptor (IP3-R) (Mauban et al., 2005) sensitive Ca2+ stores have been 

suggested to contribute to this mechanism, although there is some disagreement 

about the latter (Jin et al., 1993). 

Post et al. (1995) made a series of observations examining the role of [Ca2+]i in the 

hypoxic inhibition of K+ currents in canine PASMC. Hypoxia (induced with sodium 

dithionite) reduced K+ currents, but this was prevented by intracellular buffering of 

Ca2+ and mimicked by caffeine. Using simultaneous measurements of [Ca2+]i and 

membrane potential, they observed that in response to the application of hypoxia the 

rise in [Ca2+]i preceded membrane depolarisation. The authors suggested that K+ 

channel inhibition depends on Ca2+ release and proposed a mechanism whereby the 

release of Ca2+ from internal stores is an early event in HPV which causes inhibition 

of K+ channels, membrane depolarisation and subsequent Ca2+ entry through 

voltage-gated channels. 

Gelband and Gelband (1997) brought more evidence in support of this theory. In the 

presence of thapsigargin, cyclopiazonic acid (CPA) and ryanodine (used to deplete 

intracellular Ca2+ stores) hypoxia did not elicit any significant change in tone, [Ca2+]i 

or membrane potential. 

Furthermore, Dipp and Evans (2001) investigated the role of cyclic ADP-ribose 

(cADPR) in the hypoxic response in rat lungs. Their findings suggested that the 

release of Ca2+ from ryanodine-sensitive stores during sustained HPV takes place 

through build up of cADPR and proposed that this event may represent a primary 

trigger in HPV. 
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However, the possibility that the initial Ca2+ release activates a different pathway, 

not involving voltage-gated channels, has also been raised. Capacitative Ca2+ entry 

(CCE), which is activated by depletion of SR Ca2+ stores (Putney et al., 2001) was 

considered a candidate. In a series of experiments on canine PASMC, Ng et al. 

(2005) showed that dihydropyridine insensitive influx of Ca2+, probably CCE, plays 

a role in HPV. In rat PASMC, store-operated Ca2+ channels (SOCC) mediate CCE 

during acute hypoxia (Wang et al., 2005a). CCE was also shown to be present in 

canine PVSMC and changes in CCE induced by intravenous anaesthetics were 

mediated by tyrosine kinase (Shimizu et al., 2006). 

1.3.4.3. Ca2+-activated Cl- channels 

An alternative mechanism that promotes vasoconstriction in vascular smooth muscle 

involves Ca2+-activated Cl- channels (ClCa) (Large and Wang, 1996). As the name 

suggests, ClCa channels are activated by an increase in [Ca2+]i. Subsequently, the 

movement of Cl- ions follows the electrical gradient, and opposes the concentration 

gradient, resulting in a net efflux which induces membrane depolarisation and thus 

amplifies the increase in [Ca2+]i by activating VGCC. 

In rat aorta, Cl- currents contribute significantly to the contractile response to 

norepinephrine (Lamb and Barna, 1998). ClCa were also shown to be present in 

smooth muscle cells from rat pulmonary arteries (Yuan, 1997). In this study, inward 

Ca2+-activated Cl- currents (ICl(Ca)) in PASMC were activated by Ca2+ released from 

IP3-sensitive stores by CPA, as well as by depolarisation-induced Ca2+ entry. These 

findings suggest that ClCa channels contribute to agonist-induced vasoconstriction in 

pulmonary arteries, and may also be activated by the increase in cytoplasmic free 

Ca2+ induced by acute hypoxia. 

Furthermore, during chronic hypoxia, a positive feedback mechanism involving ClCa 

channels contributes to increased levels of cytosolic Ca2+ in the development of 

pulmonary hypertension (Yang et al., 2006). Moreover, ClCa channel blockers were 
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found to reduce the proliferation of rat PASMC under conditions of chronic hypoxia 

(Yang et al., 2008). 

1.3.5. Role of sensitisation 

Agonists contract vascular smooth muscle by rising free cytoplasmic Ca2+, as well as 

through increasing the sensitivity of contractile myofilaments to Ca2+ (Himpens et 

al., 1988). While the former acts to induce contraction through Ca2+/calmodulin 

activation of myosin light chain kinase (MLCK) and phosphorylation of MLC, the 

latter involves reducing myosin light chain phosphatase (MLCP) activity and thus 

diminishing its inhibitory role on VSM contraction (Somlyo and Somlyo, 1993).  

The relation between [Ca2+]i and hypoxia-induced contractile force was investigated 

for the first time in an HPV study, in which recording of isometric tension in a small 

vessel myograph was made concomitant to fluorescence measurements using 

ratiometric intracellular Ca2+ indicators. Robertson et al. (1995) used this technique 

on isolated intrapulmonary arteries of the rat. During the first transient phase of 

HPV, the increase in contractile force was accompanied by a simultaneous rise in 

[Ca2+]i. However, the second phase was different, in that the sustained increase in 

tension was not matched by an elevation of [Ca2+]i, which remained constant 

throughout. These observations showed that Ca2+ sensitisation is involved in the 

HPV response. 

Several regulatory intracellular protein kinases have been suggested to participate in 

the sensitisation process during hypoxic contractions of pulmonary vessels (reviewed 

in Ward et al., 2004), but some of the reported findings are difficult to interpret due 

to the non-specificity of pharmacological agents used (Robertson and McMurtry, 

2004). 
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1.3.5.1. Protein kinase C 

In rat pulmonary arteries (Jin et al., 1992) and isolated perfused rat (Orton et al., 

1990), rabbit (Weissmann et al., 1999) and dog lungs (Barman, 2001), the sustained 

hypoxic vasoconstriction was dependent on activation of protein kinase C (PKC). 

Conversely, in other studies Ca2+ sensitisation during hypoxia in rat pulmonary 

arteries was shown to be PKC-independent (Robertson et al., 1995). However, the 

presumed PKC inhibitors used in these studies have been shown not to be selective 

blockers of PKC (Davies et al., 2000). 

The emergence of more targeted approaches has resulted in new relevant evidence in 

this field. Knockout mice with a deletion of the gene for the PKC-ε isoform had 

blunted hypoxic responses compared to wild type mice (Littler et al., 2003). Using 

novel specific inhibitors and gene deletion, Rathore et al. (2006, 2008) demonstrated 

the involvement of PKC-ε in the hypoxia-triggered signalling cascade leading to the 

rise of [Ca2+]i and contraction in mouse PASMC. However, the inhibition of 

classical PKC isoforms (α and β1) failed to affect the hypoxic response in rat 

pulmonary artery rings (Tsai et al., 2007). 

1.3.5.2. Protein tyrosine kinases 

Protein tyrosine kinases (PTK), reported to modulate Ca2+ sensitivity in smooth 

muscle (Steusloff et al., 1995), were also found to be involved in HPV. In the 

presence of PTK inhibitors genistein and tyrphostin, pulmonary artery rings did not 

contract to hypoxia, but contracted to 5-HT (Uzun et al., 1998). 

Similarly, pulmonary venous hypoxic responses, with or without preconstriction, 

were inhibited by genistein and tyrphostin and enhanced by the PTK activator 

sodium orthovanadate (Uzun and Demiryurek, 2003). 
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1.3.5.3. Rho-kinase 

In vascular smooth muscle, Rho-kinases (ROK) have been recognized to contribute 

to agonist-induced Ca2+ sensitisation (Somlyo and Somlyo, 2000). Once activated by 

the GTP-bound RhoA, ROK phosphorylates MLCP thereby inactivating it. 

The ROK blocker Y-27632 caused a concentration-dependent inhibition of sustained 

hypoxic responses in rat intrapulmonary arteries and isolated perfused lungs 

(Robertson et al., 2000a). 

Following exposure to hypoxia, ROK activity and MLC phosphorylation were 

increased in cultured PASMC (Wang et al., 2001). Y-27632, C3 (specific Rho 

inhibitor) and toxin B (inhibitor of Rho proteins) reduced MLC phosphorylation 

during hypoxia, while ROK activation by hypoxia was diminished by C3 and toxin 

B. These findings strongly suggest a role for the Rho/Rho-kinase pathway in Ca2+ 

sensitisation during sustained HPV. 

1.3.5.4. p38 mitogen-activated kinase 

Mitogen-activated protein (MAP) kinases are another family of kinases expressed in 

smooth muscle cells, that participate in the regulation of cellular differentiation, 

proliferation and contraction (Robertson and McMurtry, 2004). 

A member of this family, p38 MAP kinase, has been reported to be involved in 

sustained HPV in rat pulmonary arteries (Karamsetty et al., 2002). In this study, 

acute hypoxia enhanced the phosphorylation of p38 MAP kinase. Inhibition of p38 

MAP kinase with SB-202190 abolished only the sustained phase of HPV, while 

activating p38 MAP kinase with anisomycin potentiated both phases of the hypoxic 

response. 
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1.4. Role of veins in pulmonary disease 

1.4.1. Pulmonary oedema 

Acute pulmonary oedema is a clinical emergency which involves the extravasation 

of fluid from the pulmonary capillaries into the interstitial space and the alveoli. The 

main known mechanisms that contribute to oedema formation are (i) reversal of 

physiological Starling forces through elevated capillary hydrostatic pressure or low 

plasma oncotic pressure, (ii) damage to the alveolar-capillary barrier and (iii) 

insufficiency of the lymphatic drainage system (Sovari, 2008). 

During oedema formation, post-capillary venoconstriction by raising upstream 

microvascular hydrostatic pressures may contribute to fluid filtration and increased 

extravascular lung water (Dauber and Weil, 1983). Pulmonary venous constriction 

has been implicated in pulmonary oedema due to congestive heart failure (Burkhoff 

and Tyberg, 1993), neurogenic causes (Smith and Matthay, 1997), narcotic abuse 

(Hakim et al., 1992), high-altitude (Maggiorini et al., 2001), endotoxins (Pearl et al., 

1992), anaphylaxis (Shibamoto et al., 1992), lung injury (Dauber and Weil, 1983), as 

well as in oedema induced experimentally by administration of thromboxane 

(Yoshimura et al., 1989) and ET-1 (Rodman et al., 1992). 

1.4.1.1. High altitude pulmonary oedema 

One particular type of oedema that affects non-acclimatised healthy individuals in 

the first days after rapid ascents to altitudes above 3,000 m is high altitude 

pulmonary oedema (HAPO) (Bartsch et al., 2005). Although some early reports 

excluded contributions of the veins in HAPO (Hultgren et al., 1964), others 

speculated that increased vasomotor activity in the small veins could play a central 

role (Fred et al., 1962). Wagenvoort and Wagenvoort (1982) later provided 

morphological evidence in support of this theory by showing venous hypertrophy in 

high-altitude residents, which they presumed to be due to chronic hypoxic 
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venoconstriction. More recently, it was shown that the causes of HAPO are non-

cardiogenic (Bartsch et al., 2005) and not due to inflammation-induced increased 

permeability in the pulmonary capillaries (Kleger et al., 1996, Swenson et al., 2002). 

The underlying mechanism appears to be entirely hydrostatic through increased 

pulmonary capillary pressure, with a contribution from hypoxic constriction of small 

pulmonary vessels including venules (Maggiorini et al., 2001). 

1.4.1.2. Lung injury oedema 

Increased pulmonary microvascular pressure contributes to the formation of oedema 

during acute lung injury (ALI)/adult respiratory distress syndrome (ARDS) (Matthay 

and Zimmerman, 2005). 

In chloralose-anesthetized dogs, Dauber and Weil (1983) induced lung injury 

pulmonary oedema using oleic acid. They reported an increase in the pressure in 

small pulmonary veins from 9.8 to 12.6 mm Hg which increased upstream 

microvascular hydrostatic pressures and fluid filtration. Venoconstriction was also 

the main contributor to the increase in capillary pressure during oedema due to 

anaphylaxis induced by an intra-arterial injection of Ascaris suum antigen in isolated 

canine lungs (Shibamoto et al., 1992). In isolated perfused rat lungs, oedema 

formation induced by protamine (a cationic protein associated with pulmonary 

endothelial injury) was enhanced by PAF receptor dependent venoconstriction and 

mechanically increased pulmonary venous pressure (Chen et al., 1990). 

The administration of endotoxin from Escherichia coli in cats and dogs (intact 

animals and isolated perfused lungs) induced pulmonary vasoconstriction 

predominantly in the small veins and/or venules (Kuida et al., 1958). In 

anaesthetized sheep, venous resistance rose more than arterial resistance during the 

early stages of acute pulmonary hypertension induced by infusion of E. coli 

endotoxin (Pearl et al., 1992). 
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The role of ET-1 in endotoxemic pulmonary hypertension was studied in pigs in both 

in vitro and in vivo conditions (Rossi et al., 2008). In myography experiments, ET-1 

constricted veins slightly more than arteries, while the ETB receptor agonist 

sarafotoxin was a potent constrictor of veins but caused only small contractions in 

arteries. In vivo administration of endotoxin induced predominantly downstream 

haemodynamic changes. In this ALI experimental model, the dual ET-1 receptor 

antagonist tezosentan reversed the increases in pulmonary capillary pressure and 

venous resistance caused by infusion of endotoxin. It was concluded that the 

endothelin system plays an important part in endotoxin-induced PHT, possibly 

through the involvement of the ETB receptor. 

1.4.1.3. Other types of experimentally induced oedema 

The haemodynamics of oedema formation have been studied by inducing oedema in 

experimental settings using various potent vasoconstrictors. In rat lungs perfused 

with physiological salt solution, the oedemagenic effect of ET-1 was mediated 

through venoconstriction (Rodman et al., 1992). Venoconstriction was also shown to 

be the primary factor in pulmonary oedema induced by a thromboxane A2 analogue 

in lambs (Yoshimura et al., 1989). 

Researching the association between narcotic abuse and pulmonary oedema, Hakim 

et al. (1992) found that the administration of morphine in lungs of cats and dogs 

induced an increase in PVR mainly through pulmonary venoconstriction. This effect 

appeared to be mediated by the release of histamine in the lungs. 

1.4.2. Hypoxic pulmonary hypertension 

Chronic pulmonary hypertension (PHT) is a life-threatening condition which occurs 

most often secondary to chronic respiratory or cardiovascular disease. The aetiology 

of secondary PHT is usually multifactorial, with long-standing hypoxic pulmonary 
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vasoconstriction due to chronically impaired alveolar ventilation being commonly 

one of the contributors (Blythe et al., 1998). 

Prolonged hypoxia induces structural changes in the pulmonary vasculature that may 

lead to PHT (Smith and Heath, 1977). Morphological studies showed that the 

structural changes taking place in the pulmonary vasculature during chronic hypoxia 

occur in both veins and arteries. In studies on human subjects affected by chronic 

hypoxia – either because of living at high altitude or pulmonary disease – chronic 

lesions of the pulmonary vasculature were found not only in arteries, as expected, 

but also in the veins (Wagenvoort and Wagenvoort, 1976, Wagenvoort and 

Wagenvoort, 1982). These changes consisted of medial hypertrophy, arterialisation 

and the development of longitudinal bundles of smooth muscle cells within the 

intima of small intrapulmonary veins. Similar observations were made in a study on 

hypoxic rats (Dingemans and Wagenvoort, 1978). In small intrapulmonary veins 

(125 - 300 µm diameter) of patients suffering from chronic bronchitis and 

emphysema, the proportion of wholly muscular veins was significantly increased 

compared to controls (Shelton et al., 1977). 

The involvement of pulmonary veins is apparent from the early stages of chronic 

hypoxia. Sheehan et al. (1992) ventilated the right apical lobe of sheep with 100% 

N2 for 20 hours. Following the exposure, small pulmonary veins and arteries (0.5 to 

2 mm diameter) were dissected from the hypoxic lobe and another control lobe and 

used in contractile studies. PV rings contracted to acute hypoxia while arteries did 

not, and the responses in hypoxia-exposed PV were much larger than in control PV. 

Moreover, the sensitivity to the TxA2 agonist U46619 increased significantly in the 

veins exposed to hypoxia. These findings suggest that the veins are the first to 

undergo changes during exposure to hypoxia, making them more responsive to 

contractile agonists and more likely to contribute early to potentially developing 

PHT. 
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1.4.2.1. Involvement of K+ channels 

During chronic hypoxia, vascular remodelling contributes to the progression of 

pulmonary hypertension. In PASMC from chronically hypoxic rats, K+ currents were 

reduced by 40-50% compared to normoxic controls (Smirnov et al., 1994). 

Episodes of 24-72 h of hypoxia affected the expression of specific α-subunits of KV 

channels in primary cultured rat PASMC (Wang et al., 1997). The amount of mRNA 

and protein levels of Kv1.2 and Kv1.5 was reduced significantly, suggesting the 

reduced overall KV currents may be a contributing factor in chronic hypoxic 

vasoconstriction. 

These findings were consistent with the results of a later study by Platoshyn et al. 

(2001). Aside from decreased KV expression, they also reported impaired KV channel 

function with a reduced whole-cell KV current, depolarised membrane potential and 

increased [Ca2+]i in rat hypoxic PASMC. These features were not observed in 

mesenteric artery smooth muscle cells exposed to the same conditions. Moreover, 

dysfunctional KV channels have been identified in PASMC from patients with 

pulmonary hypertension and are thought to play a key role in the vascular 

remodelling that contributes to the progression of pulmonary hypertension (Yuan et 

al., 1998a). 

Wang et al. (2005b) exposed rats to hypoxia (10% O2) for 3 weeks. Several 

α-subunits (Kv1.1, Kv1.5, Kv1.6, Kv2.1, and Kv4.3) were found to be 

downregulated in the hypoxic rats. However, there was no effect on expression of 

the regulatory β-subunits, which are known to confer faster inactivation properties 

when they associate with α-subunits (Rettig et al., 1994). This finding could explain 

the more rapidly inactivating KV currents seen in chronically hypoxic PASMC 

(Shimoda et al., 1999). 
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Overall, these data indicate that changes in the pulmonary vasculature during 

hypoxia involve the altered expression and/or function of voltage-gated K+ channels, 

which contribute to the development of hypoxic pulmonary hypertension. 

1.4.2.2. Other mechanisms 

Endothelin, which has been reported to be a more potent contractile agonist in the 

PV compared to the PA (Rodman et al., 1992, Toga et al., 1992), may also play a 

role in the development of PHT due to prolonged hypoxia. In rat lungs exposed to 

hypoxia for 7 or 14 days, immunohistochemical examination revealed that hypoxia 

upregulated the ET precursor peptide, ET-converting enzyme and ET receptors in 

distal pulmonary veins (Takahashi et al., 2001). These changes in the pulmonary 

veins are probably part of the vascular remodelling process leading to chronic 

hypoxic pulmonary hypertension. 

During high altitude hypoxia, upregulation of PAF-R protein expression and PAF 

synthesis contribute to vascular remodelling in the lungs of foetal lambs and the 

same mechanism may participate in the development of persistent pulmonary 

hypertension of the neonate (PPHN) (Bixby et al., 2007). Veins are known to be 

more reactive to PAF than arteries. In the ferret, PAF contracted third-order 

pulmonary venous rings while relaxing arteries (Gao et al., 1995b). Furthermore, in 

ovine foetal pulmonary vascular smooth muscle, PAF and hypoxia induced a higher 

rate of proliferation in PVSMC compared to PASMC, suggesting that, in the low 

oxygen environment of foetal life, increased PAF modulates PV development and 

the lack of down-regulation of PAF after birth may contribute to PPHN (Ibe et al., 

2008). 
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1.4.3. Non-hypoxic pulmonary hypertension 

1.4.3.1. Primary pulmonary hypertension 

Primary pulmonary hypertension (PPH) is an infrequent idiopathic disease, which 

inherently makes it a diagnosis of exclusion. 

The pulmonary vasculature of 19 patients with PPH was quantitatively examined by 

light microscopy (Chazova et al., 1995). The small pulmonary veins (< 250 µm 

external diameter) of more than half of the patients had an increase in intimal and 

adventitial thickness (averaged at approximately twofold), although the changes 

were less in magnitude and frequency than in arteries. 

The arterial occlusion technique was used in a study on patients with PPH with the 

aim of identifying the site of increased pulmonary vascular resistance (Fesler et al., 

2003). The findings revealed a raised pulmonary capillary pressure, with a normal 

longitudinal distribution of vascular resistance, which the authors suggested could be 

explained by a significant contribution of veins to total increase in vascular 

resistance. 

1.4.3.2. Pulmonary veno-occlusive disease 

Approximately 5 to 25% of patients diagnosed with PPH present with extensive and 

diffuse occlusion of venules and small pulmonary veins, in the form of pulmonary 

veno-occlusive disease (PVOD) (Mandel et al., 2000). This condition can only be 

diagnosed definitely by surgical lung biopsy. The aetiology of PVOD is still 

unresolved, but it has been linked to a variety of risk factors such as infection with 

the human immunodeficiency virus (HIV), the Epstein-Barr virus or 

cytomegalovirus. Genetic factors, toxic exposures and autoimmune disorders have 

also been implicated. Although an uncommon condition, PVOD is important to 

recognise due to its poor prognosis, inefficiency of treatment with vasodilators and 

requirement for lung transplantation. 
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1.4.4. Electrical activity and role in atrial fibrillation 

As early as 1876, Brunton & Fayrer published their observations that the pulmonary 

veins of rabbits and cats were exhibiting pulsations after all cardiac activity had 

stopped (Brunton and Fayrer, 1876). The independent pace-making activity in the 

pulmonary veins was confirmed in the 1980s by Cheung (1981a, 1981b), who was 

the first to use electrophysiological techniques to record action potentials in 

cardiomyocytes from guinea pig pulmonary veins. 

The electrophysiological properties of these pulmonary vein cardiomyocytes 

(PVCM), although not fully characterised, are most probably distinct from those of 

atrial myocytes (Honjo et al., 2003, Ehrlich et al., 2003). The key distinctive feature 

of these cells is their ability to initiate spontaneous electrical activity and act as 

pacemakers to induce atrial arrhythmias (Chen et al., 1999, 2000). Moreover, the 

spontaneous [Ca2+]i oscillations in the PVCM are affected by hypoxic conditions 

(Cruickshank and Drummond, 2003). These cells share the feature of lower density 

of inward rectifier K+ current with the pace-making cells from the sino-atrial node 

(Honjo et al., 2003). 

With the help of multielectrode catheter mapping, the pulmonary veins were 

clinically confirmed to be a major site of origin for ectopic beats that induce 

paroxysms of atrial fibrillation (Haissaguerre et al., 1998), and were also reported to 

be involved in chronic pacing-induced sustained atrial fibrillation (Wu et al., 2001). 

The anatomical distribution of the triggering foci as found by Haissaguerre et al. 

(1998) correlated to the histological findings that showed more extensive myocardial 

sleeves in the superior pulmonary veins (Chen et al., 1999, Ho et al., 2001), which 

possibly suggests that cells from the myocardial sleeves of the pulmonary veins are 

latent pacemakers, normally suppressed by sinus rhythm. Furthermore, successful 

treatment with radio-frequency ablation of ectopic foci in the pulmonary veins in 

patients with frequent and drug-resistant paroxysmal atrial fibrillation (Haissaguerre 

et al., 1998) supports these findings. 
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It has now become increasingly accepted that the pulmonary veins are an important 

source of arrhythmogenic activity in atrial fibrillation and that the myocardial 

sleeves are central to this activity (Khan, 2004, Fynn and Kalman, 2004, Melnyk et 

al., 2005). 

Whether the PV myocardium exerts any physiologically relevant contractile activity 

is currently unknown. While speculations have been made about such a role in the 

rat (Michelakis et al., 2001), the fact that in humans and most large mammals 

myocardial sleeves extend only to extrapulmonary sites (Nathan and Gloobe, 1970) 

makes a contribution of PVCM to venous tone improbable. 
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1.5. Aims and objectives 

As reviewed in the previous sections of this chapter, considerable evidence exists 

that veins participate in all stages of HPV, acute and chronic. The venous response to 

acute hypoxia contributes to the regulation of blood flow (Gao and Raj, 2005b) and 

has been implicated in the progression of disease states such as pulmonary oedema 

(Maggiorini et al., 2001). During chronic hypoxia, remodelling in the pulmonary 

veins contributes to pulmonary hypoxic hypertension (Wagenvoort and Wagenvoort, 

1982, Sheehan et al., 1992). 

However, recent research in the field of HPV has largely focused on elucidating the 

underlying mechanisms of the arterial response to hypoxia. While some reports 

investigating the contractility of isolated veins exist (discussed above), studies 

examining the effects of hypoxia in venous smooth muscle at cellular level are not 

available in the literature. 

The aim of the studies presented here was to investigate the contractile mechanisms 

of acute hypoxic vasoconstriction in porcine intrapulmonary veins. Contractile 

studies – using the wire myography technique – and single cell electrophysiology 

studies were carried out pursuing the following objectives: 

• to verify whether isolated segments of small intrapulmonary veins from the 

pig contract in response to hypoxia, in the presence and absence of 

preconstriction; 

• to characterise the potential venous contractile responses in relation to the 

responses of size-matched intrapulmonary arteries, and examine the role of 

specific ions during hypoxic contractions; 

• to develop a cell isolation protocol in order to obtain fresh physiologically 

viable smooth muscle cells from small intrapulmonary veins and to examine 

their morphometric and passive electrical properties; 
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• to examine the effect of hypoxia on ion conductances in single smooth 

muscle cells from porcine intrapulmonary veins. 
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Chapter 2.  

General Methods 

2.1. Animal tissue 

All experimental procedures were in accordance with UK legislation. Porcine tissue 

was used in all experiments – wire myography and cell electrophysiology studies –, 

having been previously reported to exhibit vigorous pulmonary vasoconstrictor 

responses to hypoxia (Mitzner and Sylvester, 1981, Sylvester et al., 1983). 

Fresh tissue was obtained daily from a local abattoir (Scotch Premier Meat Ltd, 

Inverurie, Aberdeenshire). Usually the heart and lungs, removed en bloc from adult 

pigs (as seen in Figure 2.1A), were delivered within 1-2 hours from kill. 

Dissection was carried out immediately after receiving the tissue. Vessels were 

normally dissected from either the left middle or cranial pulmonary lobes (marked B 

and A respectively, in Figure 2.1B), as their anatomical characteristics allowed easier 

access to the intrapulmonary venous tree. The respective lobe was separated, placed 

on a dissection dish and fixed with pins (as seen in Figure 2.2, top). The pulmonary 

venous tree was dissected under a binocular microscope. During dissection, to 

maintain the viability of vessels, the tissue was regularly irrigated with cold Ca2+-

free dissection solution (composition in mM: 119 NaCl, 4.7 KCl, 1.18 KH2PO4, 1.17 

MgSO4, 25 NaHCO3, 10 HEPES, 5.5 Glucose; pH adjusted to 7.4 with NaOH). 
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Figure 2.1. Anatomy of porcine lungs. (A) Macroscopic ventral view of porcine 

lungs and heart en bloc. (B) Drawing showing the lobes of porcine lungs, a and b 

indicate the left cranial and middle lobes respectively, which were usually used in 

experiments. 

(A)      (B) 
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Figure 2.2. Dissection of intrapulmonary veins. (top) Macroscopic view of left 

middle pulmonary lobe. (bottom left) Dissection of the distal part of the 

intrapulmonary venous tree. (bottom right) Isolated segment of 7th order 

intrapulmonary vein; numbers on ruler represent centimetres. 
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Segments of the 5th to 7th order intrapulmonary vessels were dissected out and either 

used immediately in experiments or placed in ice-cold dissection solution for 1/2-1 

hours. The outer diameter of the vessels was measured with the help of a graticule 

fitted into the eyepiece of the microscope. 

2.2. Wire myography 

Wire myography is an in vitro experimental technique designed by Mulvany and 

Halpern (1977) to investigate the contractile properties of isolated small vessels and 

other tubular structures with very small diameters (between approximately 60 µm 

and 3 mm). The technique is, in principle, similar to other methods used in 

contractile studies, such as the organ bath technique. It involves the measurement of 

isometric tension elicited by the vascular wall under fixed strain in response to 

various stimuli and is therefore a valuable tool for investigating the underlying 

mechanisms of vascular contraction. 

2.2.1. Tissue preparation 

Following dissection, isolated pulmonary vessels with outer diameters ranging from 

300 µm to 1000 µm (mean ± SD of 610.4 ± 142.6 µm, n = 134) were cut in segments 

with a length of 1.5 ± 0.35 mm (mean ± SD, n = 134) and used immediately or kept 

in ice-cold dissection solution for 30-60 minutes. 

Depending on the experimental protocol, either two venous rings or one arterial and 

one venous ring were mounted in the chamber of a 410A Dual Wire Myograph 

System (Danish Myo Technology, Aarhus, Denmark), which was connected to a PC 

through a PowerLab 4/25 unit (ADInstruments, UK). 
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Figure 2.3. Mounting of vessels on the 410A myograph system. 

Schematic drawing showing a vessel segment mounted between the jaws of the 

myograph using 40 µm diameter stainless steel wire. The 410 system is a dual 

myograph and has two such pairs of jaws. 

Pulmonary vessel

Myograph jaws

Steel wire
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The chamber of the myograph was temperature-controlled and was filled with 

HEPES-based bath solution (HBS) of the following composition: 150 mM NaCl, 5.4 

mM KCl, 1.2 mM MgCl2, 1.8 mM CaCl2, 10 mM HEPES, 10 mM glucose (pH 

adjusted to 7.4 with NaOH) and gassed with air. Following the heating of the 

myograph bath to 37°C and calibration, the rings of pulmonary vessels were 

immersed in bath solution in the myograph chamber. Using fine forceps, two 40 µm 

diameter stainless steel wires were threaded through the lumen of each vessel and 

attached to the myograph jaws (see Figure 2.3). 

2.2.2. Resting tone optimisation and normalisation 

In order to achieve an identical passive pressure in all vessels, normalisation was 

performed with the help of the DMT Normalization Module integrated in the Chart 

software (procedure described in detail in section 3.2.1). Alternatively, in some 

experiments the resting tension of 2 mN (equivalent to 0.204 grams force; optimal 

resting tension in preliminary experiments) was used. 

To account for the biological variability of responses, the tension values were 

expressed as percentages of the control response to 80 mM KCl of the same vessel. 

2.2.3. Hypoxic challenges in myography experiments 

Hypoxia (< 25 mm Hg) was achieved by gassing the bath solution directly in the 

myograph chamber with N2 gas. Each hypoxic challenge lasted for 30 minutes and 

after every period of hypoxia the vessels were allowed to recover for at least 

30 minutes in normoxia. 

2.2.3.1. Monitoring O2 saturation 

During experiments, the partial pressure of O2 (Po2) in the bath solution was 

monitored continuously with the aid of a 1302 Microcathode Oxygen Electrode 

coupled to a 782 Oxygen Meter (Strathkelvin Instruments, Glasgow, UK). The 
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electrode was immersed in the bath solution through a close-fitting hole in the plastic 

cover of the myograph chamber. 

Po2 values were recorded with the 782 System’s own software (version 3.0, 

Strathkelvin Instruments, Glasgow, UK) at the sampling rate of 1 Hz. Following 

completion of each wire myography experiment, the O2 data readings were exported 

and appended offline to the corresponding Chart file as a separate trace alongside the 

force readings. 

2.3. Isolation of pulmonary vein smooth muscle cells 

For the purpose of carrying out single cell electrophysiology studies on smooth 

muscle cells from the pulmonary veins, the alternatives were to use either cultured or 

freshly isolated myocytes. During cell culture, the phenotype of vascular smooth 

muscle cells changes from contractile to proliferative. The cells lose their ability to 

contract due to structural reorganisation with loss of myofilaments (Chamley-

Campbell et al., 1979, Thyberg, 1996), and resting membrane potential and 

potassium channel activity may also be affected during proliferation (Platoshyn et 

al., 2000). Thus, the approach of using freshly dispersed cells was chosen as the 

more likely to produce physiologically relevant results. This is supported further by 

recent evidence which suggests that the effect of hypoxia on Ca2+ entry pathways in 

PASMC can be altered by cell culture (Ng et al., 2008). 

An appropriate cell isolation protocol was developed and adjusted to yield cells 

suitable for patch-clamping experiments. The aim was to obtain physiologically 

viable myocytes, with intact cellular membranes, preferably in a relaxed elongated 

state and in sufficient numbers (ideally 10-20 cells per field at 20x magnification) to 

allow patch clamping experiments for 4-6 hours. 
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2.3.1. Development of a cell isolation protocol 

Following a literature search, several protocols used previously with success for the 

isolation of smooth muscle cells from pulmonary vessels were considered 

(Cruickshank et al., 2003, Michelakis et al., 2001, Piper and Large, 2003, Clapp and 

Gurney, 1991). However, none of these protocols had been specifically used for the 

species and type of vessel required (i.e. porcine pulmonary vein); therefore a 

modified protocol was developed for the purpose of this project. 

Two alternatives of cell isolation were attempted: same day protocol – completing 

the dissociation shortly after dissecting the vessels (within 1-2 h) – and overnight 

protocol – storing the tissue with the enzymes in a refrigerator overnight (for 15-17 

h) to allow for better penetration of the enzymes and finishing the protocol the next 

day. Although sometimes it resulted in a low yield of cells (with most fields at 

20x magnification containing fewer than 5 cells), the “same day” protocol provided 

more satisfactory results with respect to the viability of the cells and suitability for 

longer recordings during patch-clamp protocols. 

By changing incubation times and type and quantities of enzymes, the protocols 

were adjusted and optimised. In every dissociation experiment, the result was 

evaluated by recording the yield of cells in the suspension (from 0 = “no cells” to 

5 = “very many cells”), as well as a qualitative remark for the overall morphological 

appearance of the majority of the cells (especially considering cellular membranes). 

Adjustments were made to the protocol in the attempt to achieve the best 

compromise between either obtaining insufficient numbers of myocytes or having 

most cells inadequate to use for patch-clamping experiments (contracted and/or with 

blebs of cellular membrane; see Figure 2.4 for examples of such cells). 
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Figure 2.4. Various states of freshly isolated cells (phase contrast microscopy). 

(top left) Relaxed elongated single cell with intact membrane appearing 

physiologically viable. (top right) PVSMC with blebs of membrane (white arrows). 

(bottom) Contracted PVSMC (white arrows). 
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In previous studies, it was reported that enzymatic dissociation could benefit from 

the addition of bovine serum albumin (BSA), which served as a cell nutrient and to 

dilute the proteolytic action of the enzymes (Michelakis et al., 2001, Clapp and 

Gurney, 1991). When the protocol was adjusted to include BSA (2 mg/ml) during 

papain digestion, no significant beneficial effect was noted. 

2.3.2. Cell isolation protocol 

The best results were obtained using a modified version of a protocol previously 

described by Cruickshank et al. (2003). Single smooth muscle cells enzymatically 

isolated from porcine pulmonary vein were most suitable for patch-clamping studies 

when the protocol detailed below was used. 

2.3.2.1. Tissue preparation 

Intrapulmonary venous segments – of 5th to 7th order branch, with an outer diameter 

of 910 ± 114 µm (mean ± SD, n = 144) and length of ~ 5 mm – were dissected from 

the left middle or cranial lobe as described above. Occasionally, if the above 

mentioned lobes were missing or damaged during removal of heart and lungs at the 

abattoir, vessels were taken from other pulmonary lobes, without any noticeable 

difference in experimental results. 

The vessels were then placed in dissection solution in a separate dissecting dish and 

fixed with pins (as seen in Figure 2.2, bottom right). Under a dissecting microscope, 

the adventitial tissue was carefully removed using a pair of forceps and spring 

scissors and the vessel was cut open longitudinally. 
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2.3.2.2. Dispersion of smooth muscle cells 

The tissue prepared as described above was placed in a microtube containing iced 

HEPES-based dissociation solution (composition in mM: 128 NaCl, 5.4 KCl, 

0.95 KH2PO4, 0.35 Na2HPO4, 4.16 NaHCO3, 10 HEPES, 10 Glucose, 2.9 Sucrose; 

pH adjusted to 7.3 with NaOH) supplemented with 1.5 mg/ml Papain from Papaya 

latex (Sigma Aldrich, UK) and 0.75 mg/ml DL-dithiothreitol. 

Venous segments were then stored on ice for 1-2 hrs followed by incubation in a 

water bath at 37 °C for 8-10 minutes. Thereafter, the tissue was washed at least three 

times using enzyme-free fresh dissociation solution and transferred to dissociation 

solution with 1.5 mg/ml collagenase for a further 8-10 minutes at 37°C. 

Finally, after rinsing in enzyme-free fresh dissociation solution, gentle trituration 

with a fire polished wide-bore Pasteur pipette yielded a suspension of freshly 

dispersed pulmonary vein smooth muscle cells (as shown in Figure 2.5) that were 

viable and contractile (in response to 80 mM KCl). The cells were stored at 4°C and 

were used for cell electrophysiology studies. Cells remained viable for at least 5-6 

hours. 
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Figure 2.5. Freshly dispersed relaxed smooth muscle cells from porcine 

intrapulmonary veins. A bright halo present around the cells was considered an 

indication of intact cellular membranes. 
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2.4. Whole-cell patch clamping 

The whole-cell configuration of the patch-clamping technique was used to 

investigate changes in whole-cell voltage-activated currents (in voltage clamp mode) 

under hypoxic conditions in freshly dispersed single porcine pulmonary vein smooth 

muscle cells. 

2.4.1. Tissue preparation 

All experiments were performed at room temperature. Approximately 80-100 µl of 

the cell suspension were transferred on the glass coverslip bottom of a low profile 

large bath recording chamber (RC-26GPL, Harvard Apparatus, Kent, UK) and left to 

settle for approximately 10 to 15 minutes. The perfusion chamber was mounted on 

the stage of a Nikon Eclipse TS100 inverted microscope with the aid of a platform 

(PH-1, Harvard Apparatus, Kent, UK) and a stage adapter (SA-TS100, Harvard 

Apparatus, Kent, UK). After the cells settled and adhered to the bottom coverslip, 

the chamber was filled with bath solution of the following composition (in mM): 

150 NaCl, 5.4 KCl, 1.2 MgCl2, 1.8 CaCl2, 10 HEPES, 10 Glucose (pH adjusted to 

7.4 with 10 M NaOH). 

2.4.2. Preparation of patch pipettes 

Pipettes were fabricated from thin-wall borosilicate glass capillaries (1.5 mm O.D. x 

1.17 mm I.D.; Clark Electromedical Instruments, Reading, UK) on a two-stage 

micropipette vertical puller (PP-830, Narishige, Tokyo, Japan). The micropipettes 

were then heat-polished using a microforge (MF-830, Narishige, Tokyo, Japan) to a 

final resistance of approximately 3-4 MΩ when filled with standard intracellular 

solution with a composition of (mM): 110 KCl, 2.5 MgCl2, 10 HEPES, 3.6 ATP (pH 

adjusted to 7.2 with KOH). 
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The pipettes were made in small batches of 4-6 immediately prior to being used 

throughout each experimental day, as this approach resulted in a reduced number of 

blocked pipette tips. 

2.4.3. Making the giga-seal 

An appropriate target cell was chosen based on the intact cell membrane and 

preferably elongated and smooth appearance. This was done before lowering the 

pipette in the solution to reduce the time until the pipette tip touched the cell 

membrane and therefore minimise the chances of contaminating the tip of the 

pipette. 

After the pipette was filled with intracellular solution, it was mounted in the pipette 

holder and lowered into the bath solution with the help of the controls of a coarse 

mechanical manipulator. The “Pipette Seal Test / Signal Monitor” facility of the 

WinWCP software was used to monitor the progress through the steps towards 

achieving the whole-cell configuration. 

With the amplifier in voltage clamp mode, the initial holding voltage was set at 0 

mV and a small test pulse with duration of 50 ms and amplitude of 10 mV was 

applied to enable calculation of pipette resistance and monitor seal formation. The 

tip was then brought in focus and moved closer to the cell chosen as target, using a 

three-axes hydraulic, remotely controlled micromanipulator (MHW-3, Narishige, 

Tokyo, Japan). The pipette resistance was recorded in the log file and had an average 

value of 3.6 ± 0.8 MΩ (mean ± SD, n = 920). The offset control of the amplifier was 

used to adjust the pipette offset current to zero. Pipette capacitance was compensated 

electronically, but series resistance was normally not compensated. 

With the pipette in the proximity of the target cell, the tip was carefully moved closer 

until it gently touched the cell membrane. To form a giga-seal, gradually increasing 

suction was applied while monitoring resistance and aiming to obtain a seal 

resistance higher than 1 GΩ (cell-attached configuration). Immediately after 
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obtaining the giga-seal, the holding voltage was changed to -80 mV, a value negative 

to the resting membrane potential of smooth muscle cells. This was done to stabilise 

the giga-seal and avoid depolarising the cell membrane during the next step of 

achieving the whole-cell configuration (Molleman, 2003). 

As soon as the seal stabilised, the resistance was recorded – average seal resistance 

was 5.3 ± 3.7 GΩ (mean ± SD, n = 688) – and breakthrough to the whole-cell 

configuration was attempted. If, however, the formation of the giga-seal failed 

through a seal or patch break, the micropipette was considered contaminated and 

discarded and a new attempt was made on a new target cell. 

2.4.4. The whole-cell configuration 

To achieve the desired whole-cell configuration, the patch under the pipette tip has to 

be ruptured in order to establish communication between the intracellular 

environment and the pipette solution. This can be done in two ways: through suction 

– the application of negative pressure to the inside of the pipette – or zapping – the 

application of a large current pulse of short duration which can be varied. 

The zapping function was available through the Axopatch 200B amplifier. Zapping 

with a single +1.3V pulse at the minimum duration of 0.5 ms resulted most often in 

the break of the seal, therefore suction was used in the majority of experiments to 

achieve the whole-cell configuration. 

Suction was applied through the side arm of the pipette holder which was connected 

to a 1 ml syringe through a length of thin tubing (1 mm I.D. 2 mm O.D.) which ran 

outside the Faraday cage. 

Successful breakthrough was indicated by the rapid increase in size of the capacitive 

transients visible on the current trace at the beginning and the end of the voltage step 

(due to membrane capacitance). The test pulse was then removed and the holding 

voltage was kept at -80 mV. After the whole-cell configuration was established, 
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approximately 5 minutes were allowed for diffusion of ions between the cytoplasm 

and the pipette solution. Thereafter, preset voltage step protocols were run to record 

voltage activated whole-cell currents. Leakage currents were subtracted offline using 

standard protocols contained within the software suite. 

2.4.5. Liquid junction potentials 

A liquid junction potential (LJP) arises at the unstirred interface between two 

solutions with different ion compositions due to difference in electrochemical 

potentials and mobilities of ions (Kenyon, 2002). The resulting voltage introduces a 

difference between the measured potential and the actual membrane potential of the 

cell. 

LJPs were calculated with the aid of an Excel sheet developed by Kenyon and 

downloaded from http://www.physio.unr.edu/Faculty/kenyon/Junction_Potentials/ 

jp.xls [Accessed 26 January 2007] using the specific ionic concentrations and the 

experimental temperature converted in degrees Kelvin, as well as a series of 

constants: ionic valences, mobilities and the physical constants R and F. 

The induced voltage difference for the standard bath and pipette solutions was 

calculated to be 4.88 mV and considered negligible (Selyanko et al., 1995, Selyanko 

et al., 2000), thus the measured voltages were not corrected for errors induced by 

junction potentials. 

2.4.6. Controls 

2.4.6.1. Perfusion system 

A multi-barrel perfusion system was set up to deliver bath solution and drugs to the 

RC-26GPL bath recording chamber. Three syringe barrels (20 to 60 ml) were used as 

reservoirs and assembled together using three-way taps and a length of flexible thin 

tubing which was connected to the inflow of the chamber. The outflow was in turn 
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connected through tubing that ran outside the Faraday cage to a Dymax 30 pump 

(Charles Austen Pumps, UK). 

In order to be able to adjust the rates of delivery of drugs and hypoxic solution to the 

recording chamber, a roller clamp (max. O.D. 6 mm, Keck Ramp Clamp, Sigma 

Aldrich, UK) was mounted on the inflow tubing. Several fixed positions were set for 

the clamp that allowed delivery of the bath solution at various fixed flow rates: low 

(1.1 ml/min), medium (2.09 ml/min), high (3.53 ml/min) and maximum unrestricted 

flow (6.06 ml/min). In most experiments, solutions were delivered using either the 

high or maximum flow settings. 

The volume of the inflow tubing between the syringe barrels and the chamber was 

approximately 0.6 ml, which meant that the time required for the solution to reach 

the chamber was ~ 33 s at the low rate of flow and ~ 6 s at the maximum rate. 

2.4.6.2. O2 saturation measurements 

A series of control experiments were carried out to monitor the oxygen saturation 

levels during hypoxic flow in various locations and at different depths in the bath 

recording chamber. For this purpose, a thin flexible NTH (needle-type housing) trace 

oxygen microsensor connected to a Single Channel Fiber-Optic Oxygen Meter 

(Microx TX3-trace, Precision Sensing GmbH, Germany) was used. Experiments 

were carried out at the Centre for Integrative Physiology, University of Edinburgh, 

with the help of Dr. Iain Rowe. Data readings were acquired using the OxyView 

software at the sampling rate of 0.1 Hz and were recorded as percentages of the 

oxygen concentration in air-saturated solution (100% oxygen saturation 

approximately equivalent to a Po2 of 160 mm Hg). 

The normoxic solutions were passively equilibrated with room air (i.e. non-aerated), 

while the hypoxic solutions were gassed with N2 for at least 5 minutes prior to 

starting hypoxic flow (in separate control experiments, the O2 levels in the syringe 

reservoir fell from 100.9% saturation to 25% in 1:35 min, 10% in 2:53 min and 
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stabilised at ~ 5-6% after 5 min). To account for flow rate induced variations in O2 

saturation, the hypoxic solutions were delivered at the same flow rate as normoxic 

solutions during experiments. 

Initially, the oxygen electrode was positioned in the centre of the chamber and 

oxygen saturation was 102.8% during normoxic flow (marked (1) in Figure 2.6). The 

O2 saturation declined very quickly after the onset of hypoxic flow, reaching values 

below 25% within 20 seconds and stabilising at 5.7% at the end of the 5-minute 

hypoxic period (Figure 2.7). When flow was switched back to the normoxic solution, 

the oxygen saturation returned within 20 seconds to levels above 90% and steadied 

at 100.7% after 1 minute. 

In a second control experiment, after being placed initially in a central position (1), 

the electrode was moved to different locations in the chamber during steady 

continued hypoxic flow – positions marked (2) through to (5) in Figure 2.6. The 

positions were chosen based on the assumption that non-central locations might 

experience lower levels of hypoxia due to slower laminar flow (towards the edges of 

the chamber) or more time for reoxygenation (near outflow point). However, the O2 

saturations were at comparable hypoxic levels in all locations tested (Figure 2.8). 

In an additional experiment, the tip of the electrode was positioned at three different 

depth levels: close to the bottom of the bath, near the surface and in an intermediate 

position between the first two. The recorded values were below 8% in all three 

positions (Figure 2.9). 
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Figure 2.6. The RC-26GPL bath recording chamber. Arrows mark the inflow and 

outflow; numbers represent the approximate locations in the bath that were used 

during control O2 saturation measurements. 
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Figure 2.7. Oxygen saturation during a typical hypoxic challenge. 

(A) Oxygen saturation (empty circles) and temperature (small black circles) are 

presented as a function of time. (B) Values recorded before, during and after a period 

of hypoxia. 
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Figure 2.8. Oxygen saturation at various locations in the chamber during 

hypoxic flow. (A) Oxygen saturation plotted as a function of time. (B) O2 saturation 

values at each of the 4 locations (as shown in Figure 2.6). Each shade of grey 

designates a different position of the electrode in the recording chamber in both 

(A) and (B). 
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Figure 2.9. Oxygen saturation at different depths in the chamber during 

hypoxic flow. (A) Oxygen saturation plotted against time during hypoxic flow. (B) 

O2 saturation values at various depth levels in the bath. Shades of grey represent 

different positions of the electrode in both (A) and (B). 
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2.5. Statistical analysis 

Data processing and statistical analysis were performed using Microsoft Office Excel 

2003 (Microsoft Corporation, USA), SPSS for Windows (Release 13.0, SPSS Inc., 

USA) and GraphPad Prism software (Version 4.03, GraphPad Software Inc., USA).  

Where appropriate, data are presented as mean ± S.E.M. unless specified otherwise 

and n represents the number of vessels for wire myography studies and the number 

of cells in the case of electrophysiology experiments. Mean data were compared 

using either a paired or unpaired Student’s t-test or one- or two-way ANOVA with 

Bonferroni post-hoc analysis, as appropriate. Differences were considered 

statistically significant for P values less than 0.05. Further details about specific data 

analysis are given in the respective results sections. 

2.6. Materials 

2.6.1. Solutions 

Dissecting solution (mM): 119 NaCl, 4.7 KCl, 1.18 KH2PO4, 1.17 MgSO4, 

25 NaHCO3, 10 HEPES, 5.5 Glucose (pH adjusted to 7.4 with NaOH). 

HEPES-based extracellular (bath) solution (mM): 150 NaCl, 5.4 KCl, 1.2 MgCl2, 

1.8 CaCl2, 10 HEPES, 10 Glucose (pH adjusted to 7.4 with NaOH). 

Ca2+ free HEPES-based extracellular (bath) solution (mM): 150 NaCl, 5.4 KCl, 

3 MgCl2, 10 HEPES, 10 Glucose, 1 mM EGTA (pH adjusted to 7.4 with NaOH). 

Low Cl- HEPES-based extracellular (bath) solution (mM): 150 Na gluconate, 

5.4 KCl, 1.2 MgCl2, 1.8 CaCl2, 10 HEPES, 10 Glucose (pH adjusted to 7.4 with 

NaOH). 

Dissociation solution (mM): 128 NaCl, 5.4 KCl, 0.95 KH2PO4, 0.35 Na2HPO4, 

4.16 NaHCO3, 10 HEPES, 10 Glucose, 2.9 Sucrose (pH adjusted to 7.3 with NaOH). 
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Intracellular (pipette) solution (mM): 110 KCl, 2.5 MgCl2, 10 HEPES, 3.6 ATP 

(pH adjusted to 7.2 with KOH) filtered through a Nalgene 0.2 µm syringe filter 

(25-mm surfactant free cellulose acetate membrane). 

Solutions were prepared in stocks using deionised water, titrated with NaOH (10 M) 

to achieve the respective pH and stored at 4°C. The intracellular solution was titrated 

with KOH, and stored in 1.5 ml aliquots at -20°C. All pH values were measured 

using a digital type pH meter (SevenEasy, Mettler Toledo, Leicester, UK). 

2.6.2. Drugs 

KCl: 2 M stock prepared by dissolving in distilled water; final concentration of 

80 mM by adding 600 µl of stock solution to 15 ml bath solution. 

Prostaglandin F2α (PGF2α): 1 mM stock prepared by dissolving in ethanol; final 

concentration of 2 µM by adding 30 µl of stock solution to 15 ml bath solution. 

Niflumic acid (NFA): 10 mM stock prepared by dissolving in DMSO; final 

concentration of 50 µM by adding 75 µl of stock solution to 15 ml bath solution. 

5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB): 5 mM stock prepared by 

dissolving in DMSO; final concentration of 2 µM by adding 6 µl of stock solution to 

15 ml bath solution. 

TEA: final concentration of 5 mM; by dissolving 0.0828 g in 100 ml bath solution. 

4-AP: final concentration of 5 mM, by dissolving 0.094 g in 200 ml bath solution 

and adjusting the pH to 7.4 with HCl. 

Penitrem A: 500 µM stock prepared by dissolving in DMSO; final concentration of 

100 nM, by diluting each aliquot of 40 µl in 200 ml bath solution. 

Glyburide (Glibenclamide): 50 mM stock prepared by dissolving in DMSO; final 

concentration of 10 µM, by diluting each aliquot of 40 µl in 200 ml bath solution. 
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All chemicals were acquired from Sigma Aldrich, UK with the exception of 

Penitrem A and Glyburide (Biomol, Exeter, UK). 

2.6.3. Dissociation enzymes 

Papain (from Papaya latex, product no. P4762), collagenase (Type VIII, from 

Clostridium histolyticum, product no. C2139), DL-Dithiothreitol (product no. 

D0632) and bovine serum albumin (fatty acid free, product no. A6003) were all 

acquired from Sigma Aldrich, UK. Sigma’s papain preparation has been used 

previously for the isolation of smooth muscle cells (Driska et al., 1999, Kinoshita et 

al., 2003). The enzymes were dissolved in dissociation medium and aliquoted as 

follows: 0.75 mg papain in 30 µl per aliquot; 1.5 mg collagenase in 45 µl per aliquot; 

0.5 mg DTT in 40 µl per aliquot. All aliquots were stored at -20 °C. 
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Chapter 3.  

Characterisation of the hypoxia-induced 

responses in isolated PV and PA 

3.1. Introduction 

Alveolar Po2 regulates blood flow in the pulmonary circulation. An acute reduction 

in the concentration of alveolar oxygen triggers hypoxic pulmonary vasoconstriction 

(HPV), which causes blood flow to be diverted towards better ventilated areas of the 

lungs, thus optimizing the ventilation-perfusion ratio. 

The pulmonary veins participate alongside arteries to the increase in vascular 

resistance during alveolar hypoxia (Raj and Chen, 1986). The vasoactivity of the 

pulmonary veins in response to several contractile stimuli has been demonstrated in 

numerous studies. Hypoxia (Zhao et al., 1993), norepinephrine (Kadowitz et al., 

1975), histamine and 5-HT (Shi et al., 1998), as well as thromboxane A2 (Raj and 

Anderson, 1990, Ding and Murray, 2005a) and prostaglandin F2α (Joiner et al., 

1975b, Walch et al., 2001), all induce venoconstriction in the lungs. Furthermore, 

several reports indicate that the veins are more reactive than the arteries in the 

pulmonary circulation (Zhao et al., 1993, Gao et al., 1995b, Arrigoni et al., 1999). 

Increased vascular tone in the pulmonary veins contributes to increased total 

pulmonary vascular resistance and postcapillary venoconstriction raises upstream 

microvascular hydrostatic pressures and fluid filtration during edema formation 

(Dauber and Weil, 1983). 
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HPV responses have been consistently demonstrated in intact animals and in blood- 

or saline-perfused isolated lungs (Madden and Gordon, 2004). However, the main 

disadvantage of these methods lies in the difficulty of locating the sensor and 

effector sites of the hypoxic pressor response. More reductionist experimental 

models have allowed investigators to advance the understanding of the direct effects 

of hypoxia on isolated pulmonary vessels and vascular smooth muscle (for 

discussion see section 1.2.3). 

Historically, research in the field of HPV has largely focused on the pulmonary 

arteries. Although the temptation could be to generalise those findings to the venous 

side of the pulmonary circulation, the existing knowledge of the underlying 

mechanisms that initiate and sustain HPV is, for the most part, relevant only to the 

arterial segment. 

The rise in [Ca2+]i during vascular smooth muscle contraction is in part determined 

by Ca2+ influx through ion channels in the plasma membrane. In the pulmonary 

circulation, the density of L-type voltage-gated Ca2+ channels (VGCC) is higher in 

arteries than in veins (Walker, 1995, Ricci et al., 2000), which could potentially 

underlie differences between arteries and veins in regards to contractile pathways 

and Ca2+ handling. 

Vascular myocytes have a higher chloride conductance compared to skeletal and 

cardiac muscle cells and the intracellular concentration Cl- is much higher in 

vascular smooth muscle (50 mM) compared to cardiac muscle (20 mM) (Kitamura 

and Yamazaki, 2001). The rise of cytosolic Ca2+ activates Cl- channels in the plasma 

membrane of vascular myocytes. During agonist-induced contraction Ca2+-activated 

Cl- channels (ClCa) provide a link between Ca2+ release from the intracellular stores 

and Ca2+ influx (Lamb and Barna, 1998). Once ClCa channels are activated by the 

increase in [Ca2+]i, Cl- ions leave the cell against their concentration gradient and 

driven by the electrical gradient, as the chloride equilibrium potential is more 

positive than the resting potential. Consequent to this efflux of negative ions the cell 
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depolarises, causing Ca2+ entry through VGCC. As such, [Ca2+]i is increased even 

further and contraction is sustained. 

The aim of this study is to verify the presence and characterise the hypoxia-induced 

contractile responses of isolated distal porcine intrapulmonary veins, specifically 

response profile, maximum elicited tension and time course; examine the HPV 

dependence on the presence of preconstriction; and analyse comparatively the 

responses elicited by hypoxia in the veins in relation to the contractions of size-

matched intrapulmonary arteries, considering the characteristics listed above. 

3.2. Methods and experimental protocols 

The small vessel myography technique was used to study the contractility of distal 

porcine intrapulmonary vessels. The investigation of contractile mechanisms 

involved was carried out with the help of contractile agonists and antagonists, as well 

as by manipulating the extracellular environment, in particular ionic concentrations 

and oxygen tension. 

Intrapulmonary veins and arteries of similar size and order were dissected from fresh 

porcine lungs (as described in Chapter 2). 

In most experiments, one venous and one arterial segment were mounted in a single 

chamber, dual wire myograph (410A System, Danish Myo Technology, Aarhus, 

Denmark) to enable comparisons between the two types of vessel under the same 

conditions. In other experiments, two segments of pulmonary veins dissected from 

different animals were used instead. 

The outer diameter and length of vessel segments used in each experiment were 

measured using a micrometer scale fitted in the eyepiece of a dissecting microscope, 

respective measurements for veins and arteries are shown in Table 3.1. 
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Table 3.1. Morphometric measurements of pulmonary vessels. For vessels used 

in wire myography experiments, outer diameter and segment length were measured 

directly using a dissecting microscope and branching order was recorded during 

dissection. The coefficient of variation (CV) was calculated as the ratio of the 

standard deviation to the mean. 

Vessel 

measurement 

Mean value  

± SD 

Minimum 

value 

Maximum 

value 
CV 

Pulmonary vein segments (n = 77) 

Outer diameter, 

µm 

598.7 ± 147.3 300 1000 0.25 

Segment length, 

mm 

1.52 ± 0.32 0.9 2 0.21 

Branch order 

 

5/6 4 7 - 

Pulmonary artery segments (n = 57) 

Outer diameter, 

µm 

626.3 ± 135.7 300 900 0.22 

Segment length, 

mm 

1.48 ± 0.39 0.5 2 0.26 

Branch order 

 

5/6 4 7 - 
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3.2.1. Equilibration and normalisation 

After the segments of vessels were mounted into the temperature-controlled 

myograph chamber, the vessels were left to equilibrate for approximately 30 minutes 

to 1 hour. 

At the beginning of each experiment, resting tension was normalised. The rationale 

behind the normalisation procedure is to find the level of passive stretch for each 

vessel segment equivalent to a set fraction (90%) of the internal circumference of a 

fully relaxed vessel at a specified transmural pressure (Danish Myo Technology, 

2003). 

This was completed using the Normalisation module of the Chart software (AD 

Instruments, UK). The target pressure chosen was the minimal value allowed by the 

Normalisation module, which was 5 kPa. The procedure involved measuring the 

length of the mounted vessel segments and performing a series of stepped passive 

stretches of the vessel by increasing the distance between the jaws of the myograph 

(see example of recording during normalisation in Figure 3.1). The last step of 

normalisation was to set the mobile micrometer-controlled jaw of the myograph to 

the calculated position for each vessel. 
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Figure 3.1. Normalisation procedure. Example of normalisation carried out with 

intrapulmonary veins (A) and arteries (B). At the beginning of each experiment, 

vessel segments were subjected to several passive stretches to achieve a normalised 

resting tone. 
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3.2.2. Control responses 

Before starting experimental protocols, the viability of vessels was checked and 

control responses recorded. For this purpose, KCl was added directly to the 

myograph bath to achieve a final bath concentration of 80 mM, to which the vessels 

were exposed for approximately 3 to 5 minutes. The content of the myograph 

chamber was then replaced with fresh bath solution and the application of KCl 

repeated another two times for sensitisation of the contractile apparatus. Vessels that 

did not contract in response to 80 mM KCl were not included in the study. 

Experimental protocols ran for approximately 6 to 8 hours. At the end of each 

experiment, the contractile function of vessels was tested using the same 

concentration of agonist KCl (80 mM). 

3.2.3. Preconstriction 

In order to obtain vigorous hypoxic pressor responses in isolated rings of pulmonary 

vessels, usually a small amount of agonist induced pretone is applied before the 

hypoxic challenge (Aaronson et al., 2002). Depending on the species of animal used 

and experimental conditions, HPV responses in isolated pulmonary arteries may or 

may not be obtained without inducing pretone (see discussion in section 1.2.3); 

however, the presence of pretone universally augments the contraction caused by 

hypoxia. In the veins, robust HPV responses have been obtained without pretone 

even when arteries did not respond under the same conditions (Miller et al., 1989), 

but precontraction has also been commonly used with veins (Zhao et al., 1993, 

Feletou et al., 1995). 

The underlying mechanism of HPV enhancement by pretone is not entirely clear 

(Aaronson et al., 2006), but its purpose is thought to be the priming of vessels for 

contraction and mimicking the physiological baseline tone present under in vivo 

conditions. 
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Examples of contractile agonists used to induce preconstriction include adrenergic, 

thromboxane and 5-HT receptor agonists or high K+ depolarisation (Rodman et al., 

1989, Bennie et al., 1991), but PGF2α is one of the most commonly used 

preconstrictors (Thompson et al., 1998, Dipp et al., 2001, Robertson et al., 2001) 

and has previously been shown to induce contractions in pulmonary veins (Gao et 

al., 1995b, Boels et al., 1997). 

When preconstriction was used, it was induced with PGF2α (2 µM), concentration 

chosen in preliminary experiments to elicit responses in both arteries and veins. 

30 µl of the stock solution (1 mM) was added directly to the myograph chamber to 

achieve the desired final bath concentration. 5 minutes were allowed before starting 

the hypoxic challenge, as the PGF2α contraction usually peaked during the first 5 

minutes. 

3.2.4. Concentration-dependent responses to PGF2α 

The responses of small intrapulmonary veins to increasing concentrations of PGF2α 

(0.01 µM, 0.1 µM, 1 µM, 2 µM, 5 µM and 10 µM) were elicited to assess the 

sensitivity of the veins to the contractile agonist PGF2α. 

Cumulative volumes of stock PGF2α solution were added directly to the myograph 

chamber in order to achieve the respective final bath concentrations. Approximately 

5 minutes were allowed after each addition for expression of maximal responses. 

3.2.5. Hypoxia-induced responses 

Vessels were exposed to hypoxia by gassing with N2 directly into the myograph 

chamber to achieve a Po2 below 25 mm Hg. The hypoxic period normally lasted for 

30 minutes. Po2 was monitored continuously using an oxygen electrode (1302 

Microcathode Oxygen Electrode and 782 Oxygen Meter, Strathkelvin Instruments, 

Glasgow, UK). 
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When vessels were preconstricted (as described above in section 3.2.3), N2 gassing 

was commenced approximately 5 minutes after the addition of PGF2α. 

At the end of the hypoxic challenge, the solution was replaced with fresh normoxic 

bath solution. At least 30 minutes were allowed for the vessels to recover after each 

of the hypoxic episodes. 

3.2.6. The effect of altering extracellular ion concentrations 

To investigate the role of Ca2+ and Cl- ions in the development of agonist and 

hypoxia-induced responses in pulmonary vessels, the concentrations of these ions in 

the extracellular solution were decreased. Low-Cl- HEPES-based bath solution 

(HBSLow-Cl) was prepared by replacing NaCl with equimolar Na-gluconate. In 

Ca2+-free HEPES-based bath solution (HBSCa-free), CaCl2 was replaced with 

equimolar MgCl2 and Ca2+ chelator EGTA (1 mM) was added. 

3.2.7. The effect of Cl- channel blockers 

To examine further the role of Cl-, and more specifically the involvement of the 

Ca2+-activated Cl- channels (ClCa), the effect of Cl- channel blockers niflumic acid 

(NFA) and 5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) (Cruickshank et 

al., 2003) on agonists and hypoxia-induced contractions was assessed. Final 

concentrations of NFA and NPPB were achieved by direct addition of stock solution 

to the myograph chamber, approximately 5 minutes prior to recording agonist 

responses. 

3.2.8. Data analysis 

Isometric tension values were recorded with the Chart software (version 5, 

ADInstruments, UK). O2 concentration values were acquired separately with the 782 

Oxygen Meter System’s software (version 3.0, Strathkelvin Instruments, Glasgow, 
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UK) and, at the end of experiments, were merged offline as an individual channel 

into the Chart file. 

Data are expressed in mN or as a percentage of the control response to 80 mM KCl 

and are presented as mean ± SEM. Statistical difference between groups was 

calculated using paired or unpaired t-tests or analysis of variance (ANOVA) 

followed by Bonferroni's post-hoc test, as appropriate and significance was 

determined by P values of less than 0.05. 

3.3. Results 

3.3.1. Control responses 

Control contractions were induced with high extracellular K+ concentration (80 mM 

KCl) and were repeated three times (representative traces in Figure 3.2). The tension 

developed by vessels increased immediately following the application of KCl and 

reached a plateau after approximately 3 to 4 minutes. 

The responses usually increased with each application and the last contraction was 

measured and used as a control to express the tension increase induced by other 

agonists and hypoxia. 

The initial application of 80 mM KCl induced a contraction of 5.76 ± 0.62 mN/mm 

(n = 17) in veins and 3.22 ± 0.45 mN (n = 17) in arteries. Subsequent responses were 

significantly greater with each application in both types of vessel increasing to 7.4 ± 

0.89 mN (n = 17, P < 0.05) and 5.21 ± 0.58 mN/mm (n = 17, P < 0.05) in veins and 

arteries, respectively (see Figure 3.3). At each application of KCl, veins contracted 

significantly more than the arteries (n = 17, P < 0.05). 
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Figure 3.2. Representative control contractions of small pulmonary vessels. 

Intrapulmonary veins (A) and arteries (B) were stimulated with KCl (80 mM) three 

times at the beginning of each experiment to sensitise the contractile apparatus and 

elicit control responses. 

80 mM KCl            80 mM KCl                80 mM KCl

PV

(A)
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80 mM KCl            80 mM KCl                80 mM KCl

5 mN

5 min
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Figure 3.3. Average control contractions of small pulmonary vessels. 

Mean ± SEM responses of intrapulmonary veins (n = 23) (A) and arteries (n = 21) 

(B) to KCl (80 mM). The third KCl contraction was used as a control to normalise 

the responses to other agonists and hypoxia. 
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3.3.2. Effect of PGF2α 

The effect of PGF2α on venous tone was examined by constructing a concentration-

response curve using cumulative additions of the agonist (0.01 µM to 10 µM) 

(representative trace in Figure 3.4A). Responses to PGF2α were averaged and values 

were fitted with a Hill slope (see Figure 3.5). The effective concentration of PGF2α 

inducing half of the maximal response (EC50) in pulmonary veins was calculated to 

be 4.53 µM, while EC25 was 1.65 µM. 

Preconstriction of veins was made with PGF2α at a final bath concentration of 2 µM, 

which was deemed appropriate as it has been shown previously that the largest 

hypoxic responses are obtained when PGF2α preconstriction is made using EC25 and 

EC50 concentrations (Ozaki et al., 1998). As vessels were in the same chamber, the 

same amount of agonist was used to preconstrict arteries. A concentration-response 

curve was not completed for PGF2α in pulmonary arteries, but the concentration used 

is in the range used effectively in previous studies to induce pretone in pulmonary 

arteries (Robertson et al., 1995, Robertson et al., 2001, Dipp et al., 2001). The 

responses to 2 µM PGF2α were significantly greater in the veins compared to the 

arteries (36.5 ± 5.5% of control, n = 19 compared to 12 ± 3.3% of control, n = 18, 

P < 0.05). 

During concentration-dependent responses of veins to PGF2α, contractile oscillations 

were observed in 6 out of 7 pulmonary venous segments (85.7%). These were 

continuous oscillations around a steady baseline, which appeared usually after 2 or 

5 µM PGF2α, and increased in frequency and amplitude with higher concentrations 

of PGF2α (see representative trace in Figure 3.4B). When the concentration-

dependent contractions were repeated after a period of relaxation, the oscillations 

appeared at lower concentrations of PGF2α and had higher amplitudes. 
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Figure 3.4. PGF2α-induced contractions of intrapulmonary veins. 

(A) Intrapulmonary veins contracted in response to cumulative concentrations 

PGF2α, ranging from 0.01 µM to 10 µM. (B) The higher concentrations of PGF2α 

induced contractile oscillations in the veins; trace represents enlarged view of 

marked area from (A). 
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Figure 3.5. Concentration-response curve to PGF2α. Average contractile 

responses of intrapulmonary veins to various concentrations of PGF2α (values 

represent mean ± SEM of 7 vessels from 6 animals). Red line represents non-linear 

curve fit using a variable Hill slope (EC50 = 4.53 µM). 
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Figure 3.6. PGF2α induced oscillations in the PV. The average frequency (A) and 

amplitude (B) of contractile oscillations induced in intrapulmonary veins by various 

concentrations of PGF2α. There was a significant difference between mean frequency 

and amplitude of groups with one-way ANOVA; * indicates significant difference 

between specific groups determined with Bonferroni’s post-hoc analysis. 
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3.3.3. Hypoxia-induced responses in the PV and PA 

Hypoxic stimulation (Po2 < 20 mm Hg) applied while vessels were at resting tone 

induced contractions only in the veins (representative traces in Figure 3.7A). The 

venous response consisted of an early increase in tension (to a maximal level of 15.6 

± 3% of the KCl control, n = 7), which was followed by a relaxation to the initial 

baseline although hypoxia persisted. Conversely, intrapulmonary arteries did not 

contract to hypoxia in the absence of preconstriction. 

When vessels were primed with PGF2α (2 µM), the magnitude of the venous 

hypoxia-induced contractions increased significantly to 43.5 ± 5.1% of control 

(n = 9, P < 0.05). The shape of the hypoxic pressor response was similar to that of 

non-preconstricted veins (red trace in Figure 3.7B), with a prompt contraction 

following the lowering of O2 concentration and a subsequent return to the level of 

PGF2α induced tone. 

Preconstricted intrapulmonary arteries also contracted to hypoxia, but their responses 

were significantly smaller than those of veins (13.4 ± 3.6% of control, n = 6, 

P < 0.05, see Figure 3.8B). The tension increase in arteries was considerably slower 

to develop, but was sustained over the entire 30 minutes period of hypoxia (blue 

trace, Figure 3.7B). 
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Figure 3.7. Representative responses of pulmonary veins and arteries to 

hypoxia. Traces represent typical hypoxia induced contractile responses in the 

pulmonary vein (red) and artery (blue) in the absence (A) and presence (B) of 

preconstriction with PGF2α; the horizontal dashed lines represent zero tension. Green 

traces show the corresponding Po2 values. 
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Figure 3.8. Average responses of preconstricted pulmonary arteries and veins to 

hypoxia. Time courses (A) and average values (B) of hypoxia-induced responses of 

pulmonary veins (red) (n = 9) and arteries (blue) (n = 6); data are shown as mean 

values ± SEM; the horizontal dashed line represents zero tension. Green trace shows 

an average of Po2 values. 
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3.3.4. The effect of zero [Ca2+]o and low [Cl-]o and on PV and PA contractions 

The effect of altering extracellular ionic concentrations on the agonist and 

hypoxia-induced responses was investigated by replacing standard HEPES-based 

bath solution (HBS) with HBSLow-Cl and HBSCa-free extracellular media. 

The response of veins to 80 mM KCl was inhibited in HBSCa-free (6.1 ± 1.3 mN vs. 

16 ± 2 mN, n = 7, P < 0.05), but was not affected in HBSLow-Cl (see Figure 3.9A). 

Similarly, in the arteries only HBSCa-free significantly decreased KCl contractions 

(7.6 ± 1.2 mN vs. 14.4 ± 2.8 mN, n = 6, P < 0.05), while HBSLow-Cl had no effect 

(see Figure 3.9B). 

Lowering extracellular Cl- had opposite effects on PGF2α-induced contractions in 

veins and arteries. While the PGF2α (2 µM) response was potentiated in arteries 

(6.4 ± 1.8 % vs. 0.9 ± 0.6, n = 7, P < 0.05) (see Figure 3.10B), the contraction of 

veins was inhibited (9.6 ± 4.8 % vs. 44.8 ± 7, n = 9, P < 0.05) (see Figure 3.10A). 

Venous contractions by PGF2α were inhibited in HBSCa-free (6 ± 6.5 %, n = 9, 

P < 0.05) (Figure 3.10A), but those of arteries were not significantly affected 

(4.7 ± 1.4%, n = 7, P > 0.05, Figure 3.10B). 

The shape of the hypoxic pressor response in preconstricted veins and arteries was 

not fundamentally distorted by changing extracellular solutions, however its 

amplitude was affected (averaged time course responses in Figure 3.11). 

Using HBSLow-Cl markedly enhanced the hypoxic response in arteries to 41.5 ± 9.8% 

from the control value of 13.4 ± 3.6% (n = 6, P < 0.05) (see Figure 3.12B), but did 

not significantly affect hypoxia-induced contractions of veins (38.9 ± 5.5% vs. 

43.5 ± 5.1%, n= 9, p > 0.05) (see Figure 3.12A). In HBSCa-free, venous contractions to 

hypoxia were reduced (11 ± 5.1 %, n = 9, P < 0.05) (Figure 3.12A). In the arteries, 

HBSCa-free did not significantly affect arterial responses to hypoxia (16 ± 5.3%, n = 6, 

P > 0.05, Figure 3.12B). 
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Figure 3.9. The effect of altering extracellular ionic concentrations on KCl 

contractions. Average KCl (80 mM) responses of intrapulmonary veins (A) (n = 7) 

and arteries (B) (n = 6) in different extracellular conditions (HBS, HBSLow-Cl, 

HBSCa-free). Data are shown as mean values ± SEM; * indicates significant reduction 

in mean responses compared to controls in standard HBS (P < 0.05). 
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Figure 3.10. The effect of altering extracellular ionic concentrations on 

contractions to PGF2α. Average responses to PGF2α (2 µM) of intrapulmonary 

veins (A) (n = 9) and arteries (B) (n = 7) in different extracellular conditions (HBS, 

HBSLow-Cl, HBSCa-free). Data are shown as mean values ± SEM; * indicates 

significant change in mean responses compared to controls in standard HBS 

(P < 0.05). 
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Figure 3.11. The effect of HBSLow-Cl and HBSCa-free on hypoxic responses of 

preconstricted pulmonary arteries and veins. Average responses over time of 

preconstricted pulmonary veins (A) (n = 9) and arteries (B) (n = 6) in different 

extracellular conditions (HBS, HBSLow-Cl, HBSCa-free); data are shown as mean values 

± SEM; for clarity, not all error bars are shown. Green trace shows the average of 

Po2 values. 
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Figure 3.12. The effect of altering extracellular ionic concentrations on 

contractions to hypoxia. Hypoxia-induced responses of small pulmonary veins (A) 

(n = 9) and arteries (B) (n = 6) with pretone in different extracellular conditions 

(HBS, HBSLow-Cl, HBSCa-free). HBS = standard HEPES-based bath solution; data are 

shown as mean values ± S.E.M; * indicates significant change in mean responses 

compared to controls in standard HBS (P < 0.05). 
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3.3.5. The effect of NFA and NPPB on the PGF2α and hypoxia-induced 

vasoconstriction 

In small intrapulmonary veins, NFA (50 µM) inhibited both the PGF2α 

preconstriction (20.5 ± 7% compared to 43 ± 10.9%, n = 10, P < 0.05) (Figure 

3.13A) and the hypoxic response (12 ± 4.6 % compared to 50.7 ± 10.9%, n = 10, P < 

0.05) (Figure 3.14A), but NPPB (2 µM) had no significant effect on either response. 

In the arteries, NFA (50 µM) did not significantly affect the PGF2α or hypoxic 

responses (see Figure 3.13B and Figure 3.14B). However, NPPB (2 µM) potentiated 

the PGF2α contractions (35.5 ± 10 % compared to 15.9 ± 5 %, n = 9, P < 0.05) 

(Figure 3.13B), but did not significantly affect the hypoxic response. 

The concentration dependent effects of Cl- channel blockers on agonist contractions 

were investigated further. NFA (Figure 3.15) enhanced the responses to PGF2α in the 

concentration range 10-7 to 10-6 M. This effect was maximal at 0.1 µM in the veins 

and at 0.3 µM in the arteries. In the case of NPPB (Figure 3.16) a similar effect 

appeared to take place in the same concentration range, but despite the larger mean 

responses compared to controls, the effect was not statistically significant in either 

veins, or arteries. 

At concentrations of approximately 10-5 M and higher, both antagonists increasingly 

inhibited the PGF2α-induced contractions. This effect was statistically significant at 

30 µM in the veins and 100 µM in the arteries for NFA and at 10 µM in the veins for 

NPPB. 
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Figure 3.13. The effect of NFA and NPPB on PGF2α-induced contractions. 

Intrapulmonary veins (A) (n = 10) and arteries (B) (n = 9) contracted to PGF2α 

(2 µM) in the presence of NFA (50 µM) and NPPB (2 µM). Data are shown as mean 

values ± S.E.M.; * indicates significant change in mean responses compared to 

controls (P < 0.05). 
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Figure 3.14. The effect of NFA and NPPB on hypoxia-induced contractions. 

Intrapulmonary veins (A) (n = 10) and arteries (B) (n = 9) contracted in response to 

hypoxia in the presence of NFA (50 µM) and NPPB (2 µM). Data are shown as 

mean values ± S.E.M.; * indicates significant change in mean responses compared to 

controls (P < 0.05). 
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Figure 3.15. Concentration dependent effect of NFA on PGF2α-induced 

contractions. Responses of veins (A) (n = 5) and arteries (B) (n = 5) to PGF2α 

(2 µM) in the presence of increasing concentrations of NFA (0.01 to 100 µM). 

Data are shown as percentages of the control PGF2α contraction; values represent 

mean ± S.E.M; * indicates significant difference compared to control (P < 0.05). 
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Figure 3.16. Concentration dependent effect of NPPB on PGF2α-induced 

contractions. Responses of veins (A) (n = 4) and arteries (B) (n = 4) to PGF2α 

(2 µM) in the presence of increasing concentrations of NPPB (0.03 to 30 µM). 

Data are shown as percentages of the control PGF2α contraction; values represent 

mean ± S.E.M; * indicates significant difference compared to control (P < 0.05). 

-8 -7 -6 -5 -4
0

20

40

60

80

100

120

140

-8 -7 -6 -5 -4
0

20

40

60

80

100

120

*

*%
 o

f P
G

F 2α
 re

sp
on

se

NPPB [log M]

%
 o

f P
G

F 2α
 re

sp
on

se

NPPB [log M]



CHAPTER 3. CHARACTERISATION OF THE HYPOXIA-INDUCED RESPONSES IN ISOLATED PV AND PA 

 110

3.4. Discussion 

The contractile properties of isolated segments of distal intrapulmonary veins and 

arteries from the pig were investigated using wire myography; the main findings 

were the demonstration of agonist and hypoxia-induced contractions in both types of 

vessel, with particular differences in the role of Ca2+ and Cl- conductances and the 

veins consistently showing more robust responses than arteries. 

Small porcine intrapulmonary veins contracted more than size-matched arteries in 

response to both KCl (80 mM) and PGF2α (2 µM). Greater venous contractions in the 

pulmonary circulation have been reported before with agonists such as histamine, 

5-HT (Shi et al., 1998), ET-1 (Toga et al., 1992, Wang and Coceani, 1992), and 

thromboxane (Kemp et al., 1997, Shibamoto et al., 1995, Arrigoni et al., 1999). 

However, the contrary was shown in other studies, such as with ET-1-induced 

contractions in guinea pig pulmonary vessels (Cardell et al., 1990), 5-HT in dogs (al-

Tinawi et al., 1994) and noradrenaline in sheep (Kemp et al., 1997). These variations 

are probably due to differences in the size of vessels used, as well as the diversity of 

experimental setups and species. 

In the presence of PGF2α, spontaneous contractile oscillations became apparent in the 

pulmonary veins, but not in the arteries. The amplitude and frequency of these 

oscillations were enhanced by increasing the concentration of PGF2α. Similar 

PGF2α-stimulated oscillations in active tension have been reported before in vascular 

(Jackson, 1988), myometrial (Phillippe et al., 1997) and epididymal smooth muscle 

(Mewe et al., 2006). In the myometrium, these phasic contractions are thought to be 

caused by underlying oscillations of [Ca2+]i, which occur through the activation of 

the phosphatidylinositol signalling pathway (Phillippe et al., 1997). No further 

systematic investigation on the mechanisms underlying these oscillations in porcine 

PV was made, but their presence suggests a predisposition of pulmonary venous 

smooth muscle towards phasic contractions. 
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When hypoxia was induced without preconstriction, only veins contracted. This is 

consistent with previous observations in pulmonary vessels from pigs (Miller et al., 

1989) and sheep (Uzun and Demiryurek, 2003). In the presence of preconstriction, 

the hypoxic contraction of veins was significantly increased. Preconstricted arteries 

also responded to hypoxia. Similarly, rat pulmonary arteries also contracted 

significantly to hypoxia only in the presence of agonist induced pretone (Bennie et 

al., 1991, Leach et al., 1994), but those from cats (Madden et al., 1985) and rabbits 

(Dipp et al., 2001) showed HPV responses even without preconstriction. The 

hypoxia-induced venous contractions were significantly larger than arterial ones, 

which is in agreement with previous reports in the rat (Zhao et al., 1993), but 

contrary to findings in cat lungs (Nagasaka et al., 1984). 

The shape of HPV responses seen in the two types of vessel also differed. Following 

the onset of hypoxia, the tension in the veins rose rapidly. The contraction was 

maximal after approximately 5 to 10 minutes, and this was followed by partial 

relaxation and a steady level of tension. Similar hypoxic responses were seen in rat 

pulmonary veins (Zhao et al., 1993). 

In contrast, the hypoxic response in the arteries was slow to develop, and consisted 

of a monophasic sustained contraction over the entire 30 minutes of the hypoxic 

challenge. In some preparations of isolated pulmonary arteries, the hypoxic response 

is composed of two phases (Bennie et al., 1991). The first, transient contraction seen 

in most (Robertson et al., 1995, Dipp et al., 2001, Leach et al., 2001), but not all 

preparations (Talbot et al., 2003), was not present in porcine intrapulmonary arteries 

under the conditions used in this study. However, only the sustained phase, which 

resembles the response seen here, is thought to be physiologically relevant, because 

the initial phase is transient in nature and has been reported to also occur in systemic 

arteries (Ward and Aaronson, 1999). 

Removing extracellular Ca2+ produced an inhibition of venous responses to both 

PGF2α and hypoxia, but had no significant effect on contractions of arteries. These 
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findings are consistent with reports of greater susceptibility of venous contractions to 

Ca2+-free media compared to arteries (Mikkelsen and Pedersen, 1983). Furthermore, 

pulmonary arterial smooth muscle has a greater amount of SR compared to other 

types of smooth muscle (Devine et al., 1972), which could explain its lesser reliance 

on extracellular Ca2+ influx during contraction. 

Low extracellular Cl- potentiated PGF2α-induced contraction in pulmonary arteries. 

Chloride currents have been shown to contribute to agonist-induced contraction of 

vascular smooth muscle (Lamb and Barna, 1998). Moreover, the data demonstrate 

that HBSLow-Cl increased the hypoxia-induced arterial contractions. However, 

HBSLow-Cl did not significantly affect hypoxic responses of veins, but did attenuate 

the PGF2α-induced contraction.  

The two Cl- channel blockers NFA and NPPB differed in their effects on PGF2α and 

hypoxia-induced contractile responses. This may have been due to concentration-

dependent differences in their actions, but also to non-specific effects on ion 

channels. NFA significantly inhibited contractions to both PGF2α and hypoxia in the 

veins, but not in the arteries. These results suggest an NFA sensitive conductance is 

important in the hypoxic response of porcine intrapulmonary veins. This underlying 

pathway could involve an NFA sensitive ClCa conductance that contributes to 

agonist-induced contraction (Yuan, 1997). Alternatively, NFA may reduce venous 

contractions through non-specific activation of BKCa channels (Ottolia and Toro, 

1994, Greenwood and Large, 1995), which is known to promote vasodilation in 

pulmonary vessels (Barman et al., 2003). 

Overall, the results of the wire myography studies presented here show clear 

differences exist between the contractility of porcine intrapulmonary veins and 

arteries, in respect of the size and dynamics of responses to KCl, PGF2α and hypoxia. 

These findings suggest the participation of veins to hypoxic pulmonary 

vasoconstriction could involve yet unknown underlying mechanisms specific to 

pulmonary veins. 
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In humans and other large mammals including pigs, vascular tone in distal 

intrapulmonary veins is determined exclusively by the contraction of smooth muscle 

cells, as cardiomyocytes only exist in the wall of extrapulmonary veins (Nathan and 

Gloobe, 1970, Masani, 1986). By controlling the membrane potential, ion channels 

in the plasma membrane of smooth muscle cells play a key role in the generation and 

regulation of vascular tone. 

Substantial research has been carried out in the pulmonary arteries to investigate 

hypoxic pulmonary vasoconstriction at cellular level, including involvement of ion 

channels. By comparison, information on the effects of hypoxia on signal 

transduction pathways in pulmonary veins smooth muscle cells (PVSMC) is 

effectively nonexistent. Therefore, the aim of the following studies is to isolate 

smooth muscle cells from porcine intrapulmonary veins and investigate the effects of 

hypoxia on specific ion conductances (Kv, ClCa, L-type Ca2+) in single porcine 

PVSMC, which would provide direct insight on the contractile mechanisms of 

hypoxia-induced responses in the PV from pig. 
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Chapter 4.  

Morphological and electrical membrane 

properties of PVSMC 

4.1. Introduction 

Isolated segments of porcine intrapulmonary veins exhibited significant vasoactivity 

in response to agonists and hypoxia, with greater contractions than in arteries of 

similar size. In all blood vessels, vascular smooth muscle cells are the main 

determinant of mechanical activity. The degree of smooth muscle contraction is 

modulated by factors intrinsic and extrinsic to the blood vessel, but ultimately it is 

the contraction of individual myocytes that leads to the development and 

maintenance of vascular tone. 

The contractility of single smooth muscle cells is closely linked, through the second 

messenger Ca2+, to membrane excitability and ion channel activity. Therefore, 

understanding the resting membrane properties of single myocytes, together with the 

properties of voltage-activated currents which regulate their membrane potential, is 

part of the process of elucidating the mechanisms underlying the control of vascular 

tone. Furthermore, certain features of cell shape (Tolic-Norrelykke and Wang, 2005) 

or size (Murphy and Khalil, 2000) may be linked with contractile force or Ca2+ 

handling in smooth muscle cells. 

Owing to the development of cell isolation techniques and patch-clamping 

electrophysiology (Hamill et al., 1981), smooth muscle cells from various vascular 
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beds have been extensively examined across different species. Morphological 

features such as shape, size and cell surface area, as well as passive electrical 

properties like resting membrane potential and membrane capacitance have been 

described in myocytes from rabbit pulmonary artery (Clapp and Gurney, 1991), dog 

(Wilde and Lee, 1989) and rabbit coronary artery (Matsuda et al., 1990), canine 

renal artery (Gelband and Hume, 1992), human omental artery (Hughes et al., 1994) 

and rabbit portal vein (Hume and Leblanc, 1989). However, smooth muscle cells 

from the pulmonary veins have so far not been morphologically and 

electrophysiologically characterised. 

The aim of this study is to obtain fresh physiologically viable single smooth muscle 

cells through enzymatic dissociation of intrapulmonary venous smooth muscle from 

the pig; and, for the first time, to characterise these cells morphologically by light 

microscopy and analyse their membrane properties through the use of patch-

clamping techniques. 

4.2. Methods 

4.2.1. Morphometric measurements 

Following completion of the enzymatic dispersion protocol (for details, see section 

2.3.2) and trituration with a wide-bore Pasteur pipette, approximately 0.5 ml of cell 

suspension was transferred onto a glass coverslip and the cells were left to settle for 

approximately 10-15 minutes. 

The coverslip was mounted on the stage of a Leica DMI4000 B inverted microscope 

(Leica Microsystems CMS GmbH, Germany) equipped with a phase-contrast 

objective (magnification x20; numerical aperture 0.40). Phase-contrast 

photomicrographs were acquired using a Leica DFC300 FX digital colour video 

camera (Leica Microsystems Ltd, Heerbrugg, Switzerland) and the Leica 

Application Suite (LAS) software (Version 2.5.0 R1, Leica Microsystems Ltd). 
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Images were analysed and measurements made using the software package ImageJ, 

version 1.38 (US National Institutes of Health, Bethesda, Maryland, USA; available 

from http://rsb.info.nih.gov/ij/). 

The following morphological parameters were calculated for every PVSMC: 

- the cell perimeter, determined as the length of the outline (boundary) of the cell as 

measured on the photomicrograph; 

- the projected area of the cell, defined as the total area enclosed by the cell outline; 

- the cell length and width, calculated using the perimeter and projected area and 

approximating the cell with an ellipse; 

- the circularity of the cell, which provides a measure of elongation and was 

calculated using the perimeter and projected area; 

- the tri-dimensional membrane surface, calculated by approximation with a tri-

dimensional ellipsoid. 

Data are presented as mean ± SD and the distribution of data values is characterised 

by the range (minimum and maximum values) and the coefficient of variation (CV). 

CV is a unitless ratio of the standard deviation to the mean and is a statistical 

measure useful for comparing the dispersion between different groups, even if their 

means are significantly different from each other: 

 mean
SDCV =  (1) 

Histograms were plotted for each parameter and values were fitted with a Gaussian 

probability density function: 
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where σ is the standard deviation and µ is the mean. 
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4.2.2. Passive membrane properties 

4.2.2.1. Resting membrane potential 

Once the whole-cell configuration was established in patch-clamp experiments, the 

membrane potential was measured under resting conditions by switching to current 

clamp (at zero current). The data was systematically recorded for each cell in 

standard bath solution prior to starting experimental protocols. The values are 

presented as recorded, without being adjusted for differences induced by liquid 

junction potentials, as explained in section 2.4.5. 

4.2.2.2. Cm and Rs 

Membrane capacitance (Cm) is a measure of the ability of the cell membrane to store 

electrical charge and depends on the total surface of the membrane (Molleman, 

2003). For this reason, it is regularly used to normalise whole cell currents for cell 

size, by converting the current values into current densities (current/membrane 

capacitance). 

In the whole-cell patch-clamp configuration, series resistance (Rs) represents the 

resistance met by the current before it passes through the cell and is used to assess 

the quality of the patch configuration. It consists of the pipette resistance (which is 

normally low ~ 2-5 MΩ) and the patch resistance (which becomes very low once the 

patch has been ruptured to achieve the whole-cell configuration and is sometimes 

renamed access resistance). Rs reduces the actual voltage experienced by the patched 

cell, and therefore should be kept as low as possible, preferably less than 20 MΩ 

(Molleman, 2003). A high Rs suggests inadequate voltage clamping and affects the 

quality of the resulting recordings. 

Rs and Cm can be calculated by analysing the capacitive current elicited in response 

to a depolarising step, as detailed below (Ogden and Stanfield, 1994). Following an 

induced change in potential (by applying a square test pulse), the voltage changes 
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gradually over the capacitor as the charge builds up exponentially and then reaches a 

steady state. This process is reflected in an initial spike in current followed by an 

exponential decrease (usually referred to as the transient capacitive current). The 

decay of this current is proportional to Rs and Cm and therefore the time constant of 

the decay of the capacitive current (τ) can be used to infer these parameters: 

 msCR=τ  (3) 

A sample depolarisation-induced current is shown in Figure 4.1. The inset illustrates 

the capacitive portion of the current fitted with the following exponential decay 

function: 

 
τ/)( t

peakeItI −=  (4) 

where Ipeak is the initial amplitude of the capacitive current and τ is the exponential 

time constant of decay of the capacitance current. 

Rs (in MΩ) was then calculated as the size of the applied voltage step divided by the 

peak capacitive current it elicits (according to Ohm’s law): 

 peaksteps IVR /=  (5) 

where Vstep (in mV) is the size of the depolarising voltage step and Ipeak (in nA) is the 

amplitude of the capacitive current. 

Rs was then used for the calculation of membrane capacitance (Cm, in pF), using the 

following formula: 

 sm RC /τ=  (6) 

where τ (in ms) is the time constant of the capacitive current decay and Rs (in GΩ) is 

the series resistance. 
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Figure 4.1. Exponential decay of the capacitive transient. Representative current 

trace used for calculating access resistance and membrane capacitance. 

Inset: capacitive transient portion of the current; dashed red line represents the 

exponential decay curve fitted to the capacitive transient. The parameters that result 

from the fit (Ipeak and τ) are used to calculate series resistance and membrane 

capacitance. 
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4.3. Results 

4.3.1. Cell morphology 

As indicated in the description of the process of developing the cell isolation 

protocol (section 2.3), the yield of cells and the proportion between elongated, 

contracted and damaged cells varied somewhat with each isolation procedure from a 

different animal. 

However, the type of cells that were found to be viable for use in patch-clamping 

experiments typically appeared relaxed and elongated (as shown in Figure 4.2). 

These cells were spindle-shaped, without striations and with a single, centrally 

located nucleus, all characteristic features for smooth muscle cells. 

4.3.2. Cell perimeter and projected area  

Measurements were made on 258 cells from 8 intrapulmonary veins each dissected 

from a different animal on separate experimental days. Only viable cells were taken 

into consideration, where viability was indicated by a bright halo around the cell 

membrane (Driska and Porter, 1986). Cells that were contracted or had blebs of the 

membrane were non included in the analysis. 

Using ImageJ, outlines were traced for each viable cell (example shown in Figure 

4.4A) and measurements were obtained for the perimeter (in pixels) and area (in 

pixels2) of every cell. The values were subsequently converted to µm2 and µm 

respectively, using the conversion factor corresponding to x20 magnification (0.46 

µm/pixel, as recorded by the Leica Application Suite software when the images were 

captured). 
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Figure 4.2. Typical examples of porcine PVSMC. Phase-contrast photomicrograph 

acquired at 20x magnification. The cells were elongated and had intact membranes, 

as indicated by the surrounding bright halo. 
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The cell perimeter had a minimum value of 155.2 µm and a maximum value of 

712.9 µm, while the CV was 0.23. The mean perimeter was 354 ± 81.6 µm (n = 258; 

histogram shown in Figure 4.3B). 

The projected area of intrapulmonary vein smooth muscle cells ranged from 

331.5 µm2 to 1862.8 µm2. The distribution of values is shown in the histogram in 

Figure 4.3A, and was characterised by a coefficient of variation of 0.25. The average 

value was 1070.2 ± 267.6 µm2 (mean ± SD; n = 258). 

4.3.3. Cell length and width 

In order to calculate the length and width of each cell, the shape of PVSMC was 

approximated to an ellipse. The corresponding ellipse was considered to have the 

area and perimeter of the cell as measured on the photomicrographs using the ImageJ 

software. Following this approximation, the length and width of PVSMC were 

considered to be equal to the major and minor axis of the equivalent ellipse (as 

shown in Figure 4.4B). 

This approach was considered to be a reliable way of estimating the length and width 

of cells, because it excluded the error that would have been introduced through 

manual measurement of diameters directly on photomicrographs. 
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Figure 4.3. Projected area and perimeter of PVSMC. Histograms illustrate the 

distribution of (A) projected cell area and (B) perimeter of PVSMC, as measured on 

photomicrographs. Data values were fitted with Gaussian distributions (red curves). 
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Figure 4.4. Estimation of cell shape. Shape of PVSMC was approximated to an 

ellipse for consistency of cell measurements. (A) Actual outline of a representative 

smooth muscle cell as drawn in ImageJ. Inset: photomicrograph of the same cell. (B) 

The corresponding ellipse of the same area and circumference as the cell shown in 

(A). The ellipse axes were used to approximate cell length and width. 
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The calculation of the ellipse axes was based on the following standard formula for 

the area of an ellipse 

 abA π=   (7) 

and a second formula by Euler which approximates the circumference or perimeter 

of an ellipse (Almkvist and Berndt, 1988): 

 )(2 22 baP += π  (8) 

where a and b are the semi-major and semi-minor axes of the ellipse, respectively. 

From the two equations above and considering A and P as known parameters, the 

following biquadratic equation was obtained: 

 0
2 2

2
2

2

2
4 =+−

ππ
AxPx  (9) 

with the two positive solutions obtained by solving this equation being the 

semi-major (half length) and semi-minor axis (half width) of the ellipse, and 

therefore of the respective PVSMC. 

According to the calculations based on these estimations, the cells had a mean length 

and SD of 159.1 ± 36.8 µm (n = 258; distribution shown in Figure 4.5A) with a 

range from 69.6 µm to 320.9 µm. 

The width of PVSMC varied from 6 µm to 11.7 µm, while the mean was 8.6 ± 1.2 

µm (n = 258; distribution shown in Figure 4.5B). 
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Figure 4.5. Cell length and width. Histograms illustrate the distribution of the 

(A) length and (B) width of PVSMC as calculated by approximating to an equivalent 

ellipse. Data values were fitted with Gaussian distributions (red curves). 
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4.3.4. Cell shape 

It has been shown that cell shape can influence contractile force in smooth muscle 

cells (Tolic-Norrelykke and Wang, 2005) and therefore the assessment of cell shape 

was considered to be a relevant addition to the morphometric characterisation of 

PVSMC. 

Further to measuring parameters of cell size, the ImageJ software was used to 

evaluate the shape of the pulmonary vein myocytes by calculating their circularity, 

which provided a quantitative measure of cell elongation (Auman et al., 2007). 

Circularity values were obtained based on the following formula: 

 
24 PAyCircularit π=  (10) 

where A is the area and P is the perimeter of the cell as measured on the 

photomicrograph using the ImageJ software. Being a ratio, circularity does not have 

a unit of measurement and its value can range from 1 for a perfect circle, towards 0 if 

the shape is increasingly elongated. 

Circularity of PVSMC from pig ranged from 0.04 to 0.22, with a mean ± SD value 

of 0.11 ± 0.03 (n = 258; histogram shown in Figure 4.6). The correlation of 

circularity with cell length was strongly negative (Pearson’s r coefficient = -0.84, 

P < 0.05) and positive, but weaker with the width of cells (Pearson’s r coefficient = 

0.56, P < 0.05), as seen in Figure 4.7. 
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Figure 4.6. Circularity of PVSMC. Histogram illustrates the distribution of 

circularity, a cell shape parameter, as measured using the ImageJ software. Data 

values were fitted with a Gaussian distribution (red curve). 
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Figure 4.7. Correlation of cell length and width with circularity. Length (A) and 

width (B) of PVSMC were each plotted against circularity. Red lines represent the 

slopes calculated by linear regression analysis; r is Pearson’s correlation coefficient; 

R2 represents the goodness of fit. 
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4.3.5. Tri-dimensional cell surface 

Initial measurements of the area of each cell were made on the photomicrographs 

using the ImageJ software (data presented above), but data obtained through this 

method had the disadvantage of being a bi-dimensional projection of the cell area 

and therefore an imprecise representation of whole membrane surface. 

A more accurate, tri-dimensional, estimation of cell surface (S) was thus calculated 

by approximation to the surface of an ellipsoid. The particular type of ellipsoid used 

was spindle-shaped, namely a prolate (i.e. a spheroid with the polar axis longer than 

the equatorial diameter) (see Figure 4.8). The long axis was considered equivalent to 

the cell length (l) and the other two axes were both deemed equal to the width (w). 

 
Figure 4.8. Approximation of PVSMC with a prolate spheroid. Tri-dimensional 

cell surface was calculated using the known cell dimensions as the prolate axes. 
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The surface area of the ellipsoid was calculated using a formula by Knud Thomsen 

(Michon, 2004, McGahon et al., 2007): 

 

ppppppp cbcabaS
1

3
4 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ++
≈ π

 (11) 

where p = lg(3) = ln(3)/ln(2) ≈ 1.6075 and a, b and c are the semiaxes of the 

ellipsoid; in this particular case a = l/2 is half the length and b = c = w/2 equal to half 

the width of the cells. 

The tri-dimensional cell membrane surface calculated as above had a minimum 

value of 1036.9 µm2 and a maximum value of 5796.1 µm2, while the mean ± SD 

value was 3336.7 ± 832 µm2 (n = 258). The coefficient of variation (CV) was 0.25 

and the histogram distribution is shown in Figure 4.9. 

4.3.6. Resting membrane potential 

Membrane potential was recorded in 221 cells under resting conditions. The values 

ranged from -18 mV to -55 mV (distribution in Figure 4.10), with an average of 

-35.8 ± 5.9 mV (mean ± SD, n = 221). 

There was a weak, but significant correlation between the resting membrane 

potential of PVSMC and the outer diameter of the pulmonary veins the cells were 

isolated from (Pearson’s r coefficient = -0.16, P < 0.05), as shown Figure 4.11A. 
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Figure 4.9. Tri-dimensional membrane surface of PVSMC. Histogram illustrates 

the distribution of calculated total membrane surface area. Red line represents the 

Gaussian fit to the distribution of values. 
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Figure 4.10. Resting membrane potential of PVSMC. Histogram illustrates the 

distribution of resting membrane potential measured under current clamp (I = 0). 

Red line represents the Gaussian fit to the distribution of values. 
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Figure 4.11. Correlation of RMP and capacitance with the outer diameter of 

vessels. Resting membrane potential (A) and membrane capacitance (B) of PVSMC 

were each plotted against the outer diameter of pulmonary veins. Red lines represent 

the slopes calculated by linear regression analysis; r is Pearson’s correlation 

coefficient; R2 represents the goodness of fit. 

700 800 900 1000 1100 1200 1300
-60

-50

-40

-30

-20

700 800 900 1000 1100 1200 1300
0

50

100

150

200

250

r = -0.16, P < 0.05
R2 = 0.03
RMP = -27.5 - 0.01 x OD

(B)

(A)
RM

P 
(m

V)

Outer diameter (µm)

r = -0.04, P > 0.05
R2 = 0.001

 

Ca
pa

ci
ta

nc
e 

(p
F)

Outer diameter (µm)



CHAPTER 4. MORPHOLOGICAL AND ELECTRICAL MEMBRANE PROPERTIES OF PVSMC 

 135

4.3.7. Membrane capacitance 

Capacitive transient data was fitted for 145 cells. Rs had a value of 5.62 ± 0.66 MΩ 

(mean ± SEM). The membrane capacitance (Cm) of the PVSMC was 108 ± 42 pF 

(average value ± SD), with a minimum value of 31.1 pF and maximum of 252.9 pF. 

The distribution of values is illustrated in Figure 4.12. 

There was no linear correlation between membrane capacitance and vessel outer 

diameter (Pearson’s r coefficient = -0.04, P > 0.05), graphic representation shown in 

Figure 4.11B. 

 
Figure 4.12. Membrane capacitance of PVSMC. Histogram illustrates the 

distribution of membrane capacitance. Red line represents the Gaussian fit to the 

distribution of values. 
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In excitable cells, specific membrane capacitance is defined as the value of 

capacitance per unit of membrane area (Gentet et al., 2000) and it depends on the 

thickness and dielectric constant of the cellular membrane. 

For porcine PVSMC, the specific membrane capacitance estimated by dividing the 

average cell capacitance to the average cell surface (108 pF/ 3336.7 µm2) had a value 

of 3.2 µF/cm2. 

4.4. Discussion 

Vascular smooth muscle cells are responsible for the development of vascular tone 

and thus regulation of blood flow. The shape and width of smooth muscle cells may 

be correlated to their ability to develop contractile force (Tolic-Norrelykke and 

Wang, 2005). Therefore, a quantitative morphometric characterisation of porcine 

PVSMC is opportune, as it adds to the little information available about this cell 

type. 

Reports detailing the morphometric and passive membrane properties of smooth 

muscle cells from the pulmonary veins are not widely available in the literature. In a 

study focused on the contribution of potassium channels to pulmonary venous tone, 

Michelakis et al. (2001) isolated PVSMC from adult rats, but their morphometric 

characterisation was limited to stating the average length of cells and providing a 

photomicrograph of a sample cell. 

The lack of PVSMC data contrasts with the substantial attention given by 

investigators to smooth muscle cells from the pulmonary arteries. Morphometric 

and/or passive electrical properties are available on freshly isolated PASMC from 

rabbits (Clapp and Gurney, 1991, McCulloch et al., 2000), mice (Ko et al., 2007) 

and humans (Shimoda et al., 1998), as well as on cultured PASMC from human 

(Peng et al., 1996) and rat lungs (Yuan et al., 1993b). 
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The fresh PVSMC yielded by the optimised enzymatic dissociation protocol were 

normally suitable for the purpose of cell electrophysiology studies. Their 

morphological appearance compared favourably with previous reports of freshly 

dissociated PVSMC (Michelakis et al., 2001) and PASMC (Clapp and Gurney, 

1991, McCulloch et al., 2000) (see photomicrographs in Figure 4.13). Furthermore, 

the features of cell viability (for details see section 2.3) were usually present in a 

sufficient proportion of the cells, which were used for voltage- and current-clamping 

experiments. 

Single PVSMC had a typical appearance for smooth muscle cells. They were usually 

considerably elongated and thin, quite similar in those respects to single myocytes 

from porcine carotid arteries, which were also digested using papain (Driska and 

Porter, 1986). Myocytes isolated from the pulmonary artery were also elongated in 

the rabbit (Clapp and Gurney, 1991, McCulloch et al., 2000), while those in mice 

were round shaped (Ko et al., 2007). 

The parameters of cell size are summarised in Table 4.1. In general, porcine PVSMC 

were larger than previously studied pulmonary smooth muscle cells. In adult rats, 

PVSMC were 8 ± 2 µm long (Michelakis et al., 2001), the considerable difference 

being presumably due to the size difference between the two species. Porcine 

PVSMC were also significantly larger than distal porcine PASMC (77.8 ± 2 µm 

long, Sham et al., 2000) and rabbit PASMC (60-120 µm long, Clapp and Gurney, 

1991), while human cultured PASMC had a comparable average length (132.6 ± 3.5 

µm long, Yuan et al., 1993b). 
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Figure 4.13. Freshly dissociated pulmonary smooth muscle cells. 

Photomicrographs of isolated myocytes reported elsewhere. (top left) PVSMC 

isolated from adult rats (used with permission from Michelakis et al., 2001).  

(top right) PASMC isolated from rabbit (used with permission from Clapp and 

Gurney, 1991). (bottom) PASMC isolated from large (left) and small (right) rabbit 

intrapulmonary arteries; bars represent 50 µm (used with permission from 

McCulloch et al., 2000). 
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The size differences in these reports are most likely to be partly due to species 

differences. However, in the pig, the length of PVSMC (159.1 ± 36.8 µm, reported 

here) was twice that of PASMC (77.8 ± 2 µm long, Sham et al., 2000). Differences 

in resting cell length could reflect an opposite difference in the basal levels of 

intracellular Ca2+ (Murphy and Khalil, 2000) and could therefore explain the 

difference between single arterial and venous myocytes. This theory would be 

consistent with previous reports that pulmonary veins depend more than arteries on 

influx of extracellular Ca2+ during contractions (Mikkelsen and Pedersen, 1983) and 

that pulmonary arterial smooth muscle has a higher SR content compared to other 

types of smooth muscle (Devine et al., 1972). 

Another possible contributing factor could be the variation of myocyte size along the 

pulmonary vascular tree, whereby cells originating in distal vessels could be larger 

than proximal ones. For example, the length of PASMC in the pig varied from 

55.8 ± 1.2 µm in proximal arteries to 77.8 ± 2 µm in cells isolated from distal 

arteries (Sham et al., 2000). The porcine PVSMC described here were isolated from 

distal 4th to 7th order branch intrapulmonary veins and therefore could be expected to 

be larger than others originating from proximal sites. 

Other morphometric parameters taken into consideration included area, perimeter, 

width and circularity of PVSMC. The respective values for PASMC were not readily 

available for comparison in the literature. However, PVSMC appear considerably 

more elongated and proportionally thinner than PASMC (see photomicrographs in 

Figure 4.2 and Figure 4.13 for comparison). In cultured human airway smooth 

muscle, cell contractility was linked to cell shape through cell spreading and baseline 

contractile force did not depend on cell length, but rather on parameters of cell shape 

like projected area and width of cells (Tolic-Norrelykke and Wang, 2005). 

Moreover, wider cells were found to have a significantly greater baseline contractile 

force, but at the same time cells with a lower baseline tension showed a higher 

histamine-induced relative increase in force, which suggests that thinner cells have a 

superior ability to develop added force. 
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Table 4.1. Morphometric measurements of PVSMC. Area, perimeter and 

circularity were measured using ImageJ on photomicrographs; length and width were 

calculated by approximation of cell shape to an ellipse; tri-dimensional membrane 

surface was inferred by approximation to a prolate ellipsoid. 

Cell 

measurement 
Mean value ± SD 

Minimum 

value 

Maximum 

value 
CV N 

Projected area, 

µm2 

1070.2 ± 267.6 331.5 1862.8 0.25 258 

Perimeter, µm 354 ± 81.6 155.2 712.9 0.23 258 

Length, µm 159.1 ± 36.8 69.6 320.9 0.23 258 

Width, µm 8.6 ± 1.2 6 11.7 0.13 258 

Circularity 0.11 ± 0.03 0.04 0.22 0.28 258 

Tri-dimensional 

surface, µm2 

3336.7 ± 832 1036.9 5796.1 0.25 258 
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A summary of PVSMC electrical membrane properties is presented in Table 4.2. 

Resting membrane potential was measured in 221 cells. No other report for RMP of 

smooth muscle cells from intrapulmonary veins was available for comparison, but 

the average value of -35.8 mV was within the range seen in freshly isolated PASMC, 

such as -27.9 ± 0.9 mV in mouse (Ko et al., 2007), -40 ± 1 in rat (Hogg et al., 2002) 

and -50 ± 4 mV in rabbit (Osipenko et al., 1997). When PASMC were cultured, their 

RMP was -55.4 ± 2 mV in human (Peng et al., 1996), -41 ± 4 mV in canine (Doi et 

al., 2000) and -39.9 ± 0.9 in rat cells (Yuan et al., 1993b). 

Table 4.2. Passive electrical membrane properties of PVSMC. 

The membrane capacitance of porcine PVSMC was 108 ± 42 pF. This value is 

higher than most reported for myocytes in pulmonary arteries: 25 ± 1.66 pF in 

freshly isolated human PASMC (Shimoda et al., 1998), 35.27 ± 5.9 pF in human 

cultured PASMC (Peng et al., 1996) and 31 ± 7 pF in freshly isolated rabbit PASMC 

(Franco-Obregon and Lopez-Barneo, 1996b). However, there is evidence of 

myocytes with comparable capacitance values. For example, Yuan et al. (1993b) 

described pulmonary artery myocytes (although not freshly dissociated) that have a 

membrane capacitance of 141.5 ± 14.2 pF. 

Cell measurement Mean value ± 

SD 

Minimum 

value 

Maximum 

value 
n 

Resting membrane 

potential, mV 

-35.8 ± 5.9 -55 -18 221 

Membrane 

capacitance, pF 

108 ± 42 31.1 252.9 145 
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The reason for the higher capacitance values in the PVSMC compared to PASMC is 

most probably due to differences in the size of the cells. As membrane capacitance is 

proportional to total membrane surface, when making comparisons it is important to 

take into consideration that the porcine PVSMC are relatively large cells (~160 µm 

long). For example, Clapp and Gurney (1991) reported a capacitance of 28 ± 1 pF in 

rabbit pulmonary artery myocytes that are roughly three times smaller (approximated 

from photomicrographs as there is no mean value provided) than those described 

here. Therefore, it is to be expected that much larger cells have a proportionally 

larger membrane capacitance. 

The mean specific membrane capacitance of PVSMC was 3.2 µF/cm2. This value is 

greater than the generally accepted value of 1 µF/cm2, which is thought to be typical 

for smooth muscle cells (Toro et al., 1986) and closer to values seen in cardiac 

myocytes (Powell et al., 1980). However, values higher than 1 µF/cm2 have been 

reported previously in smooth muscle cells: 2.3 µF/cm2 in cultured rat myometrial 

cells (Mollard et al., 1986) and 1.42 µF/cm2 in freshly dissociated smooth muscle 

cells from the rat uterus (Yoshino et al., 1997). Furthermore, a literature search 

revealed a relative lack of actual recorded values for specific membrane capacitance 

in smooth muscle cells, as many studies do not actually calculate it. This is because 

researchers typically measure cell capacitance and rely on the generic value of 1 

µF/cm2 for specific membrane capacitance to subsequently estimate the surface of 

the cells, rather than measuring the cell surface and using it to find out the specific 

membrane capacitance. 

The difference between the values observed here and the lower typical value may be 

due to the intrinsic membrane properties of porcine PVSMC causing higher specific 

capacitance and/or an underestimation of calculated cell surface due to the presence 

of folds and caveolae which increase the actual membrane surface of the cell and 

thus leads to an overestimation of specific capacitance (Mitchell et al., 1986). 
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The comparison between the morphometric and passive electrical properties of 

porcine PVSMC reported here and those of PASMC published elsewhere indicate 

there are significant differences between these two types of cell. These dissimilarities 

may have a basis in the embryological origin of the vessels. In the foetal lung, both 

pulmonary arteries and veins are formed by vasculogenesis, but their smooth muscle 

cells originate separately and have different cytoskeletal protein content (Hall et al., 

2002). The arteries are formed in close relation to the airways and arterial myocytes 

derive in part through the proliferation and migration of adjacent bronchial smooth 

muscle, but also through differentiation from the surrounding mesenchyme (Hall et 

al., 2000, Fernandes et al., 2004). The veins, however, develop at sites away from 

the bronchi and their smooth muscle cells have their embryological origin solely in 

undifferentiated mesenchymal cells (Hall et al., 2002). 

These embryological differences are likely to be reflected in the distinct structural 

and functional characteristics of the matured pulmonary vascular smooth muscle. For 

example, caldesmon – an actomyosin regulatory protein – is expressed during 

development in arterial smooth muscle from 56 days of gestation, but not in the 

veins (Hall et al., 2002). Caldesmon is believed to play an inhibitory role in the 

regulation of smooth muscle contraction (Katsuyama et al., 1992, Pronina et al., 

2007) and could act through tethering of actin to myosin to inhibit the actin-activated 

myosin ATPase (Lee et al., 2000). Such structural differences may well contribute to 

the greater vasoactivity seen in the veins compared to the arteries (Shi et al., 1998, 

Arrigoni et al., 1999, Zhao et al., 1993). 

In this study, single smooth muscle cells freshly isolated from porcine distal 

intrapulmonary veins were obtained and characterised for the first time. The 

properties of PVSMC reported here revealed significant differences exist between 

venous and arterial smooth muscle cells. PVSMC are longer and thinner than 

PASMC. Furthermore, the larger size of PVSMC was also reflected in a greater 

membrane capacitance compared to pulmonary arterial myocytes. These results have 

shown viable single smooth muscle cells, which can be used successfully in cell 
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electrophysiology studies. The further aim of the project is to examine ion channel 

activity during HPV in the veins, and more specifically to investigate the effects of 

hypoxia on specific ion conductances in porcine PVSMC. 
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Chapter 5.  

Effect of hypoxia and K+ channel 

antagonists on whole-cell currents 

5.1. Introduction 

The contribution of pulmonary veins to hypoxia-induced pressor responses in the 

pulmonary circulation has been demonstrated under in vivo conditions (Shirai et al., 

1986), as well as in studies using the isolated, perfused whole-lung model (Hillier et 

al., 1997). Likewise, in experiments measuring isometric tension elicited by isolated 

vessels, hypoxia contracts both small intrapulmonary arteries and veins (see results 

presented in previous chapters and reports from Raj and Chen, 1986, Zhao et al., 

1993, al-Tinawi et al., 1994). 

Early reports did not, however, clarify whether the hypoxic response is due to a 

direct action on vascular smooth muscle or occurs through contractile mediators 

released by the vascular endothelium or pulmonary parenchyma (Fishman, 1976, 

Heath, 1977). While current evidence supports the involvement of vasoactive 

substances in modulating the severity of the hypoxic response (Weir and Archer, 

1995, Dumas et al., 1999), it was the finding that hypoxia contracts smooth muscle 

cells from pulmonary arteries (Murray et al., 1990, Madden et al., 1992) which 

ultimately demonstrated that hypoxia sensitivity is an intrinsic feature of smooth 

muscle cells. In isolated pulmonary veins, hypoxic pressor responses can be elicited 

in vessels that have been endothelium denuded (Feletou et al., 1995), suggesting the 
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venous response is also mediated through direct action of hypoxia on venous smooth 

muscle. 

In pulmonary arterial smooth muscle cells (PASMC), hypoxia raises the cytosolic 

free Ca2+ concentration (Cornfield et al., 1993, Salvaterra and Goldman, 1993). This 

occurs at least partly as a result of membrane depolarisation caused by hypoxia-

induced inhibition of whole-cell potassium currents (Post et al., 1992, Yuan et al., 

1993a). 

Given the involvement of Kv channels in hypoxia-induced responses in PASMC 

(Bonnet and Archer, 2007, Hogg et al., 2002), this raises the possibility that these 

channels may also contribute to acute hypoxic PV constriction. As yet however, 

there is no available data regarding the effect of hypoxia on K+ channels in the 

plasma membrane of PVSMC. 

The aim of these studies was to characterise the kinetics of whole-cell voltage-

activated currents in porcine PVSMC, use potassium channel antagonists to separate 

the components of the outward current and examine the susceptibility of these 

currents to hypoxic conditions. 

5.2. Experimental protocols 

Following the development of the isolation protocol (see section 2.3.2), freshly 

dispersed porcine PVSMC were used in cell electrophysiology experiments. By 

means of the whole-cell configuration of the patch clamp technique, various voltage 

clamp protocols were used to elicit whole-cell voltage activated currents under 

different extracellular conditions, including low O2 and in the presence of various K+ 

channel antagonists. 
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5.2.1. Voltage-activated whole-cell currents 

A standard voltage protocol was used to elicit families of whole cell voltage 

activated outward currents in PVSMC. Cells were held at the resting potential of 

-80 mV and test voltage steps were applied for 400 ms to a range of potentials 

starting at -80 mV and incrementing by 10 mV up to a final voltage of +80 mV 

(graphic representation of voltage protocol shown in Figure 5.1). 

 
Figure 5.1. Standard voltage protocol. Voltage was stepped for 400 ms from 

-80 mV to +80 mV in 10 mV increments. 

80 mV

-80 mV
100 ms
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To describe the rate of activation of the voltage-activated outward currents, the 

traces were fitted with an equation following Hodgkin-Huxley kinetics (Dempster, 

2006): 

 ( )Pt acteItf τ/
max 1)( −−=  (12) 

where Imax is the maximum level of the voltage activated current, τact is the time 

constant of activation and P is the power variable that best describes the channel 

activation. 

5.2.2. Time course experiments 

Time course experiments were used to investigate the dynamics of the hypoxia-

induced effect on voltage-activated whole-cell currents by means of a repeated single 

voltage step protocol. Membrane currents were elicited by a single 400 ms voltage 

pulse from -80 mV to +80 mV applied repeatedly every 30 seconds for the entire 

duration of the recording under constant flow of bath solution (graphic 

representation in Figure 5.2). 

Recording of membrane currents was normally started under flow of standard 

normoxic bath solution. Thereafter, the flow of bath solution was switched from 

normoxic to hypoxic for approximately 5 minutes (considered sufficient as in wire 

myography experiments hypoxic venoconstriction usually peaked during the first 5 

minutes), followed by return to normoxic solution. In some experiments, K+ channel 

antagonists were added to both normoxic and hypoxic bath solutions to observe 

whether they would alter the effect of hypoxia. In separate experiments designed to 

examine the effect of blocking K+ channels, the flow was changed to bath solution 

containing K+ channel antagonists and a few minutes were allowed for the current to 

achieve a steady level. The drugs were subsequently washed out with fresh standard 

solution. 
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Figure 5.2. Repeated single step protocol. Single rectangular voltage pulses to 

+80 mV were applied repeatedly to elicit whole-cell currents. Break represents 30 

seconds. 

5.2.3. Data analysis 

Currents were recorded using the WinWCP software and data values were exported 

as text files for analysis with the help of Microsoft Office Excel. Currents were 

measured as the average current over 50 ms during the steady state phase to 

minimise the influence of noise and spontaneous transient currents. Results are 

presented either as measured current values (in pA) or current density (in pA/pF), by 

dividing the measured current values by the respective cell capacitance (in pF; 

calculated as explained in the General Methods chapter). Differences between mean 

values were assessed using a paired t-test or one- or two-way ANOVA followed by 

post-hoc Bonferroni analysis as appropriate, and were considered significant for 

P values of less than 0.05. 

80 mV

-80 mV
200 ms
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5.3. Results 

5.3.1. Voltage-activated whole-cell outward currents 

In the absence of drugs and using standard normoxic bath solution, whole-cell 

membrane currents were elicited in pulmonary vein smooth muscle cells during 

400-ms depolarising voltage steps in 10 mV increments from a holding potential of 

-80 mV (representative traces shown in Figure 5.3A). 

The result was a family of large rapidly activating outward currents (Iout), which did 

not inactivate during the 400 ms duration of the test potential and had superimposed 

spontaneous transient outward currents (STOC). The STOC were more evident at 

more depolarised membrane potentials, suggesting a complex, multiple component 

current. 

The steady state Iout current at +80 mV had an average value of 2715.9 ± 404.8 pA 

(n = 17). When values were converted into current density, the resulting mean was 

29.2 ± 2.6 pA/pF and the current data plotted as a function of their respective voltage 

potential gave the current–voltage relationship for Iout, which is illustrated in Figure 

5.3B. 

To examine how current activation changed with test potential, the time constant of 

activation (τact) was calculated by fitting the current traces with an exponential 

Hodgkin-Huxley function (Figure 5.4A). As the potentials became more depolarised 

the currents activated faster, as τact approximately halved from 36.6 ± 7.1 at -10 mV 

to 18.9 ± 2.3 at +80 mV (n = 13, average values plotted against test potential shown 

in Figure 5.4B). 
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Figure 5.3. Voltage-activated outward currents in PVSMC. (A) Representative 

membrane currents recorded in response to the application of test pulses shown in 

the upper panel; dashed line marks zero current level. (B) Current density values 

from 17 cells were averaged and plotted (mean ± SEM) against test potential to give 

the current–voltage relationship. 
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Figure 5.4. Activation of outward currents in PVSMC. (A) Activation of currents 

at different test potentials. Circles represent recorded current values and dashed lines 

are curves fitted with a Hodgkin-Huxley function. (B) The effect of voltage on the 

time constant of activation. Data values represent mean ± SEM from 13 cells. 

-20 -10 0 10 20 30 40 50 60 70 80 90
15

20

25

30

35

40

45

0.5 nA

25 ms

(A)

+30 mV

+10 mV

+50 mV

+70 mV

+80 mV

+60 mV

(B)

τ ac
t (

m
s)

mV



CHAPTER 5. EFFECT OF HYPOXIA AND K+ CHANNEL ANTAGONISTS ON WHOLE-CELL CURRENTS 

 153

5.3.2. The effect of TEA on whole-cell currents 

To evaluate the effect of 5 mM tetraethylammonium chloride – a relatively non-

specific blocker of K+ channels (Michelakis et al., 2001) – on the whole-cell 

currents, the standard bath solution was replaced with TEA-containing bath solution 

in the perfusion chamber, and at least 5 minutes were allowed for the drug to make 

its effect. TEA produced a marked inhibition of the mean steady-state current by 

77.5 ± 3.8 % at +80 mV (P < 0.05, n = 12, representative traces in Figure 5.5A), 

which was reversible upon washing out with standard bath solution. Significance 

occurred starting with the current elicited by the +10 mV step (see Figure 5.5B). The 

mean value of the current activated by the last voltage step of +80 mV was 637.2 ± 

121.5 pA in the presence of TEA, compared to the control value of 3118.8 ± 425.6 

pA (P < 0.05, n = 12). 

5.3.3. The effect of Penitrem A on whole-cell currents 

In response to the application of 100 nM Penitrem A, a potent inhibitor of large-

conductance Ca2+-activated K+ channels (BKCa) (McGahon et al., 2005), the 

amplitude of the steady-state Iout current at +80 mV was irreversibly reduced to 

943 ± 108.7 pA (P < 0.05, n = 17), corresponding to a 65% inhibition. The STOC 

activity observed during control recordings was abolished by Penitrem A, revealing a 

rapidly activating current (Figure 5.6A, lower trace). In addition to the reduction in 

current amplitude, the exposure of PVSMC to Penitrem A also had an effect on the 

activation rate of the outward currents. Mean τact for every test potential was 

calculated from 16 cells. After Penitrem A, the currents were more rapidly activating 

than controls, which was reflected in smaller time constants of activation (τact) across 

all test potentials (although significance was achieved only for the -10, 0 and 70 mV 

steps). As in the case of control currents, the relationship between mean τact and 

voltage showed faster currents at more depolarised potentials (τact decreased from 

28.5 ± 5.1 ms at -10 mV to 10.9 ± 1.2 ms at 80 mV, see Figure 5.7). 
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Figure 5.5. The effect of 5 mM TEA on Iout. (A) Representative membrane currents 

recorded using the standard voltage protocol in the absence (upper panel) and 

presence (lower panel) of TEA. (B) Mean current density–voltage relationship in the 

absence (full circles) and presence (open circles) of TEA containing bath solution. 

* indicates significant reduction in current density in the presence of TEA when 

compared to control (P < 0.05, n = 12). 
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Figure 5.6. The effect of 100 nM Penitrem A on Iout. (A) Representative 

membrane currents recorded using the standard voltage protocol in the absence 

(upper panel) and presence (lower panel) of Penitrem A. (B) Mean current density–

voltage relationship in the absence (full circles) and presence (open circles) of 

Penitrem A containing bath solution. * indicates significant reduction in current 

density in the presence of Penitrem A when compared to control (P < 0.05, n = 17). 
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Figure 5.7. The effect of Penitrem A on activation of Iout. (A) Activation of 

currents at different test potentials in the presence of Penitrem A. Circles represent 

recorded current values and dashed lines are curves fitted with a Hodgkin-Huxley 

function; for clarity, not all traces are shown. (B) The effect of voltage on mean τact 

in the absence (full circles) and presence (open circles) of Penitrem A containing 

bath solution. * indicates significant reduction in τact in the presence of Penitrem A 

when compared to control (P < 0.05, n = 16). 
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5.3.4. The effect of hypoxia on the outward current 

The effect of hypoxia on the family of whole-cell voltage-activated outward currents 

in PVSMC was examined using the standard protocol with voltage steps of 400 ms 

from -80 to +80 mV. 

Steady state Iout current amplitude was not affected by perfusion with hypoxic 

solution (3384 ± 804.5 pA vs. 3142 ± 533.7 pA, n = 8, P > 0.05), representative 

traces and I/V curve are shown in Figure 5.8. 

However, when control currents were elicited repeatedly, there was variation in the 

amplitude of the recorded currents, resembling a random activity with no identifiable 

pattern. This observation raised the possibility that a potential effect of hypoxia on a 

component of the whole-cell current could have been masked by the spontaneous 

activity. 

In earlier experiments, Penitrem A inhibited both the amplitude and the spontaneous 

activity of Iout by selectively blocking BKCa channels (see Figure 5.6). This effect of 

Penitrem A appeared clearer in time course experiments, which involved a single 

voltage step from -80 mV to +80 mV repeated every 30 seconds (see Figure 5.9). 

In smooth muscle cells from pulmonary arteries, hypoxia directly reduces KV 

currents (Post et al., 1992, Yuan et al., 1993a). Therefore, blocking BKCa 

spontaneous activity with Penitrem A facilitated experiments designed to test 

whether KV currents in PVSMC were sensitive to low O2. Thus, further experiments 

examining the effect of hypoxia were performed in the presence of Penitrem A 

(100 nM). 
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Figure 5.8. The effect of hypoxia on Iout. (A) Representative membrane currents 

recorded using the standard voltage protocol under normoxia (upper panel) and 

hypoxia (lower panel). (B) Mean current density–voltage relationship in normoxic 

(full circles) and hypoxic (open circles) bath solution; P > 0.05, n = 8. 
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Figure 5.9. Time course effect of 100 nM Penitrem A on Iout. Representative 

whole-cell currents recorded by stepping every 30 seconds from a holding potential 

of -80 mV to +80 mV for 400 ms. The normoxic standard solution was replaced with 

Penitrem A (100 nM) containing bath solution; values represented steady-state 

current amplitude. 
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5.3.5. The effect of hypoxia on the Penitrem A insensitive current 

To follow the time course of the effect of hypoxia on the outward current in the 

presence of Penitrem A, a repeated single step protocol was used. Hypoxic flow 

caused an immediate reduction in the current, which started within the first 30 

seconds of the cells becoming hypoxic (see Figure 5.10A). By the end of the 5 

minute period of hypoxia, the result was an inhibition of the steady-state current by 

19.4 ± 2.3% to the average value of 1270.5 ± 146.5 pA (P < 0.05, n = 6, Figure 

5.10B). Following re-oxygenation, the current returned to 1426.9 ± 192.8 pA (n = 5), 

which was comparable to pre-hypoxic levels (see Table 5.1), suggesting that the 

decrease in the current was due to channel blockade rather than channel rundown. 

Hypoxic perfusion also increased the τact of the Penitrem A insensitive current 

(IK(Pen)) by 81.2 ± 6.9% to 22 ± 2.6 ms (P < 0.05, n = 6, Figure 5.11B), suggesting 

hypoxia inhibited a component with fast activation kinetics. Representative 

activation curves fitted with a Hodgkin-Huxley model are shown in Figure 5.11A. 

The effect was reversible during recovery from hypoxia, as τact decreased to values 

which were only an average of 8.4 ± 6.4% above the normoxic levels (P > 0.05, n = 

6, see Table 5.1). 

Table 5.1. The effect of hypoxia on the steady-state current and τact. Values are 

means ± SEM (n). τact is the time constant of activation. Significant difference 

(P < 0.05): * between hypoxia and normoxia; § between hypoxia and recovery. 

 Normoxia Hypoxia Recovery 

Steady-state 

current, pA 

1593 ± 207.9 (6) 1270.5 ± 146.5*§ (6) 1426.9 ± 192.8 (5) 

τact, ms 12 ± 1.1 (6) 22 ± 2.6*§ (6) 13.1 ± 1.7 (6) 
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Figure 5.10. The effect of hypoxia on the Penitrem A insensitive current. 

(A) Whole-cell currents were recorded by stepping every 30 seconds from a holding 

potential of -80 mV to +80 mV for 400 ms. The normoxic Penitrem A (100 nM) 

containing bath solution was made hypoxic for 5 minutes, followed by recovery to 

normoxia. (Upper panel) Representative experiment with steady state current values 

against time; black circles are the time points when the sample traces underneath 

were obtained. (Lower panel) Sample traces obtained before (a), during (b) and after 

(c) hypoxic perfusion. (B) Mean ± SEM of current densities. * indicates significant 

reduction in mean current density compared to normoxia (P < 0.05, n = 6). 
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Figure 5.11. The effect of hypoxia on the activation of the Penitrem A 

insensitive current. (A) Activation of currents during normoxia, hypoxia and 

recovery. Circles represent recorded current values during the activation phase and 

lines are curves fitted with a Hodgkin-Huxley function. (B) The time constant of 

activation τact (mean ± SEM) of the outward current at +80 mV increased reversibly 

during hypoxia. * indicates a statistically significant difference in mean τact during 

hypoxia and Penitrem A vs. Penitrem A alone (P < 0.05, n = 6). 
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5.3.6. The effect of 4-AP and Glyburide on the hypoxia-induced inhibition of the 

Penitrem A-insensitive current 

The effect of the Kv channel blocker 4-AP (5 mM) (Michelakis et al., 2001) on IK(Pen) 

was assessed using the repeated single step protocol. The currents elicited by the +80 

mV steps were significantly inhibited during perfusion with 4-AP containing bath 

solution (Figure 5.12A). The average inhibition by 4-AP had a value of 24.7 ± 4.9% 

(P < 0.05, n = 6, Figure 5.12C), with the mean steady state current at 1193.1 ± 134.1 

pA compared to a control value of 1570.4 ± 120.8 pA (n = 6). 

Further experiments were done to verify whether 4-AP had any influence on the 

hypoxic effect on IK(Pen). When 4-AP was present in the bath, hypoxia had no 

significant effect on the steady state current (P > 0.05, n = 6, Table 5.2), indicating 

that the component inhibited by hypoxia was 4-AP sensitive. 

In separate experiments, the effect of Glyburide, an ATP-sensitive K+ channel 

blocker, on IK(Pen) was tested. As shown in Figure 5.12B, the addition of 10 µM 

Glyburide had no significant effect (P > 0.05, n = 5, Table 5.2 and Figure 5.12D), 

thus a potential susceptibility to Glyburide of the hypoxia-sensitive current in 

PVSMC was ruled out. 
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Table 5.2. The effect of hypoxia and K+ channel blockers on the Iout current. 

Values are means ± SEM (n). Percentage inhibition was calculated individually for 

every cell and subsequently averaged. * indicates significant difference (P < 0.05). 

 
Steady state current (treated vs control),  

pA 

Inhibition,  

% 

Hypoxia 1270.5 ± 146.5* vs 1593 ± 207.9 (6) 19.4 ± 2.3% 

4-AP, 5 mM 1193.1 ± 134.1* vs 1570.4 ± 120.8 (6) 24.7 ± 4.9% 

Hypoxia  

(presence of 4-AP) 

1131.6 ± 125.2 vs 1193.1 ± 134.1 (6) 4.9 ± 1.8% 

Glyburide, 10 µM 877 ± 203.9 vs 866.8 ± 191.5 (5) -0.02 ± 2.8% 
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Figure 5.12. The effect of 4-AP and Glyburide on the Penitrem A insensitive 

current. Representative current traces illustrate the effect of 4-AP (A) and 

Glyburide (B) in the presence of Penitrem A; capacitive transients have been 

truncated offline for clarity and dashed lines mark zero current level. Comparison of 

mean values of the steady state current for 4-AP (C) and Glyburide (D) * indicates 

significant differences between amplitude of currents recorded in the presence of 

4-AP and control (P < 0.05, n = 6). 
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5.3.7. The hypoxia-sensitive difference current 

As shown previously, hypoxic flow reduced the amplitude of the steady state 

Penitrem A insensitive current and decreased its rate of activation (increased τact). 

These results implied that, compared to the control current, the hypoxia-inhibited 

component had a steady state-value of approximately 20% and was a more rapidly 

activating current (since its inhibition had caused a decrease in activation rate). 

However, in order to further characterise the shape and kinetics of the current 

inhibited by hypoxia, it was necessary to isolate and illustrate this component. This 

was achieved by subtracting the current traces recorded before and during hypoxic 

perfusion (see Figure 5.13A), which revealed the hypoxia-sensitive, difference 

current (IK(H)), as shown in Figure 5.13B. 

IK(H) activated rapidly to an early peak, after which it declined, inactivating partially 

before reaching a steady state phase. The shape of the current revealed that previous 

measurements (made at the steady state phase) which estimated the amount of 

inhibition induced during hypoxic perfusion at ~ 19% were in fact underestimating 

the hypoxia sensitivity of the Penitrem A insensitive current. When the same 

measurements were repeated at the rise phase (at a time point equivalent to the peak 

of IK(H)), it was revealed that the amplitude of IK(H) represented 36.3 ± 3.4% of the 

control current (n = 6). 

5.3.8. Time course of the hypoxic inhibition of IK(H) 

To examine the time course of the hypoxic effect on IK(H), the hypoxia-insensitive 

current (i.e. the current where hypoxic inhibition was maximum) was subtracted 

from all other current traces recorded (Figure 5.14A). Peak IK(H) was attenuated by 

69.5 ± 4.7% (P < 0.05, n = 6) after approximately 1 min from the start of the hypoxic 

flow (Figure 5.14B) and was, by definition, completely inhibited by the end of the 

hypoxic period. 
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Figure 5.13. The hypoxia-sensitive difference current. (A) Representative currents 

elicited by depolarization from a holding potential of -80 mV to a test potential of 

+80 mV. Recordings made during normoxia and hypoxia are shown superimposed 

and the red hashed area represents the amount inhibited by hypoxia; dashed lines 

mark zero current level. (B) The hypoxia-sensitive, difference current (IK(H)) shown 

is the difference current equivalent to the hashed area. 
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Figure 5.14. The hypoxia-sensitive IK(H) current during perfusion with normoxic 

and hypoxic solution. (A) Currents were recorded using a repeated single step 

protocol during perfusion with normoxic and hypoxic Penitrem A (100 nM) 

containing bath solution. IK(H) currents were obtained by subtraction. (Upper panel) 

Representative experiment with peak IK(H) current values plotted as a function of 

time; black circles represent the time points when the sample traces underneath were 

obtained. (Lower panel) Representative IK(H) traces obtained before (a), during (b) 

and after (c) perfusion with hypoxic bath solution. (B) Mean peak current density of 

the IK(H) under normoxic, hypoxic (after ~1 min) and recovery to normoxia 

conditions. * indicates significant reduction in mean current density in the presence 

of hypoxia and Penitrem A when compared to only Penitrem A (P < 0.05, n = 6). 
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5.4. Discussion 

Potassium channels have a central role in maintaining the resting membrane 

potential in vascular smooth muscle cells (Nelson and Quayle, 1995). Consequently, 

vascular tone can be regulated through the activation or inhibition of different types 

of K+ channels. In particular, by regulating potassium ion fluxes in response to 

alterations of the membrane potential, activated voltage-gated K+ (KV) channels act 

to limit further membrane depolarisation. 

In pulmonary arterial smooth muscle cells, it was demonstrated that, aside from 

membrane potential and vascular tone regulation, K+ currents are involved in acute 

O2 sensing (Post et al., 1992, Yuan et al., 1993a) and also mediate the chronic effects 

of hypoxia (Smirnov et al., 1994, Wang et al., 1997). The functional and molecular 

features of K+ channels from PASMC have been well described in multiple studies 

(see, for example: Yuan et al., 1998b, Ko et al., 2007, Bonnet and Archer, 2007). 

However, even though pulmonary veins also participate in acute and chronic HPV 

(Zhao et al., 1993, Migally et al., 1982), characterisations of ionic currents in 

PVSMC are not available in the literature, with the single exception of a brief section 

in a study on rat pulmonary veins (Michelakis et al., 2001). 

In this study, standard incremental voltage protocols activated a family of large 

whole-cell outward currents (Iout) in porcine PVSMC. Iout was, to a large extent, 

inhibited by the relatively non-selective K+ channel blocker TEA (5 mM), which has 

been reported to block both KCa (Barman, 1997) and Kv channels (Ko et al., 2007), 

suggesting it was predominantly a K+ current. 

Iout activated rapidly with a threshold for activation of -20 mV, became larger and 

noisier at more depolarised potentials and was non-inactivating. These features were 

consistent with those of a “spiky morphology” current in rat PVSMC (Michelakis et 

al., 2001). In addition, the current from rat PVSMC also showed significant 

sensitivity to 5mM TEA. Similar rapidly-activating, non-inactivating currents were 
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also reported in cultured human PASMC (Peng et al., 1996) and in 58% of the 

mouse PASMC tested (Ko et al., 2007). 

Following inhibition of the BKCa component of Iout with Penitrem A, spontaneous 

activity was eliminated and the remaining current had a stable steady-state 

amplitude. Time-course experiments revealed that this Penitrem A-insensitive 

current was inhibited significantly by hypoxia. In the presence of 4-AP, the hypoxia-

induced inhibition of K+ currents was abolished, implying that the hypoxia sensitive 

current is a 4-AP sensitive KV current. In similar experiments, the ATP-sensitive K+ 

channel antagonist Glyburide did not cause a significant effect on the Penitrem A-

insensitive current. 

Direct inhibition of K+ currents by hypoxia was first observed by Post et al. (1992) 

in freshly dispersed canine PASMC. In their experiments, the effect of hypoxia was 

abolished by buffering intracellular Ca2+ or using Ca2+ channel blocker nisoldipine in 

the bath solution, therefore they suggested the hypoxic inhibition was primarily due 

to blocking Ca2+-activated K+ channels. Subsequently, this was disproved by Yuan et 

al. (1993a, 1995) in a study on rat PASMC. Their observations involved Ca2+ 

independent hypoxic inhibition of K+ currents and suggested suggesting that neither 

KCa nor KATP were involved in the initiation of HPV. They provided evidence that 

hypoxia inhibits voltage-gated K+ channels and proposed a mechanism for the 

initiation of hypoxic pulmonary vasoconstriction involving KV channels. These KV 

channels, with a threshold for activation more negative than the resting membrane 

potential, would be open at the resting state and their inhibition by hypoxia would 

cause membrane depolarisation, Ca2+ influx through voltage-gated Ca2+ channels and 

subsequent vasoconstriction. 

To illustrate the hypoxia-sensitive Kv current (IK(H)), the macroscopic currents 

recorded during hypoxia were subtracted from those recorded during normoxic 

conditions (see Figure 5.13). IK(H) was revealed to be a very rapidly activating, 
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partially inactivating current, which had its peak value reduced by ~70% during the 

first minute of exposure to hypoxia. 

This is the first report of a hypoxia-sensitive KV current in pulmonary vein smooth 

muscle cells freshly isolated from adult porcine lungs. The findings presented here 

suggest that this KV current is susceptible to low O2 within a very short exposure 

time and its inhibition by acute hypoxia could contribute to the initiation of hypoxic 

pulmonary vasoconstriction in the pulmonary veins. Its activation and inactivation 

characteristics, including voltage window of current availability, investigated further, 

should provide more information in regards to the physiological relevance of this 

current in porcine PVSMC. 
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Chapter 6.  

Biophysical characterisation of the 

hypoxia-sensitive current in PVSMC 

6.1. Introduction 

According to the most widely accepted theory on HPV initiation, O2 sensitive K+ 

channels are central to the hypoxia sensitivity of smooth muscle cells from the 

pulmonary circulation (Mauban et al., 2005, Weir and Olschewski, 2006). The 

inhibition of K+ currents by hypoxia was demonstrated in PASMC from the dog 

(Post et al., 1992) and the rat (Yuan et al., 1993a). This initial event leads to 

membrane depolarisation, subsequent activation of VGCC and vasoconstriction 

induced by the rise in cytosolic Ca2+ (Moudgil et al., 2005). 

In the pulmonary artery, the channels underlying the hypoxia-sensitive current have, 

in turn, been suggested to belong to the families of Ca2+-activated K+ channels (KCa) 

(Post et al., 1992, Park et al., 1995) and voltage-gated K+ channels (KV) (Yuan et al., 

1995, Patel et al., 1997). Most recent electrophysiological and pharmacological 

evidence supports the latter and indicates the O2-sensitive current in PASMC is a 

slowly inactivating, voltage-dependent delayed rectifier K+ current (Archer et al., 

2000). Consequently, several homo-/heteromeric subtypes from the KV family that 

match that profile have been proposed as candidate channels, with Kv1.5 and Kv2.1 

among the main contenders (Archer et al., 1998). 
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For the first time, evidence of a hypoxia-sensitive K+ current (IK(H)) in smooth 

muscle cells from porcine intrapulmonary veins is presented here (see results section 

5.3.7). In order to understand more about the potential physiological relevance of 

IK(H) in the response induced by hypoxia in intrapulmonary veins, the biophysical 

properties of the IK(H) current were investigated. This involved determining 

activation and inactivation curves, with times to half-maximal activation/inactivation 

and voltage window of current availability, as well as the time required for IK(H) to 

recover from inactivation induced by depolarisation. 

6.2. Experimental protocols 

The same approach of subtracting the currents recorded under hypoxic conditions 

from the normoxic currents across different voltage protocols was used to study the 

activation and inactivation kinetics of IK(H) in more detail. 

6.2.1. Voltage dependence of inactivation 

Steady-state inactivation of IK(H) was examined using a double-pulse protocol, with 

an initial 1-s conditioning voltage step of varying amplitude (increasing from -100 to 

+20 mV in 10 mV increments) followed without a delay by the application of a 

500-ms common test pulse at a constant voltage (+80 mV) (see Figure 6.1). 

The amount of inactivation achieved during the initial conditioning pulse was 

assessed through the size of the current evoked by the test step, which was 

proportional with the amount of channels remaining available for activation. 



CHAPTER 6. BIOPHYSICAL CHARACTERISATION OF THE HYPOXIA-SENSITIVE CURRENT IN PVSMC 

 174

The inactivation curve was obtained by plotting normalized peak test currents 

[(I-Imin)/(Imax-Imin)] as a function of the conditioning voltage and fitting the data with 

a Boltzmann function: 

 2/)(
21

01
)( A

e
AAxf dxxx +

+
−

= −  (13) 

where A1 is the initial amplitude, A2 is the final amplitude, x0 is the centre of the 

curve (i.e. the voltage for half-inactivation) and dx is the time constant (i.e. the 

slope). 

 
Figure 6.1. Voltage dependent inactivation protocol. Double-pulse voltage 

protocol consisting of an initial conditioning step of increasing amplitude (-100 mV 

to +20 mV) followed immediately by a constant test step at +80 mV. 
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6.2.2. Voltage dependence of activation 

The voltage dependence of activation of IK(H) was also investigated. Membrane 

currents were elicited by stepping from the holding potential of -80 mV to potentials 

ranging from -50 mV to +100 mV for 500 ms. Peak currents were converted into 

conductance by dividing the macroscopic current by the driving force, using the 

following equation (McGahon et al., 2005): 

 )( Kt EVIG −=  (14) 

where G is the conductance, I is the peak current, Vt is the test potential and EK is the 

potassium equilibrium potential (taken as -80 mV). Data values were subsequently 

normalised and fitted with a Boltzmann distribution. 

6.2.3. Time of recovery from inactivation 

To further characterise the hypoxia-sensitive current, the time of recovery from 

inactivation of IK(H) was investigated using a double-pulse voltage protocol. The two 

pulses – conditioning and test – were both depolarising steps of 200 ms duration 

from -80 mV to +80 mV. During the conditioning step, cells were held at +80 mV to 

inactivate IK(H) and then stepped for a variable time interval (starting from 10 ms 

initially and increasing by 20 ms up to 290 ms) back to -80 mV to relieve 

inactivation. Thereafter, a test pulse to +80 mV was applied to evaluate the degree to 

which inactivation had been removed (see Figure 6.2). The amount of current 

activation upon returning to +80 mV was dependent on time spent at -80 mV. 
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Figure 6.2. Recovery from inactivation protocol. Double-pulse voltage protocol 

with equal conditioning and test voltage steps from -80 mV to +80 mV, separated by 

a variable time interval (10 ms to 290 ms) at the holding potential of -80 mV; for 

clarity, all steps except the last one are shown with grey lines. 

The peak currents evoked by the test pulses were measured and normalised to their 

respective peak conditioning currents. The normalised values were averaged and the 

data obtained were plotted as a function of the variable interval between the 

conditioning and test potentials (in ms). Thereafter, the plot was fitted with a curve 

using the following exponential equation: 

 
rectAeytf τ−−= 0)(  (15) 

where t is the variable time interval, τrec is the time constant for recovery, y0 is the 

offset (i.e. the non inactivating fraction of the current) and A is the amplitude (i.e. the 

inactivating component). The parameter τrec is equivalent to the time in which the 

current regains 63% of its inactivated fraction and describes the speed of recovery 

from inactivation. 
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6.3. Results 

6.3.1. Family of IK(H) currents 

Voltage protocols were applied to the same cells under both normoxic and hypoxic 

conditions, resulting in the recording of pairs of families of currents (e.g. pair of 

sample traces shown in Figure 6.3). The effect of hypoxia was to partially inhibit the 

control normoxic currents resulting in a family of smaller and slower activating 

currents. 

In each case, the target hypoxia-sensitive currents (IK(H)) were then obtained by 

subtracting the hypoxic from the normoxic currents. The result was a family of 

outward currents, with rapid activating and partial inactivating kinetics 

(representative family of IK(H) currents shown in Figure 6.4). 

6.3.2. Current kinetics of IK(H) 

The IK(H) current activated rapidly to a peak current density of 4.4 ± 1 pA/pF at 

+80 mV (n = 6). The time to peak activation (TTP) was used to characterise the 

speed of activation of IK(H) (as illustrated in Figure 6.5). 

The mean TTP value of the current activated by a +80 mV voltage pulse was 14.4 ± 

3.3 ms (n = 5). Following peak activation, the current declined to a steady-state level 

of 53 ± 7.2% (n = 5) of peak value. 
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Figure 6.3. Whole-cell voltage-activated outward currents recorded under 

normoxia and hypoxia. Sample families of currents elicited under normoxic (A) 

and hypoxic (B) flow. Capacitive transients have been truncated offline for clarity; 

dashed lines represent zero current level. 
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Figure 6.4. Family of IK(H) currents. (A) Sample families of hypoxia-sensitive 

currents obtained by subtraction of currents in Figure 6.3. Capacitive transients have 

been truncated offline for clarity; dashed line represents zero current level. 

(B) Mean current density–voltage relationship for IK(H). 
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Figure 6.5. Time to peak of IK(H). Representative trace of IK(H) at + 80 mV. 

TTP was calculated as the time passed (in ms) between the onset of the depolarising 

test step and the peak of the current; dashed line marks zero current. 
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6.3.3. Activation and inactivation curves 

The voltage dependency of activation and inactivation were used to infer the current 

window of availability of IK(H) (McGahon et al., 2005), which is characterised by 

partial activation and incomplete inactivation of channels. 

The application of the inactivation protocol evoked peak test currents that decreased 

as the conditioning pulse increased (representative recording in Figure 6.6A). Mean 

values (calculations detailed in Experimental protocols) were fitted with a 

Boltzmann function to give the inactivation curve (Figure 6.6B, empty circles). The 

voltage for half-inactivation (V0.5) for the IK(H) current was derived, giving a value of 

-58.5 mV, while the slope was 17.6 mV. For the activation curve, mean conductance 

values were well fitted with a Boltzmann distribution (Figure 6.6B, full circles) with 

a V0.5 activation of -13 mV and a slope of 14.9 mV. 

The areas under the inactivation and activation curves overlapped to give a window 

of current availability between -60 mV to +20 mV, with peak window current 

availability at -31.86 mV (see inset in Figure 6.6B). 

6.3.4. Recovery of IK(H) from inactivation at +80 mV 

Following subtraction of the currents recorded under normoxic (Figure 6.7A) and 

hypoxic (Figure 6.7B) conditions, the family of IK(H) currents was revealed. Peak test 

currents were partially inactivated after the initial time interval of 10 ms, but quickly 

recovered as the time spent at the holding potential of -80 mV increased (Figure 

6.8A). The normalised peak values of the hypoxia-sensitive currents, averaged 

between 4 cells, were plotted as a function of the delay time between the 

conditioning and the test pulse. The rate of recovery after inactivation at +80 mV 

was well described by a single exponential function (R2 = 0.96) with a time constant 

(τrec) of 67 ms (shown in Figure 6.8B). 
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Figure 6.6. Activation and inactivation curves. (A). Representative membrane 

currents recorded using the voltage-dependent inactivation protocol; for clarity, not 

all current traces are shown. (B) Curves describing the voltage dependence of 

activation (full circles, from 7 cells) and inactivation (open circles, from 5 cells). 

Inset: the window of current availability of IK(H). 
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Figure 6.7. Recovery from inactivation protocol under normoxia and hypoxia. 

Sample families of currents elicited under normoxic (A) and hypoxic (B) flow. 

Capacitive transients have been truncated offline for clarity; dashed lines represent 

zero current level. 
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Figure 6.8. Recovery of IK(H) from steady-state inactivation. (A) Representative 

traces of hypoxia-sensitive currents obtained after subtraction; dashed lines marks 

zero current level; for clarity, not all current traces are shown (B) Average time 

course for recovery from inactivation from 4 cells. The plot was fitted with a single 

exponential giving a time constant for recovery of 67 ms. 
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6.4. Discussion 

The present study reports the identification of a hypoxia-sensitive KV current in 

pulmonary vein smooth muscle cells freshly isolated from the adult porcine lung. 

The biophysical features of the hypoxia-sensitive IK(H) current have similarities to the 

typical attributes of transient (A-type) currents, which are voltage-gated K+ currents 

with rapid rates of activation and steady-state inactivation. 

In previous reports, the modulation of A-type KV currents by oxygen levels has been 

shown in other tissues. For example, in rabbit pulmonary neuroepithelial bodies 

which function as airway oxygen sensors, hypoxia sensitivity was carried by an 

A-type K+ channel (Fu et al., 2007) and in rodent neurons, an A-type current was 

regulated by the cellular redox state (Ruschenschmidt et al., 2006). Also, in cultured 

rat pulmonary artery cells, a rapidly activating, steady-state inactivating Kv current 

was reversibly inhibited by hypoxia (Yuan et al., 1993a). 

The rapid rate of activation of IK(H) was comparable to observations made in rabbit 

portal vein (time to peak ~ 20 ms) (Beech and Bolton, 1989), but slower than an 

ultra-fast activating current in murine portal vein (time to peak of 4.1 ms) (Yeung et 

al., 2006). The potential at which IK(H) half-inactivated was within the range seen in 

other vascular muscle (-78 to -38 mV), while the time of recovery from steady-state 

inactivation was comparable with data from gastro-intestinal smooth muscle 

(Amberg et al., 2003), but faster than in rat retinal arterioles (118.7 ms) (McGahon et 

al., 2005), human mesenteric arteries (254 ms) (Smirnov and Aaronson, 1992) and 

rabbit pulmonary artery (> 10 s) (Osipenko et al., 1997). 

The inactivation of the IK(H) current from its early peak was rapid, however it was 

only partial. A steady-state IK(H) current was present in all recordings and had a mean 

value of 53% of peak amplitude. This finding contrasts with the properties of A-type 

currents, which are usually completely inactivating (Iida et al., 2005). However, this 

could be reconciled if, alongside a main A-type current, IK(H) contained a secondary 

non-inactivating component that was also sensitive to hypoxia and 4-AP, possibly a 
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delayed rectifier current such as those reported in rat PASMC (Archer et al., 1996, 

Post et al., 1995). This matter would be clarified through further research to 

determine the molecular identity of the channel(s) underlying IK(H). 

Given its KV nature, the function of the channel underlying the IK(H) current is 

intrinsically voltage dependent, therefore its functional role in vascular smooth 

muscle relies on the ability of the channel to maintain its activation at 

physiologically relevant membrane potentials. In this respect, KV channel activity is 

a balance between channel activation and inactivation at any given membrane 

potential. In most vascular tissues, A-type currents do not contribute to the resting 

membrane potential (RMP) due either to their activation thresholds being more 

positive than RMP (Amberg et al., 2003) or their voltage of complete inactivation 

negative to RMP (Beech and Bolton, 1989). Conversely, an A-type current has been 

recently identified in retinal arterioles (McGahon et al., 2005) with an activation 

threshold that suggests it is likely to be active at RMP. Similarly, in porcine PVSMC 

the steady-state activation and inactivation curves for IK(H) revealed a voltage 

window of current availability that included the observed range of RMP, which 

suggests that IK(H) is likely to be active under resting conditions. Moreover, the mean 

RMP (-35.8 mV) was near the peak of this window (-31.86 mV), when the current 

registers its highest point of availability. This is consistent with observations made in 

PASMC, where the voltage window was narrower, between -40 and -10 mV, but the 

peak availability of -31.5 mV was similarly close to the RMP value of -27.9 mV (Ko 

et al., 2007). 

In smooth muscle from retinal arterioles, McGahon et al. (2005) have suggested that 

the A-type current is active at RMP and its hyperpolarizing effect on the RMP 

suppresses membrane excitability. A similar role for Kv in PVSMC is supported by 

the observation that application of 4-AP results in contraction of rat pulmonary veins 

(Michelakis et al., 2001). The studies presented here provide further evidence for 

this role and suggest that, in common with reports for the pulmonary artery, hypoxic 
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inhibition of Kv channels contributes to the development of hypoxic pulmonary 

venous contraction. 

In PASMC, existing evidence suggests that the O2-sensitive K+ channels with roles 

in acute and chronic HPV are the delayed rectifier channels Kv1.5 and Kv2.1 

(Moudgil et al., 2006), and that transient currents are not involved in HPV sensing 

(Archer and Michelakis, 2002). 

However, given the biophysical properties of IK(H) described here, the possible 

candidates for O2-sensitive K+ channels in PVSMC have to include KV subtypes 

known to generate A-type currents (e.g. Kv1.4 and Kv4.3) (Archer and Michelakis, 

2002). 

Regrettably, there are no studies available in the literature reporting KV channel 

subtype expression in PVSMC, but Kv1.4 and Kv4.3 were found among the KV 

α-subunits expressed in distal pulmonary arteries of the rat (Wang et al., 2005b). 

Moreover, the latter has been identified in human cultured PASMC (Iida et al., 

2005). A comparison of the biophysical properties of IK(H) with those of the TEA-

sensitive component of the Kv4.3 current in human PASMC shows some 

similarities: mean voltage at half inactivation (-54 mV vs. IK(H): -58.5 mV) and 

activation (-2.4 mV vs. IK(H): -13 mV) and time of recovery from inactivation (τrec) 

(238 ms vs. IK(H): 67 ms). In a different study, a Kv4.3 channel with V0.5 of 

inactivation of -51.7 mV, V0.5 of activation of -13.1 mV and τrec of 84 ms was 

reported in single HEK293 cells (Hatano et al., 2004). Furthermore, Kv4.3 may have 

sensitivity to hypoxia, as its expression in pulmonary arteries of rats exposed to 3 

weeks of hypoxic ventilation was decreased (Wang et al., 2005b). Even if the pore 

forming KV subunit is not intrinsically O2 sensitive, this can be acquired by 

association with modulatory β-subunits. For example, an A-type current generating 

Kv4.2 α-subunit gained O2 sensitivity by coexpression with Kvβ1.2 in transfected 

HEK293 cells (Perez-Garcia et al., 1999). 
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For this same reason, the O2 sensitive subtypes identified in PASMC (e.g. Kv1.5 and 

Kv.2.1) should not be ruled out in PVSMC, due to possible associations with 

regulatory β-subunits which are known to be able to alter the gating of the channel 

and change its inactivation properties. For example, a non-inactivating delayed 

rectifier KV channel was shown to gain A-type properties by association with a 

specific Kvβ1 subunit (Rettig et al., 1994). 

Further work including functional studies using specific inhibitors (phrixotoxin-II for 

Kv4.3, 2,3 Butanedione monoxime (BDM) for Kv2.1 and DPO 1 for Kv1.5) and 

antibodies against specific subtypes of KV channels and molecular studies, such as 

immunolocalisation, RNA isolation and RT-PCR should clarify the molecular 

identity of IK(H). 
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Chapter 7.  

General Discussion 

Hypoxic pulmonary vasoconstriction (HPV) is a unique physiological mechanism 

that optimises pulmonary gas exchange through a functional shunting mechanism 

(Traber and Traber, 2002). HPV minimises the impact of regional hypoxia (e.g. 

during localised lung disease) by restricting blood flow to the areas of the lungs that 

are poorly ventilated. Consequently, regional perfusion is matched with ventilation 

and the oxygen saturation of arterial blood is maintained at optimal levels. However, 

HPV can also have detrimental effects during acute (e.g. high-altitude pulmonary 

oedema) and chronic (e.g. PHT) generalised alveolar hypoxia as a result of global 

hypoxic vasoconstriction, which leads to raised blood pressure in the pulmonary 

circulation. 

The main site of action of HPV is the pulmonary microcirculation, including both 

small pulmonary arteries and veins (Hillier et al., 1997). The intrapulmonary veins 

participate in all manifestations of HPV, from acute hypoxic contractile responses 

(Zhao et al., 1993), to increased reactivity during subacute hypoxia (Sheehan et al., 

1992) and undergo remodelling during chronic low O2 breathing (Wagenvoort and 

Wagenvoort, 1976). Hypoxic contractions of the pulmonary veins have been 

reported in multiple species: rats (Dingemans and Wagenvoort, 1978, Zhao et al., 

1993), guinea pigs (Tracey et al., 1989), sheep (Uzun and Demiryurek, 2003) and 

dogs (Hillier et al., 1997). 
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However, despite this and other existing evidence, most investigators disregard any 

significant contribution of the pulmonary veins in HPV (Ward and Aaronson, 1999, 

Dumas et al., 1999, Moudgil et al., 2005, Weissmann et al., 2006). Consequently, 

nearly all the considerable effort that has gone into researching the mechanisms 

involved in initiating and sustaining HPV has been focused on the pulmonary 

arteries, and by comparison little is known on the contractile pathways of the 

hypoxic responses of veins. 

7.1. Main findings 

The effects of hypoxia on the contractility of distal porcine intrapulmonary veins 

were investigated using the wire myography technique and responses elicited were 

compared to those of size-matched pulmonary arteries. Thereafter, single smooth 

muscle cells were freshly isolated from small intrapulmonary veins using a 

specifically developed enzymatic dissociation protocol. The PVSMC were 

characterised morphologically and electrophysiologically. Lastly, using whole-cell 

patch clamping electrophysiology, the effect of hypoxia on outward currents in 

PVSMC was investigated, potassium channel blockers were used to manipulate the 

outward currents and specific voltage protocols were applied in order to describe the 

biophysical properties of the hypoxia-sensitive current. 

Porcine tissue was used in all experiments. The pig was considered a suitable species 

for investigation of HPV, as robust responses to hypoxia in porcine lungs have been 

previously reported (Hakim and Malik, 1988, De Canniere et al., 1992, Liu et al., 

2001) and shown to be larger compared to responses in lungs from rabbits, cats and 

dogs (Peake et al., 1981). Additionally, lungs from pigs have the advantage of being 

sufficiently large to make it practically possible to dissect and use distal 

intrapulmonary vessels, which are known to be the main contributors to the HPV 

response (Shirai et al., 1986). 
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The effects of hypoxia at single cell level were investigated in venous smooth 

muscle cells. It is known that, alongside SMC, the media of pulmonary veins in all 

species studied contains an additional muscular layer composed of a different type of 

muscle cells, with morphological resemblance to the cardiomyocytes in the atrial 

myocardium (Nathan and Gloobe, 1970). Speculations have been made about a 

possible role of these cardiomyocytes in the regulation of venous tone in rats 

(Michelakis et al., 2001). However, in large mammals including humans and pigs, 

the pulmonary vein’s myocardial layer is restricted to extrapulmonary sites (Nathan 

and Gloobe, 1970, Masani, 1986), and the media of intrapulmonary veins and 

venules is entirely comprised of smooth muscle. 

As HPV occurs predominantly in small calibre vessels (Shirai et al., 1986, Hillier et 

al., 1997), it was plausible to assume that, if hypoxia acts directly on smooth muscle 

in the pulmonary veins as it does in the arteries (Post et al., 1992), the hypoxia 

sensitivity would lie within PVSMC. 

7.1.1. Hypoxia constricts isolated PV 

Segments of 4th to 7th order intrapulmonary veins responded with large contractions 

to hypoxia. The venous contractions were greater than those seen in size-matched 

arteries. In previous reports, when contractile responses induced by hypoxia were 

compared in arteries and veins, results differed with the veins exhibiting greater 

responses in pigs (Feletou et al., 1995) and rats (Zhao et al., 1993), whilst arteries 

contracted more in cats (Shirai et al., 1986) and lambs (Wang et al., 1995). 

Intrapulmonary veins also contracted more than arteries in response to high K+ and 

PGF2α. Similar observations were made for contractions to histamine and 5-HT in 

guinea-pigs (Shi et al., 1998), prostaglandins in dogs (Altura and Chand, 1981), 

ET-1 in sheep (Toga et al., 1992) and U46619 in piglets (Arrigoni et al., 1999), but 

the opposite was found with responses to ET-1 in guinea-pigs (Cardell et al., 1990), 

noradrenaline in sheep (Kemp et al., 1997) and 5-HT in dogs (al-Tinawi et al., 
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1994). In some cases, even when veins contracted less than arteries, they were more 

sensitive to the respective agonist (Joiner et al., 1975a). 

There were also differences in the way the hypoxic responses in veins and arteries 

were affected by the presence of agonist-induced pretone. A hypoxic response, albeit 

smaller, was present in the veins even without PGF2α-induced preconstriction, but 

the arteries failed to contract under the same conditions. These findings were 

consistent with observations made in pigs by Miller et al. (1989) and in sheep by 

Uzun and Demiryurek (2003). 

The profiles of the hypoxic responses were fundamentally different in veins and 

arteries. Intrapulmonary veins contracted rapidly to hypoxia, reaching maximum 

elicited tension in the first 5-10 minutes followed by relaxation, which was similar to 

responses seen previously in rat pulmonary veins (Zhao et al., 1993). In the arteries, 

however, the constriction was slow and developed over the entire hypoxic time 

interval. In other preparations of isolated pulmonary arteries, two contractile phases 

have been frequently observed (e.g. Bennie et al., 1991). However, in these cases, 

only the second phase which develops very slowly over 40 minutes to 1 hour, 

resembling the arterial responses reported here, is considered physiologically 

relevant (Ward and Aaronson, 1999). 

These differences may reflect in different contributions of veins and arteries to HPV 

in whole lungs. Most studies reporting in vivo measurements of blood pressure in the 

pulmonary circulation (e.g. humans Motley et al., 1947, calves, Kuida et al., 1962) 

found that the hypoxia-induced increase in pulmonary blood pressure occurs 

immediately following the start of low O2 ventilation. Thereafter, maximum values 

are normally reached in approximately 5 minutes and the pressure plateaues at this 

level for the remaining period of hypoxic ventilation. Similar observations were 

made in preparations of isolated blood- and buffer-perfused lungs (Duke, 1954, 

Weissmann et al., 1995). 
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In other words, the hypoxic pressor response develops significantly faster in whole 

lungs and intact animals compared to isolated pulmonary arteries, which are the site 

of HPV according to accepted dogma. This discrepancy could be explained by the 

early contribution of raised microvascular pressure due to downstream 

venoconstriction. In the same way, during prolonged hypoxia (> 15 minutes), the 

pressure in isolated veins decreases, but remains at a raised level in whole lungs, 

which may be due to increased contribution of arterial contraction.  

The venous contractions were significantly affected when extracellular Ca2+ was 

removed from the bath solution, while arterial responses were not. This finding is 

consistent with work by Tracey et al. (1989) who reported that hypoxic 

venoconstriction in pigs was Ca2+ dependent and by Mikkelsen and Pedersen (1983) 

who observed that contractions of human veins were more susceptible to Ca2+ 

removal than those of arteries. Furthermore, Devine et al. (1972) compared the 

amount of SR from various types of vascular smooth muscle and then studied the 

contractions of the same types of smooth muscle under Ca2+-free extracellular 

conditions. They found that pulmonary arteries had larger amounts of SR compared 

to other types of smooth muscle and this was consistent with their ability to maintain 

significant contractions in the absence of calcium influx. 

Lowering extracellular Cl- did not significantly modify responses of veins to 

hypoxia, but the Cl- channel antagonist NFA inhibited venous responses. While these 

findings suggest an NFA-sensitive conductance is involved in promoting contraction 

to hypoxia in porcine intrapulmonary veins, they are difficult to interpret further due 

to the possible non-specific actions of Cl- channel blockers on KCa channels (Ottolia 

and Toro, 1994, Greenwood and Large, 1995). Further work at cellular level using 

newer, more specific channel blockers would help clarify the role of the Cl- 

conductance in HPV. 

Overall, the differences in the contractile responses observed in wire myography 

studies between small veins and arteries strongly suggest specific mechanisms of 



CHAPTER 7. GENERAL DISCUSSION 

 194

venous contraction exist and should therefore be thoroughly investigated, as have 

been those in the arteries. 

7.1.2. Characterisation of PVSMC 

Single, freshly isolated, porcine PVSMC have not been described before in the 

available literature. In the present study, a specific cell isolation protocol was 

developed and optimised for the isolation of porcine venous smooth muscle cells. 

Enzymatic dissociation of small segments of distal PV yielded sufficient relaxed and 

physiologically viable PVSMC, which have been morphometrically and 

electrophysiologically characterised here for the first time. 

The PVSMC were found to be considerably longer and thinner than smooth muscle 

cells from arteries. As discussed previously (see section 4.4), the difference between 

the length of PVSMC and PASMC at rest could reflect an inversely proportional 

relationship with the resting level of cytosolic Ca2+ (Murphy and Khalil, 2000), 

which may help explain the greater reliance of venous contractions on extracellular 

sources of Ca2+ (Mikkelsen and Pedersen, 1983). 

Given the normal low pulmonary venous pressure, it is intuitive that even a small 

contractile force could reduce the venous lumen relatively easily (Rivera-Estrada et 

al., 1958). Since myocytes in the walls of small veins have a greater resting length, 

this may potentially imply a larger intrinsic ability to shorten (Tolic-Norrelykke and 

Wang, 2005), which would impact venous resistance to a greater extent. As vascular 

resistance is inversely proportional to the radius of the vessel to the fourth power 

(Levitzky, 2002a), a very small reduction in vessel diameter would bring about a 

significant rise in resistance to blood flow. 
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7.1.3. Hypoxia inhibits a K+ current in PVSMC 

In single smooth muscle cells from small porcine intrapulmonary veins, voltage-

clamp protocols activated a family of large outward currents which were 

predominantly carried through K+ channels and showed significant spontaneous 

transient activation. Perfusion with hypoxic solution did not inhibit the outward 

current, but the spontaneous activity under control conditions made the results 

difficult to interpret. 

However, in the presence of BKCa channel antagonist Penitrem A, a stable outward 

current was obtained and a reversible inhibitory effect of hypoxia of the Penitrem A-

insensitive whole-cell current was apparent. Using subtraction to obtain the 

difference current, the hypoxia-sensitive current (IK(H)) was revealed in PVSMC. 

IK(H) is a rapidly activating, partially inactivating current with a fast time of recovery 

from steady-state inactivation.  

In the presence of KV channel blocker 4-AP, the effect of hypoxia on the Penitrem 

A-insensitive current was abolished, suggesting IK(H) is a 4-AP-sensitive current. 

The biophysical properties of this current include a voltage window of current 

availability (i.e. interval in which modulation by voltage permits channel activity) 

described by thresholds of activation and inactivation of -60 mV and +20 mV 

respectively, with peak availability at -31.86 mV. The resting membrane potential of 

PVSMC measured under zero current clamp (-35.8 mV) falls between these 

thresholds suggesting IK(H) is active under resting conditions. 

The rapid inactivation of IK(H) was only partial, with a steady-state sustained current 

present in all recordings, while A-type currents are known to inactivate almost 

entirely (Iida et al., 2005). This observation could be explained if alongside the main 

A-type current that inactivates completely, IK(H) contained a secondary component, a 

slower or non-inactivating current, possibly a delayed rectifier that also possesses 
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hypoxia sensitivity. Such currents were observed in pulmonary arteries from rat 

(Archer et al., 1996, Post et al., 1995). 

In PASMC, the main candidate channel subtypes are Kv1.2 and Kv1.5. Rapidly 

inactivating currents (e.g. Kv1.4 and Kv4.3) are not believed to be involved in HPV 

(Archer and Michelakis, 2002). However, the properties of IK(H) described here 

suggest that transient A-type currents such as Kv1.4 and Kv4.3 may play a role in 

HPV in porcine PVSMC. Alternatively, the association of non-inactivating pore-

forming α-subunits with the regulatory β-subunits could change the gating of the 

channel pore and confer inactivation properties to these channels (Rettig et al., 

1994). Further work to determine the molecular identity of IK(H) would help clarify 

these aspects. 

In conclusion, in view of the available literature, this is the first study to identify and 

functionally characterise a hypoxia-sensitive K+ current in PVSMC. These results 

have shown that this current possesses rapid activation and inactivation kinetics 

suggestive of an A-type K+ current (McGahon et al., 2005). Furthermore, the voltage 

dependence of channel availability suggests IK(H) is likely to be involved in the 

maintenance of resting membrane potential. Thus, these findings indicate that 

inhibition of IK(H) by hypoxia is physiologically relevant and any subsequent 

membrane depolarisation may initiate the HPV response in porcine intrapulmonary 

veins. 

7.2. Perspectives 

The studies presented here bring evidence in support of the participation of 

pulmonary veins to HPV and highlight fundamental distinctions in how veins and 

arteries respond to low O2. These findings suggest that existing knowledge on the 

mechanisms of HPV in the arteries should not automatically be presumed to apply to 

the venous side. Therefore, further research is required to advance the understanding 
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of individual mechanisms underlying pulmonary venous contraction and bridge the 

gap with the knowledge of arterial contractile mechanisms. 

The description of the hypoxia-sensitive current and its biophysical characteristics 

reported here provides the basis for establishing its physiological significance, but 

further studies are required to determine the molecular identity of the underlying 

channel(s) and its(their) potential role in regulating venous return within the 

pulmonary circulation. 

This would include functional studies into the susceptibility of IK(H) to specific 

inhibitors of candidate KV subtypes channels, such as phrixotoxin-II for Kv4.3, 

BDM for Kv2.1 and DPO-1 for Kv1.5 or targeted antibodies for Kv1.4, as well as 

examining the effect of these functional antagonists on resting membrane potential in 

PVSMC. Secondly, the confirmation of the presence of specific KV subtypes in PV 

smooth muscle should be sought by molecular biology techniques, such as 

immunolocalisation, RNA isolation and RT-PCR to establish the functional 

expression of channels. 

In addition, further contractile studies should investigate the effect of generic K+ 

channel blockers as well as specific inhibitors of KV subtypes on hypoxic responses 

of isolated porcine intrapulmonary veins. This would establish whether antagonism 

of KV channels mimics the HPV response in veins, as was previously shown in 

arteries (Post et al., 1992). 

In the pulmonary artery, the functional expression of KV channels is essential to the 

regulation of pulmonary arterial tone and the downregulation or dysfunction of KV 

channels plays a part in the development of pulmonary hypertension and vascular 

remodelling (Stenmark and Mecham, 1997, Yuan et al., 1998a). A better 

understanding of KV channel function in the pulmonary vein may point to their 

potential as therapeutically relevant targets in preventing or limiting high-altitude 

oedema formation and/or reducing venous remodelling in chronic pulmonary 

respiratory disease. 
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Finally, additional mechanisms previously shown to contribute to HPV in pulmonary 

arteries could be involved in the veins. In rabbit PASMC, Franco-Obregon and 

Lopez-Barneo (1996a) reported modulation of L-type Ca2+ channel activity by O2 

levels. They observed that Ca2+ currents in PASMC from resistance arteries were 

reversibly increased in response to hypoxia, which would contribute to hypoxic 

vasoconstriction. Otherwise, ClCa are present in rat PASMC and their activation by 

depolarisation-induced Ca2+ influx is functionally important during agonist-induced 

contractions (Yuan, 1997). Moreover, ClCa have also been implicated in promoting 

increased [Ca2+]i in rat PASMC during chronic hypoxia (Yang et al., 2006). 

Therefore, the contributions of ClCa and L-type Ca2+ channels to membrane potential 

in PVSMC should be examined under normoxic and hypoxic conditions using patch-

clamping studies. 

7.3. Conclusions 

While the distal arteries are probably the main site of HPV in terms of contribution 

to the increase in vascular resistance during hypoxia (see discussion in section 1.2.2), 

small veins have the ability to sense alveolar hypoxia (Raj and Chen, 1986) and have 

been repeatedly shown to play a significant part in HPV (reviewed in Gao and Raj, 

2005b). Therefore, their role should not be disregarded, particularly as they may be 

increasingly important during pathological states, such as pulmonary oedema and 

PHT. 

Arteries have received much attention from investigators, but pulmonary veins are 

still being largely overlooked in recent reviews (Ward and Aaronson, 1999, Dumas 

et al., 1999, Sylvester, 2001, Moudgil et al., 2005, Weissmann et al., 2006) despite 

compelling evidence that active venous constriction takes place in response to 

hypoxia in many species (e.g. lamb, Raj and Chen, 1986, guinea pig, Tracey et al., 

1989, ferret, Raj et al., 1990, rat, Zhao et al., 1993, pig, Feletou et al., 1995, sheep, 

Uzun and Demiryurek, 2003). 
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This trend is unfortunate, in that it has led to most new investigation techniques 

introduced in the field of HPV research being applied exclusively with pulmonary 

arterial smooth muscle, whilst leaving a considerable gap in the understanding of 

cellular processes in the PVSMC during HPV. 

All the findings reported here support the hypothesis that small porcine 

intrapulmonary veins are capable of considerable vasomotion and actively 

participate in HPV through different mechanisms than arteries. Moreover, smooth 

muscle cells from pulmonary veins showed intrinsic hypoxia sensitivity. For these 

reasons, and bearing in mind the fact that the relative importance of the veins is 

significantly higher in the pulmonary than in the systemic circulation (Levitzky, 

2002a), more research should be done to uncover the specific mechanisms 

underlying pulmonary venous contraction. To conclude, the words of two among the 

few investigators recognising the importance of pulmonary veins seem appropriate 

(Fung and Huang, 2004 p. 39): 

"In the future, we should pay as much attention to the pulmonary venous 

smooth muscle as to the pulmonary arterial smooth muscle." 
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