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Abstract: 

Unlike other BCC metals, the plastic deformation of nanocrystalline Ta during compression 

is regulated by deformation twinning. Whether or not this twinning exhibits anisotropy was 

investigated through simulation of displacement-controlled nanoindentation test using molecular 

dynamics simulation. MD data was found to correlate well with the experimental data in terms of 

surface topography and hardness measurements. The mechanism of the transport of material was 

identified due to the formation and motion of prismatic dislocations loops (edge dislocations) 

belonging to the 1/2<111> type and <100> type Burgers vector family. Further analysis of crystal 

defects using a fully automated dislocation extraction algorithm (DXA) illuminated formation and 

migration of twin boundaries on the (110) and (111) orientation but not on the (010) orientation and 

most importantly after retraction all the dislocations disappeared on the (110) orientation suggesting 

twinning to dominate dislocation nucleation in driving plasticity in tantalum. A significant finding 

was that the maximum shear stress (critical Tresca stress) in the deformation zone exceeded the 

theoretical shear strength of tantalum (Shear modulus/ 2π~10.03 GPa) on the (010) orientation but 

was lower than it on the (110) and the (111) orientations. In light to this, the conventional lore of 

assuming the maximum shear stress being 0.465 times the mean contact pressure was found to 

break down at atomic scale. 
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Abbreviations: 
 

BCC                                 Body centred cubic 
CAT                                 Crystal analysis tool 
COMB                             Charge optimized many body potentials 
DFT                                 Density-functional theory 
DXA                                 Dislocation extraction algorithm 
EAM                                Embedded-atom-method 
FCC                                 Face centred cubic 
GB                                   Grain boundary 
MD                                  Molecular dynamics  
NVE                                 Microcanonical ensemble 
OVITO                             Open Visualization tool 
PBC                                 Periodic boundary condition 
ReaxFF                            Reactive Force field 
TRISE                              Temperature and rate indentation size effect 
VMD                                Visual molecular dynamics 
 

Nomenclatures: 
a                                      Contact radius of the spherical indenter 
A                                     Projected area  
b                                      Direction of Burgers vector 
B                                     Bulk modulus 
Ci                                     Elastic constants of the material 
D                                     Grain size 
E or Es                            Bulk elastic modulus of the material 
EShape                              Size dependent Young's modulus of the material  
F or P                              Normal force or load on the indenter 
G                                     Shear modulus 
h                                      Instantaneous displacement of the indenter 
hf                                     Residual depth of indentation 
hmax                                 Maximum depth of indentation  
H                                     Bulk hardness of the material 
Hs                                    Size dependent hardness 
KHx  Coefficients of a parabolic relationship between hardness and D-1/2  
L                                      Total length of dislocations in Å 
P-h                                   Load-displacement curve 
pm                                    Mean pressure (force / projected area) 
R                                      Radius of the indenter 
Rpl                                    Radius of the plastic zone 
S                                      Slope of the unloading curve (Stiffness) 
Ta                                    Tantalum  
σhydrostatic                         Hydrostatic stress 
σTresca                              Tresca Stress or Maximum shear stress  
σ1, σ2 and σ3                    Principal stresses in three dimensions 
σy                                     Size dependent yield stress 
σ0                                     Bulk yield stress 
ε                                       Strain  
τ                                        Shear stress 
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1. Introduction 

 Tantalum, a BCC metal and a part of refractory metal group is a candidate material for 

applications in bio-medical industries, high-temperature hardware and in the electronics industry 

partly also because of its very high melting point (3290K) which is exceeded only by rhenium 

(3453K) and tungsten (3683K) thereby allowing to study the BCC peculiarities of Ta at room 

temperature (BCC metals typically shows a BCC-type and FCC-type behaviours at about 0.15 

Tmelting ~ 493.5 K for tantalum) [1]. Hence, there is a surge of interest in advancing the current 

understanding on the deformation mechanics of tantalum.  

Awareness of the nanoscale mechanical properties and the mode of deformation of metallic 

materials (BCC metals in particular) is of particular interest to several disparate disciplines 

including materials science, applied physics, solid state physics, geophysics as well as planetary 

physics. In this context, whilst nanoindentation differs from nanometric cutting as the former is 

dominated by compression rather than shear, it enables generating the conditions of high hydrostatic 

pressure [2], which in turn facilitates studying fundamental reasons of incipient plasticity. Since 

first being proposed by Hertz in 1881, contact mechanics theory has undergone numerous 

extensions incorporating anisotropic heterogeneous media along with changes in indenter shape. 

The most widely studied example of contact loading conditions, nanoindentation testing, has 

become an indispensable tool in characterizing a range of materials. Nanoindentation of metals in 

particular, involves plastic deformation due to several competing mechanisms such as nucleation 

and motion of dislocations, deformation twinning and grain boundary sliding (a subset of slip 

mechanics) [3]. 

 A notable feature of plasticity in BCC metals is their asymmetry in tension-compression 

behaviour [4] and this asymmetry has been attributed to the differences in the different deformation 

mechanisms i.e. dislocation glide prevails in compression while twinning is prominent during 

tensile pulling of BCC metals. An exception to this observation has recently come from recent 

experiments [5], where unlike other BCC metals, the plastic deformation of Ta during its 

nanoindentation was found to be dominated by the deformation twinning. Another area where Ta 
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has shown deviation from the classical knowledge is that its elastic-plastic transition on the (110) 

crystallographic direction occurs beyond the theoretical critical value of shear stress [6], thereby 

pointing to the fact that the parameter critical resolved shear stress may not be applicable at atomic 

scale where the role of dislocation mechanics is more prevalent. This has in fact now been clarified 

that at atomic scale, a more fundamental criterion for nucleation of plastic deformation is that the 

work done over the displaced surface should be greater than the line energy of the new dislocation 

loop [7] and hence an understanding of the dislocation mechanics is important. These observations 

should not be surprising considering the fact that Ta does not obey the Schmidt law. In this regard, 

the current pool of knowledge on the deformation behaviour of Ta is still sparse [5]. Surveying the 

wealth of reported literature on Ta, the following questions have still not been answered: 

1. Whether the maximum shear stress during plastic deformation of Ta exceeds the theoretical 

shear strength on all crystal planes or just one particular plane? 

2. What is the critical magnitude of the stress (von Mises, Tresca, Principal stresses) that 

causes nanoscale yielding in tantalum on the three principal orientations? 

3. What is the fate of crystal twinning upon retraction of the load?  

4. Does the crystal twinning in tantalum during nanoindentation is common to all crystal 

planes or is this observable only on selected crystal planes? If so, does the effect of twinning 

during unloading shows the same anisotropic behaviour as it is observed during loading? 

In pursuit of an answer to these questions, the MD simulation in this work was carried out as a 

substitute to potentially time consuming and costly experiments which would not permit the precise 

and real time monitoring of all the atomic scale processes. Exploration of such sort will help 

improve the design of tantalum material for various engineering applications and will 

simultaneously help enhance our overall understanding of this notorious BCC material which 

deviates in its deformation behaviour from other BCC materials.  

2. Literature review 

 Following a brief discussion on the crystallography of Ta, this section presents a brief review 

of the literature on the atomic structure, structure-property relationship and mechanical response of 
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Ta under several types of deformation processes such as nanoindentation, uniaxial tension and 

uniaxial compression.  

 In nature, tantalum exists in either the BCC alpha phase (α-Ta) or the metastable-tetragonal 

beta phase (β-Ta). α-Ta is the phase commonly found in bulk tantalum (ductile), and exhibits higher 

ductility but lower resistivity and hardness than β-Ta (brittle) [8]. In a magnetron sputtering study of 

Ta films, Myers et al. [9] reported that the β to α transition occurs between the temperature 638 K 

and 648 K. Knepper et al. [10] also had similar observations and indicated that β-Ta is no longer 

favourable when temperatures reaches in the range of 613 K to 623 K. Bulk Ta (α-Ta) resides in a 

BCC crystal structure and hence analysing its crystallography is rather straightforward. The closed 

packed planes and closed-packed directions in a BCC crystal have important implications on the 

deformation behaviour of the material. It is significant in most cases that if the atomic density per 

unit area is highest on any crystal orientation and the distance between the two adjacent planes is 

farthest, then this becomes the weaker plane and is more amenable to deformation [11]. To aid to 

this aspect, an analytical exercise was performed to evaluate the planar density (number of atoms/ 

unit atomic area) and linear atomic density (number of atoms per unit atomic length) to identify the 

closed pack planes and directions in tantalum as shown schematically in figure 1. In conjunction 

with figure 1, table I provide the quantitative details of the number of atoms on a particular crystal 

plane, atomic projection area, planar density of atoms on each plane, linear atomic density of atoms 

along each direction and distance between two adjacent crystallographic of Ta.  
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Table I: Variation in the properties of Ta with respect to various crystal orientations 
 
 Number of atoms 

on the plane (m) 
Atomic 

projection area 
(n)  

Planar 
density 
(Planar) 

(number of 
atoms / Å2) 

Linear 
atomic 
density 

(Direction) 
(number of 
atoms/ Å) 

Distance 
between 

two 
adjacent 
planes 

Cube (010) 
14

4
1

=×   
a×a 
=a2 

1/a2       

=0.0916 
1/a  

=0.3027 Å 
a  

= 3.304 Å 
Dodecahedron 

(110) 214
4
1

=+





 ×  

√2a×a  
= `22a  

2/√2a2 
=0.1295 

1/√2a  
=0.214 Å 

√2a  
= 4.67 Å 

Octahedron 
(111) 2

13
6
1

=×  aa
2
32

2
1

×





  

= `2

2
3 a  

2

2
3

2
1

a
 

=1/√3a2 

= 0.0529 

2/√3a  
=0.3495 Å 

0.577a 
 = 1.906 Å 

a = lattice constant of Ta is considered as 3.304 Å as per EAM potential used in this study. 
 

 

(a) (010) orientation     (b) (110) orientation      (c) (111) orientation 

Figure 1: Schematic illustration of various crystal orientations in tantalum. 

 It can be seen from Table I that the distance between the two atomic planes is maximum on the 

(110) plane and minimum on the (111) plane. This implies that the Peierls stress (0.02-0.03 times the 

bulk shear modulus of Ta) required to move a dislocation on the (110) plane of BCC will decrease while 

on the (111) plane would increase. The maximum value of linear atomic density in Table I signifies 

the closed packed direction in the crystal whereas analogous to this i.e. planar density signifies 

closely-packed planes in a crystal. Accordingly, it is also evident from Table I that in tantalum (akin 

to other BCC materials) the (110) plane has high planar atomic density (analogous to close-packed 

planes) and the <111> are closest-packed directions. What is also known from the literature is that 

since it requires lower magnitude of energy/ shear stress for slip on densely closed packed planes, 
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slip in BCC material should occur preferentially on the (110) planes along the <111> direction. 

However, it may be noted that at low temperature, the slip system in tantalum is <112> direction on 

the (110) plane [12].  

 With this theoretical knowledge, a myriad of studies have been done to study the 

deformation behaviour of α-Ta as a model BCC system. Recent research shows that the plastic 

deformation in tantalum start with twins, which transforms to shear loops and eventually to 

prismatic loops whereby the screw components of the shear loop cross-slip and pinch out a 

prismatic loop in a “lasso” action [13]. Biener et al. [1] performed nanoindentation experiments on 

the (010), (110) and (111) orientation of single crystal Ta to characterise the dislocation nucleation 

phenomenon, and their results indicated that single pop-in behaviour characteristic can be observed 

for the (001) orientation, but multiple pop-ins were observed on  the (110) and (111) orientations. 

Attributing this as a general trend to all the BCC materials, they speculated that the (010) 

orientation of Ta is a typical example of surface which shows dislocation multiplication process, i.e. 

once plasticity starts, the material flows continuously and no further pop-ins are observed. Guerrero 

et al. [6] carried out MD simulation of uniaxial compression of nanocrystalline tantalum using their 

in-house developed EAM potential function to study the elastic-plastic transition on three 

crystallographic directions namely, (100), (110) and (111). They monitored the variation of phonon 

with respect to the applied strain rate and based on this, they concluded that the nucleation of 

defects along (110) of Ta was due to crystal twinning arising out of dynamical instabilities (soft 

phonons). They also discovered that the critical stress causing the elastic-plastic transition on the 

(110) crystallographic direction exceeds the theoretical critical value of shear stress of Ta.  

α-Ta films with grain size of 10 to 30 nm prepared on oxidised silicon substrate by 

magnetron sputtering were recently investigated using nanoindentation [5] with a Berkovich 

indenter. It was found out that the plastic deformation of nanocrystalline Ta during nanoindentation 

is due to the crystal twinning (the location of twins being near to the edges and corners of the 

indent) with the threshold density limit of twins being 4×107 per metre resulting in a total strain of 

about 3.7% [5]. This finding was in contrast to a common lore whereby shear banding is considered 
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to be the prevalent mechanism during the deformation of BCC metals. This couples further with the 

work of Tang et al. [14] who observed an inverse Hall-Petch relationship in Ta between the 

compressive yield stress and grain size in the range between 2.5 nm and 30 nm thus adding further 

mystery to the scenario. They performed MD simulation of uniaxial loading using the extended 

Finnis-Sinclair potential to simulate the grain boundary configurations of nanocrystalline Ta, and 

their results revealed that such a system behaved differently when subjected to tensile and 

compressive loading conditions. The critical grain size for the transition from grain-boundary 

plasticity to dislocation plasticity reported by them was 20 nm. A similar observation came from the 

work of Cao et al. [8] who performed nanoindentation experiments on the nanocrystalline β-Ta film 

(prepared by magnetron sputtering on the (111) surface of the silicon substrate). Their results 

indicated that the nanoindentation hardness decreases with decreasing grain size (inverse Hall-Petch 

relationship) at a finite scale of 10-20 nm. Noticeably, the nanoindentation hardness and elastic 

modulus (at a strain rate of 1s-1) obtained by them were about 18 GPa and 183 GPa respectively. 

Smith et al. [15] performed MD simulation of uniaxial tension of polycrystalline tantalum columns 

(built by using Voronoi method) having average grain size of 20 nm at 300K. Their work suggested 

that the process of twin formation lags the process of dislocation nucleation. They observed that at 

lower strain rate (105 to 107 s-1), screw dislocation emission is the initial deformation mechanism 

while at higher strain rate (>108 s-1), deformation twinning prevails.  

 It may thus be seen that an ample amount of disparate literature exists reporting several 

important results on the deformation aspects of tantalum, some differing with each other.  Most 

importantly, despite all these studies, there has been no effort made to clarify how nanoindentation 

of Ta is going to be influenced by its crystal orientation which mandated the need for this work.  

3. Molecular dynamics simulation of nanoindentation 

 Molecular dynamics (MD) simulation is an appropriate choice to understand the atomistic 

tribology of simultaneously occurring processes, the foremost of which are structural 

transformations in the material, nucleation and propagation of dislocations and thermodynamics of 

the process. In this work, the “Large-scale atomic/molecular massively parallel simulator” (13 
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September 2013 version) [16] was used to perform a series of MD simulations. An Open 

Visualization tool (OVITO) [17] was used to visualize and analyze the atomistic simulation data 

while an automated "dislocation extraction algorithm" (DXA) [18] and a crystal analysis tool (CAT) 

[19] were used for automated identification of crystal defects, dislocation lines and their Burgers 

Vector from the output of the MD data.  DXA and CAT in conjunction with OVITO provides unique 

flexibility to measure the length of dislocations in a fully automated fashion, an example may be 

seen elsewhere [20]. 

 The MD simulation model after equilibration is shown in figure 2a. The atoms in the 

Newton region directly affected by the chemical interactions were allowed to follow Newtonian 

dynamics (LAMMPS NVE dynamics), while atoms in a thin boundary layer were subjected to a 

thermostat (LAMMPS NVT dynamics) to dissipate the heat generated in the artificial volume which 

would have otherwise taken away by the air during nanoindentation or lubricant (in cutting). 

Normally, pyramidal indenters, such as Berkovich or cube corner, are classified as ‘‘sharp’’ 

indenters while spherical indenters are referred to as ‘‘blunt’’ indenters [3]. In practice, almost all 

indenters have some finite edge radius (despite being referred to as extremely sharp) and therefore a 

spherical shaped indenter was deployed (figure 2a) during the simulation to mimic an indenter with 

a finite edge radius. However, the atoms in the indenter were kept fixed (the indenter was assumed 

to be an infinitely rigid body). In the literature, there wasn't any robust interaction potential energy 

function between carbon and tantalum (to the best of our knowledge) and hence, spherical indenter 

was filled with the tantalum atoms to describe the chemical interactions. While such an assumption 

is not novel [21], it was ensured prior to this study that our results on dislocation mechanics and 

yielding stresses are not out of order with such an assumption. Accordingly, we have performed an 

extensive stress and dislocation mechanics analysis and have found that this consideration can 

predict the Tresca yielding stress of the substrate to be in close proximity of what would have 

otherwise predicted by a rigid diamond indenter. We also performed an additional dummy trial with 

a different kind of indenter description. The selection of this kind of indenter was driven from the 

notion that the experimental conditions often involve the presence of oxide layers which creates a 



10 

passivation layer over the indenting surface. To mimic these conditions, Kelchner et al. [7] 

described a purely spherical repulsive rigid indenter with a force potential. As per this potential, 

each atom in the indented material interacts with the idealized indenter to experience a force of 

magnitude F(r) = K(r-R)2 where K is the force constant (2 KeV/Å3= 3204 nN/Å2), R = 3 nm, radius 

of the spherical indenter and r is the distance of an atom of another species from the centre of the 

spherical indenter. This implies that F(r) remains repulsive as long as R > r and becomes zero 

otherwise. To check the sensitivity of the value of K on the nanoindentation results, an additional 

dummy trial was carried out by changing the value of K from 2 KeV/Å3 to 1 KeV/Å3 but the 

simulation results were found insensitive to the value of K. To avoid any artificial effect of the 

temperature (due to thermal fluctuations and thermal vibrations), a low temperature of 10 K was 

used to equilibrate the sample and to perform the nanoindentation. Choi et al. [22] have discussed 

some implications of the boundary conditions for such a simulation model and accordingly the 

model in this work sassumed periodic boundary conditions along X and Z directions (figure 2).  

 A myriad of potential energy functions for simulation of Ta have been proposed in the past 

[23-26]. In common with each other, most of these potential functions predict the yield behaviour of 

Ta associated with the slip of a single screw dislocation arising of a metastable dislocation core 

structure that naturally follows the (112) plane [27]. On studying the extensive literature on the list 

of potential energy functions for Ta, the angular dependent potential function of Mishin et al. [28] 

has been reported to agree well with the ab-initio calculations while the analytical Embedded-atom-

method (EAM) potential proposed by Guellil et al. [29] shows 27% discrepancy between the 

calculated and experimental values of bulk modulus [30] of Ta. Smith et al. [15] noted that the 

EAM potential by Li et al. [30] has been rigorously researched by Alleman et al. [31], who find this 

potential function being robust in revealing elastic modulus, predictions of gamma surfaces, BCC 

screw dislocation core and unstable stacking fault energy barrier determined by density functional 

theory (DFT) calculations. However, a comparison across several potential functions [32] 

specifically compared to study the nanoindentation process suggests that the potential energy 

function proposed by Li et al. [30] poses some serious concerns on the simulation results and is 
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hence unreliable to study Ta under the conditions of high pressure.    

 

 

Figure 2: Schematic diagram (a) MD simulation model of the nanoindentation (b) volume of 
material (1nm×1nm×1nm) considered for stress computation (only 2D representation is shown 
here) 
 

A recent study [32] compared several potential function and suggests an extended Finnis-Sinclair 

1 nm 

X 

Y 

Z 
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potential function proposed by Dai et al. [26] to be least sensitive to indenter diameter and 

indentation velocity. On the other hand, the EAM potential function of Ravelo et al. [23] has been 

tested during nanoindentation [13] as well as shock compression experiments [23] and the outcome 

suggests that this potential function is better in predicting the high pressure and high temperature 

phases of Ta. Since the intent of this work is to understand the deformation behaviour of Ta, this 

study made use of an EAM potential (Ta-1) developed by Ravelo et al. [23] primarily to study 

extreme conditions of temperature and pressure such as during nanoindentation. While the details of 

all these potential functions are readily available from their respective sources, the details of the 

parameters used to develop the MD simulation model in this work are shown in Table II. The 

results reported here are very much reproducible, and these parameters may readily be used for 

replication of results. 

Table II: Details used for development of the MD simulation model 

Equilibrium parameter of tantalum BCC material with a lattice constant of 3.304 Å 

Dimension of the tantalum workpiece 
Crystal 

orientation 
Number of atoms in the workpiece 

21.136 nm × 15.52 nm × 21.136 nm (010) 385024 

21.033 nm × 15.41 nm × 21.165 nm (110) 380952 

21.033 nm × 15.44 nm × 21.018 nm (111) 379080 

Indenter specifications  
6 nm diameter rigid spherical indenter (filled with 

Ta atoms) having (010) crystal orientation 

Description of indenter, workpiece and cross 

interactions (Potential energy function used) 

EAM potential function [23] 

Indenter and specimen surface distance (initial)  0.5 nm 

Depth of indentation 2 nm 

Speed of indentation and retraction 20 m/s = 0.02 nm/ps 

Total simulation time (Indentation+retraction) (2+0.5 nm)/0.02 nm/ps = 125 ps×2 = 250 ps 

Timestep for each calculation  2 fs = 0.002 ps 

Total run timesteps 250/0.002 = 1,25,000 

Boundary conditions Periodic in X and Z direction 

Ensemble used in the simulation NVE at 10 K 
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The analysis of maximum shear stress or Tresca Stress in the deformation zone calls for quantifying 

the atomic stresses and for this reason, the atomic stress tensor1 during the simulation was 

calculated by considering an elemental atomic volume (1 nm × 1 nm × 1 nm) in the deformation 

zone right underneath the indenter as shown in figure 2b. During the simulation, the summation of 

the total stresses acting on this small volume was divided by the pre-calculated total volume of the 

element to obtain the physical stress tensor. The physical stress tensor was then used to assess the 

yielding criteria of tantalum using Tresca stress, von Mises stress, Octahedral stresses, Principal 

stresses and hydrostatic stress using the equations shown in Appendix I. In addition to the yielding 

stresses, further analysis was carried out by estimating the contact pressure (pm) underneath the 

indenter using the Oliver and Pharr method [33]. The details of the implementation of this method 

are described elsewhere and are not repeated here for brevity [2]. For better estimation, the 

parameters such as υs =0.32 (Poisson's ratio of Ta), υi =0.103 (Poisson's ratio of infinite rigid body 

(like diamond)), Ei = 1062.5 GPa (Young's modulus of diamond) were collected directly from the 

MD simulation.   

3.0. Results and discussions  

3.1. Testing of the potential energy function 

 Prior to carrying out the nanoindentation simulations in this work, the potential function was 

tested for its accuracy in reproducing the elastic constants and other important mechanical 

properties such as Zener anisotropy ratio, Young's modulus, shear modulus, Voigt Poisson's ratio 

and Voigt Bulk modulus at 0 K. These values are shown and compared with experiments in Table 

III for reference. 

Table III: Experimental properties of tantalum compared with the MD simulation values 
 

Properties of tantalum 

 Obtained from Ta-1 

EAM potential used in 

this study at 0 K [23] 

Experimental values at 0 K 

[34] 

Equilibrium lattice constant (Å) 3.304 3.3026 

C11 = C22 = C33 (GPa) 262.703 266.32 

                                                 
1 http://lammps.sandia.gov/doc/compute_stress_atom.html 
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C12 = C13 = C23 (GPa) 160.821 158.16 

C44 = C55 = C66 (GPa) 81.815 87.36 

Zener anisotropy ratio 
44

1211

2 C
CC

×
−

 
0.622 0.619 

Young’s modulus (E100) [11] (GPa) 

12
1211

12
11 2 C

CC
C

C
+

−  

140.57 

 

148 

Young’s modulus (E110) [11] (GPa) 

2
121112

2
111144

44
2

121112
2

11

22
)2(

4
CCCCCC

CCCCC
−++

−+
 

190 

 

201 

Young’s modulus (E111) [11] (GPa) 

441211

121144

2
)2(

3
CCC

CCC
++

+
 

215 

 

228 

Shear modulus(G) [35] (GPa) 

 
3

441211 CCC +−
 

61.23 

 

65 

Voigt Poisson's ratio [35] 

441211

441211

264
24

CCC
CCC

++
−+

 

0.34 

 

0.33 

Voigt Bulk Modulus(B) (GPa) [36] 

9
)(2)( 231312332211 CCCCCC +++++

 

194.78 

 

194 

 

 

3.2. Analysis of dislocations and crystal defects in the Ta substrate 

 Indentation essentially consists of pressing a non-compliant indenter into the surface of the 

material to be investigated. The material can accommodate the indenter by elastic or plastic 

deformation, local cracking, nucleation of dislocations, phase transformations, or a combination of 

these accommodation mechanisms. Figure 3 shows the (convoluted looking) dislocation structures 

in the plastic zone of tantalum post indentation by a depth of 2 nm in all the three cases. The bottom 

portion of the figure shows the magnified view both at the peak indentation depth and after the 

indenter was retracted. Further details of these dislocations are provided in table IV. This data was 

used to estimate the dislocation density (m2) in all the three simulation cases [37-38] using 
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)3/h(2)3/R(2nsdislocatio ofLength nsdislocatio ofDensity 33
pl ππ −=  where Rpl is the radius of 

the plastic zone (largest distance of a dislocation from the indentation point) which is assumed to be 

hemispherical, and for an indentation depth of R, the indented volume is also considered 

hemispherical. Consequently, the dislocation density obtained from MD during indentation of Ta by 

2 nm depth, was found to be of the order of 1.6 ×1014 m2.  

(a) 

 
  

 
 

  Upon loading  by 2 nm      After complete unloading 

Rigid tantalum indenter 

X (100) 

Y (010) 

Z (001) 

Arrows perpendicular to the loop 
signifying edge dislocations 

Free surface of the specimen 
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(b)  Upon loading  by 2 nm   After complete unloading (no dislocations) 

 

(c) Upon loading  by 2 nm     After complete unloading 
 
Figure 32: Output of the DXA showing plastic deformation zone, crystal defects, free surfaces and 

                                                 
2 Readers are requested to refer the web based version of this article for correct interpretation of the colour legends 
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dislocation lines during nanoindentation of tantalum on three orientations (a) (010) orientation (b) 
(110) orientation and (c) (111) orientation. The geometric boundaries of tantalum are shown, while 
the geometric boundaries of the disordered phases are not visible in these visualizations. The top 
part shows the bulk view at peak loading conditions while the bottom part shows the magnified 
view of the plastic zone at peak loading and upon unloading. Dislocations with b=1/2<111> are 
shown in blue and b= <100> are shown in red. Arrows indicate the direction of b (Burgers Vector) 
with respect to the dislocation loop. Here these arrows are in a direction perpendicular to the 
dislocation lines signifying that the dislocations are pure edge dislocations.  
 
Figure 3 also revealed that the prismatic dislocation loops were observed to transport the material 

downward under the wake of the indenter. Furthermore, Burgers vector of the dislocation lines 

(arrows shown in figure 3) were found perpendicular to the dislocation line, clearly indicating the 

edge nature of the dislocations rather than screw dislocations observed during tensile pulling [15] of 

Ta. There were two major types of dislocations captured with b=1/2<111> (blue colour) and b= 

<100> (red colour). On some instances, the <100> dislocation was found to form as a result of the 

interaction between two 1/2<111> dislocation loops. The inspection of the dislocation upon 

unloading revealed no dislocation on the (110) orientation unlike the (100) and (111) orientations 

meaning thereby that the plasticity on this orientation in particular is not only driven by dislocation 

nucleation.  

Table IV: Characteristics of the dislocations obtained using the three simulation cases with rigid 
tantalum indenter. L is the total length of dislocations in Å 

 (010) 
orientation 

(110) 
orientation 

(111) 
orientation 

Burgers Vector (b=1/2<111>)    
L (total length) of dislocations 663.914 Å 763.899 Å 993.06 Å 

Burgers Vector (b=<100>)    
L (total length) of dislocations 96.255 Å 149.3 Å 36.44 Å 

    
Total length of dislocations 760.17 Å 913.19 Å 1029.5 Å 
Radius of the plastic zone (Rpl) 131 Å 140 Å 145 Å 
h (displacement of the indenter) 20 Å 20 Å 20 Å 
Dislocation density obtained from the MD 
simulation 1.62 ×1014 m2 1.59 ×1014 m2 1.615 ×1014 m2 

 

Apart from prismatic dislocation loops, crystal defects in the form of twin boundaries below the 

indenter were also observed, these are highlighted in figure 4. In figure 4, the green coloured atoms 

refer to twin boundaries. It is noticeable that the twin boundaries (twin planes ((112) planes) (well 

known to be responsible for plasticity in BCC metals) were noticed only during indentation on the 
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(110) and (111) plane and not on the (010) plane when the indentation was performed with the rigid 

tantalum indenter. However, while the dummy indenter was used, the twin boundaries were 

observed on the (010) plane as well. This is one of those grey area where the use of a diamond 

indenter can verify the presence of twin boundaries during indentation on the (010) orientation of 

Ta. Further analysis using the CAT tool also revealed the presence of FCC atoms on the all the 

crystal planes which is likely on account of the fact that the local temperature of certain atoms 

underneath the indenter was more than 0.15 times the melting temperature of Ta. 

 

 

Y (111) 

X (01-1) 

Z (-211) 

X (-11-2) 

Z (1-1-1) 

   Y (110) 
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Figure 4: Spliced cross sectional views in the XY plane showing twinning on the (110) and (111) 
crystal orientations. No twin boundaries were detected on the (010) orientation. Common neighbour 
analysis (CNA) is used to identify and distinguish the crystalline atoms (shown in brown colour), 
atoms with crystalline defects are shown in yellow colour and rigid indenter is shown in pink 
colour. Green colour is used to mark atoms that form the twin boundaries in the entire substrate. 
 
3.3. 3D stress analysis, maximum shear stress and pileup formation 

       
(a) View on the XY Plane (front view) showing variation in the octahedral shear stress on the three 
orientations of tantalum underneath the indenter obtained from the MD simulation  

 
(b) View in the XZ plane (top view) showing atomic displacements (lattice deformation) on all 
three crystal planes of tantalum obtained from the MD simulation 
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(c) Experimental results [1] obtained from nanoindentation on Ta on three different orientations 
Figure 5: MD results compared with experiments (a) showing octahedral shear stress variation 
while (b) and (c) showing pile-up and lattice deformation along the closed packed directions  

 

Table V: Nanoscale yielding stresses of tantalum obtained from the MD simulation 

Critical value of maximum 

stress (GPa) in the deformation 

zone of tantalum 

(010) orientation 
(110) 

orientation 

(111) 

orientation 

With a pure 

repulsive 

indenter 

With a rigid 

tantalum 

indenter 

With a rigid 

tantalum 

indenter 

With a rigid 

tantalum 

indenter 

Von Mises stress 28.69 21.94 10.05 12.51 

Octahedral shear stress 13.52 10.34 4.74 5.9 

Tresca stress 14.4 11.78 5.43 6.86 

Major principal stress -36.53 -30.66 -22.24 -30.05 

Minor principal stress -7.74 -7.09 -11.85 -16.85 

Hydrostatic stress -20.56 -25.74 -17.18 -24.52 

 

Table VI: Ratio of mean pressure (pm) to the Tresca stress or maximum shear stress 

Value of sress (GPa) 

(010) orientation 
(110) 

orientation 

(111) 

orientation 

With a pure 

repulsive 

indenter 

With a rigid 

tantalum 

indenter 

With a rigid 

tantalum 

indenter 

With a rigid 

tantalum 

indenter 

Shear strength of Ta (G/2π) 10.03 10.03 10.03 10.03 

Tresca (T) or Maximum shear 14.4 11.78 5.43 6.86 

3 μm (010) (110) (111) 
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stress in the deformation zone 

Mean pressure (pm) (Instant 

force / Projected contact area) 
14.48 14.17 14.13 16.13 

Ratio of  (T/pm) 1 0.83 0.38 0.42 

 

Figure 5(a) shows the sectional view in the XY plane representing the distribution of the octahedral 

shear stress during the deformation of tantalum on each of the three orientations when the indenter 

has moved into the substrate by 2 nm. Figure 5(b) on the other hand shows the spliced view in the 

XZ plane (top view) of the substrate in conjunction with figure 5(a) and compare the topography of 

the lattice deformation and pileup with figure 5(c) obtained from the experiments [1]. Interestingly, 

a very distinct distribution of octahedral shear stress is apparent which varies with its location 

during indentation on each plane. This could certainly be attributed to the differences in the BCC 

crystal structure and this difference leads to the deformation patterns to resemble as to what has 

been shown in figure 5(b). In figure 5(b), the simulations performed on the (010) orientation of Ta 

showed the pileup pattern (lattice deformation) along the closed packed direction of the BCC metal. 

Interestingly, in the case of the (110) orientation, where both in-plane and out-of-plane slip 

directions are available, the pileup is predominantly found along the in-plane slip directions 

resembling closer with the microscale experimental findings [1]. These results are incorporated in 

table V and it can be seen that the repulsive indenter overestimated the deformation stresses by a 

slight margin and later the P-h profile (figure 7) has also been compared where the repulsive 

indenter underestimated the peak load for the same amount of indenter displacement. The classical 

Hertzian contact theory suggests a multiplicative factor of 0.465 with the mean pressure to arrive at 

the maximum shear stress underneath the indenter [39]. This value is taken as a conventional 

wisdom in a variety of indentation studies and has somewhat become a common lore [1] 

particularly due to the fact that the direct measurement of maximum shear stress during the 

experiments is difficult. MD simulation results (table VI) clarify that this multiplicative factor from 

the classical Hertzian contact may be incorrect at the atomic scale. Table VI obtained from the MD 
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results shows (i) this ratio to be about 0.4 for the (110) and (111) orientation and ~0.8 for the (100) 

orientation of tantalum and (ii) the maximum shear (Tresca) stress was found to exceed the 

theoretical shear strength of tantalum on the (010) orientation but was well within for the (110) and 

(111) orientations. This unique observation on the (010) plane seems to be in accord with a recent 

study [6] where the elastic-plastic limit of Ta was observed to go past the theoretically predicted 

critical shear stress. 

3.4. P-h plots and indentation size effect  

 

Figure 6: P-h plots obtained from the MD simulation for the three cases using rigid tantalum 
indenter 
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Figure 7: Comparison of P-h plots for indentation on the (010) orientation of tantalum by keeping 
all the indentation parameters same but using two different kind of indenters (i) using a rigid 
tantalum indenter and (ii) a purely repulsive indenter 

 
 A close examination of the P-h plots in figure 6 reveals clear differences in the force 

necessary to deform the three crystallographic orientation of tantalum to an indentation depth of 2 

nm. The P-h plot for tantalum reveals that the indentation force (or energy) required to achieve a 

certain penetration depth in Ta is minimum on the (110) orientation and maximum on the (111) 

orientation while intermediate for the (010) orientation because the maximum load needed to indent 

the (111) orientation was much higher than what was needed to indent the (110) orientation. Also, it 

is quite surprising to see the cohesion component of forces during retraction stage. It appears that 

the (010) orientation has highest cohesion. However, it may be noted that the anisotropy for 

cohesion arises from the fact that a rigid tantalum indenter (010 orientation) was used for 

indentation meaning thereby that the same plane will have more cohesion. Thus, the cohesion 

anisotropic observations visible in these plots are something of an artefact which can better be 

confirmed using a diamond indenter. The slope or stiffness (S) of the unloading curves obtained 

from the MD simulation were 1617 N/m for the (010) orientation, 1375 N/m for the (110) 

orientation and 1611 N/m for the (111) orientation respectively signifying the stiffness of the system 
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for the three simulated crystal surfaces.  

 
 

(a) Variation in the elastic modulus      (b) Variation in the hardness  

 
(c) Comparison of nanoindentation hardness between MD results and experiments [9, 40]. 

 
Figure 8(a): Variation in the elastic modulus (E) and 8(b) variation in the hardness (H) of tantalum 
with respect to the crystal orientation and indentation depth. Evaluation of E is shown after 0.5 nm 
of indentation depth while H variation is after 0.7 nm of indentation depth and 8(c) left part : size 
effect driven nanoindentation hardness of tantalum obtained from the experiments on 200 nm thick 
tantalum thin film is compared with the MD simulation value [40] at an indentation depth of 2 nm 
and a good agreement may be seen. 8c right part: The experimental results of the nanoindentation 
hardness and Young's modulus obtained by another research group [9] during a recent investigation 
matches the MD results quite closely.  

 

The value of Young's modulus with the change in the crystal orientation and with the change 

in the indentation depth has been plotted in figure 8a and the corresponding hardness values are 

plotted in figure 8b. The hardness obtained from the MD data at the peak indentation depth of 2 nm 

is highlighted on the experimental scale obtained by indenting a thin film of tantalum by Guisbiers 

et al. [40] and Myers et al. [9]. Both experiments were done on the thin films of tantalum where the 

indentation depth is in few nanometres to sub-microns, a scale which is more close to compare with 
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MD values. It can be seen that the hardness and elastic modulus of tantalum obtained from the MD 

simulation by applying Oliver and Pharr method reveals very close value to what has been obtained 

through experiments in both cases. Both hardness [41-42] as well as Young's modulus [43] varies 

with size scale and the difference in the value of Young's modulus of tantalum on the (010) and 

(111) plane at 2 nm of depth of indentation was found subtle. The combined observation from figure 

8(b) and 8(c) suggests that the indentation size effect driven hardness as well as the elastic modulus 

is quite high in tantalum compared to the bulk value of the same and that obtained from elastic 

constants of tantalum would suggest that the order of decreasing Young's modulus should be E111 > 

E110 > E010. However, this was not the case as is evident from figure 8. Also, about 15 nm-40 nm 

depth is needed to get past the indentation size effect driven domain to get a more saturated value. 

The hardness values or the Hertzian stress underneath the indenter started stabilizing in all the three 

cases only after the indenter has moved by about 0.7 nm into the substrate making the hardness data 

calculated before this point meaningless [44]. Thus, around 0.7 nm of indentation depth is minimum 

needed indentation depth to get even the indentation size effect driven value of hardness. The 

indentation size effect in the hardness of BCC metals has been sub-divided into three regions [45], 

namely, Region-I, Region-II and Region-III which can be expressed as 
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  where H is material's hardness at 

micro or nanoscale, h is indentation depth, l1,l2 and l3 are the material's length scale for region I, II 

and III respectively, H1, H2, H3, n1, n2, n3 are material constants while δu and δ1 are the indentation 

depths that separate regions, I, II and III respectively. Furthermore, the variation in the hardness and 

elastic modulus of nanocrystalline metals (unlike polycrystalline materials) is well documented [40] 

and has been proposed to be described as 
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Hs is the size dependent hardness, H is the bulk hardness and KH2 and KH3 are the coefficients of a 

parabolic relationship between hardness vs D-1/2, D is the grain size, EShape is the size dependent 
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Young's modulus and αshape is the parameter quantifying the size effect. 

 Ibid. quoted Ao et al. [43] who proposed that the competition between the surface bond 

shrinkage and melting temperature variation with size reduction leads to the so called size effect in 

elastic modulus whereas Gu et al. [46] related this size-dependent behaviour to Debye temperature. 

The stabilized values of the Young's modulus suggest that the value of E on the (010) orientation is 

0.02% higher than on the (111) orientation while the value of the (110) orientation is least. 

Analysing the hardness curve it appears that the (110) orientation shows the lowest hardness of the 

three orientations. Both observations are in accordance with the P-h plots wherein the (110) 

orientation showed the least steep unloading as well as loading slopes. These are quantified in table 

VII and the hardness value obtained by purely repulsive indenter has also been compared against 

the value predicted by the rigid tantalum indenter for reference. While both the values appears to be 

closer, the repulsive indenter predicts a more conservative value against what has been obtained 

from a rigid tantalum indenter. The residual depth of recovery was found to be least on the (111) 

plane and maximum on the (010) plane while intermittent on the (110) plane signifying the (111) 

orientation recovers more than the other two orientations. We also noted the peak temperature in the 

deformation zone which aligned with the above observations. 

Table VII: Summary of results obtained from the MD simulation (P-h plots) 

Crystal 

orientation 
Remarks 

Peak 

Load 

(nN) 

hf 

(Residual 

depth of 

recovery) 

(nm) 

Average 

hardness (GPa) 

as per Oliver 

and Pharr 

method [33] 

Peak 

temperature 

in the 

deformation 

zone (K) 

(010) Repulsive indenter 414 0.95 12.48 174 

(010) 
Rigid Tantalum 

indenter 

491 1.72 14.17 206 

(110) 424 1.6 14.13 133 

(111) 569 1.45 16.13 180 

 

The temperature in the deformation zone was found least while indenting on the (110) orientation. 
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The fact that screw dislocations in Ta are immobile at temperatures less than 493.5 K (0.15 Tmelt of 

Ta) and that the temperature in the entire deformation zone is well below 493.5 K seems to augment 

strong support as to why no screw dislocations were observed in this study while prismatic 

dislocation loops signifying edge dislocations were only observed. 

4. Comments on the future pathways of this work 

The indentation contact behaviour of materials is characterised by combination of plastic, 

elastic-plastic deformation and fracture. However, there are two main approaches to the mechanics 

of indentation depending upon the whether the accommodation is by plastic deformation or by 

fracture. Considering the MD simulation, and if the contact force is applied to a material then 

constituent atoms will undergo reconfiguration from its original state, deforming the initial contact 

or near contact bonds in the process. If the bonds return to the original configuration as the applied 

load is unloaded, then the deformation is elastic. If however, the bonds stay deformed upon 

unloading then the deformation could be described as plastic. Thus, plastic deformation can be 

characterised by permanent displacements of atoms. However, if those few broken bonds are not 

reorganized then fracture can occur. The bulk material response under indentation is a function of 

the individual deformations of the bonds and can therefore be combination of elastic, elastic-plastic 

deformation and fracture. Since MD simulation is an important theoretical technique to understand 

the surface and sub-surface changes in materials, the current study has been motivated partly by the 

identification of initial stages of yielding and fracture mechanism, crystal defects, dislocation 

monitoring and differentiate the types of dislocation nucleation and its motion. 

An improved understanding of the physical mechanisms underpinning the response of Ta 

during material property evaluation requires multi-scale approach integrating continuum and 

molecular dynamics (MD) theory. Although we have made advances in our understanding on some 

of the physical mechanisms, this is still a grey area. Since the term miniaturization has been coined, 

many classical phenomena's have undergone series of refinements owing primarily to the fact that 

the behaviour of material changes with the reduction in scale [47]. Apparently, the current canon of 

experimental facilities are not either easily available in public domain or are not sufficiently well 
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advanced to capture all the mechanisms (dislocation nucleation, motion, etc.), competing within the 

atomic scale regime. Consequently, the assemblage of knowledge from several disparate disciplines 

including chemistry, physics, material science, and computing science has resulted in the 

development of ever improving simulation techniques which are capable to capture these 

phenomena's to provide phenomenal insights of dislocation physics. The relationships among 

crystal orientation, dislocation nucleation and reactions and the resulting plasticity at nanoscale is a 

difficult bit to be understood by the state-of-the-art experimental studies alone. Detailed information 

on the atomic level changes leading to changes observed at macroscale can appropriately be 

obtained by MD simulation. In this work, a relatively simple yet an appropriate modelling approach 

using a simple EAM potential has provided pathways to understand the origins of twin boundaries 

and how it varies with the change in the indented surface of the same material (BCC tantalum). The 

potential to tap this effect can result in significant engineering applications and is an area which 

needs practical and experimental realization. Consequently, the purpose for which MD simulation 

was carried out in this work has provided the direction to use this knowledge in the experimental 

work; therefore there is an opportunity for developing richer theoretical models and at the same 

time the quantitative verification of the dislocation density is possible with the usage of 

transmission electron microscopy. Despite the fact that figure 8c offered useful insights on what 

may be expected by changing the indentation depth or the indenter diameter, figure 9 

(nanoindentation results for silicon carbide) offer some insights on the variation in the Hertzian 

contact stresses with respect to the indentation load and edge radius of the indenter. These 

informations may readily be used to advance our understanding on the contact mechanics of 

tantalum as a function of shape of the indenter. 



29 

 
Figure 9: Variation in contact stresses with respect to indentation load and edge radius of the 

indenter [48] 
 

Furthermore, the question whether the stress calculation should consider only single or a 

lump of atoms is yet to be answered. The procedure adapted in this work involved selecting a region 

right underneath the indenter having a volume of 1 nm3 (almost equal to 60 to 70 atoms depending 

on the orientation of the substrate) in accordance with the previous studies [49]. A convergence 

study may be directed on the selection of this element size as a worthier future work. 

The knowledge developed via this route will facilitate the process of theoretical 

developments leading towards the practical knowledge so as to avoid any future mishap. As 

tribological phenomena's depends heavily on the basic material properties in terms of 

microstructural variations, it may be possible to construct further models and to develop richer 

theoretical understanding linking mechanical parameters with material characteristics and its 

derived features. It also requires more research to bring out further improvements (both in testing, 

simulation and interpretation). To this end, this work provides an impetus for future work to find 

wider applications of Ta.  
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5. Conclusions 

Using a force matching embedded atomic method (EAM) potential energy function driven 

molecular dynamics simulation in conjunction with crystal analysis tool, dislocation extraction 

algorithm, 3D stress analysis in the deformation zone and application of the Oliver and Pharr 

method, some novel and intriguing simulated nanoindentation results are obtained concerning 

crystal anisotropy of tantalum. Although the set of results can be summarized in length but for a 

ready glance, it can be seen for example that the elastic modulus obtained from elastic constants 

would suggest E111 > E110 > E010. However, indentation simulation at depths of 2 nm and 

comparison with experiments shows that E010 > E111 > E110. A couple of similarly striking results 

have been presented and discussed throughout the manuscript with the main conclusions to be 

drawn being: 

1. The mechanism of the transport of material during nanoindentation and the observed plasticity in 

tantalum occurs due to the formation and motion of prismatic dislocations loops (edge dislocations) 

belonging to the 1/2<111> type, and <100> type Burgers vector family on all the three orientations 

and formation and migration of twin boundaries. 

2. A unique and contrasting feature of the twin boundaries came to the observation was that upon 

retraction of the indenter on the (110) orientation, all the dislocations disappeared while the material 

did not fully recovered back (plastic response) suggesting twinning to be dominant over dislocation 

nucleation in driving plasticity in tantalum during nanoindentation.  

3. It was found out that the maximum shear stress (critical Tresca stress) in the deformation zone 

exceeded the theoretical shear strength of tantalum (Shear modulus/2π~10.03 GPa) on the (010) 

orientation but was under the theoretical limit on the (110) and the (111) orientations. In light to 

this, the simulations strongly suggest that the conventional assumption that the maximum shear 

stress is simply 0.465 times the mean contact pressure breaks down at the atomic scale. 
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