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Survival suit volume reduction associated with immersion:  

implications for buoyancy estimation in offshore workers of different 

size  

 

Abstract  

Rationale.  It is currently unknown how body size affects buoyancy in submerged 

helicopter escape.   Method. Eight healthy males aged 39.6±12.6 y (mean±SD) with 

BMI 22.0-40.0 kg.m-2 wearing a standard survival (‘dry’) suit undertook a normal 

venting manoeuvre and underwent 3D scanning to assess body volume (wearing the 

suit) before and after immersion in a swimming pool.  Results. Immersion-induced 

volume loss averaged 14.4±5.4 l, decreased with increasing dry density (mass.volume-

1), and theoretical buoyant force in 588 UK offshore workers was found to be 264±46 

and 232±60 N using linear and power functions respectively. Both approaches revealed 

heavier workers to have greater buoyant force. Discussion. While a larger sample may 

yield a more accurate buoyancy prediction, this study shows heavier workers are likely 

to have greater buoyancy.  Without free-swimming capability to overcome such 

buoyancy, some individuals may possibly exceed the safe limit to enable escape from a 

submerged helicopter. 

Keywords: survival suit; body volume;  estimated buoyancy; offshore workers; 

3D body scanning 

Practitioner Summary 

Air expulsion reduced total body volume of survival-suited volunteers following 

immersion  by an amount inversely proportional to body size. When applied to 588 



3 
 

offshore workers, the predicted air loss suggested buoyant force to be greatest in the 

heaviest  individuals, which may impede their ability to exit a submerged helicopter. 

 

Introduction 

The UK continental shelf is host to a large offshore oil and gas workforce which travels 

to the installations throughout the sector by helicopter.  This necessitates wearing a 

survival suit and lifejacket / breathing system which is designed to maintain the 

wearer’s deep body temperature in the unlikely event of a ditching in the cold waters of 

the North Sea.  Suits worn by helicopter passengers and crew must comply with a series 

of requirements which relate to materials, fastenings, seals, thermal protection and 

buoyancy from the European Aviation Safety Agency.  For example ETSO 2C 503, 

(2006) relates to the performance of immersion suits in combination with lifejackets.  

This includes factors such as being able to undertake jump tests, turning tests, life raft 

boarding and underwater escape through a restricted opening. Although the maximum 

permitted buoyancy attributable to trapped air inside suits is 150 N (tested in accordance 

with ISO 15027-3:2002), the ease with which a person can move below the water 

surface is governed by the total buoyancy of the person, which, in addition to inherent 

buoyancy of all garments, is influenced by body composition together with the residual 

air in the lungs and GI tract (McArdle, Katch & Katch, 2001, p 772). 

When rotorcraft ditch into water, unless the sea state is fairly calm, their high 

centre of gravity means that they tend to invert and consequently sink (Brooks, 1989).  

Under such circumstances, flight crew and passengers, when released from their 

seatbelts, require to overcome buoyant forces in order to make an escape through an exit 

below the water surface; a task which is particularly challenging due to poor visibility, 

disorientation, and extreme anxiety induced by the accident (Brooks 1988).  Air which 
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remains trapped inside the survival suit adds to the buoyancy, and  the greater the 

buoyancy, the greater the potential danger of a passenger becoming trapped in a 

submerged helicopter and unable to escape.  If a survival suit, mandatory for such 

flights, fits well and is vented properly, trapped air will be minimised.  However, on 

immersion in water, the air that is trapped inside the survival suit will be forced 

upwards.  This is likely to escape from the suit’s neck or wrist seals, and in the case of 

the 1000 series suit (Survitec Group) worn by UK offshore workers, through one-way 

valves fitted at the shoulder. Air escape on instantaneous immersion has been 

previously estimated to be complete in 10 s (Brooks 1988), although the quantity of air 

escaping was not assessed. The design of the suit,  its tightness, location of air pockets 

inside the suit, together with the orientation of the body on immersion are all likely to 

have an influence on how readily air will be expelled on immersion.  This escaping air 

can also lead to water ingress into the suit as the seal is broken (Coleshaw 2010), which 

reduces the insulation provided by the suit, depending on its extent and location (Power 

et al., 2016; Tipton 1997). 

Empirical evidence and observations of diving strategy in Weddell seals of 

different fatness points to the energetic penalty of increased buoyancy  for swimming 

below the water surface (Sato et al. 2003).  The same physical principles of buoyancy 

are also likely to adversely affect humans in the same way, when they try to swim down 

from the water surface.  Evidence from helicopter ditchings has identified survival suit 

buoyancy as a causative element in the inability to make a successful egress from a 

flooded cabin (Brooks and Rowe 1984). The inherent buoyancy of an insulated 

helicopter suit, together with the trapped air inside it was previously proposed to have a 

maximum of 178 N when its wearer had been totally submerged in a vertical 

orientation, although trained divers failed to escape at levels of buoyancy between 173 
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and 267 N (Brooks 1988).  The additional buoyancy attributable to clothing was 

estimated to be 44-89 N in different assemblages, so in order to constrain total 

buoyancy to the proposed figure, the suit itself was required to have no more than 89 N 

of buoyancy.  These preliminary figures were based on testing of only four individuals 

(Brooks and Potter, 1986), and were later revised downwards.  Particularly in Eastern 

Canada where much of this work was carried out, but everywhere which has very cold 

water conditions, the challenge is to provide sufficient insulation without making the 

suit system excessively buoyant.  In an experiment in a helicopter underwater escape 

training (HUET) facility with 12 participants, Brooks (1988) identified a suit system 

with inherent buoyancy of 155 N as the value at which some participants began to fail 

to escape, and concluded that 146 N does not prevent successful escape.  Important 

observations during these experiments have added to our understanding of the issue. On 

unclipping the seatbelt, the legs would “float haphazardly” on inversion “which 

predisposed him / her to disorientation and difficulty with adopting a good position to 

make the escape”.  Greater strength and reach were both highlighted as favourable 

attributes for successful escape, strength enabling greater stability, and longer reach 

envelopes optimising grip and leverage which would aid the egress manoeuvre. These 

observations are counterpoised against the logical advantage a smaller person would be 

anticipated to have, both in terms of buoyancy and also egress through a restricted 

opening.  However, at present, it is unknown whether body size, shape or weight might 

influence buoyancy in offshore workers.  Such a knowledge gap is important to fill, 

because of the direct implications for a range of factors including survival suit design, 

helicopter interior layout and helicopter underwater escape training. Indirectly, human 

factors relating to seating preference, comfort, and the morale of the workforce have the 

potential to be affected by this knowledge. Therefore the over-arching purpose of the 
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study was to determine if a size-buoyancy relationship exists.  The first objective was to 

measure the volume of air expelled as a function of water immersion in a small sample 

of varying body size. The second objective was to apply an algorithm which predicts air 

expulsion to calculate body density and buoyancy across a representative sample of the 

UK offshore workforce to predict buoyancy.   

 

Method 

 

A) Immersion study  

A convenience sample was recruited  comprising  eight male volunteers aged 39.8 ± 

12.6 y (mean ± SD).  Their body size and shape differed appreciably, and body mass 

index (BMI; mass in kg divided by the square of stature in m)  averaged 28.9 ± 6.4 

kg.m-2, and ranged from 22.0 – 39.9 kg.m-2, equivalent to the 4th -  99th  percentile of the 

offshore workforce respectively (Ledingham et al., 2015). These individuals were either 

participants in the validation work for the scanner study of offshore workers’ size & 

shape, or were safety representatives for the UK offshore industry.   

B) Offshore workforce 

Male UK offshore workers aged 40.6 ± 10.7 y whose BMI averaged 28.3 ± 4.0 kg.m-2 

were recruited for the Size and Shape of Offshore Workers (SASOW) study 

(Ledingham et al. 2015),  by quota sampling across seven weight categories (n = 588; 

84 in each), to match the curve of most recent available weight data of the entire 

workforce of 45000 individuals . These categories in kg were as follows: <76.4; 76.5 - 

82.4; 82.5 - 87.4; 87.5 - 91.4; 91.5 - 97.4; 97.5 - 104.4; >104.5. These categories were 

the optimal fit for the curve of the workforce weight data and matched almost perfectly.  

[Chi-square value = 11.7; 11 df, P=0.613].  The sample size constrained the 95% 
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confidence interval for the true workforce weight to 1.1 kg – a figure which could be 

expected with diurnal weight fluctuation.   

Measurements 

A) ) Immersion study 

Participants wore two layers of indoor clothing (T shirt and fleece)  without shoes and 

were measured for body mass.  After donning the appropriately-sized suit according to 

manufacturer’s recommendations based on stature and chest girth, individuals 

performed a standard venting manoeuvre which involved squatting down and holding 

the neck seal open to release the trapped air, and re-sealing it before standing up. Each 

was scanned in a poolside room with adequate space (2.5 x 2.5 m) and precautions 

which included the uses of circuit breakers.  Participants stood erect with the legs 

straight and arms by the sides, and were encouraged to adopt shallow breathing while 

wearing a full survival suit over their indoor clothing.  The scan lasted 30–45 s and used 

an Artec L scanner (Artec Group, Luxembourg), after which participants were weighed 

using a portable digital scale (model 899, Seca, Hamburg, Germany).  Scans were 

processed using Artec studio 9 software (Artec Group, Luxembourg), which involved 

registration, fusion, and where necessary, hole-filling and mesh simplification. The 

rendered object was then quantified for volume. The volunteer jumped from the pool 

side into the deep end of the pool, ensuring complete submersion was achieved, before 

exiting the pool up the steps (see figure 1), ensuring that no rapid or vigorous movement 

disturbed the wrist or neck seals.  After approximately two minutes, when participants 

were dabbed dry using towels, they were re-scanned using the same procedure. 

*** figure 1 near here *** 

B) Offshore workforce 
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Participants were professional ‘core crew’ (generally working at least 100 days offshore 

per year), recruited via Oil & Gas UK and key stakeholders.  Each was scanned wearing 

form-fitting shorts, and also in a full survival suit and lifejacket over their regular indoor 

clothing using the same scanning system and also weighed using  the same portable 

digital scales,  as part of a larger study of body dimensions (Ledingham et al. 2015) 

which informed space requirements in restricted width (Stewart et al. 2015a) and 

simulated helicopter window escape (Stewart et al. 2015b).  Volumes obtained from 

scans, together with scale mass enable the calculation of density and combining this 

with an estimate of air expelled on immersion is thus useful in order to inform whether 

density, and consequently buoyant force is affected by body size, although these 

parameters would not be practicable to measure in a large sample.  Measurements were 

acquired mostly at an Aberdeen heliport, in addition to Aberdeen-based operators’ 

offices and a heliport in Norfolk which services the Southern North Sea sector.  The 

study was approved by Robert Gordon University’s Research Ethics Review 

Committee, and all participants gave written consent. 

 

Theoretical basis 

Archimedes’ principle states that the buoyant force acting on a submerged object equals 

the weight of the water it displaces.  If the water density equalled unity the weight of the 

water displaced (in kg) would be numerically similar to the volume of the body (in l).  

However, in a liquid whose density differs from unity, the force of the weight (the mass 

multiplied by the earth’s gravity constant)  is necessarily multiplied by the density. A 

completely submerged object exerts a buoyant force (N) according to the formula: 

FB=V.ρ.g 
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where V is the volume of the object, ρ is the density of the fluid, and g is the 

acceleration due to gravity, as summarised schematically in figure 2.  In the current 

context, the volume of water displaced is predicted to be the measured dry volume 

minus the predicted volume loss on immersion. The density of sea water varies between 

about  1.02 and 1.03 g.cm-3, and is affected by salinity, temperature and other variables 

in a complex system  (see Wang, Dong and Munoz 2010 for a review).  For the purpose 

of this paper, the body will be treated as a rigid object of uniform density, the density of 

the North Sea water will be assumed to be 1.027 g.cm-3, and the earth’s gravity 

constant, 9.8 m.s-2.  This force is opposed by the force of the weight of the suited 

individual (N) , as the product of the measured body mass m and the earth’s gravity 

constant g. The net buoyant force (N) is given by the formula: 

Net buoyant force (N) = (V.p.g) – (m.g) 

*** figure 2 near here *** 

Results 

 

Physical characteristics of the eight participants of the immersion study are provided in 
table 1. 

*** table 1 near here *** 

On immersion, air escaped from the shoulder vents, and this reduced the post immersion 

volume. One participant’s suit flooded due to a failed seal, and as a result the post- 

immersion volume was similar to that for pre-immersion, and as a result, his data were 

excluded from the analysis.  The pre and post immersion volumes are depicted in figure 

3. 
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*** figure 3 near here *** 

Volume reduction after immersion as the dependent variable was better predicted by dry 

density (the weight of the participant in the suit plus rebreather, divided by the total 

volume, dry)  than BMI or other variables, as illustrated in figure 4.  Linear and power  

regression analyses were carried out using the volume of air expelled as the dependent 

variable and ‘dry density’ as the independent predictor.  The following regressions were 

obtained: 

 

Volume loss on immersion (l) = (-81.429 * dry density)+ 77.008   

R2 (adj) = 0.56; SEE = 3.48; P< 0.05 

 

Volume loss on immersion (l) = 4.1077* dry density-4.531    

R2 (adj) = 0.63; SEE = 0.22; P< 0.05 

*** figure 4 near here *** 

After the volume loss, predicted from both linear and power functions, was subtracted 

from the dry volume, the resultant buoyant force in sea water was calculated.  Mean 

predicted buoyant forces were 264 ± 46 and 232 ± 60 N  using the linear and power 

functions respectively.  Corresponding values for pool water are 232 ± 43 and 201 ± 55 

N.  For both functions, the heaviest individuals were predicted to have the highest 

buoyant force, and the lightest the lowest (P<0.01 for linear P<0.001 for power 

functions for all non-adjacent weight categories, after Bonferroni correction) as depicted 

in figure 5.  Post hoc Tukey test revealed four homogeneous subsets for buoyant force 

across the seven weight categories for the linear function, whereas the power function 

partitioned each weight category into a different subset.   
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*** figure 5 near here *** 

Due to the nature of the mathematical adjustments, a greater difference was made by the 

power algorithm to individuals near the extremes of the weight range, as depicted in 

figure 6. 

*** figure 6 near here *** 

Discussion 

Predicted buoyant force in offshore workers calculated from volume loss on immersion 

exhibits a gradient by body weight and is smallest in the lightest individuals and 

greatest in the heaviest. Contrary to what might be anticipated from measured ‘dry 

density’(which ranged from 0.63 g.cc-3 in the lightest to 0.74 g.cc-3 in the heaviest, and 

was different between all non-adjacent weight categories groups, P<0.001, after 

Bonferroni adjustment), this finding is explained by proportionately more air being 

expelled from the suits of lighter individuals on immersion, which more than 

compensates for their lower dry density.  Lighter individuals may wear suits which, 

despite being sized appropriately, provide a less tight fit.  As a result, more loose 

material which may crease and fold has the potential to trap air, even after the dry 

venting manoeuvre.  Heavier individuals may have lower body density than lighter 

individuals due to increased fatness, but further measures would be required to confirm 

this.  However, even if so, when wearing clothing and survival suit, heavier workers 

have less trapped air.  Overall buoyancy is influenced to a much greater extent by lung 

volume and trapped air than body fatness.  When underwater weighing to determine 

body fatness, as little as 100 ml added to residual lung volume increases predicted % fat 

by 0.7% (Going, 2005), so even if evidence exists that heavier workers may have 
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greater fat than their lighter counterparts,  its influence on buoyancy is unlikely to be 

pivotal.   

The mean predicted buoyant forces of 264 N (linear) and 232 N  (power) 

represent a reduction in buoyancy of 217 N and 249 N from the equivalent calculation 

based on dry density.  The figure of 481 N which is the theoretical buoyancy in the 

absence of any air escaping from a typical UK offshore worker’s suit does not vary 

between weight categories (P=0.48), and highlights just how much air remains in the 

suit after venting, and the fundamental contribution of suit design to lessening buoyancy  

on immersion.  It is not apparent from extant literature what maximum buoyancy could 

be overcome to swim beneath the water surface without mechanical advantage, 

however, the mean figure may reflect that suits were either sub-optimally fitted, venting 

was poorly executed or air re-entered the suit after venting. This may not be a concern 

when immersion is vertical, the shoulder valves perform as designed, and expel air 

effectively.  However, excess air could conceivably become trapped by constriction or 

body orientation and not be forced out of the valves.  Under these circumstances, it 

would be very difficult to overcome the buoyant force unless mechanical advantage was 

possible allowing individuals to pull themselves below the water surface. 

Helicopter survival suit design criteria need to balance the required insulation 

with the consequent buoyancy which may impede underwater escape in an emergency 

(Coleshaw 2010).  The fact that the heaviest individuals may have the greatest buoyant 

force, as shown by our data, is countered by the likelihood that such individuals are 

likely to be physically bigger, with greater reach and better leverage for pulling the 

body down through the water in order to make an escape.  Inherent buoyancy in 

clothing is likely to be highly variable according to the materials and fit, however the 

estimation of 45-89 N detailed in Brooks (1988)  may appear conservative.  Although 
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the density of swimming pool water may be 3% less than that of sea water, this may 

have reduced slightly the hydrostatic force and underestimated the volume loss on 

immersion in seawater.  However, the strict protocol, together with previous literature 

on the time for air expulsion to be complete suggests this is not a large source of error. 

Participants did not wear either a lifejacket or an emergency breathing system over the 

survival suit.  Undoubtedly, these would influence air movement within the suit, 

expulsion and buoyancy, but lifejackets were not worn in the current study, mainly 

because professional requirements and practice vary in different parts of the world, so 

this addition would limit the study’s generalizability.   

The survival suits appeared to perform their function extremely well, whereby 

air was expelled through shoulder vents, the seals remained intact, and there was 

virtually no dampening of clothing around them.  However, given the enormous range 

of theoretical buoyant force prior to immersion, the importance of adequate venting of 

suits is critical.  The question of which algorithm should be applied to calculate 

buoyancy needs careful consideration.  Both predictions paint a similar picture of 

greater predicted buoyancy in larger individuals, although the extent of this varies 

between them, especially at the lighter extremes of body weight. The linear algorithm 

has poorer explained variance and wider error, yet the power algorithm appears to lack 

plausibility below about 75 kg, because the inherent buoyancy of the suit plus clothing 

would be overwhelmed by the body density.   

Further research  is clearly warranted to augment this study’s findings if the 

accuracy of the prediction is to be improved.  While this could confirm whether a linear 

or power function should be applied to predict buoyancy, it could usefully contribute in 

a range of applications.  Venting practice varies considerably worldwide, because not 

all suits have similar neck seals, some still using zips which would need to be sealed 
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immediately prior to a landing on water.  In reality, air escape from the suit may be 

highly variable between individuals of similar weight but different shape, and there may 

be scope for further research of venting efficacy, especially in larger individuals.  

Further study could also consider the effect of different clothing assemblages on 

buoyancy, which varies worldwide according to sea temperatures.  Experimental work 

has shown buoyancy is elevated due to trapped air in winter clothing assemblages 

compared to those of spring/autumn and summer (Barwood et al., 2011).  However, 

seasonal clothing policy adjustments for offshore workers travelling by helicopter may 

have consequences for buoyancy which may not be widely appreciated by the global 

offshore workforce because practices for helicopter underwater escape training may not 

routinely involve full survival suit specifications. Rather, it may involve suits designed 

for warm water training which lack a thermal liner, and are appropriately designed for 

very high usage, abrasion resistance and rapid drying.   While water temperature has a 

small effect, the consequence of clothing policy as a result of sea temperature has a 

large one, added to which variable salinity in different parts of the world can also 

contribute variation (Wang et al., 2010).  However, due to the costs of replicating an 

authentic sea environment to represent different geographical areas, it is likely that such 

work will necessarily proceed on a more local level, where both climatic and regulatory 

processes prevail. 

While this study has employed a predictive technique based on only seven 

individuals, it has highlighted a previously unknown and important concern regarding 

the relationship between body size and air loss on immersion, and underscores the 

importance of venting for offshore workers.  This is materially important in safety terms 

and how buoyancy impacts underwater egress  should be the focus of further research, 
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because it is possible that some individuals may exceed the safe limit that must be 

overcome to enable escape from a submerged helicopter. 

 

Funding: This work was supported by a Knowledge Transfer Partnership grant no 

KTP008973 between Robert Gordon University and UK Offshore Oil and Gas Industry 

Association Ltd. In-kind support was received from Survival One (Survitec) Aberdeen, 

who provided survival suits for the study. 

 

References 

Barwood, M.J., Bates, V.,  Long, G. & Tipton, M. (2011). “Float first”: Trapped air 

between clothing layers significantly improves buoyancy after immersion. International 

Journal of Aquatic Research and Education, 5, 147-163.  

Brooks, C.J. (1988). Maximum acceptable inherent buoyancy limit for 

aircrew/passenger helicopter immersion suit systems. Applied Ergonomics 19, 266-70. 

Brooks, C.J. (1989). The human factors relating to escape and survival from helicopters 

ditching into water.  RTO AG 305E. Neuilly Sur Seine; AGARD. ISBN 92-835-0522-0. 

Brooks,  C.J. and Potter, P.L. (1986). The establishment of 137 N as the Canadian 

General Standards Board maximum acceptable inherent buoyancy limit for passenger 

helicopter immersion suits.  Annals Physiol Anthrop 5, (3), 152. 

Brooks,  C.J. and Provencher, J.D.M. (1984). Acceptable inherent buoyancy for a ship 

abandonment/helicopter immersion suit. DCIEM Report No. 84-C-28. 

Brooks, C.J. and Rowe, K.W. (1984). Water survival: 20 years Canadian Forces aircrew 

experience. Aviation, Space & Environmental Medicine 55, 41-51. 

Coleshaw, S.R.K. (2010). Report for the offshore helicopter safety enquiry No. SC176. 

In: R. Wells. Canada-Newfoundland and Labrador Offshore Helicopter Safety Enquiry; 



16 
 

Volume 2, Phase 1 Expert and Survey Reports. St John's, NL: Canada-Newfoundland 

and Labrador Offshore Petroleum Board. pp 129-178. 

European Aviation Safety Agency (2006).  European Technical Standard Order. 

Helicopter crew and passenger immersion suits for operations to or from helidecks 

located in a hostile sea area.  ETSO 2C503, 2006. 

Going, S.B. (2005)  Hydrodensitometry and air displacement plethysmography. In 

Human Body Composition 2nd ed. Edited by S.B. Heymsfield, T.G. Lohman, Z. Wang & 

S.B. Going.  Champaign, IL: Human Kinetics, pp 17-33. 

International Standards Organisation 2002.  ISO 15027-3:2002; Immersion suits - Part 

3: Test methods. 

Ledingham, R., Aleksandrova, G., Lamb, M. and Stewart, A. 2015. Size and Shape of 

the UK Offshore Workforce 2014: A 3D scanning survey. Robert Gordon University. 

ISBN 978-1-907349-10-2. 

McArdle, W.D., Katch, F.I & Katch, V.L. (2001).  Exercise Physiology 5th Edition.  

Baltimore: Lippincott, Williams & Wilkins. 

Power J., Tikusis, P., Ré, A.S., Barwood, M. & Tipton, M.  (2016). Correction factors 

for assessing immersion suits under harsh conditions. Applied Ergonomics, 53, 87-94.      

Sato, K., Mitani, Y., Cameron, M.F., Sniff, D.B. and Naito, Y. 2003. Factors affecting 

stroking patterns and body angle in diving Weddell seals under natural conditions. The 

Journal of Experimental Biology, 206: 1461-1470.  

Stewart, A., Ledingham, R., Furnace, G. and Nevill, A. (2015a). Body Size and ability 

to pass through a restricted space: Observations from 3D scanning of 210 male UK 

Offshore Workers.  Applied Ergonomics 51: 358-362. 

Stewart, A., Ledingham, R., Furnace, G., Schranz, N. and Nevill, A. (2015b). The 

ability of UK offshore workers of different body size and shape to egress through a 



17 
 

restricted window space.  Applied Ergonomics, 

http://dx.doi.org/10.1016/j.apergo.2015.11.005  

Stewart, A., Ledingham, R., Williams, H. (2015). Variability in body size and shape of 

UK Offshore Workers: a cluster analysis approach. Submitted to Applied Ergonomics. 

Tipton, M. (1997). The effect of water leakage on the protection provided by immersion 

protective clothing worn by man.  Report OTH432. Prepared by The Robens Institute of 

Health and Safety for the Health and Safety Executive. Norwich: HSE Books. 

Wang, C., S. Dong, and E. Munoz (2010), Seawater density variations in the North 

Atlantic and the Atlantic meridional overturning circulation, Climate Dynamics, 34: 

953–968. doi:10.1007/s00382-009-0560-5. 

 

 

 

  



18 
 

 

Figure 1.  L: scanning prior to immersion; centre: vertical water entry; R: exiting the 

pool after immersion showing the suit ‘clinging to the body’ after air expulsion 
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Figure 2. Forces acting on an immersed object. L: in air;  R:  in water 

 

Table 1.  Physical Characteristics of participants  

 Age (y) Stature (cm) Mass (kg) Chest girth 
(cm) 

Body Mass 
Index 

(kg.m-2) 
Mean 39.8 177.5 90.0 107.2 28.6 

SD 12.6 4.7 17.1 13.1 6.0 
Min 25.7 170.0 68.3 86.5 22.0 
Max 57.1 186.0 115.5 121.3 40.0 

n=8 

 

 

 

 

Figure 3. Pre-immersion (‘dry’) and post-immersion volumes (n=7). 
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Figure 4. Volume loss on immersion plotted against dry density (n=7). 

 

 

Figure 5. Predicted salt water buoyancy for weight categories  using linear (L) and 

power (R) functions. Weight category 1:<76.4 kg; 2: 76.5-82.4 kg; 3: 82.5-87.4 kg; 4: 

87.5-91.4 kg; 5: 91.5-97.4 kg ; 6: 97.5-104.4 kg; 7: >104.5 kg. Error bars represent 95% 

CI. P<0.01 for linear P<0.001 for power functions for all non-adjacent weight 

categories, after Bonferroni correction 
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Figure 6. Predicted salt water buoyancy, plotted against total mass.  Y axis (L) refers to 

linear prediction of saltwater buoyancy, and (R) refers to a power prediction of the same 

(both in Newtons). Black circles refer to linear calculation; white circles refer to power 

calculation. Lines refer to 95% CI around best fitting curve. 
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