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Abstract. An emerging topic in Quantuam Interaction is the use of lexical 
semantic spaces, as Hilbert spaces, to capture the meaning of words. There has 
been some initial evidence that the phenomenon of quantum entanglement 
exists in a semantic space and can potentially play a crucial role in determining 
the embeded semantics. In this paper, we propose to consider pure high-order 
entanglements that cannot be reduced to the compositional effect of lower-order 
ones, as an indicator of high-level semantic entities. To characterize the 
intrinsic order of entanglements and distinguish pure high-order entanglements 
from lower-order ones, we develop a set of methods in the framework of 
Information Geometry. Based on the developed methods, we propose an 
expanded vector space model that involves context-sensitive high-order 
information and aims at characterizing high-level retrieval contexts. Some 
initial ideas on applying the proposed methods in query expansion and text 
classification are also presented. 

Keywords: Information geometry, Pure high-order entanglement, Semantic 
emergence, Extended vector model 

1   Introduction 

An emerging line of research in Quantum Interaction (QI) is on capturing the meaning 
of words based on lexical semantic spaces (as Hilbert spaces) [13][14][17]. The 
intuition is that humans encountering a new concept often derive its meaning via the 
accumulative experience of contexts in which the concept appears. Therefore, the 
meaning of a word can be captured by examining its co-occurrence patterns with 
other words in the language use (e.g., a corpus of texts).  A typical semantic space 
model is the Hyperspace Analogue to Language (HAL) [15]. The semantic space 
models have demonstrated a cognitive compatibility with human information 
processing [15][16]. 

More formally, in this paper, we generalize a semantic space to a Hilbert space 
induced by a set of words, in which all possible combinations of the words form the 
basis vectors. For example, given a word set W≡{Napoleon, invasion, Spain}, we 
have eight basis vectors 000 , 001 , , 111… , where the basis vector 001  stands for 



the occurrence of ‘Napoleon’ and the absence of ‘invasion’ and ‘Spain’. A pure state 
of this semantic space can be written as 000 111000 111a a+ +… , where the linear 
combination coefficients ijka  meet the normalization condition 2 2

000 111 1a a+ + =… . In 
quantum mechanics, the squared norm of a linear combination coefficient is 
considered as the probability of the corresponding basis event observed. According to 
this interpretation, it is clear that we can readily recover the marginal probability of 
any word occurrence from a given pure state of the semantic space. For example, the 
marginal probability of the occurrence of the first word (Napoleon) can be given by 

2 2 2 2
100 101 110 111a a a a+ + + . In this sense, a pure state of the semantic space gives a more 

comprehensive description of the space than the conventional Vector Space Model 
(VSM or VM for short) [1]. 

A kind of quantum states of particular importance is the entangled state [2], in 
which the quantum states of two or more objects are dependent on each other so that 
one object can no longer be adequately described without a full mention of its 
counterparts. Technically, several objects are entangled if the state of the 
compositional system cannot be expressed as the tensor of individual systems’ states. 
Recent study by Bruza el. al. revealed some initial evidence that the phenomenon of 
entanglement also exist in semantic spaces [12]. Then, the next fundamental research 
question arise: how to characterize and utilize the entanglements in semantic spaces? 
This is the very aim of this paper. We are particularly interested in the pure high-
order1 entanglements in semantic spaces, i.e., high-order entanglements that cannot 
be reduced to the compositional effect of lower-order interactions, which often 
indicate the emergence of high-level semantic entities. 

For illustration, let us consider the example semantic space shown earlier. Given a 
pure state of this semantic space2,  

0.3296 000 0.0002 001 0.0900 010 0.0001 011ψ = + + +  
0.3000 100 0.0001 101 0.2000 110 0.0800 111+ + + +  

it is easy to check that ψ  cannot be expressed as the tensor of the pure state of its 1-
order subsystems, i.e., 

( ) ( ) ( )0 1 0 1 0 10 1 0 1 0 1x x y y z zψ ≠ + ⊗ + ⊗ +  
for arbitrary x0, x1, y0, y1, z0 and z1 meeting |x0|2+|x1|2=1, |y0|2+|y1|2=1 and |z0|2+|z1|2=1. 
Hence, we conclude that ψ  is an entangled state.  

In this paper, we focus on the pure high-order entanglement, i.e., the high-order 
entanglement that cannot be expressed as the tensor of any lower-order systems that 
might be entangled too. For example, it is easy to check that the above ψ  cannot be 
expressed as the tensor of state vectors of any two subsystems, e.g., 

( ) ( )0 1 00 01 10 110 1 00 01 10 11u u v v v vψ = + ⊗ + + + , 
where |u0|2+|u1|2=1, |v00|2+|v01|2+|v10|2+|v11|2=1. In this case, we conclude that ψ  has 
a pure 3-order entanglement.  

                                                           
1 In this paper, the “high-order entanglement” corresponds to the “multipartite entanglement” 

in Quantum Mechanics. 
2  Note that the coefficients of ψ  meet the normalization condition, i.e., 

0.3296+0.0002+0.0900+0.0001+0.3000+0.0001+0.2000+0.0800=1 



The purpose of this paper is to characterize pure high-order entanglements and 
investigate their semantic implications in semantic spaces. To this end, there are two 
fundamental issues. One is how to measure entanglements, and the other is how to 
distinguish pure high-order entanglements from the compositional effect of lower-
order entanglements so that we can illuminate the semantic implication of pure high-
order entanglements by a computational method. 

For the first issue, there are several well-known statistics measuring 2-order 
entanglement of a pure state, e.g., Von Neumann entropy [2], relative entropy of 
entanglement [3], robustness of entanglement [3] and squashed entanglement [3]. The 
measurement of high-order entanglement is more complicated. Some measures on 
high-order entanglement are derived by a direct generalization or a simple 
combination of 2-order measures, e.g., relative entropy of entanglement [3], 
robustness of entanglement [3] and global entanglement [3]. In addition, there are 
high-order entanglement measures that do not inherently depend on 2-order measures, 
e.g., Tangle [3] and Schmidt measure [3]. Although they are useful in general, most of 
the above statistics have some limitations in certain contexts. For example, many of 
these statistics cannot effectively distinguish pure high-order entanglements from the 
lower-order ones. Although, based on the above statistics, a rather satisfactory 
understanding has been achieved in the bipartite case, there is a certain degree of 
consensus that there is no universal way to define pure high-order entanglement, even 
in the simplest case of pure states [18, 19]. The existing pure high-order entanglement 
statistic often has to depend on some strong presupposition, e.g., symmetric 
Gaussianity [20]. 

The second issue requires a method which can not only measure pure high-order 
entanglements but also easily find or construct surrogate states so that we can 
investigate their semantic implications exclusively. Here, a surrogate state refers to 
the state that shares the same (k-i)-order entanglements, where 0<i<k, with the 
original state but does not have pure k-order entanglement. Hence, by comparing the 
manifestation of the original state and the surrogate state in a proper context, e.g., 
information retrieval, we can evaluate the semantic implication of the pure k-order 
entanglement. In our opinion, the pure k-order entanglements are an important 
indicator of specific semantic entities. 

In this paper, we propose the use of Information Geometry (IG) [4][5] to 
characterize the pure high-order entanglements. IG provides useful tools and concepts 
for this purpose, including the orthogonality of coordinate parameters and the 
Pythagoras relation in the KL-divergence [6][7]. For example, based on parametric 
orthogonality, we can give a set of statistics and methods for analyzing word 
occurrence patterns by decomposing the word entanglements into various orders. As a 
result, pure 2-order, 3-order, and higher-order entanglements are singled out.  

It should be emphasized that, owing to the lack of a proper quantum statistic, the 
proposed IG method in this paper is classical in itself. The usefulness of IG method in 
a quantum framework roots on the following observation: In a post-measurement 
configuration, the entanglement degenerates into the statistical dependence between 
the measurement results. Specifically, it can be shown that several objects are 
entangled only if the corresponding random variables denoting the measurement 
results of these objects are statistically dependent on each other (see Subsection 2.1 
for details). Since the occurrence and co-occurrence patterns of words can be 



naturally explained as the measurement results of semantic spaces, we believe that the 
proposed IG method is sufficient for our purpose. 

2   Preliminaries of Information Geometry 

Information Geometry (IG) represents probabilistic distributions as parametric 
coordinate systems, and hence could establish a connection between the properties of 
statistical distributions and some well-known notions in differential geometry to 
capture statistical dependencies from a geometric point of view. In this section, we 
will first discuss the connections between quantum entanglement and Information 
Geometry (IG), and then give a brief introduction to some relevant concepts and 
theorems from IG. Note that most theorems presented in Subsections 2.2, 2.3 and 2.4 
have been formally proved or implied by the pioneering work in IG, e.g., the work by 
Rao [8], Jeffreys [9] and Sun-Ichi Amari [4][5]. Here, we restate and interpret them 
for our purpose in the context of semantic spaces, as their original expressions are 
heavily dependent on the notions and symbols of differential geometry and are thus 
not easy to follow for readers without a strong mathematical background.  

2.1 On the Connection of Quantum Entanglements and Classical Dependences  

Although IG is expressed in a classical framework of probability theory and originally 
aims at characterizing classical interactions3, it can be naturally applied in the 
quantum framework because of the intrinsic connection between quantum 
entanglements and statistical dependences. For illustration, let ψ  be a pure state of 
a two-qubit system A. Then ψ  can determine a joint distribution on the basis 
events of A. For instance, if 00 01 10 1100 01 10 11a a a aψ = + + + , then ψ  determines a 
joint distribution: { }2 2 2 2

00 00 01 01 10 10 11 11, , ,P p a p a p a p aψ = = = = = . Let X|ψ> be the 
(classical) random variable obeying the joint distribution P|ψ>. We call X|ψ> the 
denotative random variable induced from ψ , and denote the value of X|ψ> by xψ.  
For example, if ψ = 10 , then xψ=10. The following proposition, which can be 
generalized to general cases of multi-compositional systems, illuminates the 
equivalence between entanglements and statistical dependences in the post-
measurement configuration. 

Proposition 1: Let ψ  be a pure state of a quantum system A , { },B C  be a 
bipartition of A  such that A B C= ⊗ , and u  and v  be the pure states of B  and 
C respectively. Then, ( ) ( ) ( )Pr Pr Pru v u vu vu v iff X x x X x X xψψ = ⊗ = = = ⋅ =D  
where X ψ , uX  and vX  are denotative random variables induced from ψ , u  

                                                           
3 In this paper, we use the term ‘interaction’ or ‘dependence’ to be the classical counterpart of 

the quantum entanglement. The connection between these notions is shown in Proposition 1. 



and v  respectively, and D  stands for the conjunction of ux  and vx , e.g., if 
01, 10u vx x= = , then 0110u vx x =D . 

Proof：Let 0...0 1...10...0 ... 1...1a aψ = + +  is a state vector of 2n-dimensional Hilbert 
space A , 0...0 1...10...0 ... 1...1u b b= + +  is a state vector of 'A s  2k-dimensional 
subspace B  and  0...0 1...10...0 ... 1...1v c c= + +  is a state vector of 'A s  2l-dimensional 
subspace A B− , where n k l= + .  

If u vψ = ⊗ , i.e.,  

0...0 1...10...0 ... 1...1a a+ + ( ) ( )0...0 1...1 0...0 1...10...0 ... 1...1 0...0 ... 1...1b b c c= + + ⊗ + +  
it turns out that 

1 1 1... ... ...n k k nx x x x x xa b c
+

= ⋅ for any { }1,..., 0,1nx x ∈ , i.e., the probability of a basis 
event 1,..., nx x  is equal to the product of probabilities of corresponding basis events 
in subsystems. Sufficiency follows directly from this observation.  

Assumes that denotative random variables induced by ψ , u  and v  satisfy 

( ) ( ) ( )Pr Pr Pru v u vu vX x x X x X xψ = = = ⋅ =D . Based on the observation that 

( ) 2
Pr

u vu v x xX x x aψ = = DD , ( ) 2
Pr

uu xuX x b= =  and ( ) 2
Pr

vv xvX x c= = , it is easy to check the 
necessity. 
 

The main tenet of IG is that many important structures in probability theory and 
statistics can be treated as structures in differential geometry by regarding a space of 
probabilities as a differential manifold endowed with a Riemannian metric and a 
family of affine connections [4]. In particular, IG provides a novel method to 
characterize pure high-order interactions among random variables. According to 
Proposition 1, IG is relevant to the task of entanglement identification in the post-
measurement configuration. Note that most current applications of semantic spaces 
are essentially in the post-measurement configuration. Hence we can directly 
investigate the entanglement in semantic spaces using IG. 

2.2   Statistical Manifold and Orthogonality 

We represent a co-occurrence pattern of words by a random vector with binary 
components so that the joint distribution of co-occurrence can be exactly expanded by 
a log-linear model [10]. Let X≡[X1, X2,…, Xn]T, Xi∈{0,1} be a n×1 random vector 
and let p≡p(x), x≡[x1, x2,…, xn]T, xi∈{0,1} be its joint probability distribution. 
Each Xi indicates that the ith word is present (Xi =1) or absent (Xi =0).  

Each distribution p(x) is defined by 2n probabilities:  
{ } { }

1 11
1 1 , ,

Pr , , 0, 0,1 ,1 , 1
n nn

i i n n k i ii i
p X i X i i k n p≡ = = > ∈ ≤ ≤ =∑… ……

…  
Hence, the set of all distributions forms a (2n-1)-dimensional manifold Sn, where the 
subscript n of S denotes the number of random variables. Note that we require p(x)>0 
for all x since the case of a various support set4 of p(x) poses rather significant 

                                                           
4  In mathematics, the support of a function is the set of points where the function is not zero, 

or the closure of that set. Here, the support set refers to the set of terms with nonzero 
probabilities. 



difficulties for analysis. This requirement can be met by any common statistical 
smoothing method, e.g., Good-Turing estimator [11]. A direct coordinate system of Sn 
can be constructed by any 2n-1 terms among p(x). We refer to this coordinate system 
as p-coordinates. 

Another coordinate system of Sn is given by the expectation parameters: 

[ ] [ ]12 1, 1, , ; ; ;i i ij i j n nE x i n E x x i j E x xη η η⎡ ⎤= = = < =⎣ ⎦ "… " "，  (1) 

which have also 2n-1 components. This coordinate system is called η-coordinates. 
On the other hand, p(x) can be expanded by  

( ) 1 1log i i ij i j n ni i j
p x x x x xθ θ θ ψ

<
= + + + −∑ ∑x "" "  (2) 

where ψ is the normalization term corresponding to ψ≡logp(0). It is easy to check that 
the formula (2) is an exact expansion since all xis are binary. In addition, if 
x=[0,…,0]T, we have logp(x)=logp(0). All θijks together have 2n-1 components and 
form the so-called θ-coordinates. 

To characterize pure high-order interactions, we first introduce Riemannian metric 
tensor which is derived from the Fisher information and orthogonality. We will first 
give their mathematical definitions in general and then illuminate their meaning in a 
specific context. 

Definition 1 (Fisher Information and Riemannian metric tensor): Given a 
probability distributions p(x;ξ) parameterized by ξ≡[ξ1,…,ξn]T ∈ Ξ, the Fisher 
information of two coordinate parameters ξi and ξj is defined by 

( ) ( ) ( ) ( ) ( ); ;ij i jg E l lξ ξ⎡ ⎤≡ ∂ ∂ ⋅ ∂ ∂⎣ ⎦ξ x ξ x ξ  (3) 

where l(x;ξ)≡logp(x;ξ) and E[•] denotes the expectation with respect to p(x;ξ). If 
Fisher information matrix G(ξ)≡(gij(ξ)) is nondegenerate for any ξ∈ Ξ, the 
parameterized family S≡{p(x;ξ)} is a Riemannian manifold, and G(ξ) is a 
Riemannian metric tensor. 

Definition 2 (Orthogonality): Two coordinate parameters ξi and ξj are orthogonal 
if the Fisher information of ξi and ξj vanishes for any ξ∈Ξ, i.e., 

( ) ( ) ( ) ( ); ; 0i iE l lξ ξ∂ ∂ ⋅ ∂ ∂ =⎡ ⎤⎣ ⎦x ξ x ξ  (4) 

We explain the meaning of Definition 2 by a 3-word example. Using three binary 
variables X1, X2 and X3 to denote the occurrence of the word w1, w2 and w3 
respectively, the joint distribution of X1, X2 and X3 is given by p(x)≡pijk=Pr{x1=i, x2=j, 
x3=k}>0, i, j, k∈{0,1}, where x=[x1, x2, x3]T. It is clear that we need seven free 
parameters to characterize a distribution because of the constraint ∑ijkpijk=1. Hence, 
the p-coordinates (Note that the p-coordinates is not unique), η-coordinates and θ-
coordinates of this system can be given by:  

[ ] [ ] [ ]001 010 011 100 101 110 111 1 2 3 12 13 23 123 1 2 3 12 13 23 123, , , , , , , , , , , , , , , , , , , ,T T Tp p p p p p p η η η η η η η θ θ θ θ θ θ θ≡ ≡ ≡p η θ . 
Given any p-coordinates of a distribution, the computation of η-coordinates is 

direct, and the θ-coordinates can be obtained by formula (2). For example, it is easy to 
check that ( ) ( ) ( )1 100 000 12 110 000 100 010 123 111 100 010 001 110 101 011 000log , log , logp p p p p p p p p p p p p pθ θ θ≡ ≡ ≡  
etc. The components of η-coordinates, except the unary marginals, can reflect 



interactions of words. For example, η12 measures the co-occurrence between w1 and 
w2 in the sense that the larger η12 is, the more frequent the co-occurrence between w1 
and w2 is.  

The effect of an interaction can be evaluated with respect to a likelihood or log-
likelihood function. To be specific, given a η-coordinates η, η12 is natural measure of 
the interaction between w1 and w2. An increment Δη12 of η12 will result in increments 
of log-likelihood function at different xs. It is convenient to write these increments in 
the vector form Δl(Δη12)≡[Δl000(Δη12),…,Δl111(Δη12) ]T, where Δlijk(Δη12) ≡l([i, j, 
k]T,η’)-l([i, j, k]T,η), i, j, k∈{0,1}, and η’ is the same as η  except that the parameter 
η12 becomes η12+Δη12. A natural intuition is that, if another component ξ of η is 
irrelevant to the interaction between word w1 and w2, then the vector Δl(Δξ) should be 
orthogonal to the vector Δl(Δη12). It is easy to check that the parameter orthogonality 
given in Definition 2 is only a weighted generalization of the orthogonality between 
the above incremental vectors of the log-likelihood function, and hence shares the 
essentially identical meaning with the original one. It turns out that we have an 
intuitive reason to consider a parameter ξ independent of all 2-order interactions if ξ is 
orthogonal to all ηijs. More technically, this is summarized in Theorem 1. 

Theorem 1: Given a coordinate system ξ≡[ξ1… ξn]T, if ξi is orthogonal to ξj, then 
the Maximum Likelihood Estimation (MLE) of ξi is independent of the value of ξj. 

Theorem 1 technically confirms our intuition on the independence between 
parameters. It guarantees a nice property of orthogonal parameters, which remarkably 
simplifies some common procedures of hypothesis test relevant to our purpose. We 
will revisit this issue in later. 

According to the above discussion, it is natural to require that any measure 
reflecting pure k-order interactions should be orthogonal to all parameters reflecting 
lower-order interactions. The requirement cannot be met by η-coordinates or θ-
coordinates alone. For example, there might often be the dependence between η123 
and η12. Hence η123 can not reflect the pure 3-order interaction. On the other hand, 
Information geometry assures that the η-coordinates and θ-coordinates are dually 
orthogonal coordinates.  

Theorem 2: Let the η-coordinates and θ-coordinates of Sn be η≡[η1,…,ηn]T and  
θ≡[θ1,…, θn]T respectively, where θ1≡[θ1,…, θn]T, θ2≡[θ12, θ13,…, θ(n-1)n]T and so on, 
and let ηk-≡[η1,…,ηk]T and θk+≡[θk+1,…, θn]T, then in the k-cut mixed coordinate 
ζk≡[ηk-,θk+], any θ parameter is orthogonal to all η parameters, and vice versa. 

Hence, we can construct the mixed-coordinates, e.g., ζ2≡[η1, η2, η3, η12, η13, η23, 
θ123]T, such that θ123 is orthogonal to all ηi and ηij. It can also be shown that θ123 is 
orthogonal to other common interaction measures, e.g., covij≡ηij-ηiηj and the 
correlation coefficient ρij. Furthermore, it is easy to check that, if we generalize the 
definition of cov and ρ to the high-order case, e.g., covijk≡ηijk-ηiηjηk, the above 
claim still holds accordingly. Another important observation is that the independence 
of X1,…,Xk implies θ1…k=05. Hence, θ1…k is a relevant measure of pure k-order 
interactions. By now, we are able to construct the proper coordinate system aiming at 
measuring pure high-order interactions. In practice, the measuring procedure of pure 
high-order interactions can follow two threads: one is directly parametric estimation 

                                                           
5 We should not require that the converse proposition holds, since θ1…k=0 does not entail the 

independence of X1, X2,…,Xk if there are lower-order dependences among them. 



of mixed coordinates; the other is computing the KL-divergence between the original 
state and the surrogate state using the Pythagoras relation entailed by the dual 
orthogonality of mixed coordinates. 

2.3   Parametric Estimation of Mixed Coordinates 

It is natural to investigate the pure k-order interaction in the (k-1)-cut mixed 
coordinate ζk-1≡[η(k-1)-,θ1…k]T of Sk, since the dual orthogonality gives a simple form 
of the Fisher information metric, and hence simplifies the estimation procedure of 
θ1…k.  

Given [η(k-1)-,θ1…k]T, let us consider a standard procedure of hypothesis test 
concerning the null hypothesis H0: θ1…k=θ(0)

1…k against H1: θ1…k≠θ(0)
1…k. Let the log 

likelihood of models H0 and H1 be 

( ) ( )
( )( )1

0
0 1 11max log , , ; ,

k N kkl p θ
− − − −= η x x η …… , 

( ) ( )( )111 , 1 11max log , , ; ,
kk N kkl pθ θ

− − − −= η x x η
… ……  

where N is the number of observations. 
The likelihood ratio test uses the test statistic λ≡2log(l1/l0). It can be shown that 

λ～χ2(1), where the degree of freedom in Chi-squared distribution is determined 
by the difference of the free parameter number between l0 and l1. Since the 
distribution of test statistics is known, we can obtain the estimated value of θ1…k. 
However, the free parameters of l1 and l0 are often considerably huge. As a 
consequence, the computational cost might be prohibitive for the coordinates without 
dual orthogonality. In the mixed coordinates with dual orthogonality, the likelihood 
maximization with respect to η(k-1)- and θ1…k can be performed independently, and 
hence we have 

�
( )

( )( )0
0 1 11log , , ; ,N kkl p θ−= x x η …… , �

( )( )11 1 11max log , , ; ,
k N kkl pθ θ−= x x η

… ……  

where � ( )1k−η  can be estimated independently and kept unchangeable for both l1 and l0. 
Hence, the parametric space is remarkably reduced and the likelihood ratio test 
becomes feasible. 

2.4   Kullback-Leibler Divergence and Pythagoras Relation 

The properties of dual orthogonal coordinates entail the generalized Pythagoras 
theorem, which gives a decomposition of the Kullback-Leibler divergence (KL- 
divergence for short) such that we can examine different contributions in the 
discrepancy of two probability distributions, or contributions of different ordered 
interactions of words.  

The KL-divergence between two probabilities p(x) and q(x) is defined by D[p:q]≡
∑x p(x)log[p(x)/ q(x)]. Given a distribution p∈Sk, let pm be the distribution that is the 
closest to p and without pure k-order interactions, We then have 

( ) ( ) [ ]
1 0arg min :

km qp D p q
− +∈= E , where E(i-1)+(0) is the set of all distributions having no k-

order interactions, i.e., θ1…k=0. We refer to pm as the m-projection of p to E(i-1)+(0). 
Let the mixed coordinates of p be [η(k-1)-,θ1…k]T, then the coordinates of pm is [η(k-1)-
,0]T.  



An important result of Information Geometry guarantees that KL-divergence can 
been approximated subject to the Riemannian metric tensor derived from Fisher 
information: 

( ) ( ) ( )2
,

2 ; : ;ij i ji j
ds g d d D p p dξ ξ= = +⎡ ⎤⎣ ⎦∑ ξ x ξ x ξ ξ  (5) 

This approximation would remarkably simplify the computation of KL-divergence 
between a distribution p and its m-projection pm. To explain the Pythagoras relation, 
we need the following definitions: 

Definition 3: A coordinate curve is called an e-geodesic if it is given by a linear 
function θ(t)=ta+b in the θ-coordinates, where a and b are constant vector. A 
coordinate curve is called a m-geodesic if it is given by a linear function η(t)=ta+b in 
the η-coordinates, where a and b are constant vectors. 

Theorem 3 (Pythagoras relation): Let p, q and r be three distributions. If the m-
geodesic connecting p and q is orthogonal at q to the e-geodesic connecting q and r, 
then we have D[p:r] = D[p:q] + D[q:r]. 

Based on Theorem 3, given any p0 with the coordinate [η’(k-1)-,0]T, we have 
D[p:p0]= D[p:pm]+ D[pm:p0]. The first decomposing term of KL-divergence, i.e., 
D[p:pm] offers us another relevant statistic to quantitatively evaluate the level of high-
order interactions. Note that the D[p:pm] can be computed by formula (5). 

3   Characterizing High-order Entanglements in Semantic Spaces 

3.1   On Semantic Implications of Pure High-order Interactions 

In this section, we illustrate by two artificial examples the semantic implication of 
pure high-order entanglements in semantic spaces. Our fundamental idea is: If a set of 
words as a whole has a significant interaction that cannot be reduced to the 
compositional effect of lower-order interactions, then this pure high-order interaction 
implies the emergence of some semantic entity. 

Example 1: Given a corpus related to the history of French wars, a word set 
{w1=revolution, w2=Waterloo, w3=Napoleon} and their occurrence/co-occurrence 
probabilities: 
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where ηi is the marginal occurrence probability of wi’s in all chunks (a chunk is a unit 
fragment of text, e.g., within a window, a paragraph, a section or a document.), ηij is 
the co-occurrence probability of wi and wj, η123 is the joint co-occurrence probability 
of w1, w2 and w3, ‘#chunk’ is the total number of chunks, #chunki is the number of 



chunks in which wi occurs, #chunkij is the number of chunks in which wi and wj co-
occur simultaneously and so on. 
  In example 1, there is a correlation between the occurrences of ‘revolution’ and 
‘Napoleon’ since the early life of Napoleon is closely related to the France revolution. 
There is also a correlation between the occurrences of ‘Waterloo’ and ‘Napoleon’ 
since the Waterloo battle ended the myth of Napoleon. Because both ‘revolution’ and 
‘Waterloo’ are correlated with ‘Napoleon’, there is also a significant interaction 
among these three words. We consider the interaction of these three words significant 
if η123>η1η2η3, e.g., the joint occurrence probability is significantly greater than the 
product of marginal occurrence probabilities. 
  It is clear that the set {revolution, Napoleon, Waterloo} cannot be naturally mapped 
to a realistic event or a specifically semantic entity even if there is an obvious 
interaction among these three words. One may argue that the whole of these three 
words is still meaningful since both ‘revolution’ and ‘Waterloo’ are related to 
‘Napoleon’, and hence the combination of ‘revolution’ and ‘Waterloo’ offers a more 
complete picture on ‘Napoleon’. However, this 3-word correlation is not a pure 3-
order correlation. Specifically, let us assume that we have already known there were 
two significant 2-word correlations, i.e., the correlation between ‘revolution’ and 
‘Napoleon’ and the correlation between ‘Waterloo’ and ‘Napoleon’, then it is natural 
to consider that ‘Napoleon’ is related to ‘revolution’ and ‘Waterloo’ even if we have 
no any knowledge on the 3-word interaction. It turns out that the extra knowledge on 
the existence of a 3-word interaction offers nothing new for us. The above insight is 
confirmed by the observation of η123≈η13η23, which implies that the obvious 
interaction of w1, w2 and w3 can be explained by a coincidence of two pairwise events. 
Consequently, in many applications, e.g., query expansion in information retrieval, 
the 3-order correlation between {revolution, Napoleon, Waterloo} may not bring 
much added value then the consideration of the individual 2-order correlations, i.e., 
between ‘revolution’ and ‘Napoleon’ and between ‘Waterloo’ and ‘Napoleon’. 

Example 2:  Given the same corpus, another word set {w3=Napoleon, w4= 
invasion, w5= Spain} and the corresponding occurrence/co-occurrence probabilities: 
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The high-order interaction that makes better sense semantically is the pure high-
order interaction. In 3-word cases, roughly speaking, a pure 3-order interaction should 
meet the condition η123>η12η23, η123>η13η23, η123>η12η13, η123>η1η2η3, η123>η1η23, 
η123>η2η13 and η123>η3η12, i.e., the joint probability indicating a pure high-order 
interaction should be greater than any possible compositional effect of lower-order 
correlations. In Example 2, since Napoleon launched a series of famous invasions, 
there is a high correlation between ‘Napoleon’ and ‘invasion’. On the other hand, 
since Spain is not very important during Napoleon’s life except for a short period 
during Spain war, there is only a relatively low correlation between ‘Napoleon’ and 
‘Spain’. However, η345 is approximately equal to η35 and η45 since Napoleon’s 
invasion to Spain is the most important event relating Napoleon to Spain. Hence we 



have η345>η34η35. Furthermore, it is easy to check that we have η345>η34η45, η345>η35η45, 
η345>η3η4η5, η345>η3η45 and so on. Therefore, η345 is significant greater than any 
possibly compositional effect of lower-order interactions. Hence, we can conclude 
that there exists a pure 3-order interaction of w3, w4 and w5, which cannot be 
explained by a coincidence of lower-order events and implies an emergence of a 
semantic entity corresponding to the event of Napoleon’s invasion to Spain. 

It should be noted that we can also define ηi to be consistent with the conventional 
vector model if the ηi is computed with respect to the chunk of a word. In this case, all 
the above discussions are essentially similar subject to a minor modification. 

The above discussion seems to imply a method identifying pure high-order 
interaction, i.e., by checking whether η345-η3η4η5, η345-η35η45, η345-η34η45, and so on, 
are greater than zero. However, this naïve method is in general difficult to be applied. 
For illustration, let us consider the task of identifying k-order pure interactions by an 
exhaustive search. First, we have to check whether the k-order interaction is 
significant than any possible bipartition coincidence. Hence we need to compare 
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=∑  configurations. Second, we have to check whether the k-order interaction 

is significant than any possible tri-partition coincidence. It turns out that we also have 
to check all possible l -partitions ( l k≤ ). In summary, the number of configurations 
that we need to check is given by the Bell number kB . Recall that the exponential 
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complex. Furthermore, the difficulty of an exhaustive search strategy also lies in its 
intrinsic unstableness in practice, especially for small corpus since we can only 
control the search procedure by a set of ad-hoc thresholds, which is lack of theoretical 
guarantees. On the other hand, by IG method, the measure of any k-order pure 
interaction can be given by a closed-form formula. In addition, we can perform some 
rigorously-established estimation procedure, e.g., the likelihood ratio test introduced 
in Subsection 2.2, to quantitatively determine how significant our decision is. 

3.2  Characterizing Pure High-order Interactions by Information Geometry 

Information Geometry offers a promising method to estimate pure high-order 
interactions. The likelihood ratio test described in Subsection 2.3 can be directly 
applied to estimate the statistic θ1…k which measures pure k-order interactions. 
Moreover, as described in Subsection 2.4, we can measure the level of high-order 
interactions by decomposing the KL-divergence with respect to a proper m-projection. 
As a demonstration, we can directly derive θ-parameters from the p-coordinates as 
shown in the following. 

In Example 1, the η-coordinates is given. It is easy to obtain the p-coordinates from 
η-coordinates by solving a simple linear system. According to p-coordinates, its θ-
parameters are θ12=-0.0004, θ13=5.3932, θ23=11.264, θ123=-3.4584. The negative value 
of θ123 indicates that, although η123 is large in absolute value, there is no pure 3-order 
interaction among the corresponding words. Moreover, the interaction level among w1, 
w2 and w3 is lower than the compositional effect of lower-order interactions. In 
Example 2, the θ-parameter are θ34=0.8926, θ35=0.5991, θ45=0.6049 and θ345=6.4852. 



The positive value of θ345 indicates that, although η345 is small in the absolute value, 
there is still a significant pure 3-order interaction among w3, w4 and w5. 

3.3   An Extended Vector Model with Pure High-order Interactions 

To investigate semantic implications of high-order interactions, we extend the 
conventional vector model so that it can incorporate high-order interactions. 
Traditionally, the marginal distribution of words has acted as the language model in 
IR (Information Retrieval), MT (Machine Translation) and NLP (Natural Language 
Processing) because a general higher-order model is often computationally expensive 
even in the 2-order case. However, in many practical applications, it is unnecessary to 
construct a general high-order model involving all high-order interactions. On the 
other hand, it is often sufficient to comprise only a small proportion of high-order 
interactions in a context-sensitive way, e.g., the pure high-order interaction 
corresponding to some specific subject. This idea is formalized in the following. 

Definition 4 (Vector Model): Given a word set {w1,…,wn} derived from a corpus 
C, a text’s (corpus’s) Vector Model (VM) with respect to {w1,…,wn} is the marginal 
distribution [p1,…,pn]T of this text (corpus), where pi is the marginal probability of wi. 

Definition 5 (Extended Vector Model): Given a word set {w1,…,wn} derived 
from a corpus, a text’s (corpus’s) Extended Vector Model (EVM) is composed by the 
marginal distribution and some statistics measuring the pure high-order interaction, 
and has the following form: 

1 11 21, , , , ,
k k

T

n i i j jp p θ θ⎡ ⎤
⎣ ⎦… …… …  or 

1 11 21, , , , ,
k k

T

n i i j jp p D D⎡ ⎤
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where 
1 1ki iθ …  is the θ parameter subject to the joint distribution of { }1 1

, ,
ki iw w… , 

1 1ki iD …  

is the KL-divergence between p and pm subject to { }1 1
, ,

ki iw w…  (see Subsection 2.4), 
p1,…,pn is the marginal probability of w1,…,wn. 

3.4   Practical Applications in Text Classification and Query Expansion 

The remaining issue is to determine what θ or D should be included in an EVM. This 
issue can only be clarified in specific application backgrounds. We give two examples 
to explain this issue. 

In the task of supervised text classification, it is useful to extract a set of words for 
each class representing the class subject so that the classification model can be 
designed accordingly. These sets of theme words can be obtained, in principle, by 
finding out the word set having significantly pure high-order interactions with respect 
to the joint distribution of the corresponding class. This finding procedure can be 
efficient by the aid of prior knowledge. For example, if a few initial theme words are 
given, it is natural to only search possible pure high-order interactions involving some 
of prior theme words. Even if there is no prior knowledge on class’ subjects, the pure 
high-order interactions relevant to a specific class can be found by checking, e.g., the 
mutual information between high-order interactions and class labels. Another method 
evaluating the relevance between pure k-order interactions and class subjects is to 
compare the class label of the original state and the surrogate state (see Section 1) 



with vanishing pure k-order interactions. The surrogate states can be obtained by 
direct searching over the corpus or manual construction. In the latter case, the 
fictitious class label of a surrogate state is determined by the classification model 
trained with respect to the EVM involving the pure k-order interactions. 

In query expansion tasks, it is desirable to mine the pure high-order interactions 
involving some of query words so that the marginal language model can be expanded 
accordingly. We suggest that the pure high-order interaction involving query words 
would be an indication of relevance of the query theme. The following is a brief 
algorithmic framework: 

1 Collect top ranked initial retrieval results into a set SI 
2 Search word subsets involving some query words and other words, and compute 

the pure high-order interactions. 
3 Construct SI’s EVM by incorporating the pure high-order interactions mined in 

step 2. 
4 Get new search results based on the derived EVM. There can be a number of 

ways to do that, for example, by using the EVM as a relevance language model to 
filter or re-rank SI or to expand the initial query using words with pure high-order 
interactions with query words; etc. 

4   Conclusions and Further Work 

Pure high-order entanglements in lexical semantic spaces indicate the emergence of 
high-level semantic entities. To characterize the intrinsic order of entanglements and 
distinguish pure high-order entanglements from lower-order ones, we develop a set of 
methods in the framework of Information Geometry. Based on the developed method, 
we present an expanded vector space model that involves context-sensitive high-order 
information and aims at characterizing high-level context. Several examples with 
specific application backgrounds, e.g., query expansion and text classification, are 
discussed, and an algorithmic framework incorporating our method in query 
expansion are proposed. The further work is to carry out practical experiments and 
develop more efficient algorithms to implement the proposed framework. To this end, 
some nice properties of pure high-order correlations, e.g., sub-inheritance, can be 
used to improve the computational efficiency. 
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