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Abstract

Experimental approaches are widely employed to Hmeack the performance of an
information retrieval (IR) system. Measurements t@émms of recall and precision are
computed as performance indicators. Although they good at assessing the retrieval
effectiveness of an IR system, they fail to expldeeper aspects such as its underlying
functionality and explain why the system shows speHformance. Recently, inductive (i.e.,
theoretical) evaluation of IR systems has beengweg to circumvent the controversies of the
experimental methods. Several studies have addpéethductive approach, but they mostly
focus on theoretical modeling of IR properties Isyng some meta-logic. In this paper, we
propose to use inductive evaluation foamctional benchmarkingof IR models as a
complement of the traditional experimental bapedormance benchmarkingVe define a
functional benchmark suite in two stages: (a) thalueation criteria based on the notion of
“aboutness”; and (b) the formal evaluation methodglusing the criteria. The proposed
benchmark has been successfully applied to eval@aiteus well-known classical and logic-
based IR models. The functional benchmarking resllow us to compare and analyze the
functionality of the different IR models.

Categories and Subject DescriptiongfH.1.1] [Models and principled Systems and
Information Theory; [H3.3] Ipformation Storage and Retrieval] Information

Search and Retrievdlretrieval models; search process; selection procgbks.4]

[Information Storage and Retrieval Systems and Softwdreperformance
evaluation (efficiency and effectivenesd}i3.m] [Information Storage and

Retrieval] Theoretical Study of Information Retrieval

General Terms: Measurement, Performance, Theory

Additional Keywords and Phrases: Functional benchmarking, aboutness, logic-
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1. Introduction

The information retrieval (IR) problem can be désmid as a quest to find the set of
relevant information objects (i.e., documem$ corresponding to a given information
need, represented by a que@y, The assumption is that the quedyis a good
description of the information ne@&l An often used premise in IR is the following:
if a given document D iaboutthe request Q, then there is a high likelihood tha
will be relevant with respect to the associatednmiation need. Thus, the information
retrieval problem is reduced to deciding the abesgnrelation between documents
and queries.

Articles on aboutness have appeared sporadicalthenliterature for more than
two decades. Hutchins provides a thoughtful eatgysof the topic [Hutchins 1977].
This account attempts to define a notion of abagna terms of a combination of
linguistic and discourse analyses of a text. Atgi evel of information granularity,
e.g. a sentence, Hutchins introduttesmesandrhemesas the carriers of the thematic
progression of a text. Roughly speaking, the thetates what the writer intends to
express in the sentence (i.e., what it is aboat),the rheme is the “new” information.
Thematic elements of a sentence are typically baexially to the preceding text, or
assumed as given within the current context. Hatchiso considers how sequences
of sentences combine to form textual elements wetanformation granularity such
as an episode. In other words, sentences are esedido be a part of the micro
structure of the text, whereas an episode is cersidto be an element of its macro-
structure. Themes and rhemes can be generalizbée toacro level. Hutchins asserts
“The thematic part of the text expresses what e iis ‘about’, while the rheme
expresses what the author has to say about it'cjtios, 1977, p31].

Maron tackled aboutness by relating it to a proligbof satisfaction [Maron
1977]. Three types of aboutness were character&adhiout, O-about and R-about. S-
about (i.e., subjective about) is a relationshipMeen a document and the resulting
inner experience of the user. O-about (i.e., objeabout) is a relationship between a
document and a set of index terms. More specificalldocument D is about a term
set T if user X employs T to search for D. R-abjpurtports to be a generalization of
O-about to a specific user community (i.e., a clafsgsers). Lett, be an index term

and D be a document, then D is R-abguis the ratio between the number of users
satisfied with D when using and the number of users satisfied by D. Usingdhis

point of departure, Maron further constructs a pholistic model of R-aboutness.
The advantage of this is that it leads to an opmrat definition of aboutness which
can then be tested experimentally. However, oneestap has been made into the
probabilistic framework, it becomes difficult tousdly properties of aboutness, e.g.,
how does R-about behave under conjunction? By whyllustration, assume
document D is characterized by the index temys..,K,,. From a logical point of

view, D can be viewed as being represented by dingunction K, 0...0K,.Assume
that D is R-about index ternt,. One can translate this relationship between a
document and term into a relation between the deotmmepresentationk, 0...0K,,

and termt, (now viewed as an atomic logical formula). Whappens to the
aboutness relationship if information, represenbsd the term K,,,is added to
document D: IsK, O...0K, OK,,,about t, ? In other words, is aboutness monotonic
with respect to the composition of information? ISugiestions cannot be answered
within a probabilistic framework. The underlyingopiem relates to the fact that
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probabilistic independence lacks properties witlspeet to conjunction and
disjunction. In other words, one’s hands are largedd when trying to express
gualitative properties of aboutness within a prdlsle setting. (For this reason
Dubois et al. [1997] developed a qualitative fraragwfor relevance using possibility
theory).

During the eighties and early nineties, the isstabmutness remained hidden in
the operational definitions of various retrieval aets and their variations. For
example, the vector space model represents botmumus and queries as vectors in
a high dimensional space whereby the dimensionggond to information bearing
terms. If the angle between the respective docurardtquery vectors is above a
certain threshold, the document is deemed to betabe query. This period also
featured the emergence of sophisticated probabilistrieval models. Major effort
was expended in producing ever more sophisticatatthimg functions between
document and query representations. Such matchimgibns were evaluated by an
experimental paradigm. The paradigm often has tHewing form: Given a set of
test queries and a collection of documents, a setlevant documents awe priori
associated with each test query. In the actual rexpat, a matching function
produces a ranked list of documents descendingainmscore between a test query
and a particular document representation. The padnce of a matching function
can be measured by studying the degree to whigdvaet documents are moved
towards the top of the ranking produced by the matcfunction under observation.
Statistical tests of significance can be applieddampare average performances of
two ranking functions across the set of test gsetleus gaining some confidence that
matching function A produces, on average, bettekings than matching function B.
The experimental paradigm has long been one ofttheerstones of research into
information retrieval, but it has long been debatsdvell. It is outside of the scope of
this article to descend into the controversiesaurding experimental information
retrieval, but we illustrate one of its manifestas. Many of the more sophisticated
matching functions rely on constants. The valueshelse constants can greatly
influence the performance of the matching functidime specific values of the
constants are not derived from theory, but are éttinaccording to a particular
document collection and test query set.

The emergence of logic-based information retriéwvdahe mid-eighties allowed the
matching function between document and query tgdm in a new light. In one of
the founding papers Van Rijsbergen states, “Theglsiprimitive operation to aid
retrieval is one of uncertain implication” [Van Bjergen 1986]. In other words,
retrieval could be viewed as a process of plausibfgrring the query from the
document. This view spawned a number of attemptsnptementing logic-based
retrieval systems (see [Lalmas and Bruza 1998fsurvey and [Crestani, Lalmas
and Van Rijsbergen 1998] for a compendium). Logisdd information retrieval also
provided the framework to allow theoretical, ratkigain, experimental investigations
in IR [Sebastiani 1998]. It planted the seed fond@amental investigations of the
nature of aboutness [Bruza and Huibers 1994; BamzbHuibers 1996; Hunter 1996;
Nie et al. 1995] culminating in an axiomatic theory of infation retrieval [Huibers
1996] and a characterization of aboutness in tesfnsommonsense rules [Bruza,
Song and Wong, 2000]. Aboutness theory has alsentigcappeared in context of
information discovery [Proper and Bruza 1999]. Bllgaspeaking, these works view
information retrieval as a reasoning process, deteng aboutness between two
information carriers (e.g., document about a queryjdocument about a document).
Work in this area attempted to symbolically chagdee qualitative aspects of the
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matching function, which, up to that point, werermally hidden in the numeric
expressions of these functions. In a broad sensgtampt was made to flesh out the
assumptions underpinning matching functions, andemgenerally to provide a
symbolic, IR-centric account of “the most importaatationship in IR — the one in
which one object contains informati@bout another” (italics ours)[Van Rijsbergen
1993]. An important consequence of logic-basedrmédion retrieval was that it
allowed IR to be studied symbolically within a nmalitframework, for example,
researchers were free to posit question such aabdsitness transitive, or is the
aboutness relationship preserved under the conmposif information? Once
properties of aboutness are described by a sebstulates, they can be used to
compare IR models depending on which aboutnessilptes they support [Bruza and
Huibers 1994; Huibers 1996; Bruza, Song and Wor@®R his opens the door to an
inductive, rather than, experimental theory of canmmm matching functions. The
development of an inductive theory of informaticetrieval evaluation parallels a
similar development in the area of nonmonotonicsoeang. Through the nineteen
eighties, a number of logics were proposed to medehmonsense reasoning, for
example, default logic, autoepistemic logic, ciraaniption etc. At that time, there
was no way to compare these different logics uh&lmeta-theory of non-monotonic
reasoning appeared [Kraus, Lehman and Magidor 19908 theory embodied a suite
if desired properties of honmonotonic logic in terof rules interpreted in a neutral
framework (in this case, preferential models). Bing this framework, the previously
mentioned logics could be compared according tchvproperties they supported.

The theoretical analysis and comparison of inforomatetrieval models need not
take place within a logic-based framework. Losemvigles an analytic theory [Losee
1997; Losee 1998]. He states that a theory of fheration of text filtering and
retrieval systems should describe current perfoomapredict future performance and
explain performance. The difference between Lasapalytical theory and the logic-
based inductive theory is more in approach andescaiher than philosophical point
of departure. Both aim to gain understanding whtipaar IR systems perform the
way they do. Losee’s analytic theory is statisticddlased. Measures such as the
average search length (ASL - expected position @l@ant document) are used to
analyze the quality of a ranking of documents ie ttontext of a hypothesized
database. For example, ASL can be plotted agdiagbrobability that a given term is
in a relevant document vyielding a surface. It haenb shown that when this
probability increases, the ASL steadily and mornergjly decreases due to the
increase in discrimination power of the terms. Tihigeflected in the plots by pivoting
of the surface away from the median (random) perémrce of ASL. In this way, the
Boolean and probabilistic retrieval models havenbgerutinized from a theoretical
point of view [Losee 1997]. In contrast to Loseartsalytical theory, the logic-based
inductive theory focuses primarily on describing #iboutness properties embodied
by a given matching function, and analyzing and ganmg matching functions
according to which aboutness postulates they stpffeunctional benchmarkirigis
the general term coined for such analysis [Sorad. €999].

The primary objective of this paper is to proposdoemal methodology for
functional benchmarking and apply it to inductivealeiate and compare various
typical IR models. Our evaluation targets in theger were deliberately chosen to
review the practicality of the proposed benchmale have evaluated and compared
the functionality of the more prominent classicatldogical IR models - Boolean,
naive (i.e., zero-threshold and binary) vector spdlreshold vector space (multi-
valued), probabilistic, situation theory based,vedii.e., zero-threshold and binary)
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possible world based and threshold possible woalsk8 (multi-valued) IR models.
The advantages and disadvantages of the propentiesent to these models and how
these properties affect effectiveness are analyBedthermore, some important
experimental results could be explained theordyicah the benchmarking. This will
hopefully shed light on existing IR models and hilgher research towards more
effective IR models.

The rest of the paper is organized as follows hi riext section (i.e. Section 2),
the definition of the functional benchmark is auéid. The benchmark is based on the
aboutness framework proposed by Bruza et al. [BamhHuibers 1994; Bruza and
Huibers 1996; Bruza, Song and Wong 2000]. A forruadctional benchmarking
methodology is also proposed in this section. 8ssti3 and 4 then present the
evaluation of some of classical [Van Rijsbergen% %alton 1988; etc.] and logical
IR models [Bruza and Lalmas 1996; Lalmas 1998; lasinand Bruza 1998],
respectively, using the proposed benchmark. Finalyconclusion including a
summary on the evaluation results is given in $echi.

2. Defining the Functional Benchmark Suite

Our approach in defining the functional benchmaritesis performed in two stages.
(a) We first identify a set of aboutness propertiehich will be used to analyze
matching functions. They will be used as the ewu@uacriteria for the functional

benchmark. (b) We then define a formal methodologgining the steps to perform
inductive evaluation.

2.1 Properties of Aboutness

Despite several research studies devoted to atssjttieere is still no consensus on
the desirable properties of aboutness relation. ett@tess, a number of properties are
commonly discussed in the literature, e.g., refligxi transitivity, symmetry,
simplification, supraclassicality, equivalence, andht weakening and left (right)
monotonicity [Lalmas and Bruza 1998]. The primaggson for the lack of consensus
is the fact that the logic-based framework chosas Bome influence on the
associated aboutness properties. One would thatkréffiexivity, i.e., the assumption
that an information carrier (such as a documengbigut itself, would not generate
any difference in opinion. However, reflexivity & propertynot supported by
Hunter’s default logic-based aboutness framewonknfidr 1996], buis supported by
Huibers’ situation-theoretic framework [Huibers $99n addition, a substantial body
of work on defining aboutness properties has bepspiied by symbolic
characterizations of the preferential entailmeriatien’ found in nonmonotonic
reasoning. This has slanted the corresponding ctesizations of aboutness [Bruza
and Huibers 1994; Bruza and Huibers 1996; Amati @edrgatos 1996; Bruza and
Van Linder 1998]. Recent work has argued that theutness relationship goes
beyond the notion of preferential entailment [Bru2ang and Wong 2000].

The attempts in the literature to characterizeabeutness relationship have been
useful to stimulate investigation into what “abceegs’ really is without being
burdened by the baggage of a particular retrievadeh An unfortunate consequence
of this freedom has been a lack of connection watimmonly accepted notions of IR

! The term “migration” preferentially entails “salmitif and only if all preferred documents on migoat are also
about salmon. That is, the user’s information needssumed to impose a preferential ordering ons#teof
underlying documents



performance. We argue that aboutness propertiesctedl for the purposes of
functional benchmarking should be able to be rdlate the traditional IR
performance criteria: Precisiband Recafl This allows theoretical insights provided
by the inductive evaluation to be correlated witkights gleaned via experimental
evaluation.

The inductive evaluation paradigm requires that #m®utness properties be
expressed symbolically. This requires that a col@pframework be established
which provides a sufficient diversity of conceptsthwwhich useful aboutness
properties can be expressed. In this regard, LalmalsBruza [1998] have stated:
“The framework should not be biased towards anyemimodel, i.e., it should be
neutral. Moreover, it should be sufficiently abstreo filter away unnecessary details
of the various IR models. In such an abstract autral setting, IR models can be
inductively compared”.

In this paper, we will employ the framework proptd®y Bruza et al. [Bruza and
Huibers 1994; Bruza and Huibers 1996; Bruza, Sond ®/ong 2000]. This
framework is abstract and not biased towards amgngiR retrieval model, and is
parsimonious with respect to the number of undegyconcepts. Moreover, it is
based on notions drawn from information-based lotjievould seem reasonable to
build on research from this area if one acceptsdétermining whether a document is
about query or not, involves an information-bassboning process.

In the framework, descriptors, documents and gsesleare the same notion of
information carriers. Given two information cargeérandj, the aboutness between
andj, i.e.,i is about j is denoted by a binary relation |=, iig=j. On the other hand,
il#] denotes f'is not abouj”. For example, assuming an animal context, “pentis
about “birds”, but “penguin” is not about “flying”.

Information carriers can be composed. The compmositi information is denoted
by i/7], which contains the information carried by bo#ndj. It can be conceived of
as a form of informational “meet”. Viewed from &usition-theoretic perspective
[Lalmas 1996], the information composition reprdseihe intersection between the
situations supporting and the situations supportirjg For example flyingUbird
represents the intersection of “flying” situatioaad “bird” situations, that is the
situations which support the information "A birdfligng”.

Information carriers are ordered. For example, am® €ay an information carrier
i contains at least the same information that arottarrier j does. In the literature,
several authors have proposed that information lmanordered with respect to
containment [Barwise and Etchemendy, 1990; Landm&®86]. Information
containment, denoted hy-|, is a relation over the information carriers foliziag
the intuition that information is fundamentally ‘sted” (see also [Van Rijsbergen
1989]). This nesting may simply be a product of Hymtax of the information
carriers, e.g., in a Boolean languagg,— i. Information containment also embodies
how information is sometimesmplicitly nested. For example, the information
conveyed by “salmon” also carries the informatiéish”. The former we refer to as
surface containmentand the latterdeep containmentin general, information
containment (eithesurfaceor deep will be denoted by the symbal , whereby- is
the union of the relations surface containmeff’( ) and deep containment

(OF-). It is important to make this distinction as iR models only support
surface containment, whereas others support a moapproximating deep

2 Precision is defined as the ratio of relevantieeed documents to retrieved documents
3 Recall is the ratio of relevant retrieved documéatelevant documents
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containment. Moreover, related to the informatiompositionthere ara//j — i and
i7)-].

Information carriers andj are said to preclude each other, denotgd if the
information carried by clashes, or contradicts, with the information ieatbyj. It is
acceptable to assume that an information carreglpdes its own negation. However,
information preclusion is a subtler notion than tecadiction in logic. Information
carriers may clash due to underlying natural laggusemantics, or convention. For
example swimminglcrocodileis acceptable, butyinglicrocodileis meaningless in
most contextslt has also been suggested that information psemuarises in IR as a
consequence of information needs [Bruza and Vaddrin1998]. For example, when
searching for documents abaund surfing terms such asiternet weh netetc. may
be precluded as the user is not interestetveb surfing In some accounts, (e.g.
[Landman, 1986; Bruza and Huibers, 1994]), the amsitpn of clashing information
is formalized as the “meaningless” information watrrdenoted by 0. It is attributed
with properties similar tdalsumin propositional logic, e.g. BB AB = 0. The
meaningless information carriecontains all the information carriers used in an
application.

Furthermore, the concept of Information Field isirtkd. It provides the necessary
building blocks to express the properties of abessn An Information Field is a
structure (J, -, I, [J, 0) where

* [Jis a non-empty set of information carriers

(L, -)is aposet (partially ordered set)

* 040and for all i7, 0 i

o |Ifi,j [J[Jthen V7] [7 /] where (7] is the largest information carrier such that
i7] -iandi7j - j

107 0x[7

A set of postulatésdetermining the aboutness properties is giverrims of concepts
from the Information Field. IR models can be mappedhe aboutness framework.
Based on these postulates, the properties thesfysai@an be reflected. Moreover,
different IR models can be compared according égoibstulates they support.

Postulate 1: Reflexivity (R) =1
An information carrier is about itself.

Postulate 2: Containment (C) —Ii |i jj
An information carrier is about the informationcibntains (surface or deep). Deep
containment models the transformation of informatiBor example, assuming that
“penguin” has the information “bird” nested withini.e., penguin— bird, then the
Containment postulate permits the conclusion tpahguin” is about “bird(s)”. As a
consequence, a document about “penguin” is alsatdbod”. This postulate is recall
oriented.

On the other hand, exact match IR models, whiamgits to promote precision,

can be defined in terms of surface ContainmBnf= Q only if D I°— Q. In other

4 The notion “postulate” is intended to charactettze assumptions inherent within a given retriewmathanism
with regard to aboutness.



words, document D is not about query Q if D doesimcdude Q (completely). This
can be modeled by the following postulate:

Postulate 3: Closed World Aboutness Assumption (AWA

i 4%

i |2 k
If an information carrier is present in another carrigrwe sometimes infer thats
not aboutj. Exact match IR models, such as Boolean retriemad, based on the
CWAA. For example, if query Q is not contained id@ument D, it is assumed that
D is not about Q. CWAA helps improve precision degrade the recall, because it
ignores the partial matching and the possible mairon transformation, which could

establish the aboutness relationship between DQandhe negative impact of Closed
World Assumption has been known for some time [Rfabergen 1986b].

Postulate 4: Right Containment Monotonicity (RCM)

KlFi,i - |

K= ]

This postulate allows transitivity of aboutnessatiein with respect to information
containment. More implicit aboutness relationshipa be derived via this postulate.
Thus, it is recalled oriented. For example, givetoaument is about “penguin” and
“penguin” contains the information “bird”, we camnclude thatd is also about
“bird(s)”. From an IR perspective, RCM models tdvased query expansion whereby
the termi is replaced by the broader teym

Postulate 5: Left Compositional Monotonicity (LM)
I |=k
10 Fk

Postulate 6: Right Compositional Monotonicity (RM)
I |=k
= kO |

LM and RM are used to an underlying assumptionoafies overlap-based IR models:
aboutness is preserved under composition. Theteftrey are recall-oriented
postulates and they could negatively affect theipren (see [Bruza, Song and Wong
2000] for an extended discussion on this topic).vigay of illustration, consider a
documentd about “emporer penguinst (= emporerjpenguin, sod is also about
“penguins” (via RCMd |=penguin. Right Compositional Monotonicity allows us to
compose arbitrary information to the right handesidihus,d |= publisher“jpenguin
would be permitted, which is an example of an ungoaboutness inference that
would lead to a loss of precision in the retrienschanism. Query expansion is an
example of an IR process that is not monotonic wigspect to information
composition. The terms selected to expand a querst ine carefully chosen. This
suggests that a conservatively monotonic processaved.

The postulates LM and RM can be more clearly rdlate IR in the following
way. LM models the case whereby aboutness is pmedewvhen informatior] is
added to a document:



di=qg
dijlFq
A retrieval function satisfying this property maka&isoutness judgment insensitive to
a document’s length. In this way, the issue of doent length normalizatiGrcan be
characterized at the symbolic level.

RM, on the other hand, can be envisaged as qu@gnsion, or any process that
attempts to improve a query by composing inforrmatio it (e.g., pseudo-relevance
feedback [Xu and Croft, 1996]). We have just shdlat this is unsound:

di=q
dl=q0]j

Next, we give some conservative forms of mononittgonstrain how information is
composed in various ways in order to promote pi@tis

Postulate 7: Mix (M)

1=k, |Fk
0=k
For example, from “penguin |= bird” and “tweety Jird”, we can derive

“tweetyllpenguin |= bird”, meaning “penguin” is about “b&jI{ “tweety” is about a
“bird”, so “Tweety, the penguin” is about a “bird”.

Postulate 8: Context-Free And (C-FA)
Kl=i,k|= |
k=10 ]
Boolean retrieval is founded on this postulate. &@ample, if a document is about

“computer software” and the same document is atmmrhputer hardware”, it is also
about both “computer software and hardware”.

Postulate 9: Guarded Left Compositional Monotogi(ELM)
I |= K, ilj
10 Fk

Postulate 10: Guarded Right Compositional Monoton{€&RM)

=k, k]

H=kO ]

GLM and GRM are conservative forms of LM and RM. iformation carrier can
only be composed to another one when no preclugiationships are violated. For
example, suppose “penguin” precludes “flying” angeriguin” is about “bird”.
According to GLM, *“flying” cannot be composed to €ipguin” so that
“flying Openguin|=bird” (flying penguin is about a bird) catbe derived.

Postulate 11: Qualified Left Monotonicity (QLM)

5 Document length normalization improves the efemtiess of retrieval; more sophisticated matchimgtions
normalize according to document length.



i =Kk D
i0jFk

Postulate 12: Qualified Right Monotonicity (QRM)

=k, ]

i=kO |
QLM and QRM are other conservative forms of LM aRiM. LM allows
“bird Otweety|=flying” (Tweety, which is a bird, is abollying) to be inferred from
“bird|=flying” (A bird is about flying). QLM prevets this via the qualifying
preclusion “tweetyiflying”. QRM works in the similar way.

The next postulate expresses a principle based hen preservation of “non-
aboutness”.

Postulate 13: Negation Rational (NR)
I £ k
I E kO |
If a document is not aboudird, it is impossible to be abofiying bird. This is the
intuition behind the postulate NR. Thus it is psémn oriented.

The above thirteen postulates could be classifiearecall-orientedandprecision
orientedaccording to their effects to IR. Postulate R lbarconsidered a starting point
of aboutness inference. Postulates C (deep), RQW|, RM and CWA are mainly
recall-oriented because they tend to produce mbmitaess relations than exact
match. Postulates C-FA, M, GLM, GRM, QLM, QRM andRNon the other hand,
intend to prevent undesirable aboutness inferetigeemploying some kinds of
guarded conditions. This is closely related to ¢beservative monotonicity of IR,
which will be discussed later in Section 5. The t@otment (surface) postulate
characterizes exact match IR models meaning they gquiest be fully contained in the
document.

2.2. Formal Evaluation Methodology

Functional benchmark for IR is based on a formaltho@ology for inductive
evaluation. It is conducted in the following steps:

Step A For each IR model, perform the following:

(A.1): Define the background of the IR model to be evadat

(A.2): Map the IR model to the aboutness framework. Thidudes the
representations of document, query, aboutness idecis
containment, composition, and preclusion.

(A.3): Inductive evaluationDetermine which aboutness postulates the IR
model supports. With respect to an aboutness m@isiuthe IR
model could fall into one of the following four egpries:

e It fully supportsthe postulate.
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e It doesnot supporthe postulate.

* It conditionally supportsthe postulate: The model does not
support the postulate in every situation. Under taber
conditions, which are determined extraneously, hame it
would be supported. In this paper, “conditionalljpgorting” is
applicable to models, which involve settings orireations
outside the models themselves. For example, whether
threshold vector space model, threshold possiblddwioased
model and the classical probabilistic model suppmettain
postulates depends on the threshold settings oedtimations.
Note that the notion of “Conditionally support’irsapplicable to
IR models not involving extraneous factors.

» The postulate idnapplicable to the model: Some operators
involved in the postulate may be foreign (i.e. iplagable) to the
model. Thus we are unable to evaluate the modelguthat
postulate. For example, the preclusion operatforisign to the
vector space model. This in turn implies that plosts
involving the preclusion operator are inapplicatdethe vector
space model. Practically, this is the same as Supported”.
This category is separated out in order to prowadditional
information on why a model fails to support thetpéate.

Step B Collect the evaluation results of the different ivdels and compare their
functionality.

In the following sections, we use the above-defihetttional benchmarking suite to
evaluate and analyze various classical and, logRaimodels. We only show the
formal proofs of postulates Left Monotonicity (LMhd Right Monotonicity (RM) for

illustration. The other postulates can be provenilarly (Refer to [Song 2000] for
details).

3. Inductive Evaluation of Classical IR Models

The common classical IR models are the Booleantovespace, and probabilistic
models. In particular, the vector space modelvgldd into two types, zero-threshold
(binary) and threshold (multi-valued) vector spawedels. The former is referred to
as naive vector space model.

3.1 Boolean Model
3.1.1 Background

The Boolean model is based on set theory and Bodakgebra. This model has been
adopted by many early retrieval systems due teitglicity. In Boolean retrieval, a
document D is represented by a set of charactemztgrms X(D) = {,, t,, ...,t,}, a
qguery Q is expressed in term of index terms contbimeBoolean logical connectives
AND, OR, and NOT. A document is retrieved if andyoif the query Q can be
deduced from X(D) according to the following seirderence rules.

11



Rule 1: ift; Z/X(D) then X(D)-t; , where|- denotes the logical consequence.
Rule 2: if X(D)-t; and X(D)-t;, then X(D)-t, //t;.

Rule 3: if X(D)-t; or X(D)-t;, then X(D)-t; [/t;.

Rule 4: if X(D)|+t; then X(D)--t;.

To generalize, Boolean expressions are assumed to GNF (Conjunctive Normal
Form) of DNFs (Disjunctive Normal Form), e.d, [0 t,)(t, O t,)0(t, O t;).

3.1.2 Boolean Aboutness<_ )

Let U be the set of all documents, and T be theofahdex terms. Let D be a
document (i.e., DU), and Q a query. Supposd T, X(D) ={t,, t,, ..., t,} denotes

the set of characterization terms of D. IR, be the Boolean Language defined on
T in DNF of t, (or—t,). Furthermore, let Q %, 0q, ... Oqg,, be a formula in CNF,
where g, 0 BLg, i.e., = t,0t,0... Ot, . Thus, aboutness in the Boolean model is
characterized by the following definition:

D \:BLQ iff X(D)|-Q (Aboutness)

X(D)-Q iff (& q,) (X(D)|- ;)

X(D)|- q; iff (Lt ) (X(D)[-t;)

* IfD g Qthen D=, -Q (Close World assumption)
+ D 0P~ Qiff X(D)-Q (Surface Containment)

* Deep Containment is inapplicable.
« LetQl=q,Uq,0... Ug,, andQ2=q,,1q,,U... Uqy;

Q1-Q2iff Cl{dy;, 9pps -+ O ) {0y Anps --- » Oy } Where CI(Q1) is defined
as the set of DNF formulas which are logical conseges ofq,,, 0, ...,

anddq,,,.
e Q1Q2 - Q10Q2 (Query Composition)
« D1/D2 - D1/7D2 (Document Composition)
» Suppose D is considered as formtl&t, ... Ot , then
DOQ - D=-Q (Preclusion)
« QO-Q

3.1.3 Inductive Evaluation

Theorem 1 Boolean model supports the Postulates R, C (Syifacd-A, RCM
(Surface), LM, M, GLM, QLM, NR, and CWARA Deep Containment is inapplicable
to this model.

Proofs of LM and RM are shown as below:

* LM: Left Compositional Monotonicity is supported.

® Note that postulates Mix, GLM and QLM are trivialypported, as LM is supported.
12



Given Dl\:BL Q

= X(D1)-Q

= X(D17D2) = X(D1 D2)|-Q
JD10D2|=, Q

* RM: Right Compositional Monotonicity is not suppext
Given D|=_ Qland Q=QL/Q2

= X(D)|-Qland Q17Q2 -~ Q10Q2
But X(D)-Q1 Q2 cannot be concluded
D \:BL Q1/7Q2 cannot be concluded.

3.1.4 Remarks

* The Boolean model is an exact match IR model, thepeomoting precision.

* The Boolean model is left monotonic, renderingngansitive to document length.

» The Boolean model supports the closed world assomptwhich would
negatively affect recall.

* RMis not supported by the Boolean model. Insteazhnservative form, C-FA, is
supported. This would promote precision.

In general, the Boolean model supports a fair degfeprecision and weak in recall.
Its in sensitivity to document length makes it lesfective than models whose
matching functions support document length norraéin.

3.2 Vector Space model
3.2.1 Background

In the Vector Space model, both queries and doctsyar represented as a vector of
weighted or binary index terms. Practically, eautteix term is treated as an axis in a
n-dimensional space. The documents are ranked eysimmilarity between the
document D and the query Q. There are a numbemseakures of vector similarity,
such as Inner product, Dice coefficient, Cosineffanent, etc. The commonly used
form is the cosine function:

2% Y,
CogD,Q) = ' where D={X;,X;,... %, }, Q={ Y1, ¥2,---:¥n }.

[ErT

A threshold value is always employed to determiekevance. In the following
discussions, we first consider the naive and sistglase of the model. For this case,
the aboutness between D and Q is equivalent tolsioyerlapping, i.e. if D and Q
share at least one index terms, they are aboutabheh We then investigate the more
general case of non-zero multi-valued thresholdteNbat the threshold value is
extraneously controlled. To simplify, we just calesi the case where index terms are
un-weighted. The case of weighted terms could wesitigated similarly.

13



3.2.2 Naive Vector Space Aboutnes$(s_ nave)

Let U be the set of all documents, and T be theoSédex terms. Let DU be a
document, and Q a query. Both D and Q are repredexst vectors.
e D=D"OD"
D*={t, ", t,", ... t,
D ={t ,t,, ...t
Q=Q' Q"
Q ={t ", t,", ...t}
Q ={t, ,t,,....t, }
f+g = k+h = n (dimension of the vector).
where t, T, t"is the i-th non-zero term in the vector, andis the j-th zero

term in the vector.

Based on the above D and Q vectors, the foligwdefinitions of naive vector
space aboutness are defined:

e DI|Fysnave Qiff D" nQ*# 7 (Aboutness)
D Fusnanve Qiff D™ n Q"= [J
e« DIM- Qiff D"JQ" (Surface Containment)

QlIP*- Q2iffQ1" 7 Q2"
* Deep Containment is inapplicable.
+ Q=QLJQ2 - Q'=QI"'/Q2" andQ™ = (Q1"-Q2" )/ (Q2"-Q1")
(Query Composition)
e« D=D17JD2 = D'=D1"/7D2'andQ = (D1 -D2")/7(D2 -D1%)
(Document Composition)
» [Jis inapplicable, as it is not supported in theveavector space model.

3.2.3Inductive Evaluation

Theorem 2 Naive vector space model supports R, C (surfacéJACLM and RM.
Deep containment is inapplicable to this model. pobstulates GLM, GRM, QLM
and QRM are inapplicable, as preclusion is inajpplie.

Proofs of LM and RM are shown as below:

* LM: Left Compositional Monotonicity is supported.
Given D1|=yg nave Q, D =D1/7D2

= D1I'n Q"z/[J,D=D1/7D2
= (Ot) (t, D1 Ot [JQ*), and
by the definition of composition, D=01D2 -~ D*=D1" /7 D2*

" Note that postulates Mix is trivially supported,L&8 is supported. The postulate C-FA is triviallypgported, as
RM is supported.
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=t JD"andt, Q"
=>D'nQ 20
7 D1D2 |Fys nave Q

* RM: Right Compositional Monotonicity is supported.
Given D [=ys yave Q1, Q = Q17 Q2
=2D"'n QI'#ZJand Q =Q17Q2
= (Ot) (t, OD* Ot JQ1*), and
by the definition of composition, i.e., Q =QD2 - Q"=Q1" 7 Q2"
=t D andt, Q"
=D'nQ 20
=D [Fys-nanve Q17 Q2

3.2.4 Threshold Vector Space Aboutnesfst{,s 1 )

Let U be the set of all documents, and T be theok@tdex terms. Let DU be a
document, and Q a query. Both D and Q are repredeatd vectors. Based on these,
the following definitions of threshold vector spad®utness are given:

e D |5 Qiff COYD,Q)=0 , whered 7 (0, 1]. (Aboutness)
D s Qiff COYD,Q) <0

* The mappings of containment, composition and psemtuare same as those in
Section 3.2.2.

3.2.5Inductive Evaluation

Theorem 3 Threshold vector space model supports R, and dondlty supports C
(surface), CWAA, RCM (surface), LM, RM, M, C-FA aMR. Deep containment is
inapplicable to this model. The postulates GLM, GRMLM and QRM are
inapplicable, as preclusion is inapplicable.

The proof of LM and RM are as follows:

* LM: Left Compositional Monotonicity is conditionglsupported.

Let [D1"| =f1, |D2| =12, |Q"| =k, [D1I'n» Q"| =cl, |D2"n Q*| = c2 and

|D1"» D2°| =1

Then there areQ* n (D17 D2)*| = c1+c2-l and |(D17 D2)"| = f1+f2-l.

Given D1|=,¢; Q, D=D1/7D2

cl

= COgDLQ) = ik
This cannot implyCOS(D10 D2,Q) =0 . Consider the case whel®2" is much
larger than D1". COSD10 D2,Q) may be reduced to a very small value, even
less tharv.

>0, D =D1/D2
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[7D1D2 [Fys; Q cannot be guaranteed.
cl+c2-1

To ensure DI/ D2 |-+ Q, COYD10D2Q)= must not
e S ) J(F1+ 2-1) +k
be less thaw
Thus, given D1=,c; Q, i.e. COSDL1Q) = \/% >0, the LM postulate is
+
cl+c2-I

supported only under the condition @k :
J(f1+f2-1)+n

RM: Right Compositional Monotonicity is conditiohakupported.

Let D=1, |QLl"| = ki, |Q2"| = k2, D" n QL'| =cl, |ID"n Q2| = ¢c2 and
|Q1" n Q27| =1

Then there are D" »n (Q1" 7Q2")| = cl+c2-l and |(QL7 Q2)"| = k1+k2-I.
Following the similar way of the proof for LM, wart get the conclusion that,

. . cl
given D|= s+ Q1, i.e.COSD,Q1) =
Jf+kl

cl+c2-|
\/f +(kl+k2-1)

>0 , the RM postulate is supported

only under the condition af <

3.2.6 Remarks

The naive vector space model is both left and mgbmotonic. As these properties
degrade precision, this model would be imprecigerattice.

We argue that IR isconservatively monotonién nature, rather than fully
monotonic or non-monotonic. Conservative monotayioneans that when new
information is composed to either left or right Hamside, the aboutness
relationship should be preserved only under certpiarding conditions. For
example, consider the query expansion process. \@hgrery is expanded using
additional terms, the terms added are not arbitfingy must be chosen carefully,
l.e., conservative monotonicity is at work heretdrms of aboutness, such models
embody properties such as QLM, QRM, etc. withosib @upporting LM and RM.

Threshold vector space model only supports R. Theatonic properties such as
LM and RM are conditionally supported dependingtlom threshold. This means
that by adjusting the threshold value, users coattjust the degree of
nonmonotonicity. In this way, the threshold vectspace model mimics
conservative monotonicity by conditionally suppoegtLM and RM. For example,
the condition of the threshold vector space modgbperting LM can be
conceived in the following terms: Consider a seteoins Q (the query) and the set
of terms D (the document). For reasons of cladysume that Q1 D. The
decision whether =, ; Q holds can be analysed in terms of LM: Startiriign w
Q, terms are composed to Q until the set D has beestructed. Observe that as
the number of terms in D increases, the cosine alization will increase. There
will be a point where the cosine between D and @ kacome less that the

threshold value. In other words, LM is more likely to be preservied short
documents, which in a practical sense means thahtkeshold vector space model
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will favour the retrieval of short documents. Ob&ethe nonmonotonicity of the
threshold vector space model is not determinedhbyrtodel itself, but by external
settings. This is undesirable from a theoreticahipaof view.

3.3 Probabilistic Model

3.3.1 Background

In the probabilistic model, the probability of reésce of a document D subjected to a
query Q is given by P(rel|D). To simplify, D is agsed to be a vector-valued random
variable ¢,,t,,....t,), andt,,t,,....t, are assumed to be stochastically independent of

each other. P(D) is then given by:
P(D) = P(DJrel)P(rel) + P(D|nrel)P(nrel)
P(rel|D) is computed as follows:

P(D |rel)P(rel)

P(rel|D) = SO)
P(nrel|D) = P(D] nF:t(ag;D(nrel)

n

P(Djrel) = rJ P(t, |rel)"

1=
n

P(D|nrel) = rJ P(t, | nrel)*

t. =0 iff term i is absent in D

t. =1 iff term i is presentin D

P(rel) and P(nrel) are the priori probabilities ofelevance and non-relevance,
respectively.

P(t; |rel) and P(; |nrel) could be estimated if we have completermédion about the

relevant and non-relevant documents in the colbecti

The Bayes’ Decision Rule is used to make the datifr or against relevance: D is
relevant if and only iP(rel|D)>P(nrel|D), i.e. P(D|rel)P(rel)>P(D|nrel)Pgrel). This
leads to a discriminant function:

P(rel) * - P(t, |rel)"
g(D) = P(D |rel)P(rel) _ D

= = . The document D is retrieved
P(D | nrel)P(nrel)

P(nrel) * I_l P(t, | nrel)®
if and only ifg(D)>1. )

Note that P(rel)/P(nrel) is constant for a givereryuand document base, and is
independent of any particular document.
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3.3.2Probabilistic Aboutness (=pg)

Let U be the set of all documents, and T be theok@tdex terms. Let DU be a
document, and Q a query. D is represented as anvaitindex terms, as described in
the last section. The representation of a quempisspecified in the model. In this
paper, we just assume the representation of (@isdime as that of D. Based on these,
the following definitions of probabilistic aboutrseare defined:

* The representations of D and Q are the same agtbbthe vector space model.
* D s Qiff g(D)>1. (Aboutness)
D |2 Qiff g(D) <1

* The mappings of containment, composition and psemtuare the same as those
in Section 3.2.2.

3.3.3Inductive Evaluation

Theorem 4 Probabilistic model conditionally supports R, Crtaae), CWAA, RCM
(surface), LM, RM, C-FA, M and NR. Deep containmesitinapplicable to this
model. The postulates GLM, GRM, QLM and QRM arepplaable, as preclusion is
inapplicable.

The proofs of LM and RM are shown as follows:

* LM is conditionally supported.
Given D1|=,; Q, D =D1/7D2

P(rel) * ﬁl P(t, |rel)"

=g(D1)= >1 with respect to QID" =D1" /7 D2"

P(nrel) * [T] P(t, | nrel)*

Suppose the terms {, ..., t,} in D* but not inD1"
k

|_| P(t, |rel)
=g(D) = g(D) x—~
|_| P(t, | nrel)
1=] )
|_| P(t, |rel)
Whether g(D)>1 depends orR———————. Only if the new composed terms
|_| P(t, [ nrel)
=]

from D2 have higher probability of occurring in tmelevant set than the non-
relevant set, then LM is supported (i.e. g(D)>1).

* RMis conditionally supported.
Given D=, Q1
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P(rel) * |‘J P(t, |rel)"

=9(D)= = >1 with respect to Q1,
P(nrel) * [T] P(t, | nrel)*

With respect to Q¥ Q2, however, the above estimations may changes Thu

g(D)>1 could not be guaranteed any more.

Therefore, with respect to @1 Q2, only when the estimations of the priori
probability of relevance and the probability of éxdterms in D occurring in the
relevant set are stronger than those of non-releeag(D)>1 could be obtained.

3.3.4 Remarks

» The classical probabilistic model conditionally popgs R, LM and RM. This
shows that it is fully nonmonotonic. The non-momatdy is achieved by the
estimation of relevance and non-relevance and thbapility of occurrence of
index terms in the relevant and non-relevant sietg\raining process. This leads
to good performance for the probabilistic modgbiactice.

» The properties supported by the threshold vectaces@nd probabilistic models
are almost the same. These models are generally effestive in practice. The
key here is that LM, RM are conditionally suppor{ed. they mimic conservative
monotonicity). For example, the condition of prottiabc model supporting RM
is that new terms composed to a document must hayeer probability of
occurrence in the relevant set than the non-retesn This is consistent with the
nature of conservative monotonicity.

* The advantage of probabilistic model over thresivelctor space model is that its
decision rule is included within the model, whileetthreshold value in the
threshold vector space model is not determinedtssifi On the other hand,
however, the probabilistic model does not diredéal with the matching between
documents and queries. Instead, as we have shotie jproofs of its properties,
the estimations are conducted on the whole docusetntith respect to a query.
Moreover, the model itself does not specify thdecia of the estimation. This
means it may vary from one query to another. Thans why the probabilistic
model does not fully support R (i.e. even if a doeat is identical to query, the
probabilistic model could not determine that thes i@levant).

3.4 Discussion of Extended Boolean and Inference tMerk Models

A well-known alternative Boolean model is the exted Boolean model [Salton
1988], also calleg-norm model. On the other hand, the inference networkieho
[Turtle and Croft 1992] is an alternative probadtit model. Both of them can
simulate from conventional Boolean model to innexgoict vector space model by
tuning certain parameters between their top antbivomargins (e.gl< p<c for
the extended Boolean model< c < o for the inference network model, wheres
the number of parents at a given node in the inferenetwork). It has been proven by
Turtle and Croft [Turtle and Croft 1992] that wheime extended Boolean and
inference network models are adjusted to simulateld&an and inner-product vector
space models respectively, they produce the samdtse They are similar to each
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other when they produce the intermediate systenvgsle@ Boolean and inner-product
vector space models fdr< p<o and n<c <o respectively For this reason, we

only give the detailed discussion on the extendedl&n model in this paper. The
inference network model can be analyzed similavigreover, the treatment of this
model is a bit different from the others. We foamsshowing how the most important
property, left and right monotonicity, of the extiexd Boolean model changes from
Boolean to vector space models with the changewaiiye.

The extended Boolean model [Salton 1988] provides tweighting and ranking
of the answer set. The similarity between a docuraed a query is adjusted by a
special parameter, nameprvalue Different p-values lead to different document
output values. In this model, a query is the codim or disjunction oh terms, and
a document is represented as a vector B, %,(....t, . Foy the purpose of this paper,

we assume terms in the query are binary. The gityilaetween a document and a
query is given by:

1

L-t)°P +(L-t,)P +..+ (1—tn)p}p

n

Slm(D! Qand ) :1_|:

1
p P P
"+, +. L+t

n

Sim(D,Q,,) :|:

P
} , Wherel< p<oo.

When p=o, the extended Boolean model simulates normal Boolegic, i.esim(D,
Q..q)= min(t;) and sim(D, Q,, ) = max( t); For p=1, it behaves like a simple

t
normalized inner-product vector space model,si@(D, Q,., )=sim(D, Q,, ):L.
n

For intermediatep-values, this model generates “soft” Boolean systems whose
properties are between the Boolean and vector spacels. We then show this by
analyzing how the monotonicity of extended Booleadel changes from Boolean to
inner-product vector models with respect to phealue We first define the extended

Boolean aboutnes$~; ) as below:
 D|=Qiff sSim(D,Q) =0 , whered [7(0, 1].

We suppose the query is represented in Conjundliormalized Form (CNF). To
simplify the analysis, we use the representatiosiraf(D, Q,,, ) for the computing of

complex queries in CNF, since bo$im(D, Q,, ) and d; are in the interval [0, 1].

Information composition[{) between two queries are modeled as logical ANRllev
composition between two documents is modeledas D1/ D2 - D'=D1"[J

D2". The left and right monotonicity of extended boolezboutness can then be
analyzed:

» Left Monotonicity is supported:
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Given D1=;Q

@-t)P +(@-t,)° +..+ (1—tn)PF 25
- >

= Sim(D1,Q) =1—[

D=D1/7D2 = D*=D," 7 D,"; Suppose D=(1,t2,...;t n)

. L (1—t'1)P+(1_t-2)p +o+ 1t )P o
—sim(D, Q) 4 [ ) }

> Sim(D1, Q0
= D[FgQ

The above proof shows that the extended Boolearehsdeft monotonic no
matter what the p-value is. This is consistent whi conventional Boolean model
(see Section 3.1). Compared with the thresholdovespace model using the
cosine function (see Section 3.2.5), which conddlly supports left
monotonicity, the similarity function of extendedd&ean model is normalized
using only the query terms, without consideringéRpansion of document space.
Thus, it is not as effective as cosine vector spaem with respect to left
monotonicity. That is, it remains insensitive tacdment length.

Right Monotonicity:

Given D=, Q1

1
(1_t1)p + (1_t2)p Tt (1_tn)p P
n
Suppose Q2 is a conjunction of k components.

>0

= sim(D,Q1) :1—[

L-t)° +(@-t,)" +.+ (=t,)P +..+ (1—tn+k)PF

= sim(D,Q17 Q2) =1—[ —

It is not necessary that sim(D,Q1Q2)=0. Thus, RM is conditionally supported
depending on the values of p asd

Now, let's consider how the change of p leads éodmange of the degree of right
monotonicity of the model. Suppose sim(DIQD2)<d. P being increased

— p — p - p
implies 1/p being decreased. Due {o(l )7+ At) et () }sl,

n

{(1—t1)p +(@-t,)P +...+(1-t )P
n

1
p - -
} would be increased and in turn

1
—t P - p —t )P |p
1{(1 t)7+At) et () }pshould be decreased. Thus, larger p
n

implies larger distance between sim(D[Q®2) andd, i.e. higher degree of right
non-monotonicity. For p=and binary document terms, the extended Boolean
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model reduces to conventional Boolean model, whiat the highest degree of
non-monotonicity (i.e. right monotonicity is not pported (see Section 3.1)).
Only if all the new terms composed to the query tame in the document, the
original aboutness relation can be preserved. ddmslition is too strict, i.e. many
documents even with high possibility of relevanoeld not be retrieved. For p=
[1, «), smooth decrease of p means smooth decreaseeofidpree of non-
monotonicity. When p is reduced to 1, the extenBedlean model becomes the
inner-product vector space model, which has thetmelsxed condition for
conditionally supporting right monotonicity. As arnsequence, this model would
not be ideal for supporting query expansion, orufdserelevance feedback.
Following this way, the other aboutness propextaas be analyzed similarly.

3.5 Summary

In summary, the probabilistic model has potentigitig highest degree of precision,
followed by the threshold vector space model, tthenBoolean model and the naive
vector space model. This conclusion is consistetit the experimental results. The
motivation for this judgment lies in the varyinggdees to which they respectively
support (or do not support) conservative monotoyici

4. Inductive Evaluation of Logical IR Models

In the past decade, a number of logic based IR mdugve been proposed (see
[Bruza and Lalmas 1996; Lalmas 1998; Lalmas andz®&ra998] for detailed
surveys). These models can be generally classiitedthree types: Situation Theory
based, Possible World based, and other types. bt faflows, we investigate two
well-known logic IR models.

In the following analyses, the fact of a documentcdnsisting of information
carrier i is represented by Di. For example, Guarded Left Compositional
Monotonicity (i.e., postulate 7) means that iflocument consisting of i is about k (i.e.
i |[=K), under the guarded condition thatoesn'’t preclude j ({1j), we can conclude
that a document consisting of//i j is about k ({7 j |= k). In the following
benchmarking exercise, we adopt this interpretdiornogical IR models for reasons
of simplicity. For the classical models, we treated document and the query as
information carriers directly, for there are nontesemantic relationships involved in
classical models.

4.1 Situation theory based model
4.1.1 Background

Van Rijsbergen and Lalmas developed a situatioartheased model [Lalmas 1996;
Van Rijsbergen and Lalmas 1996]. In their modadlpaument and the information it
contains are modeled as a situation and types.tiat®n s supports the typg
denoted by sl means thad is a part of the information content of the sitoiat
The flow of information is modeled by constraints )( Here, we assum@ - ¢. A
qguery is one type (single type query) or a seypés (complex query), e.g., a query
={9, y}.
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For a situation s and a set of tyggs$here are two methods to determine whether d
supportsp. The first is that d supportgif and only if s supporté for all typesd [
[Barwise 1989]. Later Lalmas relaxed the conditiomepresent partial relevance: any
situation supportgif it supports at least one typeg@riLalmas 1996].

IR system is to determine to which extent a docuntesupports the quersg,

denoted by dlg If d|=@, then the document is relevant to the query wéttainty.
Otherwise, constraints from the knowledge set béllused to find the flow that lead

to the informationg. The uncertainty attached to this flow is useccompute the
degree of relevance.

A channel is to link situations. The flow of infoation circulates in the channel,
where the combination of constraints in sequermgecf) and in parallel ¢ ||c,) can
be represented. Given two situations s1, s2I§1] s2 means that s1 contains the
information about s2 due to the existence of thanokl c. A channel ¢ supports
constraintp -, denoted c|&— , if and only if for all situations s1 and s2, if|sp,
sll-s2, andp -, then s2|@. The notation s1lfr|F - s2|= stands for cl¢r— Y
and sl1}s2, which means that s#|=carries the information that s8j=due to
channel c. If s1j¢r|F - s2|=p and s1=s2, then c is replaced by a special chdnnel
and¢ logically entails.

4.1.2 Situation Theory Based Aboutnesg%<;)

Let U be the set of documents, S be the set oditsitos, T be the set of types, C be
the set of channels. Furthermore, I€ilDbe a document, and Q a query. Then,

» D is modeled as a situation.
* Qis modeled as a set of types
* Given two set of typegl andq2:

« DI ¢ iff (Upgd)(D|=¢). _
* A [Fsre iff (UclC) (LDID > @) ((PUeL) (Lplige) (D |=¢ | OF - D’
|=¢). Note that D’ could be D itself, i.e. c=1. A mapecial case is O=¢

| '~ D|=¢. (Aboutness)
* ¢l FsqR iff (Lc C) (CDID = ¢L) (LpLiel) (Lpiig2) (D |=¢ |IF - D
I=¢).
e (l IP- @iff@d Jg@ (Surface Containment)
o OV = @ iff (YL (CYRT ¢R) (¢ — ). (Deep Containment)
e Yl = @lJg2 (Composition)
» A type precludes its negation,g., (S| F<<hit, john, x; 1>>) /7 (s| §=<<hit,
john, x; 0>>). (Prelusion)

» Suppose the negation of a set of types Q is thefsdie negations of every
component type, then/@-Q.

4.1.3 Inductive Evaluation

Theorem 5 Situation theory based IR model supports R, C, IR, M, C-FA,
GLM, GRM, QLM and QRM.

8 Note that postulates Mix, GLM and QLM are triviaBupported, as LM is supported. Postulates C-FRMG
and QRM are trivially supported, as RM is supported.
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The proofs of LM and RM are provided as follows:

* LM: Left Compositional Monotonicity is supported.
Givendl |[=¢; 2
= (01 C) (LDID = 1) (YL0eL) (pel ¢2) (D |=¢A | IS - D’ |=yR), (AU
B - @ljg and {D|D - @ ¢B}J{LD|D - ¢l}
= ([DID = @[ ¢B) (CYLOALT ¢B) (LYR[7 ¢2) (D |=¢A | 0T - D’ |=¢R2),
0@ ¢B |Fsr 2

* RM: Right Compositional Monotonicity is supported.
Givendl [=g; @2
= (0c1C) ([DID = oL) (YALOA) ((yl ¢2) (D |=¢A |19 - D' [=¢2), @11
B - @[/ ¢8, and {D|D - @7 ¢B}J{D|D - ¢2}
= (LD|D = @) ((YLOAL) (CyR[7 217 ¢8) (D |=¢A | ¥ - D' |=¢R),
0 @ Fsr Rl ¢B

4.2 Possible world based model
4.2.1 Background

A number of possible world based logical IR modeise been proposed. As stated in
[Lalmas and Bruza 1998], these systems are fouadedstructure <W, R>, where W
is the set of worlds and[RVXW is the accessibility relation. They can be clesdi
according to the choice made for the wondswW and accessibility relation R. For
example,w can be a document (or its variation) and R issih@larity between two
documentsvl andw?2 [Nie 1989; Nie 1992], ow is a term and R is the similarity
between two termw1 andw2 [Crestani and van Rijsbergen 1995(a); Crestanivamnd
Rijsbergen 1995(b); Crestani and Van Rijsbergen8]L98r w is the “retrieval
situation” and R is the similarity between two aiionswl andw2 [Nie et al. 1995],
etc.

Most of these systems use a technique called irgadio obtain P(D- Q), where
the connective- represents conditional, we can move the probglildm non-D-
world to D-world by a shift from the original praiéity distribution P of the worldv

to a new probability distributiorP, of its closest world\; where D is true. This
process is called deriving, from P by imaging on D. The truth of BQ atw will

then be measured by the truth of Q. To simplify the analysis, let's suppose that
the truth of Q in a world is binatynd the closest world of a worldis uniqué®.

P(d- g) can be computed as follows:

P(D - Q)= > PWW,(Q) = > P, (Ww(Q) (1)

° Actually, it can be multi-valued in an interval.
1 There is also an approach called General Loginabing that does not rely on this assumption.
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>, P(w) =1 (2)

1 if Q is true in w
wQ) = {O, otherwise 3)
P, (w) = > P(W)I (w,w) 4)
wiw
1 if w=w,
ww) = {0, otherwise ®)
W\ is the closest world of w where D is true (6)

Now, we study in detail Crestani and van Rijsbeig@model which models the terms
as possible worlds to see some properties of tissilple world based approach. In
this model, term is considered as vector of docusyevhile the document and query
are vectors of terms. The accessibility relatioesMeen terms are estimated by the

co-occurrence of terms. P(BQ) can be computed as:

P(D - Q) => PW)(Q) = > R (L(Q) (7)

> Pt =1 (8)
1 if t occurs in Q

HQ)= {O, otherwise ®)

P, (1) =X PU)I(t.1) (10)
w4 if t=t',

)= {0, otherwise )

t, is the closest term of t where d is trtyedccurs in D) (12)

GenerallyD is deemed relevant @ whenP(D - Q) is greater than a threshold value,
e.g., a positive real numbeér Similar to the vector space model (see sectiBr2B.
the simplest case is that at least one term whechirg in bothD andQ, or it is also
the closest term of some other terms occurring endQ. This case is referred to as
naive possible world based model and the genesal aa threshold possible world
based model.

4.2.2 Naive Possible World Aboutness Based on Crast and van Rijsbergen’s
Model (|- yave-pw-cv)

Let U be the set of all the documents, T be th@&all the index terms, Furthermore,
let DOU be a document, Q be a query, and t be a term.abbatness in the naive
Possible World based models is defined as follows:

« D and Q are sets of terms

*  DIFnave-pw-cv Q iff P(D-Q)>0 (aboutness)
* D yavepw-cv Q iff P(D-Q)=0
 D-QIiff DLRQ (Surface containment)

Q1-Q2 iff Q1 Q2

25



t1 - t2 iff t1 is the closest term of t2 (Deep comtaemt)
 D17/D2 = D1/7D2 (Composition)
Q17Q2 - Q1/7Q2
* Preclusion is foreign to this model.

4.2.3 Inductive evaluation

Theorem 6 The Naive Possible World based model supports @uace), LM, RM,
M and C-FA'. Postulates GLM, GRM, QLM and QRM are inapplicalde
preclusion is inapplicable.

Proofs of LM and RM are given as follows:
* LM: Left Compositional Monotonicity is supported.
Given DI=yave-pw-cv Q. and D= D17 D2
=P(D1 - Q) =) Py, (t)t(Q) >0, D17 D2=D1/7D2
t

= At least one ternt. is the closest term of some terms where
D1 is true andt, /Q, and D1/ D2=D1//D2
=t; is also true in DI/ D2, andt, /Q

=P(D10D2 - Q) = Ppyp, (HH(Q) >0
t
[J D10 D2[F yave-pw-cv Q

* RM: Right Compositional Monotonicity is supported.
Given D= yave-pw-cv Q1. and Q = Q17 Q2
=P(D - Q) =) R,(t)t(QY >0, and Q=Q17Q2=Q1/7Q2,
t

= (&, QL) (&', IT) (I(t, ,t',)=1) and t, 7Q
=P(D - Q10 Q2) => P, (Ht(Q10Q2) > 0.

LIDF yave-pw-cv QL Q2

4.2.4 Threshold Possible World Aboutness Based on r&stani and van
Rijsbergen’s Model (F1_pyw_cv )

Let U be the set of all documents, T be the sdallloindex terms, Furthermore, let

DOU be a document, Q be a query, and t be a termalbbatness in this models is
then defined as follows:

« D and Q are sets of terms
* DFr_pw-cv Qiff P(D-Q)2J,

where/d is a positive real number in the interval (0, 1]. (aboutness)
* DPrpw-cv Qiff P(D-Q)<d

1 Note that postulates Mix is trivially supportes, |2 is supported. Postulate C-FA is trivially sopied, as RM
is supported.
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 The mappings of containment, composition and psemtuare same as those in
Section 4.3.2.

4.2.5 Inductive Evaluation

Theorem 7 The Threshold Possible World based model suppqgrtd\R RM, M, C-
FA, and conditionally supports C, CWAA, RCM and NRostulates GLM, GRM,
QLM and QRM are inapplicable as preclusion is inigaple.

Proofs of LM and RM are given as follows:

* LM: Left Compositional Monotonicity is supported.
Given DI=;_pyy_cy Q, and D= D17 D2

=P(D1 - Q)= P, (tt(Q) 29, D1/7D2=D1/7D2

= The number of index terms which are the closestigd®f certain terms where
D1/7 D2 is true must be not less than that of indem&vhich are the closest
terms of certain terms where D1 is true. This ieplhatP,, ., (t) =P,,(t) .

=P(D10D2 - Q) =D Poyp, (NH(Q) 2 D Py (N(Q) 20
[ D10D2|=r py-cy Q

* RM: Right Compositional Monotonicity is supported.
Given D=7 _py-cy Q1 and Q = Q17 Q2
=P(D - Q) =ZPD Ot(QY =0 and Q = QL7 Q2=Q1/7 Q2 (i.e. Q7 Q and
t

Q27Q),
= P(D -~ Q) =Y R, (1tQ10Q2) > > R, (1)t(Q1)

=P(D - QI0Q2) =Y P, ((QLO Q2) 2 9.

LD Frpw-cv QLT Q2
4.3 Discussion

» Deep containment is irrelevant to classical modatéess they are augmented by
thesauri and the like from which deep containmefdtionships likepenguin—
bird can be extracted. Logical models, by their verjurea can directly handle
deep containment relationships. This means logiwadlels support information
transformation e.g., logical imaging in the possiiorld models. This is a major
advantage of logical models. Moreover, they prosttenger expressive power,
e.g. concepts such as situation, type and chaetel,in situation theory based
model make it more flexible.

* The properties of an IR model are largely deterchibpg the matching function it
supports. Two classes of matching function are lyidsed: exact matchand
overlapping (naive and non-zero threshole Boolean model is an example of
exact match model, which requires that all the rimiation of the query must be
contained in or can be transformed to the inforamatf the document. The naive

27



vector space model and naive possible world basetehthave similar properties
(except that deep containment is applicable toiblessvorld based model only)

due to their simple overlapping retrieval mechan{sm, a document is judged to
be relevant if it shares at least one term withghery). Compared with Boolean
model, the naive vector space and the naive pessibld based model support
Left and Right Compositional Monotonicity, which us@s imprecision. The
Boolean model supports Right Containment Monottyievhich promotes recall,

at the expense of precision. They also supporiN#égation Rationale, which can
improve precision. For the naive vector space arssiple world based models,
Right Containment Monotonicity and Negation Ratioaee not supported. In

summary, it is evident that the Boolean model igeneffective than the naive
vector space and the naive possible worlds baseeélso

The naive possible worlds model uses imaging (me&aging from non-D world to
D-world) besides simple overlapping. Even thouggréhmay exist a containment
relation between a terid in the document and another tet2nn the query, itl

is not shared by the document and the query, tiisriransformation frone to t1

is ineffective to establish the relevance. Thislaxig why naive possible world
model does not support Containment (deep). The amech of imaging is
dependent on a notion of similarity between workebperimental evidence shows
a relation between retrieval performance and thg wawhich the relationship
between worlds is defined [Crestani and Van Rijgbrr1l998]. As the underlying
framework for inductive evaluation presented instpiaper does not explicitly
support a concept of similarity, the mapping of gussible worlds based model
into the inductive framework is incomplete. MordIveie said about this point in
the conclusions.

The threshold possible worlds model is both lefd alght monotonic. As a
consequence there are some grounds to concludethisatmodel would be
imprecise in practice, and also be insensitivearudhent length. As mentioned in
the previous point, retrieval performance dependfi@wv the similarity between
worlds is defined. As both LM and RM are supporiedan be hypothesized that
the baseline performance for the threshold possvoliédd model would be similar
to the naive overlap model. More sophisticated lanity metrics between worlds
would improve performance above this baseline. t@nesand Van Rijsbergen
allude to this point as follows: “.. it is possilite obtain higher levels of retrieval
effectiveness by taking into consideration the Kty between the objects
involved in the transfer of probability. Howevengtsimilarity information should
not be used too drastically since similarity iseaftoased on cooccurrence and
such a source of similarity information is itselfiagrtain” [Crestani and Van
Rijsbergen 1998]. When the threshold possible wortdiel judges a document D
relevant to the query Q, this implies that D sharesimber of terms with Q or a
number of terms can be transformed to the sharadstso that P(D Q) is not
less than the thresholl The expansion of D or Q can only increase P([.
This judgment is not true for threshold vector spamdel, for after the expansion
of D (or Q), the increase of the space of D (ori@),number of terms in D and Q,
may be much more than the increase of the sharetstelrhus the degree of
overlapping may be decreased.

The threshold possible worlds model and situati@oty using Lalmas’ relaxed
condition support LM and RM. This suggests thats¢henodels would be less
precise than probabilistic and threshold vectocspaodels. This in turn reflects
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the likely possibility that despite their previoyshentioned expressive power,
this power does not necessarily translate intoigiet The scant experimental
evidence available bears this out [Crestani e1395].

5. Results Summary and Conclusions

5.1 Results Summary

Tablel: Summary of the results of the evaluation.

Models Naive | Threshold | Probabi- | Situation Naive | Threshold
Boolean Vector Vector listic Theory Possible | Possible
Postulates Space Space Model Based World World
R v v v CS v v v
C (Surface) v v CS CS v v CS
C (Deep) NA NA NA NA v x CS
RCM (Surface) Vv X CS CS X X CS
RCM (Deep) NA NA NA NA x x CS
CWAA v x CS CSs x x CSs
LM v v CSs CS v v v
RM X v CS CS v v v
M v v CSs CS v v v
C-FA v v CS CS v v v
GLM v NA NA NA v NA NA
GRM x NA NA NA v NA NA
QLM v NA NA NA v NA NA
QRM x NA NA NA v NA NA
NR v X CS CS x x CS

Note: NA meansiot applicable,CS meansconditionally supporty meanssupport
andx meanshot supported

5.2 Conclusion

The functional benchmarking exercise presentetighgaper indicates that functional
benchmarking is both feasible and useful. It hanhesed to analyze and compare the
functionality of various classical and logical IRodels. Through functional
benchmarking, some phenomena encountered in ex@g@&amIR research can be
explained from a theoretical point of view usingsgmbolic perspective. The
theoretical analysis could in turn help us bettetarstand IR and provide guideline to
investigate more effective IR models.

A major point to be drawn is that IR is conservalyvmonotonic in nature. It is
important that conservatively monotonic models thalied and developed, as these
would help achieve a better understanding of théewff between precision and
recall. The postulates GLM, GRM, QLM, QRM, etc. aree the conservatively
monotonic properties, but they are foreign to sonwels. Even in those models,
which support some of the conservatively monotgnigperties, preclusion is only
based on the assumption that an information capriecludes its negation. Moreover,
GLM, QLM and MIX are the special cases of LM, anBI&, QRM and C-FA are the
special case of RM. As such, if a model supports BUM is vacuously supported.
Therefore, a model supporting conservative monottyni should embody

29



conservatively monotonic properties without suppgrt LM and RM. The
probabilistic model and threshold vector space rhatiew good performance in
practice as they mimic conservative monotonicity.

Current logical IR models have advantage of mogdeiiriormation transformation
and their expressive power. However, they areigsllifficient to model conservative
monotonicity. A primary reason is that importanhcepts, such as (deep and surface)
containment, information preclusion, etc., upon alihconservative monotonicity is
based, are not sufficiently modeled. For exam@mantics of information preclusion
is not explicitly defined in current logical modeM/e just simply assume that an
information carrier precludes its negation durihg benchmarking. It is interesting to
show that if we add some kind of semantics of psgoh to the logical IR models, the
conservative monotonicity could be partially reatiz For example, we could add the
following definition to the model:

Preclusion:
Given two type®l and ¢2, ¢1/792, sl=¢1 and sP=¢2, there does not exist any
channel between s1 and s2.

The Left composition monotonicity (LM) is no longaupported:

Givend |=¢; @2

= (el C) (LDID = @) (CLLlgh) (FyR 7 ¢2) (D |=¢d |0~ D’ |=¢R),
ALl ¢B - gLl ¢B

Assume LM is supported, i.€19|D = ¢/7 ¢B) (YA [T ¢8) (L2 0gR) (D

|=¢1 |05 - D' |=¢R).

Consider the case @®//4B. This implies for [-¢8 and D’ |=¢2, there does not
exist a channel between D and D’. This contradicesabove assumption,
because {D|D = ¢./7 ¢8} [7{LD| D|=¢8}.

[7 It is not necessary thafl/7 ¢ [=s; ¢2.

On the other hand, RM is not supported for the laimreason of LM. However,
by applying the conservative forms of monotonici,.M and QRM, with the
gualifying non-preclusion conditions, the aboveelikounter example will no
longer exist.

The above definition of preclusion is simply foetpurposes of illustration. It is true
that current IR systems are not explicitly definedterms of concepts such as
preclusion, information containment, etc. Howewgrch informational concepts are
in the background. Preclusion relationships cardéeved via relevance feedback
[Amati and Georgatos 1996, Bruea al1998]. For restricted domains, information
containment relationships can be derived from agfiels, and the like. For example,
we have been investigating the automatic extracifateep containment relationships
based on Barwise and Seligmattisory of information flow [Barwise and Seligman
1997, Bruza and Song 2001; Song and Bruza 2001¢rVldnguage processing tools
have advanced further, the concepts under the aéssitheory could be applied to IR
more easily and more directly. More sensitive IRtegns would then result; in

particular those which are conservatively monotonith respect to composition.

Therefore, more investigations about how to achiemeservative monotonicity in

current logical IR models are necessary.
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Finally, we reflect on the strengths and weaknesdethe inductive theory of

information retrieval evaluation. The strengths susmarized below:

Enhanced perspectivévatching functions can be characterized qualiedgivin
terms of aboutness properties that are, or areimptied, by the matching
function in question. It may not be obvious what tmplications are of a given
numeric formulation of a matching function. The uctlve analysis allows some
of these implications to be teased out. By wayllaktiration, models based on
overlap may imply monotonicity (left or right), wdhi is precision degrading. In
addition, inductive analysis allows one to computeder what conditions a
particular aboutness property is supported. Itiesn argued that a conservatively
monotonic aboutness relationship promotes effecatgeval. The analysis in this
paper revealed that although both of the thresketdor space and probabilistic
models mimic conservative monotonicity, the fundateef this support are very
different: the thresholded vector space model shpdor conservative
monotonicity depends on overlap between documeshtgaery terms modulo the
size of the document. Support for conservative rtmmoity in the probabilistic
model depends on whether the terms being addedehhigh enough probability
of occurring in relevant documents. Form an ineitpoint of view, the latter
condition would seem a more sound basis for sugparause it is directly tied to
relevance.

Transparency: One may disagree with a given functional benchméak

represented by a set of aboutness properties),itbr wow a given matching
function has been mapped into the inductive framkwdhowever, the
assumptions made have been explicitly stated. Tdifers from some
experimental studies where the underlying assumgfie.g., the import of certain
constants) are not, or insufficiently, motivated.

New insightsThe use of an abstract framework allows new insithbe gleaned.
Inductive evaluation has highlighted the import mbnotonicity in retrieval

functions, and its affect on retrieval performanBesigners of new matching
functions should provide functions that are conagvely monotonic with respect
to the composition of information. More sensitir $ystems would then result.
The lack of such systems currently can be attribuepart to the inability to

effectively "operationalize" information preclusioMost common IR models are
either monotonic or non-monotonic - another clas$Romodels, namely those
that are explicitly conservatively monotonic is sig. For this reason, the
inductive analyses reported in this paper revealeddistinctions based on
conservatively monotonic rules such as MIX and CF-8onservatively

monotonic models are interesting for purposes oflpcing a symbolic inference
foundation to query expansion and perhaps evenaete feedback.

The weaknesses of an inductive theory for evalnare:

Difficulty in dealing with weights: Much of the stibty of IR models remains
buried in different weighting schemes. Due to gmbolic nature, the inductive
approach can abstract “too much”, thereby losingsisi@ity in the final analysis.
For example, the nuances of document length nozatadn [Singhal et al. 1996],
term independence assumptions, probabilistic weighdichemes are difficult, if
not impossible, to map faithfully into a symbolieductive framework.
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» Difficulties with mapping: For an arbitrary modé,may not be obvious how to
map the model into an inductive framework. Thipasticularly true for heavily
numeric models such as probabilistic models. difisn the case that such models
do not support many symbolic properties — they l&e black holes defying
analysis [Bruza, Song and Wong 2000]. However, bglysing the conditions
under which given properties are supported alloviou$peak at the edges of the
black hole”.

* Incompleteness of framework: In order to pursuecfiemal benchmarking, a
sufficiently expressive framework is necessaryriheo to represent salient aspects
of the model in question. This is an issue of catgrless. In the inductive
analysis of the possible worlds based models pteden this paper, we have seen
that the notion of similarity inherent to these ralsdcannot be directly translated
into the underlying inductive framework. This sugige that the framework
presented in this paper should be extended. Onkl @so argue that not all
salient aspects of aboutness have been capturedebgroperties used for the
benchmark. These are not criticisms of inductiveal@ation, but of the
expressiveness of the underlying informational ®awork, in this case
information fields.

It is noteworthy that conventional experimental H¥aluation approaches are
reasonably solid but some times fail to addresspeleeissues. Functional
benchmarking is a framework and methodology that lealp fill this gap. It is not

intended to replace the former, but to complemeent i
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Appendix List of Notations

= Information carrier (IC)

= Information composition({()

= Information containment-{)

= Surface containmentd’ - )

= Deep containment[{¥ - )

= Information preclusion(()

= Aboutness (|=)

= Non-aboutness#]

= A document D (or a query Q) consisting of inforroatcarrier i (D= i or Q S i)
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