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Abstract 
 

Experimental approaches are widely employed to benchmark the performance of an 
information retrieval (IR) system. Measurements in terms of recall and precision are 
computed as performance indicators. Although they are good at assessing the retrieval 
effectiveness of an IR system, they fail to explore deeper aspects such as its underlying 
functionality and explain why the system shows such performance. Recently, inductive (i.e., 
theoretical) evaluation of IR systems has been proposed to circumvent the controversies of the 
experimental methods. Several studies have adopted the inductive approach, but they mostly 
focus on theoretical modeling of IR properties by using some meta-logic. In this paper, we 
propose to use inductive evaluation for functional benchmarking of IR models as a 
complement of the traditional experimental based performance benchmarking. We define a 
functional benchmark suite in two stages: (a) the evaluation criteria based on the notion of 
“aboutness”; and (b) the formal evaluation methodology using the criteria. The proposed 
benchmark has been successfully applied to evaluate various well-known classical and logic-
based IR models. The functional benchmarking results allow us to compare and analyze the 
functionality of the different IR models.  
 
Categories and Subject Descriptions: [H.1.1] [Models and principles] Systems and 
Information Theory; [H3.3] [Information Storage and Retrieval] Information 
Search and Retrievalretrieval models; search process; selection process; [H3.4] 
[Information Storage and Retrieval] Systems and Softwareperformance 
evaluation (efficiency and effectiveness); [H3.m] [Information Storage and 
Retrieval] Theoretical Study of Information Retrieval 
 
General Terms: Measurement, Performance, Theory 
 
Additional Keywords and Phrases: Functional benchmarking, aboutness, logic-
based information retrieval, inductive evaluation 
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1. Introduction 
 
The information retrieval (IR) problem can be described as a quest to find the set of 
relevant information objects (i.e., documents, D) corresponding to a given information 
need, represented by a query, Q.  The assumption is that the query Q is a good 
description of the information need N.  An often used premise in IR is the following: 
if a given document D is about the request Q, then there is a high likelihood that D 
will be relevant with respect to the associated information need. Thus, the information 
retrieval problem is reduced to deciding the aboutness relation between documents 
and queries.   

Articles on aboutness have appeared sporadically in the literature for more than 
two decades. Hutchins provides a thoughtful early study of the topic [Hutchins 1977]. 
This account attempts to define a notion of aboutness in terms of a combination of 
linguistic and discourse analyses of a text. At a high level of information granularity, 
e.g. a sentence, Hutchins introduces themes and rhemes as the carriers of the thematic 
progression of a text. Roughly speaking, the theme states what the writer intends to 
express in the sentence (i.e., what it is about), and the rheme is the “new” information. 
Thematic elements of a sentence are typically bound textually to the preceding text, or 
assumed as given within the current context. Hutchins also considers how sequences 
of sentences combine to form textual elements of lower information granularity such 
as an episode. In other words, sentences are considered to be a part of the micro 
structure of the text, whereas an episode is considered to be an element of its macro-
structure. Themes and rhemes can be generalized to the macro level. Hutchins asserts 
“The thematic part of the text expresses what the text is ‘about’, while the rheme 
expresses what the author has to say about it” [Hutchins, 1977, p31].  

Maron tackled aboutness by relating it to a probability of satisfaction [Maron 
1977]. Three types of aboutness were characterized: S-about, O-about and R-about. S-
about (i.e., subjective about) is a relationship between a document and the resulting 
inner experience of the user. O-about (i.e., objective about) is a relationship between a 
document and a set of index terms. More specifically, a document D is about a term 
set T if user X employs T to search for D. R-about purports to be a generalization of 
O-about to a specific user community (i.e., a class of users). Let it  be an index term 

and D be a document, then D is R-about it  is the ratio between the number of users 

satisfied with D when using it  and the number of users satisfied by D. Using this as a 

point of departure, Maron further constructs a probabilistic model of R-aboutness. 
The advantage of this is that it leads to an operational definition of aboutness which 
can then be tested experimentally. However, once the step has been made into the 
probabilistic framework, it becomes difficult to study properties of aboutness, e.g., 
how does R-about behave under conjunction?  By way of illustration, assume 
document D is characterized by the index terms nKK ,,1 K . From a logical point of 
view, D can be viewed as being represented by the conjunction .1 nKK ∧∧K Assume 

that D is R-about index term it . One can translate this relationship between a 

document and term into a relation between the document representation  nKK ∧∧K1  

and term it  (now viewed as an atomic logical formula). What happens to the 

aboutness relationship if information, represented by the term 1+nK is added to 

document D: Is 11 +∧∧∧ nn KKK K about it ? In other words, is aboutness monotonic 

with respect to the composition of information? Such questions cannot be answered 
within a probabilistic framework. The underlying problem relates to the fact that 
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probabilistic independence lacks properties with respect to conjunction and 
disjunction. In other words, one’s hands are largely tied when trying to express 
qualitative properties of aboutness within a probabilistic setting. (For this reason 
Dubois et al. [1997] developed a qualitative framework for relevance using possibility 
theory). 

During the eighties and early nineties, the issue of aboutness remained hidden in 
the operational definitions of various retrieval models and their variations. For 
example, the vector space model represents both documents and queries as vectors in 
a high dimensional space whereby the dimensions correspond to information bearing 
terms. If the angle between the respective document and query vectors is above a 
certain threshold, the document is deemed to be about the query. This period also 
featured the emergence of sophisticated probabilistic retrieval models. Major effort 
was expended in producing ever more sophisticated matching functions between 
document and query representations. Such matching functions were evaluated by an 
experimental paradigm. The paradigm often has the following form: Given a set of 
test queries and a collection of documents, a set of relevant documents are a priori 
associated with each test query. In the actual experiment, a matching function 
produces a ranked list of documents descending on match score between a test query 
and a particular document representation. The performance of a matching function 
can be measured by studying the degree to which relevant documents are moved 
towards the top of the ranking produced by the matching function under observation. 
Statistical tests of significance can be applied to compare average performances of 
two ranking functions across the set of test queries, thus gaining some confidence that 
matching function A produces, on average, better rankings than matching function B. 
The experimental paradigm has long been one of the cornerstones of research into 
information retrieval, but it has long been debated as well. It is outside of the scope of 
this article to descend into the controversies surrounding experimental information 
retrieval, but we illustrate one of its manifestations. Many of the more sophisticated 
matching functions rely on constants. The values of these constants can greatly 
influence the performance of the matching function. The specific values of the 
constants are not derived from theory, but are “tuned” according to a particular 
document collection and test query set.  

The emergence of logic-based information retrieval in the mid-eighties allowed the 
matching function between document and query to be seen in a new light. In one of 
the founding papers Van Rijsbergen states, “The single primitive operation to aid 
retrieval is one of uncertain implication” [Van Rijsbergen 1986]. In other words, 
retrieval could be viewed as a process of plausibly inferring the query from the 
document. This view spawned a number of attempts at implementing logic-based 
retrieval systems (see [Lalmas and Bruza 1998] for a survey and [Crestani, Lalmas 
and Van Rijsbergen 1998] for a compendium). Logic-based information retrieval also 
provided the framework to allow theoretical, rather than, experimental investigations 
in IR [Sebastiani 1998]. It planted the seed for fundamental investigations of the 
nature of aboutness [Bruza and Huibers 1994; Bruza and Huibers 1996; Hunter 1996; 
Nie et al. 1995] culminating in an axiomatic theory of information retrieval [Huibers 
1996] and a characterization of aboutness in terms of commonsense rules [Bruza, 
Song and Wong, 2000]. Aboutness theory has also recently appeared in context of 
information discovery [Proper and Bruza 1999]. Broadly speaking, these works view 
information retrieval as a reasoning process, determining aboutness between two 
information carriers (e.g., document about a query, or document about a document). 
Work in this area attempted to symbolically characterize qualitative aspects of the 
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matching function, which, up to that point, were normally hidden in the numeric 
expressions of these functions. In a broad sense an attempt was made to flesh out the 
assumptions underpinning matching functions, and more generally to provide a 
symbolic, IR-centric account of “the most important relationship in IR – the one in 
which one object contains information about another” (italics ours)[Van Rijsbergen 
1993]. An important consequence of logic-based information retrieval was that it 
allowed IR to be studied symbolically within a neutral framework, for example, 
researchers were free to posit question such as: Is aboutness transitive, or is the 
aboutness relationship preserved under the composition of information? Once 
properties of aboutness are described by a set of postulates, they can be used to 
compare IR models depending on which aboutness postulates they support [Bruza and 
Huibers 1994; Huibers 1996; Bruza, Song and Wong 2000]. This opens the door to an 
inductive, rather than, experimental theory of comparing matching functions.  The 
development of an inductive theory of information retrieval evaluation parallels a 
similar development in the area of nonmonotonic reasoning. Through the nineteen 
eighties, a number of logics were proposed to model commonsense reasoning, for 
example, default logic, autoepistemic logic, circumscription etc. At that time, there 
was no way to compare these different logics until the meta-theory of non-monotonic 
reasoning appeared [Kraus, Lehman and Magidor 1990]. This theory embodied a suite 
if desired properties of nonmonotonic logic in terms of rules interpreted in a neutral 
framework (in this case, preferential models). By using this framework, the previously 
mentioned logics could be compared  according to which properties they supported. 

The theoretical analysis and comparison of information retrieval models need not 
take place within a logic-based framework. Losee provides an analytic theory [Losee 
1997; Losee 1998]. He states that a theory of the operation of text filtering and 
retrieval systems should describe current performance, predict future performance and 
explain performance.  The difference between Losee’s analytical theory and the logic-
based inductive theory is more in approach and scope rather than philosophical point 
of departure. Both aim to gain understanding why particular IR systems perform the 
way they do. Losee’s analytic theory is statistically based. Measures such as the 
average search length (ASL - expected position of a relevant document) are used to 
analyze the quality of a ranking of documents in the context of a hypothesized 
database. For example, ASL can be plotted against the probability that a given term is 
in a relevant document yielding a surface. It has been shown that when this 
probability increases, the ASL steadily and more strongly decreases due to the 
increase in discrimination power of the terms. This is reflected in the plots by pivoting 
of the surface away from the median (random) performance of ASL. In this way, the 
Boolean and probabilistic retrieval models have been scrutinized from a theoretical 
point of view [Losee 1997]. In contrast to Losee’s analytical theory, the logic-based 
inductive theory focuses primarily on describing the aboutness properties embodied 
by a given matching function, and analyzing and comparing matching functions 
according to which aboutness postulates they support. “Functional benchmarking” is 
the general term coined for such analysis [Song et al. 1999].  

The primary objective of this paper is to propose a formal methodology for 
functional benchmarking and apply it to inductive evaluate and compare various 
typical IR models. Our evaluation targets in this paper were deliberately chosen to 
review the practicality of the proposed benchmark. We have evaluated and compared 
the functionality of the more prominent classical and logical IR models - Boolean, 
naïve (i.e., zero-threshold and binary) vector space, threshold vector space (multi-
valued), probabilistic, situation theory based, naïve (i.e., zero-threshold and binary) 
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possible world based and threshold possible world based (multi-valued) IR models. 
The advantages and disadvantages of the properties inherent to these models and how 
these properties affect effectiveness are analysed. Furthermore, some important 
experimental results could be explained theoretically via the benchmarking. This will 
hopefully shed light on existing IR models and help further research towards more 
effective IR models. 

The rest of the paper is organized as follows. In the next section (i.e. Section 2), 
the definition of the functional benchmark is outlined. The benchmark is based on the 
aboutness framework proposed by Bruza et al. [Bruza and Huibers 1994; Bruza and 
Huibers 1996; Bruza, Song and Wong 2000]. A formal functional benchmarking 
methodology is also proposed in this section. Sections 3 and 4 then present the 
evaluation of some of classical [Van Rijsbergen 1979; Salton 1988; etc.] and logical 
IR models [Bruza and Lalmas 1996; Lalmas 1998; Lalmas and Bruza 1998], 
respectively, using the proposed benchmark. Finally, a conclusion including a 
summary on the evaluation results is given in Section 5. 
 
2. Defining the Functional Benchmark Suite 
 
Our approach in defining the functional benchmark suite is performed in two stages. 
(a) We first identify a set of aboutness properties, which will be used to analyze 
matching functions. They will be used as the evaluation criteria for the functional 
benchmark. (b) We then define a formal methodology outlining the steps to perform 
inductive evaluation. 
 
2.1 Properties of Aboutness 
 
Despite several research studies devoted to aboutness, there is still no consensus on 
the desirable properties of aboutness relation. Nonetheless, a number of properties are 
commonly discussed in the literature, e.g., reflexivity, transitivity, symmetry, 
simplification, supraclassicality, equivalence, and, right weakening and left (right) 
monotonicity [Lalmas and Bruza 1998]. The primary reason for the lack of consensus 
is the fact that the logic-based framework chosen has some influence on the 
associated aboutness properties. One would think that reflexivity, i.e., the assumption 
that an information carrier (such as a document) is about itself, would not generate 
any difference in opinion. However, reflexivity is a property not supported by 
Hunter’s default logic-based aboutness framework [Hunter 1996], but is supported by 
Huibers’ situation-theoretic framework [Huibers 1996]. In addition, a substantial body 
of work on defining aboutness properties has been inspired by symbolic 
characterizations of the preferential entailment relation1 found in nonmonotonic 
reasoning. This has slanted the corresponding characterizations of aboutness [Bruza 
and Huibers 1994; Bruza and Huibers 1996; Amati and Georgatos 1996; Bruza and 
Van Linder 1998]. Recent work has argued that the aboutness relationship goes 
beyond the notion of preferential entailment [Bruza, Song and Wong 2000]. 

The attempts in the literature to characterize the aboutness relationship have been 
useful to stimulate investigation into what “aboutness” really is without being 
burdened by the baggage of a particular retrieval model.  An unfortunate consequence 
of this freedom has been a lack of connection with commonly accepted notions of IR 

                                                 
1 The term “migration” preferentially entails “salmon” if and only if all preferred documents on migration are also 
about salmon. That is, the user’s information need is assumed to impose a preferential ordering on the set of 
underlying documents 
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performance. We argue that aboutness properties selected for the purposes of 
functional benchmarking should be able to be related to the traditional IR 
performance criteria: Precision2 and Recall3. This allows theoretical insights provided 
by the inductive evaluation to be correlated with insights gleaned via experimental 
evaluation. 

The inductive evaluation paradigm requires that the aboutness properties be 
expressed symbolically. This requires that a conceptual framework be established 
which provides a sufficient diversity of concepts with which useful aboutness 
properties can be expressed. In this regard, Lalmas and Bruza [1998] have stated: 
“The framework should not be biased towards any given model, i.e., it should be 
neutral. Moreover, it should be sufficiently abstract to filter away unnecessary details 
of the various IR models. In such an abstract and neutral setting, IR models can be 
inductively compared”. 

In this paper, we will employ the framework proposed by Bruza et al. [Bruza and 
Huibers 1994; Bruza and Huibers 1996; Bruza, Song and Wong 2000]. This 
framework is abstract and not biased towards any given IR retrieval model, and is 
parsimonious with respect to the number of underlying concepts. Moreover, it is 
based on notions drawn from information-based logic. It would seem reasonable to 
build on research from this area if one accepts that determining whether a document is 
about query or not, involves an information-based reasoning process. 

In the framework, descriptors, documents and queries share the same notion of 
information carriers. Given two information carriers i and j, the aboutness between i 
and j, i.e., i is about j, is denoted by a binary relation |=, i.e., i |= j. On the other hand, 
i|≠j denotes “i is not about j”. For example, assuming an animal context, “penguin” is 
about “birds”, but “penguin” is not about “flying”. 

Information carriers can be composed. The composition of information is denoted 
by i⊕ j, which contains the information carried by both i and j. It can be conceived of 
as a form of informational “meet”. Viewed from a situation-theoretic perspective 
[Lalmas 1996], the information composition represents the intersection between the 
situations supporting i and the situations supporting j. For example, flying⊕bird 
represents the intersection of “flying” situations and “bird” situations, that is the 
situations which support the information "A bird is flying". 

Information carriers are ordered. For example, we can say "an information carrier 
i contains at least the same information that another carrier j does". In the literature, 
several authors have proposed that information can be ordered with respect to 
containment [Barwise and Etchemendy, 1990; Landman, 1986]. Information 
containment, denoted by i→j, is a relation over the information carriers formalizing 
the intuition that information is fundamentally “nested”  (see also [Van Rijsbergen 
1989]). This nesting may simply be a product of the syntax of the information 
carriers, e.g., in a Boolean language, i∧j→ i. Information containment also embodies 
how information is sometimes implicitly nested. For example, the information 
conveyed by “salmon” also carries the information “fish”. The former we refer to as 
surface containment, and the latter deep containment. In general, information 
containment (either surface or deep) will be denoted by the symbol →, whereby → is 
the union of the relations surface containment (→s ) and deep containment 
( →d ).  It is important to make this distinction as some IR models only support 
surface containment, whereas others support a notion approximating deep 

                                                 
2 Precision is defined as the ratio of relevant retrieved documents to retrieved documents 
3 Recall is the ratio of relevant retrieved documents to relevant documents 
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containment. Moreover, related to the information composition, there are i⊕ j→ i and 
i⊕ j→ j.  

Information carriers i and j are said to preclude each other, denoted i⊥j, if the 
information carried by i clashes, or contradicts, with the information carried by j. It is 
acceptable to assume that an information carrier precludes its own negation. However, 
information preclusion is a subtler notion than contradiction in logic. Information 
carriers may clash due to underlying natural language semantics, or convention. For 
example, swimming⊕crocodile is acceptable, but flying⊕crocodile is meaningless in 
most contexts. It has also been suggested that information preclusion arises in IR as a 
consequence of information needs [Bruza and Van Linder, 1998]. For example, when 
searching for documents about wind surfing, terms such as internet, web, net etc. may 
be precluded as the user is not interested in web surfing. In some accounts, (e.g. 
[Landman, 1986; Bruza and Huibers, 1994]), the composition of clashing information 
is formalized as the “meaningless” information carrier, denoted by 0. It is attributed 
with properties similar to falsum in propositional logic, e.g. A⊥B⇔A⊕B = 0. The 
meaningless information carrier contains all the information carriers used in an 
application. 

Furthermore, the concept of Information Field is defined. It provides the necessary 
building blocks to express the properties of aboutness. An Information Field is a 
structure (ℑ, →, ⊕, ⊥, 0) where 
 

• ℑ is a non-empty set of information carriers 
• (ℑ, →) is a poset (partially ordered set) 
• 0∈ℑ and for all i∈ℑ, 0→ i 
• If i, j ∈ ℑ then i⊕ j ∈ ℑ, where i⊕ j is the largest information carrier such that 

i⊕ j → i and i⊕ j → j 
• ⊥ ⊆ ℑ×ℑ 

 

A set of postulates4 determining the aboutness properties is given in terms of concepts 
from the Information Field. IR models can be mapped to the aboutness framework. 
Based on these postulates, the properties they satisfy can be reflected. Moreover, 
different IR models can be compared according to the postulates they support.  
 

Postulate 1: Reflexivity (R)   ii =|   

An information carrier is about itself.  
 

Postulate 2: Containment (C)  
ji

ji

=
→
|

 

An information carrier is about the information it contains (surface or deep). Deep 
containment models the transformation of information. For example, assuming that 
“penguin” has the information “bird” nested within it i.e., penguin → bird, then the 
Containment postulate permits the conclusion that “penguin” is about “bird(s)”. As a 
consequence, a document about “penguin” is also about “bird”. This postulate is recall 
oriented.  

On the other hand, exact match IR models, which attempts to promote precision, 
can be defined in terms of surface Containment: D |= Q only if D →s  Q. In other 

                                                 
4 The notion “postulate” is intended to characterize the assumptions inherent within a given retrieval mechanism 
with regard to aboutness.  
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words, document D is not about query Q if D does not include Q (completely). This 
can be modeled by the following postulate:  
 
Postulate 3: Closed World Aboutness Assumption (CWAA) 

ki

ji s

≠
→/

 

If an information carrier i is present in another carrier j, we sometimes infer that i is 
not about j. Exact match IR models, such as Boolean retrieval, are based on the 
CWAA. For example, if query Q is not contained in a document D, it is assumed that 
D is not about Q. CWAA helps improve precision but degrade the recall, because it 
ignores the partial matching and the possible information transformation, which could 
establish the aboutness relationship between D and Q.  The negative impact of Closed 
World Assumption has been known for some time [Van Rijsbergen 1986b]. 
 
Postulate 4: Right Containment Monotonicity (RCM) 

jk

jiik

=
→=

|

,|
 

This postulate allows transitivity of aboutness relation with respect to information 
containment. More implicit aboutness relationships can be derived via this postulate. 
Thus, it is recalled oriented. For example, given a document d is about “penguin” and 
“penguin” contains the information “bird”, we can conclude that d is also about 
“bird(s)”. From an IR perspective, RCM models term based query expansion whereby 
the term i is replaced by the broader term j. 
 
Postulate 5: Left Compositional Monotonicity (LM) 

  
kji

ki

=⊕
=

|

|
  

 

Postulate 6: Right Compositional Monotonicity (RM) 

  
jki

ki

⊕=
=

|

|
  

LM and RM are used to an underlying assumption of some overlap-based IR models: 
aboutness is preserved under composition. Therefore, they are recall-oriented 
postulates and they could negatively affect the precision (see [Bruza, Song and Wong 
2000] for an extended discussion on this topic). By way of illustration, consider a 
document d about “emporer penguins” (d |= emporer⊕penguin), so d is also about 
“penguins” (via RCM: d |= penguin). Right Compositional Monotonicity allows us to 
compose arbitrary information to the right hand side. Thus, d |= publisher⊕penguin 
would be permitted, which is an example of an unsound aboutness inference that 
would lead to a loss of precision in the retrieval mechanism. Query expansion is an 
example of an IR process that is not monotonic with respect to information 
composition. The terms selected to expand a query must be carefully chosen. This 
suggests that a conservatively monotonic process is involved. 

The postulates LM and RM can be more clearly related to IR in the following 
way. LM models the case whereby aboutness is preserved when information j is 
added to a document: 
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qjd

qd

=⊕
=

|

|
 

A retrieval function satisfying this property makes aboutness judgment insensitive to 
a document’s length. In this way, the issue of document length normalization5 can be 
characterized at the symbolic level. 

RM, on the other hand, can be envisaged as query expansion, or any process that 
attempts to improve a query by composing information to it (e.g., pseudo-relevance 
feedback [Xu and Croft, 1996]). We have just shown that this is unsound: 

jqd

qd

⊕=
=

|

|
 

 
Next, we give some conservative forms of mononicity to constrain how information is 
composed in various ways in order to promote precision. 
 
Postulate 7: Mix (M)  

kji

kjki

=⊕
==

|

|,|
 

For example, from “penguin |= bird” and “tweety |= bird”, we can derive 
“tweety⊕penguin |= bird”, meaning “penguin” is about “bird(s)”, “tweety” is about a 
“bird”, so “Tweety, the penguin” is about a “bird”. 
 
Postulate 8: Context-Free And (C-FA) 

jik

jkik

⊕=
==

|

|,|
 

Boolean retrieval is founded on this postulate. For example, if a document is about 
“computer software” and the same document is about “computer hardware”, it is also 
about both “computer software and hardware”.  
 
Postulate 9: Guarded Left Compositional Monotonicity (GLM) 

kji

jiki

=⊕
⊥/=

|

,|
         

 
Postulate 10: Guarded Right Compositional Monotonicity (GRM) 

jki

jkki

⊕=
⊥/=

|

,|
       

GLM and GRM are conservative forms of LM and RM. An information carrier can 
only be composed to another one when no preclusion relationships are violated. For 
example, suppose “penguin” precludes “flying” and “penguin” is about “bird”. 
According to GLM, “flying” cannot be composed to “penguin” so that 
“flying ⊕penguin|=bird” (flying penguin is about a bird) cannot be derived. 
 
Postulate 11: Qualified Left Monotonicity (QLM) 

                                                 
5 Document length normalization improves the effectiveness of retrieval; more sophisticated matching functions 
normalize according to document length. 
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kji

jkki

=⊕
⊥/=

|

,|
 

 
Postulate 12: Qualified Right Monotonicity (QRM) 

jki

jiki

⊕=
⊥/=

|

,|
 

QLM and QRM are other conservative forms of LM and RM. LM allows 
“bird⊕tweety|=flying” (Tweety, which is a bird, is about flying) to be inferred from 
“bird|=flying” (A bird is about flying). QLM prevents this via the qualifying 
preclusion “tweety⊥flying”. QRM works in the similar way. 
 
The next postulate expresses a principle based on the preservation of “non-
aboutness”. 
 
Postulate 13: Negation Rational (NR) 

jki

ki

⊕≠
≠

|

|
 

If a document is not about bird, it is impossible to be about flying bird. This is the 
intuition behind the postulate NR. Thus it is precision oriented. 
  

The above thirteen postulates could be classified into recall-oriented and precision 
oriented according to their effects to IR. Postulate R can be considered a starting point 
of aboutness inference. Postulates C (deep), RCM, LM, RM and CWA are mainly 
recall-oriented because they tend to produce more aboutness relations than exact 
match. Postulates C-FA, M, GLM, GRM, QLM, QRM and NR, on the other hand, 
intend to prevent undesirable aboutness inferences by employing some kinds of 
guarded conditions. This is closely related to the conservative monotonicity of IR, 
which will be discussed later in Section 5. The Containment (surface) postulate 
characterizes exact match IR models meaning the query must be fully contained in the 
document.  
 
2.2. Formal Evaluation Methodology  
 
Functional benchmark for IR is based on a formal methodology for inductive 
evaluation. It is conducted in the following steps: 
 

Step A      For each IR model, perform the following: 
 

(A.1):  Define the background of the IR model to be evaluated. 

(A.2): Map the IR model to the aboutness framework. This includes the 
representations of document, query, aboutness decision, 
containment, composition, and preclusion. 

(A.3): Inductive evaluation. Determine which aboutness postulates the IR 
model supports. With respect to an aboutness postulate, the IR 
model could fall into one of the following four categories:  

 

• It fully supports the postulate. 
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• It does not support the postulate. 

• It conditionally supports the postulate: The model does not 
support the postulate in every situation. Under certain 
conditions, which are determined extraneously, however, it 
would be supported. In this paper, “conditionally supporting” is 
applicable to models, which involve settings or estimations 
outside the models themselves. For example, whether the 
threshold vector space model, threshold possible world based 
model and the classical probabilistic model support certain 
postulates depends on the threshold settings or the estimations. 
Note that the notion of “Conditionally support” is inapplicable to 
IR models not involving extraneous factors. 

• The postulate is inapplicable to the model: Some operators 
involved in the postulate may be foreign (i.e. inapplicable) to the 
model. Thus we are unable to evaluate the model using that 
postulate. For example, the preclusion operator is foreign to the 
vector space model. This in turn implies that postulates 
involving the preclusion operator are inapplicable to the vector 
space model. Practically, this is the same as “not supported”. 
This category is separated out in order to provide additional 
information on why a model fails to support the postulate. 

 

Step B Collect the evaluation results of the different IR models and compare their 
functionality.  

 
In the following sections, we use the above-defined functional benchmarking suite to 
evaluate and analyze various classical and, logical IR models. We only show the 
formal proofs of postulates Left Monotonicity (LM) and Right Monotonicity (RM) for 
illustration. The other postulates can be proven similarly (Refer to [Song 2000] for 
details). 
 
3. Inductive Evaluation of Classical IR Models 
 
The common classical IR models are the Boolean, vector space, and probabilistic 
models. In particular, the vector space model is divided into two types, zero-threshold 
(binary) and threshold (multi-valued) vector space models. The former is referred to 
as naïve vector space model. 
 
3.1 Boolean Model 
 
3.1.1 Background 
 
The Boolean model is based on set theory and Boolean algebra. This model has been 
adopted by many early retrieval systems due to its simplicity. In Boolean retrieval, a 
document D is represented by a set of characterization terms X(D) = { 1t , 2t , …, nt }, a 

query Q is expressed in term of index terms combined by Boolean logical connectives 
AND, OR, and NOT. A document is retrieved if and only if the query Q can be 
deduced from X(D) according to the following set of inference rules. 
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Rule 1: if it ∈ X(D) then X(D)− it , where −  denotes the logical consequence. 

Rule 2: if X(D)− it  and X(D)− jt , then X(D)− it  ∧ jt . 

Rule 3: if X(D)− it  or X(D) − jt , then X(D)− it  ∨ jt . 

Rule 4: if X(D) −/ it  then X(D)− ¬ it . 
 

To generalize, Boolean expressions are assumed to be in CNF (Conjunctive Normal 
Form) of DNFs (Disjunctive Normal Form), e.g. (1t ∨ 2t )∧( 3t ∨ 4t )∧( 5t ∨ 6t ). 

 
3.1.2 Boolean Aboutness (

BL
= ) 

 
Let U be the set of all documents, and T be the set of index terms. Let D be a 
document (i.e., D∈U), and Q a query. Suppose it ∈T, X(D) = { 1t , 2t , …, nt } denotes 

the set of characterization terms of D. Let ORBL  be the Boolean Language defined on 

T in DNF of it  (or ¬ it ). Furthermore, let Q = 1q ∧ 2q ∧ … ∧ mq  be a formula in CNF, 

where iq ∈ ORBL , i.e., iq = 1it ∨ 2it ∨ … ∨ ikt . Thus, aboutness in the Boolean model is 

characterized by the following definition: 
 

• D 
BL

= Q iff X(D) −Q    (Aboutness) 

X(D) −Q iff (∀ iq ) (X(D) − iq )   

X(D) − iq  iff (∃ ijt ) (X(D) − ijt ) 

• If D |≠ BL Q then D 
BL

= ¬Q   (Close World assumption) 

• D →s  Q iff X(D)−Q    (Surface Containment) 

• Deep Containment is inapplicable. 
• Let Q1= 11q ∧ 12q ∧ … ∧ mq1  and Q2= 21q ∧ 22q ∧ … ∧ lq2 ;  

Q1→Q2 iff Cl({ 11q , 12q , … , mq1 })⊇ { 21q , 22q , … , lq2 } where Cl(Q1) is defined 

as the set of DNF formulas which are logical consequences of 11q , 12q , …, 

and mq1 . 

• Q1⊕ Q2 ⇔ Q1 ∧ Q2    (Query Composition) 
• D1⊕ D2 ⇔ D1∪ D2    (Document Composition) 
• Suppose D is considered as formula 1t ∧ 2t ∧ … ∧ nt , then 

D ⊥ Q ⇔ D = ¬Q     (Preclusion) 
• Q ⊥¬Q 
 
3.1.3 Inductive Evaluation 
 
Theorem 1 Boolean model supports the Postulates R, C (Surface), C-FA, RCM 
(Surface), LM, M, GLM, QLM, NR, and CWAA6. Deep Containment is inapplicable 
to this model. 
 
Proofs of LM and RM are shown as below:  

 

• LM: Left Compositional Monotonicity is supported. 

                                                 
6 Note that postulates Mix, GLM and QLM are trivially supported, as LM is supported. 
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Given D1 
BL

=  Q 

⇒ X(D1)−Q 

⇒ X(D1⊕ D2) = X(D1∪ D2) −Q 

∴ D1⊕ D2 
BL

=  Q 
 

• RM: Right Compositional Monotonicity is not supported. 
Given D 

BL
=  Q1 and Q = Q1⊕ Q2 

⇒ X(D) −Q1 and Q1⊕ Q2 ⇔ Q1 ∧ Q2 

But X(D)−Q1 ∧ Q2 cannot be concluded 

∴ D 
BL

=  Q1⊕ Q2 cannot be concluded. 
 

3.1.4 Remarks 
 
• The Boolean model is an exact match IR model, thereby promoting precision. 
• The Boolean model is left monotonic, rendering it insensitive to document length.  
• The Boolean model supports the closed world assumption, which would 

negatively affect recall.  
• RM is not supported by the Boolean model. Instead, a conservative form, C-FA, is 

supported. This would promote precision.  
 
In general, the Boolean model supports a fair degree of precision and weak in recall. 
Its in sensitivity to document length makes it less effective than models whose 
matching functions support document length normalization.    
 
3.2 Vector Space model 
 
3.2.1 Background 
 
In the Vector Space model, both queries and documents are represented as a vector of 
weighted or binary index terms. Practically, each index term is treated as an axis in a 
n-dimensional space. The documents are ranked by the similarity between the 
document D and the query Q. There are a numbers of measures of vector similarity, 
such as Inner product, Dice coefficient, Cosine coefficient, etc. The commonly used 
form is the cosine function: 
 

 
∑ ∑

∑

×
=

i i
ii

i
ii

yx

yx
QDCos

22
),(  where D={ nxxx ,...,, 21 }, Q={ nyyy ,...,, 21 }. 

A threshold value is always employed to determine relevance. In the following 
discussions, we first consider the naïve and simplest case of the model. For this case, 
the aboutness between D and Q is equivalent to simple overlapping, i.e. if D and Q 
share at least one index terms, they are about each other. We then investigate the more 
general case of non-zero multi-valued threshold. Note that the threshold value is 
extraneously controlled. To simplify, we just consider the case where index terms are 
un-weighted. The case of weighted terms could be investigated similarly. 
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3.2.2 Naïve Vector Space Aboutness ( NAIVEVS−=| ) 
 
Let U be the set of all documents, and T be the set of index terms. Let D∈U be a 
document, and Q a query. Both D and Q are represented as vectors.  
 

• D = +D ∪ −D  
+D = { +

1t , +
2t , …, +

ft } 
−D = { −

1t , −
2t , …, −

gt } 

Q = +Q ∪ −Q  
+Q = { +

1t , +
2t , …, +

kt } 
−Q = { −

1t , −
2t , …, −

ht } 

f+g = k+h = n (dimension of the vector). 

where it ∈T,  +
it is the i-th non-zero term in the vector, and −

jt is the j-th zero 

term in the vector. 
 

    Based on the above D and Q vectors, the following definitions of naive vector 
space aboutness are defined:  
 

• D NAIVEVS−=|  Q iff +D ∩ +Q ≠ ∅   (Aboutness) 

D NAIVEVS−≠|  Q iff +D ∩ +Q = ∅ 

• D →s  Q iff +D ⊇ +Q     (Surface Containment) 

Q1 →s  Q2 iff +1Q ⊇ +2Q  

• Deep Containment is inapplicable. 
• Q = Q1⊕ Q2 ⇔ +Q = +1Q ∪ +2Q  and −Q = ( −1Q - +2Q )∪ ( −2Q - +1Q )   

(Query Composition) 
• D = D1⊕ D2 ⇔ +D = +1D ∪ +2D and −Q = ( −1D - +2D )∪ ( −2D - +1D )   

(Document Composition) 
• ⊥ is inapplicable, as it is not supported in the naive vector space model. 
 
3.2.3 Inductive Evaluation  
 
Theorem 2 Naive vector space model supports R, C (surface), C-FA, LM and RM7. 
Deep containment is inapplicable to this model. The postulates GLM, GRM, QLM 
and QRM are inapplicable, as preclusion is inapplicable. 
 
Proofs of LM and RM are shown as below:   
 

• LM: Left Compositional Monotonicity is supported. 
Given D1 NAIVEVS−=|  Q, D =D1⊕ D2 

⇒ +1D ∩ +Q ≠ ∅, D =D1⊕ D2 

⇒ (∃ it ) ( it ∈ +1D ∧ it ∈ +Q ), and  

by the definition of composition, D=D1⊕ D2 ⇔ +D = +1D ∪ +2D  

                                                 
7 Note that postulates Mix is trivially supported, as LM is supported. The postulate C-FA is trivially supported, as 
RM is supported. 
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⇒ it ∈ +D and it ∈ +Q  

⇒ +D ∩ +Q ≠ ∅ 

∴ D1⊕ D2 NAIVEVS−=|  Q 
 

• RM: Right Compositional Monotonicity is supported. 
Given D NAIVEVS−=|  Q1, Q = Q1⊕ Q2 

⇒ +D ∩ +1Q ≠ ∅ and Q = Q1⊕ Q2 

⇒ (∃ it ) ( it ∈ +D ∧ it ∈ +1Q ), and 

by the definition of composition, i.e., Q = Q1⊕ Q2 ⇔ +Q = +1Q ∪ +2Q  

⇒ it ∈ +D and it ∈ +Q  

⇒ +D ∩ +Q ≠ ∅ 

⇒ D NAIVEVS−=|  Q1⊕ Q2 

 
3.2.4 Threshold Vector Space Aboutness( TVS−=| ) 
 
Let U be the set of all documents, and T be the set of index terms. Let D∈U be a 
document, and Q a query. Both D and Q are represented as vectors. Based on these, 
the following definitions of threshold vector space aboutness are given:  
 

• D TVS−=|  Q iff ∂≥),( QDCOS , where ∂ ∈ (0, 1].  (Aboutness) 

D |≠ TVS−  Q iff ∂<),( QDCOS  

• The mappings of containment, composition and preclusion are same as those in 
Section 3.2.2. 

 
3.2.5 Inductive Evaluation  
 
Theorem 3 Threshold vector space model supports R, and conditionally supports C 
(surface), CWAA, RCM (surface), LM, RM, M, C-FA and NR. Deep containment is 
inapplicable to this model. The postulates GLM, GRM, QLM and QRM are 
inapplicable, as preclusion is inapplicable. 
 
The proof of LM and RM are as follows: 
  

• LM: Left Compositional Monotonicity is conditionally supported. 
Let | +1D | = f1, | +2D | = f2, | +Q | = k, | +1D ∩ +Q | = c1, | +2D ∩ +Q | = c2 and 

| +1D ∩ +2D | = l. 
Then there are | +Q ∩ (D1⊕ D2)+ | = c1+c2-l and |(D1⊕ D2)+ | = f1+f2-l. 

Given D1 TVS−=|  Q, D =D1⊕ D2 

⇒ ∂≥
+

=
kf

c
QDCOS

1

1
),1( , D =D1⊕ D2 

This cannot imply ∂≥⊕ ),21( QDDCOS . Consider the case where +2D  is much 

larger than +1D . ),21( QDDCOS ⊕ may be reduced to a very small value, even 

less than ∂.  
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∴ D1⊕ D2 TVS−=|  Q cannot be guaranteed. 

To ensure D1⊕ D2 TVS−=|  Q, 
klff

lcc
QDDCOS

+−+
−+=⊕

)21(

21
),21(  must not 

be less than ∂. 

Thus, given D1 TVS−=|  Q, i.e. ∂≥
+

=
kf

c
QDCOS

1

1
),1( , the LM postulate is 

supported only under the condition of 
nlff

lcc

+−+
−+≤∂

)21(

21
. 

 

• RM: Right Compositional Monotonicity is conditionally supported. 
Let | +D |= f, | +1Q | = k1, | +2Q | = k2, | +D ∩ +1Q | = c1, | +D ∩ +2Q | = c2 and 

| +1Q ∩ +2Q | = l. 

Then there are | +D ∩ ( +1Q ⊕ +2Q )| = c1+c2-l and |(Q1⊕ Q2)+ | = k1+k2-l. 
Following the similar way of the proof for LM, we can get the conclusion that, 

given D TVS−=| Q1, i.e. ∂≥
+

=
1

1
)1,(

kf

c
QDCOS , the RM postulate is supported 

only under the condition of 
)21(

21

lkkf

lcc

−++
−+≤∂ . 

 

3.2.6 Remarks 
 
• The naïve vector space model is both left and right monotonic. As these properties 

degrade precision, this model would be imprecise in practice. 

• We argue that IR is conservatively monotonic in nature, rather than fully 
monotonic or non-monotonic. Conservative monotonicity means that when new 
information is composed to either left or right hand side, the aboutness 
relationship should be preserved only under certain guarding conditions. For 
example, consider the query expansion process. When a query is expanded using 
additional terms, the terms added are not arbitrary. They must be chosen carefully, 
i.e., conservative monotonicity is at work here. In terms of aboutness, such models 
embody properties such as QLM, QRM, etc. without also supporting LM and RM. 

• Threshold vector space model only supports R. The monotonic properties such as 
LM and RM are conditionally supported depending on the threshold. This means 
that by adjusting the threshold value, users could adjust the degree of 
nonmonotonicity. In this way, the threshold vector space model mimics 
conservative monotonicity by conditionally supporting LM and RM. For example, 
the condition of the threshold vector space model supporting LM can be 
conceived in the following terms: Consider a set of terms Q (the query) and the set 
of terms D (the document).  For reasons of clarity, assume that Q ⊂ D. The 
decision whether D TVS−=|  Q holds can be analysed in terms of LM: Starting with 

Q, terms are composed to Q until the set D has been constructed. Observe that as 
the number of terms in D increases, the cosine normalization will increase. There 
will be a point where the cosine between D and Q will become less that the 
threshold value δ. In other words, LM is more likely to be preserved for short 
documents, which in a practical sense means that the threshold vector space model 
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will favour the retrieval of short documents. Observe the nonmonotonicity of the 
threshold vector space model is not determined by the model itself, but by external 
settings. This is undesirable from a theoretical point of view. 

 
3.3 Probabilistic Model 
 
3.3.1 Background 
 
In the probabilistic model, the probability of relevance of a document D subjected to a 
query Q is given by P(rel|D). To simplify, D is assumed to be a vector-valued random 
variable ( nttt ,...,, 21 ), and nttt ,...,, 21  are assumed to be stochastically independent of 

each other. P(D) is then given by: 
 
P(D) = P(D|rel)P(rel) + P(D|nrel)P(nrel)  
 
P(rel|D) is computed as follows: 
 

P(rel|D) = 
)(

)()|(

DP

relPrelDP
 

P(nrel|D) = 
)(

)()|(

DP

nrelPnrelDP
 

 

P(D|rel) = ∏
=

n

i

t
i

ireltP
1

)|(  

P(D|nrel) = ∏
=

n

i

t
i

inreltP
1

)|(  

it =0 iff term i is absent in D 

it =1 iff term i is present in D 

P(rel) and P(nrel) are the priori probabilities of relevance and non-relevance, 
respectively.  
P( it |rel) and P( it |nrel) could be estimated if we have complete information about the 

relevant and non-relevant documents in the collection. 
 

The Bayes’ Decision Rule is used to make the decision for or against relevance: D is 
relevant if and only if P(rel|D)>P(nrel|D), i.e. P(D|rel)P(rel)>P(D|nrel)P(nrel). This 
leads to a discriminant function:  
 

g(D) = 
)()|(

)()|(

nrelPnrelDP

relPrelDP
=

∏

∏

=

=
n

i

t
i

n

i

t
i

i

i

nreltPnrelP

reltPrelP

1

1

)|(*)(

)|(*)(
 . The document D is retrieved 

if and only if g(D)>1.  
 
Note that P(rel)/P(nrel) is constant for a given query and document base, and is 
independent of any particular document. 
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3.3.2 Probabilistic Aboutness ( PB=| ) 
 
Let U be the set of all documents, and T be the set of index terms. Let D∈U be a 
document, and Q a query. D is represented as a vector of index terms, as described in 
the last section. The representation of a query is not specified in the model. In this 
paper, we just assume the representation of Q is the same as that of D. Based on these, 
the following definitions of probabilistic aboutness are defined:  
 
• The representations of D and Q are the same as those of the vector space model. 
• D PB=|  Q iff 1)( >Dg .  (Aboutness) 

D PB≠|  Q iff 1)( ≤Dg  

• The mappings of containment, composition and preclusion are the same as those 
in Section 3.2.2. 

 
3.3.3 Inductive Evaluation  
 
Theorem 4 Probabilistic model conditionally supports R, C (surface), CWAA, RCM 
(surface), LM, RM, C-FA, M and NR. Deep containment is inapplicable to this 
model. The postulates GLM, GRM, QLM and QRM are inapplicable, as preclusion is 
inapplicable. 
 
The proofs of LM and RM are shown as follows: 
 

• LM is conditionally supported. 
Given D1 PB=|  Q, D =D1⊕ D2 

⇒ g(D1)=

∏

∏

=

=
n

i

t
i

n

i

t
i

i

i

nreltPnrelP

reltPrelP

1

1

)|(*)(

)|(*)(
>1 with respect to Q1, +D  = +1D ∪ +2D  

Suppose the terms {jt , …, kt } in +D  but not in +1D  

⇒ g(D) = 

∏

∏

=

=×
k

ji
i

k

ji
i

nreltP

reltP

Dg
)|(

)|(

)1(  

Whether g(D)>1 depends on 

∏

∏

=

=
k

ji
i

k

ji
i

nreltP

reltP

)|(

)|(

. Only if the new composed terms 

from D2 have higher probability of occurring in the relevant set than the non-
relevant set, then LM is supported (i.e. g(D)>1). 
 

• RM is conditionally supported. 
Given D PB=|  Q1  
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⇒ g(D)=

∏

∏

=

=
n

i

t
i

n

i

t
i

i

i

nreltPnrelP

reltPrelP

1

1

)|(*)(

)|(*)(
>1 with respect to Q1,  

With respect to Q1⊕ Q2, however, the above estimations may change. Thus 
g(D)>1 could not be guaranteed any more. 
 
Therefore, with respect to Q1⊕ Q2, only when the estimations of the priori 
probability of relevance and the probability of index terms in D occurring in the 
relevant set are stronger than those of non-relevance, g(D)>1 could be obtained. 

 
3.3.4 Remarks 
 
• The classical probabilistic model conditionally supports R, LM and RM. This 

shows that it is fully nonmonotonic. The non-monotonicity is achieved by the 
estimation of relevance and non-relevance and the probability of occurrence of 
index terms in the relevant and non-relevant sets via a training process. This leads 
to good performance for the probabilistic model in practice.  

• The properties supported by the threshold vector space and probabilistic models 
are almost the same. These models are generally most effective in practice. The 
key here is that LM, RM are conditionally supported (i.e. they mimic conservative 
monotonicity). For example, the condition of probabilistic model supporting RM 
is that new terms composed to a document must have higher probability of 
occurrence in the relevant set than the non-relevant set. This is consistent with the 
nature of conservative monotonicity.  

• The advantage of probabilistic model over threshold vector space model is that its 
decision rule is included within the model, while the threshold value in the 
threshold vector space model is not determined by itself. On the other hand, 
however, the probabilistic model does not directly deal with the matching between 
documents and queries. Instead, as we have shown in the proofs of its properties, 
the estimations are conducted on the whole document set with respect to a query. 
Moreover, the model itself does not specify the criteria of the estimation. This 
means it may vary from one query to another. This explains why the probabilistic 
model does not fully support R (i.e. even if a document is identical to query, the 
probabilistic model could not determine that they are relevant).  

 
3.4 Discussion of Extended Boolean and Inference Network Models 
 
A well-known alternative Boolean model is the extended Boolean model [Salton 
1988], also called p-norm model. On the other hand, the inference network model 
[Turtle and Croft 1992] is an alternative probabilistic model. Both of them can 
simulate from conventional Boolean model to inner-product vector space model by 
tuning certain parameters between their top and bottom margins (e.g. ∞≤≤ p1  for 
the extended Boolean model; ∞≤≤ cn  for the inference network model, where n is 
the number of parents at a given node in the inference network). It has been proven by 
Turtle and Croft [Turtle and Croft 1992] that when the extended Boolean and 
inference network models are adjusted to simulate Boolean and inner-product vector 
space models respectively, they produce the same results. They are similar to each 
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other when they produce the intermediate systems between Boolean and inner-product 
vector space models for ∞<< p1  and ∞<< cn  respectively. For this reason, we 
only give the detailed discussion on the extended Boolean model in this paper. The 
inference network model can be analyzed similarly. Moreover, the treatment of this 
model is a bit different from the others. We focus on showing how the most important 
property, left and right monotonicity, of the extended Boolean model changes from 
Boolean to vector space models with the change of p-value.  

The extended Boolean model [Salton 1988] provides term weighting and ranking 
of the answer set. The similarity between a document and a query is adjusted by a 
special parameter, namely p-value. Different p-values lead to different document 
output values. In this model, a query is the conjunction or disjunction of n terms, and 
a document is represented as a vector D = ( ),...,, 21 nttt . For the purpose of this paper, 

we assume terms in the query are binary. The similarity between a document and a 
query is given by: 
 

Sim(D, andQ ) =
pp

n
pp

n

ttt
1

21 )1(...)1()1(
1 







 −++−+−
−  

 

Sim(D, orQ ) =
pp

n
pp

n

ttt
1

21 ...











 +++
, where ∞≤≤ p1 . 

 
 
When p=∞ , the extended Boolean model simulates normal Boolean logic, i.e. sim(D, 

andQ )= min(t i ) and sim(D, orQ  ) = max( ti ); For p=1, it behaves like a simple 

normalized inner-product vector space model, i.e. sim(D, andQ )=sim(D, orQ )=
n

t i∑ . 

For intermediate p-values, this model generates “soft” Boolean systems whose 
properties are between the Boolean and vector space models. We then show this by 
analyzing how the monotonicity of extended Boolean model changes from Boolean to 
inner-product vector models with respect to the p-value. We first define the extended 
Boolean aboutness (EB=| ) as below: 
 
• D EB=| Q iff ∂≥),( QDsim , where ∂ ∈ (0, 1]. 
 
We suppose the query is represented in Conjunction Normalized Form (CNF). To 
simplify the analysis, we use the representation of sim (D, andQ ) for the computing of 

complex queries in CNF, since both sim(D, orQ ) and d i are in the interval [0, 1]. 

Information composition (⊕) between two queries are modeled as logical AND, while 
composition between two documents is modeled as D = D1⊕ D2 ⇔ +D = +1D ∪ 

+2D . The left and right monotonicity of extended boolean aboutness can then be 
analyzed: 
 
• Left Monotonicity is supported: 
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Given D1 EB=| Q 

⇒ Sim(D1, Q ) =
pp

n
pp

n

ttt
1

21 )1(...)1()1(
1 







 −++−+−
− ∂≥  

D=D1⊕ D2 ⇔ +D = +
1D ∪ +

2D ; Suppose D=( ),...,, '
2

'
1
'

nttt  

⇒ Sim(D, Q) =
pp

n
pp

n

ttt
1

21
' )'1(...)'1()1(

1 






 −++−+−
−  

≥  Sim(D1, Q ) ∂≥  
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The above proof shows that the extended Boolean model is left monotonic no 
matter what the p-value is. This is consistent with the conventional Boolean model 
(see Section 3.1). Compared with the threshold vector space model using the 
cosine function (see Section 3.2.5), which conditionally supports left 
monotonicity, the similarity function of extended Boolean model is normalized 
using only the query terms, without considering the expansion of document space. 
Thus, it is not as effective as cosine vector space system with respect to left 
monotonicity. That is, it remains insensitive to document length. 

 
• Right Monotonicity: 
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It is not necessary that sim(D,Q1⊕ Q2) ∂≥ . Thus, RM is conditionally supported 
depending on the values of p and ∂. 
 
Now, let’s consider how the change of p leads to the change of the degree of right 
monotonicity of the model. Suppose sim(D,Q1⊕ Q2)< ∂.  P being increased 

implies 1/p being decreased. Due to 1
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− should be decreased. Thus, larger p 

implies larger distance between sim(D,Q1⊕ Q2) and ∂, i.e. higher degree of right 
non-monotonicity.  For p=∞ and binary document terms, the extended Boolean 
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model reduces to conventional Boolean model, which has the highest degree of 
non-monotonicity (i.e. right monotonicity is not supported (see Section 3.1)). 
Only if all the new terms composed to the query are true in the document, the 
original aboutness relation can be preserved. This condition is too strict, i.e. many 
documents even with high possibility of relevance could not be retrieved. For p= 
[1, ∞ ), smooth decrease of p means smooth decrease of the degree of non-
monotonicity. When p is reduced to 1, the extended Boolean model becomes the 
inner-product vector space model, which has the most relaxed condition for 
conditionally supporting right monotonicity. As a consequence, this model would 
not be ideal for supporting query expansion, or pseudo-relevance feedback. 
Following this way, the other aboutness properties can be analyzed similarly. 
 

3.5 Summary 
 

In summary, the probabilistic model has potentially the highest degree of precision, 
followed by the threshold vector space model, then the Boolean model and the naïve 
vector space model. This conclusion is consistent with the experimental results. The 
motivation for this judgment lies in the varying degrees to which they respectively 
support (or do not support) conservative monotonicity.  
 
4.  Inductive Evaluation of Logical IR Models 
 
In the past decade, a number of logic based IR models have been proposed (see 
[Bruza and Lalmas 1996; Lalmas 1998; Lalmas and Bruza 1998] for detailed 
surveys). These models can be generally classified into three types: Situation Theory 
based, Possible World based, and other types. In what follows, we investigate two 
well-known logic IR models.  

In the following analyses, the fact of a document D consisting of information 
carrier i is represented by D→~ i. For example, Guarded Left Compositional 
Monotonicity (i.e., postulate 7) means that if a document consisting of i is about k (i.e. 
i |= k), under the guarded condition that i doesn’t preclude j (i⊥/ j), we can conclude 
that a document consisting of i⊕ j is about k (i⊕ j |= k). In the following 
benchmarking exercise, we adopt this interpretation for logical IR models for reasons 
of simplicity. For the classical models, we treated the document and the query as 
information carriers directly, for there are no term semantic relationships involved in 
classical models. 
 
4.1 Situation theory based model 
 
4.1.1 Background 
 
Van Rijsbergen and Lalmas developed a situation theory based model [Lalmas 1996; 
Van Rijsbergen and Lalmas 1996]. In their model, a document and the information it 
contains are modeled as a situation and types. A situation s supports the type ϕ, 
denoted by s|=ϕ, means that ϕ is a part of the information content of the situation.  
The flow of information is modeled by constraints (→). Here, we assume ϕ→ϕ. A 
query is one type (single type query) or a set of types (complex query), e.g., a query φ 
= {ϕ, ψ}.  
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For a situation s and a set of types φ, there are two methods to determine whether d 
supports φ. The first is that d supports φ if and only if s supports ϕ for all types ϕ ∈φ 
[Barwise 1989]. Later Lalmas relaxed the condition to represent partial relevance: any 
situation supports φ if it supports at least one type in φ [Lalmas 1996]. 

IR system is to determine to which extent a document d supports the query φ, 
denoted by d|=φ. If d|=φ, then the document is relevant to the query with certainty. 
Otherwise, constraints from the knowledge set will be used to find the flow that lead 
to the information φ. The uncertainty attached to this flow is used to compute the 
degree of relevance. 

A channel is to link situations. The flow of information circulates in the channel, 
where the combination of constraints in sequence (1c ; 2c ) and in parallel (1c || 2c ) can 

be represented. Given two situations s1, s2, s1|→c s2 means that s1 contains the 
information about s2 due to the existence of the channel c. A channel c supports 
constraint ϕ→ψ, denoted c|=ϕ→ψ, if and only if for all situations s1 and s2, if s1|=ϕ, 
s1|→s2, and ϕ→ψ, then s2|=ψ. The notation s1|=ϕ | →c  s2|=ψ stands for c|=ϕ→ψ 
and s1|→s2, which means that s1|=ϕ carries the information that s2|=ψ, due to 
channel c. If s1|=ϕ | →c  s2|=ψ and s1=s2, then c is replaced by a special channel 1, 
and ϕ logically entails ψ.  
 
4.1.2 Situation Theory Based Aboutness (ST=| ) 
 

Let U be the set of documents, S be the set of situations, T be the set of types, C be 
the set of channels. Furthermore, let D∈U be a document, and Q a query. Then, 
 

• D is modeled as a situation. 
• Q is modeled as a set of types 
• Given two set of types φ1 and φ2: 

• D →~ φ1 iff (∀ϕ∈φ1)(D|=ϕ). 
• φ1 ST=| φ2 iff (∃ c∈ C) (∀D|D →~ φ1) (∃ϕ∈φ1) (∃ψ∈φ2) (D |=ϕ | →c D’ 

|=ψ). Note that D’ could be D itself, i.e. c=1. A more special case is D |=ψ 
| →1  D |=ψ.        (Aboutness) 

• φ1 ST=/| φ2 iff (∃/ c∈ C) (∀D|D →~ φ1) (∃ϕ∈φ1) (∃ψ∈φ2) (D |=ϕ | →c D’ 

|=ψ).           
• φ1 →s φ2 iff φ1 ⊇ φ2     (Surface Containment) 
• φ1 →d φ2 iff (∃ψ1∈φ1) (∃ψ2∈ φ2) (ϕ→ψ). (Deep Containment) 
• φ1⊕ φ2 ⇔ φ1∪ φ2     (Composition) 

• A type precludes its negation, e.g., (s| s|=<<hit, john, x; 1>>) ⊥ (s| s|=<<hit, 
john, x; 0>>).      (Prelusion) 

• Suppose the negation of a set of types Q is the set of the negations of every 
component type, then Q⊥¬Q. 

 
4.1.3 Inductive Evaluation 
 

Theorem 5 Situation theory based IR model supports R, C, LM, RM, M, C-FA, 
GLM, GRM, QLM and QRM8.  

                                                 
8 Note that postulates Mix, GLM and QLM are trivially supported, as LM is supported. Postulates C-FA, GRM 
and QRM are trivially supported, as RM is supported. 
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The proofs of LM and RM are provided as follows: 
 

• LM: Left Compositional Monotonicity is supported.  
Given φ1 ST=|  φ2  

⇒ (∃ c1∈ C) (∀D|D →~ φ1) (∃ψ1∈φ1) (∃ψ2∈ φ2) (D |=ψ1 | → 1c D’ |=ψ2), φ1⊕ 
φ3 ⇔ φ1∪ φ3, and {∀D| D →~ φ1⊕ φ3}⊆ {∀D| D →~ φ1} 
⇒ (∀D|D →~ φ1⊕ φ3) (∃ψ1∈φ1⊕ φ3) (∃ψ2∈ φ2) (D |=ψ1 | → 1c D’ |=ψ2), 
∴ φ1⊕ φ3 ST=| φ2 
 

• RM: Right Compositional Monotonicity is supported.  
Given φ1 ST=|  φ2  

⇒ (∃ c1∈ C) (∀D|D →~ φ1) (∃ψ1∈φ1) (∃ψ2∈ φ2) (D |=ψ1 | → 1c D’ |=ψ2), φ2⊕ 
φ3 ⇔ φ2∪ φ3, and {∀D| D →~ φ2⊕ φ3}⊆ {∀D| D →~ φ2} 
⇒ (∀D|D →~ φ1) (∃ψ1∈φ1) (∃ψ2∈ φ2⊕ φ3) (D |=ψ1 | → 1c D’ |=ψ2), 
∴ φ1 ST=| φ2⊕ φ3 

 
4.2 Possible world based model 
 
4.2.1 Background 
 
A number of possible world based logical IR models have been proposed. As stated in 
[Lalmas and Bruza 1998], these systems are founded on a structure <W, R>, where W 
is the set of worlds and R⊆W×W is the accessibility relation. They can be classified 
according to the choice made for the worlds w∈W and accessibility relation R. For 
example, w can be a document (or its variation) and R is the similarity between two 
documents w1 and w2 [Nie 1989; Nie 1992], or w is a term and R is the similarity 
between two terms w1 and w2 [Crestani and van Rijsbergen 1995(a); Crestani and van 
Rijsbergen 1995(b); Crestani and Van Rijsbergen 1998], or w is the “retrieval 
situation” and R is the similarity between two situations w1 and w2 [Nie et al. 1995], 
etc. 

Most of these systems use a technique called imaging. To obtain P(D→Q), where 
the connective → represents conditional, we can move the probability from non-D-
world to D-world by a shift from the original probability distribution P of the world w 

to a new probability distribution DP  of its closest world Dw  where D is true. This 

process is called deriving DP  from P by imaging on D. The truth of D→Q at w will 

then be measured by the truth of Q at Dw . To simplify the analysis, let’s suppose that 
the truth of Q in a world is binary9 and the closest world of a world w is unique10. 
 
P(d→q) can be computed as follows: 
 

∑ ∑
∈ ∈

==→
Ww Ww

DD QwwPQwwPQDP )()()()()(    (1) 

                                                 
9 Actually, it can be multi-valued in an interval. 
10 There is also an approach called General Logical Imaging that does not rely on this assumption. 
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Dw  is the closest world of w where D is true    (6) 
 

Now, we study in detail Crestani and van Rijsbergen’s model which models the terms 
as possible worlds to see some properties of the possible world based approach. In 
this model, term is considered as vector of documents, while the document and query 
are vectors of terms. The accessibility relations between terms are estimated by the 
co-occurrence of terms. P(D→Q) can be computed as: 
 

∑ ∑
∈ ∈

==→
Tt Tt

DD QttPQttPQDP )()()()()(     (7) 

∑
∈

=
Tt

tP 1)(         (8) 





=
otherwise

Qinoccurstif
Qt

,0

,1
)(    (9) 

∑
∈

=
Tt

D ttItPtP
'

)',()'()(       (10) 



 =

=
otherwise

ttif
ttI D

,0

',1
)',(     (11) 

Dt  is the closest term of t where d is true(Dt  occurs in D)  (12) 
 
Generally, D is deemed relevant to Q when P(D→Q) is greater than a threshold value, 
e.g., a positive real number ∂. Similar to the vector space model (see section 3.3.2), 
the simplest case is that at least one term which occurs in both D and Q, or it is also 
the closest term of some other terms occurring in D and Q. This case is referred to as 
naïve possible world based model and the general case as threshold possible world 
based model. 
 
4.2.2 Naïve Possible World Aboutness Based on Crestani and van Rijsbergen’s 
Model ( CVPWNAIVE −−=| ) 
 

Let U be the set of all the documents, T be the set of all the index terms, Furthermore, 
let D∈U be a document, Q be a query, and t be a term. The aboutness in the naïve 
Possible World based models is defined as follows: 
 

• D and Q are sets of terms 
• D CVPWNAIVE −−=| Q iff P(D→Q)>0    (aboutness) 

• D CVPWNAIVE −−≠| Q iff P(D→Q)=0     

• D→Q iff D⊇Q      (Surface containment) 
Q1→Q2 iff Q1⊇Q2 
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t1→t2 iff t1 is the closest term of t2   (Deep containment) 
• D1⊕ D2 ⇔ D1 ∪ D2     (Composition) 

Q1⊕ Q2 ⇔ Q1 ∪ Q2 
• Preclusion is foreign to this model. 
 
4.2.3 Inductive evaluation 
 
Theorem 6 The Naïve Possible World based model supports R, C (surface), LM, RM, 
M and C-FA11. Postulates GLM, GRM, QLM and QRM are inapplicable as 
preclusion is inapplicable.  
 
Proofs of LM and RM are given as follows: 
 

• LM: Left Compositional Monotonicity is supported. 
Given D1 CVPWNAIVE −−=| Q, and D= D1⊕ D2 

⇒ 0)()()1( 1 >=→ ∑
t

D QttPQDP , D1⊕ D2=D1∪ D2 

⇒ At least one term it  is the closest term of some terms where  

D1 is true and it ∈ Q, and D1⊕ D2=D1∪ D2 

⇒ it  is also true in D1⊕ D2, and it ∈ Q 

⇒ 0)()()21( 21 >=→⊕ ∑ ⊕
t

DD QttPQDDP  

∴ D1⊕ D2 CVPWNAIVE −−=|  Q 
 

• RM: Right Compositional Monotonicity is supported.  
Given D CVPWNAIVE −−=| Q1, and Q = Q1⊕ Q2 

⇒ 0)1()()1( >=→ ∑
t

D QttPQDP , and Q=Q1⊕ Q2=Q1∪ Q2, 

⇒ (∃ it ∈ Q1) (∃ it ' ∈ T) (I( it , it ' )=1) and it ∈ Q 

⇒ 0)21()()21( >⊕=⊕→ ∑
t

D QQttPQQDP . 

∴D CVPWNAIVE −−=|  Q1⊕ Q2 

 
4.2.4 Threshold Possible World Aboutness Based on Crestani and van 
Rijsbergen’s Model ( CVPWT −−=| ) 
 
Let U be the set of all documents, T be the set of all index terms, Furthermore, let 
D∈U be a document, Q be a query, and t be a term. The aboutness in this models is 
then defined as follows: 
 

• D and Q are sets of terms 
• D CVPWT −−=| Q iff P(D→Q)≥∂,  

where ∂  is a positive real number in the interval (0, 1].   (aboutness) 
• D CVPWT −−≠| Q iff P(D→Q)<∂ 

                                                 
11 Note that postulates Mix is trivially supported, as LM is supported. Postulate C-FA is trivially supported, as RM 
is supported. 
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• The mappings of containment, composition and preclusion are same as those in 
Section 4.3.2. 

 
4.2.5 Inductive Evaluation 
 
Theorem 7 The Threshold Possible World based model supports R, LM, RM, M, C-
FA, and conditionally supports C, CWAA, RCM and NR. Postulates GLM, GRM, 
QLM and QRM are inapplicable as preclusion is inapplicable. 
 
Proofs of LM and RM are given as follows: 
 

• LM: Left Compositional Monotonicity is supported. 
Given D1 CVPWT −−=| Q, and D= D1⊕ D2 

⇒ ∂≥=→ ∑
t

D QttPQDP )()()1( 1 , D1⊕ D2=D1∪ D2 

⇒ The number of index terms which are the closest terms of certain terms where 
D1⊕ D2 is true must be not less than that of index terms which are the closest 
terms of certain terms where D1 is true. This implies that )(21 tP DD ⊕ ≥ )(1 tPD . 

⇒ ∂≥≥=→⊕ ∑∑ ⊕
t

D
t

DD QttPQttPQDDP )()()()()21( 121  

∴ D1⊕ D2 CVPWT −−=|  Q 
 

• RM: Right Compositional Monotonicity is supported.  
Given D CVPWT −−=| Q1 and Q = Q1⊕ Q2 

⇒ ∂≥=→ ∑
t

D QttPQDP )1()()1(  and Q = Q1⊕ Q2=Q1∪ Q2 (i.e. Q1⊆ Q and 

Q2⊆ Q), 
⇒ ∑ ⊕=→

t
D QQttPQDP )21()()( ≥ ∑

t
D QttP )1()(  

⇒ ∂≥⊕=⊕→ ∑
t

D QQttPQQDP )21()()21( . 

∴D CVPWT −−=|  Q1⊕ Q2 

 
4.3 Discussion 
 
• Deep containment is irrelevant to classical models, unless they are augmented by 

thesauri and the like from which deep containment relationships like penguin → 
bird can be extracted. Logical models, by their very nature, can directly handle 
deep containment relationships. This means logical models support information 
transformation e.g., logical imaging in the possible world models. This is a major 
advantage of logical models. Moreover, they provide stronger expressive power, 
e.g. concepts such as situation, type and channel, etc. in situation theory based 
model make it more flexible.  

• The properties of an IR model are largely determined by the matching function it 
supports. Two classes of matching function are widely used: exact match and 
overlapping (naïve and non-zero threshold). The Boolean model is an example of 
exact match model, which requires that all the information of the query must be 
contained in or can be transformed to the information of the document. The naïve 
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vector space model and naïve possible world based model have similar properties 
(except that deep containment is applicable to possible world based model only) 
due to their simple overlapping retrieval mechanism (i.e., a document is judged to 
be relevant if it shares at least one term with the query). Compared with Boolean 
model, the naïve vector space and the naïve possible world based model support 
Left and Right Compositional Monotonicity, which causes imprecision. The 
Boolean model supports Right Containment Monotonicity, which promotes recall, 
at the expense of precision. They also  support the Negation Rationale, which can 
improve precision. For the naïve vector space and possible world based models, 
Right Containment Monotonicity and Negation Rational are not supported. In 
summary, it is evident that the Boolean model is more effective than the naïve 
vector space and the naïve possible worlds based models. 

• The naïve possible worlds model uses imaging (i.e., imaging from non-D world to 
D-world) besides simple overlapping. Even though there may exist a containment 
relation between a term t1 in the document and another term t2 in the query, if t1 
is not shared by the document and the query, then this transformation from t2 to t1 
is ineffective to establish the relevance. This explains why naïve possible world 
model does not support Containment (deep). The mechanics of imaging is 
dependent on a notion of similarity between worlds. Experimental evidence shows 
a relation between retrieval performance and the way in which the relationship 
between worlds is defined [Crestani and Van Rijsbergen 1998]. As the underlying 
framework for inductive evaluation presented in this paper does not explicitly 
support a concept of similarity, the mapping of the possible worlds based model 
into the inductive framework is incomplete. More will be said about this point in 
the conclusions. 

• The threshold possible worlds model is both left and right monotonic. As a 
consequence there are some grounds to conclude that this model would be 
imprecise in practice, and also be insensitive to document length. As mentioned in 
the previous point, retrieval performance depends on how the similarity between 
worlds is defined. As both LM and RM are supported, it can be hypothesized that 
the baseline performance for the threshold possible world model would be similar 
to the naïve overlap model. More sophisticated similarity metrics between worlds 
would improve performance above this baseline. Crestani and Van Rijsbergen 
allude to this point as follows: “.. it is possible to obtain higher levels of retrieval 
effectiveness by taking into consideration the similarity between the objects 
involved in the transfer of probability. However, the similarity information should 
not be used too drastically since similarity is often based on cooccurrence and 
such a source of similarity information is itself uncertain” [Crestani and Van 
Rijsbergen 1998]. When the threshold possible world model judges a document D 
relevant to the query Q, this implies that D shares a number of terms with Q or a 
number of terms can be transformed to the shared terms so that P(D→Q) is not 
less than the threshold ∂. The expansion of D or Q can only increase P(D→Q). 
This judgment is not true for threshold vector space model, for after the expansion 
of D (or Q), the increase of the space of D (or Q), i.e. number of terms in D and Q, 
may be much more than the increase of the shared terms. Thus the degree of 
overlapping may be decreased. 

• The threshold possible worlds model and situation theory using Lalmas’ relaxed 
condition support LM and RM. This suggests that these models would be less 
precise than probabilistic and threshold vector space models. This in turn reflects 
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the likely possibility that despite their previously mentioned expressive power, 
this power does not necessarily translate into precision. The scant experimental 
evidence available bears this out [Crestani et al. 1995]. 

 
5. Results Summary and Conclusions 
 
5.1 Results Summary 
 
Table1: Summary of the results of the evaluation. 

 

 
Note: NA means not applicable, CS means conditionally support, √ means support; 
and × means not supported.  
 
5.2 Conclusion 
 
The functional benchmarking exercise presented in this paper indicates that functional 
benchmarking is both feasible and useful. It has been used to analyze and compare the 
functionality of various classical and logical IR models. Through functional 
benchmarking, some phenomena encountered in experimental IR research can be 
explained from a theoretical point of view using a symbolic perspective. The 
theoretical analysis could in turn help us better understand IR and provide guideline to 
investigate more effective IR models. 

A major point to be drawn is that IR is conservatively monotonic in nature. It is 
important that conservatively monotonic models be studied and developed, as these 
would help achieve a better understanding of the tradeoff between precision and 
recall. The postulates GLM, GRM, QLM, QRM, etc. guarantee the conservatively 
monotonic properties, but they are foreign to some models. Even in those models, 
which support some of the conservatively monotonic properties, preclusion is only 
based on the assumption that an information carrier precludes its negation. Moreover, 
GLM, QLM and MIX are the special cases of LM, and GRM, QRM and C-FA are the 
special case of RM. As such, if a model supports LM, GLM is vacuously supported. 
Therefore, a model supporting conservative monotonicity should embody 

Models 
 
Postulates 

 
Boolean 

Naïve  
Vector 
Space 

Threshold 
Vector 
Space 

Probabi-
listic 

Model  

Situation 
Theory 
Based 

Naïve  
Possible 
World 

Threshold 
Possible 
World 

R √ √ √ CS √ √ √ 
C (Surface) √ √ CS CS √ √ CS 

C (Deep) NA NA NA NA √ × CS 
RCM  (Surface) √ × CS CS × × CS 
RCM (Deep) NA NA NA NA × × CS 

CWAA √ × CS CS × × CS 
LM √ √ CS CS √ √ √ 
RM × √ CS CS √ √ √ 
M √ √ CS CS √ √ √ 

C-FA √ √ CS CS √ √ √ 
GLM √ NA NA NA √ NA NA 
GRM × NA NA NA √ NA NA 
QLM √ NA NA NA √ NA NA 
QRM × NA NA NA √ NA NA 
NR √ × CS CS × × CS 
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conservatively monotonic properties without supporting LM and RM. The 
probabilistic model and threshold vector space model show good performance in 
practice as they mimic conservative monotonicity.  

Current logical IR models have advantage of modeling information transformation 
and their expressive power. However, they are still insufficient to model conservative 
monotonicity. A primary reason is that important concepts, such as (deep and surface) 
containment, information preclusion, etc., upon which conservative monotonicity is 
based, are not sufficiently modeled. For example, semantics of information preclusion 
is not explicitly defined in current logical models. We just simply assume that an 
information carrier precludes its negation during the benchmarking. It is interesting to 
show that if we add some kind of semantics of preclusion to the logical IR models, the 
conservative monotonicity could be partially realized. For example, we could add the 
following definition to the model: 
 

Preclusion: 
Given two types ϕ1 and ϕ2, ϕ1⊥ϕ2, s1|=ϕ1 and s2|=ϕ2, there does not exist any 
channel between s1 and s2. 

 

The Left composition monotonicity (LM) is no longer supported: 
Given φ1 ST=|  φ2   

⇒ (∃ c1∈ C) (∀D|D →~ φ1) (∃ψ1∈φ1) (∃ψ2∈ φ2) (D |=ψ1 | → 1c D’ |=ψ2),  
φ1⊕ φ3 ⇔ φ1∪ φ3 

Assume LM is supported, i.e. (∀D|D →~ φ1⊕ φ3) (∃ψ1∈φ1⊕ φ3) (∃ψ2∈φ2) (D 
|=ψ1 | → 1c D’ |=ψ2). 
Consider the case of φ2⊥φ3. This implies for D|=φ3 and D’ |=φ2, there does not 
exist a channel between D and D’. This contradicts the above assumption, 
because {∀D|D →~ φ1⊕ φ3} ⊆ {∀D| D|=φ3}. 

∴ It is not necessary that φ1⊕ φ2 ST=|  φ2. 

 
On the other hand, RM is not supported for the similar reason of LM. However, 
by applying the conservative forms of monotonicity, QLM and QRM, with the 
qualifying non-preclusion conditions, the above-like counter example will no 
longer exist. 
 

The above definition of preclusion is simply for the purposes of illustration. It is true 
that current IR systems are not explicitly defined in terms of concepts such as 
preclusion, information containment, etc. However, such informational concepts are 
in the background. Preclusion relationships can be derived via relevance feedback 
[Amati and Georgatos 1996, Bruza et al.1998]. For restricted domains, information 
containment relationships can be derived from ontologies, and the like. For example, 
we have been investigating the automatic extraction of deep containment relationships 
based on Barwise and Seligman’s theory of information flow [Barwise and Seligman 
1997, Bruza and Song 2001; Song and Bruza 2001]. When language processing tools 
have advanced further, the concepts under the aboutness theory could be applied to IR 
more easily and more directly. More sensitive IR systems would then result; in 
particular those which are conservatively monotonic with respect to composition. 
Therefore, more investigations about how to achieve conservative monotonicity in 
current logical IR models are necessary.  
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Finally, we reflect on the strengths and weaknesses of the inductive theory of 
information retrieval evaluation. The strengths are summarized below: 
 

• Enhanced perspective: Matching functions can be characterized qualitatively in 
terms of aboutness properties that are, or are not implied, by the matching 
function in question. It may not be obvious what the implications are of a given 
numeric formulation of a matching function. The inductive analysis allows some 
of these implications to be teased out. By way of illustration, models based on 
overlap may imply monotonicity (left or right), which is precision degrading. In 
addition, inductive analysis allows one to compute under what conditions a 
particular aboutness property is supported. It has been argued that a conservatively 
monotonic aboutness relationship promotes effective retrieval. The analysis in this 
paper revealed that although both of the threshold vector space and probabilistic 
models mimic conservative monotonicity, the fundaments of this support are very 
different: the thresholded vector space model support for conservative 
monotonicity depends on overlap between document and query terms modulo the 
size of the document. Support for conservative monotonicity in the probabilistic 
model depends on whether the terms being added have a high enough probability 
of occurring in relevant documents. Form an intuitive point of view, the latter 
condition would seem a more sound basis for support because it is directly tied to 
relevance. 

• Transparency: One may disagree with a given functional benchmark (as 
represented by a set of aboutness properties), or with how a given matching 
function has been mapped into the inductive framework, however, the 
assumptions made have been explicitly stated. This differs from some 
experimental studies where the underlying assumptions (e.g., the import of certain 
constants) are not, or insufficiently, motivated. 

• New insights: The use of an abstract framework allows new insights to be gleaned. 
Inductive evaluation has highlighted the import of monotonicity in retrieval 
functions, and its affect on retrieval performance. Designers of new matching 
functions should provide functions that are conservatively monotonic with respect 
to the composition of information. More sensitive IR systems would then result. 
The lack of such systems currently can be attributed in part to the inability to 
effectively "operationalize" information preclusion. Most common IR models are 
either monotonic or non-monotonic - another class of IR models, namely those 
that are explicitly conservatively monotonic is missing. For this reason, the 
inductive analyses reported in this paper revealed no distinctions based on 
conservatively monotonic rules such as MIX and CF-A. Conservatively 
monotonic models are interesting for purposes of producing a symbolic inference 
foundation to query expansion and perhaps even relevance feedback. 

 
The weaknesses of an inductive theory for evaluation are: 
 

• Difficulty in dealing with weights: Much of the subtlety of IR models remains 
buried in different weighting schemes. Due to its symbolic nature, the inductive 
approach can abstract “too much”, thereby losing sensitivity in the final analysis. 
For example, the nuances of document length normalization [Singhal et al. 1996], 
term independence assumptions, probabilistic weighting schemes are difficult, if 
not impossible, to map faithfully into a symbolic, inductive framework. 
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• Difficulties with mapping: For an arbitrary model, it may not be obvious how to 
map the model into an inductive framework. This is particularly true for heavily 
numeric models such as probabilistic models. It is often the case that such models 
do not support many symbolic properties – they are like black holes defying 
analysis [Bruza, Song and Wong 2000]. However, by analysing the conditions 
under which given properties are supported allow us to “peak at the edges of the 
black hole”. 

• Incompleteness of framework: In order to pursue functional benchmarking, a 
sufficiently expressive framework is necessary in order to represent salient aspects 
of the model in question. This is an issue of completeness. In the inductive 
analysis of the possible worlds based models presented in this paper, we have seen 
that the notion of similarity inherent to these models cannot be directly translated 
into the underlying inductive framework. This suggests that the framework 
presented in this paper should be extended. One could also argue that not all 
salient aspects of aboutness have been captured by the properties used for the 
benchmark. These are not criticisms of inductive evaluation, but of the 
expressiveness of the underlying informational framework, in this case 
information fields. 

 

It is noteworthy that conventional experimental IR evaluation approaches are 
reasonably solid but some times fail to address deeper issues. Functional 
benchmarking is a framework and methodology that can help fill this gap. It is not 
intended to replace the former, but to complement it.  
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Appendix  List of Notations 
 

� Information carrier (IC) 
� Information composition (⊕) 
� Information containment (→) 
� Surface containment (→s ) 
� Deep containment (→d ) 
� Information preclusion (⊥) 
� Aboutness (|=) 
� Non-aboutness (|≠) 
� A document D (or a query Q) consisting of information carrier i (D→~ i or Q→~ i) 
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