

OpenAIR@RGU

The Open Access Institutional Repository
at The Robert Gordon University

http://openair.rgu.ac.uk

This is an author produced version of a paper published in

Proceedings of the 6th International Workshop on Distributed Constraint
Reasoning, DCR2005.

This version may not include final proof corrections and does not include
published layout or pagination.

Citation Details

Citation for the version of the work held in ‘OpenAIR@RGU’:

BASHARU, M., ARANA, I. and AHRIZ, H., 2005. Escaping local
optima with penalties in distributed iterative improvement search.
Available from OpenAIR@RGU. [online]. Available from:
http://openair.rgu.ac.uk

Citation for the publisher’s version:

BASHARU, M., ARANA, I. and AHRIZ, H., 2005. Escaping local
optima with penalties in distributed iterative improvement search.
In: Proceedings of the 6th International Workshop on Distributed
Constraint Reasoning, DCR2005. 30 July 2005. pp. 192-206.

Copyright
Items in ‘OpenAIR@RGU’, The Robert Gordon University Open Access Institutional
Repository, are protected by copyright and intellectual property law. If you believe that
any material held in ‘OpenAIR@RGU’ infringes copyright, please contact
openair-help@rgu.ac.uk with details. The item will be removed from the repository while
the claim is investigated.

http://openair.rgu.ac.uk/
mailto:openair%1Ehelp@rgu.ac.uk

Escaping Local Optima with Penalties in Distributed
Iterative Improvement Search

Muhammed Basharu, Ines Arana, and Hatem Ahriz

School of Computing, The Robert Gordon University,
Aberdeen, AB25 1HG, United Kingdom.

{mb, ia, ha}@comp.rgu.ac.uk

Abstract. The advantages offered by iterative improvement search make it a
popular technique for solving problems in centralised settings. However,the key
challenge with this approach is finding effective strategies for dealing with local
optima. Such strategies must push the algorithm away from the plateaux in the
objective landscape and prevent it from returning to those areas. A wide variety
of strategies have been proposed for centralised algorithms, while the twomain
strategies in distributed iterative improvement remain constraint weighting and
stochastic escape. In this paper, we discuss the two phased strategy employed in
Distributed Penalty Driven Search (DisPeL) an iterative improvement algorithm
for solving Distributed Constraint Satisfaction problems. In the first phase of the
strategy, agents try to force the search out of the local optima by perturbing their
neighbourhoods; and use penalties, in the second phase, to guide the search away
from plateaux if perturbation does not work. We discuss the heuristics that make
up the strategy and provide empirical justification for their inclusion. We also
present some empirical results using random non-binary problems to demonstrate
the effectiveness of the strategy.

1 Introduction

Recent advances in communications technology have creatednew types of problems
that require systems of autonomous agents to interact and negotiate for possible so-
lutions. Some of these problems, such as scheduling and resource allocation, can be
formalised as Distributed Constraint Satisfaction Problems (DisCSPs) where they are
decomposed into variables and constraints partitioned amongst the agents involved.
DisCSPs are solved by a collaborative search process in which agents try to find valid
combinations of values that satisfy all the constraints.

Most of the search algorithms for solving DisCSPs are based on systematic back-
tracking, where agents take turns, either synchronously orasynchronously, to select
values for the variables they represent or to detect invalidselections made by other
agents. While these algorithms have been shown to be complete, they still inherit some
of the drawbacks of backtracking in general. Iterative improvement search for distrib-
uted constraint reasoning was introduced in the form of the Distributed Breakout Algo-
rithm (DBA) [16] and the Distributed Stochastic Algorithm (DSA) [17] as alternatives
to backtracking. Although these algorithms are incomplete, they come with the ad-
vantage of being able to converge quicker on large problems than backtracking based

approaches. However they can also converge quickly to localoptima. To deal with this,
weights are attached to constraints in DBA and those on violated constraints are in-
creased whenever the search is stuck. While in DSA, agents tryto avoid local optima
by stochastically deciding when to make hill climbing moves.

In this paper, we discuss a two phased strategy for dealing with local optima in the
Distributed Penalty Driven Search (DisPeL) algorithm. In the first phase, agents try to
perturb their neighbourhoods aiming to push the search out of the current plateau it oc-
cupies. And in the second phase, agents increase penalties attached to domain values to
in order to reshape the objective landscape and guide the search away from the plateau.
We discuss the impact of these heuristics and present results of empirical evaluations
carried out using random non-binary DisCSPs.

The remainder of this paper is structured as follows. We start with brief prelim-
inaries on distributed constraint satisfaction problems in Section 2. After which, the
algorithm and its strategy is discussed. Following that we present results of the empir-
ical evaluations. In Section 5 we discuss the contributionsof the various parts of the
strategy and discuss related work in Section 6.

2 Background

A Constraint Satisfaction Problem (CSP) is formally definedas a triple (V, D, C) com-
prising a set of variables (V), a set of domains (D) listing possible values that may be
assigned to each variable, and a set of constraints (C) on values that may be simulta-
neously assigned to the variables. The solution to a CSP is a complete assignment of
values to variables satisfying all the constraints.

DisCSPs formalise problems that occur in distributed environments within the CSP
framework [15]. In these scenarios, information about a problem is held by a coalition
of participants and for some reasons (such as security or privacy) the information can
not be collected centrally in one location. Each participant in the DisCSP is therefore
represented by an agent, which is aware of all the participant’s variables1 and the con-
straints they are involved in. Agents collaborate to solve the DisCSP, each seeking to
find assignments for its variables that satisfy all attachedconstraints.

3 Distributed Penalty Driven Search

3.1 Overview

Distributed Penalty Driven Search (DisPeL) was first introduced in [3] as an adaptation
of the centralised Guided Local Search [12] for solving DisCSPs. In [4], we presented a
new version of the algorithm and changed the name to reflect the nature of its strategy.
Both versions used similar strategies for dealing with local optima, but differ funda-
mentally in how the growth of penalties are controlled. In the first version, an upper
bound is placed on the size of penalties. While, in DisPeL all penalties are discarded
periodically.

1 Here we assume that each agent represents just one variable.

DisPeL is a synchronous iterative improvement algorithm for solving DisCSPs. It
is essentially a greedy algorithm that starts with a random initialisation, which agents
try to improve by selecting values that minimise the number of constraints violated in
each iteration. To deal with local optima, a two phased strategy is employed as follows:
(i) perturbation phase: it tries to perturb the local neighbourhood to force agents to try
other combinations of values (i.e. to explore other areas ofthe search) and; (ii) learning
phase: if perturbation does not resolve the deadlock, it tries to learn about and avoid the
value combination that caused the deadlock.

Perturbation as way of dealing with local optima is fairly common with centralised
local search algorithms, and typically comes in the form of stochastic actions aimed at
pushing an algorithm out of the plateau it occupies. In DisPeL’s perturbation phase, we
use a temporary penalty to try and force agents to consider combinations of values other
than the current one. The temporary penalty was selected as aresult of experiments we
conducted where a greedy algorithm was pushed to a local optimum, various perturba-
tion mechanisms applied to it and their effects evaluated. The temporary penalty came
out strongest because it did not create as many new violations in other parts of the prob-
lem as the other alternatives despite not resolving as many of the original violations as
some other mechanisms.

In the learning phase (second part of the strategy), DisPeL tries to learn about and
avoid bad assignments i.e. those associated with local optima. Incremental penalties
are attached to each domain value and incorporated into the objective function. When
a perturbation is unable to resolve a conflict, the incremental penalties attached to all
values associated with the conflict are increased. The desired effect is twofold. First, it
changes the shape of the objective landscape making surrounding areas more promising,
and secondly, it makes agents less likely to select those values as the search progresses
unless they offer significant improvements to the objectivefunction.

To tie both parts of the strategy together, we use a no-good store to keep track of
a fixed number of recent conflicts. Therefore whenever the temporary penalty is used,
the assignments that make up the no-good causing the conflictis placed in the store.
As such, when next there is a deadlock an agent can find out if a previous attempt at
resolving it has been made, and hence decide on the appropriate course of action.

3.2 Algorithm details

The objective function (h) for each agent is defined as follows:

h(di) = v(di) + p(di) +







t if a temporary penalty is imposed

0 otherwise
(1)

where:
di is the ith value in the variables domain
v(di) is the number of constraints violated ifdi is selected
p(di) is the incremental penalty attached todi

t is the temporary penalty (t > 1)

The temporary penalty is used in a single iteration and it hasto be discarded imme-
diately after it is used. The temporary penalty can be any integer greater than 1, and its
size does affect the overall behaviour of the algorithm. With a small temporary penalty
(e.g.t = 2) it is possible that some agents are not forced to change the values of their
variables because the alternatives are significantly worsethan the deadlock state. As
such, the perturbation to the neighbourhood may not travel far beyond some agents.
With a large temporary penalty (e.g t = 100), all agents imposing temporary penalties
are forced to change their variables’ values and the perturbation is likely to percolate
further away in the constraint graph from the agent that initiated it. While this may be
beneficial on some types of problems, it also has detrimentaleffects on many types of
problems. We uset = 3 in all experiments reported in this paper, irrespective of the
problem size. We discuss the impact of the temporary penaltyfurther in Section 5.

Incremental penalties attached to values associated to a deadlock are increased when
the perturbation fails to resolve it. While this allows agents to avoid bad assignments,
there is potential for the incremental penalties to dominate the objective functions to
the extent that it possibly diverts the search away from promising regions. To deal with
this, we reset the incremental penalties to zero: (i) when agents find consistent values
for their variables and (ii) periodically. In the former, simply because it is assumed
that the penalties have become redundant. While in the latter, the penalties are reset
to keep potential paths to solutions open. This is somewhat risky because if penalties
are reset too often, search experience is lost too quickly and there is not much benefit
of using the penalties in the first place. While resetting penalties after long periods
can affect the objective function such that rather than seeking to minimise the number
of constraints violated, emphasis shifts to minimising thepenalties. The alternative to
resetting penalties is to allow them to decay periodically,as done in [9], so that search
memory is not entirely lost every so often. For the periodic resets, we have been able to
establish from empirical experiments that performance is optimal (especially in terms
of search cost) if it is done every six iterations. This valueis used for all experiments
(including those reported here), irrespective of problem size, type, or structure.

Each agent has a no-good store to help determine appropriateactions for deadlock
resolution, with which it maintains a list of recent no-goods on a First-In-First-Out ba-
sis. A no-good is an agent’s AgentView comprising all its neighbours’ current assign-
ments. No-goods are specifically used as short term memory and are not considered as
new constraints and, therefore the number stored is limitedin order to save memory.
As a rule of thumb, we fix the size of the no-good store for each agent toN; where
N is the number of neighbours the agent has. Specifically to take into account the size
of the individual DisCSP being solved2. The size of the no-good store can also deter-
mine how often agents perturb their neighbourhoods, affecting the overall efficiency of
the algorithm. Too many perturbations can cause the algorithm to wander about in the
search space reducing exploitation activity, while a largeno-good store cuts down on
the necessary exploration activity.

2 This also helps us keep our comparisons with other algorithms fair, since we are not optimising
it for each problem type or size.

The pseudo-code of the algorithm is outlined in Figures 1, 2,and 3.

3.3 Agent behaviour

At initialisation, agents create a static ordering using part of the Distributed Agent Or-
dering algorithm [6] so that unconnected agents can act in parallel. Agents do this indi-
vidually by partitioning their neighbours into a set of higher priority (those with lower
IDs) and lower priority (those with higher IDs) neighbours.During the search, agents
will communicate with both sets of neighbours but would onlybecome active (i.e. to
select values for their variables) after receiving messages from all higher priority neigh-
bours.

In the normal course of the search, an agent selects a value that minimises equa-
tion (1) and informs its neighbours of this value. If the agent is stuck at a quasi-local-
minimum, it initiates the conflict resolution process as described earlier. We define a
quasi-local-minimum as a situation where the AgentView of an agent with an inconsis-
tent variable is unchanged in two consecutive iterations (Figure 2, line 2). Given that
the agent will always select the value minimising the numberof constraints violated, if
its neighbour’s values are unchanged from one iteration to the next, then it obviously
means that there is no improvement forthcoming. This differs from the definition in
[16].

1 initialise
2 do
3 when active
4 rpCounter++
5 if rpCounter = 6
6 reset incremental penalties
7 rpCounter = 0
8 end if
9 if penalty message received

10 respond to message()
11 else
12 if current value is consistent
13 reset incremental penalties
14 send message(id, value, null) to neighbours
15 else
16 resolveconflict()
17 end if
18 end if
19 return to inactive state
20 until terminate

Fig. 1.DisPeL: Agent main loop

To perturb its neighbourhood, a deadlocked agent imposes a temporary penalty on
the current value of its variable and at the same time, requests all lower priority agents

1 procedure resolveconflict()
2 if agentView(t)6= agentView(t-1)
3 select value minimising objective function
4 send message(id, value, null)
5 return
6 end if
7 if agentView(t) is not in no-good store
8 add agentView(t) to no-good store
9 impose temporary penalty on current value

10 select value minimising objective function
11 send message(id, value, addTempPenalty)
12 else
13 increase incremental penalty on current value
14 select value minimising objective function
15 send message(id, value, increasePenalty)
16 end if
17 end procedure

Fig. 2.DisPeL: Initiating the conflict resolution process.

1 procedure respondto message()
2 if message is increase incremental penalty
3 increase incremental penalty on current value
4 select value minimising objective function
5 else
6 impose temporary penalty on current value
7 select value minimising objective function
8 end if
9 send message(id, value, null)

10 end procedure

Fig. 3.DisPeL: Responding to a penalty message received from a higher priority agent

with variables violating constraints with its variable to do the same (Figure 2, lines
7-11). After which, it places the current AgentView in the no-good store for future
reference. If later in the search the agent returns to the same deadlock (evident by its
presence in the no-good store), it increases the incremental penalty attached to the cur-
rent value of its variable and requests that all lower priority neighbours do the same
(Figure 2, lines 13-15).

An agent receiving a penalty request cannot itself initiateconflict resolution, as it
has become part of an ongoing process (Figure 1, lines 9-10).And for the obvious rea-
son that a higher priority neighbour involved in the deadlock initiated the process. How-
ever, there may be times when an agent’s variable is involvedin more than one deadlock
especially with multiple unconnected higher priority neighbours; and the agent is likely
to receive conflicting penalty requests from those neighbours. In such a case, the re-
quest to impose a temporary penalty is ignored in favour of the increase in incremental
penalties. In any case, if an agent receives multiple messages from different agents to
do the same thing, it treats these messages as a single message. For example, it will not

increase incremental penalties more than once in a single iteration even if it receives
messages to do so from several agents.

4 Empirical Evaluation

We evaluate DisPeL’s performance on random non-binary DisCSPs on two criteria:
(1) number of problems solved and (2) the number of cycles (oriterations) taken to
find the solutions. Using the number of cycles as measure of efficiency is justified by
the fact that it is considered to be an independent metric that abstracts out effects like
implementation and computing environment that can influence other metrics like CPU
time [1]. Furthermore, in the case of synchronous algorithms, the cycle count can be
used to directly infer other costs such as the number of messages exchanged between
agents.

Random DisCSPs were generated using the standard Model B [11] modified as
follows. First, support tuples were included in each constraint so that each problem
is guaranteed to have at least one solution. And, secondly, constraints were randomly
assigned to variables with preferential attachment [2, 14], so that the instances resemble
real life problems i.e. the distribution of constraints to variables follow a power law. In
the following, we summarise results of experiments evaluating the performance of the
algorithm on different sizes and include a Run Length Distribution [8] analysis showing
the variability in performance on a single instance.

In addition, we used DBA as the benchmark for comparing results. DSA was not
included in the evaluations, even though it has been shown tooutperform DBA on dis-
tributed scan scheduling problems. It converges quicker than DBA to local optima. But,
Hirayama and Yokoo [7] showed that DSA rarely finds a solutionin decision prob-
lems where the goal is to satisfy all constraints and explainthat it remains stuck at
local optima because there is no explicit mechanism for escaping deadlocks. As we are
specifically interested in decision problems, we believe that it is not suitable to include
DSA in the evaluations.

4.1 Variability on a single instance

The first results presented here show the empirical behaviour, using a Run Length Dis-
tribution plot, of both algorithms on a single problem instance as affected by their initial
random instantiations. We use a non-binary DisCSP with 60 variables and a mixture
of non-binary constraints with different arities (80 3-ary, 40 4-ary, and 20 5-ary con-
straints). Constraint tightness is fixed at 50% for all constraints and there are 10 values
in each variable’s domain. 500 attempts were made by each algorithm with a maximum
cut-off of 10,000 iterations for DisPeL and 20,000 iterations for DBA3.

The cumulative distributions plotted in Figure 4 suggest that DisPeL and DBA are
quite sensitive to the initial random values selected for variables. Although DisPeL has
a higher variability - its percentile ratioQ0.75/Q0.25 is 4.61 compared to 4.26 for DBA

3 This is because agents change variable values once in every two cycles inDBA (i.e. thewait ok
andimprove?cycles) compared to changing values every iteration in DisPeL

Fig. 4.Empirical Run Length Distributions of DisPeL and DBA on a single problem instance.

- it does have a higher probability of finding solutions and indeed had a higher success
rate than DBA. The sensitivity to random instantiations suggests that both algorithms
can benefit from a strategy of randomised restarts if optimalcut-offs can be determined.

4.2 Performance on different problem sizes

In further experiments, we compared both algorithms on a setof ternary problems with
particular interest on the growth in search costs as the problem size (n) increases. The
ratio of constraints to variables is held constant at 2:1, constraint tightness fixed at 0.55,
and domain size is 10 (for each variable). For each problem size, we used 100 problems
and limited DisPeL to100n iterations and DBA to200n iterations. The results of these
experiments are plotted in Figures 5 and 6 which respectively show the percentage of
problems solved, the average number of cycles required, themedian cycles, and some
quartiles (Q0.25 andQ0.75).

Fig. 5.Number of problems solved (left) and the average costs (right).

Fig. 6.Median search costs and quartiles for solving the problems in Figure 5.

Figure 5 shows that as the problem size increases, DBA solvedfewer problems and
the average search costs increased at a much faster rate thanthose for DisPeL. In Figure
6, the plot on the left shows that the median cost for DBA is higher than DisPeL’s and
the plots of the quartiles show that there is a much wider distribution of search costs for
DBA than DisPeL.

4.3 Effect of constraint density

Finally, we report results of experiments studying how algorithm behaviour is affected
by the constraint density. Results of the evaluations are summarised in the plots of
Figures 7 and 8. 100 4-ary problems are generated for each point in the plots. There
are 40 variables in each problem, 8 values in each variables’domain, and constraint
tightness is fixed at 40%. The plots show a progression from sparse to dense problems,
where the number of contraints (shown on thex axes) are steadily increased. We limited
DisPeL to 10,000 cycles and DBA to 20,000 cycles on each attempt.

Fig. 7.Number of problems solved (left) and the average costs (right).

Fig. 8.Median search costs and quartiles for solving the problems in Figure 7.

Figures 7 and 8, show that both algorithms have identical performance on sparse
problems, finding the same number of solutions and using about the same number of
iterations to solve the problems. It gets interesting as constraint density increases, there
is an abrupt drop off in the number of problems solved and an accompanying steep rise
in search costs at the3.0n mark for DBA. The effect on the number of problems solved
is not as pronounced with DisPeL and there is a less dramatic increase in search costs
from that point.

5 Discussions

5.1 Effect of resetting incremental penalties

In DisPeL agents reset all incremental penalties whenever they find consistent values
for their variables and periodically. We argued that penalties become redundant when
consistent values are found, and obscure the objective landscape if they are retained
for too long. Empirical justification for these decisions isprovided with results form
an experiment comparing DisPeL, with a version of it where penalties are only reset
periodically, and another version where penalties are reset only when consistent values
are found. A version without any penalty resets was also tested. 50 problems were
used, each with 40 variables,2.3n constraints, and constraint tightness set to 0.55. All
versions were started with the same initial values to rule out any random effects on the
evaluation and limited to 4,000 iterations on each attempt.The results of the experiment
are summarised in Table 1.

As expected, there is a massive performance gain from resetting penalties (at least
within the DisPeL framework). While any form of resets4 is beneficial, the combina-
tion of both reset strategies appears to be the best approachfor the algorithm.

4 Assuming periodic resets are not done too often or or not often enough.

Reset strategy number solved average cost
No resets 2 2,769
Resetting only when 45 1,611
consistent values are found
Periodic resets alone 46 761
DisPeL 49 675

Table 1.Evaluating the effects of alternative reset strategies on 50 random problems.

5.2 Impact of the temporary penalty

The temporary penalty is used to perturb a neighbourhood when a conflict is first
encountered. Giving agents opportunities to resolve some conflicts immediately, that
would otherwise take a build up of incremental penalties to fix. Results from prelim-
inary work, showed that when the temporary penalty was used to perturb a greedy
algorithm at a local optimum, 57% of the original constraints violated where resolved
in ensuing iterations. While, new constraint violations where caused in other parts of
the constraint graph 43% of the time. In constrast to the incremental penalty, which
resolved 65% of the violations but caused more constraints to be violated 9 out of every
10 times it was used5.

t number solved average cost
2 97 178
3 100 172
4 99 173
5 99 280
6 99 249
7 99 299
8 100 249
9 100 286
10 100 270
15 100 287
50 100 287
100 100 287

Table 2.Evaluating the impact of the temporary penalty (t) size using 100 problems (60 variables,
120 constraints, tightness is 50%, and domain size is 8).

The size of the temporary penalty also affects the behaviourof the algorithm, de-
termining how far perturbations percolate the network and the subsequent likelihood of
a deadlock being resolved quickly. Table 2 summarises an empirical evaluation of the
impact of the temporary penalty (t) size on performance. The results show that there is

5 Looking at the immediate impact of the penalties and not considering the longterm effect of
accumulated penalties.

little difference in the results for temporary penalty values between 2 and 4, and aver-
age search costs suddenly increases with a value of 5 and remain at least 40% higher
with higher values fort. Behaviour of the algorithm was identical for all runs with a
temporary penalty value of 15 and above.

5.3 Effect of the no-good store size

No-goods are retained by agents to keep track of recent conflicts, and to help them
decide what heuristic to use when conflicts are encountered.Because these no-goods
are not taken as new constraints, only a limited number of them are held at any point
in time. We do not specify set limits, because the size of the store has to change with
the size of the problem being solved. If too few no-goods are held, there are going to be
too many perturbations if agents regularly return to conflict states after long intervals.
On the other hand, there is a point after which storing additional no-goods just uses
up more memory and does not offer any improvements. Having said this, we limit the
maximum number of no-goods held by agents to the number of neighbours (N) they
have individually; although it may be optimised for an individual problem. We show
that this upper bound is appropriate with the RLD in Figure 9,comparing it with an
upper bound of4N . A DisCSP with 75 variables and 150 3-ary constraints is usedfor
the experiment. There are 8 values in each variables domain and constraint tightness is
fixed at 50%. The figure suggests that there is no performance gain from retaining too
many no-goods. The explanation for this is that deadlock states, after being resolved,
are not revisited too often. Therefore, agents need not retain a long history of their
experiences.

Fig. 9. Run Length Distributions showing the effect of the no-good store size on performance.

6 Related work

Several forms of penalty driven search have been developed in the literature especially
for dealing with local optima in centralised hill-climbingalgorithms. In algorithms like
those presented in [13] and [5], penalties are attached to constraints and those on vi-
olated constraints are modified whenever the underlying hill-climbing search is stuck.
These have the effect of modifying the objective landscape such that emphasis is placed
on satisfying constraints regularly violated. The Breakout Algorithm [10] is similar to
the aforementioned and it motivated the work on DBA, which extended and introduced
this form of resolution for distributed constraint reasoning.

In a slightly different approach, penalties have been attached to problem features
rather than the constraints in the Guided Local Search algorithm [12] with the same
aim of contorting plateaux in the objective landscape. But the choice of features is of-
ten problem dependent. For example, non-overlapping blocks of domains are selected
as features when solving non-convex optimisation problems. While for solving boolean
satisfiability problems, clauses were selected as featuresin an extension of the algorithm
[9]. GLS bears the closest resemblance to our work but there are major differences in the
way penalties are incorporated into the objective function. In GLS, penalties are mul-
tiplied by a lambda parameter which moderates the impact on the objective function;
and it is also used to control the exploration/exploitationbehaviour of the search. Fur-
thermore, the utility of penalising a feature is also estimated so that those features with
higher costs are penalised first and the likelihood of a feature being penalised decreases
the more times it is penalised.

Periodic penalty resets have also been considered in the literature. In [10], it was
pointed out that accumulated weight increases (or penalty increases in this case) may
conspire to block paths to a solution in the objective landscape. And, as such, restricting
the algorithm to a sub-optimal region of the landscape whichmay result in infinite
oscillations. Periodic resets were also used in a variant ofGLS for solving the Quadratic
Assignment Problem (QAP) in [12]. Based on an argument that it allows the search
revisit solutions that include features penalised earlier, leading to an intensification of
the search in profitable areas of the search space. But, it wasalso pointed out that
the drawback of doing this is that the algorithm loses some ofthe exploration ability
that pushes it towards unexplored areas of the search space.Results from that work
showed that the reset strategy improved over the basic GLS with a higher percentage of
successful runs. However, the mean quality of solutions waslower.

7 Summary

We have presented a distributed iterative improvement algorithm (DisPeL) for solving
DisCSPs that relies on a two part penalty-based strategy fordealing with local optima.
In the first part of the strategy, agents try to resolve local-optima by perturbing their
neighbourhoods using a temporary penalty. And resort to thesecond part of the strategy
if the deadlock is unresolved; where incremental penaltiesattached to domain values
are increased to help agents avoid assignments linked to thedeadlock. Both parts of
the strategy are tied together by no-good stores maintainedby each agent, which keep

track of recent conflicts. The component parts of the strategy were discussed, and em-
pirical justification for their inclusion was also provided. Collectively, the heuristics
show that retention of too much search memory hinders the algorithm’s performance.
The algorithm was evaluated using random non-binary DisCSPs and its performance
was compared against DBA. The results show thatDisPeL consistently solved more
problems than DBA and it required fewer iterations to solve the problems.

References

1. Ravinda K. Ahuja and James B. Orlin. Use of representative operation counts in computa-
tional testing of algorithms.INFORMS Journal of Computing, 8(3):318–330, June 1996.

2. Albert-Lszl Barabsi.Linked: How Everything Is Connected to Everything Else and What It
Means. Plume, 2003.

3. Muhammed Basharu, Ines Arana, and Hatem Ahriz. Distributed guided local search for
solving binary DisCSPs. In Ingrid Russell and Zdravko Markov, editors,Proceedings of the
18th International FLAIRS Conference (FLAIRS 2005), pages 660–665. AAAI Press, May
2005.

4. Muhammed Basharu, Ines Arana, and Hatem Ahriz. Solving DisCSPswith penalty driven
search. InProceedings of 20th National Conference on Artificial Intelligence (AAAI-05) - To
appear. AAAI Press, 2005.

5. P. Galinier and J. Hao. A general approach for constraint solving by local search. InPro-
ceedings of the Second International Workshop on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CP-AI-OR’00), March
2000.

6. Youssef Hamadi. Interleaved backtracking in distributed constraint networks. International
Journal on Artificial Intelligence Tools, 11 (2):167–188, June 2002.

7. Katsutoshi Hirayama and Makoto Yokoo. The distributed breakout algorithms. Artificial
Intelligence, 161(1–2):89–115, January 2005.

8. Holger H. Hoos. Stochastic Local Search - methods, models, applications. PhD thesis,
Darmstadt University of Technology, Germany, 1998.

9. Patrick Mills and Edward Tsang. Guided local search applied to the satisfiability (SAT) prob-
lem. InProceedings of the 15th National Conference of the Australian Society for Operations
Research (ASOR’99), pages 872–883, July 1999.

10. Paul Morris. The breakout method for escaping from local minima. In Proceedings of the
11th National Conference on Artificial Intelligence, pages 40–45, 1995.

11. Edgar M. Palmer.Graphical evolution: an introduction to the theory of random graphs. John
Wiley & Sons, Inc., 1985.

12. Christos Voudouris.Guided local search for combinatorial optimisation problems. PhD
thesis, University of Essex, Colchester, UK, July 1997.

13. Benjamin W. Wah and Zhe Wu. The theory of discrete lagrange multipliers for nonlinear dis-
crete optimization. In Joxan Jaffar, editor,Principles and Practice of Constraint Program-
ming - CP 99, volume 1713 ofLecture Notes in Computer Science, pages 28–42. Springer,
October 1999.

14. Toby Walsh. Search on high degree graphs. In Bernhard Nebel,editor,Proceedings of the
Seventeenth International Joint Conference on Artificial Intelligence (IJCAI 2001), pages
266–274. Morgan Kaufmann, August 2001.

15. Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro Kuwabara. Distributed con-
straint satisfaction for formalizing distributed problem solving. In12th International Con-
ference on Distributed Computing Systems (ICDCS-92), pages 614–621, 1992.

16. Makoto Yokoo and Katsutoshi Hirayama. Distributed breakout algorithm for solving distrib-
uted constraint satisfaction problems. InProceedings of the Second International Conference
on Multi-Agent Systems, pages 401–408. MIT Press, 1996.

17. Weixong Zhang, Guandong Wang, Zhao Xing, and Lars Wittenburg.Distributed stochastic
search and distributed breakout: properties, comparison and applications to constraint op-
timization problems in sensor networks.Artificial Intelligence, 161(1–2):55–87, January
2005.

	Ahriz dcr2005 coversheet
	DCR05

