OpenAlIR@RGU

The Open Access Institutional Repository
at The Robert Gordon University

http://openair.rgu.ac.uk

This is an author produced version of a paper published in

Proceedings of the 6™ International Workshop on Distributed Constraint
Reasoning, DCR2005.

This version may not include final proof corrections and does not include
published layout or pagination.

Citation Details

Citation for the version of the work held in ‘OpenAIR@RGU’:

BASHARU, M., ARANA, |I. and AHRIZ, H., 2005. Escaping local
optima with penalties in distributed iterative improvement search.
Available from OpenAIR@RGU. [online]. Available from:
http://openair.rgu.ac.uk

Citation for the publisher’s version:

BASHARU, M., ARANA, I. and AHRIZ, H., 2005. Escaping local
optima with penalties in distributed iterative improvement search.
In: Proceedings of the 6" International Workshop on Distributed
Constraint Reasoning, DCR2005. 30 July 2005. pp. 192-206.

Copyright
Items in ‘OpenAIR@RGU’, The Robert Gordon University Open Access Institutional
Repository, are protected by copyright and intellectual property law. If you believe that
any material held in ‘OpenAIR@RGU’ infringes copyright, please contact
openair-help@rgu.ac.uk with details. The item will be removed from the repository while
the claim is investigated.

http://openair.rgu.ac.uk/
mailto:openair%1Ehelp@rgu.ac.uk

Escaping Local Optima with Penalties in Distributed
Iterative Improvement Search

Muhammed Basharu, Ines Arana, and Hatem Ahriz

School of Computing, The Robert Gordon University,
Aberdeen, AB25 1HG, United Kingdom.
{mb, ia, hg @comp.rgu.ac.uk

Abstract. The advantages offered by iterative improvement search make it a
popular technique for solving problems in centralised settings. Howtheekey
challenge with this approach is finding effective strategies for dealing waiti lo
optima. Such strategies must push the algorithm away from the plateaux in the
objective landscape and prevent it from returning to those areas. & vwaidety

of strategies have been proposed for centralised algorithms, while theaivo
strategies in distributed iterative improvement remain constraint weightidg a
stochastic escape. In this paper, we discuss the two phased stratdgyesirip
Distributed Penalty Driven Search (DisPelL) an iterative improvemewotighgn

for solving Distributed Constraint Satisfaction problems. In the first pldishe
strategy, agents try to force the search out of the local optima by pirguiteir
neighbourhoods; and use penalties, in the second phase, to guiderntieagsay
from plateaux if perturbation does not work. We discuss the heuristicsnidice

up the strategy and provide empirical justification for their inclusion. We also
present some empirical results using random non-binary problenesrtortstrate

the effectiveness of the strategy.

1 Introduction

Recent advances in communications technology have createdypes of problems
that require systems of autonomous agents to interact agatiate for possible so-
lutions. Some of these problems, such as scheduling andreesallocation, can be
formalised as Distributed Constraint Satisfaction Protd€DisCSPs) where they are
decomposed into variables and constraints partitionedngsiathe agents involved.
DisCSPs are solved by a collaborative search process irhvelgients try to find valid
combinations of values that satisfy all the constraints.

Most of the search algorithms for solving DisCSPs are baseslystematic back-
tracking, where agents take turns, either synchronouslgsgnchronously, to select
values for the variables they represent or to detect invadldctions made by other
agents. While these algorithms have been shown to be comghietestill inherit some
of the drawbacks of backtracking in general. Iterative ioyement search for distrib-
uted constraint reasoning was introduced in the form of tiséributed Breakout Algo-
rithm (DBA) [16] and the Distributed Stochastic Algorithi@$A) [17] as alternatives
to backtracking. Although these algorithms are incomplétey come with the ad-
vantage of being able to converge quicker on large probléias backtracking based

approaches. However they can also converge quickly to tqutaha. To deal with this,
weights are attached to constraints in DBA and those on teidlaonstraints are in-
creased whenever the search is stuck. While in DSA, agente tryoid local optima
by stochastically deciding when to make hill climbing maves

In this paper, we discuss a two phased strategy for dealitigladal optima in the
Distributed Penalty Driven Search (DisPeL) algorithm.He first phase, agents try to
perturb their neighbourhoods aiming to push the searchfabieccurrent plateau it oc-
cupies. And in the second phase, agents increase penditielsed to domain values to
in order to reshape the objective landscape and guide thehsaaay from the plateau.
We discuss the impact of these heuristics and present sesfudimpirical evaluations
carried out using random non-binary DisCSPs.

The remainder of this paper is structured as follows. Wet stih brief prelim-
inaries on distributed constraint satisfaction problem&eéction 2. After which, the
algorithm and its strategy is discussed. Following that vesent results of the empir-
ical evaluations. In Section 5 we discuss the contributiminthe various parts of the
strategy and discuss related work in Section 6.

2 Background

A Constraint Satisfaction Problem (CSP) is formally defiasd triple (V, D, C) com-
prising a set of variables (V), a set of domains (D) listinggible values that may be
assigned to each variable, and a set of constraints (C) aiewvahat may be simulta-
neously assigned to the variables. The solution to a CSP dsrglete assignment of
values to variables satisfying all the constraints.

DisCSPs formalise problems that occur in distributed emrirtents within the CSP
framework [15]. In these scenarios, information about dfem is held by a coalition
of participants and for some reasons (such as security gy the information can
not be collected centrally in one location. Each partictparthe DisCSP is therefore
represented by an agent, which is aware of all the partitgpaariable$ and the con-
straints they are involved in. Agents collaborate to sohe DisCSP, each seeking to
find assignments for its variables that satisfy all attad@ustraints.

3 Distributed Penalty Driven Search

3.1 Overview

Distributed Penalty Driven Search (DisPeL) was first introgd in [3] as an adaptation
of the centralised Guided Local Search [12] for solving [88G. In [4], we presented a
new version of the algorithm and changed the name to refleatdkure of its strategy.
Both versions used similar strategies for dealing with lagdima, but differ funda-
mentally in how the growth of penalties are controlled. Ia flist version, an upper
bound is placed on the size of penalties. While, in DisPeL eatigities are discarded
periodically.

! Here we assume that each agent represents just one variable.

DisPeL is a synchronous iterative improvement algorithnmsfving DisCSPs. It
is essentially a greedy algorithm that starts with a randuaitralisation, which agents
try to improve by selecting values that minimise the numberomstraints violated in
each iteration. To deal with local optima, a two phasedeaqrats employed as follows:
(i) perturbation phase: it tries to perturb the local neminnood to force agents to try
other combinations of values (i.e. to explore other arediseo§earch) and; (ii) learning
phase: if perturbation does not resolve the deadlockei ta learn about and avoid the
value combination that caused the deadlock.

Perturbation as way of dealing with local optima is fairlynomon with centralised
local search algorithms, and typically comes in the formto€kastic actions aimed at
pushing an algorithm out of the plateau it occupies. In Di&Pgerturbation phase, we
use a temporary penalty to try and force agents to consithebic@tions of values other
than the current one. The temporary penalty was selectedegsith of experiments we
conducted where a greedy algorithm was pushed to a locahuoptj various perturba-
tion mechanisms applied to it and their effects evaluatbe. tEmporary penalty came
out strongest because it did not create as many new viotaitioother parts of the prob-
lem as the other alternatives despite not resolving as mitemriginal violations as
some other mechanisms.

In the learning phase (second part of the strategy), DisPigls to learn about and
avoid bad assignments i.e. those associated with locaiaptincremental penalties
are attached to each domain value and incorporated intobjleetive function. When
a perturbation is unable to resolve a conflict, the increalgmenalties attached to all
values associated with the conflict are increased. Theatksifect is twofold. First, it
changes the shape of the objective landscape making sdingusreas more promising,
and secondly, it makes agents less likely to select thosesals the search progresses
unless they offer significant improvements to the objediivestion.

To tie both parts of the strategy together, we use a no-gawé s keep track of
a fixed number of recent conflicts. Therefore whenever th@teary penalty is used,
the assignments that make up the no-good causing the casffiticed in the store.
As such, when next there is a deadlock an agent can find outrévagos attempt at
resolving it has been made, and hence decide on the appeopoiarse of action.

3.2 Algorithm details

The objective functionk) for each agent is defined as follows:

t if a temporary penalty is imposed

0 otherwise

where:
d; is the ith value in the variables domain
v(d;) is the number of constraints violatedif is selected
p(d;) is the incremental penalty attached#o
t is the temporary penalty ¢ 1)

The temporary penalty is used in a single iteration and itb&® discarded imme-
diately after it is used. The temporary penalty can be arggiett greater than 1, and its
size does affect the overall behaviour of the algorithm hveismall temporary penalty
(e.g.t = 2) it is possible that some agents are not forced to changeathew of their
variables because the alternatives are significantly wibrae the deadlock state. As
such, the perturbation to the neighbourhood may not trauebéyond some agents.
With a large temporary penalty (e.g t = 100), all agents inmmgpgemporary penalties
are forced to change their variables’ values and the pextianiois likely to percolate
further away in the constraint graph from the agent thaiaitgtl it. While this may be
beneficial on some types of problems, it also has detrimeiffiatts on many types of
problems. We use = 3 in all experiments reported in this paper, irrespectivehef t
problem size. We discuss the impact of the temporary pefattiyer in Section 5.

Incremental penalties attached to values associated tddadd are increased when
the perturbation fails to resolve it. While this allows agettt avoid bad assignments,
there is potential for the incremental penalties to doneirthe objective functions to
the extent that it possibly diverts the search away from s regions. To deal with
this, we reset the incremental penalties to zero: (i) whemtmyfind consistent values
for their variables and (ii) periodically. In the formerygily because it is assumed
that the penalties have become redundant. While in the ldltterpenalties are reset
to keep potential paths to solutions open. This is somewsbiaf because if penalties
are reset too often, search experience is lost too quicldytlagre is not much benefit
of using the penalties in the first place. While resetting fimsaafter long periods
can affect the objective function such that rather thanisgeio minimise the number
of constraints violated, emphasis shifts to minimising ple@alties. The alternative to
resetting penalties is to allow them to decay periodicallydone in [9], so that search
memory is not entirely lost every so often. For the periodigets, we have been able to
establish from empirical experiments that performancepitmal (especially in terms
of search cost) if it is done every six iterations. This vakiesed for all experiments
(including those reported here), irrespective of probléma,dype, or structure.

Each agent has a no-good store to help determine appropdttes for deadlock
resolution, with which it maintains a list of recent no-gsamh a First-In-First-Out ba-
sis. A no-good is an agent’s AgentView comprising all itsgidiours’ current assign-
ments. No-goods are specifically used as short term memarar@not considered as
new constraints and, therefore the number stored is liniitamder to save memory.
As a rule of thumb, we fix the size of the no-good store for eaggnatoN; where
N is the number of neighbours the agent has. Specifically ®iteth account the size
of the individual DisCSP being solved The size of the no-good store can also deter-
mine how often agents perturb their neighbourhoods, affgthe overall efficiency of
the algorithm. Too many perturbations can cause the algorib wander about in the
search space reducing exploitation activity, while a largegood store cuts down on
the necessary exploration activity.

2 This also helps us keep our comparisons with other algorithms fair, simegennot optimising
it for each problem type or size.

The pseudo-code of the algorithm is outlined in Figures an@, 3.

3.3 Agent behaviour

At initialisation, agents create a static ordering using pathe Distributed Agent Or-
dering algorithm [6] so that unconnected agents can actrallph Agents do this indi-
vidually by partitioning their neighbours into a set of haglpriority (those with lower
IDs) and lower priority (those with higher IDs) neighbousiring the search, agents
will communicate with both sets of neighbours but would obgcome active (i.e. to
select values for their variables) after receiving mességen all higher priority neigh-
bours.

In the normal course of the search, an agent selects a vatenihimises equa-
tion (1) and informs its neighbours of this value. If the agerstuck at a quasi-local-
minimum, it initiates the conflict resolution process asciiéed earlier. We define a
quasi-local-minimum as a situation where the AgentViewroagent with an inconsis-
tent variable is unchanged in two consecutive iterationgufle 2, line 2). Given that
the agent will always select the value minimising the nundfeonstraints violated, if
its neighbour’s values are unchanged from one iteratioheonext, then it obviously
means that there is no improvement forthcoming. This diffeom the definition in
[16].

1 initialise
2do
3 when active
4 rpCounter++
5 if rnCounter = 6
6 reset incremental penalties
7 rpCounter =0
8 end if
9 if penalty message received
10 respond.to_message()
11 else
12 if current value is consistent
13 reset incremental penalties
14 send messagd(value null) to neighbours
15 else
16 resolveconflict()
17 end if
18 end if
19 return to inactive state
20 until terminate

Fig. 1. DisPeL: Agent main loop

To perturb its neighbourhood, a deadlocked agent imposempdrary penalty on
the current value of its variable and at the same time, regadidower priority agents

1 procedure resolveconflict()

2 if agentView(t)# agentView(t-1)

3 select value minimising objective function

4 send message(value null)

5 return

6 end if

7 if agentView(t) is not in no-good store

8 add agentView(t) to no-good store

9 impose temporary penalty on current value
10 select value minimising objective function
11 send messagd(value addTempPenally
12 else
13 increase incremental penalty on current value
14 select value minimising objective function
15 send messagd(value increasePenaljy
16 end if

17 end procedure
Fig. 2. DisPeL: Initiating the conflict resolution process.

1 procedure respondto_message()

2 if message is increase incremental penalty

3 increase incremental penalty on current value

4 select value minimising objective function

5 else

6 impose temporary penalty on current value

7 select value minimising objective function

8 end if

9 send message value null)
10 end procedure

Fig. 3. DisPeL: Responding to a penalty message received from a higheitypagent

with variables violating constraints with its variable to the same (Figure 2, lines
7-11). After which, it places the current AgentView in the-good store for future

reference. If later in the search the agent returns to the sheadlock (evident by its
presence in the no-good store), it increases the increi@nalty attached to the cur-
rent value of its variable and requests that all lower piyoneighbours do the same
(Figure 2, lines 13-15).

An agent receiving a penalty request cannot itself inite@eflict resolution, as it
has become part of an ongoing process (Figure 1, lines 9Ah@)for the obvious rea-
son that a higher priority neighbour involved in the deaklimitiated the process. How-
ever, there may be times when an agent’s variable is invaivetbre than one deadlock
especially with multiple unconnected higher priority fdigurs; and the agent is likely
to receive conflicting penalty requests from those neighddn such a case, the re-
quest to impose a temporary penalty is ignored in favour @frtlcrease in incremental
penalties. In any case, if an agent receives multiple messgm different agents to
do the same thing, it treats these messages as a single mdssagxample, it will not

increase incremental penalties more than once in a siregiatibn even if it receives
messages to do so from several agents.

4 Empirical Evaluation

We evaluate DisPel’s performance on random non-binary 8i&Con two criteria:
(1) number of problems solved and (2) the number of cyclestéoations) taken to
find the solutions. Using the number of cycles as measurefiofesfcy is justified by
the fact that it is considered to be an independent metricathstracts out effects like
implementation and computing environment that can infleestber metrics like CPU
time [1]. Furthermore, in the case of synchronous algorithtihe cycle count can be
used to directly infer other costs such as the number of rgessaxchanged between
agents.

Random DisCSPs were generated using the standard Model]Briddified as
follows. First, support tuples were included in each caistrso that each problem
is guaranteed to have at least one solution. And, seconathgtiaints were randomly
assigned to variables with preferential attachment [2,4el{hat the instances resemble
real life problems i.e. the distribution of constraints triables follow a power law. In
the following, we summarise results of experiments evaigahe performance of the
algorithm on different sizes and include a Run Length Distibn [8] analysis showing
the variability in performance on a single instance.

In addition, we used DBA as the benchmark for comparing tesDISA was not
included in the evaluations, even though it has been showntfmerform DBA on dis-
tributed scan scheduling problems. It converges quickar IDBA to local optima. But,
Hirayama and Yokoo [7] showed that DSA rarely finds a solufiomecision prob-
lems where the goal is to satisfy all constraints and expadt it remains stuck at
local optima because there is no explicit mechanism forpsgaleadlocks. As we are
specifically interested in decision problems, we beliew ihis not suitable to include
DSA in the evaluations.

4.1 Variability on a single instance

The first results presented here show the empirical behquising a Run Length Dis-
tribution plot, of both algorithms on a single problem ingta as affected by their initial
random instantiations. We use a non-binary DisCSP with Glabkes and a mixture
of non-binary constraints with different arities (80 3-a49 4-ary, and 20 5-ary con-
straints). Constraint tightness is fixed at 50% for all camists and there are 10 values
in each variable’s domain. 500 attempts were made by eaohithign with a maximum
cut-off of 10,000 iterations for DisPeL and 20,000 iteratidor DBAZ,

The cumulative distributions plotted in Figure 4 suggeat thisPeL and DBA are
quite sensitive to the initial random values selected foiatdes. Although DisPelL has
a higher variability - its percentile ratiQ 75 /Qo.25 is 4.61 compared to 4.26 for DBA

8 This is because agents change variable values once in every two cybBA ifi.e. thewait ok
andimprove?cycles) compared to changing values every iteration in DisPeL

—DBA
— DisPel

0.75

% solved

0.25 4

10 100 1000 10000 100000
iterations

Fig. 4. Empirical Run Length Distributions of DisPeL and DBA on a single problertaimse.

- it does have a higher probability of finding solutions andeied had a higher success
rate than DBA. The sensitivity to random instantiationsgasis that both algorithms
can benefit from a strategy of randomised restarts if optauabffs can be determined.

4.2 Performance on different problem sizes

In further experiments, we compared both algorithms on afdernary problems with
particular interest on the growth in search costs as thelgmobize () increases. The
ratio of constraints to variables is held constant at 2:istaint tightness fixed at 0.55,
and domain size is 10 (for each variable). For each problee) sie used 100 problems
and limited DisPeL td 00n iterations and DBA t@00n iterations. The results of these
experiments are plotted in Figures 5 and 6 which respegtsiebw the percentage of
problems solved, the average number of cycles requiredndtian cycles, and some
quartiles Qo.25 andQq.75).

100

3000

—4—DBA
—+—DisPel

% solved

search cost

2000

mOBA f./’/.

oDisPel

30 40 50 60 70 80 20 100 30 40 0 80 70 a0 90
number of variables

100
number of variables

Fig. 5. Number of problems solved (left) and the average costs (right).

5000

10000
—+—DBA median —s—DBA Q025
—&—DisPel. median —o—DBA Q075
4000 soop 4 | —#—DisPeL Q0.25
——DisPel Q0.75

3000 8000

search cost

2000

search cost

4000

1000 2000

a0] 50 60] 80 20 100
number of variables

Fig. 6. Median search costs and quartiles for solving the problems in Figure 5.

Figure 5 shows that as the problem size increases, DBA sfdvest problems and
the average search costs increased at a much faster ratbderior DisPeL. In Figure
6, the plot on the left shows that the median cost for DBA idhbigthan DisPel’s and

the plots of the quartiles show that there is a much wideritdigion of search costs for
DBA than DisPeL.

4.3 Effect of constraint density

Finally, we report results of experiments studying how &t behaviour is affected
by the constraint density. Results of the evaluations amensarised in the plots of
Figures 7 and 8. 100 4-ary problems are generated for each ipdhe plots. There
are 40 variables in each problem, 8 values in each variadmsiain, and constraint
tightness is fixed at 40%. The plots show a progression frarsspto dense problems,
where the number of contraints (shown onttaxes) are steadily increased. We limited
DisPelL to 10,000 cycles and DBA to 20,000 cycles on each attem

100 3000

—s—DBA
—+—DisPelL

6000

4000

seanch ¢

2000

mDBA
ODisPel

2.0n 2.2n 24n 26n 2.8n 3.0n 32n 1.6n 18n 20n 22n
number of constraints

24n 26n 280 30n 3In

number of constraints

Fig. 7. Number of problems solved (left) and the average costs (right).

5000 12000

—+—DBA Q0.25
—#—DBA median —o—DBA Q0.75
2000 { [—#—DisPel median —e—DisPelQ0.25

9000 1~ —o—DisPel Q0.75

3000

6000

search cost

search cost

2000

1000 3000

16n 18n 20n 220 24n 26n 281 30n 30

number of constraints

Fig. 8. Median search costs and quartiles for solving the problems in Figure 7.

Figures 7 and 8, show that both algorithms have identicdbpmance on sparse
problems, finding the same number of solutions and usingtaheusame number of
iterations to solve the problems. It gets interesting astramt density increases, there
is an abrupt drop off in the number of problems solved and anrapanying steep rise
in search costs at ttie0n mark for DBA. The effect on the number of problems solved
is not as pronounced with DisPeL and there is a less drammatiease in search costs
from that point.

5 Discussions

5.1 Effect of resetting incremental penalties

In DisPeL agents reset all incremental penalties whenéesr find consistent values
for their variables and periodically. We argued that péeslbecome redundant when
consistent values are found, and obscure the objectives¢ape if they are retained
for too long. Empirical justification for these decisionspimvided with results form
an experiment comparing DisPeL, with a version of it wheregtties are only reset
periodically, and another version where penalties area medg when consistent values
are found. A version without any penalty resets was als@deiO problems were
used, each with 40 variables3n constraints, and constraint tightness set to 0.55. All
versions were started with the same initial values to ruteaay random effects on the
evaluation and limited to 4,000 iterations on each atteffip. results of the experiment
are summarised in Table 1.

As expected, there is a massive performance gain from irgp@ktnalties (at least
within the DisPeL framework). While any form of resétis beneficial, the combina-
tion of both reset strategies appears to be the best appfoattie algorithm.

4 Assuming periodic resets are not done too often or or not often enough

Reset strategy number solved | average cost
No resets 2 2,769
Resetting only when 45 1,611
consistent values are found

Periodic resets alone 46 761
DisPeL 49 675

Table 1. Evaluating the effects of alternative reset strategies on 50 randortepreb

5.2 Impact of the temporary penalty

The temporary penalty is used to perturb a neighbourhoochveheonflict is first
encountered. Giving agents opportunities to resolve samndicts immediately, that
would otherwise take a build up of incremental penaltiesxoRiesults from prelim-
inary work, showed that when the temporary penalty was usguetturb a greedy
algorithm at a local optimum, 57% of the original constrainiolated where resolved
in ensuing iterations. While, new constraint violations veheaused in other parts of
the constraint graph 43% of the time. In constrast to theemental penalty, which
resolved 65% of the violations but caused more constrairtie tiolated 9 out of every
10 times it was usedl

t number solved | average cost
2 97 178
3 100 172
4 99 173
5 99 280
6 99 249
7 99 299
8 100 249
9 100 286
10 100 270
15 100 287
50 100 287
100 100 287
Table 2.Evaluating the impact of the temporary penatysize using 100 problems (60 variables,

120 constraints, tightness is 50%, and domain size is 8).

The size of the temporary penalty also affects the behawbthie algorithm, de-
termining how far perturbations percolate the network &mdsubsequent likelihood of
a deadlock being resolved quickly. Table 2 summarises arnrie@pevaluation of the
impact of the temporary penalty)(size on performance. The results show that there is

5 Looking at the immediate impact of the penalties and not considering thetidomgeffect of
accumulated penalties.

little difference in the results for temporary penalty \edbetween 2 and 4, and aver-
age search costs suddenly increases with a value of 5 andhratlaast 40% higher
with higher values fot. Behaviour of the algorithm was identical for all runs with a
temporary penalty value of 15 and above.

5.3 Effect of the no-good store size

No-goods are retained by agents to keep track of recent ctnfnd to help them
decide what heuristic to use when conflicts are encount&echuse these no-goods
are not taken as new constraints, only a limited number ahthee held at any point
in time. We do not specify set limits, because the size of theeshas to change with
the size of the problem being solved. If too few no-goods atd,lthere are going to be
too many perturbations if agents regularly return to conéitates after long intervals.
On the other hand, there is a point after which storing aoidliti no-goods just uses
up more memory and does not offer any improvements. Haviitgtises, we limit the
maximum number of no-goods held by agents to the number ghbeurs N) they
have individually; although it may be optimised for an iridival problem. We show
that this upper bound is appropriate with the RLD in Figure@nparing it with an
upper bound oft N. A DisCSP with 75 variables and 150 3-ary constraints is tised
the experiment. There are 8 values in each variables domdin@nstraint tightness is
fixed at 50%. The figure suggests that there is no performaaicefipm retaining too
many no-goods. The explanation for this is that deadlodestafter being resolved,
are not revisited too often. Therefore, agents need noinretdong history of their
experiences.

% solved

—— No-good store size = N
——MNo-good store size = 4N

10 100 1000 10000
search cost

Fig. 9. Run Length Distributions showing the effect of the no-good store sizeedpiance.

6 Related work

Several forms of penalty driven search have been developint iliterature especially
for dealing with local optima in centralised hill-climbiradgorithms. In algorithms like
those presented in [13] and [5], penalties are attachednstiints and those on vi-
olated constraints are modified whenever the underlyideclihbing search is stuck.
These have the effect of modifying the objective landscaph that emphasis is placed
on satisfying constraints regularly violated. The Bredkdlgorithm [10] is similar to
the aforementioned and it motivated the work on DBA, whicteeged and introduced
this form of resolution for distributed constraint reasani

In a slightly different approach, penalties have been h#ddo problem features
rather than the constraints in the Guided Local Search ighgof12] with the same
aim of contorting plateaux in the objective landscape. Batdhoice of features is of-
ten problem dependent. For example, non-overlapping blo€klomains are selected
as features when solving non-convex optimisation probl&Hfsle for solving boolean
satisfiability problems, clauses were selected as feaitusgsextension of the algorithm
[9]. GLS bears the closest resemblance to our work but tirenmajor differences in the
way penalties are incorporated into the objective functiorGLS, penalties are mul-
tiplied by a lambda parameter which moderates the impacherobjective function;
and it is also used to control the exploration/exploitati@maviour of the search. Fur-
thermore, the utility of penalising a feature is also estedaso that those features with
higher costs are penalised first and the likelihood of a fedteing penalised decreases
the more times it is penalised.

Periodic penalty resets have also been considered in #ratlire. In [10], it was
pointed out that accumulated weight increases (or penattyases in this case) may
conspire to block paths to a solution in the objective langec And, as such, restricting
the algorithm to a sub-optimal region of the landscape wimigy result in infinite
oscillations. Periodic resets were also used in a variaBL@ for solving the Quadratic
Assignment Problem (QAP) in [12]. Based on an argument thallaws the search
revisit solutions that include features penalised eafdéading to an intensification of
the search in profitable areas of the search space. But, italsaspointed out that
the drawback of doing this is that the algorithm loses som#hefexploration ability
that pushes it towards unexplored areas of the search sRasalts from that work
showed that the reset strategy improved over the basic GttBawiigher percentage of
successful runs. However, the mean quality of solutionslowasr.

7 Summary

We have presented a distributed iterative improvementritfgo (DisPeL) for solving
DisCSPs that relies on a two part penalty-based strategyefaling with local optima.
In the first part of the strategy, agents try to resolve lagalma by perturbing their
neighbourhoods using a temporary penalty. And resort te¢end part of the strategy
if the deadlock is unresolved; where incremental penattteached to domain values
are increased to help agents avoid assignments linked tdetha@lock. Both parts of
the strategy are tied together by no-good stores maintdipegch agent, which keep

track of recent conflicts. The component parts of the styategre discussed, and em-
pirical justification for their inclusion was also provide@ollectively, the heuristics
show that retention of too much search memory hinders tharitign’s performance.
The algorithm was evaluated using random non-binary DisC8# its performance
was compared against DBA. The results show thatDisPelL stmmily solved more
problems than DBA and it required fewer iterations to sohepproblems.

References

1. Ravinda K. Ahuja and James B. Orlin. Use of representative operationts in computa-
tional testing of algorithmsINFORMS Journal of Computin(3):318-330, June 1996.

2. Albert-Lszl BarabsiLinked: How Everything Is Connected to Everything Else and What It
Means Plume, 2003.

3. Muhammed Basharu, Ines Arana, and Hatem Ahriz. Distributed du@=l search for
solving binary DisCSPs. In Ingrid Russell and Zdravko Markov, edj®roceedings of the
18th International FLAIRS Conference (FLAIRS 20Q%ges 660—-665. AAAI Press, May
2005.

4. Muhammed Basharu, Ines Arana, and Hatem Ahriz. Solving Dis@&Rgenalty driven
search. IrProceedings of 20th National Conference on Artificial Intelligence (A®#)I- To
appear AAAI Press, 2005.

5. P. Galinier and J. Hao. A general approach for constraint solwrigdal search. IrPro-
ceedings of the Second International Workshop on Integration of AIGR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CP&R=00), March
2000.

6. Youssef Hamadi. Interleaved backtracking in distributed constratmtarks. International
Journal on Artificial Intelligence Tooldl1 (2):167-188, June 2002.

7. Katsutoshi Hirayama and Makoto Yokoo. The distributed breakowtridhgns. Artificial
Intelligence 161(1-2):89-115, January 2005.

8. Holger H. Hoos. Stochastic Local Search - methods, models, applicatioRkD thesis,
Darmstadt University of Technology, Germany, 1998.

9. Patrick Mills and Edward Tsang. Guided local search applied to the ahtii§i (SAT) prob-
lem. InProceedings of the 15th National Conference of the Australian Societypfena@ons
Research (ASOR’99pages 872-883, July 1999.

10. Paul Morris. The breakout method for escaping from local minima&Proceedings of the
11th National Conference on Artificial Intelligenqeages 40—45, 1995.

11. Edgar M. PalmeiGraphical evolution: an introduction to the theory of random graplshn
Wiley & Sons, Inc., 1985.

12. Christos Voudouris.Guided local search for combinatorial optimisation problemBhD
thesis, University of Essex, Colchester, UK, July 1997.

13. Benjamin W. Wah and Zhe Wu. The theory of discrete lagrange mulsgbenonlinear dis-
crete optimization. In Joxan Jaffar, edit@rinciples and Practice of Constraint Program-
ming - CP 99 volume 1713 ol ecture Notes in Computer Sciengages 28—42. Springer,
October 1999.

14. Toby Walsh. Search on high degree graphs. In Bernhard Neditdy, Proceedings of the
Seventeenth International Joint Conference on Artificial Intelligenc€A1J2001) pages
266-274. Morgan Kaufmann, August 2001.

15. Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and KazuhirevKlbara. Distributed con-
straint satisfaction for formalizing distributed problem solving.1Rth International Con-
ference on Distributed Computing Systems (ICDCS{8&jes 614621, 1992.

16.

17.

Makoto Yokoo and Katsutoshi Hirayama. Distributed breakout afgorfor solving distrib-
uted constraint satisfaction problemsRrmoceedings of the Second International Conference
on Multi-Agent Systempages 401-408. MIT Press, 1996.

Weixong Zhang, Guandong Wang, Zhao Xing, and Lars WittentdDigfributed stochastic
search and distributed breakout: properties, comparison and applEaticonstraint op-
timization problems in sensor networkg\rtificial Intelligence 161(1-2):55-87, January

2005.

	Ahriz dcr2005 coversheet
	DCR05

