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Abstract. The main objectives of cancer treatment in general, and of cancer
chemotherapy in particular, are to eradicate the tumour and to prolong the
patient survival time. Traditionally, treatments are optimised with only one
objective in mind. As aresult of this, a particular patient may be treated in the
wrong way if the decision about the most appropriate treatment objective was
inadequate. To partially aleviate this problem, we show in this paper how the
multi-objective approach to chemotherapy optimisation can be used. This
approach provides the oncologist with versatile treatment strategies that can be
applied in ambiguous cases. However, the conflicting nature of treatment
objectives and the non-linearity of some of the constraints imposed on
treatment schedules make it difficult to utilise traditional methods of muilti-
objective optimisation. Evolutionary Algorithms (EA), on the other hand, are
often seen as the most suitable method for tackling the problems exhibiting
such characteristics. Our present study proves this to be true and shows that EA
are capable of finding solutions undetectable by other optimisation techniques.

1 Introduction

Cancer chemotherapy is a highly complex process which controls tumour
development by the administration of a cocktail of chemicalsin a series of doses over
a course of treatment. There is a wide variety of anti-cancer drugs available to
oncologists. Due to their high toxicity, these drugs give rise to a variety of side-
effects, ranging from cosmetically undesirable through debilitating through to the
effects that are themselves life threatening. The oncologist therefore is faced with a
complex task of designing a therapy which achieves certain treatment goals whilst
limiting the toxic side-effects of the treatment to an acceptable level.

In the treatment of most common cancers multi-drug combinations are usually
used. Traditionally, combination treatments are developed through empirical trials of
different combinations, dosing, schedules and sequencing. However, since around 35
drugs are in common clinical use nowadays [17], it is evident that an almost infinite
number of treatment schedules are conceivable and that the need for the optimisation
of chemotherapeutic treatment is indisputable. The number of combinatorial
possibilities for multi-drug schedules, coupled to the conflicting nature [13] and non-
linearity of the constraints imposed on cancer treatments, make it difficult to solve the



problem of cancer chemotherapy optimisation by means of empirical clinical
experimentation or by means of traditional optimisation methods [6]. An aternative
approach is to use evolutionary methods of computational optimisation to search for
multi-drug treatment schedules that achieve certain treatment objectives and satisfy a
number of simultaneous constraints.

A body of work has been established by the authors [7], [8], [10] and [11], where
they have applied Genetic Algorithms to find the best (or at least suitable) treatment
strategies given a single optimisation objective. In this paper, however, we endeavour
to develop this approach further and to address the problem of finding treatment
strategies that show a good performance with respect to more than one treatment
objective. Thus, the evaluation of different treatment strategies will involve multiple
measures (objectives) of performance, which should be optimised simultaneously,
even though they may be conflicting in nature. The presence of conflicting objectives
gives rise to a set of optima solutions, known as the Pareto-optimal set. If al
objectives are equally important, the conflict between them requires a compromise to
be reached. A good solution to such problems involving conflicting objectives and
therefore multiple evaluation criteria, should offer suitable, though possibly sub-
optimal in the single-objective sense, performance in all objective dimensions [14].
Generally, there exists a multitude of such solutions; hence, the algorithm used to
solve a multi-objective optimisation problem should find a wide variety of them,
instead of just one.

Evolutionary Algorithms (EA) are a promising choice for solving the multi-
objective optimisation problem of cancer chemotherapy for a number of reasons.
Firstly, a set of Pareto-optimal solutions can, in principle, be captured in an EA
population, thereby approximating the Pareto-optimal set in a single simulation run
[2]. Secondly, in general Evolutionary Algorithms are less susceptible to the shape or
continuity of the Pareto front than other techniques of multi-objective optimisation
[16]. Thirdly, it has been shown by the authors (see [10] and [11]) that the problem of
optimising cancer chemotherapy treatment belongs to the class of complex
optimisation problems involving such features as discontinuity, multi-modality, non-
connected, non-convex feasible regions, and inaccuracy in establishing model
parameters. This is precisely the problem area where the methods of evolutionary
computation really distinguish themselves from their competitors, thereby reinforcing
the potential effectiveness of Evolutionary Algorithms in multi-objective optimisation
of chemotherapeutic treatment.

The remaining sections are organised as follows. In section 2 we provide the
background information on optimisation of chemotherapeutic treatment, which
includes medical aspects of chemotherapy, the formulation of treatment design as a
constrained multi-objective optimisation problem, and a description of salient features
of Evolutionary Algorithms used in multi-objective optimisation. Section 3 explains
implementation details of the evolutionary search for Pareto-optimal treatment
schedules. The results of chemotherapy optimisation and their analysis are given in
Section 4. Finally, Section 5 summarises the contribution of the present study to
cancer chemotherapy and outlines possible directions for its further devel opment.



2 Optimisation of Chemotherapeutic Treatment

Amongst the modalities of cancer treatment, chemotherapy is often considered as
inherently the most complex [17]. As a consequence of this, it is extremely difficult to
find effective chemotherapy treatments without a systematic approach. In order to
realise such an approach, we need to take into account the medical aspects of cancer
treatment.

2.1 Medical Aspectsof Chemotherapy

Drugs used in cancer chemotherapy al have narrow therapeutic indices. This means
that the dose levels at which these drugs significantly affect a tumor are close to those
levels at which unacceptable toxic side-effects occur. Therefore, more effective
treatments result from balancing the beneficial and adverse effects of a combination
of different drugs, administered at various dosages over atreatment period.

The beneficia effects of cancer chemotherapy correspond to treatment objectives
which oncologists want to achieve by means of administering anti-cancer drugs. A
cancer chemotherapy treatment may be either curative or palliative. Curative
treatments attempt to eradicate the tumour. It is believed that chemotherapy alone
cannot eradicate cancer, but if the overall tumour burden is held below a certain level,
other mechanisms (e.g. immune system or programmed cell death) will remove
remaining tumour cells. Palliative treatments, on the other hand, are applied only
when a tumour is deemed to be incurable. Here the objective is to maintain a
reasonable quality of life for aslong as possible.

The adverse effects of cancer chemotherapy stem from the systemic nature of this
treatment: drugs are delivered via the bloodstream and therefore affect all body
tissues. Since most anti-cancer drugs are highly toxic, they inevitably cause damage
to sengitive tissues elsewhere in the body. In order to limit this damage, toxicity
constraints need to be placed on the amount of drug applied at any time interval, on
the cumulative drug dosage over the treatment period, and on the damage caused to
various sensitive tissues [17]. In addition to toxicity constraints, the tumour size (i.e.
the number of cancerous cells) must be maintained below a lethal level during the
whol e treatment period for obvious reasons.

The goal of cancer chemotherapy therefore is to achieve the beneficial effects of
treatment objectives without violating any of the abovementioned constraints. This
problem would not be much different from that of a general class of constrained
optimisation problems, was it not for the conflict between treatment objectives. The
objectives of curative and palliative treatments conflict with each other in the sense
that drug schedules which tend to minimise tumour size are highly toxic and therefore
have a negative effect on the quality of patient's life. Moreover, it has been shown
that a severe treatment schedule that fails to cure can result in a shorter patient
survival time (PST) than a milder palliative treatment [6].

Previously, the conflict between objectives was resolved by addressing each of
them separately, that is, treatment strategies were sought which optimised only one of
the objectives without considering the other [7]. The choice of the best strategy was
|eft to the decision maker, i.e. the practicing oncologist who treats the patient; the role



of the optimiser was to provide the aternatives to choose from. Although this
approach produced some interesting results, it cannot show the whole picture. In
particular, the single-objective approach is ineffective in finding versatile treatment
schedules that show a reasonably good performance in one objective dimension and,
at the same time, can be effectively used with the other objective in mind.

We contend that such versatile treatment schedules will belong to the Pareto-
optimal set, which needs to be found by the optimisation algorithm capable of dealing
with multi-objective optimisation. We also contend that Evolutionary Algorithms are
well-suited for this role. However, before EA can be applied to the multi-objective
optimisation problem of cancer chemotherapy, we need to mathematically formulate
the objectives of chemotherapeutic treatment and the constraints imposed on it.

2.2 Problem Definition and Related Concepts

In general, a multi-objective optimisation problem (MOP) consists of n decision
variables comprising a decision vector x = (X, X,,...,X,)| WI A", m constraints
0,(X),9,(x),...,9,(X), and k objectives expressed as (non)linear criteria or
objective functions f,(x), f,(x),..., f, (x) . Brought together, the multiple objectives
define the evaluation function F(f,(x), f,(x),..., f,(x)):W® L T A*, which, if
some of the objectives are in conflict, places a partial, rather than normal, ordering on
the search space W [14]. In order to mathematically define this partial ordering, a
notion of Pareto dominance is introduced in the objective space L . (NOTE. In this
paper we will be concerned with the problem of maximising the values of the
objective functions.)

Definition 1. A decision vector x=(xl,x2,...xn) is said to dominate
X ¢= (X, X¢,... X¢), denoted as x = x, iff the value of the evaluation
function at x, F(xX), is partially greater than F(x¢,
e, i AL. K (x) 2 fi(xQU$T L.k} T (x) >, (x9).

The specificity of multi-objective optimisation is to find a set of non-dominated
decision vectors rather than the global optimum, which might not even exist. For this
purpose, the concept of Pareto optimality ought to be used.

Definition 2. The decision vector x1 W is Pareto-optimal iff x is non-dominated
regarding W ; formally
A $xd Wixe-x)

Pareto-optimal decision vectors cannot be improved in any objective without
causing deterioration of at least one other objective. Such decision vectors comprise

the Pareto-optimal set, P* 1 W, in the search space. The mapping of the Pareto-
optimal set to the objective function space gives rise to the Pareto front PF*. The



Pareto front can be non-convex and non-connected; nonetheless, if it is known, or at
least approximated reasonably well, the decision maker will be able to select a
solution via a choice of acceptable objective performance and, as a result of this, the
problem of multi-objective optimisation will be resolved.

Therefore, in order to solve the optimisation problem of cancer chemotherapy, we
need to find the set of treatment schedules, which yields the Pareto front in the
treatment performance space. This will alow the oncologist to make a decision on
which treatment schedule to use, given his/her preferences or certain priorities. Inthe
remainder of this section we will define the decision vectors and the search space for
the cancer chemotherapy optimisation problem, specify the constraints, and
particularise the optimisation objectives.

Anti-cancer drugs are usualy delivered according to a discrete dosage program in
which there are n doses given at times t;,t,,...t, [6]. In the case of multi-drug

chemotherapy, each dose is a cocktail of d drugs characterised by the concentration

levels C;; i1 1,n,jT 1 d of anti-cancer drugs in the bloodplasma. Optimisation of

chemotherapeutic treatment is achieved by modification of these variables.
Therefore, the search space W of the chemotherapy optimisation problem is the set of
control vectors ¢ = (Cij ) representing the drug concentration profiles.

However, not all of these profiles will be feasible as chemotherapy treatment must
be constrained in a number of ways. Although the constraint sets of
chemotherapeutic treatment vary from drug to drug as well as with cancer type, they
have the following general form.

1. Maximum instantaneous dose C,, for each drug acting as a single agent:
gl(C)={Cmax,--Ci,-303 il 1n"j1 1d| (1)
2. Maximum cumulativeC . dose for drug acting as a single agent:

9,) =1
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3. Maximum permissible size N of the tumour:
05(€) ={ Ny - N(t)2 0: " i1 Ln )

4. Restriction on the toxic side-effects of multi-drug chemotherapy:

5 d o i
94(0):}cs_eﬁk-éhkjcij303"iT1, okl 1,m§ 4
f = b

The factors h K in the last constraint represent the risk of damaging the k " organ or
tissue (such as heart, bone marrow, lung etc.) by administering the j™ drug.



Estimates of these factors for the drugs most commonly used in treatment of breast
cancer, as well as the values of maximum instantaneous and cumulative doses, can be
found in[4], [8] or [11].

Regarding the objectives of cancer chemotherapy, we focus our study on the
following two. The primary objective is to eradicate the tumour (curative treatment).
We define eradication to mean a reduction of the tumour from the initial sizeto asize
below 10° cells. Clinical experience shows that other mechanisms (e.g. programmed
cell death, ak.a. apoptosis) are capable of removing remaining tumour cells at this
point.

In order to simulate the response of a tumour to chemotherapy, a number of
mathematical models can be used [10]. The most popular is the Gompertz growth
model with a linear cell-loss effect [17], which has been extensively validated in
clinical trials:

dN ¢ 200 & 4 u

—=N{)8 Ing—=—3- g k. g Ci{H(t-t)- H(t-t_,)0 5

a ~NOS L akia p{HE- 1) - H .1)}EI ®)
where N(t) represents the number of tumour cells at time t; |,Q are the

parameters of tumour growth, H(t) is the Heaviside step function; k | ae the
quantities representing the efficacy of anti-cancer drugs, and Cij denote the
concentration levels of these drugs. One advantage of the Gompertz model from the
computational optimisation point of view is that the equation (5) yields an analytical
solution after the substitution u(t) =In(Q/N(t)) [5]. Since u(t) increaseswhen N(t)
decreases, the primary optimisation objective of tumour eradication can be formulated
asfollows[9]:

t
_ \2Q 0
f = ——=dt 6
mamelse 1(c) PngN(t)(a (6)

subject to the state equation (5) and the constraints (1)-(4).

The second objective of cancer chemotherapy is to prolong the patient survival
time (PST) maintaining a reasonable quality of life during the palliation period. If we
denote the PST as T , then the second objective becomes:

T
maximise  f, (c) = Odt =T @
t1
again subject to (1)-(5).

Therefore, the evaluation function of the multi-objective optimisation problem of
cancer chemotherapy takes the form of a two-dimensional vector function
F(c)=[f,(c), f,(c)] T, which maps the decision vectors ¢ W to the objective
function space L 1 A? using the objectives (6) and (7).



As we mentioned in the previous section, these objectives are conflicting in nature.
The conflict between objectives manifests itself in the fact that small tumours are
more likely to be successfully eliminated, whereas it is much easier to paliate a large
tumour [6]. Thus, in order to pursue the first treatment objective the maximum
tolerable amount of drugs has to be administered at the start of treatment. The best
paliative strategy, on the other hand, is to allow the tumour to grow up to the
maximum size and then to maintain it at that level using only a necessary amount of
drugs.

Taking this into account and considering the number of constraints imposed on
chemotherapeutic treatment, it is not difficult to see that the traditional approaches to
multi-objective optimisation of cancer chemotherapy (such, for example, as the
weighting or constraint methods) are likely to fail. Our previous experiments with
traditional optimisation methods (the complex and Hooke & Jeeves techniques)
showed a lack of robustness in finding feasible solutions even in the case of single-
objective optimisation [11]. Moreover, al traditional methods require severa
optimisation runs to obtain an approximation of the Pareto-optimal set. As the runs
are performed independently from each other, synergies between them cannot be
easily exploited, which may lead to substantial computational overhead [16].

Therefore, the necessity of a specialised optimisation technique to deal with the
cancer chemotherapy MOP is evident. Recently, Evolutionary Algorithms (EA) have
become established as an alternative to traditional methods. The major advantages of
EA are: 1) the ability to effectively search through large solution spaces; 2) the ability
to overcome the difficulties faced by the traditional methods mentioned above; and
3) the ability to approximate the Pareto-optimal set in a single run. In the following
section we briefly discuss the salient features of Evolutionary Algorithms.

2.3 Evolutionary Multi-objective Optimisation

Evolutionary Algorithms entail a class of stochastic optimisation methods that
simulate the process of natural selection. Although the underlying principles are quite
simple, these algorithms have proven to be in general robust and powerful [1]. A
large number of applications of EA to hard, real-world MOPs, the survey of which is
given in [2], suggest that multi-objective optimisation of cancer chemotherapy is the
problem set where Evolutionary Algorithms might excel.

As with any MOP, the problem of cancer chemotherapy optimisation involves two
independent processes. The first process is the search through the solution space for
the Pareto-optimal set. The search space of cancer chemotherapy MOP is very large
[7], which makes the multi-directional and synergetic features of EA extremely
helpful. The second process is decision-making, i.e. the selection of a suitable
compromise solution from the Pareto-optimal set.

Depending on the order of performing these processes, the preferences of the
decision maker (the oncologists in our case) can be made known either before, during
or after the search process [14]. In the case of a priori preference articulation, the
objectives of the given MOP are aggregated into a single objective that implicitly
includes preference information (in the form of objective weights for example). This



approach requires profound domain knowledge, which is not available for the
optimisation problem of cancer chemotherapy [3].

If the search process is performed without any preference information given by the
oncologist, then we are applying a posteriori preference articulation. Here, the search
results in a set of candidate treatment schedules (ideally the Pareto-optimal set of
treatments), from which the final choice is made by the oncologist. The main
drawback of the latter approach is that it entirely excludes the domain knowledge,
which in some cases might substantially reduce the size of the search space or/and its
complexity. However, in a general case of cancer chemotherapy optimisation such a
reduction is not advisable [8], which supports the suitability of the a posteriori
approach.

Also, the process of decision-making may overlap with that of search. This means
that after each optimisation step, a number of aternative treatment schedules
(temporary Pareto-optimal set) are presented, on the basis of which the oncologist
specifies further preference information, thereby guiding the search process. Such an
approach is known as progressive preference articulation [14] and is a promising way
to combine the advantages of the previous two. One example of how it can be used in
the context of cancer chemotherapy is to optimise the modification of an existing
treatment schedule rather than a schedule itself [11]. However, in this paper we
concentrate our efforts on the optimisation of treatment schedules themselves as this
is a more genera problem. In solving this problem we do not wish to restrict the
search process in any way, since a priori information on whereabouts of the Pareto-
optimal set in the search space is unavailable. Therefore, hereafter we need to resort
to aposteriori preference articulation approach to multi-objective optimisation.

Having established the strategic aspects of the method that is to be utilised for
solving the cancer chemotherapy MOP, we now need to specify the implementation
details. A general Evolutionary Algorithm can be presented as follows.

N population size Old population 0
TC termination criterion e )

niti .
————— population  Teminaez»— p. P
p. crossover probability \/ Pareto-optimal set
New population

Fig. 1. Input, Output, and Internal Structure of a Generic Evolutionary Algorithm

P, mutation probability

This general structure holds for most EA implementations. The distinctive feature of
Evolutionary Algorithms applied to multi-objective optimisation, however, is that
they require addressing the following specific issues [15]. The first issue is how to



accomplish fitness assignment, and consequently selection, given a vector-valued
evaluation function F:W® L . In contrast to single-objective optimisation, where
the fitness function takes into account only one optimisation objective, the fitness
function of a multi-objective EA needs to map a k -dimensional objective function
space to scalar numbers in such a way as to guide the search process to the Pareto-
optimal set. Secondly, the diversity of an EA population has to be maintained more
than ever in order to achieve a well distributed and well spread set of non-dominated
solutions, in addition to preventing premature convergence.

A body of work has been established setting up various fitness assignment
methods, selection techniques, and population diversifying schemes [2], [5], [14],
[16]. Asaconsequence of this, many implementations of multi-objective EA are now
available. In spite of this variety, however, there is no clear guideline on which EA
implementation is suited to which sort of problem in the sense of ensuring that the
derived solutions are the best available [15]. Thus, the choice is subjective and is
often based on the developer's attempt to integrate the domains of the optimisation
problem and that of the implementation algorithm [14].

Among the different implementation algorithms that have been proposed in the
literature and have been used by EA practitioners, we have chosen and will base our
study on the Strength Pareto Evolutionary Algorithm (SPEA) thoroughly described in
[16]. This algorithm combines promising aspects of various multi-objective EA and
has shown a superior performance on a number of test problems [15]. In the next
section we describe how it can be applied to the multi-objective optimisation problem
of cancer chemotherapy.

3 Evolutionary Search for Optimal Treatment Schedules

The search process aiming at finding non-dominated (with respect to the treatment
objectives specified in Section 2.1) chemotherapy schedules is the main part of
computational optimisation of chemotherapeutic treatment. The decision-making
process is, of course, based on the results of this search, but it is |eft to oncologists
and therefore lies outside the scope of the present paper.

The search for non-dominated treatment schedules is accomplished using the
SPEA approach. Multi-drug chemotherapy schedules, represented by decision

vectors ¢ =(C;),il 1,n,jT 1d, are encoded as binary strings. Using the EA

terminology, the individual space | (a discretized version of W) can then be
expressed as a Cartesian product

| =Al" A2 AT ALY AZT L AdT AL A2 A ®
of allele sets Aj . Each allele set uses a 4-bit representation scheme

Al :{a1a2a3a4 ca, 1 {0 ki ]?1} 9



so that each concentration level G takes an integer value in the range of 0 to 15
concentration units.  In general, with n treatment intervals and up to 2P
concentration levels for d drugs, there are up to 2" individual elements.
Henceforth we assume that n =10 and that the number of available drugsin restricted
to three, one of which is strong but highly toxic, another is medium, and the last one
isless toxic at the expense of reduced efficacy. In our study we experiment with the
following drugs: Taxotere (strong), Adriamycin (medium), and Cisplatinum (weak),
which are commonly used in multi-drug treatment of breast cancer. The values
n=10 and d=3 result in the individual (search) space of power |I|=2"
individuas, referred to as chromosomes.
Thus, achromosome x1 | can be expressed as

x:{a1a2a3 g ta d {0 ki ],4ndjl (10)

and the mapping function m:1 ® C between the individua | and the decision
vector C spaces can be defined as

4
- Q 54k S P
Cij =DCia 27 " aqq-yeag-neke 1IN (11)
k=1
where DC | represents the concentration unit for drug j . This function symbolizes

the decoding algorithm to derive the decision vector ¢ =m(x) from a chromosome

x. If this vector violates any of the constraints (1)-(4), a penalty is applied to the
values of the objective functions. The evaluation function F and the penalties yield
the following augmented objective vector:

[f,©)-

J

P max{-g_(c).0}, f,(c)- & P ><max2{-gm(0),0}]T (12)
1 i=1

n ez

on the basis of which the fitness valueisassigned to x .

The fitness assignment procedure is a two-stage process that uses two interacting
populations - the external set P, which stores the individuals representing a non-
dominated front among all solutions considered so far, and the EA population of

chromosomes P . The first stage is to rank the elements of P, and the second is to
evaluate the chromosomes in P. The full description of the fitness assignment
procedure and of other auxiliary SPEA elementsis givenin [16]. All that remains to
be specified here is the parameter settings of the SPEA algorithm: namely, the
population size N, the maximum number N of elements in the external set, the
probabilities of crossover ( p.) and mutation ( p,,), and the maximum number of

generations TC , which serves as the stopping criterion.



In the choice of these parameters we will adhere to the values used in the previous
work [7]. Thiswill allow usto make an unbiased comparison between the single- and
multi-objective approaches to chemotherapy optimisation. Moreover, in [12] the
authors have shown that with the following values of crossover and mutation
probabilities the efficiency of evolutionary search significantly improves. Taking all
these into account, the SPEA parameters will be set to the values: TC =10000,

pc =06 and py, =0.1. Regarding the N/N ratio, we have chosen it to be 50/5 as
the population size N =50 has proved to be efficient in the previous studies (see [7],

[10] and [11]), and the size N =5 is deemed to be sufficient to provide the required
density of solutions on the Pareto front without drastically reducing selection pressure
of SPEA.

4 Results

In order to illustrate the results of cancer chemotherapy optimisation, a number of
typical treatment scenarios are usually considered. For instance, in [7] the authors
apply single-optimisation to three scenarios that very often occur in practice: 1) cure
possible, eradication treatment is applied; 2) cure impossible, eradication treatment is
applied; 3) cure impossible, palliative treatment is applied. However, when the
single-objective approach is used, it is often necessary to assign priorities to each
objective. Generaly, the primary objective of cancer treatment is to eradicate the
tumour. In cases when the eradication is possible (the first treatment scenariosin [7]),
different treatment schedules are merited on the basis of how quickly they can achieve
thisgoal. If, on the other hand, cure isimpossible (the second treatment scenario) but
the treatment objective remains unchanged, then a single-objective optimisation
algorithm is likely to yield a solution far from optimum. In the latter case the
palliative treatment gives much better results[7].

Thus, one strong drawback of single-objective chemotherapy optimisation is that
the choice of the desired treatment outcome needs to be made when the treatment
starts and the cost of a mistake may be unacceptably high. In order to overcome this
difficulty, we now consider the main objectives of chemotherapeutic treatment -
tumour eradication and prolongation of PST - simultaneously for each potential
chemotherapy schedule. Figures 2, 3 and 4 show three multi-drug treatment
schedules from the set of Pareto-optimal decision vectors found by SPEA.



Schedule A

% Cmax

0 T T T T T
Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 Dose 6 Dose 7 Dose 8 Dose 9 Dose
10

—&— Adriamycin —#— Taxotere —aA— Cisplatinum

Fig. 2. Schedule achieving an agreeable balance between treatment objectives

Schedule B

1
3
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O
3
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Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 Dose 6 Dose 7 Dose 8 Dose 9 Dose
10

—&— Adriamycin —#— Taxotere —#A— Cisplatinum

Fig. 3. Schedule excelling in minimising the size of tumour burden




Schedule C

% Cmax

0 —Ai . y.<\-}.\ . —- \-—

Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 Dose 6 Dose 7 Dose 8 Dose 9 Dose
10

|—0—Adriamycin —— Taxotere Cisplatinum |

Fig. 4. Schedule excelling in prolongation of the patient survival time

Table 1 gives the values that quantitatively characterise the treatment schedules
presented above.

Tablel. Comparison between different Pareto-optimal treatment schedules

Optimal Constraints Average tumour size

treatment satisfaction h() f2(c) intermsof N(t,) PST
All constraints 36

Schedule A are satisfied 4.3230 | 4.3370 0.7986 Weeks
All constraints 35

Schedule B are satisfied 5.5864 | 3.3835 0.7380 weeks
Schedule ¢ | All constraints | 5 4.0, | 7 5597 0.8998 38

are satisfied ) ) ) weeks

As can be seen from this table, the schedules B and C yield a good value of one
optimisation objective ( f;(c) and f,(c) respectively) at the expense of relatively
poor performance in the other objective's dimension. This is reminiscent to the
single-objective optimisation [7], which would favour the schedule B as a candidate
for the tumour eradication treatment strategy and would reserve the schedule C for
palliative treatment.

From the treatment profile corresponding to the schedule B (see Figure 3) we can
observe that the good result in tumour eradication is achieved by administering high
doses of Taxotere and Cisplatinum towards the end of the treatment period. Thereis
adanger in doing this however. If the tumour eradication strategy fails to achieve the
desired outcome, studies show that the tumour can re-grow again and reach the lethal
size in shorter time than it would have done had a milder palliative strategy been used



[6]. The treatment schedule C, on the other hand, prolongs the PST to a greater
extent by keeping the number of tumour cells at an acceptable level (Figure 4 shows
that this is done by administering relatively small dosages of anti-cancer drugs), but
might miss a chance to completely eradicate it.

The major result of using the multi-objective approach to cancer chemotherapy
optimisation is in finding the schedule A. As can be seen from its values of the
optimisation objectives in Table 1, it is an agreeable compromise between the other
two schedules. Although the schedule A is outperformed by the schedules B and C in
the single-objective sense, we believe that it represents a more versatile treatment
strategy. Our interpretation of its mode of action isthat it makes attempts to eradicate
the tumour using high doses of Taxotere - the most efficacious drug available (see
Figure 2). Failing these attempts, the schedule A switches to the palliative regime
similar to that of the schedule C.

The final remark we would like to make in this section is that the information on
the effects and on the modes of delivery of the specified drugs has been given to us by
our collaborating oncologists or taken from [4]. In our experiments with single-
objective optimisation of cancer chemotherapy in [7], [8] and [11], we managed to
successfully emulate the outcome of actual clinical trials using the mathematical
model (5) and the constraints (1)-(4). Thisgives us areason to believe that the results
presented in this paper are also viable and that our approach to multi-objective
optimisation of cancer treatment can be used in real life situations. In order to prove
this we intend to ask clinicians to try our schedules developed for more complex
treatment scenarios with the help of the Oncology Workbench [7], [8].

5 Discussion

In this paper we addressed the problem of multi-objective optimisation of cancer
chemotherapy. A number of different objectives of chemotherapeutic treatment can
be defined. Although some of these objectives need to be considered simultaneously
in order to develop an effective treatment, in the past they were optimised
independently from each other. Our present study attempts to cover this gap and
utilises the evolutionary methods of computational optimisation to find a solution to a
complex optimisation problem with two conflicting objectives. The solution is sought
in the form of a Pareto-optimal set, which is approximated by an optimisation run of
the Strength Pareto Evolutionary Algorithm. The resultant set found during our
experiments includes not only the treatment schedules discovered in the previous
studies with the help of the single-objective approach, but a number of new schedules
as well that have not been detected before. Thus, the multi-objective approach to
chemotherapy optimisation reveals additional treatment strategies that can be more
suitable in certain cases, thereby assisting in the decision-making process. The
number of such strategies increases when more doses are administered during
treatment or more anti-cancer drugs are used.

Therefore, one possible direction for future work is to explore more complex
treatment scenarios. This might necessitate the introduction of additional objectives
in the evaluation function and the enlargement of the EA population and of the



external set. It will be interesting for us to experiment with different N/N ratiosin

order to see the effect of this parameter on the effectiveness of the EA search.
Another direction is to develop a software tool on the basis of the Oncology
Workbench described in [7] and [8] that will allow the oncologist to refine or change
treatment preferences during the optimisation run. This would integrate the search
and the decision-making processes, resulting in a more efficient and reliable choice of
chemotherapeutic treatment.
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