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_Abstract—Markov Random Field (MRF) modelling tech-  section IV, we describe how to estimate the model parameters
niques have been recently proposed as a novel approach to prob- from the population of solutions. Section V presents the
abilistic modelling for Estimation of Distribution Algorithms results with 1s-DEUM using a Metropolis sampling method.

(EDASs). An EDA using this technique was called Distribution . . - .
Estimation using Markov Random Fields (DEUM). DEUM was Section VI presents results with Is-DEUM using a Gibbs

later extended to DEUM,. DEUM and DEUM , use a univariate ~ Sampling method. Section VII presents some discussion of
model of probability distribution, and have been shown to the results and concludes the paper.
perform better than other univariate EDAs for a range of

optimization problems. This paper extends DEUM to use a II. 1SING SPIN GLASS PROBLEM AND EDA

bivariate model and applies it to the Ising spin glass problems.

We propose two variants of DEUM that use different sampling The general Ising spin glass problem can be described by
techniques. Our experimental result show a noticeable gain in an energy functionH, defined over a set of spin variables
performance. o = {01,049, ...,01} and a set of coupling constarfisand./

I. INTRODUCTION as

Estimation of Distribution Algorithms (EDAS) [14] is a H(o) = _.Z%h’c“ B ,ZL S0
well-established topic in the field of evolutionary algorithms. ' e
EDAs are motivated by the idea of discovering and exploitingHere, each coupling constaht € h and J;; € J relate to
the interaction between variables in the solution. An EDAy single spins; and a pair of sping; and o; respectively.
maintains theselectionand variation concepts of evolution. Each spin variabler; can be either +1 or -1. One specific
However, it replaces the crossover and mutation approaghoice of value for the spin variable is called a configuration.
to variation in a traditional GA by estimating and samplingf, is a lattice ofn sites.

a probabilistic model of promising solutions. EDAs are Given coupling constants; and Jij, the task in the Ising
classified as univariate, bivariate or multivariate [7] accordingpin glass problem is to find the value for each that

to the type of interaction between variables that can bginimises the energyil. For the purpose of this paper, we
represented by the probabilistic model. only consider the coupling constants relating pairs of spin

In [25] an algorithm using a Markov Random Field (MRF)variables and therefore skt = 0, Vi € L. Additionally, we
(also known as an undirected graphical model or a Markq\estrictjij to take only two values;; € {+1, —1}. Here, we
Network) approach [16], [8], [5], [15] to probabilistic mod-
elling has been proposed. This was called Distribution Esti-
mation Using Markov Random Field (DEUM). DEUM was
later extended to DEUM [23], [24]. DEUM and DEUN,
were presented as novel univariate EDAs and were shown
to perform better than other EDAs of their type over a wide
range of optimization problems [25], [23], [24].

This paper extends DEUM to bivariate problems and
applies it to a well known Ising spin glass problem [6].
Spin glasses have a range of practical applications in both
statistical physics and artificial intelligence. Due to their
interesting properties, such as symmetry and a large number
of plateaus, they have also been widely studied by the GA
(and EDA) community [18], [17], [21], [22].

The outline of the paper is as follows. Section Il describes
the Ising spin glass problem and gives some background on
previous applications of EDAs to it. Section Il presents our
approach to probabilistic modelling and defines the structufég. 1. A structure showing the interaction between spins for a two
and parameters of our model for Ising spin glass problem. ffinensional Ising Spin Glass system withx 4 spins

1)




consider the spin glass system on a two dimensional lattice MRF regards a solution: = {z1,zs,..,2,} as a set
consist ofn =1 x [ sites, where each spin variable interact®f values taken by the set of random variablds =
only with its nearest neighbouring variables ortagoidal {X;, X5, .., X,,}. Given an undirected graphs, where each
lattice (Figure. 1). The Hamiltonian specifying the energyode represents a variahle € X and each edge represents

for this system can be written as an interaction between variables i, the joint probability
. distribution (jpd), p(X = =z) (or simply p(z)), can be
H(o) = - Z Z (Jij,(i41)j 0450 (i 1)+ expressed as a Gibbs distribution
i=1 j=1 e~ Ul@)/T A
Jij iG55 +1) @ Ple) = = =TT )
where,i+1=1ifi=landj+1=11if j=1 using the Hammersley-Clifford theorem [4]. Heli&z) (or

_Here, each/;;;; is the coupling constant in two dimen- more preciselyl/(X = x)) is an energy function defined as
sional lattice relating to spim;; ando, ;. For convenience, m

we reformulate this as a maximization problem and so seek Ulz) = Zwi(q) (5)
to maximise -

where each);(c;) is a function defined over a cliquec; in
(Jig (4150350 (1+1)5+ . . e
7 G known as clique potential functioma is the total number
of cliqgues inG. T is a temperature coefficient.
In [1], MRF theory was used to provide a formulation of
In the context of EDAs, spin glass systems on a two dimenhe jpd, p(z), that relates solution fitnesg,(X = ) (or

sional lattice have been of particular interest to researchers.ginply f(z)), to the energyU(x). To be precise:

particular, [18], [17], [20] showed that hierarchical Bayesian f(z) o U@)/T

Optimization Algorithm (hBOA) could efficiently solve these p(z) = S ) S e TW/T (6)
problems outperforming other algorithms. [21] used the Ising y /W v©

spin glass problem as a test problem for the two algorithm&om which an equation for each solution, can be derived
Markov Network Estimation of Distribution Algorithm (MN-

EDA) and Markov Network Factorised Distribution Algo- —In(f(z)) = U(z) )
rithm (MN-FDA) and showed that their performance is betterFor simplicity, temperaturel’, from (6) is set to 1.

then that of other EDAs based on Bayesian networks. AlSo r7(,) gives a full specification of the jpd (4), so it can

[13] stated that, although the two dimensional ISing SPiRe regarded as a probabilistic model of the fitness function.
glass problem is in the class @¥dditively Decomposable |y particular, minimising/(x) is equivalent to maximising
Functions (ADF), it cannot be efficiently represented as ?(w)_ We refer to (7) as thtRF FitnessModel (MFM).
Junction tree[9]. This is because, the junction tree based | [25] a Univariate MFM was used that assumes no
EDA has atriangular structureof dependency and thereforejnteractions between variables ii. The graphG for such
requires interaction between variables of order at least & js an edge-less graph, where there aingleton cliques
However, the two dimensional Ising spin glass problem has@a _ {X;}. For eachC; the clique potential function was
bivariate structure and therefore has a maximum clique ordggfined asy;;, where the; are parameters associated with

of 2. [22] argues that the Kikuchi approximation approach to. known as theMRF parametersTherefore[/(z) in terms
estimate the distribution used by MN-EDA can represent thgr clique potential functions was

bivariate dependency as an exact factorisation, and therefore
has an advantage over junction tree based EDAs. This Ur) = a1@1 + oz + ... + any 8
also can represent the exact factorization from the structure

) ) . . . . .completely determine the probability distribution.
:2 ?:Xl‘osrg;t?;npotentlal functions. This is described in deta|F In this paper, we definé/(z) for the two dimensional

Ising spin glass problem (figure 1). Here, each spin variable,
I1l. M ARKOV RANDOM FIELD APPROACH TO oi; € 0, can be seen as a random variat¥g;, in a set,X.
MODELLING THE ISING SPIN GLASS PROBLEM Therefore, each solutioX = z can be seen as the string

Markov Random Fields (MRF) is a branch of probabil-"éPresentation of the matrix
ity theory. Also known as Markov Network or Undirected
Graphical Models, MRF belongs to the general class of
Probabilistic Graphical Model{PGM) [16], [27], [8], [5]. 21, %225 -0 T2y
Another form of PGM is Bayesian Networks (also known :
as Directed Graphical Models), which has been widely
exploited to model the distribution in EDAs [2], [7], [19],
[12]. 1A clique is a set of mutually neighbouring nodes in gragh

—H(o) = Z

l l
=1 j=

Jiji(i41) 405 +1)) 3)

r = {$11,$127~--75€1la

xl1;$l27~--7xll} (9)



Here, the total number of variables M is n = [2. For such all MRF parameters andl is the matrix of solution values
x, the fitness function to be maximised is in D.
! For the minimal MFM,F" will be an N dimensional vector
flz) = Z Z (Jij 41y %1% 41y + JigiGie1)TijTa+n)  containing—in(f(x)) of the solutions inD, 6 will be a 2n
i=1 j=1 dimensional vector of all MRF parametetsand A will be
(10) an N x 2n dimensional matrix, where each element of
Each variableX;; € X interacts with four of its immediate 4 is the product of the alleles front” solution associated

neighbours. Figure (1) can be seen as an undirected graphi¢éh s*" parameter of the model. For the complete MFM,
structure,G, for X. There are total oRn order 2 cliques ¢ = {«, 3} will be a vector of3n MRF parameters, as there
in G. For each clique{X,;, X, ;}, we assign a potential Will be 2n parameters in sef andn parameters in set,
function 3;;.;/j:z;;x;» and therefore the energy/(x) in and A will be an N x 3n dimensional matrix accordingly.
MFM (7) for suchX will be Depending on the relationship betweahand the length
of 4, the system will be under-, over-, or precisely-specified.
! A standard fitting algorithm can be used to give a maximum
Ulz) = ZZ (Bij. (i41)5Ti5 T i1y + likelihood estimation of thed. For mathematical reasons,
i=1 j=1 {-1,1} are used as the values of in U(z), rather than
Biji(a1) T Ti(j+1)) (11) {0, 1}. This is the standard practice in MRF modelling [10].
Here, eachd;; ;v is the MRF parameter associated with V. USING A METROPOLIS METHOD TO SAMPLEMRF
bivariate clique{X;;, X, ;/}. It is important to distinguish So far we have shown how fo construct a MEM for the
betweerﬁij’i/j/ in U(QIJ) with Jijﬂ-/j/ in f(.’I}) ﬁij,i’j’ is a real . . . .
valued parameter of the model and will be estimated from Iglng spin glass problem and use it to approximate the MRF

set of solutions. This contrasts with the coupling Constangaramete_rs. Once we get th_e parameters of the model, _the
Jiuy € {—1,1}. We usef to denote the set of atn jpd, p(x), is completely specified. Therefore, the next step is
bi\J/}arjiate MRF’ parameters;. ; to samplep(x). In this section we developzero temperature

g gl

Depending upon the number and order of cliques cor{\ZIetrOpOIIS methodor this purpose.

sidered, we may construct d|ff_e_rent MFMs fTom a s_lngIeA_ Zero Temperature Metropolis method

graph G. For example, in addition to potential functions

Bij.irjrxijzs i for order 2 cliques{X;;, X, ;- }, we can also Metropolis methods are a class bfarkov Chain Monte

assign a potential functiony,;=,;, to each singleton clique Carlo (MCMC) algorithms [11] that have been widely used

{X;;}. The energy for the resulting MFM can be written ago sample from a probability distribution. It tries to minimise
the energy of the Gibbs distribution. In our case, it results
in maximisation of fitness (7). Here we present a variant

l
Ulz) = ZZ (Qijmi + Bij (i30T T i1y, + which we <_:aIIBitWise Zero-Temperature Metropolis method
i=1 j=1 (BZTM). Given a set of MRF parameter, calculated from
Bisi(i41) i Ti(i41)) (12) @ set of solutionsD, it is then possible to sample a new

solution,z® = {«9,x9, ..., 2%} using the BZTM as shown in

We usea to denote the set of alt univariate parameters (Figure 2). For the complete MFM presented in (12)/
Q.

We refer to (11) as theninimal MFM and (12) as the
complete MFMfor the two dimensional Ising spin glass
problem. We usé& to denote the full set of parameters for
either MFM. 1) Generate a solution® = {z¢, 3, .., 2%} at random.
2) Repeat:

a) Setx!™P = z°,
b) Fori=1ton

Bitwise Zero-Temperature Metropolis method (BZTM)

IV. UsSING MFM TO LEARN THE MRF PARAMETERS

The basic idea here is to use a set of solutidnsto
approximate the parameteis, of the MRF. Let us explain

this in more detail. i) Mutate variablez¢ to obtain the mutated
Each solution in a given population provides an equation B solution z’. . .
satisfying the MFM (7). Selecting a set of solutior3 ii) SetAU = U(z O)* Uogx )-
consisting of N promising solutions from a populatioR !”) if AU <0 setz® = z”".
therefore allows us to estimate the distribution by solving ZUntll_zEtmp = 2%
the system of equations: 3) Terminate with answer®.
F = A0T (13)

Here, F is the v r containing-1 f all solution
) ere, k" 1s the vector conta & n(f(a?)) 0 _a solutions Fig. 2. The pseudo-code of the Bitwise Zero-Temperature Metropolis
in D, 6, the unknown part of the equation, is the vector ofnethod



can be determined explicitly from the following formula:
AU = (xfj — .’L‘gj) (Oli + ﬁ(i_l)j,ijxfifl)j—k

Big (i+1)i% (i+1); + BitG-1),65%5-1) + 5i<j+1>,ij$f<j+1>)
(14)
Similarly, for the minimum MFM presented in (110U

can be determined explicitly from the following formula:
AU = (‘”?j - x%) (ﬁ(ifl)jaijx(()ifl)j"i_

Bij(i+1)i%(i+1); + BiGi-1),i%i(—1) 5z‘<j+1),iﬂ7§’<j+1>)
(15)
This significantly reduces the cost of calculatidg/.

B. DEUM with the Metropolis method

Each instance was generated by randomly sampling the

coupling constanf;; € {+1, —1}. The optimum solution for

each instance was verified by using the Spin Glass Ground

server, provided by the group of Prof. Michael Juenfjer

The parameters for Is-DEUM were chosen empirically.
These experiments are divided into two parts:

1) A performance comparison with other EDAs
2) A performance comparison between complete and min-
imal MFM

1) Experiments on the performance comparison with other
EDAs: The aim of this experiment is to compare the per-
formance of Is-DEUM with that of other EDAs. Mainly, the
comparison is made with the results presented in [22], where
the performance of five different EDAs, both using MRF and
Bayesian networks, have been presented for similar instances
of Ising spin glass problem. Namely, they were MN-EDA

Now that we know how to sample the MRF parameters, Wgising Kikuchi approximation approach), MN-EBAusing
can formulate DEUM for the Ising spin glass problem (Iskikuchi approximation with fixed structure as Is-DEUM),
DEUM) As the Is-DEUM described here Implements thWN_FDA (using junction graph approach), EBN%(USlng

Metropolis methods as the sampling technique, we denogyesian network with:2 metrics) and MT-FDA (using a
it as IS'DEUMH. (Figure 3) shows the workflow of Is- mixture of tree model)_

DEUM,,. Notice that the Is-DEUM, only has a single

Is-DEUM with Metropolis sampler (Is-DEUM ,,,)

1) Generate a populatio?, of size M at random.
2) Select a seiD consisting of N fittest solutions from
P, whereN < M.
3) Calculate the MRF parametetdy fitting MFM to D.
4) Repeat:
Samplez® = {z9,29$, ...., x5} using BZTM
:Until R iteration completes Of («°) is optimal/good
enough
5) Terminate with answer®.

Fig. 3.
sampling method

The pseudo-code of the DEUM for Ising model with Metropolis

We ran 100 independent runs of Is-DEWMfor each
of the 12 instances and recorded the number of fithess
evaluations needed to find the optimum. The minimal MFM
(11) was used in Is-DEUI and the whole population was
selected for estimation of MRF parameters, i.e, we take
D = P. Therefore, the selection sizZ&¥ was equal to the
population sizeM. To determine M, we started with the
minimum number of\/ needed to make the system of linear
equation specified (in case of (11) the minimuh is 2n).
Then we gradually increased it, until a success rate of over
95% was achieved (in other words, until more than 95 out of
100 runs found the optimum). The resulting was taken as
the population size for that particular instance. The maximum
number of allowed repetitions?, for BZTM was set to 3000.
Is-DEUM,,, was terminated if the optimum was found or
R repetitions of BZTM were done. As, at the end of each
BZTM, the fitness evaluation was done in order to calculate
f(z°), the number of fitness evaluations was calculated as

generation. Also in step 4 of the algorithm, we repeatedly udBe sum of population size and the .total repetitions of the
BZTM to sample different:°. We found that by repeatedly BZTM needed before finding the optimum.

sampling thez® with different random start, the optimum Table (I) shows the experimental results on the perfor-
solution was found in first generation (as we shall show iffance of Is-DEUM, on all 12 instances of the Ising prob-
the next section§. This therefore eliminates the necessity of€MSs. The first column shows the problem instances (PI). The

creating a child populatio.

C. Experiments and Results

second and third column shows the average number of fithess
evaluation (FE) and the corresponding standard deviation
(SD) over the 100 runs, the fourth column shows the success

Experiments were performed with three different sizes dite (SR) and the fifth column shows the population size (PS)

two dimensional Ising Spin Glass system. They wére 4
(n =16), 6 x 6 (n = 36) and8 x 8 (n = 64). Four random

used for the corresponding instances.
The performance of Is-DEUN was significantly better

instances of each problem size were used for the experimetitan that of other EDAs presented in [22], both in terms

of success rate and the number of fitness evaluation needed

2This has also been illustrated in [26] for the Onemax problem, whergp find the optimum. In pa_rticu|a_r' the best EDA reported

a Zero-Temperature Metropolis algorithm was able to find the solution i

single generation

th [22] was MN-FDA’ with average fitness evaluation and

3Though it is straightforward to form a child population once we know

how to sample from the MRFs (see [26] for an example)

4http://www.informatik.uni-koeln.de/lfuenger/research/sgs/sgs.html



TABLE |
PERFORMANCE OFIS-DEUM,,, WITH MINIMAL MFM FOR12
INSTANCES OFISING SPIN GLASS PROBLEM

for Is-DEUM,,, with the complete MFM was greater than
that of Is-DEUM,, with the minimal MFEM. Also in sixth
column of Table(ll), the ratio of extra time (t-ratio) needed

[ Pl | FE | SD [ SR] PS| by complete MFM in comparison to minimal MFM is shown
I-16-1 | 41.53 | 1.14 | 100 | 40 for each instance. For each instance, the t-ratio is equal to
I-16-2 | 60.44 | 13.96 | 100 | 50 the average time taken by Is-DEUMwith complete MFM

1-16-3 | 52.57 1.96 | 100 | 50

64 4166 | 138 100 40 divided by thg average time tqken _by minimal MFM. For
3211 12619 4887 | 1001 90 n = 16 the difference in time is fairly small, however as
[-32-2 | 107.45| 21.07 | 100 | 90 n grows the t-ratio grows and for = 64 the time taken

I-32-3 | 9859 | 9.98 | 100 | 90 by complete MFM is almost double to the time taken by

1-32-4 | 115.66 | 28.82 | 100 | 90

1-64-1 | 231.66 | 35.28 | 100 | 200
1-64-2 | 361.87 | 170.24 | 100 | 200

minimal MFM. This result is expected, as the computational
time to calculate the MRF parameters grows polynomially

1643 | 362.6 | 177.751 100 | 200 with the size of the matri¥ in the system of linear equations
I-64-4 | 275.66 | 92.15 | 100 | 200 (13). Matrix A grows as selection siz& = M grows and
N grows as the number of MRF parameters in the MFM
) grows.
success rate af20.17 and 98.5% respectively forn = 16, This result shows that, without losing the quality of the

1586.02 and 95.25% respectively forn = 36 and,6110.8  gq|ytions, using the minimal MFM instead of the complete
and 95% respectively forn = 64. Whereas, for Is-DEUM, \em; results in reduced computational cost. We will use the

they were49.05 and 100% respectively forn = 16, 111.96  minimal MFM for the rest of the experiments presented in
and 100% respectively forn = 36 and 296.69 and 100%  this paper.

respectively forn = 64. This is a significant improvement
in the performance. VI. USING A GIBBS SAMPLER TO SAMPLEMRF
2) Experiment on the performance comparison between So far we have shown that by sampling the MRF using a
complete and minimal MFMThe aim of this experiment is Metropolis method, Is-DEUM was able to solve Ising spin
to show that, for the Ising spin glass problem, the use @flass systems of size = 16, n = 32 andn = 64. However,
minimal MFM instead of complete MFM does not decreaséor problem sizes ofi = 100 and higher, Is-DEUM with the
the quality of the solution, but does reduce the computation®etropolis method was not able to find the optimum solution.
cost needed to find the solution. In this section we describe another sampling method known
Table (Il) shows the experimental results on the perforas Gibbs Sample(GS) and incorporate it in Is-DEUM. The
mance of Is-DEUM, using the complete MFM (12) onall  aim here is to solve Ising spin glass problems of larger size.
instances of the Ising spin glass problems. The experimentak also present experimental results on the performance of
this version of I1s-DEUM.

TABLE I
PERFORMANCE OFIS-DEUM ; WITH COMPLETEMFM FOR 12 A. Gibbs sampler
INSTANCES OFISING SSINIGEASS BROBLEM As with the Metropolis method, the Gibbs sampler (GS)
[Pl [ FE [ SO [ SR[PS[ T | [3] is a class of MCMC _alg_orithm that has been Widely used
1611 6145 | 127 1 1001 60 | L1l to sgmple probab|l_|ty dlstr|but|ons_. In order to explain GS
I-16-2 | 67.43 | 920 | 100 | 60 | 1.02 we first need to define the formulation of marginal probability
I16-3 | 6264 | 358 | 100] 60 | 1.02 p(z;;) for each variableg;;, from the jpdp(z).
I-16-4 | 6144 | 1.38 | 100 | 60 | 1.07 J (N -
We usez™ to denotex having a particularz;; = +1,
[-32-1 | 161.52 | 47.22 | 100 | 130 | 1.33 imilarl = o denotexr having o — —1. W
1-32-2 | 146.52 | 17.06 | 100 | 130 | 1.27 Similarly, we usex ~ 10 denoter having z;; = —1. Ve
I-32-3 | 137.61| 8.22 | 100 | 130 | 1.29 denote the probability that the variable in positigns equal
1-32-4 | 148.64 | 19.79 | 100 | 130 | 1.34 tol byp(;E” = 1) C|ear|y,p($ij = —1) =1 —p(([;ij = 1)
1-64-1 | 284.80 | 49.06 | 100 | 250 | 2.10 We can now write
I-64-2 | 376.45| 132.26| 99 | 250 | 1.76 N
1643 | 33409 96.76 | 100 | 250 | 1.55 (25 = 1) = p(z™) (16)
I-64-4 | 319.86 | 115.15| 100 | 250 | 1.87 P\ = 1) = plat) + p(z—)

setups were similar to that of Is-DEUMusing the minimal Substitutingp(z) from (4) and cancelling the, we get

MFM (11) described in previous sub-section. The minimum e—Ulzt)/T

number of population size (PS) needed to make the system of p(xi; =1) = e UE/T L UG )/T (17)
linear equation specified for (12) wag = 3n, as compared

to M = 2n for (11). Therefore as we can see from Table "’ 1

(I1), the optimum population size needed for all 12 instance plaij =1) = 7 UG U N7 (18)

for Is-DEUM,,, with the complete MFM was greater than .
that needed by Is-DEUM with the minimal MFM (shown As U(z™) andU(2™) agree in all terms other than those
in Table (1)). As a result, the number of fitness evaluationsontainingz;;, the common terms in botti(z*) andU (z ™)



drop out and we get the following expression as the estimatgs-DEUM with Gibbs Sampler (Is-DEUM ,)

of the marginal probability for;; = 1. 1) Generate a populatio®, of size M

1 2) Select the seD consisting of N fittest solutions from

Plag =1) = 14 e2Wii /T (19) P, whereN < M.
where,W;; for (11) is 3) Calculate the MRF parametetsy fitting MFM to D.
4) Repeat:
Wij = Bij,i+1)T(+1)j T BigiGG+1) Tigi+1)+ Generater® = {z9,23, ....,z%} using BGS
:Until R tieration completes Of («°) is optimal/good
Bi-1)3,ii%(i-1)5 + BiGi-1),i5Ti(i-1) (20) enough

Note that, asT’ — 0, the value ofp(z;; = 1) tends to a ) Terminate with answer’.
limit depending on théV;;. If W;; > 0, thenp(z; =1) — 0
asT — 0. Conversely, ifiV;; < 0, thenp(z; = 1) — 1 as
T — 0. If Wi =0, thenp(z; = 1) = 0.5 regardless of Fig. 5. The pseudo-code of the DEUM for Ising model with Gibbs Sampler
the value ofT". Therefore, thd¥V;; are indicators of whether
the z;; at the positionij should bel or —1. This indication
becomes stronger as the temperature is cooled towards zejiass problem, by repeatedly sampling tifewith different

Now let us describe a variant of GS, which we call theandom starts, Is-DEUMwas consistently able to find the
Bitwise Gibbs Sample(BGS). Pseudo code for BGS is optimum solution in the first generation.
shown in (Figure 4). It starts by randomly generating a
solution, then calculates(x;;) for a chosen;; and replaces C. Experiments and Results
it by samplingp(x;). This continues until a termination  gyheriments were conducted with three different sizes of
criterion is satisfied. The temperature coeffici€rif,in GS Ising Spin Glass problerm0 x 10 (n = 100), 16 x 16 (n =
can be used to control the convergencepéfi;). Here, o9rgy and20 x 20 (n = 400). Four random instances of each
we starts with high temperaturd, then at each iteration, nohlem size were used for the experiment. Each instance
gradually decrease it using a cooling schedule so as {p,q generated by randomly sampling the coupling constant
gradually converge(z;;) to its limit. The DEUM; algorithm Jij € {+1,—1}. The optimum solution for each instance
described in [23], [24] also uses temperature to control thgas verified by using Spin Glass Ground server, provided
convergence of the marginals. by the group of Prof. Michael JuenggrThe parameters for
each algorithm were chosen empirically.

We divide our experiments into two parts:

Bitwise Gibbs Sampler (BGS)
1) A performance comparison with other EDAs

1) Generate a solution® = {zf, 23, .., 27} at random. 2) A performance comparison with Repeated Bitwise
2) setr =0 and also set the initial value fdr. Gibbs Sampler (RBGS)

3) Repeat:
a) Setr!™P = gx°,
b) Fori=1ton

1) Experiment on the performance comparison with other
EDA: We made 30 independent runs of Is-DEYJlibr each
of the 12 instances of the Ising spin glass problem and

1) Increaser by 1 recorded the number of fitness evaluations needed to find
ii) Decreasel’ 5 the optimum. The minimal MFM (11) was used to estimate
iiif) Setzf =1 with probability p(zf = 1) the energy of the Gibbs distribution. The population size and
:Until z*7? = 2. selection size for Is-DEUNMwere 100 and 250 respectively
4) Terminate with answer®. for n=100, 3000 and 700 respectively for n=256 and 8000

and 1000 respectively for n=400. The temperatiirtor the

BGS was set tdI' = 1/0.0005r, wherer is the current

number ofz¢ samplings done in BGS (see Figure (4)). As

r increases;’ decreases and the solutiafi will converge

to a particular value for each?. The maximum number of

B. DEUM with Gibbs Sampler allowed repetitionsR, for BGS was set to 500. Is-DEUM
Now that we know how to sample the MFM using awas terminated if the optimum was found @r repetitions

Gibbs Sampler, we can incorporate it in DEUM. Figure (5Pf BGS were done. As, at the end of each BGS, a fitness

shows the workflow of Is-DEUM with a Gibbs Sampler (ls_evgluation was d_one in order to calculgter®), the number )

DEUM,). Notice that, as with Is-DEUN (shown in Figure o_f fithess evaluations was_qalculated as the sum of population
size and the total repetitions of the BGS needed before

(3)), Is-DEUM, only has a single generation. As shownfinding the optimum.

in [26], we could easily incorporate a multiple generation

scheme in Is-DEUM. We found that, for the Ising spin  Shttp:/www.informatik.uni-koeln.de/ljuenger/research/sgs/sgs.html

Fig. 4. The pseudo-code of the Bitwise Gibbs Sampler



Table (lll) shows the experimental results on the perpopulation of solution. Here we show how we can directly

formance of Is-DEUN on all 12 instances of the Ising apply GS to the fitness function and sample
spin glass problems. The first column shows the problem Given the fithess function (10), the marginal probability
p(z;; = 1) for any z;; = 1 can also be estimated directly as

TABLE Il
1
PERFORMANCE OF|S-DEUM9 ON ALL 12 INSTANCES OFISING _ _
p(rig =1) = ——55—= (21)
PROBLEM “ 14 e /T
[Pl [ FE [ SD [FEPS] 1T [ SR Where,
I-100-1 | 1008.90] 7.96 | 8.90 | 639 x 10° | 100
111002 | 1002.73| 1.82 | 2.73 | 149 x 105 | 100 Lij = J6-1)j,i5%-1)5 + Jij,i+1)5T+1);F
1-100-3 | 1010.97 | 10.71 | 10.97 | 723 x 10° | 100
11004 | 100320 2.32 | 3.20 | 156 x 10° | 100 Jii-1),ii%iG-1) + JiG+1),i5 Ti(i+1) (22)

I-256-1 [ 3015.27 [ 17.45 | 15.27 [ 115 x 10°> | 100
1-256-2 | 3003.23 | 2.96 3.23 | 213 x 10* | 100
I-256-3 | 3054.28 | 66.17 | 54.28 | 351 x 10° 97

I-256-4 | 3007.50| 6.05 | 7.50 | 639 x 10* | 100 — : :
14001 | 809362] 113801 9362 | 152 < 10° | 97 Repeated Bitwise Gibbs Sampler algorithm (RBGS)

I-400-2 | 8036.47 | 34.87 | 36.47 | 632 x 10° | 100 1) Repeat:
I-400-3 | 8058.77 | 54.14 | 58.77 | 103 x 10° | 100 S II lution® — {20 2 Y ina BGS
1-400-4 | 8047.07 | 42.25 | 47.07 | 755 x 10° | 100 ample a solution” = {z7, x5, ..., 7, } using
:Until R iteration completes Of («°) is optimal/good
enough
2) Terminate with answer®.

We can use (21) in BGS (Figure (4)) as formulation of

instances (PI). The second and third column shows the aver-
age number of fitness evaluation (FE) and the corresponding
standard deviation (SD) over the 100 runs. The fourth colums
shows the average number of fithess evaluation without

countlng the number of eV_aluat'on needed to evaluate tl&%. 6. The pseudo-code of the Repeated Bitwise Gibbs Sampler algorithm
population (FE-PS). The fifth column shows the average

Intema| Ca|CU|atI0n (IT) Of IS'DEUMg before f|nd|ng the p(x”) and Samplero As the performance Of BGS heav"y
solution. Internal calculation is the total number of marginajepends on the initial solution, we repeatedly ran the BGS
probability calculations done over all repetitions of BGSyjth different random starts. Figure (6) presents the workflow

The sixth column shows the success rate (SR) of findingf the repeated BGS algorithtRBGS). The temperatur®
the optimum over 100 runs.

Previously, BOA and hBOA have been applied to Ising TABLE IV
problem instances of size = 100, n = 256 andn = PERFORMANCE OFIS-DEUM AND RBGSFORISING SPIN GLASS
400 [18], [17], [20]. Their performances were reported to PROBLEM OF SIZEn = 100, n = 256, AND n = 400
be comparable and sometime better than state of the art ~DEGH —
algorithms for solving Ising spin glass problems. Bi FEPS s T TSR FE T SR

Our results show that the number of fitness evaluationS/ oo 645 T 217 x 10° | 100 || 653 | 330 x 10° | 100
needed to find the solution for Is-DEUMvas significantly [1-256 [ 20.07 | 136 x 10° | 99 || 37.19 | 284 x 10° | 99
less than that reported for BOA and hBOA. For example for 1-400 || 58.98 | 984 x 10° | 99 [[ 94.67 | 114 x 10° | 87
n = 400, the average fitness evaluation for hBOA (with a
hill climber) was aboutl0> (BOA was not able to find the for the BGS was set t&' = 1/0.005r, wherer is the current
solution forn = 400). Whereas, for Is-DEUMthis was only number ofz? samplings done in BGS (see Figure (4)). Note
about 8000. that, the constant associated withhere is0.005 which

However, for larger instances of Ising spin glass problenis greater than that used in Is-DEUMThis was simply
such asn = 400, the computational time for sampling®  because, withD.005 the performance of RBGS was better
using BGS gets higher and therefore the repeated samplitigan that with0.0005. The maximum number of allowed
of x° dominates the computational time taken by the rest oEpetitionsR was set to 500.
the process in Is-DEUW! It even dominates the time takento As at the end of each repetition of BGS, a fitness evalua-
solve the system of equations. Therefore, the performancetin (FE) was done to check the quality of sampled we
Is-DEUM, for Ising spin glass problem should be evaluatedecord the total number of BGS repetitions as the number
in terms of the number of internal calculations done by thef fitness evaluations for RBGS. However, In contrast to
BGS, rather than by the number of fitness evaluations. ARBGS, Is-DEUN, had to evaluate a population of solutions,
BOA and hBOA do not have such an internal calculationvhich, although taking a negligible amount of time in
process, it is difficult to compare them with Is-DEYM comparison to the time taken for a sampling using BGS,

2) Experiment on the performance comparison with Réiugely contributed to the number of fithess evaluations for
peated Bitwise Gibbs Sampler (RBG3ir Is-DEUM,, we Is-DEUM,. Therefore, for Is-DEUN,, we use the fitness
have used GS to sample the MRF which we estimate from tlewaluation without counting the evaluation of the population




(FE-PS) to compare with FE of RBGS. On the other hand, thgs]
internal calculation of BGS (IT), is the most dominant factor
for the computational cost in both algorithms and therefor
we also record the IT for RBGS and compare it with that of
Is-DEUM,. )

Table (IV), shows the average of fithess evaluations (FEf ]
(FE-PS for Is-DEUN), internal calculation (IT) and success
rate (SR) for three different sizes of Ising spin glass problenitC]
The result for Is-DEUN is the average taken from Table
(1) for each problem size.

Our results show that in terms of both fitness evaluatior?!
and internal calculation taken to find the optimum, the
performance of Is-DEUM was better than that of RBGS. [13]
Also note that the success rate for Is-DElMas 99%
in comparison to87% for RBGS for n = 400. These |14
results show that sampling from the MRF estimated from
the population instead of the actual fitness function results
in better performance of the algorithm.

Let us explain the above results. The fithess landscap]
of the Ising spin glass problem contains large number of
plateaus. This is because the values of coupling constants,
J, relating two spin variables are restricted to -1 and +1. Ag6]
RBGS usesJ to estimatep(z;;), it takes time to overcome
all the plateau. However, Is-DEUMuses real-valued MRF
parametersl to estimatep(z;;). 5 therefore alters the fitness
landscape by introducing some variation to the plateau. THE!
result is more efficient searching of the fithess landscape by
the sampling algorithm.

[17]

[19]
VIl. CONCLUSION

Is-DEUM differs from other EDAs in two ways, 1) Use of
a model of the fitness function (MFM) to estimate the modéf¥
parameters by fitting it to a set of solutidn and 2) Use of
MCMC algorithms to sample the MRF. Our experimental
results suggest estimating and sampling the distribution AU
this way may significantly improve the performance of an
EDA. [22]

The Is-DEUM presented here (and also other DEU
algorithms developed so far) assumes the structure of the
MRF to be fixed. It will be interesting to extend DEUM to
incorporate a structure learning algorithm. This will allow
DEUM to be applied to a wider range of multivariatejzq
optimization problems.
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