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Abstract— Markov Random Field (MRF) modelling tech-
niques have been recently proposed as a novel approach to prob-
abilistic modelling for Estimation of Distribution Algorithms
(EDAs). An EDA using this technique was called Distribution
Estimation using Markov Random Fields (DEUM). DEUM was
later extended to DEUMd. DEUM and DEUM d use a univariate
model of probability distribution, and have been shown to
perform better than other univariate EDAs for a range of
optimization problems. This paper extends DEUM to use a
bivariate model and applies it to the Ising spin glass problems.
We propose two variants of DEUM that use different sampling
techniques. Our experimental result show a noticeable gain in
performance.

I. I NTRODUCTION

Estimation of Distribution Algorithms (EDAs) [14] is a
well-established topic in the field of evolutionary algorithms.
EDAs are motivated by the idea of discovering and exploiting
the interaction between variables in the solution. An EDA
maintains theselectionandvariation concepts of evolution.
However, it replaces the crossover and mutation approach
to variation in a traditional GA by estimating and sampling
a probabilistic model of promising solutions. EDAs are
classified as univariate, bivariate or multivariate [7] according
to the type of interaction between variables that can be
represented by the probabilistic model.

In [25] an algorithm using a Markov Random Field (MRF)
(also known as an undirected graphical model or a Markov
Network) approach [16], [8], [5], [15] to probabilistic mod-
elling has been proposed. This was called Distribution Esti-
mation Using Markov Random Field (DEUM). DEUM was
later extended to DEUMd [23], [24]. DEUM and DEUMd

were presented as novel univariate EDAs and were shown
to perform better than other EDAs of their type over a wide
range of optimization problems [25], [23], [24].

This paper extends DEUM to bivariate problems and
applies it to a well known Ising spin glass problem [6].
Spin glasses have a range of practical applications in both
statistical physics and artificial intelligence. Due to their
interesting properties, such as symmetry and a large number
of plateaus, they have also been widely studied by the GA
(and EDA) community [18], [17], [21], [22].

The outline of the paper is as follows. Section II describes
the Ising spin glass problem and gives some background on
previous applications of EDAs to it. Section III presents our
approach to probabilistic modelling and defines the structure
and parameters of our model for Ising spin glass problem. In

section IV, we describe how to estimate the model parameters
from the population of solutions. Section V presents the
results with Is-DEUM using a Metropolis sampling method.
Section VI presents results with Is-DEUM using a Gibbs
sampling method. Section VII presents some discussion of
the results and concludes the paper.

II. I SING SPIN GLASS PROBLEM AND EDA

The general Ising spin glass problem can be described by
an energy function,H, defined over a set of spin variables
σ = {σ1, σ2, ..., σl} and a set of coupling constantsh andJ
as

H(σ) = −
∑
i∈L

hiσi −
∑

i<j∈L

Jijσiσj (1)

Here, each coupling constanthi ∈ h andJij ∈ J relate to

a single spinσi and a pair of spinsσi andσj respectively.
Each spin variableσi can be either +1 or -1. One specific
choice of value for the spin variable is called a configuration.
L is a lattice ofn sites.

Given coupling constantshi andJij , the task in the Ising
spin glass problem is to find the value for eachσi that
minimises the energy,H. For the purpose of this paper, we
only consider the coupling constants relating pairs of spin
variables and therefore sethi = 0, ∀i ∈ L. Additionally, we
restrictJij to take only two valuesJij ∈ {+1,−1}. Here, we

Fig. 1. A structure showing the interaction between spins for a two
dimensional Ising Spin Glass system with4× 4 spins



consider the spin glass system on a two dimensional lattice
consist ofn = l× l sites, where each spin variable interacts
only with its nearest neighbouring variables on atoroidal
lattice (Figure. 1). The Hamiltonian specifying the energy
for this system can be written as

H(σ) = −
l∑

i=1

l∑
j=1

(
Jij,(i+1)jσijσ(i+1)j+

Jij,i(j+1)σijσi(j+1)

)
(2)

where,i+ 1 = 1 if i = l and j + 1 = 1 if j = l.

Here, eachJij,i′j′ is the coupling constant in two dimen-
sional lattice relating to spinσij andσi′j′ . For convenience,
we reformulate this as a maximization problem and so seek
to maximise

−H(σ) =
l∑

i=1

l∑
j=1

(
Jij,(i+1)jσijσ(i+1)j+

Jij,i(j+1)σijσi(j+1)

)
(3)

In the context of EDAs, spin glass systems on a two dimen-

sional lattice have been of particular interest to researchers. In
particular, [18], [17], [20] showed that hierarchical Bayesian
Optimization Algorithm (hBOA) could efficiently solve these
problems outperforming other algorithms. [21] used the Ising
spin glass problem as a test problem for the two algorithms
Markov Network Estimation of Distribution Algorithm (MN-
EDA) and Markov Network Factorised Distribution Algo-
rithm (MN-FDA) and showed that their performance is better
then that of other EDAs based on Bayesian networks. Also
[13] stated that, although the two dimensional Ising spin
glass problem is in the class ofAdditively Decomposable
Functions (ADF), it cannot be efficiently represented as a
Junction tree[9]. This is because, the junction tree based
EDA has atriangular structureof dependency and therefore
requires interaction between variables of order at least 3.
However, the two dimensional Ising spin glass problem has a
bivariate structure and therefore has a maximum clique order
of 2. [22] argues that the Kikuchi approximation approach to
estimate the distribution used by MN-EDA can represent the
bivariate dependency as an exact factorisation, and therefore
has an advantage over junction tree based EDAs. This
argument applies to the DEUM algorithms as well, as they
also can represent the exact factorization from the structure
in the form of potential functions. This is described in detail
in next section.

III. M ARKOV RANDOM FIELD APPROACH TO

MODELLING THE ISING SPIN GLASS PROBLEM

Markov Random Fields (MRF) is a branch of probabil-
ity theory. Also known as Markov Network or Undirected
Graphical Models, MRF belongs to the general class of
Probabilistic Graphical Models(PGM) [16], [27], [8], [5].
Another form of PGM is Bayesian Networks (also known
as Directed Graphical Models), which has been widely
exploited to model the distribution in EDAs [2], [7], [19],
[12].

MRF regards a solutionx = {x1, x2, .., xn} as a set
of values taken by the set of random variablesX =
{X1, X2, .., Xn}. Given an undirected graph,G, where each
node represents a variableXi ∈ X and each edge represents
an interaction between variables inX, the joint probability
distribution (jpd), p(X = x) (or simply p(x)), can be
expressed as a Gibbs distribution

p(x) =
e−U(x)/T∑
y e

−U(y)/T
(4)

using the Hammersley-Clifford theorem [4]. HereU(x) (or

more preciselyU(X = x)) is an energy function defined as

U(x) =
m∑
i

ψi(ci) (5)

where eachψi(ci) is a function defined over a clique1 ci in

G known as clique potential function.m is the total number
of cliques inG. T is a temperature coefficient.

In [1], MRF theory was used to provide a formulation of
the jpd, p(x), that relates solution fitness,f(X = x) (or
simply f(x)), to the energyU(x). To be precise:

p(x) =
f(x)∑
y f(y)

≡ e−U(x)/T∑
y e

−U(y)/T
(6)

from which an equation for each solution,x, can be derived

− ln(f(x)) = U(x) (7)

For simplicity, temperature,T , from (6) is set to 1.

U(x) gives a full specification of the jpd (4), so it can
be regarded as a probabilistic model of the fitness function.
In particular, minimisingU(x) is equivalent to maximising
f(x). We refer to (7) as theMRF FitnessModel (MFM).

In [25], a Univariate MFM was used that assumes no
interactions between variables inX. The graphG for such
X is an edge-less graph, where there aren singleton cliques
Ci = {Xi}. For eachCi the clique potential function was
defined asαixi, where theαi are parameters associated with
Xi known as theMRF parameters. Therefore,U(x) in terms
of clique potential functions was

U(x) = α1x1 + α2x2 + . . .+ αnxn (8)

Being the unknown part ofU(x), the MRF parameters,αi,

completely determine the probability distribution.
In this paper, we defineU(x) for the two dimensional

Ising spin glass problem (figure 1). Here, each spin variable,
σij ∈ σ, can be seen as a random variable,Xij , in a set,X.
Therefore, each solutionX = x can be seen as the string
representation of the matrix

x = {x11, x12, ..., x1l,

x21, x22, ..., x2l,
...

xl1, xl2, ..., xll} (9)

1A clique is a set of mutually neighbouring nodes in graphG



Here, the total number of variables inX is n = l2. For such
x, the fitness function to be maximised is

f(x) =
l∑

i=1

l∑
j=1

(
Jij,(i+1)jxijx(i+1)j + Jij,i(j+1)xijxi(j+1)

)
(10)

Each variableXij ∈ X interacts with four of its immediate

neighbours. Figure (1) can be seen as an undirected graphical
structure,G, for X. There are total of2n order 2 cliques
in G. For each clique{Xij , Xi′j′}, we assign a potential
function βij,i′j′xijxi′j′ and therefore the energy,U(x) in
MFM (7) for suchX will be

U(x) =
l∑

i=1

l∑
j=1

(
βij,(i+1)jxijx(i+1)j+

βij,i(j+1)xijxi(j+1)

)
(11)

Here, eachβij,i′j′ is the MRF parameter associated with
bivariate clique{Xij , Xi′j′}. It is important to distinguish
betweenβij,i′j′ in U(x) with Jij,i′j′ in f(x). βij,i′j′ is a real
valued parameter of the model and will be estimated from a
set of solutions. This contrasts with the coupling constants
Jij,i′j′ ∈ {−1, 1}. We useβ to denote the set of all2n
bivariate MRF parametersβij,i′j′ .

Depending upon the number and order of cliques con-
sidered, we may construct different MFMs from a single
graph G. For example, in addition to potential functions
βij,i′j′xijxi′j′ for order 2 cliques{Xij , Xi′j′}, we can also
assign a potential function,αijxij , to each singleton clique
{Xij}. The energy for the resulting MFM can be written as

U(x) =
l∑

i=1

l∑
j=1

(
αijxij + βij,(i+1)jxijx(i+1)j+

βij,i(j+1)xijxi(j+1)

)
(12)

We useα to denote the set of alln univariate parameters
αij .

We refer to (11) as theminimal MFM and (12) as the
complete MFM for the two dimensional Ising spin glass
problem. We useθ to denote the full set of parameters for
either MFM.

IV. U SING MFM TO LEARN THE MRF PARAMETERS

The basic idea here is to use a set of solutionsD to
approximate the parameters,θ, of the MRF. Let us explain
this in more detail.

Each solution in a given population provides an equation
satisfying the MFM (7). Selecting a set of solutionsD
consisting ofN promising solutions from a populationP
therefore allows us to estimate the distribution by solving
the system of equations:

F = AθT (13)

Here,F is the vector containing− ln(f(x)) of all solutions

in D, θ, the unknown part of the equation, is the vector of

all MRF parameters andA is the matrix of solution values
in D.

For the minimal MFM,F will be anN dimensional vector
containing−ln(f(x)) of the solutions inD, θ will be a 2n
dimensional vector of all MRF parametersβ andA will be
anN × 2n dimensional matrix, where each elementars of
A is the product of the alleles fromrth solution associated
with sth parameter of the model. For the complete MFM,
θ = {α, β} will be a vector of3n MRF parameters, as there
will be 2n parameters in setβ and n parameters in setα,
andA will be anN × 3n dimensional matrix accordingly.

Depending on the relationship betweenN and the length
of θ, the system will be under-, over-, or precisely-specified.
A standard fitting algorithm can be used to give a maximum
likelihood estimation of theθ. For mathematical reasons,
{−1, 1} are used as the values ofxi in U(x), rather than
{0, 1}. This is the standard practice in MRF modelling [10].

V. USING A METROPOLIS METHOD TO SAMPLEMRF

So far we have shown how to construct a MFM for the
Ising spin glass problem and use it to approximate the MRF
parameters. Once we get the parameters of the model, the
jpd, p(x), is completely specified. Therefore, the next step is
to samplep(x). In this section we develop azero temperature
Metropolis methodfor this purpose.

A. Zero Temperature Metropolis method

Metropolis methods are a class ofMarkov Chain Monte
Carlo (MCMC) algorithms [11] that have been widely used
to sample from a probability distribution. It tries to minimise
the energy of the Gibbs distribution. In our case, it results
in maximisation of fitness (7). Here we present a variant
which we callBitwise Zero-Temperature Metropolis method
(BZTM). Given a set of MRF parameters,θ, calculated from
a set of solutionsD, it is then possible to sample a new
solution,xo = {xo

1, x
o
2, ..., x

o
n} using the BZTM as shown in

(Figure 2). For the complete MFM presented in (12),∆U

Bitwise Zero-Temperature Metropolis method (BZTM)

1) Generate a solutionxo = {xo
1, x

o
2, .., x

o
n} at random.

2) Repeat:

a) Setxtmp = xo.
b) For i = 1 to n

i) Mutate variable xo
i to obtain the mutated

solutionxo′.
ii) Set ∆U = U(xo′)− U(xo).

iii) if ∆U < 0 setxo = xo′.

:Until xtmp = xo.
3) Terminate with answerxo.

Fig. 2. The pseudo-code of the Bitwise Zero-Temperature Metropolis
method



can be determined explicitly from the following formula:

∆U =
(
xo′

ij − xo
ij

) (
αi + β(i−1)j,ijx

o
(i−1)j+

βij,(i+1)jx
o
(i+1)j + βi(j−1),ijx

o
i(j−1) + βi(j+1),ijx

o
i(j+1)

)
(14)

Similarly, for the minimum MFM presented in (11),∆U
can be determined explicitly from the following formula:

∆U =
(
xo′

ij − xo
ij

) (
β(i−1)j,ijx

o
(i−1)j+

βij,(i+1)jx
o
(i+1)j + βi(j−1),ijx

o
i(j−1) + βi(j+1),ijx

o
i(j+1)

)
(15)

This significantly reduces the cost of calculating∆U .

B. DEUM with the Metropolis method

Now that we know how to sample the MRF parameters, we
can formulate DEUM for the Ising spin glass problem (Is-
DEUM). As the Is-DEUM described here implements the
Metropolis methods as the sampling technique, we denote
it as Is-DEUMm. (Figure 3) shows the workflow of Is-
DEUMm. Notice that the Is-DEUMm only has a single

Is-DEUM with Metropolis sampler (Is-DEUM m)

1) Generate a population,P , of sizeM at random.
2) Select a setD consisting ofN fittest solutions from

P , whereN ≤M .
3) Calculate the MRF parametersθ by fitting MFM toD.
4) Repeat:

Samplexo = {xo
1, x

o
2, ...., x

o
n} using BZTM

:Until R iteration completes Orf(xo) is optimal/good
enough

5) Terminate with answerxo.

Fig. 3. The pseudo-code of the DEUM for Ising model with Metropolis
sampling method

generation. Also in step 4 of the algorithm, we repeatedly use
BZTM to sample differentxo. We found that by repeatedly
sampling thexo with different random start, the optimum
solution was found in first generation (as we shall show in
the next section)2. This therefore eliminates the necessity of
creating a child population3.

C. Experiments and Results

Experiments were performed with three different sizes of
two dimensional Ising Spin Glass system. They were4 × 4
(n = 16), 6× 6 (n = 36) and8× 8 (n = 64). Four random
instances of each problem size were used for the experiment.

2This has also been illustrated in [26] for the Onemax problem, where
a Zero-Temperature Metropolis algorithm was able to find the solution in
single generation

3Though it is straightforward to form a child population once we know
how to sample from the MRFs (see [26] for an example)

Each instance was generated by randomly sampling the
coupling constantJij ∈ {+1,−1}. The optimum solution for
each instance was verified by using the Spin Glass Ground
server, provided by the group of Prof. Michael Juenger4.
The parameters for Is-DEUMm were chosen empirically.

These experiments are divided into two parts:

1) A performance comparison with other EDAs
2) A performance comparison between complete and min-

imal MFM

1) Experiments on the performance comparison with other
EDAs: The aim of this experiment is to compare the per-
formance of Is-DEUM with that of other EDAs. Mainly, the
comparison is made with the results presented in [22], where
the performance of five different EDAs, both using MRF and
Bayesian networks, have been presented for similar instances
of Ising spin glass problem. Namely, they were MN-EDA
(using Kikuchi approximation approach), MN-EDAf (using
Kikuchi approximation with fixed structure as Is-DEUM),
MN-FDA (using junction graph approach), EBNAk2 (using
Bayesian network withk2 metrics) and MT-FDA (using a
mixture of tree model).

We ran 100 independent runs of Is-DEUMm for each
of the 12 instances and recorded the number of fitness
evaluations needed to find the optimum. The minimal MFM
(11) was used in Is-DEUMm and the whole population was
selected for estimation of MRF parameters, i.e, we take
D = P . Therefore, the selection sizeN was equal to the
population sizeM . To determine M, we started with the
minimum number ofM needed to make the system of linear
equation specified (in case of (11) the minimumM is 2n).
Then we gradually increased it, until a success rate of over
95% was achieved (in other words, until more than 95 out of
100 runs found the optimum). The resultingM was taken as
the population size for that particular instance. The maximum
number of allowed repetitions,R, for BZTM was set to 3000.
Is-DEUMm was terminated if the optimum was found or
R repetitions of BZTM were done. As, at the end of each
BZTM, the fitness evaluation was done in order to calculate
f(xo), the number of fitness evaluations was calculated as
the sum of population size and the total repetitions of the
BZTM needed before finding the optimum.

Table (I) shows the experimental results on the perfor-
mance of Is-DEUMm on all 12 instances of the Ising prob-
lems. The first column shows the problem instances (PI). The
second and third column shows the average number of fitness
evaluation (FE) and the corresponding standard deviation
(SD) over the 100 runs, the fourth column shows the success
rate (SR) and the fifth column shows the population size (PS)
used for the corresponding instances.

The performance of Is-DEUMm was significantly better
than that of other EDAs presented in [22], both in terms
of success rate and the number of fitness evaluation needed
to find the optimum. In particular, the best EDA reported
in [22] was MN-FDAf with average fitness evaluation and

4http://www.informatik.uni-koeln.de/lsjuenger/research/sgs/sgs.html



TABLE I

PERFORMANCE OFIS-DEUMm WITH MINIMAL MFM FOR 12

INSTANCES OFISING SPIN GLASS PROBLEM

PI FE SD SR PS

I-16-1 41.53 1.14 100 40
I-16-2 60.44 13.96 100 50
I-16-3 52.57 1.96 100 50
I-16-4 41.66 1.38 100 40

I-32-1 126.19 48.87 100 90
I-32-2 107.45 21.07 100 90
I-32-3 98.59 9.98 100 90
I-32-4 115.66 28.82 100 90

I-64-1 231.66 35.28 100 200
I-64-2 361.87 170.24 100 200
I-64-3 362.6 177.75 100 200
I-64-4 275.66 92.15 100 200

success rate of220.17 and 98.5% respectively forn = 16,
1586.02 and 95.25% respectively forn = 36 and, 6110.8
and 95% respectively forn = 64. Whereas, for Is-DEUM,
they were49.05 and100% respectively forn = 16, 111.96
and 100% respectively forn = 36 and 296.69 and 100%
respectively forn = 64. This is a significant improvement
in the performance.

2) Experiment on the performance comparison between
complete and minimal MFM:The aim of this experiment is
to show that, for the Ising spin glass problem, the use of
minimal MFM instead of complete MFM does not decrease
the quality of the solution, but does reduce the computational
cost needed to find the solution.

Table (II) shows the experimental results on the perfor-
mance of Is-DEUMm using the complete MFM (12) on all12
instances of the Ising spin glass problems. The experimental

TABLE II

PERFORMANCE OFIS-DEUMM WITH COMPLETE MFM FOR 12

INSTANCES OFISING SPIN GLASS PROBLEM

PI FE SD SR PS tr

I-16-1 61.45 1.27 100 60 1.11
I-16-2 67.43 9.20 100 60 1.02
I-16-3 62.64 3.58 100 60 1.02
I-16-4 61.44 1.38 100 60 1.07

I-32-1 161.52 47.22 100 130 1.33
I-32-2 146.52 17.06 100 130 1.27
I-32-3 137.61 8.22 100 130 1.29
I-32-4 148.64 19.79 100 130 1.34

I-64-1 284.80 49.06 100 250 2.10
I-64-2 376.45 132.26 99 250 1.76
I-64-3 334.99 96.76 100 250 1.55
I-64-4 319.86 115.15 100 250 1.87

setups were similar to that of Is-DEUMm using the minimal
MFM (11) described in previous sub-section. The minimum
number of population size (PS) needed to make the system of
linear equation specified for (12) wasM = 3n, as compared
to M = 2n for (11). Therefore as we can see from Table
(II), the optimum population size needed for all 12 instance
for Is-DEUMm with the complete MFM was greater than
that needed by Is-DEUMm with the minimal MFM (shown
in Table (I)). As a result, the number of fitness evaluations

for Is-DEUMm with the complete MFM was greater than
that of Is-DEUMm with the minimal MFM. Also in sixth
column of Table(II), the ratio of extra time (t-ratio) needed
by complete MFM in comparison to minimal MFM is shown
for each instance. For each instance, the t-ratio is equal to
the average time taken by Is-DEUMm with complete MFM
divided by the average time taken by minimal MFM. For
n = 16 the difference in time is fairly small, however as
n grows the t-ratio grows and forn = 64 the time taken
by complete MFM is almost double to the time taken by
minimal MFM. This result is expected, as the computational
time to calculate the MRF parameters grows polynomially
with the size of the matrixA in the system of linear equations
(13). Matrix A grows as selection sizeN = M grows and
N grows as the number of MRF parameters in the MFM
grows.

This result shows that, without losing the quality of the
solutions, using the minimal MFM instead of the complete
MFM, results in reduced computational cost. We will use the
minimal MFM for the rest of the experiments presented in
this paper.

VI. U SING A GIBBS SAMPLER TO SAMPLEMRF

So far we have shown that by sampling the MRF using a
Metropolis method, Is-DEUM was able to solve Ising spin
glass systems of sizen = 16, n = 32 andn = 64. However,
for problem sizes ofn = 100 and higher, Is-DEUM with the
Metropolis method was not able to find the optimum solution.
In this section we describe another sampling method known
asGibbs Sampler(GS) and incorporate it in Is-DEUM. The
aim here is to solve Ising spin glass problems of larger size.
We also present experimental results on the performance of
this version of Is-DEUM.

A. Gibbs sampler

As with the Metropolis method, the Gibbs sampler (GS)
[3] is a class of MCMC algorithm that has been widely used
to sample probability distributions. In order to explain GS,
we first need to define the formulation of marginal probability
p(xij) for each variable,xij , from the jpdp(x).

We usex+ to denotex having a particularxij = +1,
similarly, we usex− to denotex having xij = −1. We
denote the probability that the variable in positionij is equal
to 1 by p(xij = 1). Clearly,p(xij = −1) = 1− p(xij = 1).
We can now write

p(xij = 1) =
p(x+)

p(x+) + p(x−)
(16)

Substitutingp(x) from (4) and cancelling theZ, we get

p(xij = 1) =
e−U(x+)/T

e−U(x+)/T + e−U(x−)/T
(17)

or,

p(xij = 1) =
1

1 + e(U(x+)−U(x−))/T
(18)

As U(x+) andU(x−) agree in all terms other than those

containingxij , the common terms in bothU(x+) andU(x−)



drop out and we get the following expression as the estimate
of the marginal probability forxij = 1.

p(xij = 1) =
1

1 + e2Wij/T
(19)

where,Wij for (11) is

Wij = βij,(i+1)jx(i+1)j + βij,i(j+1)xi(j+1)+

β(i−1)j,ijx(i−1)j + βi(j−1),ijxi(j−1) (20)

Note that, asT → 0, the value ofp(xij = 1) tends to a

limit depending on theWij . If Wij > 0, thenp(xi = 1) → 0
asT → 0. Conversely, ifWij < 0, thenp(xi = 1) → 1 as
T → 0. If Wij = 0, then p(xi = 1) = 0.5 regardless of
the value ofT . Therefore, theWij are indicators of whether
thexij at the positionij should be1 or −1. This indication
becomes stronger as the temperature is cooled towards zero.

Now let us describe a variant of GS, which we call the
Bitwise Gibbs Sampler(BGS). Pseudo code for BGS is
shown in (Figure 4). It starts by randomly generating a
solution, then calculatesp(xij) for a chosenxij and replaces
it by sampling p(xij). This continues until a termination
criterion is satisfied. The temperature coefficient,T , in GS
can be used to control the convergence ofp(xij). Here,
we starts with high temperature,T , then at each iteration,
gradually decrease it using a cooling schedule so as to
gradually convergep(xij) to its limit. The DEUMd algorithm
described in [23], [24] also uses temperature to control the
convergence of the marginals.

Bitwise Gibbs Sampler (BGS)

1) Generate a solutionxo = {xo
1, x

o
2, .., x

o
n} at random.

2) setr = 0 and also set the initial value forT .
3) Repeat:

a) Setxtmp = xo.
b) For i = 1 to n

i) Increaser by 1
ii) DecreaseT

iii) Set xo
i = 1 with probability p(xo

i = 1)
:Until xtmp = xo.

4) Terminate with answerxo.

Fig. 4. The pseudo-code of the Bitwise Gibbs Sampler

B. DEUM with Gibbs Sampler

Now that we know how to sample the MFM using a
Gibbs Sampler, we can incorporate it in DEUM. Figure (5)
shows the workflow of Is-DEUM with a Gibbs Sampler (Is-
DEUMg). Notice that, as with Is-DEUMm (shown in Figure

(3)), Is-DEUMg only has a single generation. As shown
in [26], we could easily incorporate a multiple generation
scheme in Is-DEUMg. We found that, for the Ising spin

Is-DEUM with Gibbs Sampler (Is-DEUM g)

1) Generate a population,P , of sizeM
2) Select the setD consisting ofN fittest solutions from

P , whereN ≤M .
3) Calculate the MRF parametersθ by fitting MFM toD.
4) Repeat:

Generatexo = {xo
1, x

o
2, ...., x

o
n} using BGS

:Until R tieration completes Orf(xo) is optimal/good
enough

5) Terminate with answerxo.

Fig. 5. The pseudo-code of the DEUM for Ising model with Gibbs Sampler

glass problem, by repeatedly sampling thexo with different
random starts, Is-DEUMg was consistently able to find the
optimum solution in the first generation.

C. Experiments and Results

Experiments were conducted with three different sizes of
Ising Spin Glass problem:10× 10 (n = 100), 16× 16 (n =
256) and20× 20 (n = 400). Four random instances of each
problem size were used for the experiment. Each instance
was generated by randomly sampling the coupling constant
Jij ∈ {+1,−1}. The optimum solution for each instance
was verified by using Spin Glass Ground server, provided
by the group of Prof. Michael Juenger5. The parameters for
each algorithm were chosen empirically.

We divide our experiments into two parts:

1) A performance comparison with other EDAs
2) A performance comparison with Repeated Bitwise

Gibbs Sampler (RBGS)

1) Experiment on the performance comparison with other
EDA: We made 30 independent runs of Is-DEUMg for each
of the 12 instances of the Ising spin glass problem and
recorded the number of fitness evaluations needed to find
the optimum. The minimal MFM (11) was used to estimate
the energy of the Gibbs distribution. The population size and
selection size for Is-DEUMg were 100 and 250 respectively
for n=100, 3000 and 700 respectively for n=256 and 8000
and 1000 respectively for n=400. The temperatureT for the
BGS was set toT = 1/0.0005r, where r is the current
number ofxo

i samplings done in BGS (see Figure (4)). As
r increases,T decreases and the solutionxo will converge
to a particular value for eachxo

i . The maximum number of
allowed repetitions,R, for BGS was set to 500. Is-DEUMg
was terminated if the optimum was found orR repetitions
of BGS were done. As, at the end of each BGS, a fitness
evaluation was done in order to calculatef(xo), the number
of fitness evaluations was calculated as the sum of population
size and the total repetitions of the BGS needed before
finding the optimum.

5http://www.informatik.uni-koeln.de/lsjuenger/research/sgs/sgs.html



Table (III) shows the experimental results on the per-
formance of Is-DEUMg on all 12 instances of the Ising
spin glass problems. The first column shows the problem

TABLE III

PERFORMANCE OFIS-DEUMg ON ALL 12 INSTANCES OFISING

PROBLEM

PI FE SD FE-PS IT SR

I-100-1 1008.90 7.96 8.90 639× 103 100
I-100-2 1002.73 1.82 2.73 149× 103 100
I-100-3 1010.97 10.71 10.97 723× 103 100
I-100-4 1003.20 2.32 3.20 156× 103 100

I-256-1 3015.27 17.45 15.27 115× 105 100
I-256-2 3003.23 2.96 3.23 213× 104 100
I-256-3 3054.28 66.17 54.28 351× 105 97
I-256-4 3007.50 6.05 7.50 639× 104 100

I-400-1 8093.62 113.80 93.62 152× 106 97
I-400-2 8036.47 34.87 36.47 632× 105 100
I-400-3 8058.77 54.14 58.77 103× 106 100
I-400-4 8047.07 42.25 47.07 755× 105 100

instances (PI). The second and third column shows the aver-
age number of fitness evaluation (FE) and the corresponding
standard deviation (SD) over the 100 runs. The fourth column
shows the average number of fitness evaluation without
counting the number of evaluation needed to evaluate the
population (FE-PS). The fifth column shows the average
internal calculation (IT) of Is-DEUMg before finding the
solution. Internal calculation is the total number of marginal
probability calculations done over all repetitions of BGS.
The sixth column shows the success rate (SR) of finding
the optimum over 100 runs.

Previously, BOA and hBOA have been applied to Ising
problem instances of sizen = 100, n = 256 and n =
400 [18], [17], [20]. Their performances were reported to
be comparable and sometime better than state of the art
algorithms for solving Ising spin glass problems.

Our results show that the number of fitness evaluations
needed to find the solution for Is-DEUMg was significantly
less than that reported for BOA and hBOA. For example for
n = 400, the average fitness evaluation for hBOA (with a
hill climber) was about105 (BOA was not able to find the
solution forn = 400). Whereas, for Is-DEUMg this was only
about 8000.

However, for larger instances of Ising spin glass problem,
such asn = 400, the computational time for samplingxo

using BGS gets higher and therefore the repeated sampling
of xo dominates the computational time taken by the rest of
the process in Is-DEUMg. It even dominates the time taken to
solve the system of equations. Therefore, the performance of
Is-DEUMg for Ising spin glass problem should be evaluated
in terms of the number of internal calculations done by the
BGS, rather than by the number of fitness evaluations. As
BOA and hBOA do not have such an internal calculation
process, it is difficult to compare them with Is-DEUMg.

2) Experiment on the performance comparison with Re-
peated Bitwise Gibbs Sampler (RBGS):In Is-DEUMg, we
have used GS to sample the MRF which we estimate from the

population of solution. Here we show how we can directly
apply GS to the fitness function and samplexo.

Given the fitness function (10), the marginal probability
p(xij = 1) for anyxij = 1 can also be estimated directly as

p(xij = 1) =
1

1 + e2Γij/T
(21)

Where,

Γij = J(i−1)j,ijx(i−1)j + Jij,(i+1)jx(i+1)j+

Ji(j−1),ijxi(j−1) + Ji(j+1),ijxi(j+1) (22)

We can use (21) in BGS (Figure (4)) as formulation of

Repeated Bitwise Gibbs Sampler algorithm (RBGS)

1) Repeat:
Sample a solutionxo = {xo

1, x
o
2, ...., x

o
n} using BGS

:Until R iteration completes Orf(xo) is optimal/good
enough

2) Terminate with answerxo.

Fig. 6. The pseudo-code of the Repeated Bitwise Gibbs Sampler algorithm

p(xij) and samplexo. As the performance of BGS heavily
depends on the initial solution, we repeatedly ran the BGS
with different random starts. Figure (6) presents the workflow
of the repeated BGS algorithm(RBGS). The temperatureT

TABLE IV

PERFORMANCE OFIS-DEUM AND RBGSFOR ISING SPIN GLASS

PROBLEM OF SIZEn = 100, n = 256, AND n = 400

Is-DEUMg RBGS
PI FE-PS IT SR FE IT SR

I-100 6.45 417× 103 100 6.53 330× 103 100
I-256 20.07 136× 105 99 37.19 284× 105 99
I-400 58.98 984× 105 99 94.67 114× 106 87

for the BGS was set toT = 1/0.005r, wherer is the current
number ofxo

i samplings done in BGS (see Figure (4)). Note
that, the constant associated withr here is 0.005 which
is greater than that used in Is-DEUMg. This was simply
because, with0.005 the performance of RBGS was better
than that with0.0005. The maximum number of allowed
repetitionsR was set to 500.

As at the end of each repetition of BGS, a fitness evalua-
tion (FE) was done to check the quality of sampledxo, we
record the total number of BGS repetitions as the number
of fitness evaluations for RBGS. However, In contrast to
RBGS, Is-DEUMg had to evaluate a population of solutions,
which, although taking a negligible amount of time in
comparison to the time taken for a sampling using BGS,
hugely contributed to the number of fitness evaluations for
Is-DEUMg. Therefore, for Is-DEUMg, we use the fitness
evaluation without counting the evaluation of the population



(FE-PS) to compare with FE of RBGS. On the other hand, the
internal calculation of BGS (IT), is the most dominant factor
for the computational cost in both algorithms and therefore
we also record the IT for RBGS and compare it with that of
Is-DEUMg.

Table (IV), shows the average of fitness evaluations (FE)
(FE-PS for Is-DEUMg), internal calculation (IT) and success
rate (SR) for three different sizes of Ising spin glass problem.
The result for Is-DEUMg is the average taken from Table
(III) for each problem size.

Our results show that in terms of both fitness evaluations
and internal calculation taken to find the optimum, the
performance of Is-DEUMg was better than that of RBGS.
Also note that the success rate for Is-DEUMg was 99%
in comparison to87% for RBGS for n = 400. These
results show that sampling from the MRF estimated from
the population instead of the actual fitness function results
in better performance of the algorithm.

Let us explain the above results. The fitness landscape
of the Ising spin glass problem contains large number of
plateaus. This is because the values of coupling constants,
J , relating two spin variables are restricted to -1 and +1. As
RBGS usesJ to estimatep(xij), it takes time to overcome
all the plateau. However, Is-DEUMg uses real-valued MRF
parametersβ to estimatep(xij). β therefore alters the fitness
landscape by introducing some variation to the plateau. The
result is more efficient searching of the fitness landscape by
the sampling algorithm.

VII. C ONCLUSION

Is-DEUM differs from other EDAs in two ways, 1) Use of
a model of the fitness function (MFM) to estimate the model
parameters by fitting it to a set of solutionD and 2) Use of
MCMC algorithms to sample the MRF. Our experimental
results suggest estimating and sampling the distribution in
this way may significantly improve the performance of an
EDA.

The Is-DEUM presented here (and also other DEUM
algorithms developed so far) assumes the structure of the
MRF to be fixed. It will be interesting to extend DEUM to
incorporate a structure learning algorithm. This will allow
DEUM to be applied to a wider range of multivariate
optimization problems.
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