
 

 
 
 

OpenAIR@RGU 
 

The Open Access Institutional Repository 
at The Robert Gordon University 

 
http://openair.rgu.ac.uk 

 
This is an author produced version of a paper published in  
 

Proceedings of the IEEE Congress on Evolutionary Computation (CEC 
2005) (ISBN 0780393635) 

 
This version may not include final proof corrections and does not include 
published layout or pagination. 
 
 

Citation Details 
 

Citation for the version of the work held in ‘OpenAIR@RGU’: 
 

SHAKYA, S., MCCALL, J. and BROWN, D., 2005. Incorporating a 
metropolis method in a distribution estimation using Markov 
random field algorithm. Available from OpenAIR@RGU. [online]. 
Available from: http://openair.rgu.ac.uk 

 
 

Citation for the publisher’s version: 
 

SHAKYA, S., MCCALL, J. and BROWN, D., 2005. Incorporating a 
metropolis method in a distribution estimation using Markov 
random field algorithm. In: Proceedings of the IEEE Congress on 
Evolutionary Computation (CEC 2005), Volume 3. 2-5 September 
2005. New York: IEEE. pp. 2576-2583. 

 
 

Copyright 
Items in ‘OpenAIR@RGU’, The Robert Gordon University Open Access Institutional 
Repository, are protected by copyright and intellectual property law. If you believe that 
any material held in ‘OpenAIR@RGU’ infringes copyright, please contact 
openair-help@rgu.ac.uk with details. The item will be removed from the repository while 
the claim is investigated. 

http://openair.rgu.ac.uk/
mailto:openair%1Ehelp@rgu.ac.uk


Copyright © [2005] IEEE.   Reprinted from  Proceedings of the IEEE Congress on 
Evolutionary Computation (CEC 2005) 
 
This material is posted here with permission of the IEEE. Such permission of the 
IEEE does not in any way imply IEEE endorsement of any of The Robert Gordon 
University's products or services.  Internal or personal use of this material is 
permitted.  However, permission to reprint/republish this material for advertising or 
promotional purposes or for creating new collective works for resale or redistribution 
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. 
 
By choosing to view this document, you agree to all provisions of the copyright laws 
protecting it. 



Incorporating a Metropolis method in a Distribution Estimation using Markov
Random Field Algorithm

Siddhartha K. Shakya, John A.W. McCall, Deryck F. Brown
School of Computing, The Robert Gordon University

St. Andrew Street, Aberdeen, AB25 1HG, Scotland, UK
{ss,jm,db}@comp.rgu.ac.uk

Abstract- Markov Random Field (MRF) modelling tech-
niques have been recently proposed as a novel approach
to probabilistic modelling for Estimation of Distribu-
tion Algorithms (EDAs)[34, 4]. An EDA using this tech-
nique, presented in [34], was called Distribution Estima-
tion using Markov Random Fields (DEUM). DEUM was
later extended to DEUMd [32, 33]. DEUM and DEUMd

use a univariate model of probability distribution, and
have been shown to perform better than other univari-
ate EDAs for a range of optimization problems. This pa-
per extends DEUMd to incorporate a simple Metropolis
method and empirically shows that for linear univariate
problems the proposed univariate MRF models are very
effective. In particular, the proposed DEUMd algorithm
can find the solution in O(n) fitness evaluations. Fur-
thermore, we suggest that the Metropolis method can
also be used to extend the DEUM approach to multivari-
ate problems.

1 Introduction

Estimation of Distribution Algorithms (EDAs) [24] is a
well-established topic in the field of evolutionary algo-
rithms. EDAs are motivated by the idea of identifying and
preserving important patterns or building blocks [10], and
are able to solve problems that are known to be hard for tra-
ditional Genetic Algorithms (GA) [27]. An EDA maintains
the selection and variation concepts of evolution. However,
it replaces the crossover and mutation approach to variation
in a traditional GA by building and sampling a probabilistic
model of promising solutions. The processing of the build-
ing blocks in an EDA is explicitly biased towards the sig-
nificant patterns identified by a probabilistic model. This
contrasts with the implicit processing of building blocks in
a traditional GA. EDAs are classified as univariate, bivariate
or multivariate [29, 16] according to the type of interaction
between allele values that can be represented by the model
of the probability distribution.

In [34] an algorithm using a Markov network (also
known as a Markov Random Field or an undirected graph-
ical model [25, 17]) approach to probabilistic modelling
has been proposed. This was called Distribution Estima-
tion Using Markov Random Field (DEUM). DEUM was
later extended to DEUMd, which is Distribution Estima-
tion Using Markov Random Field with direct sampling
[32, 33]. DEUM and DEUMd were presented as novel uni-
variate EDAs using a univariate model of probability distri-
bution. They were shown to perform better than other EDAs
of their type over a wide range of optimization problems
[34, 32, 33].

This paper extends DEUMd to incorporate a simple
Metropolis method [18] and shows that for linear univari-
ate problems the proposed univariate MRF models are very
effective. In particular, the proposed DEUMd can find a so-
lution in O(n) fitness evaluations. Furthermore, we suggest
that the Metropolis method can also be used to extend the
DEUM algorithms to multivariate problems.

The outline of the paper is as follows. Section 2 presents
the background on DEUMd and also presents brief exper-
imental results on its performance in comparison to other
univariate EDAs. Section 3 describes a modification to
DEUMd incorporating a simple Metropolis method. Sec-
tion 4 presents experimental results on a linear univariate
problem. Section 5 discusses our immediate future work,
which is to extend the DEUM approach to multivariate
problems by using a Metropolis method. Section 6 presents
a summary and concludes the paper.

2 DEUM with direct sampling

DEUMd, as for other EDAs, regards a solution (chromo-
some) as a set of random variables (the alleles), each taking
a particular value from a set of possible values. In particular,
we represent a solution (an instance of the random field) as
x = {x1, x2, . . . , xn} where each xi is the value taken by
the i-th random variable. Here, we consider problems where
solutions are encoded as bit-string chromosomes, and so n
is the chromosome length, and the xi represent the allele
values in the obvious way (so each xi is either 0 or 1).

Univariate EDAs do not consider dependencies between
variables, i.e., they only model building blocks of order one.
In this case, the joint probability distribution, p(x), is sim-
ply the product of the univariate marginal probabilities of
all variables in a chromosome x:

p(x) =

n
∏

i=1

p(xi) (1)

where, p(xi) is the marginal probability of the i-th vari-
able having the value xi.

Apart from DEUMd, Population Based Incremental
Learning (PBIL) [1], the Univariate Marginal Distribution
Algorithm (UMDA) [24], and the Compact Genetic Algo-
rithm (cGA) [13] all use a univariate model of the probabil-
ity distribution. The main difference between DEUMd and
these other approaches is the method used to estimate the
marginal distribution p(xi). PBIL, UMDA and cGA esti-
mate the marginal probability p(xi = 1) by taking the fre-
quency of solutions with xi = 1 in a selected set of solutions
divided by the size of the selected set, i.e.:



p(xi = 1) =
∑

x∈S

p(x)
... p(x) =

1

N
(2)

Here, N is the number of selected solutions and S is a
subset of the selected set of solutions having xi = 1.

This approach of estimating the marginal probability is
very simple and fully depends on the pattern of 1’s and 0’s
in the selected set of solution. This contrasts with the tech-
nique used in DEUMd, which we describe in the next sec-
tion.

2.1 MRF approach to probabilistic modelling

DEUMd uses Markov Random Field models as its proba-
bilistic model. MRFs are also known as Undirected Graph-
ical Models or Markov Networks [17, 25]. A previously
proposed EDA, known as Factorization of the Distribution
Algorithm (FDA) [20] also uses an Undirected Graphical
Model to estimate the probability distribution. However,
FDA is distinct from DEUMd in significant ways. Par-
ticularly, in its use of a Triangular model of the distrib-
ution and its restriction to a certain class of fitness func-
tion. Moreover, FDA is a multivariate EDA (see [21, 20]
for more details on FDA). More recently, another algorithm
using a Markov network has been proposed by [31] and
was called MN-EDA. MN-EDA has strong similarities with
DEUMd but has its differences as well. Particularly, in its
use of Kikuchi approximations of the probability distribu-
tion. Again, MN-EDA is also a multivariate EDA.

In [4], MRF theory was used to provide a formulation
of the joint probability distribution that relates solution fit-
ness, f(x), to an energy function, U(x), calculated from the
values of the solution variables. To be precise:

p(x) =
f(x)

∑

y f(y)
≡

e−U(x)/T

∑

y e
−U(y)/T

(3)

from which an equation for each solution x can be de-
rived (see [4] for detailed information):

− ln(f(x)) = U(x)/T (4)

Here, f(x) is the fitness of an individual x, U(x) is an
energy function derived from the allele values, and T is a
temperature coefficient, which in [4] has a constant value of
1. The summations are over all possible solutions y. U(x)
gives the full specification of the joint probability distribu-
tion, so it can be regarded as a probabilistic model of the
fitness function. In particular, minimising U(x) is equiva-
lent to maximising f(x).

In general, the form of the energy function will involve
interactions between the variables xi. In [34], a Univariate
MRF model was used that assumes a simple form of energy
function with no interactions. To be precise,

U(x) = α1x1 + α2x2 + . . .+ αnxn (5)

Here, the αi are known as the MRF parameters, and
completely determine the probability distribution. Each
variable xi provides a contribution αixi to the overall fit-
ness.

For mathematical reasons, {−1, 1} are used as the values
of xi in the model, rather than {0, 1}. This ensures arith-
metical symmetry between the possible allele values.

Each solution in a given population provides an equation
satisfying the model. Selecting N promising solutions from
a population therefore allows us to estimate the distribution
by solving the system of equations:

AαT = F (6)

Here, A is the N × n-dimensional matrix of allele val-
ues in the selected set, α is the vector of MRF parameters
α = (α1, α2, . . . , αn), and F is the N -dimensional vec-
tor containing − ln(f(x)) of the selected set of solutions x.
Depending on the relationship between N and n, the sys-
tem will be under-, over-, or precisely-specified. A standard
fitting algorithm can be used to give a maximum likelihood
estimation of the αi. The αi can then be used to provide an
estimate of the probability of the value of xi.

In [34], α is used to formulate an updating rule to update
a probability vector. The probability vector is then sampled
to generate a child population. In [32], this approach has
been extended to use the αi to directly estimate the marginal
probability p(xi).

Fixing the value of a particular allele xi divides the set
Ω of all 2n chromosomes into two disjoint sets, which we
denote by A and B. More precisely, A = {x ∈ Ω : xi = 1}
and B = {x ∈ Ω : xi = −1}. We denote the probability
that the allele value in position i is equal to 1 by p(xi = 1).
Clearly, the probability that the allele value in position i is
equal to −1 is 1 − p(xi = 1). Applying this to (3), we
obtain:

p(xi = 1) =
∑

x∈A

p(x) =
∑

x∈A

e−U(x)/T

Z
(7)

Here, Z =
∑

y e
−U(y)/T is a (very large) normalising

constant. Substituting for U(x) from (5), and noting that
xi = 1 for all x ∈ A, we obtain:

p(xi = 1) = e−αi/T
K

Z
(8)

where K is a large constant representing the sum over all
chromosomes in A of contributions from alleles in positions
other than i.

Similarly, summing over B we obtain the probability
that the allele value in position i is equal to −1:

p(xi = −1) = 1− p(xi = 1) = eαi/T
K

Z
(9)

Here, K is the same constant as in (8), because the chro-
mosomes in A and B agree pair-wise at allele positions



other than i. Combining (8) and (9), the constants K and
Z drop out, and we get the following expression as an esti-
mate of the marginal probability for xi = 1:

p(xi = 1) =
1

1 + eβαi

(10)

where, β = 2/T .
Note that, as T → 0, the value of β increases, and the

value of p(xi = 1) tends to limit depending on the sign of
αi. If αi > 0, then p(xi = 1) → 0 as T → 0. Conversely,
if αi < 0, then p(xi = 1) → 1 as T → 0. If αi = 0, then
p(xi = 1) = 0.5 regardless of the value of T . Therefore, the
αi are indicators of whether the allele value at the position i
should be 1 or −1. This indication becomes stronger as the
temperature is cooled towards zero.

This forms the basis for the estimation of distribution
technique for DEUMd, which combines the univariate MRF
model with a cooling scheme. We reduce T , i.e., increase
β, as the population evolves, so the model becomes more
exploitative rather than explorative as the evolution pro-
gresses.

The use of the temperature for EDA has been first pro-
posed in Boltzmann Estimated Distribution Algorithm 1

(BEDA) [23], where, a Boltzmann selection has been used
to estimate the Boltzmann distribution. A cooling schedule
for Boltzmann selection for BEDA (and also for FDA) has
been later proposed in [22]. These approach has strong sim-
ilarities with our approach, however has its differences as
well. In BEDA, the fitness has been directly taken as the
energy for the Boltzmann distribution, however in DEUMd,
an approximation to the fitness function is used which is
done by building a model of fitness function and fitting it to
the population.

2.2 Workflow of DEUM

DEUMd consists of a five-step procedure as follows:

1. Generate an initial population, P , of size M with a
uniform distribution.

2. Select the N fittest solutions from P , where N ≤M .

3. Calculate the MRF parameters α = (α1, α2, . . . , αn)
by making a maximum likelihood estimation from the
selected solutions.

4. Generate M new solutions using the following distri-
bution:

p(x) =

n
∏

i=1

p(xi)

where, p(xi = 1) = 1/(1+ eβαi) and p(xi = −1) =
1/(1 + e−βαi). Here, β is defined as β = gτ where,
g is the number of the current iteration and τ > 0 is a
cooling rate parameter chosen by the user.

5. Replace P by the new population, and go to Step 2
until the termination criterion is satisfied.

1BEDA is a conceptual algorithm as requires sum over exponentially
many terms to calculate the distribution [22]
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Figure 1: RLD for OneMax
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Figure 2: RLD for Plateau

DEUMd uses the singular value decomposition (SVD)
[30, 11] technique to make the maximum likelihood estima-
tion. SVD proves to be the most stable technique, returning
useful estimations from systems of linear equations that are
either under- or over-specified [30].

As described earlier, β has a direct effect on the conver-
gence speed of DEUMd. As the number of iterations (g)
grows, the marginal probability (p(xi)) gradually cools to
either 0 or 1. However, depending upon the type of prob-
lem, different cooling rates may be required. In particular,
there is a trade-off between convergence speed of the algo-
rithm and the exploration of the search space. Therefore,
the cooling rate parameter, τ , has been introduced. τ gives
explicit control over the convergence speed of DEUMd. De-
creasing τ slows the cooling, resulting in better exploration
of the search space. However, it also slows the convergence
of the algorithm. Increasing τ , on the other hand, makes the
algorithm converge faster. However, the exploration of the
search space will be reduced.

2.3 Experimental results

Here we briefly review the experimental results on the per-
formance of DEUMd on a range of optimisation problems.
For more details on these experiments, see [33]. The per-
formance of DEUMd was compared with a GA, PBIL and
UMDA.

For the problems where optimum fitness could be found,
the number of fitness evaluations taken by each algorithm to
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Figure 3: RLD for CheckerBoard
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Figure 4: RLD for F6 function

find the optimum was taken as a measure for performance
evaluation. Run length distribution (RLD)[14] curves were
plotted to measure the performance. The RLD shows, for
each algorithm, the cumulative percentage of successful
runs that terminated within a certain number of function
evaluations. Figure 1 shows the RLD for a 180-bit OneMax
[24] problem over 1,000 runs for each algorithm. It can be
seen that, for DEUMd 80% of the runs found the optimum
solution within 1,600 function evaluations in comparison to
2,000, 2,800 and 3,700 of PBIL, UMDA and the GA respec-
tively. Similarly, figures 2, 3, 4, and 5 show the RLD over
1,000 runs of each algorithm for a 180-bit Plateau [19, 16]
problem, a 100-bit Checkerboard [2, 16] problem, a 20-bit
Schaffer F6 function [5] and a 180-bit Trap function of order
5 [26] respectively.

For the problems where the optimum was not known or
could not be found, the algorithms were evaluated by the
average fitness of solution they could find, and the average
number of fitness evaluations taken to find it [15, 7]. The
problems addressed were a 50-bit Equal products function
[2, 7], a 60-bit Colville function [7] and a 100-bit SixPeaks
function [2, 16]. We do not present these results because of
the limited space. See [33] for more detail. However, here
we highlight the conclusions made from the above experi-
ments. They are as follows:

For the univariate problems(such as OneMax) and also
for problems with a low order of dependency between the
variables (such as plateau and checker board) the perfor-
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Figure 5: RLD for Trap5

mance of DEUMd (in terms of number of fitness evaluations
taken to terminate) was significantly better than that of other
univariate EDAs and also of the GAs tested.

For the problems with higher-order dependency (such as
SixPeaks and Trap of order 5), DEUMd, as with other uni-
variate EDAs, was deceived by the structure of the fitness
landscape. For the SixPeaks function, none of the algo-
rithms could find the optimum solution. For the trap func-
tion, UMDA and PBIL could not find the optimum, even us-
ing a very large population size. However, a simple GA with
one-point crossover could find the solution after an average
of 62,000 fitness evaluations. Interestingly, DEUMd with a
population size of 2,000 could also find the solution, how-
ever, with a very large average fitness evaluation, 868,000.
It shows that, although DEUMd is misled by the trap func-
tion, by slowing the cooling rate and choosing the correct
population size, it still could overcome a trap of order 5.

For those problems where the optimum was not known
or was very hard to get (Colville and Equal products), the
performance of DEUMd was comparable to that of the GA
and other univariate EDAs, and was better in some cases.

In general, DEUMd gave satisfactory results for most of
the problems that have been tested, and failed where it was
expected to. Again, for most of the problems, the perfor-
mance of DEUMd was better than that of other univariate
EDAs. These empirical results suggested the effectiveness
of MRF models used by DEUMd over the marginal prob-
ability models used by other univariate EDAs. In the next
section, we further strengthen this suggestion by showing
that, for a linear univariate problem, a simple extension to
DEUMd can find the optimum in 1.5n + 1 fitness evalua-
tions.

3 Extending DEUMd to incorporate a
Metropolis method

In the MRF modelling literature, Metropolis methods [18]
are widely used to determine the optimum value for ran-
dom fields/variables [17]. Here we present a simple vari-
ant of it, known as Zero-Temperature Metropolis method.
Given a set of MRF parameters, α, calculated from a pop-
ulation of chromosomes, it is then possible to approximate
the optimum chromosome, xo = {xo1, x

o
2, ..., x

o
n} (or more



precisely optimum chromosome for the current population).
We call this chromosome, the Metropolis Population Op-
timum Chromosome (MPOC). xo can be approximated by
using the following zero temperature Metropolis method:

1. Generate a chromosome xo = {xo1, x
o
2, .., x

o
n} at ran-

dom.

2. for L iterations, repeat:

(a) Mutate a variable xoi chosen at random to obtain
the mutated chromosome xo′.

(b) Set ∆U = U(xo′)− U(xo).

(c) if ∆U < 0 set xo = xo′.

3. Terminate with answer xo.

For univariate MRF models (5), ∆U can be determined
explicitly from the following formula:

∆U = αi(x
o′
i − xoi ) (11)

From (11), we can see that if αi < 0, then (i) ∆U < 0,
if xoi = −1: this suggests accepting the mutation, and (ii)
∆U > 0, if xoi = 1: this suggests rejecting the mutation.
In another words, to make ∆U > 0 (to minimise U(xo)),
formula (11) suggests that if αi < 0, xoi should be 1 and if
αi > 0, xoi should be−1. Thus, for a univariate MRF model
the MPOC, xo, can be easily obtained just by looking at the
sign of the αi.

Now let us incorporate this method in DEUMd. This is
done by adding two substeps 3.1 and 3.2 in original DEUMd

algorithm. So the redefined DEUMd will be as follows:

1. Generate an initial population, P , of size M with a
uniform distribution.

2. Select the N fittest solutions from P , where N ≤M .

3. Calculate the MRF parameters α = (α1, α2, . . . , αn)
by making a maximum likelihood estimation from the
selected solution.

3.1. Generate MPOC, xo = {xo1, x
o
2, ...., x

o
n}

where,

xoi =

{

1 if αi < 0
−1 if αi > 0

3.2. Terminate, if f(xo) is optimal/good enough.

4. Generate M new solutions using the following distri-
bution:

p(x) =

n
∏

i=1

p(xi)

where, p(xi = 1) = 1/(1+ eβαi) and p(xi = −1) =
1/(1 + e−βαi). Here, β is defined as β = gτ where,
g is the number of the current iteration and τ > 0 is a
cooling rate parameter chosen by the user.

5. Replace P by the new population, and go to Step 2
until the termination criterion is satisfied.
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We observe that the above presented algorithm only uses
xo to check for an optimum and does not use it for further
evolution 2. However, in practice, xo can be used in various
ways to asses the evolution. For example, one could gen-
erate one or more xo and seed them to the next generation.
For the purpose of this paper, we do not discuss this topic in
detail.

4 Experimental results

The aim of our experiment is to measure the effect of our
extension to DEUMd. We show the scalability of DEUMd

on univariate problems, and compare it with that of other
univariate EDAs. The obvious test function for this purpose
is the OneMax problem [24].

The OneMax problem is a simple linear problem decom-
posable into building blocks of order one, and therefore is an
ideal problem for univariate EDAs. It has been shown that
UMDA works very well on this problem [2]. We compare
the performance of DEUMd against UMDA and a GA. 100
runs of each algorithm were executed for a series of One-
Max problems with chromosomes ranging in size between
30 and 180 bits. The number of fitness evaluations taken to
find the optimal solution was recorded for each run. Uni-
form crossover with exchange probability of 0.5 was used
for the GA, crossover was applied all the time and mutation
was not applied. The population size, M , ranged from 40 to
100 for the GA, 50 to 170 for UMDA, and was exactly 1.5n
for DEUMd. τ for DEUMd was from 5 to 4.

Truncation selection was used where selection size N
was 0.5M for the GA and 0.3M for UMDA. For DEUMd,
the selection size was again 1.5n, i.e., the whole popula-
tion was selected. No elitism was used and new populations
were generated with complete replacement. Figure 6 shows
the average number of fitness evaluations for each algorithm
over the range of OneMax problems.

The success ratio for converging to the optimum was
100% for DEUMd, 98% for UMDA and 100% for the GA.

2For the purpose of our experiment (see section 4), doing so was not
necessary



As we can see from Figure 6, UMDA, as it has selection
size less than that of GA, has an expected performance bet-
ter than that of the GA but has less success rate. DEUMd

with a Metropolis method has very stable and efficient per-
formance that is equivalent to 1.5n + 1 fitness evaluations,
i.e., given a randomly-generated initial population of 1.5n
chromosomes, the xo generated by the Metropolis method
was found to be optimum (Here, +1 is for the fitness evalua-
tion of xo itself). This result can be compared with the result
of a (1+1) EA (also known as stochastic hillclimber), an al-
gorithm described by [9] to study the theory of evolutionary
algorithms. For the OneMax problem, it has been proved
that a (1+1) EA will find the optimum in O(n log(n)) fit-
ness evaluations. Our empirical results show an O(n) per-
formance for DEUMd.

5 Extending DEUM to multivariate EDAs

This section gives an overview of our immediate future
work on extending the DEUM algorithms to multivariate
EDAs by using the Metropolis method. The work presented
here should be seen as work in progress.

To do extend DEUM, let us consider a bivariate MRF
model:

U(x) = α1x1 + β1,2x1x2 + α2x2 + β2,3x2x3+
. . .+ αnxn + βn,1xnx1

(12)

This model (known as the Ising Model [8]) can be in-
terpreted as a chain model of dependency proposed in [6].
Here, α and β are the MRF parameters associated with uni-
variate and bivariate interactions between variables respec-
tively. This model completely encapsulates the univariate
MRF model, and also incorporates any bivariate relation-
ships between neighbouring variables.

The approximation of both α and β can be done by doing
a maximum likelihood estimation over the population of so-
lutions as suggested in Section 2. Given α and β, it is then
possible to approximate the MPOC, xo, using the zero tem-
perature Metropolis method defined in Section 3. For (12)
∆U can be determined explicitly from following formula:

∆U = (xo′i − xoi )(αi + βi−1,ix
o
i−1 + βi,i+1x

o
i+1) (13)

This formula for calculating ∆U can be easily obtained
for any MRF models using following formulation

∆U = U(xo′)− U(xo)

Once we have found xo, we can then use it to estimate
the distribution for the next population. A simple heuristic
can be applied for this purpose, i.e., if xoi = 1, we should
increase the probability p(xi = 1) and if xoi = 0, we should
decrease the probability p(xi = 1). This heuristic forms the
basis for our proposed extension to DEUM for multivariate
problems.

A possible workflow for the multivariate DEUM would
be as follows:

1. Initialize a probability vector p = {p1, p2, ..., pn} by
assigning 0.5 to each pi.

2. Sample p to generate M number of parent solution.

3. Select N fittest solutions from parent where N ≤M .

4. Find the dependency network and construct an MRF
model.

5. Calculate the MRF parameters.

6. Approximate MPOC, x0, using the Metropolis
method.

6.1. if f(xo) is good enough, terminate.

7. Use x0 to update p using following updating rule
For i = 1..n do

If xoi = 1 then pi = pi(1− λ) + λ;
If xoi = 0 then pi = pi(1− λ);

8. Go to step 2 until the termination criteria is satisfied.

Step (4) of the algorithm, which is to find a dependency
network, is still an open question, and is not addressed
in this paper. However, there are various computational
techniques that we assume can be used successfully to ad-
dress this problem. Most of the previously proposed multi-
variate EDAs already make use of one of these techniques
[15, 28, 12, 20]. However, most of them are focused in find-
ing a directed graphical model. Some recent work in EDAs
(in particular [31]) has proposed a method for finding an
undirected graphical model. However, this topic remains
part of our further research.

6 Conclusion

In this paper, we have shown that the univariate MRF mod-
els are very effective at addressing linear univariate prob-
lems. This is shown by the experimental results carried out
with DEUMd that incorporates a Metropolis method. Fur-
thermore, we show that the Metropolis method can also be
used to extend the DEUM algorithm to multivariate EDAs.

The computational cost of approximating MRF parame-
ters for DEUMd has a polynomial complexity of O(nN 2)
(or O(n2N) depending upon relationship between n and N )
in comparison to the linear complexity, O(nN), of counting
the bit frequency for other univariate EDAs [33]. Therefore,
the results presented here with OneMax problem can only
be seen as of theoretical importance. However, the signifi-
cantly low number of fitness evaluations needed by DEUMd

suggests that the DEUMd should be applied for the prob-
lems where fitness evaluation is costly and can be trade off
against the computation cost of approximating MRF para-
meters.

Our research so far has focused on the binary representa-
tion for the random variables. However, most of the earlier
works on the use of MRF modelling has been in integer case
[17, 3]. Particularly, in image analysis case [17], each pixel



in the Image is a random variable where, even for the simple
greyscale image, a pixel can have 256 different value. This
shows that the MRF technique can be naturally extended to
integer representation of variables. However, more works
needed to be done in order to get a full functioning DEUM
algorithm for integer representation.

The immediate future work in this area is to implement
a multivariate DEUM algorithm. To do this, an effective
method of finding the dependencies between variables must
be identified. This work is under way, and we expect to find
some interesting results in the near future.
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