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Abstract

This thesis describes the use of a Real-Time Evolutionary Algorithm (RTEA) to
optimise an Artificial Neural Network (ANN) on-line (in this context “on-line”
means while it is in use). Traditionaly, Evolutionary Algorithms (Genetic
Algorithms, Evolutionary Strategies and Evolutionary Programming) have been used
to train networks before use - that is “off-line,” as have other learning systems like
Back-Propagation and Simulated Annealing. However, this means that the network
cannot react to new situations (which were not in its original training set).

The system outlined here uses a Simulated Legged Robot as a test-bed and allows it
to adapt to a changing Fitness function. An example of this in reality would be a
robot walking from a solid surface onto an unknown surface (which might be, for
example, rock or sand) while optimising its controlling network in real-time, to

adjust its locomotive gait, accordingly.

The project initially developed a Central Pattern Generator (CPG) for a Bipedal
Robot and used this to explore the basic characteristics of RTEA. The system was
then developed to operate on a Quadruped Robot and a test regime set up which
provided thousands of real-environment like situations to test the RTEA’s ability to
control the robot. The programming for the system was done using Borland C++
Builder and no commercial ssmulation software was used. Through this means, the
Evolutionary Operators of the RTEA were examined and their real-time performance
evaluated.

The results demonstrate that a RTEA can be used successfully to optimise an ANN
in real-time. They also show the importance of Neural Functionality and Network
Topology in such systems and new models of both neurons and networks were
developed as part of the project. Finally, recommendations for a working system are
given and other applications reviewed.
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Chapter 1

I ntroduction

1.1 Introduction to Chapter
This chapter gives a brief overview of the project. It starts by explaining the

motivation of the research. This is followed by a discussion of the aims and
objectives of the work. An outline of the innovative ideas discovered during the

project is then given. Finally, a breakdown of the thesis chaptersisincluded.

1.2 Introduction to Proj ect
Since the middle of the 20th century, scientists have been studying biological

intelligence in order to try to create Artificia Intelligence (Al). It is thought that Al
will add considerably to the functionality of computers, robots and other machines;
however, the complexity of the nervous system makes it one of the biggest
challenges that mankind has ever faced.

One approach to Al is biologically inspired Artificial Neural Networks (ANNS).
These are computer or electronic models of biological nerve cells or neurons; they
are often ssimulated by software [1]. A mgor advantage of the ANN is that it can

improve its performance using atraining or learning algorithm.

One of the main engineering applications of ANNs is in Artificial Neural Control
[2]. This involves using an ANN as a system controller instead of traditional
methods (for example, a PID controller or compensator). There are many advantages
of doing this, including the ANN’s ability to learn and its performance in non-linear
systems. In this project, an ANN is used to control a legged robot. ANNSs used to
generate the rhythmical leg patterns for walking in such robots are often called
Central Pattern Generators (CPGS).

ANNSs are normally trained before use, off-line. On-line learning has proved difficult
[3]. The disadvantage of this may be seen by considering a legged robot walking
across a series of different ground types (for example, sandy, rocky or boggy).

Obvioudly, in this case, for optimum locomotive efficiency, the robot will have to



alter its gait pattern in response to the conditions underfoot. It may have to shorten
its stride, for example, when moving from a hard to a sandy surface. Such parameter

changes are difficult unless there is a method of training the ANN asit is being used.

One method of training an ANN is to use an Evolutionary Algorithm (EA). Such
algorithms are based on biological evolution and allow the ANN to evolve to a good

solution. However, EAs are normally aso used off-line.

The idea behind this project is to use a Real-Time Evolutionary Algorithm (RTEA)
to constantly train the robot’s controlling neural network, evaluating changes to its
fitness function (in the first approximation, the efficiency of locomotion). In this
way, the robot’ s control system is constantly seeking a better solution and will move

towards such a solution even when the robot moves onto a different surface.

Since Artificial Neural Networks are used to control the robot’s legs, rather than
direct control (for example, an algorithm generating a rhythmical step pattern),
lessons learned from the experience can be applied more generally to other neural
network controlled systems. Such networks are commonly used to control a variety

of different mechanica and mechatronic systems.

1.3 Aim and Objectives
The am of this research is to investigate the use of Real-Time Evolutionary

Algorithms in on-line training of Neural Control Systems. The project uses a

simulated legged robot as an experimental test-bed.

The following objectives were set out at the beginning of the project.

Background Reading and Appropriate Directed Study

Appropriate directed studies were undertaken at the beginning of the research. These
included attending seminars, lectures, doing practical exercises in the field of study
and reproducing the work done by McMinn (a previous researcher in the group).



Literature Search in Field

The previous work of the group and in particular, McMinn's [4] Central Pattern
Generator (CPG) Artificial Neural Network was studied to understand its relevance
to the project. A wide range of techniques related to Real-Time Evolutionary
Algorithms were selected and studied carefully. The main topics covered included
Genetic Algorithms, Evolutionary Programming, Evolutionary Strategies, Simulated

Annealing and their use in control systems.

Development of a Central Pattern Generator (CPG) Artificial Neural Network for a
Bipedal Walking Robot

Initialy, McMinn's neuron model [5] was tested by training it using a GA and its
attributes were investigated. Then a new neuron model was developed using a
simulated biped robot as a test bed. This involved developing the biped model and

environment to simulate walking patternsin real time.

Investigation of Evolutionary Algorithms to train the CPG Artificial Neural Network
Initialy it was planned to test the system using different off-line EAs but, as the
work went better than expected, research was begun on the RTEA immediately. An
investigation was carried out to learn more about the mutation and other
evolutionary operators. As a result, optimal parameters for the basic RTEA were
selected and tested. Finally, an initia implementation of a RTEA was tested on the
system. Further details of this investigation are discussed in chapter 6.

Comparison with previously obtained results
The test results of the initial RTEA were compared with the results obtained in

previous work [6].

Extension of MPhil work from Biped to Quadruped robot

The work was taken from the MPhil to the PhD stage by extending it from a Biped
robot to a Quadruped. This involved the transformation of single degree of freedom
actuators per leg in the biped robot, into two degree of freedom actuators per leg in
the quadruped. As the number of legs and degrees of freedom are increased, the
number of neurons in the CPG network also increased. A deeper investigation of the

CPG network resulted in different neuron models. These models were analysed and



tested. From the tests, the best network was selected for the quadruped robot. Further

details about the neuron model development are given in chapter 6.

Extension of Evolutionary Algorithm to Real Time Evolutionary Algorithm to train
the CPG artificial neural network for a walking robot in any gait

The initia implementation of the RTEA was developed further to adapt it to
optimise the robot in any gait. This was achieved by investigating the different ways
of implementing the RTEA — for example, different mutation and other operators.
Performance (fithess) was measured based on the distance covered, stability and the
fuel efficiency of the robot. The RTEAS and their operators are discussed in chapter
7.

Selection of best algorithm from the real time evolutionary algorithms devel oped
The selection of the best RTEA was based on the “ Success Rate” and the “Fitness”
of the system. Success Rate was the measure of how fast and efficiently the RTEA
evolved the CPG of the quadruped robot to walk and the Fitness was the level of
adaptation to the environment. Various experiments were conducted on the RTEA
and the best algorithm was selected.

Running and testing the best algorithm
The system was tested further and its results were analysed. The results are discussed
in detail in chapter 8.

Comparison with published benchmarks and results from other researchers
The results from the best a gorithm were compared with published results.

1.4 Innovative Aspects of Resear ch
The project makes several new contributions to “the art.” Some of its most important

findings are listed below:

Investigation of several of the commonly used neuron models revealed that when
networks have to undergo an evaluated gradual dynamic change (asisthe casein the

RTEA), neuron models using threshold functions are inappropriate. The reasoning



behind this is explained in chapter 6. This finding led to the development of new
models appropriate for use in the system.

The topology of the network as a whole was also investigated as part of the project.
In a similar way to the findings for the neuron model, it was found that certain
topologies worked better than others in the system. Again, this led to the
development and testing of appropriate neural network structures for the task at
hand.

From the two points above, it may be seen that the network needs to be designed
carefully if it isto be used with the RTEA. Thisled to a consideration of the types of
system suitable for the approach outlined in this thesis (and conversely which
systems are not appropriate).

Finally, and most importantly, the implementation and extensive investigation of a
Real - Time Evolutionary Algorithm controlling a Neural Net is a unique piece of

work.

1.5 Structureof Thesis
Chapter 2: Previous Works in Group

This chapter describes the work done by previous workers within the research group

and shows the development and context of current work.

Chapter 3: Evolutionary Algorithms
This chapter explains various traditional Evolutionary Algorithms and discusses the

advantages and disadvantages of each of them.

Chapter 4: The Real Time Evolutionary Algorithm
Based on the discussion in the previous chapter, this chapter explains the

devel opment of the Real-Time Evolutionary Algorithm.

Chapter 5: Literature Review
This chapter contains the results of a comprehensive literature review in the area of
study.



Chapter 6: Investigation of Evolutionary Algorithms and System Implementations
The chapter explains how the research led to the development of neuron and network
models especially suited to RTEAS. It also describes the initia investigation of the
RTEA in abiped robot and the devel opment of the robotic models used.

Chapter 7: From Bipeds to Quadrupeds
This chapter explains the development of quadruped robot models, using what was
learned from the biped robot simulators and neura networks.

Chapter 8: RTEA Operators
This chapter explains the different RTEA parameters and their roles in controlling
the network performance. It also explains the RTEA’s operators and their advantages

and disadvantages are discussed using appropriate performance graphs.

Chapter 9: Future Work

In this chapter suggestions are made for further work.

Chapter 10: Conclusion
This chapter evaluates the research and discusses its successes and failures in terms
of the original objectives.

Published papers, reports produced during the course of the research, and further

results are included in the appendices.



Chapter 2

Background and Previouswork within the Research
Group

2.1 Introduction
Since its foundation in 1994, the Artificial Neural Networks group at The Robert

Gordon University has gained a considerable amount of experience in the field of
Evolutionary Artificial Neural Networks. This chapter explains the background of
the group’s work and describes how this project evolved from the previous research
within the group. It starts by presenting the basic features of the biological nervous
system and describes the artificial equivaent. It then explains the group’s work on

artificial nervous systems. Finally, it explains this project’s origins.

2.2 Biological Nervous System
Nerve cells or neurons are the basic building blocks of Biological Nervous Systems

[1] (BNSs). In higher animals, billions of nerve cells work together to form a large
Neural Network. This neural network performs complex and organized
communication and information processing within the nervous system and between
it and the external environment. The main task of the nervous system is to ensure

that the organism reacts optimally to its environment.

Anatomically the nervous system can be divided into the “ Central Nervous System”
(CNS) and “Peripheral Nervous System” (PNS). The CNS consists of the brain and
spinal cord and the PNS consists of the sensory and motor neurons which connect
the outside world to the CNS. Higher organisms (like reptiles and mammals)
generaly have more complicated nervous systems than simpler organisms.

The nervous system has sensory neurons which receive information from the outside
world. These neurons receive stimuli (sensory information) and send it to the central
nervous system in the form of nerve impulses. After processing in CNS, information



is relayed to other neurons (called motor neurons) which carry out the body’ s actions

viamuscles and glands[2].

2.3 Biological Neural Networks
In 1840 anatomists Jacob Schleiden and Theodor Schwann showed cells are the

basic units of tissue architecture. Later in the 19" century neuro-anatomists Santiago
Ramoén y Cagja and Camillo Golgi said that there are large numbers of discrete cells
in the brain [3]. These cells are known as neurons which are the elementary unit of
processing information (different activities of body) within the Biological Neural
Network (BNN). Hence the BNN consists of neurons connected to each other. The

figure below shows a representation of aneuron (Fig 2.1).
Synaptic bulbs (Output)

v

Action
Potential

Cell Body

Dendrites
(Input)
Figure 2.1: A Biological Neuron

As shown in the figure, the neuron has a “ Cell body” (also called a soma), which is
the main information processing centre. The input sources for signalsto be fed to the
cell body are the “Dendrites’. The dendrites receive nerve pulses from other neurons
or from sensory input to the body. When the received information from all these
dendrites is strong enough to overcome the neuron’s threshold, the information
processing takes place within the cell body as an ionic chemica reaction and this
resultsin apulse. This pulseiscalled an “Action Potentia”; it travels down the axon.
The figure 2.2 shows a graph of action potential voltage against time. In this

example, the neuron’s threshold valueis-55 mV.



The junction between the axon and the dendrite is called a synapse. There are two
types of synapse: an Electrical Synapse and a Chemical Synapse. Electrical Synapses
conduct the signa directly by contact. Chemica Synapses have a gap between the
pre-synaptic and postsynaptic terminals of the neuron. A neuroactive substance
transfers the signal from the pre-synaptic to the postsynaptic neuron and is called a

neurotransmitter.

Action Potential

Ol i
R e —
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Time (msec)

Figure 2.2: Action Potential

The strength of the transferred signal depends upon the physical and chemical
characteristics of the synapse. By adjusting the amount and type of the
neurotransmitter, the stimulation of the neuron can be adjusted. This mechanism is

critical in learning [4].

2.4 Components of L ocomotion
Since this project uses a legged robot as a test bed, it is appropriate at this stage to

consider that part of the BNS which deals with locomotion. The locomotory
functions of the BNS may be divided up into two main sections. The Central Pattern
Generator (CPG) and the Reflex system, as shown in figure 2.3. Each of these
functionsis explained below.



Higher Centres of processing

|
CPG
A
Sensory neurons sense Y
positions of the muscles }ﬂf& ------ Motor Neuron
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\:_/

Figure 2.3. The Locomotory Components of the BNS

2.4.1 Reflex
The Reflex is a Control System [5]. The input is a stimulus either from the higher

brain centres (voluntary movement) or from within the spina cord (involuntary

movement). There are many kinds of reflexes (e.g stretch reflex, withdrawal reflex,

etc), but most of them share the same basic functions. The reflex is mediated by the

“Reflex Arc” (Reflex pathway). The Reflex Arc is the structural basis of a reflex, as

explained below [6].

1. A stimulusisreceived by areceptor and converted into an action potential.

2. The sensory neuron conducts the action potential to the central nervous system.

3. Thesigna is modified (to provoke the necessary output) by other neurons in the
reflex centre. Signals are then passed to effectors (which may be muscles or
glands), by motor neurons.

4. Thesignals passed to the organs produce corresponding action(s).

Note the similarity of the reflex to atraditional control system, the inputs (set points)
corresponding to input from the higher centres and the sensory neuron providing
feedback.

2.4.2 Central Pattern Generator (CPG)
The CPG generates signals which control repetitive rhythmical patterns like walking,

running and flying. Grillner and Wallén [7] showed that neural circuits in the spina
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cord are responsible for generating the rhythmical motor patterns which cause
locomotory movement. They aso proved that these movements can happen with or

without inputs from the higher brain centres.

For a waking animal, the CPG selects an appropriate gait based on its
circumstances. This depends on the strength and type of the stimulus received from
the higher brain layers. The CPG layer may also receive information from the reflex
layer, and does not require input from the higher brain centres.

2.5 Artificial Nervous System

2.5.1 Structure of ANS
In 1998 MacLeod, McMinn and Maxwell [8] proposed a biologically inspired

framework for an Artificia Nervous System (ANS). Figure 2.4 shows the
hierarchical structure of the ANS. The layers marked in asterisk are those which can

have multiple modulesin parallel.

2.5.2 Layersof the ANS
The layers of the ANS can be divided into five sections. They are explained below.

1. The lowest layer of the ANS is the reflex layer. The reflex layer is similar to the
reflex arc of the BNS and is responsible for the ssimplest controlled forms of
movement, interfacing directly with the hardware actuators of the animat. There can
be multiple reflex module layersin parallel, each controlling different actuators.

2. The action layer is responsible for synchronising the reflexes together and
producing rhythmic movements of the body; for example, walking, running and
swimming. These actions correspond to the Central Pattern Generators (CPGs)
mentioned above. This layer can also semi-autonomously control the actions and

reflexes - for example, taking awide stride to avoid an obstacle.
3. Animals have different stereotypica behaviours like eating and mating. Different

actions and reflexes are sequenced together to produce such behaviours in the

behaviour layer.

11
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Figure 2.4 Artificial Nervous System Structure
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4. The survival of an organism depends upon its sensory inputs - for example, smell,

vision and hearing. Such sensory input is processed by the sensory processing layer.

5. The priority resolution layer makes decisions depending upon the situation and
internal status of the animat. This is connected to higher layers of ANS. The purpose
of this layer is to resolve any conflicts between behaviours (for example, escape in

the presence of adanger or move towards food).

2.5.3 Advantage of ANS
The Modularity of the ANS is its main advantage. Modules can be added to any

layer to perform new tasks. The ANS may be implemented using any conventional
technology, so it is a general system and not dependent on any particular
implementation. If the hardware implementation requires a change in a lower level,
then only that layer need be subjected to change and the higher levels will remain the
same. The ANS can be applied in ROVs (Remotely Operated Vehicles), robots,

aircraft, or any other system requiring intelligent control.

2.6 Previous Researchers Contributionsto ANS

2.6.1 Evolution of Animat Nervous System (ANS) —Lower Layers
Initially McMinn upgraded the original ANS structure by atering the flow of

information (between the ANS layers) from unidirectional to bidirectional. Hence if
the ANS encounters a new environment, it can use the higher functions to prioritise
the current conditions and initiate the necessary behaviour to tackle that condition.
With the new ANS (figure 2.4) structure as a basis, McMinn developed an
Evolutionary ANN and implemented the Central Pattern Generator (Action Layer)
and Reflex (Reflex Layer) for robot locomotion [5]. Figure 2.5 shows a block
diagram of the functionality of McMinn’s artificial reflex.

The reflex ANN circuitry receives information from higher layers and actuator
sensors. According to the received information, the ANN controls the position of the
actuators. A simulation of DC electric motor powered legs was used to test the
system.
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McMinn used simple network topologies (feed-forward and recurrent networks) in

his implementations. The network used a McCulloch-Pitts neuron model and was

trained with Evolutionary Algorithms (EAS).

McMinn then constructed the action layer that would sequence the reflexes together

and successfully evolved CPGs for biped and quadruped gaits using the system.

It was found that the simple McCulloch-Pitts neuron did not produce useful results

and hence a new neuron model was developed that produced timings required for the
CPGs. As shown in figure 2.6, the output of the evolved CPG was passed to the

Reflex through a leaky integrator. The leaky integrator converted a time domain

input to a continuous output value. More information about the time dependent

neuron model can befoundin[5].

Outputs

CPG

Leaky
Integrator

A 4

A 4

Reflex

Actuator

Figure 2.6 Chain of connections from CPG to robot actuator

(Reproduced by permission of McMinn)
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McMinn investigated further the structuring of the network. An evolved biped CPG

was used as an oscillator, which feeds a pattern generator producing quadruped gaits
like Gallop, Trot, Pronk, and Walk. Figure 2.7 shows this aternate setup. Figure 2.8

shows the output of an evolved quadruped gallop.

A conclusion of McMinn’s experiments was the suggestion that more modular CPGs

are easier to evolve.

Correctly

_____________________________________________________ - Patterned

Tonic ! Oscillating

Input Pattern

' Outputs

O
g
m
Q

Figure 2.7 Connectivity of the functional unitsin alternate CPG strategy

(Reproduced by permission of McMinn)
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2.6.2 Evolution of Animat Nervous System (ANS) — Upper Layers
Reddipogu [9] concentrated on the sensory (upper) layers and particularly the

processing of visua information. Reddipogu used the toad’'s visual system as a
model for her research. This was because it had a ssimple neura network structure
and hence it was more straightforward to implement an artificial equivalent of it.
Reddipogu developed a biologically inspired vision system (based on this) which has
the ability to differentiate between prey and predator.

The resulting neural network is shown in figure 2.9. It was trained using an
Evolutionary Algorithm based on Reinforcement Learning (EARL).

The trained network was tested using new patterns and its performance was
investigated. Figure 2.10 shows a typical output of the network. The horizontal axis
represents the classes of outputs and the vertical axis corresponds to the activation
level of each output neuron. The terms prey, predator, snap and orient refer to the

toad’ s biological behaviour.

10 11 12 13 14 15 16 17 18 19 20 21 22 23

%O Q

d

@)

Output Neurons

v v

Prey and Orient Prey and Snap

—— > Excitatory Input _— Inhibitory Input

Figure 2.9 The network of the vision system based on the toad
(Reproduced by permission of Reddipogu)
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Figure 2.10 Output for Prey and Orient input pattern
(Reproduced by permission of Reddipogu)

Reddipogu showed that the network was able to recognize similar patterns. The
results showed that a robotic vision system can be implemented based on these ideas.
It also showed, like McMinn, that the performance of the network depends on its
modularity. Further detailed analysis of this network can be found in [9].

2.7 Next level of Contribution to ANS
McMinn and Reddipogu’s work was aimed at investigating the effect of modularity

on the network and its evolution. However, it should be noted that al networks
involved in their work needed pre-training before they were implemented in the
system. This means that they cannot handle events other than those they were trained
for.

For example, McMinn developed a Centra Pattern Generator (CPG) using an
Evolutionary Artificial Neural Network, which allows arobot to walk with a specific
gait. The system does not alow the gait to adter (for example, in terms of stride
length or speed) to accommodate differing environment conditions (such as ground
softness or substrate). This was seen as a disadvantage, both theoretically and later
during the course of actual experiments. The project described in this thesis is a
continuation and development of McMinn’s work. It allows area time evolutionary
algorithm to control the robot, so that it can change gaits to accommodate conditions

underfoot asit iswalking.
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2.8 Summary
The research group at the School of Engineering at the Robert Gordon University

has done extensive work in the field of Evolutionary Artificial Neural Networks and
their applications to Robotics. This work has included the implementation of
sophisticated Artificial Nervous System-based Robotic Controllers.

It was found during experimentation with such controllers that their off-line pre-use
training was unsatisfactory and that some way was needed of training or optimising
their performance on-line. It was therefore decided that a project should be initiated
to investigate whether this could be done using Rea-Time (on-line) Evolutionary

Algorithms. This, then, isthe basis of the research presented in this thesis.

The next chapter will outline the Evolutionary Algorithms available for use in the

devel opment of such a system.
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Chapter 3

Evolutionary Algorithms

3.1 Introduction
Evolutionary Algorithms (EAS) are some of the important optimization techniques to

emerge in the last three decades. EAs were originally inspired by biologica
evolution; however, several other fields including mathematics, biology and thermo-
dynamics have also contributed to their development. Biological Evolution optimizes
the characteristics of different species to fit into a dynamic environment. Haupt, in
their book [1], have summarised Grant’s [2] explanation about the relationship

between optimization and evolution:

“Imagine the organisms of today's world as being the result of
many iterations in a grand optimization algorithm. The cost
function measures survivability, which we wish to maximize. Thus,
the characteristics of the organisms of the natural world fit into this

topological landscape.”

In asimilar fashion, the EAs optimize the parameters of a given problem, to produce
a good result. Each individual EA uses its own operators to find the optimal solution
for a given problem. The most important EAs are: the Genetic Algorithm (GA),
Evolutionary Strategy (ES) and Evolutionary Programming (EP). Another algorithm,
Simulated Annealing (SA) is another type of optimization technique, which is
inspired by the annealing process of a hot substance to form a crystalline lattice.
Although not normally considered as an EA, SA bears some similarities to the EAs
mentioned above because it uses a ‘mutation-like’ operator to change its parameter

gradually and it will be considered in thisthesis.

This chapter starts with a brief introduction to the background of the EAs and

follows with sections explaining the different EAs and their operators.
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3.2 Biological Optimization
As mentioned earlier, biological evolution has been the main inspiration behind most

of the EA techniques. Hence, in order to understand the basic concept of the EAS,

this section first gives an overview of biological evolution.

To understand evolution, the explanation is started from the cellular level. Every
organism inheritsits qualities from its parents through genes. Genes hold information
(eye colour, hair colour, etc) about the organism in a sequential manner. This
sequence is called the “ Genetic Code’. Each gene occurs in two characteristic forms,
each called an “dlele’. For example in humans, there can be one allele for brown
hair and one allele for black hair. Most of the time one alele is dominant and other is
recessive. The combination of allele determines the characteristics of an individual.
The observed characteristic of an individual is called the phenotype and the genetic
code of the character is the genotype.

The building blocks of genes are Deoxyribonucleic Acid (DNA) and it exists in a
double helix shape. DNA looks like a long twisted ladder when seen under the
electron microscope. DNA consists of two strands of sugar-phosphate bases which
are the backbone of the helical structure and these are bonded together with four
different chemical bases. Adenine (A), Guanine (G), Thymine (T) and Cytosine (C).
These bases uniquely combine together in different combinations to form the genetic
code. The DNA string is very thin (2nm) and it is packed into a structure called a
chromosome. The whole package is housed in the nuclei of an organisms’ cells. The
picture shown in figure 3.1 gives an overal view of a cell, chromosome, DNA and

genes.

Thus, parents’ traits are represented in the chromosomes of each cell. These traits are

passed to offspring by the process called “Reproduction”. Thisis explained below.

Single celled organisms reproduce by simple cell division, which is known as
mitosis. In this case, the chromosome is exactly copied and hence the offspring will
be identical to the parent. Higher organisms reproduce by sexual reproduction,
known as meiosis. In both cases, during cell division, errors occasionally occur when

copying genes from the parents. The cause of these errors can be internal or external.
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Internal errors occur during the process of copying the chemical bases. In humans,
approximately six billion of these chemica bases (As, Ts, Gs and Cs) have to be
copied and some errors are inevitable. External errors are those caused by such
things as ultraviolet light and X-rays [3]. The changes in genes affect the traits
passed to the offspring. These changes are caled “Mutations’. Mutations cause
changes in the genetic code at random points.

Chromosome

Nucleus
A oo™

Nrmmmd forimnm?
entromere

Chromosome
Cdl Cell membrane
DNA in Double maginary
Imagi_nary Helix Form DNA string
magnifying | pulled out of
) Chromosome

glass

T LOORT

Gene

Sugar-Phosphate strand

Chemical bases
Figure 3.1 Cell, Chromosome and DNA

During sexua reproduction, the offspring gets on average 50% of the mae
chromosome and 50% of the femae chromosome. These chromosomes combine
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together at random points. This is called “Crossover”. Thus traits are passed from

generation to generation.

So far the basic components of inheritance have been discussed. The description
below shows how the basic components of inheritance influence the evolution of the
organism itself. Many researchers and philosophers have contributed to the ideas
behind evolution; but it was Charles Darwin, born in 1809, who came up with the
theory of “Natural Selection”. He initialy went to Edinburgh University to study
medicine, but it did not interest him. He left Edinburgh and joined Cambridge
University to train for the church; however, he did not enjoy that either. His uncle
persuaded his family to let him join a journey around the world on a ship caled
“Beagle”, hoping that, being at sea would teach him about life and how tough it was.
In 1831 he began his journey as a naturalist aboard the Beagle [4]. On his journey,
between 1831 and 1836, many things in the natural world inspired him to think about
the evolution of living organisms. When the journey had finished, he started
theorising about the relationship between organisms and the environment. After
observing many different species, he came up with a theory called “Natura

Selection”. Thistheory islaid out in apoint by point fashion [5] as follows:

1. The prime motives for all species are to reproduce and survive,
passing on the genetic information of the species from generation
to generation. When species do this, they tend to produce more
offspring than the environment can support.

2. The lack of resources to nourish these individuals places pressure
on the size of the species population. This lack of resources
means increased competition and as a consequence, some
organismswill not survive.

3. The organisms who die as a consequence of this competition are
not totally random. Those organisms more suited to their
environment are more likely to survive.

4. This results in the well known phrase, “ survival of the fittest”,
where the organisms most suited to their environment have more

chance of survival if the species falls upon hard times.
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5. Those organisms who are better suited to their environment
exhibit desirable characteristics, which is a consequence of their

genome being mor e suitable to begin with.

Darwin described “Natural selection” as the process of seecting the fittest
individuals for further reproduction. An example, from Darwin’s observations when
he visited the Galapagos Island will help to illustrate this better. On one island there
were small tortoises which eat the lower leaves of the trees to survive. During the dry
season, the tree’s lower leaves die. In such situations, the small tortoises die from
starvation. But large tortoises, which are able to reach the height of those leaves | €ft,
eat well and survive. Seefigure 3.2.

Normal Season Dry Season

A J—

Large tortoise or Small tortoise Largetortoisecan ~ Small tortoise can’t
tortoi se with long neck still reach leaves reach and left with no
leaves

Figure 3.2 Example of “survival of the fittest”

If the dry season continues the small tortoises will die out. The large tortoises would

survive and therefore would be able to pass their genes to the next generation.

To summarize the main points from above:

1. A group of individualsis called a population

2. The individuas within the population carry their genetic information in their
chromosomes

3. Thegeneticinformation is coded in the chromosomes as genes

4. The genes themselves are made from DNA

In sexual reproduction chromosomes crossover to produce new offspring
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6. Mutation produces new codes and happens randomly
7. According to the ability to survive, the fittest offspring survive and the others die
8. Thesurviving individuals pass their genes to next generation

Thus the species gets biologically optimized to fit in with the dynamic environment.

This concept is the basis for most of the EAs as the following sections explain.

3.3 The Genetic Algorithm —an overview
The GA was developed by John Holland in 1975 and popularised by one of his

students, David Goldberg in 1989. Goldberg in his book defined the GA as follows
[6]:

“ Genetic algorithms are search algorithms based on the mechanics of natural
selection and natural genetics. They combine survival of the fittest among string
structures with a structured yet randomized information exchange to form a search

algorithm with some of the innovative flair of human search” .

The “Tortoise on the Island” example, above, can be used to explain how the GA
works. Imagine a mixture of interbreeding tortoises in a population. The features of
each tortoise can be any two of the following: large, small, hard shell and black. The
ultimate aim of tortoises is to survive. The environment the tortoises are living in is
dry and hence it is hard for them to reach the lower leaves of the trees. The island
also has predators. Figure 3.3 gives a pictorial view of the process of the GA. In the
figure, the numbers on the tortoises represent their features. In the GA’s process

these numbers are taken as genes representing the system.
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From the initial population, not all tortoises make it into the mating pool. Only those
which are fit enough are chosen by the GA. From the mating pool, two are randomly
selected for reproduction. During reproduction, each offspring inherits genes from its
parents which decide its features. Then, randomly, some genes go through the
process of mutation where their features may be varied. This process is explained in
detail later in this chapter. Mutation may result in a good or a bad change to the off-
spring’s feature. In the example below, mutation resulted in a good change, because
it got a hard back, a feature which allows escape from predators. After one iteration,
the new population has two tortoises which are fitter the than others (genes 1, 3).
After several generations or iterations, others will become extinct and thus the
population gets fitter. As the GA works on the genes representing the system, it is
known as genotypic algorithm, an analogy to the genotype in biology (refer to section
3.2: Biological Optimization).

In general, the GA triesto optimize a system’ s parameters to maximize the fitness (or
minimize the error or cost) of the system, in each iteration.

Generally, the point where the GA finds the true minimum error is called the Global
Minimum. If it fals, it is referred to as having found only a Local Minimum. The
difference between local and globa minimum isillustrated in figure 3.4.
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Figure 3.4 Local and Globa minimum
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3.3.1 Typesof GAs
There are two main types of general GA: “The Binary GA” and “The Continuous

Parameter GA”. These two types differ in terms of how the parameters of a problem
are represented. In a binary GA, for example, the parameters x = 4 and y = 6 would
be represented as binary vaues x = [1 0 0] and y = [1 1 0]. However, in many
problems, parameters are taken as they are represented in the system. These
parameters often belong to the continuous type. Continuous parameters are real
numbers, for example 1.253, -0.836, etc. Due to the close similarities between the
binary GA and continuous parameter GA, in this thesis the binary GA is not

considered. The next section explains the continuous parameter GA.

3.3.2 The Process of Continuous Parameter Genetic Algorithm
The different processes of the GA are shown below in aflow chart (Figure 3.5).

Define Parameters and
cost function

Create Population

v

Evaluate Cost (Fitness)

y

\ 4

Sdect Mate

A 4
Crossover (or) Recombination

Mutate

A4
Test Convergence

A 4

Stop

Figure 3.5 Block diagram of the process of the GA

Each processing stage is explained in detail in the sections below.
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3.3.2.1 Defining the Cost Function
The main aim of using a GA isto optimize system parameters - to reduce the error of

the system. To do this, the GA needs a function which evaluates the system
parameters. This is generally called the “Cost Function” or “Fitness Function”. The
Cost Function can be defined as the process that uses the input parameters from a
given problem and evaluates their cost (or fitness), according to the constraints of the
given problem. Figure 3.6 shows a block diagram representation of the cost function
and problem constraints in the GA. For example, in a problem to solve the equation
(3.1,

X = 2sin(p) + 10cos(q) + 11r + 1000000 (3.1)
with condition 0 <x <10

The cost function evaluates the cost of the input parameters ‘p’, ‘q’, ‘r and ‘s,
satisfying the condition 0 < x < 10. Hence, here the cost of ‘p’, ‘q’, ‘r and ‘s is
being evaluated with *x’ being within the given bounds.

Input Given Problem Output
Parameters Parameter

GA
Cost Function

Problem Constraints

Figure 3.6 Block diagram of the cost function and the problem constraints

The cost function can be mathematical, the outcomes of a game, the performance of
an operation, etc. Sometimes, designing a cost function for a given problem is a
matter of trail and error. In the example above, the cost would be how close ‘X’ isto

the desired value (the closer it is, the lower the cost).
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3.3.2.2 Defining the Parameters
Usualy, the GA starts by defining an array of parameters which is called a

chromosome or string. From the above example, (equation 3.1) the array of
parameters would be the values of ‘p’, ‘q’, ‘r’ and ‘'s’. An example of a chromosome
in the above problem is shown in figure 3.7, below.

p q r S
12.2 0.234 | -0.534 | -2.344 | Chromosome

Figure 3.7 A sample Array of parameters — a Chromosome or a String.

Thevaues ‘'p’, ‘q, ‘r and ‘s determine the characteristics of the equation. Thisis
analogous to the biologica genes determining the characteristics of a species. Hence,
sometimes researchers use the term “genes’ to mean problem parameters. When the
cost function measures the cost of the chromosome above, it evaluates the equation

as shown in equation 3.2.

X = 25in(12.2) + 10c0s(0.234) + 11 x -0.534 + -2.344/1000000  (3.2)

There are afew points to be considered when choosing the parameters to be used.

1. Choosing the right number of parameters:
Many systems have a lot of parameters which could be chosen. Choosing too
many parameters can slow down the GA; it can therefore be quite tricky to choose
a suitable number. Sometimes, atrial and error method is used and sometimes the
nature of the problem helps to indicate the correct parameters. For example, from
the above equation 3.1, the parameter ‘s is divided by one million, so it has little
effect on the output. Hence, that parameter can be excluded from the evaluation of

the cost function and the equation is simplified to:

X = 2sin(p) + 10cos(q) + 11r (3.3

Thus the number of parameters is reduced from four to three (p, g and r) and the

search space also reduces.
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2. Choosing theright types of parameters

There are generally three types of parameters one can choose from.

a. Constrained Parameters

Sometimes optimization problems require parameter constraints to
reduce the workload on the GA and thereby reduce the time taken to

optimize parameters. Constrained Parameters come in three types.

Parameters with a hard limit

Parameters can be imposed with a hard limit such as < (less
than), > (greater than), < (less than or equal to) and > (greater
than or equal to). For example: in the above problem, a
constraint of only positive values for parameter ‘p’ (p > 0)
may be imposed because cos(20) = cos(-20) and hence, there
is no need to consider negative values for parameter ‘p’. Thus,
hard bounds help to reduce the time taken to optimize some

parameters.

. Transform Parameters

In this case, changing one value of a parameter within its
bound will transform another value of a parameter out of its
bound. For example, in equation x =siny + 2.2; 0 < x < 10,
changing the ‘x’ value within its bound transforms the ‘y’
parameter outside its bound and visa versa. Because of this,
many unconstrained problems become constrained.

Finite Parameters

Choosing finite parameters is choosing from a discrete set of
values within the region of the solution. For example, if there
is a problem to choose the right number of chairs to be placed
in a hal, the GA has to pick the numbers from integer
numbers like 1, 2, 3,...etc. and not real numbers like 1.3,
2.3,...€tc.
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b. Dependent Parameters
Dependent parameters are ones where changing one value will affect
others. Haupt, in his book, has given a good example of a dependent
parameter [7]. For a car, size and weight are dependent parameters.
When the size of the car is increased, it is more likely to increase the

weight, unless some light-weight material is used.

c. Independent Parameters
Independent parameters are those which will not interact with each
other. With this type, adding extra parameters will not affect the pre-
existing parameters. Again, Haupt's book has a good example [7]. In
Fourier series, if ten coefficients are not enough to represent the
function then more coefficients can be added without changing or

recal culating the original ten coefficients.

As seen from the above, there are different ways of classifying a problem’s
parameters and the GA is sensitive to each of them. By carefully defining the

parameters, one can improve the performance by the GA.

Summary of main points of this section
e The constraints of a given problem are an important factor in evaluating the
cost function. Sometimes the cost function can be designed by a tria and
error method.
e Defining parameters carefully, improves the performance of the GA.
e Sometimes, the choosing of the parameters and the cost function are
interrel ated.

3.3.2.3 TheInitial Population
The initial population is a set of random numbers generated for the parameters of a

given problem. Each such set is called a chromosome or string (as explained in
section 3.3.2.2). Most GAs are programmed using software (such as MATLAB,
C++, etc) athough they can be implemented in hardware. Creating an initial
population is generally quite easy using such software. Often, the method isto assign

atwo dimensional matrix. This matrix is an array of chromosomes. In the array, each

31



row represents a set of parameter values (a chromosome) and the whole matrix
represents the initial population. For example, for the problem given in section
3.3.2.2, (equation 3.2) atypical array of chromosomes is shown in the table in figure
3.8.

Initial Population
P q r

Chromosome

0.359146

0.368715

0.588958

0.968575

0.209526

0.700539

0.623204

0.873273

0.079489

0.565509

0.191972

0.595049

0.661988

0.610982

0.376377

0.185029

0.773646

0.180691

0.055999

0.834726

0.586256

0.092188

0.932479

0.984087

0.580009

0.442063

0.483987

0.715647

0.446312

0.107349
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Figure 3.8 An array of chromosomes

In an initia population, each randomly generated chromosome can be a potential
solution in search space (search space being the total area of potential solutions). For
example, the optimized parameter values for the equation 3.3 are between zero and
one. A pictoria view of the sample search space and the random potential solution
points (the initial population) is shown in figure 3.9. The points shown in the graph

are the randomly selected potential solutions.
Although the initia population may be randomly scattered in search-space, as

suggested above; the user may aso choose to distribute it evenly (or a mixture of the

two).
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Figure 3.9 Search Space

3.3.2.4 Selecting Members of Population
After generating the initial population, the next step is to select the fit members or

chromosomes. A simple method of selection has the chromosomes sorted according
to their fitness or rank - from the most fit (first rank) chromosome, to least fit (last
rank). Often, from the initial population, only the top 50% is taken for further
processing and the bottom 50% is deleted. This top 50% is generally caled the
breeding population. The size of this population is often then kept constant
throughout the rest of the process. As an example of this process. if the initia
population size is 48, after sorting according to their fitness or rank, the top 24 fit

chromosomes are selected.

3.3.2.5 Selection Operators
This is the process of making pairs from the parents selected from a population. The

main idea behind selecting parents is to give more chance to the fit members of a
population to reproduce. This closely mimics the survival of fittest as explained in
section 3.2. There are many different methods of doing it [9]. The common methods
used are “Roulette Wheel” and “Tournament Selection”. These two methods are
explained below.
1. Roulette wheel
The Roulette Whedl Method randomly picks parents from a roulette wheel
which is portioned in proportion to the cost of the parents [10]. Figure 3.10
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shows an example of a roulette wheel portioned in such a manner with the

cost of five parents.

Figure 3.10 A sample roulette wheel

V/
4

In this example, the chromosomes are represented using the letters A, B, C, D

and E. Hence, when a ball is spun on the whesl, it falls randomly into one of

the slots and picks a chromosome. In this method, the fittest chromosomes

are more likely to dominate the pairing process because they have a large

portion of the wheel.

2. Tournament Selection

This method randomly picks two parents from a subset of the mating pool

[11]. Among the two the one with the lowest cost is selected for mating. This

is useful when the GA works with large populations, because its saves time

sorting the cost or rank. The table below (figure 3.11) shows an example.

Tournament

Two randomly selected parents

Winning parent

1

1,4

1

4,6

34

5,6

1,6

O O | W N

2,3

4
3
5
1
2

Figure 3.11 Tournament selection

There is no definitive guide to the best selection method. Different researchers use

different techniques.
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3.3.2.6 Mating
Mating, also known as Crossover or Recombination, is the process where the parents

combine their genetic material and produce one or more offspring. Generally, in a
pair of chromosomes, one is called the father and the other one is called the mother.
The main idea behind the mating process is to pass the parent’s traits to the off-
spring. It is usually done by taking a portion of genes from the father and a portion of
genes from the mother and combining them together to produce off-spring. The point
where portions from mother and father are split is called the crossover point and is

chosen at random. Figure 3.12 shows an example.

Parents Offspring
p q r p q r
Father | 0.359 | 0.368 | 0.588 , Childl | 0968 | 0.368 | 0.588
Mother | 0.968 | 0.209 | 0.701 Child2 | 0.359 | 0.209 | 0.701

Random crossover point

Figure 3.12 Crossover

From the above figure, it can be seen that the portions highlighted belonging to the
parents, combine together to form child one and two respectively. Sometimes,
instead of picking one random crossover point as shown above, more than one point
is selected to produce more offspring. There are also crossover methods devel oped
for specific applications [12]. Although the above methods produce new offspring,
parental characteristics (genes or values) remain the same. Hence, the values of the
initial population remain the same throughout the process and the GA has to rely on
the mutation operator (mutation is explained in the next section) to generate new
genetic information (new values). Haupt in his book [13], has outlined work done by
Radcliff, Michalewicz, Eshelman and Shaffer, which has introduced new methods to

overcome this problem. Their work is outlined below.

Radcliff introduced a new formula to generate vaues in the offspring's

chromosomes. The formulais shown below (equation 3.3).

Pon = gPmn+ (1- B)Pfn (3.3

where:  isarandom number generated between 0 and 1
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P, is the n gene in the offspring’ s chromosome
P isthe n™ gene in the mother’ s chromosome

Pi isthe n™ genein the father’ s chromosome

Substituting B with (1- B) will give the next offspring. If B = 1, P, diesand if B =0,
Pmn dies. p = 0.5 (Davis, 1991) gives an average of father and mother chromosome
values. This method introduces new values into the offspring chromosome; however,
the values introduced are within the bounds of the parent chromosomes. To solve
this, Michalewicz proposed another crossover method, where the offspring value is

determined by equation 3.4, given below.
Pon = S (Pmn— Pfn) + Pfn (3.4)

This method allows changes in the values of the offspring chromosomes, outside the
bounds of the parent chromosomes. The blend (BLX-a) crossover method,
introduced by Eshelman and Shaffer, is an alternative technique, which determines
how far the new values generated can go beyond the bounds of their parents. This
method allows the user to keep the offspring values close to the parent chromosome

values. There are also other methods available for crossover.

Like selection operators, the best method is hard to advise. Generadly, it is a the

user’s discretion to choose which crossover method to use for a given problem.

3.3.2.7 Mutation
Mutation is the process by which the parameter values (genes) are altered by small

random values. This alows the GA to explore the cost surface further without
converging to a solution too quickly and helps to avoid local minima. The number of
parameters or genes in a chromosome to be mutated, is called mutation range. The
usual mutation range can be anywhere between 1% and 20%, depending on the
problem, for the GA to work well. Mutation values are generated using a “Uniform
Distribution” of random numbers. The bounds of the random number distribution can
either depend on the constraints of the given problem or can be completely random.
The graph below shows an example of uniform distributed random numbers (figure
3.13). The x-axis represents the bounds of the random number and the y-axis
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represents the probability of occurrence. The grey area shows the probability

distribution. In other words, al numbers within the range are equally likely to occur.

Uniform Random Number Distribution

A
‘5 c
20
8 3
S5
X5
-1 0 +1
Random values

Figure 3.13 Uniform Distribution of random numbers

3.3.3 Advantages of GAs
The main advantage of the GA is that it can efficiently and ssmply explore a wide

range of cost surfaces. Also, it does not result in a single solution, but in severa,

leaving an option for the user to investigate the system further.

3.4 Simulated Annealing
The Simulated Annealing (SA) method was introduced by Kirkpatrick and his co-

workers in 1983. It is based on an idea formulated by Metropolis et al in 1953 [14].
Davis, in his book, has defined SA as quoted below [14]:

“Smulated Annealing is a stochastic computational technique
derived from statistical mechanics for finding near globally-

minimum-cost solutions to large optimization problems.”

Kirkpatrick et al demonstrated the use of SA when applied to combinatorial
optimization problems. Some of the popular problems solved using SA were the
physica design of computers, wire-routing, component placement in VLS| design
and the travelling salesman problem [15]. In the following section, statistica
mechanics is discussed so that SA may be understood in better detail.
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3.4.1 Statistical M echanics
Statistical mechanics is a method used to analyse the behaviour of large systems of

atoms in a substance in thermal equilibrium at afinite temperature.

A cubic centimetre of fluid contains in the order of 10 atoms. It is obviously
difficult to analyse the behaviour of each atom. Instead, the most probable behaviour
of the system at a given temperature is measured. Each configuration of the system

may be predicted using the Boltzmann Probability Factor as shown below

By =@/ e (3.5)

Where Ber is the Boltzmann probability factor
E isthe energy of the configuration
kg is Boltzmann’s constant

T isthe temperature

If T islowered below a certain temperature, the system may form a crystalline solid.
Analysing the system in this ground state is difficult because the energy is low. In
order to analyse such states, one has to slowly cool the material to its ground state,
often starting from the melting point.

3.4.2 Optimisation Techniquesfrom Statistical M echanics
In optimisation, the analogy to finding the low temperature state of a material is

finding the global minimum vaue. Unlike optimisation using heuristic methods,
which often finds local minima, Statistical Physics (SP) provides a better technique
to find the global minima. Having said that the technique finds the global minimum,

it is not aways the case. The reason is as follows.

Imagine if the SP technique is applied to an optimisation problem. The cost function
tries to achieve the lowest cost, which is similar to SP finding the low energy state
configuration. In a similar way to an iterative improvement method SP accepts only
re-arrangements which give alow cost. This, in terms of SP, is analogous to rapidly
guenching from a high to a zero temperature, leaving the fina solution in a loca

optimum.
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Metropolis et a introduced a simple algorithm which overcomes this problem. It
simulates an ensemble of atoms a a given temperature. In each step of the
simulation, an atom is displaced by a small random value. Then the energy (AE) of
the system is calculated. If AE <0, the re-arrangement is accepted; if not, then the
Boltzmann probability factor is used to decide whether to accept the change or not.

The formulais shown in equation 3.6.

P(AE) =g &7 (36)

In practice, this operates as follows. A random number between one and zero is
generated using a uniform random number distribution. Let us say that the random
number is ‘r'. If P(AE) > r then the change is accepted and, if not, the previous
arrangement is used. The temperature T is the control parameter which is used in the
annealing process. Thus, the algorithm prevents quenching quickly and this helps to
find the global optimum. This extended technique is the basis of the SA.

3.4.3 Optimisation by Simulated Annealing
The SA, when applied to an optimisation problem, initially generates a random

configuration for the system (this stage can be considered as the melting point of
physical material). Then the temperature is reduced slowly and random changes are
made to the system using the Metropolis method described above. At each
temperature, one has to make sure that the system is in a steady state and hence the
re-configuration is repeated. The number of times the SA is re-configured at each

temperature is known as the annealing schedule.

The random numbers used for changing the values are either generated using a
uniform random distribution, as seen above (figure 3.13), or a Normal (also called
Gaussian) Random Distribution. A Normal distribution can be defined as [16]:

A Normal distribution in a variate X, with mean (£) and variance

(c6?) isa statistical distribution with a probability function

_ 1 (x¢)/202
P(X)_Gﬁe (3.7)

on the domain -0 < X <oo.
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The Norma Distribution is shown graphically in the figure 3.14. The first graph
shows a normal distribution with mean & = 0 and variance o° (c° is the square of
standard deviation) or standard deviation ¢ = 1. The second is with mean & = 0 and
standard deviation ¢ = 1.5. The graphs show that the probability of small random
numbers occurring is higher than for large random numbers. For example, there is
more chance of generating random numbers between interval [-1, 1] than between
(say) theinterval of [-2.5, -1] and [1, 2.5]. Large variance increases the probability of
large numbers appearing and small variance increases the probability of small
numbers. Hence, the idea of generating big and small random numbers using a
normal distribution helps the SA to control the mutation size when the error is being
reduced, close to the global minimum. This is known as a controlled mutation step

size.
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Figure 3.14 Normal distribution graph

3.5 Comparison of the SA and the GA
So far the two popular algorithms, the SA and the GA, have been explained. When

these two algorithms' efficiencies are compared in general, it is hard to say which
one is more efficient. This is because their efficiency depends on the nature of the
optimisation problem to which they are being applied. Some researchers, in a range
of different areas, have compared the efficiency of SA and GA [17][18][19] and
Jukka Kohonen, in a web site [20] has outlined the theoretical and empirical
difference between SA and GA.
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As shown above, the SA has only one string of parameters and only uses the
mutation operator to get an optimal solution. In contrast, the GA has a population of
trial solutions and combines two or more good solutions to get a better one. This
difference between the algorithms does not necessarily make one algorithm superior
to the other, because both follow the assumption that good solutions are aways
found close to the aready known good solution. Without this principle, the
algorithms would not perform any better than a random search. The GA becomes a
better choice when the problem’s parameters do not affect the resulting solution
during recombination. An example of a case where a GA performs badly isa VLSI
wire-routing problem. The chromosome would contain the routes of each wire.
During recombination, when two such strings are combined, there is a good chance
that the resulting string would contain repeats of the same routes. On the other hand,
the SA usually does not have such problems because it always makes a change to an
existing solution and hence thereis little or no chance of getting parameters repeated.
Having said that, the SA is usually slow compared to the GA. The SA makes small
local moves in the search space, whereas the GA moves fast by combining two good
trial solution points in the search space. The SA performs better if the evaluating
solutions are aways near the existing efficient solution and hence the resulting

optimum solution could be very close to the real solution.

3.6 Evolutionary Strategies
Evolutionary strategies (ES) are the result of a joint effort by Rechenberg and

Schwefel in the 1960s at the Technical University of Berlin in Germany [21] [22].
The original ES was developed in 1964, to solve a pipe bending problem in
manufacturing, as analytical methods had failed to solve it. The team proposed the
pseudo-random method which has become known as the Evolutionary Strategy (ES).
The result was a great success.
In general the ES agorithm proceeds as follows:
1. It starts with a random potential solution or with a population of random
potential solutions (some ESs have only one string of parameters).
2. For each one of them, it produces an offspring using its mutation operator
(some ESs a so use the recombination operator).

3. For al the parents and the resultant offspring, it calculates their fitness.
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4. If the offspring performs better than the parent, then the parent is replaced by
the offspring. If not, then off-spring is rejected and the original parent is kept.
5. Theprocessis repeated until the error is reduced.

Over the years, many variations on this theme have been developed and the different
ESs are explained later. In some variants of ES, mutation is the main operator,
whereas in the GA it is aways secondary to crossover. In ES, al the genes are
usually mutated in each iteration. Mutation uses a norma distribution with an
expectation rate of zero. This means that on an average, it can be expected that there
is zero difference between the existing state of the system and the newly mutated

system. Thisisin addition to the advantages previous described in the section on SA.

To generate normally distributed random numbers with a zero expectation value,

Schwefel [21] gave asimple formulae (equation 3.8 and 3.9).

Z, =J-2In(U,) sin(2aU ,) (3.8)

Z, =,/-2In(U,) cos(27U,) (3.9

First two uniformly distributed random numbers are generated (U; and Uy). Then U;
and U, are applied to the above equations to get two normally distributed random
numbers. To overcome the problem of small random numbers producing poor
convergence at the beginning of the algorithm the variance of the normal distribution
can be varied according to the error. Taking the sgquare root of the error as the
multiplying factor of the variance causes big mutations at the beginning and slowly
reduces the mutation size as the error gets closer to the solution. There are also other
ways to control the size of the mutation. Rechenberg [21] suggested the “1/5 Success

Rule’ to control the mutation size. The rule can be stated as;
“The ratio of successful mutations to all mutations should be

5. If it is greater than 1/5, increase the variance; if it is less,

decrease the variance.”
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The rule suggests that there should be one good mutation for every five: meaning, on
average, in five iterations or generations there should be one good mutation. If there
are more good mutations, the standard deviation should be increased until it satisfies
the 1/5 rule. Similarly, if there are more bad mutations, decrease the standard
deviation. Rechenberg showed mathematically that this rule produced the optimum

convergence rate in his application.

3.6.1 Different Evolutionary Strategies
There are four common Evolutionary Strategies. Each of them uses a different

population size.
1. (1+1) - Evolutionary Strategy
The initial ES had only one parent and one offspring produced by mutating
the parent [23]. Hence this was caled (1+1) ES and used only the mutation
operator. If the offspring produced is better than the parent, then the parent is
replaced by the offspring.

2. (u+1) - Evolutionary Strategy
Later Rechenberg proposed the first multi-membered ES and introduced a
symbol u to represent the number of parents [23]. In this type, 1 was greater
than one (u>1). One offspring was produced from a group of parents using
recombination and mutation operators. Then the offspring replaced the worst
parent among the group. For a summary of ES recombination operators, see
reference [27].

3. (nt+h) - Evolutionary Strategy
Later Rechenberg and Schwefel then proposed another type of multi-
membered ES and introduced a term A to represent the number of offspring
[23]. In this type, A offspring were generated from p parents using
recombination and mutation operators. From a population of p parents and A

offspring, the best p were selected for the next generation.
4. (m,)) - Evolutionary Strategy

They also proposed an ES where A off-spring were generated from p parents
[23]. In this algorithm the individuals must satisfy the condition A > pu. An
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innovation in the (u,A) ES is that the chromosomes have parental information
and mutation step-size built in. Thus, the algorithm learns the mutation size

on-line. Thisis caled a self-adaptation process.

In summary, the Evolutionary Strategy is powered by the 1/5 success rule, normal
distribution variance step-size control, self-adaptation and recombination techniques
and has solved many problems which analytical and other traditional methods failed

to solve.

3.7 Evolutionary Programming
The Evolutionary Programming (EP) algorithm was originally developed by

Lawrence J. Fogel in 1960 [24]. The EP is similar to ES and only the mutation
operator is used. The genera process of the EP is

1. It starts with arandom population of solutions (similar to the GA).

2. Each individual in the population produces an offspring by using a mutation
operator.

3. The fitness of each member in the population is evaluated and sorted
according to the fitness.

4. The best half is kept and the rest is deleted.

5. Theprocessisrepeated until the error is reduced.

The random numbers are generated using either uniform or normal distribution. As
can be seen from the description above, the EP does not use recombination and use
only a mutation operator. Originally, the EP operated on the population directly, for
example changing the weights of aneural network in situ. Later, it was influenced by
the GA’s parameter string representation. This is an example of how researchers
picked good methods from different algorithms and threaded them together, in order
to get a better performance overall. The EP has another advantage in that it may have
different sizes of parameter string. Thisis because it only uses the mutation operator.
However, like SA, using only mutation makes the algorithm slow to find the

optimum solution.



3.8 Hybrid Algorithms
All the algorithms described so far are similar to each other. Several researchers have

investigated the use of agorithms developed using a “pick-and-mix” strategy,
meaning that the best parts of these agorithms are threaded together (often with
other heuristic search methods). A few examples of this type of agorithm can be
found in the references [25][26], where the application of Hybrid EAs are discussed.
Eiben and Smith in their book have described a general Evolutionary Algorithm [§],

as shown in flow chart below (figure 3.15)

Initial Population | «—— | 1. Known solutions
2. Constructive heuristic
v 3. Selectioninitialisation
Mating Pool 4. Local Search
Use of problem-specific
Crossover <«——— | information in operator
A 4
IS Offspring <« | Local Search
o
& Mutation pse of probl gm-speuﬂ c
information in operator
A 4
Offspring
< Modified Selection
Operator
Figure 3.15: Where to hybridise
3.9 Summary

This chapter has given a brief introduction to biological optimization, which is the

basis of the different evolutionary algorithms.

In the section on the GA, the two important GA operators, recombination and
mutation were described. Other background processes of the GA (parameter
representation, initial population, selection process, pairing methods and mating
methods) were also discussed.
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In the section on the Simulated Annealing, the importance of the mutation operator
and its controlled mutation step size, analogous to the cooling process of a hot

substance, forming a crystalline lattice, were outlined.

The Evolutionary Strategy section highlighted the mutation operator and its use of

normal distribution random numbers and also the different variants of the strategies.
The Evolutionary Programming section explained its use of the mutation operator.
The next chapter will explain how these different algorithms operators were

threaded together to form “The Real-Time Evolutionary Algorithms’, which were
used in this project.
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Chapter 4

The Real Time Evolutionary Algorithm

4.1 Introduction
The last chapter covered the important EA operators and their modes of operation. It

also explained that new agorithms can be developed using a “pick-and-mix”
strategy, according to the required application. A mgjor part of the project was to
formulate an effective RTEA. This chapter will outline how the different operators
obtained from the principle EAs were evaluated, so that their effectiveness in real-

time could be ascertained.

This is a short chapter, which forms the basis of the original research in the project,
the rest of the research project being the system implementation, investigation of
different neural network topologies and fitness functions which are explained in

chapter 6.

4.2 General RTEA
Figure 4.1 below shows the general flow of operation of aRTEA.

Initialize Random System Parameters

Mutate Parameters |«

v
Evauate Fitness
Discard
Keep Changes v Changes and
in Parameters Restore
A Previous

Check if NO
further
changes are
required

YES

O
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Check if the error
is reduced or
fithessis increased

Figure 4.1 Genera RTEA

In the above figure, the highlighted operators are those which were investigated to
establish their effectiveness as explained in the sections below.

4.2.1 Recombination
Figure 4.1 above shows that the RTEAS investigated did not use a recombination

operator. The reason for thisis as follows. The aim of the RTEASs in this project, as
described in chapter 1, is to continuously train arobot’s controlling neural networks,
on-line. As it is assumed to operate on a single physical robot, in an actual
environment there can be only one set of network parameters. Using recombination
would require at least two such sets and technically the operation becomes off-line
because off-line training simul ates the system, evaluates the cost and recombines the
strings (as seen in chapter 3). Even if recombination were used on-line (by some
complicated means), the system would have to stop or pause its current action in
order to complete the cost evaluation and recombination operations. This would
obviously slowdown the system and negates the purpose of the RTEA being operated
on-line. Hence, the recombination operator is not used. The following sections

consider the operators which are used.

4.2.2 Mutation Techniques
In the absence of recombination, mutation is the most important operator used to

cover search space. This section detaills the important mutation techniques
investigated and also introduces some new terminology used in the investigation.
Mutation was applied in three different ways to the system.
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1. Mutate All — The Mutate All (MA) technique mutates all the degrees of freedom
of a system together. This means that the MA changes al the parameters of the
system at each step. Accepting the changes made is subject to the conditions of
acceptance in the fitness function - which is explained later in the chapter. MA is
typical of ES type algorithms, which mutate all of their parameters in each

iteration.

2. Mutate One — The Mutate One (MO) technique mutates one degree of freedom
of a system at atime. The MO chooses one degree of freedom randomly, subject
to conditions as explained above. Such a strategy is typical of the mode of
operation of a Genetic Algorithm, where mutation is only applied (typically) to
single parameters within a string.

3. Mutate Some — The Mutate Some (MS) technique mutates selected degrees of
freedom of the system together. For example, in a four legged quadruped robot,
the MS may choose two degrees of freedom, such as the two left or right side legs
of the robot or either of the diagonal legs. The MS strategy chooses the coupled
degrees randomly. The reason for trying the MS strategy is that the robot, being
symmetrical with bilateral symmetry (and similarly symmetrical gaits), may
respond better to symmetrically applied mutations. This technique is intermediate
between the MO and MA techniques and is specificaly relevant to such
symmetrically configured systems.

4.2.3 Random Number Distribution
Each of the mutation techniques described above was tested using both Uniform and

Normal Random Number Distributions (see section 3.3.2.7 and 3.4.3).

1. Uniform Distribution
While using a Uniform Random Number Distribution, the effect of varying
mutation size was tested. Figure 4.2 below is a sample graph showing how

mutation size could vary for a particular problem.
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Figure 4.2 Sample graph showing a Uniform Distribution mutation size

The above sample figure 4.2 shows that the maximum range is -10 to +10 and

the typical mutation size for a particular problem might be-2.5to 2.5.

Normal Distribution

In asimilar way to the Uniform Distribution, the effects of varying the mutation
size of the Normal Distribution were tested, as was the effect of increasing and
decreasing the variance with error in a similar way to that employed by the SA
algorithm. Figure 4.3a shows the mutation size for a particular problem and

figure 4.3b shows the increase in variance.
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Figure 4.3 Sample graphs showing Normal Distribution mutation sizes
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4.2.41/5Rule
Rechenberg's 1/5 rule (as explained in section 3.6) was considered in the

investigation, so that its effectiveness in on-line operation could be evaluated. Asthe
rule suggested, if there were more good mutations, the variance was increased (as
shown in figure 4.3b) until the system satisfied the 1/5 rule. If there were more bad
mutations, the variance was decreased. This should finely tune the parameters of the

system when they are close to the optimal state.

4.2.5 Condition of Accepting Changes
After mutation, the fitness of the system was calculated (more detail about the fitness

function is given in the next chapter). Depending on the fitness, the mutations were
then accepted or regected. The effects of Simple Acceptance and Occasional
Acceptance were tested. Thisis explained below.
1. Simple Acceptance
This is the ssimplest algorithm. If the fitness increases (that is, the error
decreases), the current mutational change is accepted. If the error increases,
the change is rejected and the previous parameters are restored.
2. Occasional Yeswhen No
A more complex algorithm is that derived from the SA where an occasional
increase in error is accepted. As explained in chapter 3, this is a method of
avoiding loca minima. The probability of accepting an error-increasing
change is given by the probability distribution explained in section 3.4.2. The
formula used to cal culate this probability is shown again below.

PAE)=g %' (4.25.)

All the above techniques were tried out and their performances were compared to
one another using the measures described in the following chapters. The results of
this investigation alow us to evaluate critically the various operators available. This
in turn, alows recommendations to be made as to the components of a suitable

RTEA for different circumstances.
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4.4 Summary
This chapter outlined the important real-time evolutionary operators that were tried

out in this research. It explained that, as the RTEA operates on-line, there is no
recombination operator. Chapters 6 and 7 explain the system implementation, the
network topology and the initial observations. The next chapter covers the literature
of this research.
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Chapter 5

Literature Review

5.1 Introduction
This chapter reviews the work by other researchers, which isin the same or asimilar

area to the research presented in this thesis. The chapter will cover a brief overview
of robotics, which includes its history, robot control systems, important work by
Hugo de Garis and other robot control systems. It also covers the use of real-time
EAs in ANNs and Robotics as well as other methods of control, combining ANNs
and Robotics. Finaly, a summary will put the research presented here into context
with the reviewed work.

5.2 Robotics Overview

5.2.1 History
In 1921, a Czech playwright, Karel Capek, used the word “Robot” in his play

“Rossum’s Universa Robots’. He derived the word “Robot” from “Robota’,
meaning “forced labour”. Later, in 1942 the American scientist and Science Fiction
writer Issac Asimov used the word “Robotics’ in his novel, “Run-around” [1]. Since
then, actual robots were developed and used in various fields, particularly in
industry. The main idea behind robotics is to automate tasks with minima human

intervention. The Robotics Institute of America (RIA) considers arobot as[1]:
“A robot is a re-programmable, multi-functional manipulator (or
device) designed to move material, parts, tools, or specialised devices
through variable programmed motions for the performance of a variety

of tasks.”

A detailed history of roboticsis given in atable by Maurice Zeldman in his book [2].
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5.2.2. Robot Control Systems

5.2.2.1 Subsumption Architecture
In 1986, Rodney Brooks introduced a control system for mobile robots [3]. The

control system consists of a hierarchical layered structure, each layer of which
defines a unique behaviour. The level of intelligence increases in higher layers. For
example, the lowest layer might be responsible for moving the vehicle without
collisions and the immediate next layer for recognizing different objects to assist in

movement towards a goal object. Subsumption architectures are usually shown asin

figure 5.1.
Layer N
»| Layer3
p Layer 2 v
(Sensory) .
Inputs Resulting
» Layerl Y _, behaviour

Figure 5.1: A Subsumption Architecture

Figure 5.1 may give the false impression that subsumption architecture is simple.
Actualy, it is more complicated, because each layer may also contain severa
modules. The layers are wired through suppressive connections. Each connection is
taken from the internal wiring in the higher layer to the interna wiring of the lower
layer. This makes the connectivity between layers complex, but helps to smplify the
overall design as the same modules do not have to be recreated in every layer.
Connell used subsumption architecture to control a robot which picked up disposal
cans in offices [4]. Rosenblatt modified this by splitting the modules into smaller
decision making units [5]. Maes introduced a behaviour selection mechanism,
allowing different behaviours to be selectively activated and suppressed [6].

5.2.2.2 Hugo de Garis
Hugo de Garis introduced a method of Robot Control which evolves an Artificial

Nervous System (ANS), using Genetic Programming (GP) [7]. The system was
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developed using GenNets. GenNets are neura networks which perform a specific
time-dependent task. The user can specify their parameters — that is, the parameters
of the neural network, evolutionary system and of the desired behaviour (at a low
level). Then the GenNets are evolved using a GA. As the GenNets evolve to satisfy
all the desired behaviours, they are combined with GP to form the ANS. More of
these units can then be evolved and combined using GP, producing a hierarchical
nervous system. Using this idea, de Garis generated a walking gait for ssimulated
stick legs. This was used to develop an ANS for an artificial lizard called “LIZZY".
De Garis showed that L1ZZY could display a number of different behaviours[8], like
approaching prey or mates and fleeing from predators.

De Garis also used GenNets [9] to control the time dependent walking behaviour of a
simulated biped using similar stick legs (shown in figure 5.2).

Hip Joints (A3, Al)

Knee Joint A4 K nee Joint A2

Figure 5.2 Simulated Biped Stick Legs
(After de Garis)

2.5.5.3 Other Robot Control Systems
Generally, other control systems have three main components, as shown in figure

5.3, and are known as Three Layer Architectures (TLA) [10].

Planner To control the hardwar e of the robot

A 4

Sequencer | To create sequential movements for the controller to perform

\ 4

Controller | To generate a global sequence of movements to achieve the
global goal

Figure 5.3 Genera Flow of Control inaTLA

Saridis introduced the principle of increasing precision, decreasing intelligence
(IPDI) [11]. In his model, the top planner layer has the most intelligence, but is less
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precise because it generates broad movement specifications. The precision increases
as the layers move from top to bottom, but the intelligence of each layer decreases.
The controller has the most precise action asit directly controls the hardware (robot).
Examples of similar types of systems may be found in references [12], [13], [14] and
[15].

Degney introduced a control structure which is generated as the robot interacts with
its environment [16]. The control strategy for particular sensory conditions of the
robot is a combination of primitive actions and other control strategies. Such

strategies are nested to form a hierarchical control structure.

5.3 Real-Time EAsin ANNs and Robotics
Yang and Meng introduced a neural approach, for real-time motion planning, with

obstacle avoidance, of a mobile robot in a non-stationary environment [17]. The
neural network, used for collision-free path planning, is a manualy set pre-trained
network. There is no learning method and therefore no cost function to measure the
fitness of the robot, although its motion is controlled by a local selection of the

maximum neural activity.

Similar work by Vadakkepat et al. [18], proposed an Evolutionary Artificial Potential
Field (EAPF) for rea-time optimal path planning, combined with a GA. A Multi-
Objective Evolutionary Algorithm (MOEA) was used to select the optimal potential
field function (fitness function), where the criteria were goal-factor, obstacle-factor,
smoothness-factor and minimum-path-length-factor. The objectives of EAPF were:
1. Todesign asimple Artificial Potential Field Function with
tuneable parameters, for real time application.
2. Toderivethe associated cost functions.
3. To optimize the parameters of the Potential Field Function
with the MOEA.
4. To use the proposed EAPF for real-time robot navigation,
with moving obstacles and for moving goal positions.
As the EAPF is inspired by the natural potential field, it is assumed that the robot

moves in a direction along the potential field angle. Figure 5.4 shows the resultant
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vector at any point in the field, which is the result of a repulsive force from the

obstacle and an attractive force towards the goal.

Q Obstacle

Rabot 2
S ’}\:, ______ O Goa
Repulsive force Potential field vector

Figure 5.4 Resultant Vector direction in EAPF
(After Vadakkepat et al.)

The evolutionary algorithm, which is used to optimize the obstacle potentia field
function, is associated with the following steps.

1. Designing a standard attractive force function for the goal point and repulsive
force functions with tuneable parameters for the different obstacles.

2. Designing potential field cost functions for the system.

3. Using the MOEA to optimise the parameters for each of the potentia field
functions of the obstacles, where the MOEA has four operations. selection,
crossover, mutation and ranking.

4. Using the EAPF to navigate the robot.

Capi et a. proposed a Radial Basis Function Neural Network (RBFNN) for real-time
gait synthesis of a humanoid robot for climbing stairs [19] and compared the results
with a traditional GA implementation. The block diagram of the proposed GA
method is shown in figure 5.5a. An initial population is generated, based on the
initial conditions and the range of system variables. The angle trgjectory is presented
as a polynomial of time. Inverse dynamics is used to calculate the torque vector. The
GA selects the best individual which meets the criterion after a maximum number of
generations. Finally, the gait is generated for minimum CE (Consumed Energy) and
TC (Torgue Change), based on the result of the GA.

In real-time operation, the time used to get the minimum CE and TC has to be as
small as possible. In order to achieve this, the RBFNN is taught using the GA’s
results. Figure 5.5b shows the structure of the RBFNN. In the network, the input
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neurons are connected to the environment. The hidden layer applies a Gaussian
transformation function from the input to the hidden data space (which is of high
dimensionality). The output layer shows a linear response to the applied input

signals.
Initial conditions: Step Time, Step Length,
Solution Space, Max. Number of Gen. (GN )
GN =1
|
[ v
Genetic Operations Population
Mutation ¢
Evaluation Function
Crossover .
Target joint angles
Polynomial approximation
) ¥
Selection Inverse Dynamics
T v v
GN = GN +1 & CE b-TC
A ¢
GN < GNmax

Joint angle trgjectories for:
a Minimum CE CE — Consumes Energy

b- Minimum TC TC - Torque Change

v

Figure 5.5a Block Diagram of Proposed Method Using GA

According to the simulation results, the RBFNN was able to perform as efficiently as
a GA. Capi et a. concluded that, 1) the stability of the optimal gait generated is
important, 2) when minimum CE is used as the cost function the robot shows a

straighter posture, 3) there is a 40% energy reduction when the minimum CE is used

58



as a cost function and 4) the RBFNN gives good results in a rea-time

implementation.
Hidden Neurons

Input Neurons
suoJneN INdino

=2
Q.
Q
=
@

Figure 5.5b Structure of RBFNN
(After Capi et al.)

5.4 Other Methods used to Control ANNs and Robotics
Patino et al. proposed a methodology for adaptive motion control, based on neural

networks originaly used for robot manipulators [20]. Figure 5.6 shows a Neural
Network based adaptive controller.

e

FNN;
‘_
? @—] ‘%n

*—o

FNN3;

FNN; isi™ Feed-Forward Neural Network — Neural network bank.
Figure 5.6 Feedback robust Adaptive Control System for Robot
(After Patino et al.)

The control structure used is an inverse-dynamics model. It is trained off-line with
each NN (referred to as a FNN in figure 5.6) representing a specified payload
condition. The coefficients of a linear combination of neural network outputs and
uncertain payloads are adjusted using a stable controller-parameter adjustment
mechanism. This helps to reduce the computational time and hence the adaptation to

changes in the robot parameters is faster. The neura network, during its learning
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process, produces as error called the control error. This control error converges
asymptotically to the neighbourhood of zero. The size of the error is evaluated and
depends on the approximations to error degree given by the neural network bank.
The experiments were conducted on a PUMA-560 model robot and the results

showed good performance with the proposed method.

A biologicaly inspired neura controller for a quadruped robot was introduced by
Billard and Ijspreet [21]. The neura controller technique proposed was shown to
generate patterns for gait production, which allows a continuous passage from
walking to trotting and then to galloping. It also showed the control of sitting and
lying behaviour. The neural network was developed with oscillators composed of
leaky-integrator neurons. The neurons control pairs of flexor-extensor muscles,
attached to each joint. In proportion to the contraction of simulated muscles and joint
flexors, the neural network receives sensory feedback. Using a model known to
operate in cats, the robot locomotion is activated by either applying a tonic (non-
oscillating) input or by sensory feedback from the extending legs.

e—S
S—o 05 -0.5(\ ]

Figure 5.7 Connectivity within one oscillator
(After Billard and |jspeert)
Brain —input tonic
Mg and Mg — motor-neurons for the extensor and flexor muscles
E, F, HE and HF —inter-neurons
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Robot

— o , o Back of
Robot

Knee

Figure 5.8 Coupling among hip and knee oscillators
(After Billard and |jspeert)

The oscillator has four inter-neurons and two motor-neurons as shown in figure 5.7.
The connectivity between the oscillators is shown in figure 5.8. The tonic inputs for

walk, trot and gallop are asfollows.

1. Walk —[0.0, 0.5. 0.25, 0.75]
2. Trot —[0.0, 0.5, 0.0, 0.5]
3. Gallop —[0.0, 0.1, 0.5, 0.6]

As mentioned earlier, the gaits can also be activated using sensory feedback.
Extending the legs generates sensory feedback from joint angle sensors; this is

adequate to start locomotion.

5.5 Context of the Current Research
The Subsumption architecture has the sole purpose of controlling a robot at the

behavioura level. The work presented in this thesis controls the robot in real-time
using an EA, without complex behavioura layers. Unlike the Subsumption
Architecture, the RTEA keeps changing the control parameters of the robot or
robot’s neural network and hence, it responds to the conditions underfoot without

passing the input information from layer to layer, as Subsumption Architecture does.
Hugo de Garis's GenNets are developed to perform a specific time-dependent task.

The RTEA does not train the neura network to do one particular task. Instead it is

capable of controlling the neura network in many different tasks, like climbing
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rocky-sandy mountains, etc. As mentioned earlier, de Garis used only mutation in the
training algorithm, which is similar to the RTEA; however, the RTEA controls the

robot in real-time through mutation, whereas the de Garis algorithm operates off-line.

The Saridis and Degney control strategy is similarly not real-time. Yang and Meng
showed a control strategy for a mobile robot without any cost function or learning
method, where the motion is controlled by the local selection of neural activity. The
RTEA presented in this project investigates several methods to control the motion of

the robot without sticking to one particular method of control.

Likewise, Vadakkept used MOEA and EAPF to control his robot. The MOEA uses
operators like selection, crossover and mutation; whereas, RTEA uses only mutation

to explore the control parameter valuesin the search space.

Capi et al. proposed a RBFNN for real-time gait synthesis and compared the results
with a traditional GA based method. The RTEA controls the robot without any
preliminary training or afixed set of trained data to select from.

Other control methods by Billard, Ijspreet and Patino et a. showed different attempts
to control ANNs and Robots. The RTEA developed in this project is unique because
the RTEA operators were investigated with a wide range of control situations. This

helped to give insight into the capacity of the RTEA to control the robot in real-time.

It may seem that the work illustrated in the sections above represents a wide cross-
section of research. However, they are al attempts to adaptively control a robot in
real-time — as is this project. Their different nature underlines the uniqueness of the
work presented here as their aims represent the closest work, in the literature, to this

project.
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Chapter 6

Initial Investigation and System | mplementation

6.1 Introduction
In this chapter, the initial investigation of the robot simulators, neuron models and

network topologies used in this project are explained. As the simulation system was
developed as part of the project, the first section explains why it was decided to
develop an in-house solution when ready-made simulators and robots can be used.
The next section explains the design of the biped simulator, the development of
neuron models and network topologies. Then the results acquired from these
investigations are discussed along with an explanation of the modifications made to
the neuron model as a result of these. Findly, the chapter ends with a discussion of
the lessons learned from the biped which were fed into the development of the
Quadruped models, discussed in the next chapter.

6.2 System | mplementation
The algorithms developed in this project could have been tested on some ready-made

systems. For example, the AIBO robot from Sony [1], is a programmable platform,
into which different robot action modules can be added. Although this resource is
accessible for academic research, it is expensive, and iterative testing on the robot
may cause damage. Also, another advantage of developing an in-house ssimulation is
that it gives an insight into the system, which enhances the understanding of the
operation of the algorithms tested. Trouble-shooting is also easier. These latter
comments also apply to ready-made software simulators and hence it was decided to

develop an in-house simulation and testing system.

6.2.1 Biped Robot System
For the initial investigation, the robot test system used was a simulation of a fully

stable biped walking robot. This model was developed by McMinn [2] as part of his
PhD project. It was based on a physical robot (shown below in figure 6.1) used in his

experiments.

63



SideView Front View
Figure 6.1 Biped Robot

Subsequently Muthuraman [3] aso used this model in his work. The model was
therefore well tested and has been used as the basis of severa papers [4][5]. The
robot’s leg may have active or passive degree(s) of freedom or both. An active
degree of freedom is one which is actuator operated — generally either moving the leg
clockwise or anticlockwise. The actuator used in this project is a simulated linear

servomotor, obeying the simple equation, shown below (equation 6.1)

alollo ooy e

Where ‘0’ is the angle moved and ‘V’ is the input stimulation (Voltage). For more
details refer to [6]. A Passive degree of freedom is where further leg movement may
be controlled by an active degree of freedom (by means of another joint) and (or) by
the physical design of the robot (through gravity). Figure 6.2 below may help to
visualize the operation of the active and passive degrees of freedom.

Active (driven) Degree of Freedom

Turning Anticlockwise (driven by ] )
motor) Turning Clockwise

Passive ek l Locks Passive Moving Forward

Degrees of when moving !_QCked knee
Freedom ﬂ Clockwise joint trandates
(driven by l movement of
gravity or <«—Knee active degree of
contact with ‘@‘ freedom to

movement of

floor surface) robot body

‘ Cap \
Floor Surface

(@ (b) (©
Figure 6.2 Active and Passive Degrees of Freedom
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Figure 6.2 (@) shows the active degree of freedom turning anticlockwise, making the
leg move forward (from left to right in the figure). During this period, the passive
degree of freedom is loose and remains so as long the active degree turns
anticlockwise. Figure 6.2 (b) shows the active degree turning clockwise and in this
case the passive degree gets locked by the knee. This causes the robot to progress
forward as shown in figure 6.2 (c). Thus the passive degree of freedom depends on

the active degree and the physical design of the robot.

The simulation of the biped robot used in this project has an active degree of freedom
on the hip joints and a passive degree of freedom at each knee joint. Thisis shown in
figure 6.3. It operates as explained above. In the robot simulators, the robot’s leg
movement was restricted. It was calibrated from position O (zero) to position 30;
although this is dightly different from the physica servomotor positions, the
positions calibrated resemble the electro-mechanical restriction of the real robot.
Position 10 was assumed as touch down (on the surface) for forward movement and

position 20 as release of knee. Thisis shown in figure 6.4.

<+—Active Degrees of Fr%dom/_7

Passive Degrees of Freedom

Flat Surface

Side View Figure 6.3 Biped Walking Robot Front View

Position 30 Position 0

Position for Knee

release from lock Position for touch down

/ for forward movement

Position 20 Position 10
Figure 6.4 Robot Leg Positions
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The robot’s leg was designed to move one unit clockwise on receiving one unit of
positive pulse from the controlling network and move one unit anticlockwise on
receiving one unit of negative pulse. While the leg moves anticlockwise, the body of
the robot does not move forward or backward because the knee is released (as
explained above) and the leg is not in contact with the floor. The body advances
forward by one unit, when the leg moves clockwise by one unit, on the condition that
the leg is touching the flat surface. In the simulator, the leg is assumed to be touching
the flat surface between position 10 and 20 (refer to figure 6.4). The equations bel ow
show the relationship between the robot’s body movement (distance moved), leg

positions and actuator movement at a given time.

Receives

If (Leg,y «———+1 and 10<Lleg,, <20)
=d, =d,+1 and Leg, =Leg, +1

Receives

If (Leg,y «————+1 and O<Lleg, <10 or 20<Leg,, <30)
(6.2
=d, =d, and Leg, =Leg, +1
Receives

If (Leg,y «———-1 and O0<Leg,, <30)
=d, =d, and Leg, =Leg, -1

where d;isthe Distanceat ‘t’ time
Legpes IS the Leg Position
Legact IS the Leg Actuator

In order to get an efficient normal bipedal walking motion, in this simulation, one of
the robot’ s actuators has to receive a stream of ten units of positive pulse while the
other actuator has to receive a stream of ten units of negative pulse. More about the
pulse generator (the Central Pattern Generator) is discussed in the next section. The
robot’s simulator was coded (as was all the other programming in the project) using

the Borland C++ Builder. The method of ssmulation is given in figure 6.5.

The snap-shots (shown in figure 6.6), of the biped robot leg simulation may help in
visualizing the robot’s body movement as the actuator of one leg receives positive
pulses and the other one receives negative pulses. Note that in the simulation, the

robot is stable (shown above as a black string suspended from the ceiling connected
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to the robot’s hip joints). Hence, in this project, only generating the correct gait
pattern was considered (the origina physical robot on which this smulation was
based was also fully stable).

Simulate the Neural Network (CPG)

Output Pulse Output Pulse
toLeftLeg w v toRight Leg
Simulate Left Leg Actuator Simulate Right Leg Actuator
Actuator Turning Actuator Turning
Clockwise Anticlockwise
If (10 < Legpes < 20) then If (0 < Legps<30) then
Distance = Distance + 1 Don't Move
Legpos = LEQpos + 1 LeQpos = LE€Qpos - 1

Elseif (0 < Legpes < 10 and 20 < Legys < 30) then

Don’'t Move

Legpos = Legpos +1

Figure 6.5 C++ Simulation Method

r_Right Actuator 1 1 1 1 )
L Left Actuator +1 +1 +1 1 1
|I:ri(l;nt "" "' ‘JJ /
View i

gozittir(])%— @@ @ & @O Om 6 O (10)

Side View Figure 6.6 Snap-shots of Biped Leg Simulation

In the above figure, from the starting position, the generated pulses are fed to the
actuators. The bent leg (knee released) receives positive pulses from time-frame 1 to
10 and the other leg receives negative pulses. In each time-frame, one unit of each
pulseis fed to the actuators and, as the pulses are sequentia, the gait for walk can be
observed from time frame 1 to 10. Figure 6.7 is a snap-shot of the program
devel oped in-house to investigate the biped network operating in real-time.
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Figure 6.7 Snap-Shot of Biped Simulator

6.2.2 Investigation of CPG Networksfor Bipeds
As explained in chapter 2, McMinn showed that time-dependent neuron models

perform better than M cCulloch-Pitts models in applications requiring timing control.
Hence, it was decided to use the proven model for this investigation. However,
unlike McMinn's leaky integrator neuron model, a new time-dependent neuron
model with similar time-dependent behaviour was developed. McMinn’s neuron
model output is set to “+1” (positive pulse) for a certain period of time if the
neuron’s membrane potential is above the internal threshold and at all other times the
output is set to zero. The new model fires a series of positive pulsesfor certain period
of time, called the “On-time” and a series of negative pulses for a certain period of
time, caled the “Off-time” (both fixed by the EA). With the help of the positive
pulses, the robot’s actuator can move clockwise and with the help of the negative
pulses it can move anticlockwise (refer to figure 6.6). Using the new model’s
properties, the number of pulses fired is controlled and so are the actuators of the
robot legs. If McMinn's neuron model were to be used, it would only have moved

the actuator clockwise if the output of the neuron were “+1” and in all the other time-
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steps it would not do anything. Of course, with some modification to the current
actuator, McMinn’s model could have been used; however, as the new model fitted
the current robot simulation better than McMinn's model, the investigation
proceeded with the new model. Theinitial neuron model had the following properties
(al are evolvable parameters). The possible output of such a neuron is shown in

figure 6.8.

Neuron Parameters
Ton—OnTime 4
Torr — Off Time

6 — Threshold

W — Weight (The number of weights

Ton

A

v

A

Torr

depend on the number of neurons v
connected) Figure 6.8 Sample Neuron Output

When the neuron receives a Net (Sum of products of inputs and weights) value
greater than the threshold (0), it fires a unit of positive pulse for the Toy time. Once
Ton is up, it then fires a unit of negative pulse for Torr. If the Net value is less than
the threshold, it fires a negative pulse continuously, until the Net value gains enough

strength to overcome the threshold. The neuron activation function is shown in

equation 6.3.
if (Net; (t)>0,)= for O<t<T,, Out()=+1
and = for O<t<Tyy Out(t)=-1

if (Net, () <6,)= for O<t<oo  Out,(t)=-1

n 6.3
where Net; =" In xW, 63
i=1

Tony —Number of ON Time—Seps set by EA

Torr; —Number of OFF Time—Seps set by EA

Where Net; is the sum of product of input and weight — Neuron potential of i™ neuron
¢ is the threshold of the j™ neuron
Out; is the output of i™ neuron
In; is thei™ input to the | neuron
W isthei™ weight of the ™ neuron
Ton; isthe On time of the j™ neuron

Torrj is the OFff time of thej™ neuron
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During this ON/OFF cycle, the neuron does not consider any changes made to its
inputs (as does a biological neuron). As the neuron is said to generate streams of
positive and negative pulses, theoretically, one would expect an output which may
roughly look like as shown in figure 6.9. Practicaly, in ssmulation, there is no gap
between the pulses as shown figure 6.10. Note: For this example, the Toy and Togr iS
taken as 2 units. It is also assumed that the neuron’s Net was above the threshold and

fired “+1s” for Ton time and then “-1S" for Tore time.

4 <_TON _» “4— TON _>
+1 +1 +1 +1
-1 -1 g -1 -1 g
v TOFF_’ v —T o —P
Figure 6.9 Theoretical Neuron Output Figure 6.10 Simulated Neuron
form Output form

Using this neuron model, an investigation was started using a recurrent network

topology. Thisis explained in the next section.

6.2.2.1 Recurrent Network
To operate a biped as shown in section 6.2.1 with the neuron type described in

section 6.2.2, at least two neurons are required. A recurrent network using the above
neuron model was heuristically selected for an initial investigation. The network is

fully connected and has two neurons as shown in figure 6.11.

The simulation method of the network as described is given below.

1. Theinitia input from N2 to N1 (Inly;) and N1 to N1 (In2y;3) isset to “-1”

2. Theinitial Input from N1 to N2 (Inly2) and N2 to N2 (In2y.) is set to “+1”. The
Net values of N1 and N2 are calculated (Sum of products of inputs and weights).

3. If the Net is above the threshold (0), the neuron fires a positive pulse for Ton
time and then a negative pulse for Togr time.

4. If the Net is below the threshold, the neuron fires a negative pulse until Net
moves above the threshold.
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5. Steps 3, 4 and 5 are repeated for the number of Time-Steps (the term used in
simulation, referring to the number of times of repeating the function) the user

specifies.

Where N1 isneuron 1
N2 is neuron 2
INly W13 is recurrent connection weight of N1
W, is recurrent connection weight of N2
W1, isweight between N1 and N2
W1 isweight between N2 and N1

InlNZ Inly; istheinitial input from N2 to N1
In2y In2y; istheinitial input from N1 to N1
Inlnz istheinitial input from N1 to N2

In2n2 istheinitia input from N2 to N2

IN2n1

Figure 6.11 Recurrent CPG Network

The operation of the network is illustrated with an example below. (Refer to figure

6.12).
Wii=-1

N1
|n2Nl =-1 Ton=2
Torr=2
W21— WlZ_ B
N2:
|n1N2 =+1 TON = 2
Torr=2
0=0.5

N2y, =+

Wy, = -1
Figure 6.12 Recurrent Network — Example

The step by step operation of the network is given below, with the simulated output
of the network shown in figure 6.13.

Note that the Net values of both the neurons were evaluated at the sametime.
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TL i T2 (T3 (T4 {75 {T6 | 7T7 T8 i T9 i T10
ON
Neuron 1
OFF
ON
Neuron 2
OFF
Figure 6.13 Recurrent Network Simulation Output
T1 Neuron 1 Neuron 2
Net = (Inly; X Way) + (In2y; X W1g) Net = (Inlyz X W1p) + (In2y2 X Way)
=(-1x-2)+(-1x-1) =(1x-2)+(1x-1)
=43 =-3
Net (+3) >0 (0.5) = Out = +1 Net (-3) <6 (0.5) = Out = -1 until Net> 0
for 0 <t<Ton (Ton =2 —for two Time
Steps)
Out of N1 isinput Inly; (of neuron 2) and In2y; (of neuron 1) — Inly, =+1 and
|n2N1 =+1
Out of N2 isinput Inly; (of neuron 1) and In2y, (of neuron 2) — Inly; =-1 and
N2y, =-1
T2 Neuron 1 Neuron 2
No change in N1 as it is performing ON | (New) Net = (Inly, X W15) + (In2y2 X Woy)
cycle =(+1x-2) +(+1x-1)
=-3
Net (-3) <0 (0.5) = Out = -1 until Net >0
Out of N1 isinput Inly, (of neuron 2) and In2y; (of neuron 1) — Inly, =+1and
|n2N1 =+1
Out of N2 isinput Inly; (of neuron 1) and In2y; (of neuron 2) — Inly; =-1 and
|n2N2 =-1
T3 Neuron 1 Neuron 2
ON cycle finished, now in OFF cycle Net = (In1yy X W1o) + (In2y, X Woy)
= O0ut=-1for0<t<Tger =(+1x-2) +(+1x-1)
(Torr = 2 —for two Time Steps) =-3
Net (-3) <0 (0.5) = Out = -1 until Net >0
Out of N1 isinput Inly; (of neuron 2) and In2y; (of neuron 1) — Inly, =-1 and
N2y =-1
Out of N2 isinput Inly; (of neuron 1) and In2y, (of neuron 2) — Inly; = -1 and
N2y =-1
T4 Neuron 1 Neuron 2
No change in N1 as it is performing OFF | (New) Net = (Inlys X W1o) + (In2y2 X Way)
cycle =(-1x-2)+(-1x-1)
=43

Net (+3) > 6 (0.5) = Out = +1
for0<t<Toy
(Ton =2 —for two Time Steps)

Out of N1 isinput Inly; (of neuron 2) and In2y; (of neuron 1) — Inly, =+1 and

|n2N1 =+1
Out of N2 isinput Inly; (of neuron 1) and In2y; (of neuron 2) — Inly; = -1 and
N2y =-1

72




Similar calculations were carried out for the rest of the Time-Steps and the output of
the network is shown in figure 6.13. The network was coded and simulated for 10
Time-Steps. The output is shown in figure 6.14

Recurrent Network Output

Outp

@ Neuron 1
m Neuron 2

Time Steps

Figure 6.14 Recurrent Network Simulated Output.

Normally with Toy = 2 and Tore = 2 for both the neurons, one would intuitively

expect agraph similar to that shown in figure 6.15

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

ON

Neuron 1
OFF

ON

Neuron 2
OFF

Figure 6.15 Expected Output

The graph in figure 6.15 shows the expected symmetrical output based on the
parameter values of Toy and Torr Of Nneuron-1 and neuron-2. The lack of symmetry
observed in figure 6.13 is due to the state-change of the neuron and its corresponding
output. For example, in the transition between states ON to OFF of neurons between
T2 to T3, the neuron-1 finishes its ON cycle on T2 and changes to the OFF state in
T3. The output of neuron-1in T2 is+1 and this output is the input of the neuron-2 in
T3. Hence, in T3, neuron-2's Net moves above the threshold and starts its cycle,
whereas one might expect neuron-2 to start its cycle at T2, as shown in figure 6.15.
This lack of symmetry was investigated and the neuron model was modified. This
issueis discussed in detail in the next section.
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6.2.2.2 Neuron Modification
As discussed in the last section, the change of state of the neuron was carefully

investigated. It was found that, during the transition of the state, the output of the

neuron, which acts as the input to the following neuron in the next Time-Step, is

multiplied by ‘-1’ while the output remains as it should be. The transition of state of

the same network shown in figure 6.12 is as shown below. The first three Time-Step

simulation is shown below in figure 6.16.

Normal State T1 Transition From ON to OFF State T2 Normal State T3
,,’ ‘\ ,r’ \\
e \ P \
e \\Out=+1 //’
II ' 4
Out=+1=Input. 4 -~ “Acting out = Out x -1~ - &«
T 7 - Tr~.=-l=Input .- /,—”
\\«: ’4" Te~ll //' ’,”’
sed” ,\::>1:\
A = .- S -
\\\ ’ S
~ ’ S
~ 7/ ~ /
N 7 e 7
S /’ \\\ /’

Figure 6.16 New Acting Output Model Simulation

T1 Neuron 1 Neuron 2
Net = (Inly; X Woq) + (In2y; X W1y) Net = (Inlyz X W1p) + (In2y2 X Woy)
=(-1x-2)+(-1x-1) =(1x-2)+(1x-1)
=+3 =-3
Net (+3) >0 (0.5) = Out = +1 Net (-3) <0 (0.5) = Out = -1 until Net >0
forO<t< Ton
(Ton = 2 —for two Time Steps)
Out of N1 isinput Inly; (of neuron 2) and In2y; (of neuron 1) — Inly, =+1 and
|n2N1 =+1
Out of N2 isinput Inly; (of neuron 1) and In2y, (of neuron 2) — Inly; =-1 and
N2y =-1
T2 Neuron 1 Neuron 2
No change in N1 as it is performing ON | (New) Net = (Inly, X W1p) + (In2y2 X Woy)
cycle =(1x-2)+(1x-1)
No change in N1 as it is finishing ON =-3
cycle= Out = +1 Net (-3) <0 (0.5) = Out = -1 until Net >0
Asit isgoing to change it state from ON to
OFF = ActingOut=0ut * -1 =+1* -1
=-1
Acting Out of N1 isinput Inly, (of neuron 2) and In2y; (of neuron 1) — Inly, =-1 and
N2y =-1
Out of N2 isinput Inly; (of neuron 1) and In2y, (of neuron 2) — Inly; = -1 and
|n2N2 =-1
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T3 Neuron 1 Net = (lnlNZ X le) + (|n2N2 X sz)

ON cycle finished, now in OFF cycle =(-1x-2)+(-1x-1)
= Out=-1for0<t<Tor =+3
(Tore = 2—for two Time Steps) Net (+3) >0 (0.5) = Out =-1

for0<t<Toy
(Ton =2 —for two Time Steps)

Out of N1 isinput Inly; (of neuron 2) and In2y; (of neuron 1) — Inly, =-1 and

|n2N1 =-1
Out of N2 isinput Inly; (of neuron 1) and In2y; (of neuron 2) — Inly; =-1 and
|n2N2 =-1

Asshown in figure 6.16 in the transition state T2, the output is multiplied by ‘-1 and
hence a new property was introduced to the neuron model, called the “Acting-
Output”. This acts as amemory parameter in the simulation. Thus by introducing this
new property, “Acting-Output”, the lack of symmetry in the network output was
avoided. The network was simulated and the output was generated for 10 Time-

Steps. The output graph is shown in figure 6.17

Recurrent Network Output

m Neuron 2
@ Neuron 1

Output
o

Time Steps

Figure 6.17 Recurrent Network Simulated Output

After improving the predictability of the neuron model, another type of network
topology was investigated to check if it had any advantages over the recurrent

network. This was the feed-forward network, discussed in the next section.

76.2.2.3 Feed-Forward Network
A feed-forward network for a biped has two neurons connected to each other as

shown in figure 6.18. Note: This network is a recurrent network; except it has no
recurrent connections. However to differentiate it from the normal recurrent network,

it was decided to refer to this network as a feed-forward network.
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Where N1 isneuron 1

N2 is neuron 2
Wy Wi, W1, isweight between N1 and N2
Wo1 isweight between N2 and N1

Figure 6.18 Feed-Forward Network

Initialy the network used the neuron model which was not modified as discussed in
the last section (a neuron with NO Acting-Output). The operation of the network is
given using an example below. The network parameters in the example are the same
as the ones discussed in section 6.2.2.1 (refer to figure 6.12). The network and its
parameters are shown in figure 6.19.

N1: N2:

TON =2 TON =2

Torr=2 Torr=2
W, =-2 Wiy =-2 0=0.5 0=0.5

Figure 6.19 Feed Forward Network — Example

The network performed in a similar way to the recurrent network as discussed in

section 6.2.2.1. Again it was simulated and the output is shown in figure 6.20.

Feed Forward Network Output

@ Neuron 1
| Neuron 2

Output
o

Time Steps

Figure 6.20 Feed-Forward Network, Simulated Output

As it showed no particular difference from the recurrent network, using the same
neuron model, the modified neuron model was tried. With the same parameters
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shown in figure 6.19, the network was simulated for 10 Time Steps and the output is
shown in figure 6.21.

Feed Forward Network Output

m Neuron 2
@ Neuron 1

Output
o

Time Steps

Figure 6.21 Feed-Forward Network, Simulated Output

It was found that both the networks can generate the expected patterns for a biped.
The network evolve-ability was then investigated. This investigation was carried out
to learn which network works the best for the biped, operated using an EA in real-

time.

6.2.2.4 Network Evolvability Comparison
The network evolvability was compared by training the networks to generate patterns

for the waking biped (as discussed in section 6.2.1) using an Evolutionary
Algorithm. The main am of this investigation is to learn the behaviour of the
networks when their parameters are varied (that is, when the networks are operated
by the EA). At this stage of the project, the RTEA was not developed. Hence, a
standard GA was used to train the networks. The simulation method is shown in
figure 6.22.

Each of the steps in the flow-chart shown is explained below. The chromosome
population was fixed at 40. Each member of the population is a set of network

parameters.

For the recurrent network, the number of parameters was ten and the chromosome is
shown in figure 6.23. For the feed-forward network the number of parameters is
eight and the chromosome is shown in figure 6.24. (For details of recurrent network
parameters, refer to figure 6.11 and for details of feed-forward network parameters
refer to figure 6.18).
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Start

Initialize Chromosome Population
(Network Parameters)

v

Read a Member of the Population
> (Read aset of network Parameters)

v

Simulate Network

NO ¢

Simulate Robot

v

Evauate Fitness

If al the
members of the
population are
evaluated

Generation > MAX Crossover
Generation Mutate
Figure 6.22 Training Simulation Method
Neuron 1 Parameters Neuron 2 Parameters
4 N A

Ton | Torr | W21 | W11 | 01| Ton | Torr | Wi2 | Wa2 | 62

Figure 6.23 Chromosome for Recurrent Network

Neuron 1 Parameters Neuron 2 Parameters

4 N 7 N
Ton | Torr | W21 | 01 | Ton | Torr | Wi2 | 02

Figure 6.24 Chromosome for Feed-Forward Network

In the population, the ON and OFF times were randomly set between 1 and 10. The

reason for this limitation is because the robot’ s leg positions for walking are between
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20 and 30, which only requires 10 units of positive and negative pulses. The weights
and the thresholds were randomly set between 0 and 1. The random numbers were
generated using Uniformly Distributed Random Numbers, as described in chapter 3,
section 3.3.2.7.

As each member in the population is a set of network parameters as shown above,
one member at atime is read from the population, starting from the top. Each of the
members is evaluated using the fitness function. To evaluate the fitness, the network
was simulated for 40 Time-Steps. The network is simulated as shown in the section
6.2.2.1, for the recurrent network and in section 6.2.2.2, for the feed-forward
network. In each Time-Step the network’s simulated output is fed to the robot’s leg
actuators. The legs are simulated as shown in section 6.2.1 and the robot’ s movement
(distance moved — in fitness function), is governed by the equation 6.2. Apart from
the distance moved, the leg error is aso included in the fitness function. This means
that if the leg is moving between position 0 and 10 or 20 and 30, leg error is
incremented. After smulating the network and the robot for the specified number of
times, the overall fitness of each chromosome is calculated using the formula shown
below.

F(x) = Distance Moved <100 | Leg Error <100 (6.4)
TIME_STEPS TIME _STEPS

After calculating the fitness, the GA is applied (refer to chapter 3, section 3.3 for the
operation of a GA). First, the population is reproduced, by sorting the chromosomes
from most-fit to least-fit. Then the bottom half of the population is reproduced by
randomly replacing each member in the bottom half of the population by a fit

member from the top half.

Secondly, the crossover operation was performed, by selecting each adjacent pair in
the bottom half of the population, in-order to keep the fit parameters without
disturbance. In this way, the new members in the bottom half will get a chance to

compete with the top half in the next generation. After selecting every adjacent pair
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in the bottom half, a crossover point for each pair is randomly selected and the

parameters are swapped.

Thirdly, the mutation rate is selected from 25%, 50%, 75% and 100%. The mutation
rate represents the percentage of genes (network parameters) mutated in a
chromosome. For example, for the feed-forward network the number of genesin a
chromosome is eight. If the mutation rate is 25% then it shows that 2 random
parameters are mutated. In every generation, the bottom half of the chromosomes are

mutated according to the mutation rate selected for the experiment.

The above steps are repeated for the number of generations specified (it is 100 for the
experiments conducted here). The result of the comparison of feed-forward and
recurrent networks is shown below. The experimental setup information is also
shown and each experiment was repeated three times with different mutation rates as

shown aong with the setup information.

Experiment Setup I nformation — Number of Trials: 3
Feed-Forward Networ k Recurrent Network
1. Evolvable parameters: 1. Evolvable Parameters:
Neuron 1 —N1: Neuron 2 — N2: Neuron 1 —N1: Neuron 2 — N2:
TONli TOFFln TON21 TOFFZ! TONlr TOFFl, Wlli TON21 TOFFZ, WlZn
W21 and GNl W12 and 9N2 ng, and GNl W22 and 6N2
2. Population Size — 40 2. Population Size — 40
3. Number of Generations— 100 3. Number of Generations — 100
4. Time Steps—40 4. Time Steps—40
M utation Rates — 25%, 50%, 75% and 100%

Note: the results shown below are the average output of threetrials of the networks.

Average Performace of Feed Forward Vs Average Performance of Feed Forward Vs
Recurrent Network - 25% Mutation Rate Recurrent - 50% Mutation Rate

—— Feed Forward
—— Recurrent

1 10 19 28 37 46 55 64 73 82 91 100 1 10 19 28 37 46 55 64 73 82 91 100
Number of Generation Number of Generations

—— Feed Forward
—— Recurrent

Fitness
Fitness

€) (b)
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Average Performance of Feed Forward Vs

Average Performance of Feed Forward Vs
Recurrent Network - 100% Mutation Rate

Recurrent Network - 75% Mutation Rate

102
96 92
—— Feed Forward [ —— Feed Forward
—— Recurrent k 82 ‘\ —— Recurrent
76
! 72 J
66 62

1 10 19 28 37 46 55 64 73 82 91 100 1 10 19 28 37 46 55 64 73 82 91 100

Fitness
o]
(2]
Fitness

Number of Generation Number of Generations

(©) (d)

Figure 6.25 Average Performance of Feed-Forward versus Recurrent Networks

Figure 6.25 shows the average performance of the feed-forward network and the
recurrent network. In each graph, the fitness of the network is plotted against the
number of generations. Except for the graph in figure 6.25 (a), al the graphs show
that the recurrent network performance is dlightly better than the feed-forward
network. However, the difference in performance is not significant, and anyway, the

aim of the investigation was to observe the variations of parameter values and their

outcome (fitness). These results are shown below in figure 6.26.

25% Mutation Rate: Average Variation of Feed- 25% Mutation Rate: Average Variation of
Forward Network Parameters Vs Fitness Recurrent Network Parameters Vs Fitness
100 - 100
95 -\r 90 é‘
g o0 — @ '\’\
£ — 2 w0
T 85 T \'\
8 | / 70 \
75 T T T T T | 60 T T T T T T |
2.25 2.45 2.65 2.85 3.05 3.25 3.45 11 1.3 1.5 17 1.9 2.1 2.3 25
Average Variation of Parameters Average Variation of Parameters
50% Mutation Rate: Average Variation of Feed- 50% Mutation Rate: Average Variation of
Forward Network Parameters Vs Fitness Recurrent Network Vs Fitness
105 Y_”E 107 '\i\«
Yy B \ w 97 .
g g R e
c 8 £ 87
i i )
75 \ 77 /
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1.85 2.05 2.25 2.45 2.65 2.85 3.05 3.25 15 17 1.9 21 2.3 2.5
Average Variation of Parameters Average Variation of Parameters
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75% Mutation Rate: Average Variation of Feed- 75% Mutation Rate: Average Variation of
Forward Network Parameters Vs Fitness Recurrent Network Parameters Vs Fitness
— 110 v\:_\‘
133 o 100
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T e & % ——
79 ./,.B. 70 —
74 T T T | 60 T T T T T T |
17 2.2 27 32 37 0.75 0.95 1.15 1.35 1.55 1.75 1.95 2.15
Average Variation of Parameters Average Variation of Parameters
(€) (f)
100% Mutation Rate: Average Variation of Feed- 100% Mutation Rate: Average Variation of
Forward Network Parameters Vs Fitness Recurrent Network Parameters Vs Fitness
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Figure 6.26 Average Variation of Parameters versus Fitness

Each graph shown in figure 6.26 shows the average fitness of the networks plotted
against their average variation of parameters. The results from the feed-forward
network (refer to figure 6.26 (a), (¢), (e) and (g)) showed that a mutation rate of 25%
and 50% was causing the fitness to make big jumps and mutation rates of 75% and
100% was causing the fitness to increase by small increments. For example, consider
the result of 25% mutation in a feed-forward network (refer to figure 6.26 (a)). The
fitness has jumped from approximately 75 to 90 for the average variation of
parameters from approximately 2.5 to 3.25. Now consider the result of 100%
mutation rate in a feed-forward network (refer to figure 6.26 (g)). For approximately
the same average variation of parameters (2 to 3), the fitness has increased by a small

amount — from approximately 61 to 69.

The big jumps in fitness, in a real-world situation, could cause a problem in certain
circumstances, for example in the presence of unexpected obstacles. Imagine such a
network (shown in 25% mutation example) is controlling a robot. If that robot is
climbing a rocky-steep-hill where it has to be careful about falling or dipping, an
algorithm causing the robot to make big steps may cause it to not survive. The reason

for these big jumps was investigated and is explained in the section 6.2.2.6.
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The results from the recurrent network (refer to figure 6.26 (b), (d), (f) and (h))
showed a good performance compared to the feed-forward network (a good
performance because of the increase in fitness by small values). This is due to the
weights of the recurrent network; the network has two weights for each neuron which
means that it is easier for the Net value to overcome the threshold; however even
then a small variation in ON and OFF times can effect the output. Thus, the network
showed a better performance than the feed-forward network. At this stage it was not
clear whether the recurrent network could operate efficiently in real-time because the
network was not tested with a real-time EA. Hence, both networks were used for
further investigation. The maximum fitness achieved from different mutation rates
were compared to learn more about the network’s behaviour; this is shown in the

next section.

6.2.2.5 Comparison of Mutation Rate
Figure 6.27 shows the results of a comparison of different mutation rates applied to

the feed-forward and recurrent networks. The graph shows the maximum average
fitness of the networks plotted against the experiment number (each number
representing a different mutation rate). The first experiment started with a mutation
rate of 12.5% and this was then incremented by 12.5% in each experiment (from left
to right in the graph below — Number of Experiments axis). The graph shows that, in
both the network performances, the maximum average fitness increases as mutation
rate increases from 12.5% to 75%; then, as the mutation rate increases further, the

average fitness decreases.

Mutation Rates Comparison

115
110
105 +
100 +
95
90 -
85 -

@ Feed Forward
® Recurrent

Maximum Fitness

1 2 3 4 5 6 7 8

Number of Experiments

Figure 6.27 Mutation Rates Comparison
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It was found that above 75%, when most or al of the parameters are mutated,
performance decreases. This was investigated further and explained in section
6.2.2.6.

Summary of Investigation —including section 6.2.2.4
1. The results of feed-forward network with low mutation rates showed large jumps
in fitness

2. Higher mutation rates performed poorly compared with l[ow mutation rates

All these issues were investigated and led to the modification of the neuron model to

make it more effective in real-time operation. Thisis explained in the next section.

6.2.2.6 Modifying the Neuron Model to be Effectivein Real-Time
In this section the reason for the previously described behaviours of the networks are

described along with an explanation of the modified neuron model.

1. Causeof LargelIncrementsin Fitness

It was found from further inspection that the cause of the big jumps in fitness was
due to the presence of the threshold parameter. For example, consider the result of a
50% mutation rate in a feed-forward network (refer to figure 6.26 (c)). The fitness
has jumped from approximately 65 to 95. The total number of parameters is eight
and with a 50% mutation rate; four parameters are mutated in each generation. Out of
these four parameters, the chance of a weight being mutated is the same as a
threshold and timing parameters (Ton and Torr) Mutated. This means that if the
weights, thresholds and timing parameters are mutated at the same time, there is a
good chance of the Net value failing to overcome the threshold, until at one point, the
Net may overcome the threshold and cause the fitness to increase drastically. The

following example is used to explain this scenario further.

1. Wzl(g) = 2, Ol(g) =25 Ton=5, Tosr=5 and In(g) =1
2. Net(g) = In(g) X Wai(g) = 1 x 2 =2 < 04(g) = 2.5 — Net is less than the threshold
01(g) and hence the neuron will not fire.

i Continued in Next Page
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3) In the next generation (g+1), if the weight, threshold, Ton and Torr are
mutated, then the new values are as follows

4) Wa(g+1) = 3, 01(g+1) = 3.5, Ton (9+1)= 7 and Torr (g+1)=7

5) Net=1x 3 =3 <0(g+1l) = 3.5 —Net is still less than the threshold 01(g+1)
and hence neuron will not fire

6) In the next generation (g+2), if the weight, threshold, Ton and Torr are
mutated, then the new values are as follows

7) Way(g+2) =4, 01(g+2) = 3.75, Ton (9+2)= 8 and Torr (g+2)= 8

8) Net=1 x4 =4 > 0,(g+2) = 3.75 — Net has overcome the threshold and as the
Ton and Torr has increased from 5 to 8 and the fitness would increase
drastically.

Thus, the threshold can act as a barrier and cause the network to make big jumps in
fitness. It was therefore decided to remove the threshold parameter from the neuron
model.

2. Higher Mutation Rates

The weights and the threshold take part in the activation process of the neuron (refer
to activation function, equation 6.3). The ON/OFF time decides the stride length of
the robot, which in turn impacts on its fitness (refer to distance equation 6.2 and
fitness function, equation 6.4). As the three parameters of the neuron; weights,
threshold and ON/OFF time are dependent of each other, applying higher mutation
rates may result in poorer performance. For example, when a 100% mutation rate is
applied, the weights and the thresholds of the neurons are both mutated and this may
cause both the weights and the thresholds to increase or decrease proportionaly. The
following example is used to show one possible scenario. This example uses the
feed-forward network topology, as shown in figure 6.19. Only neuron 1 (N1) is
shown here for demonstration.

N1:

In; = 1 —Input to the neuron 1

W5, = 2 —Weight of the neuron 1

01 =3 —Threshold of the neuron 1

Generation1: Net=In; xW;,=1x2=3
Net < 0,
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Hence neuron is not activated
Generation 2: After 100% mutation is applied, if new Wi, =3 andis6; =4
Net=1x3=3
Net < 61
Net is still less than threshold and hence neuron is not activated. As

result it shows a poorer performance.

Thus it is possible for the Net not being able overcome the threshold. This stops the
network from improving its fitness. Thus, higher mutation rates cause the network to

perform worse than is the case when smaller mutation rates are applied.

To alow the changes in one of the entities to affect the other, it was found that the
value Net can be set as ON-time. Hence, by varying the weights, the ON-time of the
neuron can be varied. To get the OFF-time of the neuron, a new constant parameter
was introduced called the T3 — the sum of ON and OFF-time. After calculating the
Net (ON-time), the OFF-time was calculated by subtracting the Net value from the
Ts. Hence, with the threshold being removed, the new modified model had the

following parameters. In this, the weight is the only evolvable parameter.

T3 —Sum of ON and OFF Times (Ton + Torr, Constant value)
W — Weight (The number of weights depends on the number of neurons

connected)

The neuron activation function is given in equation 6.5.

if (Net, (t) >0) for O<t< (T, = Net) =O0ut, (t) =+1
where Net. = ) In xW,
=W (65)
and for O<t<(Tos =(T;—Net,)) = Out, (t)=-1
if (Net, (t)<0) for O<t<owo = O0ut, (t)=-1

Where Netj is the sum of product of input and weight — Neuron potential of i™ neuron
Out; is the output of i™ neuron
In; is the input to the j™ neuron
W is the weight of the j™ neuron
Ton; isthe On time of the j™ neuron

Torrj is the OFff time of thej™ neuron
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T3 isthe sum of Toni and Torei

At this stage of the project, enough information had been gathered to code the Initial
Implementation of the RTEA (I1-RTEA) which could then be structured to control

the robot in real-time.

In the next section the operation of [I-RTEA is explained with smulated results

comparing the performances of the feed-forward network and the recurrent network.

6.2.2.7 |1-RTEA operation of the Networks
As discussed in chapter 4, the [I-RTEA had, of necessity, no recombination operator

and used only a mutation operator to evolve the network parameters. It operated on a
single string of parameters in the network. The single string of parameters for the
feed-forward network is shown in figure 6.28(a) and for the recurrent network,
shown in figure 6.28(b). For recurrent network topology, refer to figure 6.11 and for

feed-forward network topology, refer to figure 6.18.

Neuron 1 Neuron 2
A A
s N N

W21 | W11 | Wip | Wa

Figure 6.28 (a) Recurrent Network String of Parameters

Neuron 1 Neuron 2

e

Wy | Wop

Figure 6.28 (b) Feed-Forward Network String of Parameters

The ssimulation method of the II-RTEA is shown in figure 6.29. The simulation starts
by initializing random values to the single string of parameters using a Uniform

Random Number Distribution (refer to chapter 4, section 4.2.3).
The network was simulated using the equation 6.5. Then the robot was simulated and

the fitness evaluated using equation 6.4. If the network error increases or the fithess

decreases (compared with the previous fitness), the changes are discarded; if fitness

87



increases the changes are accepted. The steps above are repeated for the specified
number of generations. Using this simulation method, the feed-forward and recurrent

networks were simulated and the results are shown below.

A similar experimental setup to that used in section 6.2.2.4 was used here, except
that the training algorithm is [1-RTEA (no population and no recombination) and the
evolvable parameters are different as shown below. The results are also shown figure
6.30.

Start

Initialize Random Single String of Parameters of the network

v

Simulate Network

v

Simulate Robot

v

Evauate Fitness

\ 4

A\ 4

Mutate Parameters

'

If the Current Error
< Previous Error
(or)

If the Current
Fitness > Previous
Fitness

YES

A 4 A 4

Discard Changes and Keep Changesin
Restore Previous Parameters
Parameters
If Simulation Cycle
> MAX Simulation
NO

Cycle

End

Figure 6.29 [I-RTEA Simulation Method
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Feed Forward Network Recurrent Network
1. Evolvable parameters: 1. Evolvable Parameters
Neuron 1 -N1: Neuron 2 — N2: Neuron 1 —N1: Neuron 2 — N2:
Wy, Wy, W1 ang Waz Wiy, and Wa,
Feed-Forward Vs Recurrent - 25% Mutation Rate Feed-Forward Vs Recurrent - 50% Mutation Rate

48.5 -
38.5
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Number of Generations Number of Generations

(©) (d)
Figure 6.30 Feed-Forward Vs Recurrent — 11-RTEA Performance

The graphs in figure 6.30, show the average performance of the feed-forward
network and recurrent networks, trained using I1-RTEA.. In each graph, the fitness of
the network is plotted against the number of generations. The result with a mutation
rate of 25% in the feed-forward network (refer to figure 6.30 (@) shows no
improvement in fitness, because the mutation rate is very low. The total number of
parameters in the network is two. A mutation rate of 25% is not possible in the feed-
forward network. The result with the recurrent network (refer to figure 6.30 (a))
shows an increase in fitness only once. This is because the simulation program
rounds up values higher than 0.5 to 1, and the total number of parameters in the
network is three. The mutation rate of 25% acts on 0.75 neurons and so the program
rounds up the value (0.75 to 1). However, it was learned from these results that the

mutation rate is critical for the 11-RTEA to operate correctly.
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From the above results, it was noticed that the feed-forward network performed
better than the recurrent network with mutation rates of 75% and 100%. Also it was
noticed that the recurrent network showed a big jump in fitness — this can be noticed
particularly in the figure 6.30 (c), between generation 19 and 28. The disadvantage of
this big jump was explained with an example in section 6.2.2.6 and it applies here as
well. To investigate this issue further, the average variation of parameters and their
fitness was compared for both the networks. The graphs below show these
comparisons. Note that the results with a mutation rate 25% were not compared
because they did not show any increase in fitness (refer to figure 6.30 (@)). The rest

of the results are shown in figure 6.31.

50% Mutation Rate: Average Variation of Feed- 50% Mutation Rate: Average Variation of
Forward Network Parameters Vs Fitness Recurrent Network Parameters Vs Fitness
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Figure 6.31 Average Variation of Parameters versus Fitness of Feed-Forward and

Recurrent Networks
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The results in figure 6.31 (a), (¢) and (e) show that the feed-forward network has
shown a gradual increase in fithess. The results in figure 6.31 (b), (d) and (f), show
that the recurrent network has shown alarge jump in fitness. This can be particularly
noticed in figure 6.31 (d), where the fitness has jumped from approximately 10 to 50.
These big jumps may be due to the feedback in the recurrent network. The following

exampleillustrates this issue.

1. Wu(g) =-4, Wa(g) =-4and In(g) =1

2. Net(g) = (In(g) x W11(g)) + (In(g) X W21(g)) = (1 x -4)+(1 x -4) = -8 <0 — Net
isless than the zero and hence the neuron will not fire.

3. In the next generation (g+1), if the weights are mutated, then the new values
are asfollows

4. Wi1(g+l) = 4, Wi (gt+l) =-4. Note: W13 has changed

5. Net=(1x4)+(1x-4) = 0=0-Netisequa to zero and hence neuron will
not fire

6. In the next generation (g+2), if the weights are mutated, then the new values
are asfollows

7. W11(g+2) = 8, W (g+1) = 4 Note: W13, and W5, have changed

8. Net=(1x8)+(1x4)=12>0= Ton=Net —which resultsin huge increase

in fitness

Thus, it was found that the recurrent connection sometimes acts like the threshold
discussed in section 6.2.2.6. It stops the neuron from performing in a useful way and
also occasionaly causes the network to make big jumps in fitness. If the neurons did
not have self-recurrent connections, the situation would have been as illustrated
below.

1. Wx(g)=-4andin(g) =1

2. Net(g) = (In(g) x W21(g) = (1 x -4) = -4< 0 — Net isless than the zero and hence
the neuron will not fire.

3. Inthe next generation (g+1), if the weights are mutated, then the new values are
asfollows

4. Wy (g+1) = -4.

5. Net = (1x-4) = -4 <0— Net islessthan zero and hence neuron will not fire

6. In the next generation (g+2), if the weights are mutated, then the new values are

as follows
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7. W21(g+2) = 4 Note: W21 has changed
8. Net=(1x4)=4>0= TON = Net —which resultsin relatively making smaller

increase in fitness compared to what happed with recurrent network

Thus, the feed-forward network performed better than the recurrent network when
operated by 11-RTEA in rea-time.

6.3 Lessons L earned from Biped
The important points learned from the bipeds are as follows:

1. Independent Parameters
The initial investigation into the neuron model showed that, if the neuron has
different parameters such as weights, thresholds and timing parameters, the
evolve-ability becomes inconsistent. This inconsistency is due to mutation —
mutating different parameters in every generation can make the network evolvein
any direction, which results in inconsistency. This was learned from the results
shown in sections 6.2.2.4 and 6.2.2.5 and led to the modification of the neuron
model, making the Net of the neuron set Ton (and Torr as (Ts-Ton), Where T3 is

the sum of Ton and To|:|:).

2. Thresholds
The threshold may be a barrier to the neuron behaving in a useful way. This was
learned from the results shown in section 6.2.2.7 and the threshold parameter was
removed from the neuron model.

3. Self-Recurrent Connections
Sometimes, due to recurrent connections, the network may show big jumps in
fitness where a gradual increase is wanted. The recurrent connection can hold
back any increase in fitness for a certain number of iterations and then in one
iteration the result may be an unexpectedly large change in output. This was
observed from the results shown in section 6.2.2.8. Hence, it was learned that the
network should be simple and efficient to achieve good control in real-time. The
results showed that a simple feed-forward network without a threshold performs
well in real-time.
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6.4 Summary
This chapter started by explaining the development of a biped simulator. Then the

different aternative neuron models and network topologies were discussed. The
outcome of this investigation was that the time-dependent neuron model with Net
serving as on-time and no threshold performed best and so it was selected for further
investigation. It was also found that a ssmple feed-forward network topology
performed better than recurrent networks in real-time. The initial implementation of
the agorithm’'s (II-RTEA) function was also explained in this chapter. The next
chapter starts by explaining how the lessons learned from the biped simulations were
extended to the devel opment of a quadruped simulator and controlling network.
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Chapter 7
From Bipedsto Quadrupeds

7.1 Introduction
This chapter explains how the lessons learned from the biped were used to develop a

quadruped simulator and neural network. It starts with the development of the
simulator and then describes the fitness function used. Finally, the neural network
development for the quadruped is explained.

7.2 Development of Simulator from Biped to Quadruped
This section explains the development of the robot simulator from biped to

quadruped. The quadruped robot used as a basis for simulation was the “Lynx
Motion”, servo-controlled four-legged robot. The real robot, on which the simulation
Is based, isshown in figure 7.1.

Figure 7.1 Quadruped Robot

Figure 7.2 shows a simple schematic diagram of the robot. As may be seen, the robot
has active degrees of freedom in the hip joints and passive degrees of freedom in the

knee joints.



Hip Joints
Active Degrees of Freedom

Knee Joints
Passive Degrees
Freedom

Figure 7.2 Schematic Diagram of Quadruped Robot

The hip joints have two active degrees of freedom — they can make vertica and

horizontal movements, as shown in figure 7.3 (a), (b) and (c). Note that as shown in

figure 7.3 (b), a vertical-downward movement causes the body of the robot to rise as

the leg pushes itself up against the floor. These two degrees of freedom are driven by

two separate servos.

Vertical Y-axis

Vertical Y-axis

Previous Position

.y Current Position

Vertical-Up M ovement

In this example (left figure), the back
left leg is shown to be performing a
vertical-up movement. The action is a
result of servomotor’s anti-clockwise
rotation. This applies to al the four
legs of the robot.

Horizontal X-axis

Previous Position

v

(@) Vertica-Up Movement

y Current Position

Horizontal X-axis

v

Vertical-Down M ovement

In this example (left figure), the back
left leg is shown to be performing a
vertical-down movement. The action
is a result of servomotor’s clockwise
rotation. When the servo rotates
clockwise the leg pushes itself against
the floor and as a result, the body tend
to move upwards, depending on the
other positions of the legs. This
appliesto all the four legs of the robot.

(b) Vertical-Down Movement
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Previous Position Horizontal M ovement

In this example (left figure), the back
left leg is shown to be performing a
horizontal-forward movement. The
action is a result of servomotor’'s
clockwise rotation. Similarly if the
servo rotates anti-clockwise, the leg
moves backwards. This applies to all
the four legs of the rabot.

«
« Current Position

»
|

Vertical Y-axis

»
»

(c) Horizontal movement
Figure 7.3 Two Degrees of Freedom Hip Joint

Similarly to the biped’'s actuator, the quadruped actuators move anticlockwise on
receiving a positive input pulse and clockwise on receiving a negative pulse. The
quadruped’s leg movements were restricted to the positions shown in figure 7.4 (a)
and (b).

The dynamics of movement (the relationship between control inputs and the leg
movements) are the same as those previously described for the biped system. The
robot moves forward by lifting its leg (vertica move), moving the leg forward
(horizontal move), dropping the leg to the floor (vertical move) and finally moving
the leg backwards (horizontal move). To perform a specific gait (like walk or gallop),
all the leg movements have to be timed correctly. For example, the snap-shots shown
below, in figure 7.5, are asimulation of a quadruped walk (the snap-shots do not give
a good resolution; however, the leg movements can be seen on close inspection).
Each time-frame shows a side-view and a three-dimensional view of the robot along

with adescription of the leg movement states.

_ 0 —MinVerPos
0 =MinHorPos 1
10 30 — MaxHorPos
30 — MaxVerPos
(a) Horizontal Movement Restriction (b) Vertical Movement Restriction

Where MinHorPos = Minimum Horizontal Position

MaxHorPos = Maximum Horizontal Position
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MinVerPos = Minimum Vertical Position

MaxVerPos = Maximum Vertical Position

It can be seen that the different legs move at different times and show more

complexity than the biped’ s motion.

Figure 7.4 Leg Movement Restriction

forward

touching floor

forward

N
‘s O
<
‘ \ lﬁ w
D
. RERE
(1) 2 3 (4) (5)
Neutral Position Rear Top Leg or Rear Top Leg or Front Top Leg or Front Top Leg or
—all legs on floor Left Back Leg— Left Back Leg— Left Front Leg — Left Front Leg —
moving vertical moving vertical moving vertical moving vertical
up and horizontal down and up and horizontal down and

touching floor

L 1T
ST

2D View

3D View

AN

(6) (7) (8 (9) (10)
Rear Bottom Leg Rear Bottom Leg Front Bottom Front Bottom All legs moving
or Right Back or Right Back Leg or Right Leg or Right horizontal back
Leg — moving Leg— moving Front Leg — Front Leg — and pushing the
vertically up and vertically down moving vertically moving vertically body forward
horizontal and touching up and down and
forward floor horizontally touching floor

forward
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The parameters used in the robot simulation are as follows. They apply to every leg
of the robot (including the equations from 7.1 to 7.3).

Horizontal Movement Vertica Movement

Legroract — Leg' s Horizontal Actuator Legveract — LEg's Vertical Actuator
Legrorpos — Leg' s Horizontal Position Legverpros — Leg’'s Vertical Position

Apart from the horizontal and vertical parameters, every foot has a smulated touch
sensor. This simply senses if the foot is touching the flat surface or not. It receives a
signa-value of ‘+1’ if it is touching the floor and a signal-value of ‘-1’ if it is not.
The function of the sensor is given in equation 7.1.

If (L€Jropsnsr =+1) = True, leg touching floor

7.1
If (LeYropsensor =—1) = False, leg Not touching floor (7.3

Where Legrootsensor 1S the Foot Sensor

The relationship between the leg's actuator and the leg's position at a given time ‘t’
isgoverned by equation 7.2.

If (LegHorAct (t) = +1) = LegHorPos (t) = LegHorPos (t) +1
if (LegHorAct (t) = _1) = LegHorPos (t) = LegHorPos (t) -1
(7.2)

If (LeGyernct (1) = +1) = LeGyepos (1) = LEG grpes (1) +1
if (LegVerAct (t) = _1) = LegVerPos (t) = L%VerPos (t) -1

Where Leguoract i1Sthe Leg' s Horizontal Actuator
LegHorpos 1S the Leg’ s Horizontal Position
Legveract iISthe Leg’' s Vertical Actuator
Legverpos iISthe Leg’' s Vertical Position

The distance moved by the robot and the corresponding actuator’s function is given

by equation 7.3.
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If (Leg,oaq (1) =—1 and 10< Leg, pos(t) <20 and Legqyygms, (1) =True) (73)
=d, =d +1
Where d;is the Distance moved at time ‘t’

Legroract ISthe Leg’ s Horizontal Actuator

Legnorpos iSthe Leg's Horizontal Position

Legrootsensor 1S the Foot Sensor

7.3 Development of Fitness-Function from Biped to Quadruped
The accuracy of the fitness-function plays an important role in evolving a system.

The more precise the fitness-function, the better the evolutionary result is. In this
project, to evolve and control quadruped networks, the fitness function was carefully

structured. This section explains the fitness-function used in this project.

The quadruped model used in the project has no complex sensors like sonar,
cameras, infrared sensors, etc. It must work using only its available sensor
information. Three fitness parameters can be used to measure robot’ s performance as

shown in equation 7.4.

fitness= (Sx Ry%)+ (D x R, %)+ (F x R- %) (7.4)
Where Sisthe Stability of the robot

Rsis constant expressing the importance of stability

D isthe Distance covered by the robot

Rp is constant expressing the importance of Distance

F isthe Fuel consumption

Rr is constant expressing the importance of Fuel

Rs, Rp and Rr are experimental parameters, set up by the user and explained in the
next chapter. Each of the three parameters (S, D and F), was calculated over a certain
number of Time-Steps by simulating the robot. The three fitness parameters and their

method of measurement are explained below.
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1. Stability Parameter
Stability is a measure of how likely the robot isto fall over. To measure stability, the
inclination of the robot and the number of feet it has on the ground over the specified
number of Time-Steps is calculated. The expression used is shown in equation 7.5.

S= i><100 + i><1OO + b><1OO + ﬂ><1OO — i><1OO (7.5)
T T T T T

Where Sisthe Stability
T isthe number of Time-Stepsto the simulation (typically zero)
L+is Three Legs on the ground
Lp isthe Diagonal Legs on the ground
Lsisthe Side legs on the ground
Lr/s isthe Front two legs or Back two legs on the ground

Le isthe Error made by the leg — body inclination

These parameters represent the different possibilities of leg positions, related to
stability. In each Time-Step, the numbers of legs on the ground is counted and
the stability parameters (shown in equation 7.5) are altered as shown below.

if (LegOnGround =3) =L, =L, +1

if (LegOnGround =2) and
if (DiagonalLegsOnGround =true) = L, =L, +1
if (SdeLegsOnGround =true) = Lg =Lg+1
if (Front/BackLegsOnGround =true) = L,z =L,z +1

(7.6)

if (RobotBodyinclined) = L =L +1
Where Ly is Three Legs on the ground
Lp isthe Diagonal Legs on the ground
Lsisthe Side legs on the ground
Lrs isthe Front two legs or Back two legs on the ground
Le isthe Error made by the leg — body inclination

100



An example of the measurement of each stability parameter is given below with

suitable diagrams.

a. Threelegson the ground

In the specified Time-Steps, the robot may be in any of the positions shown in

figure 7.6. Each is a case were the stability parameter Lt is incremented by one

unit.

(@) Front right leg off the ground (b) Back right leg off the ground

(c) Front left leg off the ground (d) Back left leg off the ground
Figure 7.6 Three legs on the ground
b. Diagonal legsthe ground

The cases of parameter Lp being incremented by one unit are shown in figure 7.7.

Figure 7.7 Two legs on the ground — Diagonal Legs
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c. SdeLlegsontheground

The scenarios where parameter Lsisincremented by one unit are shown in figure 7.8.

Figure 7.8 Two legs on the ground — Side Legs

d. Front two or Back two legs on the ground
Finally, stability parameter L isincremented by one unit on the cases shown in

figure 7.9.

Figure 7.9 Two legs on the ground — Front/Back legs

e. Leg Error —Body inclination
Body inclination can be caused by an irregular vertical-down move. One such
circumstance is shown in figure 7.10. In such scenarios, Lg is incremented by one

unit.

Figure 7.10 Leg Error — Body Inclination

2. Distance Parameter
The distance covered by the robot over a specified period is given by equation 7.7.

D =| Pe 100 |+ Pe w100 |- Pe x100 7.7)
T T T
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Where D isthe Distance travelled by the robot
T isthe number of Time-Steps
Dr. isthe Distance covered by using the front legs
Dg. isthe Distance covered by using the back legs

De isthe Error in covering the distance

The method of measuring each distance is shown below.

If (LegHorPos (t _1) > LegHorPos (t) and (L%Foot&anor (t) = True)) and
if (LegUsedToMove= FrontLeg) = D, =D, +1

if (LegUsedToMove= BackLeg) = D, =Dg +2 (7.8)

If (L€J4i0rpos (1 =1) < L€G0pes (1) AN (LG rppioner (1) =True)) =Dg= D¢ +1
Where Dr. isthe Distance covered by using the front legs
Dg. isthe Distance covered by using the back legs

De isthe Error in covering the distance

The above method applies to each leg of the robot. The robot may use either or
both of its front legs to move its body and similarly it can use either or both of its
back legs. Hence, two separate parameters Dg. and Dgr, as shown in equation 7.8,
were used to measure the distance covered. It was assumed that the back legs are
power legs and hence the Dgr parameter was incremented by two units. It was
also assumed that the front legs were not as powerful as the back legs and hence
DL parameters are incremented by one unit. If the leg is moving backwards with
the foot on the floor, this causes friction between the foot and the floor and could
cause damage. This was penalised using the parameter De. Every time the leg
makes such an error, De is incremented and a percentage of error is subtracted

from the overall distance covered as shown in equation 7.7.

. Fudl Parameter

Unlike the stability and distance measurement which used dedicated parameters,
the fuel consumption of the robot is decremented from its given initia fuel
quantity. The typical value assigned for the quadruped in this project is 1000
units. The units of fuel decremented depends on the nature of the action a agiven
Time-Step —'t'. The equation used is given below (equation 7.9).
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F= (F—Uj x100
F

Where F isthe Fuel consumed
Fy isthe Fudl Used
F, isthe Initial fue

(7.9)

The method of calculation is given below. This explains how the Fy parameter is

decremented according to the nature of the robot’s action (penalties were chosen

arbitrarily between 1 and 10).

Fu Decrementing Condition

Robot’s Action

If((LegHorpos(t) > MaXiorpos) OF
(LEGHorpos(t) < MiNkorpos) OF
(Legverrpos(t) > Maxyerpos) OF
(Leverpos(t) < Minverpos))
=>Fy=Fy-10

In a rea robot, if the leg tries to move
beyond its maximum limits, the
servomotors may get damaged. In the
simulation it was assumed that this
consumed ten units of fuel and was thereby

penalized.

If(AllFour LegsAreOffTheGround)
=>Fy=Fy-8

A jump requires more energy. In
simulation this was assumed to consume

eight units of fuel.

if(OneLegOnGround)
:>FU = FU -6

A robot balancing on one leg, expends
energy. In simulation this was assumed to

consume six units of fuel.

if(SdelLegsOnGround)
=>Fy=Fy-5

For arobot to balance itself using either of
the side legs is also energy expensive. In
simulation this was assumed to consume

five units of fudl.

if(Front/BackLegsOnGround)
:}FU = FU -3

Similarly, arobot to balance itself using its

front or back legs. In simulation this was

104




assumed to consume three units of fuel.

6 | if(Diagonal LegsOnGround)
=>Fy=Fy-2

For a robot to balance itself using its two
diagonal legs, in simulation, this was

assumed to consume five units of fuel.

7 If((L€GHorpos(t-1) < L€Gnorpos(t))
and (Legrootsensor () = True))
=>Fu=Fy- 2

If the robot is brushing any of its legs on
the floor, this may damage the system and
in simulation this was assumed to consume
two units of fuel (and thereby penadlize this
action).

8 | if(ThreeLegsOnGround)
=>Fu=Fy-1

The robot is substantially stable if it has
three legs on the floor (assuming it ison a
stable surface). Hence, to have one leg in
the air would not require as much as
energy consumed as for other actions. In
simulation this was assumed to consume

only one unit of fuel.

9 | if(AnyNormal Movement)
=>Fu=Fy-1

For any other normal action, the ssmulation

assumed a consumption of one unit of fuel.

7.4 Development of Neural Network for Quadruped

7.4.1 Neuron M odél

The investigation into the biped system showed that a time-dependent neuron, used

in a simple feed-forward network, can effectively control robots with a RTEA. The

investigation was next extended to developing a network suitable for quadruped

control. As described in section 7.2, the legs of the robot not only have to move

forward and backward, but also have to pause between actions. For example, in

figure 7.5, in time-frame (2) and (3), the left-back leg has moved forward by
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performing vertical and horizontal motions, after which it has paused until time-

frame (10). Thisis unlike the biped’ s continuous clockwise and anticlockwise action.

To accommodate this, a new time-property called “delay-time”’ or “pause-time” was
introduced into the neuron model. This new property also came with a problem. The
neuron model of the biped uses the Net value as the On-time and (On+Off)-time as a
constant (refer to chapter 6, section 6.2.2.6). So, only one time-parameter can use
Net. Introducing delay-time adds one more time-parameter variable to the list and
hence the Net can no longer serve as the On-time — if Net is On-time, then what can
be used for delay-time? It was decided therefore to reappraise to the previous model,
where Net is used to ssmply trigger the neuron and the ON/OFF times are set by the
EA. Although this model was not efficient in the biped, it was tested on the
quadruped before ruling it out. Figure 7.11 shows the new time parameters and

properties.

Neuron Parameters:
D; —Delay for ON time
Ton —Ontime DL, « D2 |
D, — Delay for OFF time

Tore — Off time

Wij —Weight of neuron connected
between i™ and | neuron

A
Y

Ton . Torr

Figure 7.11 Neuron output

The activation function of the upgraded neuron model is shown below in equation
7.10.
if (Net; (t) >0)= for O<t<D,; :Out;(t)=0 and

for O<t<Tyy :Out;(t)=+1 and

for O<t<D,; :Out;(t)=0 and

for O<t<Toy :OUt;(t)=-1 (7.10)
if (Net, (t) <0)= for O<t<o Out, (t)=0
where Net, = > In xW,

i= i™ neuron connected to |
Where Net; is the sum of the product of the inputs and weights
Out; is the output of i™ neuron

In; is thei™ input to the | neuron
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W, isthei™ weight of thej™ neuron

Dy isthe On-Delay of j™ neuron - Time-Steps set by the EA
Ton;j is the On-time of the j™ neuron - Time-Steps set by the EA
Dy isthe Off-Delay of the j™ neuron - Time-Steps set by the EA
Torrj is the Off-time of the j™ neuron - Time-Steps set by the EA

In al other respects, the behaviour of this model is the same as its biped counterpart.
Using this upgraded neuron model, the quadruped can pause before moving its leg
forward or backward. For example, assume such a neuron model is connected to the
back left leg of a quadruped robot (refer to figure 7.5) and is responsible for the
horizontal movements. The neuron has values assigned to its parameters and their

expected output when simulated is shown in figure 7.12.

Neuron Parameters: D
D;=0 P :4—2—>
Ton =10 Ton _Torr,
D, =80 h ~
Torr =10
wW=-1 Figure 7.12 Expected Neuron output

Assumeinitial Input = -1

Net(t) = Input x Weight = -1 x -1

Net(t) > 0 = Output =0for 0 <t < D, and as D, = O for thissimulation
Output =1for0<t<Toyand Toy 10

i As Ton = 10, for the next 10 Time-Steps the Output = +1 = Back left |
' leg moves aunit horizontally forward, for next 10 Time-Steps as shown i
i infigure 7.2.5 —frame (2) !

When Toy isup, Output =0for 0 <t < D, and D,= 80

i As D, = 80, for the next 80 Time-Steps the Output = 0 = Back left leg |
' hold its current position for next 80 Time-Steps as shown in figure 7.2.5 i
i —from frame (3) to frame (9) !

When D, isup, Output =-1for0<t<Torrand Tore =10

As Tore = 10, for the next 10 Time-Steps the Output = -1 = Back left
leg moves a unit horizontally backward, for next 10 Time-Steps as
shown in figure 7.2.5 — frame (10)

Thus, this upgraded neuron model could be used to control the quadrupeds.

107



Before considering the network topology, the expected output for a quadruped walk
(as shown in section 7.2) is presented. Thisis done because it is easier for the reader
to check that the output of the new network is correct. The neuron parameters are
shown in figure 7.13 (@) and the network output in 7.13(b). The left side of the graph
shows the neura outputs for each degree of freedom and the right side shows to
which actuator the output of the neuron is connected. The output is shown for nine
Time-Steps. Note that each output was calculated individualy with time-values
assigned.

N1 N2 N3 N4 NS N6 N7 N8
D, 4 0 4 0 6 2 6 2
Ton | 1 1 1 1 1 1 1 1
D, 3 7 0 0 1 5 0 0
Torr | 1 1 1 1 1 1 1 1
(a8 Neuron Parameters
Output 1 / \ Back Right Horizontal
5 Output 2 \ Back Left Horizontal
o —
5 output3 /—\_/ Back Right Vertical
S Output 4 —\_/ Back Left Vertical
g Output 5 /—\_\_ Front Right Horizontal
B O / \ i
g utput 6 Front Left Horizontal
Output 7 /—\—/_ Front Right Vertical
Output 8 4/—\—/ Front Left Vertical

»
»

1 2 3 4 5 6 7 8 9
Time Steps

(b) Output
Figure 7.13 Expected Outputs for a Quadruped Robot

7.4.2 Network Topology
Initialy (similarly to the bipeds) a simple recurrent network was designed as shown

infigure 7.14 (a) and (b).
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Outputs from Neuron N1, N2, N3 and N4
Connected to Robot’s Back Leg Actuators

Outputs from Neuron N5, N6, N7 and N8
Connected to Robot’s Front Leg Actuators

(a) Front/Back Network View

Outputs from Neuron N3, N4, N7 and N8
Connected to Robot’s Vertical Leg Actuators

N3

Outputs from Neuron N1:, N2, N5 and N6
Connected to Robot’s Horizontal Leg Actuators

(b) Vertical/Horizontal Network View
Figure 7.14 Initial Network Topology for Quadruped

Refer to figure 7.13(b) for each neuron’s expected output and its corresponding
degree of freedom (actuator) connection. Both diagrams in figure 7.14 show the
same network, viewed in different direction, which may help to understand the
network topology. The view in figure 7.14 (a) shows the network in two parts —
upper-part neurons connected to the back two legs of the quadruped and the lower-
part neurons connected to the front two legs. The view in figure 7.14 (b) shows the
network from a different direction — upper layer neurons (N3, N4, N7 and N8)

connected to the vertical degrees of freedom and lower layer neurons (N1, N2, N5
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and N6) connected to the horizontal degrees of freedom. These views are shown to
help visualise the network and its connections to the robot’ s actuators.

This network topology highlighted an issue regarding the number of connections of
each of the neurons in the network. This arose because of what was learned from the
biped network — that a network having more than one connection can cause
instability. However, the extra connection in the biped network was the recurrent
connection and not a connection from another neuron. Hence, to rule out the
possibility of instability, a manual simulation was carried out for the network shown
in figure 7.14. The network parameters are similar to those shown in figure 7.13 (a)
with the addition that the weight for each connection was set to ‘-1'. The initia
inputs to the neurons were also assigned to *-1'. Asthe numbers of neurons are larger
than in the biped case, a step-by-step calculation of the network is difficult to show
here. Hence, the initial inputs, weights, Nets, calculated outputs and new Nets are
shown below in figure 7.15 and in figure 7.16. The Net for each neuron is cal cul ated
using equation 7.10.

N 1|23 |4|5]|6|7]|8
Initial Nets | 3 | 3] 3]3]3]3]3]3

Figure 7.15 Initia Inputs, Weights and the Initial Nets of the Network

In figure 7.15, in the initial inputs’ table, the left-most column is the number of each
neuron and the top row numbers refers to the connecting neurons. A zero in the table
shows that there is no connection between those neurons. Similarly, the weights are
also shown above. This structured table helps in the calculation of the initial Nets.
For example, the Net of the N1 is calculated by referring to the table.
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Net-N1= 2 (In; x Wjj) — The Input to the i™ neuron from the j™ connection can be
seen from the table.
= (In2 X W12) + (IN14 X Wag) + (In15 X Wis)
=(-1x-1)+(-1x-1)+(-1x-1)
=3

Thus, by calculating the Net values, the outputs are generated. The Nets are re-
calculated for aneuron when its ON/OFF cycle s finished. The table shown in figure
7.16 shows such simulated network outputs in each Time-Step and the new Nets
calculated.

Network Output New Net

N1 | N2 | N3 | N4

Z
&
Z
(o]
Z
\‘

2
BB

XX [ XX [ X | X [X|X [X
XX [ XX [ X | X [X|X [X
N [X [P X [ X | X [X|X[X
N |X [P | X I—\.>< x
XX [ XX [ X | X [X|X [X
XX [X X [ X | X [X|X [X
N X [ X | X [ X |X [X|X[X

Figure 7.16 Simulated Network Outputs and new Net

In the figure, the left-most column with T1, T2, etc, represents the Time-Steps and
the top row with N1, N2, etc represents the neurons in the network. In the new Net
table (at right of figure 7.16), the ‘x’ shows that the Net is not re-calculated. The
calculated outputs were plotted on a graph and compared with the expected (wanted)
output. Thisis shown in figure 7.17.

It is obvious from the above comparison that the simulated outputs did not match the

expected outputs and this was due to instability caused by the connection patterns of
the neurons. Some of the neurons triggered where they were not supposed to trigger.
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Simulated Network Output Wanted Output

N N

L I\ L = [7 .
2\ \ 2\ L
: M : . ——
s U] Ly —
6 — | s —
7 7

I

E

Figure 7.17 Comparison of Simulated and Wanted results

Of course an EA may be used to tune the weights but this may not be efficient
because the bipeds aready showed that the weights being independent from the time-
parameters will cause non-linearity in the outputs. Thus, this neuron model and the
topology described are difficult to use in real-time.

At this point of the project, further investigation into the literature showed that a
neural network based on a Lamprey (investigated by Grillner et al.) might be a useful
model [1].

7.4.3 Lamprey Network to Quadruped Network
A lamprey is a primitive fish. Its importance is that it is the only biological

CPG/reflex system to be studied in detail. As such, it plays an important role in the
biological underpinning of systems such as those being discussed here. It was logical
therefore, to turn to it as inspiration when developing the form and operation of the
quadruped system described here. Therefore, a short description of its operation is
presented in the next few paragraphs before turning to the quadruped network and its
biological inspiration. More about the operation of the network can be learned from
reference [1]. The network topology is shown in figure 7.18.

The lamprey has its motor-neurons in segments on the right and left sides of the
body. It swims by triggering alternate segments under the control of the brainstem.
This method, of having the brainstem control and segmented motor-neuron, inspired

anew model of network topology in the project. It also suited the neuron model and
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the problem faced in developing a network for the quadruped (refer to section 7.4.2).

This approach led to the following two points:

1. The neurons are triggered by a central control system (the brainstem in the

biological system).

2. Because of this simplified approach, the weights are unnecessary and the

RTEA need only evolve the time-dependent parameters of the neurons.

In this project, the central control neuron was called the “Mother-Neuron” (MN) and

the time-dependent neuron model which is controlled by the MN is called the “ Child-

Neuron” (CN).

Left Side
Muscles

Brainstem

2

A

_<

—e

Figure 7.18 Lamprey, Segmental CPG network

Excitatory, glutamate

Inhibitory, glycine

(After Grillner et al.)
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Figure 7.19 shows a schematic diagram of MN/CN and the resemblance of the

lamprey’ s brainstem/motor-neuron model may be noticed.

o
Q.
>
Q
(0]
3
<
Q
o
I
>
g
=
o
>
n

Figure 7.19 Resemblance of MN/CN and Lamprey’ s Brainstem/M otor-neuron

With this new proposal, the expected output when simulated is shown in figure 7.20.

MN: Trigger=Truee ~ To
Tp — Trigger Delay Time-Steps € > 1
Trigger = False
(8 MN Output
CN:
D; — Delay for ON time D, D,
Ton—Ontime <« A E—
D, — Delay for OFF time L Torr
Tore— Off time < >
(b) CN Output
Figure 7.20 Expected Output

The MN triggers the CN at Tp (for example, if Tp is four, then once in every four

Time-Steps the MN sends a triggering signal to the CN). The activation function of
the MN/CN is shown below in equation 7.11. The operation of the CN is

straightforward; if it is triggered, it completes the ON/OFF cycle as described and, if

it is not triggered, the output is set to zero until it receives a triggering signal from

the MN.

if (t=T,)= MN(Tigger)=True and CN,(Trigger)=True and

for

for

for

for
else

for

O<t<D,; :Out;(t)=0 and

O<t<Tyy :Out;(t)=+1 and

O<t<D,; :0ut;(t)=0 and

O<t<Tyy :OUt;(t)=-1

= MN(Trigger) = false and CN,(Trigger) = False and
O<t<oo :OUL,(t)=0
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Where MN is the Mother-Neuron
Tp isthe Time-Delay - Time-Steps set by the EA
CN,; isthej™ Child-Neuron
Out; is the output of j™ neuron
Dy isthe On-Delay of j™ neuron - Time-Steps set by the EA
Ton; isthe On-time of the j™ neuron - Time-Steps set by the EA
Dy isthe Off-Delay of the j™ neuron - Time-Steps set by the EA
Torr isthe Off-time of thejth neuron - Time-Steps set by the EA

With the upgraded neuron model in hand, a detailed network topology was
developed. The model lends itself to a simple feed-forward network, as shown in
figure 7.21 and this was adopted.

Left Segment
Motor-neurons

Right Segment
Motor-neurons

Brainstem
Centrd
Trigger-
Control

CN1-FLV — Child-Neuronl for Front-Left-Vertical actuator
CN2-FLH — Child-Neuron2 for Front-Left-Horizontal actuator
CN3-BLV — Child-Neuron3 for Back-Left-Vertical actuator
CN4-BLH — Child-Neuron4 for Back-Left-Horizontal actuator
CN5-FRV — Child-Neuron5 for Front-Right-Vertical actuator
CN6-FRH — Child-Neuron6 for Front-Right-Horizontal actuator
CN7-BRV — Child-Neuron? for Back-Right-Vertical actuator
CN8-BRH — Child-Neuron8 for Back-Right-Horizontal actuator

Figure 7.21 MN/CN Initial Network Topology
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The next task was to set the time-parameters of the MN/CN manually and simulate
the network to test if it gives a suitable predictable output. The CN test parameters
and the expected output were the same as shown in section 7.4.1 (refer to figure 7.13
(@) and (b)). The MN test parameter is shown below.

MN Parameter:
Tp =9 Time-Steps

The MN was set to trigger all the neurons once in every nine Time-Steps. The
network was simulated and the result was compared with the expected result. Thisis

shown below in figure 7.22.

Simulated Result Expected Result
N N
! N N
2\ 2 \
3 /_\_/ 3 /A
4 4
¢l oL
6 [\ | S— 6 \ A
; T, L —
8 8
— > L_J >
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Time-Steps Time-Steps

Figure 7.22 Comparison of Simulated and Expected result

The comparison above shows that the network generated the expected output.
However, there was a problem. Asthe MN is controlling al the CNs, if any of these
neurons, which has finished its ON/OFF cycle, has to start the cycle again, it cannot.
For example, in the simulation, CN4 has finished the ON/OFF cycle by Time-Step 2
(refer to figure 7.22). It cannot trigger again until the MN sends the next triggering
signa. This, in real-time, is not an efficient way of controlling the CNs because the
robot’s legs which are controlled by CN parameters, may be subject to changes at
anytime according to the conditions underfoot. This means that one CN cannot wait
to be triggered by the MN if the CN is required to generate an output. This flexibility
issue was carefully investigated. The next section explains the enhancement of

flexibility in the MN/CN network topology.

116




7.4.4 Enhancement of Flexibility — MN/CN and Network Topology
Using the lamprey network as inspiration, the segmented network was developed

further. The lamprey’s left segment and the right segments perform similar actions
and are controlled by the central brain stem. This idea was used to develop a centrad
trigger-control (MN) for similar actions (vertical/horizontal neurons - CN) of the
front and back legs of the quadruped. Using this idea the following network topol ogy

was developed and is shown in figure 7.23.

MN-FV — Mother Neuron for front vertical CNs
MN-FH — Mother Neuron for front horizontal CNs
MN-BV — Mother Neuron for back vertical CNs

CN8 MN-BH — Mother Neuron for back horizontal CNs

BRH

Figure 7.23 Upgraded Quadruped Network

The weights between the MNs are set to one (defining that the connections are turned
on) as a default. When any of the MNs is triggered from the higher brain functions
(as discussed in chapter 2, section 2.5), it triggers the other mother neurons
connected to it. Also, the algorithms operating on the network can turn off any one of
the MN connections to make the corresponding part of the network passive (if the
conditions underfoot require it). Note that this weight may be the subject of future

investigation; for this project only the time-parameters were evolvable.

Asthe CN’s ON/OFF times (refer to the CN parameters in figure 7.13a) are different
for different CNs, co-ordinating the triggering action with such a network (shown in
figure 7.23) was the next task. The parameters were initially set manually to generate
walk patterns for the quadruped robot.
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In the task of co-ordinating the triggering time, initially the MN was set as a clock,
which can cycle continuously. The CN was altered so that it no longer has to finish
the ON/OFF cycle when triggered by the MN; when the CN receives the trigger-ON
signal, it only has to finish its ON cycle and wait for the next trigger-OFF signal to
start its OFF cycle. The splitting of ON and OFF cycles helps the co-ordination of
the MN and the two CNs connected to it. As the ON and OFF cycles were now
triggered individually, with different timings, new time-parameters were introduced
to the MN. Thisis shown below with its output shown in figure 7.24.

MN Time-Parameters: Tore
Ton —On-time Ton
Torr — Off-time Figure 7.24 Output of MN

The CNs new activation function is given in equation 7.11.

if (MN—22RE ,CN, )= for O<t<D,; :Out;(t)=0 and
for O<t<Tgy :Out;(t)=+1 and
for Ty <t<oo :Out;(t)=0

if (MN—2=ESM ,CN )= for O<t<D,; :Out,(t)=0 and
for O<t<Tqyy :Out;(t)=-1 and
for Toe <t<oo :OUL (1) =0

(7.11)

Where MN is the Mother-Neuron
CN, isthej™ Child-Neuron
Out; is the output of j™ neuron
Dy isthe On-Delay of j™ neuron - Time-Steps set by the EA
Ton; isthe On-time of the j™ neuron - Time-Steps set by the EA
Dy isthe Off-Delay of the j™ neuron - Time-Steps set by the EA
Torr isthe Off-time of thejth neuron - Time-Steps set by the EA

When the CN receives an ON signa from the MN, the CN generates an output of
zero for D; Time-Steps and then an output of one for Toy Time-Steps. When D1/Ton
Time-Steps are up, it generates an output of zero until it receives the next OFF signd
from the MN. Similarly, the OFF cycle of the CN is completed. The CN’s ON/OFF
cycle can be activated at any point of time by adjusting the MN’s ON/OFF time and
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thus it is more flexible. As mentioned earlier, for the network shown in figure 7.23,
the parameter values were manually set to generate walking patterns. A network with

walk parametersis shown in figure 7.25.

Figure 7.25 MN/CN Network — Walk Parameters

The network above was simulated and its output used to control the quadruped robot.

The snap-shots of the simulation are shown in figure 7.26.

Apart from the walk parameters, other gaits like gallop, trot and pronk were set
manually and tested. The network outputs for those gaits along with the snap-shots of
the simulation are attached in appendix-D. This showed that the network is flexible
enough to operate in real-time and so a system was finally ready to test with the
RTEAS, discussed in chapter 4.
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Figures 7.26 (a) Network Parameters
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Figures 7.26 (b) Network Output
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Figures 7.26 (c) Quadruped Leg Positions

ﬂ Quadruped Simulation

Quadruped Metwork Layaut ] Metwerk Output | Guadiuped Leg Positions  Robot Animation J

Exit

Figures 7.26 (d) Side View of Quadruped Robot
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Figures 7.26 (e) 3D View of Quadruped Robot

7.5 Summary
This chapter started by describing the design of the quadruped simulator and

showing the complexity involved in controlling the quadruped. Then the fitness
function was explained, which covered the three different parameters — stability,
distance and fuel-efficiency. The neural network development was discussed and it
was demonstrated how the lamprey network topology was used as an inspiration for
the development of the MN/CN type network. This also covered the time-dependent

neuron model development and showed how it can be flexiblein real-time.
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Chapter 8
RTEAs Operators

8.1 Introduction
In this chapter, the effects of different mutation operators under different

experimental conditions are studied. The chapter starts by explaining the
experimental parameters. The general flow (execution method) of the experimentsis
discussed. The results of these experiments are then highlighted, supported by graphs

and charts. Finally a summary of the resultsis given.

8.2 Experimental Parameters
Testing started with the quadruped robot discussed in previous chapters. It was

assumed to perform its actions on a flat surface. The RTEAS used were set up with

different experimental parameters. These are shown in figure 8.1.

Random | Condition % of % of % of % of % of % of
Number of Equilibrium | Mutation | System Required | Required | Required
Type Acceptance | Disturbance | Size Disturbance | Stability Distance Fuel
1/5Rule Simple 25% 25% 25% 25% 25% 25%
Normal 50% 50% 50% 50% 50% 50%
Uniform SA 75% 75% 75% 75% 75% 75%
100% 100% 100% 100% 100% 100%

Figure 8.1 Experimental Parameters

For each experiment, a parameter from each column of the above table (figure 8.1)
was taken and simulated. The “1/5 Rul€e’ is highlighted in the table because it uses a
dightly different experiment setup from the others. This is explained in the

discussion of “1/5 Rule” results.
In the table above, the “Random Number type’, “Condition of Acceptance” and “%

of Mutation Size” were already explained in chapter 4 (refer to section 4.2.3, 4.2.4

and 4.2.5). The other columns are explained below.
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8.2.1 Equilibrium Disturbance
Before explaining about this experimental parameter, a brief explanation about how

the network parameters are set up, before starting the experiment, is given. The
robot’s fitness was configured to allow it to move forward by penalising any other
movement. So, instead of evolving the MN/CN parameters from scratch, the network
was preset with walk-parameters. The MN parameters were not disturbed (that is,
moved away from this preset positions); only the CN parameters were disturbed
(randomly altered) by an amount specified by the experimental parameter — “% of
Equilibrium Disturbance’. The idea was that this parameter would help the
investigation of how far the system can be taken out of equilibrium (its known high-
fitness state) and still evolve back efficiently. The following example is given to

explain how this parameter is used.

The maximum range which a parameter can be disturbed was set to 10. Assuming
that “% of Equilibrium Disturbance” = 25%. Then the disturbing range would be (10
x 0.25) = 2.5 = 2 (fraction values are ignored). If the CN1's origina Toy was 4, then
a uniformly distributed random-number between minus and plus two (-2 and +2) is
generated and added to Ton. Thus, CN1's equilibrium is randomly disturbed
according to the value of the experimental parameter “% of Equilibrium

Disturbance”.

8.2.2 System Disturbance
This parameter is used to set how many of the neurons are to be disturbed, as

described above. For example, if it is 25%, then out of 8 neurons in CN, 2 are
disturbed. This helps to understand to what extent (how many neurons) the RTEAS
can efficiently optimise after disturbance. In order to analyse this effectively, it was
made sure in each experiment that the number of vertical-neurons and horizontal-
neurons selected for disturbing are equal. Also, this helps in studying the effects of
the fitness parameters; Stability, Distance and Fuel which depend on both vertical
and horizontal neurons. The way in which the vertical and horizontal neurons affect
the fitness parametersis described in section 7.3.
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8.2.3 Required Stability, Required Distance and Required Fuel
These parameters are used in the fitness function (refer to chapter 7, section 7.3,

equation 7.4). They are assumed to simulate the physical environment in which the
robot is placed. The example below is used to explain one such environment.

Rs = 100%

R = 25%

Rr = 50%
With such a setup, the robot could possibly be climbing a stoney-steep-hill. When
climbing such hill, the robot normally has to be careful with stability (Rs — 100%),
would not worry too much about the distance covered (Rp — 25%) and would not be
much concerned about fuel used (R — 50%). Climbing without falling would be the
top priority. Thus, by varying these fitness parameters, virtual environments for the
robot may be created and this helps the investigation to analyse if the RTEAs were
efficient in evolving the network parameters under different constraints. For every
experiment the expected fitness of stability, distance and fuel were pre-calculated
according to Rs, Rp and Rr selected; then the disturbed network is alowed to evolve
by the RTEA to the expected fitness.

8.3 Testing Evolutionary Operators
Different mutation techniques — MA, MO and M S were discussed in chapter 4 (refer

to section 4.2.2). Each mutation technique was tested against the experimental
parameters discussed above. The total number of different combinations of
experimental setup for the MA and MO techniques was 18462. Experimenting with
the MS-technique did not use the experimental parameter “% of System
Disturbance”, because it was considered when the MS-technique is applied
symmetrically (as discussed in chapter 4, section 4.2.2-Mutate Some) to the network;
therefore, al the parameters have to be disturbed so that the effect of MS can be
effectively studied. Hence the total number of experiments for the M S-technique was
4608.

As it can be seen, with the huge number of experiments, it isimpossible to show the
results of each of them. Anyway, the am of this investigation is to learn which
techniques with what experimental setup can be effective in rea-time. This can be

studied by taking the maximum fitness achieved in each experiment and taking an

125



average of similar experiments. Thisis explained further along with the discussion of

results. The general flow of experimentsis shown in figure 8.2.

Start Experimentation

v

Load Walk Parameters

v

Read Experiment Parameters From
the table (refer to figure 8.1)

v

Set Network and Fitness Parameters according to the experiment parameters read

Networ k — Randomly select Neurons to Disturb (refer to section 8.2.2) and Disturb
according to Equilibrium Range selected for the experiment(refer to section 8.2.1)

Fitness Parameter — Set expected Stability, Distance and Fuel efficiency according
to Rs, Ry and R- percentages read from the table in figure 8.1. (refer to section 8.2.2)

v

Simulate Net (refer to section 7.4.4)

v

Simulate Robot (refer to section 7.2)

v

Measure Fitness (refer to section 7.3)

y

If Time Step
Count > MAX
Time Steps

Use RTEA. Check whether the network parameters are fit or
not. If not Mutate according to the mutation technique
YES selected for the experiment (refer to section 4.2)

l YES
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If Current Number
of Simulation
Cycle> MAX

Simulation Cycle

After certain number of simulation, record final maximum
fitness achieved and other information required for the
investigation. Then read the next experiment setup

|

If Current
Experiment Count >

NO

MAX Experiment
Count

End

Figure 8.2 General Flow Chart of Experimentation of RTEAS

*The results discussed in this chapter are the result of simulating each experiment for

1000 cycles

As said earlier, the method shown above was coded using Borland C++ Builder and

further description of the software is given in appendix-C.

8.3.1 Normal Distribution versus Uniform Distribution

Firstly, performance of Norma and Uniform random number distribution was

compared by taking the overal average of all the experiments conducted for each of

these operators. Typically, the total number of experiments for each operator with

“Simple” or “SA” Conditional Acceptance was 4096. For example, for “Normal

Distribution” with “Simple” acceptance, the total number of experiments is
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(Equilibrium Range) x (Mutation Size) x (System Disturbance) x (Stability) X
(Distance) x (Fuel) which gives atotal of 4096 (refer table in figure 8.1). Hence, the

results shown in each bar-chart in this section is an average of 4096 experiments.

Every bar-chart shown in figure 8.3, 8.4 and 8.5 has a common chart-legend showing
two categories, “Average Expected” and “Average Evolved”. This legend is shown
infirst figure 8.3 and it is not repeated as it is the same for all the discussions of MO
and MS. The bars with the mesh grid type of fill are the total average of maximum
fitness expected out of the experiments conducted. The dark bars with white dots are

the total average of evolved fitness (evolved by the EA).

O &verage Expected
. A Aerage Evalved
Mutate All Result:
Mutate All - Normal/Simple SR =59.745 Mutate All - Normal/SA SR = 1168.58
70 62.5 80 68.7719
o 60 ” ;g 625
8 50 44.3019 8
s 39.375 375 s
iz 40 30.5414 g% 39.375 37.5
% 20 25.6409 : o 40 26.1541
2 2 30 : 21.2995
g 20 g 20
< 10 < 10
0+ T 0~ T
Stability Distance Fuel Stability Distance Fuel
Fitness Parameters Fitness Parameters
(@ (b)
. ) _ . SR = 1040.93
Mutate All - Uniform/Simple SR =57.57 Mutate All - Uniform/SA _
70 62.5 80 74.5631
g 60 p gg 62.5 R
2 50 41.5698 2
< 39.375 £
Ew 875 g% 30.375 375
© 39 25.8573 27.2711 o ‘3‘0 27.5769 27.4249
S 20 I
g $ 20
< 10 < 10
0~ T T 0+ —— T
Stability Distance Fuel Stability Distance Fuel
Fitness Parameters Fitness Parameters
(©) (d)

Figure 8.3 Mutate All — Normal Versus Uniform Distributions

The results of Normal Distribution with “Simple’ acceptance are shown in figure
8.3(a) and with “SA” acceptance in figure 8.3(b). Similarly, the results of Uniform
Distributions are shown in figure 8.3(c) and 8.3(d). In each chart, the Success-Rate
(SR) is shown in the top-right corner. The SR is a measure of the rate of the number
of times the system successfully evolves or moves closer to the required fitness. It is

measured using the equation shown in 8.1.
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Number of Success

_ _ : (8.1
Number of Smulation Cycles

The average fitness of each of stability, distance and fuel in each case for Normal
and Uniform Distributions under “Simple” acceptance was close to each other, as can
be seen in figure 8.3(a) and 8.3(c). Similarly, under “SA”, the average fithess was
similarly close to the others as well, which can be seen in figure 8.3(b) and 8.3(d).

Also, the success rates of normal and uniform distributions were similar.

The probable reason that the Normal and Uniform Distribution performance was
similar, was that the system, in which the operators are tested, requires a change in
parameters with at least a difference of one or minus one (as a whole number). For
example, consider the neuron activation equation 7.11. In the equation Top; decides
how long the neuron has to stay ON and produce positive pulse. If Toyj is two it
produces two units of positive pulses. If it has to give out three units of positive
pulses, then Ty has to change its value from two to three and no fractional change

would help to give out three positive pul ses.

The Normal random number in this project generates fractiona numbers depending
on the Mutation Size (refer to section 4.2.3). The random number generated during
the mutation process could be 0.512 which could have changed the Toy; from 2 to
2.512. Clearly this will not satisfy the need for three positive pulses and the SR
would remain the same. In the next cycle of mutation, it may generate a random
value 0.488 which makes the Toy; three. Then the SR isincremented.

The Uniform random number generator function, generates whole numbers
depending on the mutation size (refer to section 4.2.3). The random number
generated during the mutation process could have been one which changes Ton; from
2 to 3 and the SR is incremented. Thus the two mutation operators may have ended

up producing similar results of fitness and SR.

However, both the operators under SA have shown that the SR and the average

fitness are higher than Simple acceptance. This is because the SA allows the error to
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increase. The more room there is for error, the more the room for finding
improvement in fitness and hence higher SR. For example, consider two neurons
which are undergoing a mutation process. In one cycle, both the neurons may have
succeeded at getting close to the expected fitness. In the next cycle one of the
neurons may have failed to improve its fitness and this may result in accepting the
error. This, under SA, would change the other fit neuron and it would have to
undergo the mutation process again, looking for an improvement (and finaly it may
have succeeded). Thus, more error causes more room for improvement and hence
higher SR. This is a dight disadvantage when using the MA technique as it may
disturb the fit parameters under SA acceptance. Having said that, only by using SA,
the expected fitness (or at least close to expected) was reached which can be seen in
the figure 8.3(b) and 8.3(d). This disadvantage can be avoided when the MO
technique is used. This is discussed in the next part of this section. Overall, in this
discussion it can be said that the performance of both operators is similar under the

MA technique.

M utate One Results:
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Figure 8.4 Normal Versus Uniform Distributions
Similarly to the MA technique, the Norma and Uniform Distributions have
performed similarly. However, compared to the MA technique the MO’'s
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performance is dightly less. This is because the MO technique evolves one set of
parameters (one neuron) close to the expected fitness, and then it moves to the next.
Sometimes, it is likely to get stuck in one neuron and never find a way to evolve or
move towards the expected fitness. This is a local minima situation and the SA is
more effective than Simple acceptance using the MO technique. This comparison can
be clearly seen from figure 8.4(a) & (c) — Simple acceptance and in figure 8.4(b) &
(d) — SA acceptance.

M utate Some Results:
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Figure 8.6 Normal versus Uniform Distributions

The Normal and Uniform distributions using the M S technique did not perform well
because in all of the experiments all of the neurons are disturbed and it only evolves
symmetrical neurons (front or back neurons — refer to section 4.2.2) at atime. As
discussed earlier in the MA technique, when more than one neuron is mutated, in one
cycle one set of neurons, for example front-right-leg neurons, may evolve close to
expected fitness and in another cycle front-left-leg neurons may have caused the
fitness to step-back, which will ultimately affect the fit front-left-leg neurons. This
happens more under Simple acceptance than SA, as can be seen as the results in
figure 8.5(b) and (d) are better than the results shown in figure 8.5(a) and (c).
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8.3.2 Mutation Size versus Equilibrium Range
In this section, mutation size versus equilibrium range (ER) is discussed, to analyse

their effects under Normal and Uniform distribution. Mutation size is also referred to
as Random Range (RR) in this project. In this section, the graphs are shown in 3D
and 2D views which may help in understanding the effects of ER and RR. Note that
in the 3D graphs shown in this section, the ER axis and RR axis start from 25 and not
zero. Each point on the graphs is an average of 256 experiments which covers the
(System Disturbance) x (Stability) x (Distance) x (Fuel) = (4 x 4 x 4 x 4) (refer to
table in figure 8.1). Also, for each point in the graph, the expected average fitnessis
139.375.

In the 2D graph, each point is the average of the experiments done with a certain
equilibrium range and random (mutation) range. Thus E25 x R25 isthe average of all
the experiments done with an equilibrium disturbance of 25% and mutation (random)

range of 25%.

8.3.2.1 Normal Distribution with Simple Acceptance
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Figure 8.6 Equilibrium Range versus Random Range — Normal Distribution under

Simple Acceptance

Asthe ER increases, the fitness decreases and for each ER (which goes from 25% to
100% in steps of 25) when RR increases, the fitness tends to increase, but does not
get close to the expected fitness. This may be expected because it is obvious that, as
the system moves away from equilibrium position, the poorer the fitness becomes.
Also, as the mutation size or RR increases, the search space increases which
increases the chance of improving the fitness. However, none of these examples
evolves close to the expected fitness which is 139.375. This is because the “Simple”
acceptance type is being used and it only accepts changes in parameters if the three
fitness parameters (stability, distance and fuel) evolve close to the expected fitness.
As there are three parameters to satisfy, the chance of getting close to the expected
fitnessisless and thisisdirectly reflected in the graphs shown in figure 8.6.

8.3.2.2 Normal Distribution with Simulated Annealing
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Figure 8.7 Equilibrium Range versus Random Range — Normal Distribution under

Simulated Annealing Acceptance

When the MA technique is used, the SA acceptance helps the system to improve
fitness even when moving away from the equilibrium position. This can be seen in
the graphs shown in figure 8.7 (top graph). It can be said here that, as the ER
increases, the SA helps the fitness to increase (unlike Simple acceptance which
decreases) and for each ER, when RR increases the fitness increases. However, this
does not necessarily apply to the MO or MS technique because only one set of
symmetrical parameters are mutated. For example, consider two neurons in a cycle
where the SA has allowed an error; as a result of this, the stability has improved in
one neuron but completely lost the fuel efficiency in another. In this case, the effect
of ER and RR is difficult to analyse. Hence, the graphs do not show any symmetry
effect ssimilar to when MA is applied.
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8.3.2.3 Uniform Distribution with Simple Acceptance
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Figure 8.8 Equilibrium Range versus Random Range — Uniform Distribution under

Simple Acceptance
The effect of ER and RR (refer to figure 8.8) under Uniform Distribution/Simple

Acceptance is close to the effect when Normal Distribution/Simple Acceptance is
applied (refer to section 8.3.2.1).
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8.3.2.4 Uniform Distribution with Simulated Annealing
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Figure 8.9 Equilibrium Range versus Random Range — Uniform Distribution under

Simulated Annealing Acceptance

Similarly, the ER/RR effects (refer to figure 8.9) seen under Normal distribution
were found again here under Uniform distribution. This confirms that both the

operators give similar effects in real-time operations.

8.3.3 Implication of 1/5 Rule
“1/5 Rule” operator is explained separately from the other two operators because it

uses a dightly different experimental setup. In this case variations of mutation size
are omitted so that the effect of increasing and decreasing the variance in the 1/5

Rule may be effectively studied. Thus the results (each graph) discussed here are an
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average of 1024 experiments. Apart from the number of experiments, the method of
analysis is similar to method used with the other two operators. Refer to section
8.3.1.
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Figure 8.10 - 1/5 Rule

In figure 8.10, figure (a) and (b) are the results of “1/5 Rule” when the MA technique
is applied with Simple and SA acceptance. Similarly, the results of the MO and MS

techniques are shown in figure (), (d), (e) and (f).

The “1/5 Rule” did not show any significant difference from the other two operators
in this project. Thisislargely due to the fact that the system in which the operator is
being tested shows changes made by whole numbers, as explained in section 8.3.1.
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The results seen so far are summarised in bullet points in the next section. Further
results are attached in appendix-B. A paper outlining these results was presented in
an International Conference and a copy of this paper is attached in appendix-A.

8.4 Summary of RTEA Operators
e Normal/Simple/SA and Uniform/Simple/SA performed similarly under each

mutation technique.

e MO with SA performed better than MA with SA. But the overall performance
of MA was better than MO.

e MS peformed poorly due to the combinational effect of symmetrical
parameters mutating and disturbing all the neurons all of the time.

e 1/5 Rule did not show any significant importance in real-time operation;
however, the effects were quite similar to the Normal and Uniform operators.
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Chapter 9
Future Work

9.1 Introduction
This chapter suggests some future work that can be carried out after this project. The

chapter starts by explaining some applications of RTEAS, other than gait control.
Next, some investigations into network topology and gait transitions are suggested,
these are backed up with some initial results. Finally, some suggestions are made for
applying the RTEA to areal (physical) robot.

9.2 Other Applications of RTEA
In this section some other applications of the RTEA are explained. The Artificia

Neural Network was originally chosen as a vehicle for exploring the RTEA because
it may be applied to many different systems. For example, ANNSs can be used not just
in robotic systems but in many other control tasks.

The RTEA can also be used without the ANN in many tasks. For example, in the
case of the robot, if the leg patterns were controlled by a simple software loop
(switching on and off the motors at various times), then the RTEA could be applied
directly to the timings of the leg movements. The paragraphs below give some

examples (out of agreat many possible) of the use of the technique.

One possible application is a combination with the earlier work by Muthuraman [1],
within the research group. Muthuraman developed a successful method of evolving
complex systems using a modular approach. However, the modules were trained off-
line before use and could not change or optimise themselves in use. Combining the
RTEA with this system may allow the system to optimise itself as it is being used,
the modul e parameters and weights being the subject of the real-time evolution.

Another application may be in Aircraft Control Systems. There are several automatic
control systems currently used in such applications as explained by McLean [2].
Some of these have turned to Artificial Intelligence for complex control tasks. For

example, Faller and Schreck proposed a Neural Network solution for the prediction
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of unsteady Aerodynamic situations [3]. The application of a RTEA to optimise such
systems could be investigated. This might be particularly interesting in situations
where the aircraft is damaged or the control function is unknown (indeed, the group
has already developed a method which may be used to find approximate minimain

such situations [4]).

Robots themselves can and will play a key role in exploring space and other
hazardous areas (an example being the recent NASA Mars Rovers). The current
control systems for such vehicles are complex and involve severa stages of analysis.
This has to be done automatically since, as in the example of space exploration, the
system is not in real-time contact with the operator. Obviously the RTEA is one
technique which might benefit such systems is allowing them a method by which
they can negotiate difficult terrain.

9.3 Networ k Topology
As the research progressed, it came to be understood that the network topology was

one of the key factors in the real-time system. The simpler the network, the smpler is
the control. After considering the functionality requirements of the network and the
lessons learned from the earlier experiments, the network shown in figure 9.1 was
found to be probably the ssmplest topology that would fulfil all of the requirements.
This conclusion was arrived at by means of trial and error. Similar to the quadruped

network shown in chapter 7, it also has mother and child neurons.

As may been seen in figure 9.1, the network has three layers of four neurons. The
central layer contains the (clocking) mother-neurons. Each of the mother-neurons is
connected to one vertical child-neuron (top layer) and one horizontal child-neuron
(bottom layer). The weight from the mother-neuron to the child neuron depends on
the actuator characteristics. For example, if the front-left-vertical child-neuron has to
stretch its vertica motion by 2.5 units from its starting position, then the weight
between the MN-LF and CN-V hasto be 2.5 as shown in the figure.
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The type of gait generated by the network is decided by an input tonic, similar to the
input tonic shown by Billard and Ijspreet in their paper [5]. The input tonic for each

gait is shown below

MN-LF — Mother-Neuron Left Front
MN-LB — Mother-Neuron Left Back
MN-RF — Mother-Neuron Right Front
MN-RB — Mother-Neuron Right Back
CN-V — Child-Neuron Vertical

CN-H — Child-Neuron Horizontal

Figure 9.1 Neural Network Topology for Quadruped Robot

1 Wwak |+1 (-1 |-1 |-1
2 Gadlop|+1 |-1 |-1 |+1
3 | Trot +1 | -1 | +1 | -1
4 Pace |(+1 |+1 |-1 |-1

The input tonic for each gait starts from the MN-RF to the MN-LF, going clockwise.

For example, for walk gait, the input tonic is fed to the network as shown below.

MN-RF = +1
MN-RB =-1
MN-LB =-1
MN-LF=-1
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In the investigation, the vertical child-neurons were initially kept passive and only
the horizontal child-neurons were active. A child neuron is activated if it receives a
positive pulse from its mother-neuron, with the condition that it had a negative pulse
previoudy from the mother-neuron. The neuron activation function is given in

equation 9.1.

|f ((CN Receives +1)and(CN ¢ Previous_ Signal _1))

= Net = (Input xWeight) and Output :[14{1 ;Net D
+

if (CN«Re=__ 1) and (CN ¢« osSod 1))

(9.1)

= Net = (—1x Input xWeight) and output = (1+ [1 1—Net D
+€

|f ((CN Receives _1) and (CN < Previous_ Sgnal _1))
= NoAction
Where CN is Child-Neuron

As can be seen from equation 9.1, if the neuron receives a positive pulse and the
previous pulse recelved was a negative pulse, then it is activated as shown. If the
neuron receives a positive pulse and the previous pulse received was aso positive,
then the neuron’s previous action is reversed by multiplying by “-1" as shown in
equation 9.1. If the neuron receives a negative pulse and the previous pulse received

was also a hegative pulse, then the neuron performs no action.

After activating the child neuron according to the input pattern, the mother-neurons
“swing” the input pattern (that is, they pass each parameter to the next in line), so
that, each mother-neuron gets its turn to activate its child-neuron. The swinging
mechanism is shown in figure 9.2. First, the mother-neuron swings the input pattern
clockwise, as shown in figure 9.2a and then it swings anti-clockwise as shown in

figure 9.2b. The mother-neuron keeps this going aslong as it is required.

The neural network’s output was simulated on a quadruped robot (similar to the
robot shown in chapter 7) which moves its actuators according to the input it receives
from the child-neuron. For example, if the neuron sends 1.5 to the left-front-
horizontal actuator, then the actuator moves to position 1.5. The position of each
actuator of therobot is calibrated as shown in figure 9.3.
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(a) Clockwise Swing

(b) Anti-clockwise Swing
Figure 9.2 “Swinging” Mechanism

0 —Minimum Horizontal Position

0.2 2 — Maximum Horizontal Position

0.75
Figure 9.3 Robot Actuator Positions
The network and the robot were simulated to test the system. A screen-shot of one

such simulation is shown in figure 9.4. The gait transition from walk to trot can be
seen on the TChart in the screen-shot (figure 9.4), between 10 and 15 on the x-axis.
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Figure 9.4 Gait Change Simulation

9.4 Changing Gaits

The neural network and the robot simulation showed good results and the RTEA was
then applied to the system. Simulations were conducted with a “Mutate-All” and
“Mutate-One” RTEA. The RTEA mutates the input tonic (patterns) to change the
gait. The result of Mutate-All operation is shown in figure 9.5.

—e— Right Front
N N N B N NP W g B N NP N N s Right Back

—a— Left Back
.—/\/—\—/\/\/\/\/\/\/\/\/\/\/\ _m Left Front
H—I/._._.\I—I—I/.\I/.\l/.\I/.\l/.\I/.\l/-\I/.\I/W

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 1p 11 12 13 14 15 16 17 18 19 2p 21 22 23 24 25 26 27 28 29 J

Leg Positions

Time Steps
l«——  Wwak > |« Trot >« Galop ——p|
Failed 1 time Failed 14 times
before it got the before it got the
Trot gait right Gallop gait right

Figure 9.5 Result of application of Mutate All to gait changing operation
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As the results show, the Mutate-All operation failed once before it changed the gait
from walk to trot and failed 14 times before it changed from trot to gallop. The result
of application of Mutate-One is shown in figure 9.6.

I NP W N I S I g

—e— Right Front
/—\_N—\/\/\/\/\/\/\/\/\/\/\ _=—Right Back

—a— Left Back
.—N—\—/\.—/\/\/W.—\/\/W\ —_m—Left Front
I—I—I/._._-\I—I—I/.\l/-\l/.\l/.\l/-\l/-\l/.\l/-\l/.\l/.\l/.
1 2 3 4 5 6 7 8 9 1o 11 12 13 14 15 16 17 18 19 2p 21 22 23 24 25 26 27 28 29 J
Time Steps

Leg Positions

—— Walk > |« Pace — ple—— Gadlop — p
Failed 18 times Failed 1 time
before it got the before it got the
Pace gait right Gallop gait right

Figure 9.6 Result of application of Mutate One to gait changing operation

The results shows that the Mutate-One operation failed 18 times before it changed
the gait from walk to pace and failed once before it changed the gait from pace to
galop. Further work can be done on this interesting system by including the
following steps:

1. Include the vertical action of the robot by improving the network to get the
vertical-child-neuron used.

2. Further work can also be done by not only mutating the input patterns, but
also the weights, so that the calculation of efficiency of the RTEA may be
more accurate.

3. The simulations can be improved by simulating rough terrain and letting the

robot walk on it.

9.5 RTEA on Real Robot
All the experiments in this project were done in software simulation. In the future the

RTEA can beinvestigated by applying it to areal-robot. The RTEA may be coded on
a micro-controller board and the controller may be applied to the real quadruped

robot (for example, as shown in picture 7.1 in chapter 7).
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Chapter 10

Conclusion

10.1 Introduction
This final chapter presents the conclusions of the project. The chapter starts by

reviewing the objectives which were set out at the beginning of the research. Then
the origina contributions of the research are presented. Next, a summary of future
work is given. Finaly, the chapter finishes by commenting on the overall success of

the project.

10.2 Project Objectives Revisited
The project objectives, as originally stated at the beginning of the project, were:

Background Reading and Appropriate Directed Study

Literature Search in the Field

Development of a CPG ANN for a Bipedal Walking Robot

Investigation of Evolutionary Algorithms to train the CPG Network
Comparison with previously obtained results

Extension of MPhil work from Biped to Quadruped robot

Extension of the EA to a RTEA to train the CPG for a walking robot in any

N o o &~ wDd R

gait

8. Selection of best agorithm from the real time evolutionary algorithms
developed

9. Running and testing the best algorithm

10. Comparison with published benchmarks and results from other researchers

The following sections look at each of these objectives in turn and explain how well

they have been achieved.
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10.2.1 Background Reading and Appropriate Directed Study
At the beginning of the research, appropriate background reading and study, required

to understand the project, was undertaken. This was directed by the supervisors and
included the coding and testing of practical ANNs and the examination of the
previous work of the group [1]. This background is explained in detail in chapter 2.

10.2.2 Literature Search in Field
The study of relevant literature was undertaken throughout the research. Topics

related to real-time neural networks, real-time robots and robotic control systems

were the main areas covered. Chapter 5 explains the outcome of the literature search.

10.2.3 Development of a CPG ANN for a Bipedal Walking Robot
After examining the working principles of McMinn's [1] artificial neuron model,

certain changes were made to eliminate its disadvantages and a new model was
designed. This new model emphasised time properties, because the project involved
handling real-time situations. The new artificial neuron has a similar behaviour to a
biological neuron when fired. It produces positive pulses (ON cycle) and negative
pulses (OFF cycle) for certain time steps. Also, when a neuron is fired, it will be
ready for another excitation only after it completes its ON and OFF cycle. For a
biped walking robot system, the network (the CPG) consisted of two neurons which
were cross-connected. The output of each neuron was connected to aleg of the robot.
Hence, when the neuron gave a positive pulse, the leg moved in a clockwise
direction and when the neuron gave a negative pulse, the leg moved in an anti-
clockwise direction. At the end of the work an artificial CPG for a Biped walking
robot was developed. Thisisillustrated in chapter 6.

10.2.4 Investigation of EAstotrain the CPG ANN
An initia implementation of the RTEA was developed to control the CPG of the

biped robot. It was shown that a robotic neural control system can be trained and

controlled by the algorithm. The results are outlined in chapter 6.

10.2.5 Comparison with previously obtained results
McMinn showed that time-dependent neuron models perform better than the

McCulloch-Pitt’s model. Instead of using McMinn’s model, asimilar time-dependent
neuron model was developed which takes advantage of the RTEA’s unique
attributes. The result of this ANN and the other ANNSs developed during the course

147



of this project are shown in chapter 6 where the results were compared with each
other. The differences in the models mean that it is difficult to compare the current

work with the previous. However, it may be seen that the results are broadly similar.

10.2.6 Extension of M Phil work from Biped to Quadruped robot
The MPhil work was extended to PhD work by taking the steps below:

Development of biped robot system to quadruped robot system
Developing asimulator for the quadruped robot

Simulating and testing the quadruped robot system
Development of a Fitness-function for the quadruped robot
Development of a Neural Network for the quadruped
Development of a Network Topology for the quadruped
Simulating and testing different network topologies

Selecting the best topology

O N o g k~ W0 NP

All the above steps were followed and discussed in detail in chapter 7 and the
following chapters

10.2.7 Extension of Evolutionary Algorithm to RTEA to train the CPG ANN for

awalking robot in any gait

The general RTEA method is shown in basic form (initial tests were done simply to
get an idea of the system dynamics) in chapter 4. The RTEA was initially tested on
the biped. After observing the performance of the RTEA on the biped, different
RTEASs for the quadruped robot were developed. Thisis discussed in chapter 8.

10.2.8 Selection (and running) of best algorithm from the RTEAs developed
Different RTEAS were tested as shown below.

1. Mutate All

2. Mutate One

3. Mutate Some

These RTEA operators are explained in chapter 4. Different “Random Number
Distributions” and “ Conditions of Acceptance” were used to test the RTEASs and they
are al'so explained in chapter 4.
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Chapter 8 examined the different experimental parameters by which the RTEAs may
control the robot. Finally, the results of different RTEASs and their different operators
were also discussed and shown in chapter 8. A summary of the results is given
below.
e Norma/Simple/SA and Uniform/Simple/SA performed similarly under each
mutation technique.
e MO with SA performed better than MA with SA, but the overal performance
of MA was better than MO.
e MS performed poorly due to the combinational effect of symmetrical
parameters.
e The 1/5 Rule did not show any significant importance in real-time operation

and the effects were quite similar to the Normal and Uniform operators.

It should be noted that the experimental objectives moved away from finding “the
best” algorithm to finding the effects of different operators. This was due to
recognition of the complexity of the problem and the fact that different operators
may be beneficial in different situations; there may not be a “best” overal system
Ssetup.

10.2.10 Comparison with published benchmarks and results from other

resear chers

As explained in the literature review in chapter 5 there are no directly comparable
systems to be found in the literature. This was not understood (or expected) at the
start of the project. Therefore, a statistical comparison of different techniques is not
available. However, it is obvious looking at real-time robotic control systems, that
the RTEA performs similarly to other pseudo random methods (like GAs, ES, etc.)
but not as well as programmed systems (like subsumption architecture). However,

the programmed systems lack flexibility as described previously.
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10.3 Summary of Main Findings

The main findings of the research are summarised in the points below.

The neuron model is critical to success and certain components of traditional
models, for example thresholds, cause problems. This is mainly because they do
not alow small changes in the model’s parameters to affect the fitness function
and hence cause smooth evolution.

Likewise, network structure and topology is aso important. Fully connected
networks in this case alow too much interference and interaction between
different parts of the same network.

RTEASs can be successful in ANN applications. The operators used depend on the
nature of the problem to which they are applied.

The technique is useful for instigating small refinements to the system, but in
applications with a large search space, a more successful technique may be to
combine it with pre-programmed minima (for example, in the case of a robot,

pre-programmed gaits).

10.4 Original Contribution

The main areas in which the research outlined in this thesis is unique and its

contributions to ‘the art’ are summarised bel ow.

The investigation of neural unit models for real-time evolutionary applications.
The identification of problems with existing models and the development of new
model s which mitigate these problems.

A similar investigation as above, but for network topologies.

The integration of these points into aworking simulation.

The testing and categorisation of evolutionary operators in rea-time situations
(in 18,462 different scenarios) and their development into working RTEAS.

The development and testing of fitness functions for such situations.

10.5 Summary of Further Work

The future work suggested in chapter 9 may be summarised as follows.

An investigation into the application of the RTEA in Muthuraman’swork [2].
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e Aninvestigation of the application of the RTEAs to ANNs and similar systems
in other applications.

e Further investigation of the gait changing problem and other network topol ogies.

e The application of the RTEA to areal robot.

10.5 Concluding Remarks

This project has been very successful in investigating the use of RTEAS in robotic
systems and the RTEA has been shown to be a powerful technique for real-time
operation.

The author therefore feels that the project is a useful contribution to the field of real-

time ANN control systems. The simplicity of operation of the RTEA may prove
useful in control system problems in the future.
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Appendix A

Paper Published during the PhD

Published in the proceedings of the International Conference of Neural
Networks:

A Jagadeesan, G Maxwell, C MacLeod, “Evolutionary Algorithms for Real-Time
Artificial Neural Network Training”, ICANN 2005, Warsaw, Poland, Part 11, p 73-
78.

Abstract:

This paper reports on experiments investigating the use of Evolutionary Algorithms
to train Artificial Neural Networks in real time. A simulated legged mobile robot was
used as atest bed in the experiments. Since the algorithm is designed to be used with
a physical robot, the population size was one and the recombination operator was not
used. The algorithm is therefore rather similar to the original Evolutionary Strategies
concept. The idea is that such an agorithm could eventually be used to alter the

locomotive performance of the robot on different terrain types. Results are presented

showing the effect of various algorithm parameters on system performance.

Note: Thispaper isnot availablein the electronic version of thethesis. It may be
obtained from the publisher.
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Appendix B

Further Results

The graphs shown below are the result of simulating each experiment for 2000 cycles

(unlike the results shown in chapter 8, which use 1000 cycles)
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Mutation Size Versus Equilibrium Range
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Nor mal Distribution with Simulated Annealing

3D View

an
B0

Random Range

NIRRT
SRR
\‘ \\:\‘\\\‘{:::"‘:‘

= \s\\\““‘\\\‘ ot
S uwsas!

g

peSeTe
SIS
5

100

Equilibrium Range

Equilibrium Range/Random Range

g g g g
ST 170 & [ w & ©
LU h 1) x R x
N 2 % 0 B X x
SRR 3 %8 g < £ 3
=35 @ 150 £ oo W x o o x 4
142 S X W 2 w e g
= e} w ) =]
—_ 130 100 gy
— 8
< g g 110 n
w [
= 110 2
QO ) 2
H 100 %0 |
k4
) 90
=) o
> " “s“:: SR :‘\“\“t“ o -
100 “:&m%\\\\‘::“::“ Equilibrium Range/Random Range
) :“::‘“ SR 100
60 e aa
&0
40
Random Range Equilibrium Range
120 -
o =1 o
S =] 1]
i . | o 5] o S
. ST 110 x o o S 2
e ey x x L E
S e e A a 5 s, B2 x
20 S S e g4, . 3w EHF x589 o8
) \W&%{:&\s&‘s\:\‘& z S8k o8 o2 ax2RLE &
8 e 90 [ x o 0 w x x
= g S g et s ettt o x X i 2 x S
4
“Q““““ et = " 1 3 0w 8 S
£a0 S e O I NN 0 2 = S
O | %1 NSRSy ol g 5 N\ gg
) 875 S S 2
g = 70 4
B ——
5 & et 60 4
2 100 Equilibrium Range/Random Range
100
40
Random Range Equilibrium Range
5]
[=}
90 4 S 2
80 A b ° x o S
70 4 0 X S [ 5
A 2 60 E Y g 2 xow T ox
% Sl Bpu 25 a g 8
5 i =1
Q e g 0lg % 8§ zs B 5 5
e g 10 < g 40E @ g u
£ g 30 {5 W
= 3 o 1w
8 5 :\‘ Kyl £ 040
Q £ s 10
E < \‘\\s“‘ 04
- e 2104
> or e
E Loy

All




Uniform Distribution with Simple Acceptance

3D View
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Uniform Distribution with Simulated Annealing
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I mplication of “ 1/5 Rule”
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Appendix C
A Description of the Softwar e used in this Project

During the course of the PhD, severa programs were created to test the various
systems. In this section, only the final program developed is shown. This program
was created after testing the following modules (which were programmed using

Borland Builder C++) individually and combining them together.

1. Neural Network
2. Robot
3. RTEAs

After testing that all these modules were working, an automated experimental tool
(program) was developed for each RTEA. The features of the tool are listed below.

1. Conducts arange of experiments for each RTEA
a. Mutate-All RTEA — 18562 experiments
b. Mutate-One RTEA — 18562 experiments
c. Mutate-Some RTEA — 4608 experiments

2. Storesthe output information of each experiment in afile
a. Expected Fitness and Evolved Fitness
I. Normal/Simple/SA 1. Stability
ii. Uniform/Simple/SA 2. Distance
iii. “1/5Rule/Simple/sa ) S Fue

b. Mutation size versus equilibrium range
i. Normal/Simple/SA and Uniform/Simple/SA

1. Average of Stability, Distance and Fuel

The experimental flowchart is shown in chapter 8 (figure 8.2). The pseudo code of

the simulation method is shown overleaf.
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1) Initialize Experinental Paraneters;
2) Nested for Loop to generate the different experinental
conbi nati ons'’;
a) Run Experinment;
i) Setup Network Paraneters;
ii) Setup Robot Paraneters;
for (Nunber of Sinulation Cycles)
{
for (Each Number of Tinme Steps)
{
Si mul at e Net wor k;
Si mul at e Robot ;
}
Cal cul ate Fitness;
Accept Changes According to the Required Condition;
Miut at e Network Paraneters;

}
b) Store Results

"Nested for loop (Refer to Experimental Parameter Table in chapter 8, figure 8.1 — Page No. 120)
for (a = Each Random Number Type)

{
for (b = Each Condition of Acceptance)
{
for (c = Each %f Equilibrium Range)
{
for (d = Each %f Mitation Size)

{

for (e = Each %f System D sturbance)

{
for (f = Each %f Required Stability)

{
for (g = Each %f Required Distance)

{
for (h = Each %f Required Stability)

{

Experi nental Paraneters(a,b,c,d,e, f,g, h);
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Appendix D
Screen Shots of Quadruped Simulation
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I Quadruped Simulation
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Quadruped Simulation
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