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Abstract

Casc-based reasoning solves new problems by re-using the solutions of previously solved
similar problems and is popular because many of the knowledge engineering demands of
conventional knowledge-based systems are removed. The content of the case knowledge
container is critical to the performance of case-based classification systems. However,
the knowledge engineer is given little support in the selection of suitable techniques to
maintain and monitor the case base. This rescarch investigates the coverage, competence
and problem-solving capacity of case knowledge with the aim of developing techniques to
model and maintain the case base.

We present a novel technique that creates a model of the case base by measuring the
uncertainty in local areas of the problem space based on the local mix of solutions present.
The model provides an insight into the structure of a case base by means of a complexity
profile that can assist maintcnance decision-making and provide a benchmark to asscss
future changes to the case base.

The distribution of cases in the case base is critical to the performance of a case-based
reasoning system. We argue that classification boundaries represent important regions
of the problem space and develop two complexity-guided algorithms which use boundary
identification techniques to actively discover cascs close to boundarics. We introduce a
complexity-guided redundancy reduction algorithm which uscs a case complexity threshold
to retain cascs close to boundarics and delete cases that form single class clusters. The
algorithm offers control over the balance between maintaining competence and reducing
case base size.

The performance of a case-based reasoning system relics on the integrity of its case base
but in real life applications the available data invariably contains erroneous, noisy cases.
Automated removal of these noisy cases can improve system accuracy. In addition, error
rates can often be reduced by removing cases to give smoother decision boundaries between
classes. We show that the optimal level of boundary smoothing is domain dependent and,
therefore, our approach to error reduction recacts to the characteristics of the domain by
sctting an appropriate level of smoothing. We introduce a novel algorithm which identifies
and removes both noisy and boundary cases with the aid of a local distance ratio.

A prototype interface has been developed that shows how the modelling and mainte-
nance approaches can be used in practice in an interactive manner, The interface allows
the knowledge engincer to make informed maintenance choices without the need for ex-
tensive evaluation effort while, at the same time, retaining control over the process. One
of the strengths of our approach is in applying a consistent, integrated method to case
base maintcnance to provide a transparent process that gives a degree of explanation.
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Chapter 1

Introduction

Artificial Intelligence (AI) is a branch of computer science concerned with the devel-
opment of intelligent behaviour and learning in machines. One of the initial goals was
to create machines that could match or exceed human problem-solving abilitics. Active
efforts to achieve this goal began in the 1950's (Turing 1950, McCarthy et al. 1955) and,
while computers may exceed human problem-solving capabilitics in many specific tasks,
this goal is still a long way off in many problem arcas today.

In broad terms, case-based reasoning (CBR) is the process of solving new problems
based on the solutions of similar past problems (Kolodner 1993, Riesbeck & Schank 1989).
CBR is a branch of Al in which reasoning is based on previous experiences. These experi-
ences are stored as problem-solving instances, called cases (Kolodner 1983), and generally
include a description of the problem faced and of the solution applied and may also include
a measure of the success rate of the solution. This makes CBR different from other Al
approaches which rely on generalised knowledge of a problem domain. An advantage of
CBR is that knowledge acquisition in the form of experiences is often casier to gather than
complex domain specific knowledge possibly in the form of rules. CBR casecs the knowl-
edge elicitation bottleneck that hinders the development of expert systems (Gonzalez &
Dankel 1993, Giarratano & Riley 1994).

A criticism of the CBRR approach is that anccdotal experiences are accepted as its

main source of knowledge and without validation of their quality there is no guarantee
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that generalizations made from them will be correct. While the quality of the store of
cases doces control the performance of a CBR system, maintenance of the case knowledge
is one approach that can alleviate this potential problem.

The focus of this rescarch is on maintenance of the reasoner’s experiential knowledge
source, called the case base. Maintenance of the case base will be made with some specific
performance objective in mind. The full CBR process plays an integral role in the overall
system performance, hence, CBR in general requirecs some consideration at this stage.
This scction gives background information on CBR, looks briefly at the motivation behind

this rescarch and then details the rescarch objectives for this work.

1.1 Casc-Based Reasoning

The CBR paradigm is simple to understand largely because it emulates an approach people
use when faced with problem-solving situations in their everyday lives. When a person
is faced with a new problem their first approach is generally to think of previous similar
problems and to try to use the solutions to those problems, perhaps with some changes,
to solve the new problem. CBR solves problems in exactly this way by relying on specific
knowledge about previous problems and their solutions.

CBR has its roots in cognitive science rescarch. Schank & Abelson (1977) suggested
that our knowledge about a situation is stored in the brain as scripts that capture infor-
mation about recurrent activities, Schank’s (1982) dynamic memory proposed a structure
called memory organisation packets (MODPs) that are vital in problem-solving and learning,
MOPs hold situation patterns as a general model and specific experiences as a specialisa-
tion of these with the two being linked through an indexing web. In a similar approach,
CBR systems often use indexing to partition the case base and cases to provide the spe-
cialised problem-solving knowledge. CBR is both a cognitive model of how pcople solve
problems and a methodology for building Al systems (Kolodner 1993).

This section looks first at the CBR cycle and the processes involved, before identifying
the knowledge a CBR system should contain to allow these processes to take place, and

finally looking at performance indicators that can be used to measure how well the CBR

system achieves its goals.
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1.1.1 The CBR Cycle

Different ways have been proposed to describe the CBR process, see for example Kolodner
(1993) and Leake (1996b), but the traditional Aamodt & Plaza (1994) R* CBR cycle,
described in Figure 1.1, is the most commonly used. The case base stores previously
solved problems with their solutions. When a new problem arrives the most similar cases
are retrieved and their solutions reused to provide a proposed solution which may be
revised after testing to create a final solution. As a final stage the new problem and
solution can be retained as a new case in the case base, allowing the system to learn new
knowledge. The implementation of these four stages will be looked at in more detail.

SOLUTION

Retain

Case base

Retrieve

NEW PROBLEM

Figure 1.1: Classic CBR cycle

Retrieve is the process of remembering a relevant experience or set of experiences. In
order to do this, important information about the current problem must be identified for
comparison with the cases in the case base. This comparison or matching is often a two
step process. First, a quick search of the cases in the case base is performed, possibly
using an index (e.g. C4.5 decision tree index) to filter the cases. A more refined search is
then applied, often using k-nearest neighbour (A-NN), to choose either the most similar

case or a small set of similar cases. This whole process relies heavily on how cases are
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represented and how the similarity measure is defined, but this will be discussed later.

Reuse is applying the solution of the remembered experiences. The retrieved case
is checked for consistency with the new problem and the differences identified. In basic
classification tasks these differences are often assumed unimportant and the solution class
of the retricved case is re-used as the solution of the new problem. Where a sct of cases
have been retrieved an average or vote of the retrieved solutions can be used to determine
the classification of the new problem. However, systems may have to take these differences
into account and modify the retrieved case. This is often referred to as adaptation.

The revise stage provides the CBR system with feedback on the quality of the solution
by evaluating the solution and if required repairing any fault. The proposed solution from
the rcuse stage can be validated either by applying it directly, using a domain-specific
model or by a manual appraisal. Repair involves identifying, explaining and fixing the
~errors in the current solution and, although it can also be model-based, often requires
manual input from a user with domain-specific knowledge.

Retain is the process of integrating what has been learned from the current problem-
solving experience into the case knowledge. If the process was successful and the results
of the reasoning is sufficiently different from those already held in the case base, the new
problem-solving expericnce can be stored as a new case. This incremental learning process
completes the CBR cycle. If the reasoning process was a failure, changes can be considered
to retricval indexcs, similarity function or adaptation knowledge to learn from this failure.

Cunningham (1998) identifics that in practice it can be difficult to distinguish between
the Reuse and Revise stages and they can be thought of as a single Adaptation stage.
Adaptation is one of the more difficult problems being addressed by CBR rescarch and it
has been argued by Barletta (1994) that CBR loses its knowledge enginecring advantages
if considerable adaptation is required. In fact, most of the successful CBR applications
involve no adaptation. An alternative view, is that adaptation should play a greater role
in the CBR process. Smyth & Keane (1996), for example, propose that adaptation should
be used to guide the retricval phase.
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1.1.2 Key Assumptions Underlying CBRR

CBR systems can be built without passing through the knowledge elicitation bottleneck
since elicitation becomes a simpler task of acquiring past cascs. IHence, CBR is often
applied to solve problems where no explicit domain model exists. However, in adopting

CBR certain implicit assumptions are made about the domain.

e Regularity: this requires that similar problems have similar solutions. CBR systems
solve new problems by retrieving similar, solved problems from the case base and
re-applying their solutions to the new problem. If, on a gencral level, the solutions
of similar problems do not apply to new target problems then CBR is not a suitable
problem-solving approach for the domain. Fortunately, the world is generally a
regular place and the fact that similar problems have similar solutions tends to
apply in many domains. It is our contention that in local arcas of the problem
space this assumption may not always hold true and that these arcas require special

consideration. We revisit this assumption in later chapters.

e Repetition: Using previous experiences as the basis for problem-solving is only a
reasonable approach where similar situations repeat themselves. If they do not,
there is no point remembering the experience from a problem-solving perspective.
This assumption is fulfilled in many domains where similar problems do tend to

re-occur over time e.g. medical or fault diagnosis.

¢ Representativencss: this requires the contents of the case base to be a good approx-
imation of the problems the system will encounter (Smyth & McKenna 1999a). If a

case base is not representative of problems to be faced then the CBR system cannot

be expected to provide solutions to similar problems.

¢ Expcricntial: CBR is cssentially a memory-based problem-solving approach and,
as such, the case base should be the main source of knowledge. If a system relies
primarily on domain knowledge for problem-solving and uses experiential knowledge
only as a sccondary knowledge source (e.g. speed up learners) then it is not a true

CBR system.
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The extent to which these four assumptions hold true are central to the suitability of
CBR as a problem-solver for the domain. In addition, the range of target problems that
a CBR system can successfully solve, called competence, is to a large extent determined
by the regularity, repctition and representativeness assumptions. Qur approach to mod-
elling and maintaining case knowledge focuses on measuring, maintaining or improving

competence and, as such, these assumptions also underpin our work.

1.1.3 CDBR Knowledge Containers

In CBR, knowledge is information that can be used to help solve a problem. Richter
(1998) identifics vocabulary, case base, retrieval knowledge and edaptation knowledge as

the four main CBR knowledge containers that participate to solve problems in CBR.

o Vocabulary refers to the way in which a case is represented. A case, in its simplest
form, consists of two parts: the problem and solution. The problem normally consists
of a sct of attributes and values called an attribute-value vector. The solution can
be a single attribute (c.g. a classification) or a more complex structure (e.g. a route

plan).

e The case base contains the sct of domain expericnces (cases) used to solve new
problems and is usually the key knowledge source within a CBR system. A case

capturcs the problem and its solution.

e Retrieval knowledge finds relevant, similar cases by identifying which attributes
should be considered when determining relevance, Typically, the attribute value dif-

ferences between cases are compared and the relative importance of each attribute

considered when determining similarity.

e Adaptation refers to the knowledge required to transform the solution of the retrieved
cascs into a solution to the current problem. This is achieved by considering the
differences between the retrieved cases and the new problem to tailor the solution
to the current problem. This knowledge may take many forms, but often is in the

form of rules.
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CBR systems provide at lcast a partial solution to the knowledge acquisition problems
associated with rule based systems, by reducing the need for problem analysis (Cunningham
1998). While this may be true for case knowledge, in CBR there is also a need to acquire
vocabulary, retrieval and adaptation knowledge before a system is operational.

The knowledge held in a CBR system'’s knowledge containers should not remain fixed.
Numerous internal or external changes can occur that affect the relationship between the
system's knowledge and the knowledge required to solve the problems being faced. In order
to react to these changes the contents of the knowledge containers must be adjustable.
Changing the contents of the knowledge containers is referred to as maintenance and can
be controlled by domain experts, however, researchers are looking at automated or semi-
automated approaches (Craw, Jarmulak & Rowe 2001, Leake & Wilson 2000, Patterson,
Rooney & Galushka 2002, McKenna & Smyth 2001a).

Maintenance knowledge represents a fifth knowledge container required to support the
others over the life cycle of a CBR system (Patterson, Anand, Dubitzky & Hughes 2000,
Iglezakis, Reinartz & Roth-Berghofer 2004). This rescarch will provide techniques to aid

the maintenance of the key knowledge source: the case base.

1.1.4 CDBR Performance Considerations

It is important to be able to measure how well a CBR system is performing for a given
case base and sequence of problems. Smyth & McKenna (1999b) identify three types of

top level goals that can used to measure a CBR system’s performance. These are:-
1. Problem-solving efficiency goals (e.g. average problem-solving time).
2. Competence goals (e.g. the range of target problems successfully solved).
3. Solution quality goals (c.g. the average quality of a proposecd solution).

There is often a trade off between these performance goals, e.g. a small case base may
achieve cfficient problem-solving at the expense of competence and quality, and a balance
has to be found. Performance considerations are particularly important where mainte-
nance of the knowledge used by the system is taking place because system performance

provides a measure of tho effectiveness of these maintenance policies. Case base mainte-
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nance strategics should be driven by specific performance goals as well as by constraints

on the system design e.g. limits on case base size.

1.2 Motivation behind the Resecarch

CBR systems rely on the contents of the various knowledge containers, as these affect how
well a system performs. Explicit or implicit changes in the task, the recasoning environment
or the user base may all affect the fit between the state of current system knowledge and
the task being undertaken. This may affect the performance of the system in terms
of its efficiency, competence and solution quality. Over time, the system's knowledge
must be updated in order to maintain or improve performance as changes take place.
This maintenance should take the form of support tools that monitor a system’s state to
determine when and how knowledge should be updated in response to specific performance
criteria.

An increase in experience with the deployment of long term CBR systems has led
to rccognition within the ficld that maintenance of existing systems is an essential el-
ement of an operational CBR system (Leake, Smyth, Wilson & Yang 2001). Mainte-
nance issucs affect all stages of a system’s life cycle and, as such, maintenance is in-
creasingly becoming a focus of interest within the CBR resecarch community. This is ev-
ident by an increasing number of conference papers (Gomes, Pereira, Carreiro, Paiva,
Scco, Ferreira & Bento 2003, Patterson, Rooncy & Galushka 2003, Woon, Knight &
Pedridis 2003, Zchraoui, Kanawati & Salotti 2003) and spccialised maintenance work-
shops (e.g. Workshop on Flexible Strategics for Maintaining Knowledge Containers 14th
European Conference on Artificial Intelligence 2000).

In theory, knowledge can be held in any of the knowledge containers and a lack of
knowledge in one container can be offset by increasing the knowledge in another. However,
as the underlying philosophy of CBR is to reuse previous experiences the case base should
provide the main knowledge source. This is cssential if the knowledge acquisition problems
discussed previously are to be avoided.

This rescarch expands on previous work of Robert Gordon University's CBR group

that has looked at learning both retrieval knowledge (Jarmulak, Craw & Rowe 2000) and
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adaptation knowledge (Wiratunga, Craw & Rowe 2002).

1.3 Rescarch Objectives

This rescarch set out to develop techniques to maintain the case base of CBR systems. A
model of the case base was to be developed and used, in conjunction with techniques that
identify gaps in the case base, to provide active learning methods that identify new cases
and problems to enhance the problem-solving capability of the CBR system. In addition,
the model was to be used to develop case editing algorithms that identify redundant or
harmful cases that no longer make a problem-solving contribution and produce an edited
sct of cases that balance problem-solving cost and loss of accuracy. Incorporating these
maintenance techniques into a CBR system was to include a new case base visualization
tool, based on the relationship between cases, that aids the case authoring and maintenance
processcs.

Specifically, five rescarch objectives were addressed:-

. Develop a technique to model the problem-solving capabilities of a case base.

et

2. Develop a technique to identify gaps and create new cases to fill them.
3. Develop a case base maintenance algorithm that identifies redundant cases.
4. Develop a case base maintenance algorithm that identifies harmful cases.

5. Create a visualisation tool that demonstrates case coverage and allows the user to

view redundancy and gaps.

1.4 Thesis Overview

This thesis develops an integrated suite of case base maintenance tools that initially provide
the knowledge engincer with an insight into the structure and composition of the case base
by way of a local complexity model and case profiling. The model is then used to develop
case discovery and editing algorithms, An interactive prototype interface is developed to

aid the knowledge engincer make informed decisions.
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In this Chapter we have given some context to the work that follows with a bricf
overview of CBR, looked at the motivation behind the rescarch and identified the initial
research objectives that have directed the rescarch. Chapter 2 reviews recent work in CBR
in relation to modelling of the case base, case discovery and case base editing. Alternative
multi-dimensional visualisation techniques are also considered.

In Chapter 3 we evaluate an existing case base competence model on classification prob-
lems and consider some of the key issucs for creating a model for classification problems.
Chapter 4 investigates alternative approaches to case base modelling before developing
a new complexity-guided case base model for classification problems. We show how the
model can aid the knowledge engincer make informed maintenance decisions.

Chapter 5 introduces three new case base maintenance techniques informed by local
information supplied from the complexity model. Our case discovery algorithm uses a
complexity metric, boundary detection and clustering to detect arcas of the problem space
that nced the support of new cases and proposes new cases to occupy the space. A case
base editing algorithm is developed that removes redundant cases by setting a threshold for
casc complexitics but leaves control of the balance between case base size and competence
with the knowledge engincer. A novel error reduction algorithm is introduced in which
the extent to which noisy and potentially harmful cascs are removed is controlled by a
stopping criteria that is adjusted to suit the domain characteristics. Finally, an interactive
interface is described that allows the knowledge engineer to make informed maintenance
decisions about the case base by use of visualisations to cxplain the maintenance process
and expected results,

In Chapter 6 we cvaluate the ability of our complexity model to predict real dataset

values for accuracy and noise. The new maintenance algorithms are evaluated experi-

mentally by comparing their performance with relevant benchmark algorithms on UCI

datascts.

The conclusions in Chapter 7 summarise the achievements and contributions of the
rescarch, discuss some of its limitations, and identify possible extensions and dircctions of

future rescarch,



Chapter 2

Literature Survey

This chapter is a literature review that provides an overview and critical evaluation of
recent work conducted in maintenance of CBR systems with an emphasis on competence
modelling, case editing, case discovery and visualisation of the case base. Relevant re-
scarch, in relation to the rescarch objectives, is discussed and failings or gaps are identified

that justify the nced for this rescarch.

2.1 Compectence

Competence is a measure of how well a CBR system fulfils its problem-solving goals.
It is a fundamental evaluation criterion of a CBR system or, in fact, of any problem-
solving system. Competence is difficult to measure because, while there may be some
gencral information about the purpose of the system and the type of problems it will
face, the exact problems are not known in advance. CBR is primarily & problem-solving
mcthodology and, as a consequence, competence is usually taken to be a system's ability to
solve unseen problems correctly, although other measures are also possible. Indeed much
recent research has looked at diversity as one of the possible goals of CBR (McCarthy,
Reilly, Smyth & McGinty 2005, McSherry 2002). In this project competence will be taken
to mecan a system'’s ability to solve problems and will be measured as the proportion of
problems faced that it can solve successfully regardless of how good the solutions are or
how fast they are produced.

There has been limited research aimed at modelling competence to predict a system's

11
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performance and to provide more informed knowledge on the value of each case. In this
scction, rescarch on modelling will be discussed but first the methods typically used to

evaluate a case base empirically will be reviewed.

2.1.1 Evaluation Methods

The problems that a CBR system will be asked to solve are unknown in advance. Evalua-
tion methods overcome this by making the assumption that the case base is a representative
sample of problems that will be faced. This representativencss assumption is reasonable
because a CBR system could not possibly be a good problem solver if the case base were
not representative. However, the results will only provide a good estimate of competence
if this assumption holds. All the methods discussed here split the case base into a training
sct and test sct and calculate a success rate (proportion correctly solved) for the test set.
The existing data is being used to give an estimate of future performance and will only
give a reasonable estimate if the test data is not used to train the CBR system in any way.

Three evaluation methods are discussed briefly here but are covered in more detail in
(King, Feng & Sutherland 1995, Mitchell 1997, Witten & Frank 2000) including advice on
deciding which method is most appropriate for diffcrent situations.

The Training and Test Sct evaluation method splits the case data into a case base
(typically two-thirds of the data) and a test set (the remainder of the data). The test
sct, consisting of cases that were not used to train the system, is used to evaluate the
performance of the CBR system in this approach. It tends to be used where case data is
plentiful. One problem with this approach is that the sample used for testing may not be
representative. The chance of this happening can be reduced in classification problems by
using a procedure called stratification in which we ensure that each class is proportionally
represented in both the case base and the test sct.

In cross-validation, the case data is split into a fixed number (n) of equal sized partitions
or folds, giving n-fold cross-validation. One partition is used for testing, with the remaining
n-1 partitions being used as the case base. The procedure is repeated for cach partition
so that cach case has been used exactly once for testing. The success rate across all
the partitions is averaged to give an overall success rate or competence. Stratified n-fold

cross-validation is the standard evaluation technique in situations where limited case data
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is available. The process can be repeated to give more reliable results.

Leave-One-Out evaluation is a special case of n-fold cross-validation where n is the
total number of cascs available. Each case is used in turn singly as the test set, with the
remainder of the cases being the case base. The proportion of cases correctly solved gives
the success rate. This method allows the greatest amount of training data to be used for
evaluation and will give the same result every time as no random sampling is involved. It
has the disadvantage of high computational cost.

In CBR research, case base evaluation is usually performed using the Training and
Test sct method. Cross-Validation techniques are more computationally expensive but
they are more accurate and should probably be the preferred choice where the evaluation
cost can be justified and data is not plentiful. If data is limited Leave-One-Out testing
could be used.

The evaluation methods described here are well established methods used across a
range of rescarch disciplines. They are important to this rescarch for two reasons. Firstly,
to provide a mecans to validate the output of the models being developed, but also be-

causc some of these techniques, in particular leave-one-out testing, are used as part of the

modelling process itself.

2.1.2 Competence Models

A model is a representation of reality that helps someone understand, manage or control
that reality (Ackoff & Sasicni 1968). Models arc always a simplification and it is this
simplification that makes them useful. Therefore, an important question is “what degree

of simplification is scnsible?”.

Modelling the competence of a CBR case base is the process of representing the case
base in such a way that it gives an estimate of competence, while at the same time providing
information to allow the knowledge engincer to manage the case base. Evaluation methods
give a good estimate of competence, however, in addition to being time consuming, they
give little information on the structure of the case base or the competence in local arcas of
the case base. Modelling aims to provide this additional information, in order to develop
informed case base maintcnance policies.

Two related concepts are used to model problem-solving ability: coverage and compe-
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tence. The coverage of a system is the ratio of possible problems a system can face that it
can solve successfully. In contrast, competence is the proportion of problems that it will
actually face that it can solve successfully (Smyth & McKenna 1999a). Competence gives
the better measure of how a CBR system will perform in real situations but the problems

a system will face are unknown in advance.

Coverage Models

The coverage approach is based on the assumption that the problem space is finite and
attempts to measure the number of points within this problem space that are covered by
the case base. The number of cascs in the case base does not give a realistic measure of
coverage as there may be redundant cases occupying the same point in the finite problem
space. A lower bound on the coverage can be found by finding the number of different
points covered by the case base. McSherry (1999) adopts this empirical approach to
coverage. A case is considered to be a vector of nominal attribute values and the total
size of the problem space is the Cartesian product of the domains of these attributes. An
algorithm called disCover is used to identify all the points within the problem space that
a given case base can solve. This algorithm looks at a point in the problem space and if
an exact match does not exist attempts to find other cascs that provide a solution for this
location using a lincar adaptation function.

This empirical coverage approach only applics where the cases are represented in a
finite problem space. Many casec representations use numeric attributes or more complex
representations. Even within a finite problem space, as the number of attributes increases,
the size of the problem space can become very large, making this a computationally
expensive algorithm. The use of a lincar adaptation function is also rather limiting and
could not be applied to most CBR systcins to give a reasonable measure of which target
cascs can be solved. Another problem of this approach i3 that cases which can exist in
theory as a given combination of attribute values may not be possible in reality, as the
combination of values is impossible. This problem is addressed by a rule-based approach
(McSherry 2000) that identifies points in the problem space that represent invalid attribute
value combinations and excluding these from the coverage calculation. However elicitation

of this rule-based domain knowledge adds extra expense to the models development.
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Competence Models

The competence model approaches are based on the same assumption as the empirical
evaluation methods: namely that the case base is a representative sample of the problems
to be faced. This representativeness assumption removes the problem of a very large or
infinite target problem space encountered in the coverage approach. Competence models
aim to analyse the case base itself rather than test it against existing data to answer the
question: “How good is the case base?” Competence depends loosely on propertics like
the number and density of cases. However, since competence is concerned with the range
of target problems that a given system can solve, it also depends on the problem-solving
ability of the system and must involve the retrieval process and adaptation knowledge of
a system. The number and density of cases can be measured but calculating the problem-
solving ability of a case, in terms of its retricval and adaptation characteristics is not so
simple.

Smyth & Keane (1995) create a competence model that uses the case base to simulate
the full domain and leave-onc-out testing to measure the problem-solving ability of each
case by assembling two important performance indicators: coverage and reachability. The
coverage of a case is the sct of problems it can solve, converscly, reachability is the set of
all cases that can solve it. In this model can solve identifics whether a case can be adapted
to solve another and is not based on the similarity between cases. In broad terms coverage
and reachability gives a measure of a case’s importance and uniqueness respectively.

One problem with the Smyth & Keane (1995) modecl is that it does not fully consider
the interaction between cascs, for example, where many cases can solve the same target
problems. Smyth & McKenna (1998) extend the model in a finer grained approach that

considers the interaction between cases by forming independent clusters of cases. The

model predicts competence using the following four stages.
Stage 1 - Measure the coverage and reachability of cach case.

Stage 2 - Form clusters of cascs, called competence groups, using their reachability and
coverage scts to group cascs that have overlapping sets. Overall system competence
is not simply the sum of the individual case coverage sets because there is interaction

between cases. Competence groups cluster these interacting cases together to allow
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the effect of the group on overall competence to be evaluated. The number of
competence groups formed and the number of cases in cach depends on four factors:
the number of cases in the case base, the density of cases, the retrieval mechanism

and the adaptation mechanism.

Stage 3 - The coverage of cach competence group is then measured by the group size
and density of its cases. It is dircctly proportional to the group's size and inversely

proportional to the group’s density and is defined as:

GroupCoverage(G) = 1 + [|G| o (1 = GroupDensity(G))]

The GroupDensity(G) of a group of cases G is the average case density of the in-
dividual cases within the group; where the casc density of a case is the average
similarity distance to the other cascs in the group. Similarity between cases is taken
to be a value between 0 and 1 inclusive. The effect of this calculation is a group
coverage value highly dependent on the number of cases in the group - but this is not
necessarily a realistic measure of coverage. The problem-solving ability of individual

cases needs to be given more consideration.

Stage 4 - Calculate the overall competence of the case base. As the competence groups
are independent the overall system competence can be calculated directly from the
contribution made by each group, and is simply the sum of the coverage of each
group. The resultant value has little meaning in its own right, being a value between

0 and the number of cases in the case base plus the number of competence groups.

McKenna & Smyth (2001b) present a modification to the above model that claims
to increase its effectiveness. Stage 3 of the original model, measuring the competence
of cach group, is replaced by a new calculation. First a competence group footprint, a
subset of the group's cascs whose coverage sets cover all the group’s cases, is formed.
The coverage of a group is then measured by summing the relative coverage values of its
footprint cascs. Where relative coverage of a case is defined as the sum of the inverse of

the size of the rcachability scts of the cases in its coverage sct. This model removes the
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Figure 2.1: Graph showing calculation of coverage and reachability scts

use of a domain specific similarity metric, It is an improvement over the original model
because it is less reliant on the number and density of cascs and gives more consideration
to the problem-solving ability of individual cascs.

A simple example showing five cascs forming a simple case base is illustrated in Fig-
ure 2.1. A case’s coverage is shown by an elipse, for example, case ¢y covers (can solve)
both cascs ¢z and c3. It can be seen that two independent competence groups are are
formed. The table shows the coverage and reachability sct together with the relative cover

for each case.

It is claimed that while the modelling of the case base is expensive it is a one time
sct up cost that can be absorbed by the system. This may be true for relatively stable
casc bases but many systems use large dynamic case bases with a constant strcam of new
case additions. While a heuristic approach is proposed to update case classifications for
case additions and dclctions (Smyth & Keane 1995), it would be difficult to maintain an
accurate model in a dynamic environment.

This model relies heavily on adaptation to reflect an idealised competence based on
“problems that a system can solve”. In cffect, the cases are partitioned into adaptable and
non-adaptable cases with all adaptable cases being treated as equivalent. Adapting cases
requires extensive knowledge engincering and can be an expensive process. In practice,
processing constraints during the retrieval and adaptation stages of a CBR cycle limits the

case base compctence. More recent research on case base maintenance algorithms (Zhu
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& Yang 1999, Portinale, Torasso & Tavano 1999) takes account of these limitations by
sctting an adaptation effort threshold which results in a case being considered able to solve
a problem only if it can be adapted within a set number of adaptation steps. Defining case
coverage in terms of cascs that can be solved within the adaptation threshold, limits the
idecalised competence by considering processing constraints and placing an upper bound
on the required adaptation effort,.

Leake & Wilson (2000) identify competence as only one aspect of the performance
of a case base. A small competent case base may have quick retricval times but this
may be counterbalanced by increased adaptation costs or decreased quality. Smyth &
Cunningham (1996) agree that to meet the overall performance goals a CBR system may
require balancing trade-offs between competence, quality and efficiency. This requires
consideration of processing constraints, retricval and adaptation processes as well the
knowledge containers described earlier. An overall performance criterion should play a
direct role in decisions about the CBR system and the case base.

The models discussed so far have largely been applied to recomendation, estimating,
design and planning tasks in which adaptation knowledge is used and often the similarity
function is related to the number of adaptation steps required. Many CBR problems are
classification problems involving no adaptation. Wilson & Martinez (1997) have applied
aspects of Smyth and Keane's model to case base editing algorithms for classification tasks.
They use the k-nearest neighbours and a set of associates to a case which are analogous
to Smyth and Keane's reachability and coverage sets. These sets are used to value local
case competencics and identify a case’s importance in their editing rules. Brighton &
Mellish (2001) apply a similar approach to classification problems. The difference being
that a case's reachability set is not fixed in size but is bound to include only the ncarest
neighbours upto the first case belonging to a different class.

All the competence models discussed in this scction have been successful in providing
local problem-solving information to help informn a range of case base maintenance policies
discussed in the next section. These models provide an informed clustering of cases using
the problem-solving ability of each case. However, the assumption that these competence
groups or clusters are independent is an oversimplification. Failures in a CBR system's

ability to solve problems are most likely to occur where diflerent clusters are competing
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to solve the new problem i.e. where the new problem lics on a boundary or between
competence groups. How the groups interact, when solving new problems, will have a
great effect on the competence of a system. These important interactions are ignored by

the models.

2.2 Case Base Maintenance

A CDR system relics on the contents of the knowledge containers to achieve its problem-
solving ability. These include the case base itsclf, the similarity measures used to retrieve
cascs and the adaptation knowledge used to transform cases into a solution. Over time a
system’s knowledge, task, environment or user-base can change (Leake et al. 2001) and, as
a result, knowledge containers may need to be updated to help maintain or improve per-
formance. CBR maintenance refers to the strategics used, and the process of maintaining
these knowledge containers, and is essential in order to sustain and improve a CBR sys-
tem's performance. Although maintenance can address many possible performance goals,
it should be aimed at a specific sct of performance objectives.

This scction looks, in particular, at strategies for maintaining the case base, which is

the key knowledge container underpinning a system's performance. Case base maintenance

(CBM) is the process of changing or refining the case base and has been defined as follows:

“case base maintenance implements policies for revising the organisation or
contents (representation, domain content, accounting information, or imple-
mentation) of the case base in order to facilitate future reasoning for a partic-

ular set of performance objectives.” (Leake & Wilson 1998)

Hence, if a vast amount of case data is available cither initially or as extra cascs
are added during problem-solving, it is helpful to sclect only uscful examples and ignore
redundant cascs. If cascs are scarce, all available examples are used as case knowledge,
but it is also uscful to identify gaps in the case knowledge and generate new cases to fill
them. CBM involves developing algorithms to accomplish or assist in these case reduction

and case creation tasks. The following scctions look at these areas in more detail.
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2.2.1 Case Reduction

There is an increasing use of large case bases in CBR systems. Over time the case base
gets larger, often as a result of indiscriminate storage of cases during the retain stage of
the CBR cycle. The cases may be redundant and provide no improvement in competence
or may even be harmful, noisy cases that result in a reduction in competence. In ei-
ther case the inclusion of additional cases will increase storage requirements and retrieval
times. The cost of retricval can grow to the extent that it outweighs the efficiency benefit
of additional cases. This is called the utility problem (Francis & Ram 1993, Smyth &
Cunningham 1996). Rescarch to control case base growth has focused on case base editing
(case deletion or selection policies) although some creative, gencralisation approaches have
also been considered. Case reduction is used in this report to describe both the editing
and generalisation approach to the reduction in the case base size.

There are a number of features that distinguish one case reduction algorithm from

another and these will provide a framework for the classification and discussion of specific

algorithms.

e Noise Reduction or Compaction. Noise reduction algorithms aim to improve
competence by removing noisy cases. In contrast compaction algorithms, in general
terms, aim to achieve the smallest case base size that retains the original competence

by removing redundant cases.

e Sclection or Generalisation. Sclection approaches retain existing cases in an
edited case base. Whereas, generalisation approaches either create new prototype
cascs by merging existing cases or partitioning the problem space based on the

position of the existing cases. This report concentrates on reduction approaches

that retain existing cascs as this is more typical of the CBR approach.

e Scarch Direction. Forward sclection or incremental approaches start with an
initially empty sct and add cases to it, whereas backward elimination or decremental

approaches delete cases from the initially complete case base.

e Border or Central Points.  Algorithms can be distinguished on whether they

retain central cases or border cases. The reasoning behind keeping border cases is
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that central cases do not affect the decision boundaries and can be removed with
little effect on classification. However, it can take a large number of border cases to
define a decision boundary so some algorithms aim to retain central cases that are

more typical of a particular class.

e Stopping Criteria. Most algorithms sct their own informed stopping criteria but

in some the number of cases in the reduced case base can be controlled.

There are a large number of case reduction algorithms and trying to resolve which one
to use for any particular sct of data is a diflicult task. This report simplifies this task by
categorising them, see Figure 2.2, using a simple taxonomy based on the features discussed
above. The algorithms are first split by whether their main objective is noise reduction or
compaction and then sccondly on whether an editing or generalisation approach is being
used. A final categorisation is made on scarch direction. The other categories, not used

in this taxonomy, provide a framework for discussion of specific algorithms.

Forward Selection

Case Seledion
Wiison Editing(T2) ENN

Tomek(76) REHN
Compaction Approaches Nolse Reduction Approaches ¥ Tomeid78) At N
Brodien(96) Ensemble
Delanv04) BBHR

- -
Case-base Editing Taxonomy

Figure 2.2: Classification case reduction algorithm

Noise Reduction Algorithms

Noise reduction algorithms aim to improve competence by removing cases that are thought

to have a detrimental effect on the accuracy of the CBR system. These may be corrupt
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cases whose solution is incorrect or, alternately, they may simply be cases whose inclusion
in the case base results in other cases being incorrectly solved. These algorithms result
in only a few cases being removed and all those discussed here use backward elimination
approaches. The Wilson Editing algorithm (Wilson 1972) and its extensions described
below are the most notable aimed primarily at noise reduction.

Wilson Editing, also called ENN, attempts to remove noise by considering each case
in the case base and removing it if it is incorrectly classified by its & nearest neighbours
(with k typically 3). This removes noisy cases but also deletes some cases lying on a
boundary between two different classes leaving smoother decision boundaries. This can
be thought of as a smoothing of the problem space. Tomek (1976a) extends ENN with the
Repeated Wilson Editing method (RENN) and the All k-NN method. RENN extends ENN
by repeating the deletion cycle until no more cases are being removed. The All k-NN is
similar, only after each iteration the value of k is increased. In some case bases competence
is improved by applying these algorithms but there is not a large reduction in the case
base size as only noisy and some boundary cases are removed.

Brodley & Friedl (1996) usc an enscmble of different type classifiers and use the un-
certainty within the results to inform a noise reduction filtering algorithm. Each case is
classificd using a cross-validation technique and, where a case is misclassified and there is
a consensus among the ensemble a misclassified case is removed. If a case is correctly clas-
sified or if there is uncertainty in the classification, i.c. no consensus, the case is retained.

Delany & Cunningham (2001) takes a different approach to noise reduction with their
blame-based noise reduction algorithm (BBNR) by identifying cases that cause other cases

to be misclassificd rather than removing cases that are themselves misclassified. The
approach extends Smyth & Keane's (1995) model with the introduction of a liability sct.
Leave-onc-out testing is used to identify cases that cause other cases to be misclassified
and build a case's liability set (cases where this case contributes to a misclassification).
Where a case causes more cases to be misclassified than correctly classified the case is
removed. This is a conservative approach resulting in the removal of fewer cases.

It is important to remember that these algorithms cannot differentiate between noise
and genuine class exceptions. The approaches will also only work where there is a small

amount of noise, as a large proportion of noise will no longer appear as exceptions. Hence



2.2. Case Base Maintenance 23

carcful consideration should be given to the domain and structure of the case base before

applying these algorithms to ensure there is a need for noise removal.

Selection Compaction Algorithms

Some early research (Markovich & Scott 1988) advocated a random deletion policy which,
although simple, is domain independent and takes no account of the importance of a casc.
A slightly more reasoned approach (Minton 1990) looked at how often a case was used and
dcleted those cascs that were not accessed frequently. The problem with both approaches
is that important cases can be deleted. This has led to numerous compaction strategics
that aim to retain the important cascs, the most significant are discussed below. These
approaches are classified based on their scarch direction as either forward sclection or

backward elimination.

e Forward Selection. These algorithms start with an empty edited case base and add
cascs to it by seclecting cascs from the original case base. Iart’s (1968) Condensed
Nearest Neighbour rule (CNN) was an early attempt at finding an edited case base
that retained important cases and all the algorithms in this scction are extensions
of it to some extent.

CNN starts with an empty edited case base and randomly selects one case belonging
to cach output class. Cases are tested in a random order and cases not solved by
the edited sct are added to it. It procceds in an iterative fashion until all cases
remaining in the original case base are correctly solved by the edited case base. This
algorithm is incremental giving it the advantage that additional cases can be added
over time as they become available in the retain stage. The problem is that the
resulting edited case base is highly dependent upon the order in which the cases are
considered, with carly cases having a high probability of being included. These early
decisions are made on little information and results in an edited case base that is
unlikely to be of minimal size. The algorithm also retains noisy cases, as these are

cases that are unlikely to be solved by the edited case base.

Ritter, Woodruff, Lowry & Iscnhour's (1975) Sclective Nearest Neighbour Rule
(SNN) extends CNN by including a case in the edited st where it is closer to a
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case in the original case base of the same class than to any case in the edited case
base of a different class. This improves on CNN by ensuring a minimal consis-
tent subset is found and ensures smoother boundaries by including fewer boundary
cases. However, it is computationally more complex than most other algorithms to

implement.

The CNN derived algorithms discussed so far are all very scnsitive to noise. Aha,
Kibler & Albert (1991) developed the IBn range of algorithms of which the case
cditing algorithm IB3 addresses the problem of noise by augmenting CNN with a
post processing “wait and sce” policy for deleting noisy cases. This is done by keeping
a statistical record of how competent the stored cascs are at classifying. Noisy cascs
are likcly to be poor classificrs, so stored cases that misclassify on a statistically
significant level are removed. In experimentation IB3 achicves a greater reduction
in the number of cascs stored and also achieves a better classification accuracy than
the other forward selection algorithms discussed so far. A number of rescarchers have
augmented the IBn algorithms (Cameron-Jones 1992, Zhang 1992, Brodley 1993).
IB3 and these extensions offer an incremental approach that is not too sensitive to
noise but, like the other forward sclection algorithms, is still sensitive to the order

of case presentation.

Several algorithms tackle this presentation order problem by examining the whole
case base, in a preprocessing step, to rank the cases prior to applying a forward selec-
tion approach, e.g. (Tomck 197Gb). This approach can greatly improve performance
but results in an algorithm that is not truly incremental and new cases can no longer
be added over time, Smyth & McKenna (1999a) present their RC-CNN algorithm
extending CNN based on their competence model, discussed in Section 2.1.2. The
cascs in the original case base are ranked according to the relative coverage metric
before applying the CNN algorithm. This ranks cases, for presenting to the CNN al-
gorithm, based on the number of other cases they can solve. However, the algorithm

is still sensitive to noise and will tend to sclect central points first before considering

border cases.

Dclany & Cunningham (2004) extend the Smyth & McKenna (1998) model to de-
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velop a forward selection compaction algorithm. They identify that excessive com-
paction of the case base can harm the competence of a system and introduce Con-
servative Redundancy Reduction (CRR), an algorithm that is less aggressive than
other state-of-the-art approaches. Starting with an empty edited sct, cases with
small coverage sets are presented first to be added to the edited set. For each case
added to the edited sct, the cascs in its coverage sct are removed from the training
set. By selecting the case with small coverage first this algorithm retains boundary

cascs but gives a more conscrvative reduction in the case base size.

In general, deleting cases in a CBR system gives some concerns as the cases represent
the key knowledge source, and removing cases results in a loss of knowledge to the
system. Indexing can provide an alternative approach that, while it does not reduce
storage requirements, can improve efficiency while maintaining competence. Smyth
& McKenna (1999b) present an interesting combined approach by using the cases

retained in their RC-CNN algorithm as an index for the original case base.

The forward selection algorithms have the advantage that they are incremental and
can be applied to new cases as they arrive. They are simpler, computationally, as
comparisons are made with the smaller edited set rather than with the whole case
base. However, they have the problem that they are very sensitive to the order
cases are presented and tend to retain noise. Extensions to the basic CNN algorithm
address the ordering problem, by ranking the cases, and the noise retention problem,
by applying a post-processing analysis. These extension provide very cffective case
base cditing algorithms, however, they also remove some of the advantages of forward

sclection algorithms.

Backward Elimination

These algorithms start with the complete case base and delete cases using some
informed criteria. Gates's (1972) Reduced Nearest Neighbor Rule (RNN) was an
carly backward climination approach that starts with an cdited case base identical
to the original. Cascs are dcleted from the edited case base if their removal does not
cause any other case in the original case base to be misclassified by the remaining

cascs in the edited case base. It is computationally more cxpensive than CNN
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but experimentation shows it produces smaller edited case bases with improved
classification accuracy. Since the instance being removed is not guaranteed to be

classified correctly it is less likely to retain noisy cases.

Wilson & Martinez (1997) introduce their Reduction Technique range of case reduc-
tion algorithms called RT1-3. These are hybrid algorithms that aim to achieve both
noise reduction and compaction. However they are classified here, by their main
objective, as compaction algorithms. RT1 is the basic removal scheme. The set of
k nearest ncighbours and the sct of associates are determined for each case. The
associates of a case are the sct of cases which have that case as one of their nearest
neighbours and is analogous to Smyth & Keane's coverage sct introduced in their
competence model. RT1 removes a case if at least as many of its associates would
be classificd correctly without it. This removes noisy cases as their associates are
less likely to be misclassified without them. It also removes cases from the centre
of clusters. RT2 includes two extensions. First the dcletion decision depends on
a case's original sct of associates in order to improve noise removal. Secondly the
cascs are ordered by their distance from a case of another class. Those cascs farthest
from an enemy are considered for deletion first increasing the chance of border cases
being retained but also of noise retention. To combat this increased sensitivity to
noise RT3 introduces a noise filtering pre-processing stage similar to the ENN algo-
rithm: a case is removed if it is misclassified by its k ncarest ncighbours. Wilson
& Martinez's (2000) DROP1-5 algorithms incorporate RT1-3 with slight extensions
in DROP4 and DROPS5. DROP4 has a less aggressive noise removal stage than
RT3 and DROPS5 considers cases nearest to an enemy for deletion first resulting in

smoother decision boundaries than RT2.

Brighton & Mecllish (2001) usc a similar approach with their hybrid Iterative Case
Filtering Algorithm (ICF) that combines a noise reduction pre-processing stage with
a backward elimination compaction approach. ENN is used to pre-process the data
and remove noise. Using coverage and reachable sets, modified for use in classifica-
tion tasks, a case is deleted if its reachable sct is larger than its coverage sct, i.e.

more cascs can solve the case than it can solve itself. The process is repeated until
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no more cases are being removed. This results in border cases being retained and

central cases being removed,

Smyth & Keane's (1995) Footprint Deletion Policy is a heuristic approach based
on their competence model. Cascs are classified based on the contents of their
reachability and coverage scts. Cases are then deleted from the case base in the
order of their classification: auxiliary, support, spanning and then finally pivotal
cascs. Further sub strategics are then used to determine the order of case deletion
within cach category. This is one of the few approaches in which the final size of
the edited case base can be controlled. However, it is an intuitive approach that
docs not guarantce competence will be preserved. Figure 2.3 below shows 5 cases.
Cl is a pivotal case, C2 is a spanning case and C3 to C5 are auxiliary cases. If
this group were reduced to one case by the footprint deletion policy C1 would be
retained giving 2/5th the original coverage whereas if C2 were retained 4/5th the
original coverage would be retained. Hence, while the approach is not ideal for case

base editing the concept of classifying cases is interesting for competence modelling.

: >
G D

Figure 2.3: Case Coverage and Classification

The backward climination algorithms provide an cflective approach to compaction
but are computationally demanding. In particular, the more modern hybrid ap-
proaches, RT3 and ICF, overcome the problem of retaining noise and provide a
significant compaction of most case bases. They manage to achieve this while pre-

serving competence by using local case competence knowledge to retain border cascs.
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Generalisation Compaction Algorithms

The algorithms in this scction offer an alternative approach to removing cases and aim
to reduce storage requirements and improve efficiency by modifying the cases themselves
rather than by simply sclecting which oncs to keep. Chang’s (1974) algorithm repeatedly
trics to merge the ncarcst two cascs of the same class into a single new case. This results
in a case base that contains constructed cases as well as actual cases. The constructed
cascs are called prototypes. The merging process continues until classification accuracy
starts to suffer. Prototypes are uscful in characterising a class but poor at discriminating
between classes because border cases are removed.

Domingos’s (1995) RISE 2.0 system trcats cach case as a rule. For cach rule the nearest
case not covered by it is found and the rule generalised to include the new case, if accuracy
is not affected. This process continues until no more rules can be gencralised. The nearest
rule to a new problem’s input vector is used to provide its classification.

Salzberg's (1991) EAcH algorithm used nested generalized exemplar theory in which
hyper-rectangles are used to take the place of cases thus reducing storage requirements.
Initially hyper-rectangles are created round randomly selected cases and then incremen-
tally allowed to grow by looking at the nearcst case and expanding them to include the
new case, if it has the same class. Wettschereck & Dictterich (1995) introduced a hybrid
nearest-neighbour and nearest hyper-rectangle algorithm that uses a hyper-rectangle to
classify a new problem if it falls inside one and A-NN to classify problems not covered by
any hyper-rectangle. This algorithm docs not reduce storage requirements as the entire
case base must be retained but it does improve efficiency by using as few hyper-rectangles
as possible.

Gencralisation approaches can offer a considerable compaction of the case base giving
improved efficiency. However, there may be a reduction in competence as central points
tend to be represented and decision boundaries are smoothed. There has been limited
recent CBR rescarch in generalised approaches and few experimental evaluations exist to
allow fair comparisons to be made between the performance of generalised and sclective

approaches.
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Case Reduction Summary

This scction has identified and discussed the main features by which case reduction al-
gorithms can be differentiated. Considerable rescarch has been conducted in this area
resulting in a large number of effective case reduction algorithms. The most notable
algorithms have been classified (sce Figure 2.2) and reviewed.

Compaction algorithms require a trade off between the level of compaction and com-
petence preservation. The more modern algorithms (RC-CNN, RT3 and ICF) all provide
a good balance between these conflicting objectives. RT3 and ICF both achieve their
performance by using a noise filter as their first stage before retaining border cascs. Ex-
periments show they have similar performance with neither algorithm being consistently
better across a range of case bases. RC-CNN can provide a greater compaction of the
case base by initially retaining prototypical central cases followed by misclassified border
cases. In some domains where the decision boundaries are less well defined or where there
are large numbers of small clusters it may outperform the others. RC-CNN does not use
a noise filter but one can easily be used if the domain demands it.

There are not sufficient experimental results to fully cvaluate the merits of each al-
gorithm. All the modern algorithms have informed, non-deterministic stopping criteria
and achieve differing levels of compaction. Thus even where experimental results do ex-
ist evaluating the algorithms is difficult because different stopping criteria make direct
comparisons impossible. In any case, the choice of best algorithm will depend on the char-
acteristics of the particular domain. No one algorithm can be called the best, rather the
knowledge engincer of a CBR system must choose the most appropriate algorithm using

his knowledge of the domain and the performance requirements of the system, in terms of

cfficiency and storage constraints.

2.2.2 Casec Discovery

Case discovery is the process of discovering new cases to fill gaps in the case knowledge with
the aim of improving system competence. It may be required for a number of reasons.
When a CBR system is being developed, or at an carly stage in its implementation, a

common problem is a lack of knowledge in the case base, L.e. cases are scarce. All the
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cases available will be included in the case base but gaps in the case knowledge will reduce
the system's competence. In established CBR systems internal or external changes in
the environment, the task being undertaken or the user of the system can occur. These
will affect the relationship between knowledge held in the case base and that required to
complete the current problem-solving task.

In both these situations it is uscful to identify gaps in the case knowledge and generate
new cases to fill them. This process, called case discovery, is generally undertaken by a
domain expert but research has been looking for ways to cither assist the expert or develop
automated techniques.

Case discovery is a different and more complex problem compared to the case reduction
problem looked at in the previous scection. In case reduction, the case knowledge is known
beforehand making it easier to identify harmful or redundant cases within the problem
space. In contrast, the task of case discovery is to add to the case knowledge, by using
implicit information within the case base to identify arcas within the problem space that
when filled with a case will improve system competence. This is a difficult task and limited
rescarch has been published in this area.

The case discovery problem can be split into two tasks. First there is the need to
discover important arcas or holes within the case base and sccondly there is the need to
suggest or create cascs to fill these gaps. The hole discovery and case creation task will

be looked at scparately.

Hole Discovery

One approach to identifying gaps (Liu, Ku & Hsu 1997) has been to focus on locating
maximal empty hyper-rectangles (MHR) within k-dimensional continuous space and rank
them according to their size, The algorithm starts with one MIR occupying the entire
problem space. Each case, in the existing case base, is then added incrementally with
the set of MHR's being updated at each inscrtion. When a new case is added all the
MIHR's containing this case arc identified and removed from the set of MHR's, Using the
new case as reference, a new lower and upper bound for cach dimension are formed to
result in two new hyper-rectangles along each dimension. If these new hyper-rectangles

are sufficiently large, they are inserted into the sct of existing MHR’s, otherwise they are
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rejected. This approach is limited to continuous attribute values and is computationally
demanding. In an extension of this approach Liu, Wang, Mun & Qi (1998) develop an
algorithm capable of locating MHR's within data containing both continuous and discrete
valued attributes. The restriction that the hyper-rectangle is empty is relaxed to allow the
presence of outlying cases within the proposed hole. The algorithm requires a minimum
volume to be specified above which the MHR is considered interesting. The permitted
number of outliers per MHR must also be specified as a user parameter. However, the
main problem with this approach is there is no way to identify if the gap found in the
problem space is interesting from a problem-solving view-point, it may simply be an
impossible combination of attribute values.

McSherry's (2001) CaseMaker system uscs a case discovery technique developed from
its coverage model. A complete set of all uncovered cases is found by scarching the space of
allowable feature combinations. These cases are ranked based on their potential coverage
contributions calculated using a lincar adaptation function based on feature differences.
This approach suffers from similar drawbacks as the coverage model. It only applics to
nominal valued attributes, domain knowledge is required to identify valid attribute-value
combinations, a lincar adaptation function based on feature differences can be limiting
and the ranking of proposed cascs does not reflect the type of problems that will be
encountered.

McKenna & Smyth's (2001a) approach to hole discovery, based on their competence
model, is that intcresting holes are those in the space between competence groups. In
addition, the space between nearest neighbour competence groups is more likely to con-
tain interesting holes than competence groups far from each other, The rational for this
is that they are more likely to reflect the absence of a valid case in an active region of the
problem space. For each pair of competence groups a pair of boundary cases are identified.
These boundary cases are identified as the closcst cases (one case from cach group) using
the similarity metric. Next the ncarest neighbour competence group is identified as the
one containing the most similar boundary case. A hole exists between each competence
group and its ncarest neighbour. The boundary cases identify the extreme points of the
hole. The holes are then ranked with the most similar boundary case pair identifying the

most interesting hole. This is an intuitive approach, that assumes interesting holes are
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located between competence groups, rather than a choice based on optimising a compe-
tence metric. Holes between competence groups may be interesting, particularly during
the early evolution of a case base, however there is no guarantee that the space identified
represents the most interesting hole or even a valid case, as it ignores large parts of the

problem space and no consideration is given to domain constraints.

Case Creation

It is typically left to the domain expert to create a case to fill the hole in the problem space.
However McKenna & Smyth (2001a) suggest an approach, as a second stage of their hole
discovery algorithm, by trying to create a spanning case between the boundary cases to
merge the competence groups. Given a pair of boundary cases, representing the extremes
of the hole, they propose creating a case that lies between them. The feature values of the
new case are sct as the mean values of the cases in the related sets of the boundary pair.
The related sets, calculated using their competence model, are union of a case’s coverage
and reachability scts. If the attribute values are discrete a majority vote is used to find

the new case's feature value. Smyth and Mckenna accept that human intervention would

generally be required to validate the created case.

Case Discovery Summary

In contrast to the large rescarch effort on case reduction techniques there has been only
a limited effort applied to solving the case discovery problem. The problem is certainly
not solved and much work remains to be done. Liu et al. (1998) identify holes in data but
provide no measure of whether they are interesting, McSherry's (2001) approach applies
to only a very few CBR domains and McKenna & Smyth (2001a) propose an intuitive

approach that ignores large arcas of the problem space. There has been very limited

experimental results to support any of these approaches.

2.3 Casc Visualisation

Visualisation tools have been used most frequently in CBR to present the system's pro-

posed solutions. However, as CBR systems are becoming more complex, the process of
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authoring and maintaining the case knowledge is becoming more difficult. Visualization
techniques have the potential to improve this process by presenting the case base as a
whole in terms of the relationship between cases or groups of cases (Smyth, Mullins &
McKenna 2000). This allows users to better understand the structure of the evolving case
base and may identify areas of the case base that are over or under populated, allowing
the author to concentrate on these regions when adding or deleting cascs.

We are interested in visualisation of the case base in order to assist the user understand
the competence model being developed and implement the case discovery and deletion
algorithms. The main problem in visualising the case base is to display in two or perhaps
three dimensions, possibly a large amount of, multi-dimensional data . This section looks
at three methods that have been used in CBR to visualise case bases: scatter graphs,

force-directed graphs and parallel co-ordinate plots.

2.3.1 Scatter Graphs

Scatter graphs are X-Y plots with data indicated by symbols and are generally used to
investigate the relationship between two variables. Weka (Witten & Frank 2000), an open
source collection of machine learning algorithms for data mining tasks developed at The
University of Waikato, New Zcaland, uscs scatter graph visualisation. In this approach,
any of the attributes used in the case representation can be allocated to the X and Y axis.
This allows the relationship between two attributes to be studied but is of little use for
complex cases with many attributes or where attributes have nominal values.

McKenna & Smyth (2001b) developed a visualisation of their competence model as
part of the CASCADE authoring system. The scatter graph displays competence groups
plotted by the log of the group coverage (X-axis) and the log of the group size (Y-axis).
Groups are connected to their nearest neighbour group by an arc to assist the case author
judge the relationship between groups. A group can be selected to show its constituent
cascs. This tool enables an author to improve the competence of a case base by providing
visual feedback to identify large competence groups containing redundant cases and small,
low coverage competence groups which may require additional cases. The visualisation
is dynamic and groups will merge or split as cascs are added or deleted. However the

visualisation gives little information about the underlying data, the relationship between
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cascs or the similarity knowledge being used.

Scatter graphs provide a simple, easily understood visualisation that allow relation-
ships between individual attributes to be studied. However they are not good at displaying
multi-dimensional data and give little insight to the structure of a case base or the simi-

larity knowledge being used in retrieval.

2.3.2 Force-Directed Graphs

Undirected graph drawing approaches have been used to visualise the case base in CBR.
In graph drawing, objccts are placed on a page as nodes and the relationship between the
objects are shown as edges. An undirected graph is one in which the nodes are connected
by undirected edges, i.e. the edge has no directional arrow and both ends are equivalent.

Eades (1984) introduced the spring-embedder model which aims to provide aestheti-
cally appealing graph layouts based on the following criteria: uniform cdge lengths and
symmetry as far as possible. Nodes in the graph are replaced by steel rings and each
edge is replaced by a spring. The spring is associated with attraction and repulsive forces,
according to the connecting distance between the nodes. The spring system starts with a
random initial layout and the nodes are moved under the spring forces. An optimal layout
is achieved as the encrgy of the system is reduced to minimum.

Kamada & Kawai (1989) introduced an extension to Eades spring-embedder model in
which nodes are moved into new positions one at a time so that the total energy of the
spring system is reduced with the new layout. The concept of a desirable distance between
two nodes is also introduced, the distances can be set according to the requirements of the
graph. This is a simple, intuitive approach but has been shown to work well. Kamada and
Kawai's algorithm has been extended from a two-dimensional space to a three-dimensional
version.

Mullins & Smyth (2001) uscd the spring-embedder model to develop a visualisation
tool that aims to preserve the similarity relationships between cascs as on-screen distances.
The zero energy edge length, which represents the relationship between two cascs, is sct to
be inversely proportional to the similarity between cases, using the similarity metric. The
algorithm uses the attraction and repulsion of the springs to spread the cases around a two

dimensional graph in an attempt to preserve the n-dimensional distances between cases.
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Experiments on one case base show a correlation between the actual distance between
cases and their screen distance of greater than 70%.

McArdle & Wilson (2003) use a similar spring-based algorithm, in which the edge
length is sct to be proportional to the distance between cases, to develop a dynamic visu-
alisation of case base usage. Colour gradicnts are applied to cases in the visualisation in
order represent usage frequency, age of the case, or time since the case was last used for
classification. This visualisation aims to assist manual case base maintenance by support-
ing the maintenance of large case bascs.

These force-directed approaches provide more insight into the similarity assessment
than the usual single dimensional value. However, the knowledge held within the similarity
metric is hidden and the underlying data is not available. In addition case positions are
not static, adding a new case can result in a complete rearrangement of the layout and

successive runs of the same case base can result in a diffcrent layout.

2.3.3 Parallel Co-ordinate Plots

An alternative approach to visualising multi-dimensional data, originally proposed and
implemented by Insclberg (1985), is the parallel co-ordinate plot. A parallel co-ordinate
graph's primary advantage over other types of statistical graphics is its ability to display
a multi-dimensional vector or case in two dimensions. Each attribute is represented by a
labelled vertical axis. The value of the attribute for each case is plotted along each vertical
axis. The points are then connected horizontally using line segments such that cach case is
represented as an unbroken serics of line segments which intersect the vertical axes. Each
axis is scaled to a different attribute. The result is a signature across n dimensions for
cach case. Cases with similar data values across all features will share similar signatures.
Clusters of like cases can thus be discerned, and associations among features can also be
visualised.

Falkman's (2002) Cube uscs this approach to develop an information visualisation
tool which displays a case base using a three dimensional parallel co-ordinate plot. The
third Z-axis is typically used as a time line but can be used for any attribute. The
arrangement of the axes can be important in parallel co-ordinate plots. The Cube uses an

axes arrangement developed by Ankerst, Berchtold & Keim (1998), based on the similarity
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between axes, in order to reduce line crossing on the graph. A similar approach is exploited
in FormuCaseViz (Massie, Craw & Wiratunga 2004a, Massie, Craw & Wiratunga 2004b)
to aid explanation in a pharmaceutical tablet formulation application. The problem and
solution component of a case are displayed in separate parallel co-ordinate plots. The
visualisation provides an explanation of the system'’s proposed solution by displaying cases
in the neighbourhood of the target problem and allowing similarities and differences to be
viewed at an attribute value level.

Parallel co-ordinate plots allow the underlying data to be visualised and can be use-
ful for finding patterns or correlations within the data. However they can become very
cluttered when large amounts of cases are being viewed and it is difficult to follow the
signature of an individual case. While differences between the individual attribute values
of cases can be viewed, it is difficult to assess the overall similarity between cascs as the
similarity values are not shown and knowledge held within the similarity metric is still

hidden.

2.3.4 Visualisation Summary

In this research, visualisation is primarily required to display gaps and redundancy within
the case base in a form that is usecful to the knowledge maintenance engincer. In order to
fulfil this requirement the visualisation will need to display information on the structure
of the case base, the relationship between cases and some of the knowledge gained from
competence modelling and the maintenance algorithms being developed. None of the
visualisations looked at so far provide the full spectrum of information required, rather
they cach provide part of it.

McKenna & Smyth (2001b) make good use of clustering to provide competence mod-
elling information in their scatter graph approach. However, they do not adequately rep-
resent the relationship between individual cases or clusters of cases, McArdle & Wilson
(2003) display the case base structure and the relationship between cases in terms of the
similarity metric in their force-directed graph but fail to provide clustering or competence
modelling information. Parallel co-ordinate plots can provide the relationship between

cascs at a detailed, attribute level but have difficulty in displaying the general structure

of the case base.
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On a final point it should remembered that visualisation of a case base becomes in-
creasingly more difficult as its size increases. This is because it becomes more difficult
to project multi-dimensional relationships onto 2-dimensions and many of the algorithms
have difficulty handling large datasets. Clustering and indexing are techniques that can

be used to address this problem.



Chapter 3

Problems with Existing Case Base

Models

Casc-Basced Reasoning is often adopted as the problem-solving approach when domain
knowledge is incomplete and, as a result, the rclationship between individual cases and
the problem-solving ability of the system is unknown. However, in many CBR systems,
decisions still need to be taken about cases in the case base.

Imagine a knowledge engincer given a case base at the initial system design stage.
Figure 3.1 shows a snippet of a example case base of an email dataset for classification
between spam or non-spam. It is a flat attribute/value representation with the attributes
along the top being sclected stemmed words and the value representing the presence or
absence of the word. There may be 1000's of cases and 100's of attributes. Given this

data, the knowledge engincer designing a case base system has no idea if:-
e an easy or difficult problem is being faced.
o there is a shortage of data or too much with many redundant cascs.
e the data contains erroncous cascs, i.c. is it noisy?

A competence model of a case base will provide a simplification of the real system
that can assist the knowledge engincer to make informed decisions about the case base.
In CBR, modelling a case base can been considered to be the process of representing the

case base in such a way that it gives a global view of the structure of the case base with
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Figure 3.1: Typical flat attribute/value representation of a case base

some overall predictive power, while at the same time providing local case information on
individual cases or groups of cases that allow informed case base maintenance policies to
be developed.

Globally, it is possible to measure how well a case base model estimates overall accuracy
by comparing the model predictions with accuracy estimates obtained using leave-one-out
testing, cross validation or training/test set approaches. In contrast, it is difficult to
evaluate the local information supplied by a model directly as there is no comparable
experimental results with which to compare the information. However, evaluation of the
local information can be made indirectly by applying the local case information for partic-
ular maintenance tasks and comparing the results of the maintenance against alternative
approaches. Hence, the first stage in evaluating the usefulness of a model is to measure
how well the model estimates accuracy while the second, and more difficult stage is to
apply the local information within particular case maintenance tasks and evaluate the
results.

In this chapter McKenna & Smyth’s (1998) existing competence model is reviewed
and its performance on classification tasks is evaluated. In Section 3.2 we look at the
disjoint nature of the problem space in classification problems and consider how this

affects problem-solving accuracy and system competence.
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3.1 Evaluation of Existing Casc basc Models

Competence is a mcasure of a CBR system's ability to perform its primary task. As
CBR is a problem-solving methodology, competence is usually taken to be the proportion
of problems faced that it can solve successfully. However, the actual problems that a
system will face are unknown in advance and there are generally far too many potential
target problems to consider all of them. Typically the case base is considered to be a
representative sample of target problems and then, competence can be approximated by
either test set accuracy or cross-validation experiments using the case base as a source of
data.

Smyth & McKenna (1998) developed a competence model of the case base that mea-
sures coverage. The model is based on two assumptions; first that the case base is a
representative sample of target problems and second that similar problems have similar
solutions. The model groups together cascs that solve each other in a four stage process.
First, lcave-one-out testing is used to give a measure of the problem-solving ability of
a case using two important notions: coverage and reachability (Smyth & Keanec 1995).
Coverage of a case is the set of problems that the casc can solve; conversely, reachability
is the set of all cases that can solve it. Next, clusters of cases are formed using their
reachability and coverage sets to group cases that have overlapping scts. These are called
competence groups and form mutually exclusive sets of cases. The coverage of each com-
petence group is then defined to be directly proportional to the size of the group and

inversely proportional to the group’s density as given by the formula below:

GroupCoverage(G) = 1 + [|G| » (1 = GroupDensity(G))]

The GroupDensity(G) of a group of cases G is the average case density of the individual
cases within the group; where the casc density of a case is the average normalised similarity

to the other cases in the group as defined below:

¥ Sim(e,d)
CaseDensity(c,G) = deGTGI o
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where Sim(c, ') is a value between 0 and 1 calculated using the similarity measure defined
for the domain applied to cases ¢ and ¢.
In the final step the overall coverage of the case base is simply the sum of the coverage

of each group.

3.1.1 Evaluation

The true test of Smyth & McKenna's (1998) competence model is whether it reliably
predicts the problem-solving ability of a CBR system. Their experimental results are
reported for a recommender system using the package holiday and property datasets from
the AI-CBR! web site. In these experiments coverage is shown to correlate closely with
test set accuracy (McKenna & Smyth 1998, Smyth & McKenna 1998).

In classification tasks one of the assumptions made by Smyth & McKenna does not
always apply. Similar problems do not neccssarily have similar solutions. There are
many areas of the problem space that will have the same solution but also arcas, at class
boundaries, that will have different solutions. Even although the discontinuous nature of
the problem space in classification tasks violates one of the assumptions on which the model
is based, the local information provided by the model has still been used on maintenance
tasks in classification problems (Brighton & Mellish 2002, Delany & Cunningham 2004).
We wanted to evaluate the ability of the model to predict accuracy in classification tasks.

We carried out experiments using Smyth & McKenna's model applied to classification
problems. For the classification scenario, we adopted the same convention as Brighton
& Mellish's (2001) to identify the reachability and coverage scts. The reachability set of
a case is deemed to be the case’s ncarest ncighbours that belong to the same class (i.e.
the most similar k cascs retrieved by the k& Nearest Neighbour algorithm (k-NN) which
predict the same class) but bounded by the first case belonging to different class. The
idea behind this approach is that competence groups should not jump across areas of the
problem space containing cases belonging to a diffcrent class. Using this approach, the
competence model was implemented on four classification datasets from the UCI Machine

Learning Repository (Blake, Keogh & Merz 1998): iris, housc-votes, tic-tac-toe and zoo.

'http://www.ai-cbr.org
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Method

Each of the datasets was randomly split into a training set and test sct approximately in
the ratio 70:30. The training set provides cases for the case bases and the test set provides
a collection of unseen target problems. The training sets contain 50, 70, 250, and 700
cases for zoo, iris, house-votes and tic-tac-toe respectively. Initially each training set was
partitioned into n disjoint subsets. The smallest case base was created using one of these
subsets, and a growing case base was created by successively adding either one or more
of these subsets. After all the cases in the training set had been added, larger case bases
were formed by adding duplicate cases to introduce redundancy into the case base. The
introduction of redundant cases allows us to evaluate the model on case bases containing
cases that contribute little to competence and where the number of cases is less important.

Test set accuracy was calculated, for each case base, by using a standard 3-NN retrieval
and weighted majority vote to predict the class of the unscen problems and comparing
this prediction with the problem’s actual class. The competence model was applied to

each case base and its coverage calculated and compared to the test set accuracy.

Results

Figure 3.2 shows the average results from 20 experiments on each case base size on each of
the four datasets. The solid line on each graph shows the accuracy obtained when using
the unseen test set to evaluate the different sized training case bases. Coverage calculated
by the model has been normalised between 0 and the maximum accuracy obtained on that
dataset. The dashed line on each graph shows the competence prediction for the different
sized case bases.

As expected, test set accuracy initially increases as the case base size grows and then
peaks at a maximum value when a sufficient number of cases have been added to solve most
of the new problems that are encountered in the test set. This levelling out in accuracy
would be particularly expected as the redundant cases are added in the larger case base
sizes. This behaviour is scen on the test set accuracy plots for the four datasets. However,
on the coverage plots, coverage continucs to rise even when the duplicate redundant cases

are being added in the larger case base sizes.



3.1. Evaluation of Existing Case base Models 43

House Voles ‘
11
—t—p——tp———p——
0a{ / H
06 l . ¥
L
04 | .
02 i
.>’

0 1 0 .JL.i..‘:._ - — - — - - — ¥
5 10 20 30 40 50 B0 70 B0 90 100110120 130 140 150 5 10 50 100 150 200 250 300 350 400 450 500
Casebase size Casebase size

Tic-Tac-Toe 2oo

1

08

i.

04

02 !
Dkﬂ' | o

= g s T I P
5885882388838 ¢8¢8 5§ 10 20 2 40 % 8 0 0 % 100 |

Figure 3.2: Graph showing accuracy on test set and competence prediction for different
case base sizes on four datasets
It can be seen from these graphs that there is limited correlation for these classification

tasks between the model’s predictions, given by coverage, and test set accuracy.

3.1.2 Discussion

Smyth & McKenna's (1998) model incorporating the Brighton & Mellish (2002) extension
does not appear to produce an accurate reflection of problem-solving ability on classifi-
cation problems. The coverage given by the model appears to have a strong relationship
to the number of cases in the case base. It may correlate quite closely with competence
for smaller, sparse case bases where adding to the number of cases gives a corresponding
increase in a system’s accuracy. However, there does not seem to be any correlation for
larger case bases containing duplicate redundant cases in which adding new cases is not
expected to give a corresponding increase in accuracy.

We wanted to explain the low correlation between test set accuracy and the model’s
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prediction. Through visualising a range of problem-solving scenarios on a simple binary
classification problem, three problem areas were identified which explain why the model
may not reflect the problem-solving ability of the case base; (i) the group density measure
does not tend to 1 as additional cases are added to the problem, (ii) statistical measures
are not a good indicator of problem-solving ability, and (iii) problem complexity is not

considered by the model. These are explored in the rest of this section.

The Group Density Measure

We have identified in our evaluation of Smyth & McKenna's model on classification prob-
lems that coverage continues to rise as redundant cascs are added. This was unexpected
because the group coverage formula (shown below), used to measure coverage, appears to
offset the effect of an increase in the number of cases (|G|) by including a component that

is inversely proportional to group density (1 — GroupDensity(G)).

GroupCoverage(G) = 1 + [|G| ¢ (1 = GroupDensity(G))]

On the face of it, this scems reasonable: as the number of cases in a group increases

there will be a corresponding increase in group density. This should result in a group
coverage that reaches a maximum and docs not continue to risc as redundant cascs are
added. However, this is not what happens because the case density measure used (average
similarity distance to the other cases in the group) docs not tend to 1 as the number of
cases increases toward infinity. A simple example is described now which demonstrates
the group density of a competence group tending to an upper limit of less than 1.

With the density formula used here the actual maximum case density is dependent
upon the composition of case similarities. If we look at the competence group ireprcscntcd
in Figure 3.3(a), there are n cascs spread evenly between three positions. The similarity
between the different positions within the group is 0.5 and each position contains a third of
the cases. Figure 3.3(b) shows a graph of the average group density calculated as specified
in the model. It can be seen that the maximum density value reached is 0.67.

The effect of this formula, in which the number of cases can continue to increase while

group density does not, results in a group coverage overly dependent on the number of



r

3.1. Evaluation of Existing Case base Models 45

0.7
Position 1
(/3 cases Ws Position 2
) gt go.ss
a 06
Similarity=0, 5 g
0.55
0.5
Position 3 3 9 27 81 243 729 21876561
a) s cane) b) Number of Cases

Figure 3.3: Relationship between case density and number of cases

cases in the group. This explains the results obtained in our evaluation in which group
coverage continues to increase as redundant cases are added. This problem could perhaps
be addressed by the use of an alternative case density measure that tends to 1, as the
number of cases tends to infinity. However, the remaining two problems would still restrict

the applicability of the model to classification tasks.

Statistical Measures versus Case Positioning

Smyth & McKenna's (1998) model uses the retrieval and adaptation mechanism of the
CBR system to form the case base into clusters and thereafter statistical measures are
used to determine the coverage of each cluster. The two statistical measures used are
the number and density of cases in the cluster. The use of purely statistical measures
to calculate coverage is a fundamental problem with Smyth & McKenna's model when
applied to classification tasks.

To help demonstrate this problem we set up a simple problem-solving scenario with a
binary classification problem comprising two numeric features. This allows the problem
space to be visualised in two dimensions corresponding to the two numeric features. In
Figure 3.4 each case is represented by plotting a symbol on the graph according to the
values of its two features. The two classes are distinguished by the shapes square and
circle. The two competence groups are shaded differently in black or white.

A dense case base is shown in Figure 3.4(a) and the sparse case base in Figure 3.4(b)
is a subset of the dense case base. The boundary between the two classifications in each

Figure is the same and so an identical problem-solving domain is being viewed. The sparse
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case base retains most of the cases near the class boundary.

It would be expected that both the sparse and dense case base would give similar
accuracy levels when faced with new problems because they contain the same cases in the
boundary region between the two competence groups. However, the coverage given by the

model is 33.1 for the dense case base in Figure 3.4(a) and 15.6 for the sparse case base in

Figure 3.4(b).
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Figure 3.4: Visualisation of two different case bases for the same problem-solving domain

It can be scen from this simple example that statistical measures alone do not give a
good prediction of competence because they ignore the position of a case. The position of
a case is of crucial importance in classification problems because it is the boundary cascs
that mark out the transition from one class to another and determine the accuracy of a
CBR system. For a model of classification problems to be able to predict competence it

must measure the ability of a case to classify and this is, at least partially, dependent on

a case's position in relation to a class boundary.

Problem Complexity

Modelling the competence of case bascs can play an important role in benchmarking for
CBR systems. Benchmarking can provide comparisons across problems and case bascs or
it can be limited to the comparison of diffcrent case bases within the same problem domain.
Smyth & McKenna's model is restricted to benchmarking different case bases within the

same domain. To highlight this limitation we use two similar problem-solving scenarios
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with our binary classification problem and in this example each class corresponds to a
single competence group. In these scenarios, shown in Figure 3.5, the boundaries between

two classifications are different but the composition of cases within each group is the same.
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Figure 3.5: Visualisation of two problems with similar case base composition but different
boundary conditions

In Figure 3.5(a) there is little separation between the classes at the boundary. The
similarity between two cascs with diffcrent classes can be high and there is a high proba-
bility that a CBR system will wrongly classify some problems in the boundary region. In
Figure 3.5(b) there is a large scparation between classes because there are no two cascs
with a different classification that have a high similarity value. In this situation, assuming
the case base is representative of problems to be faced, it is less likely that new problems
in the boundary region will be wrongly classified. However the predicted competence,
measured by coverage, of the two situations will be identical because the composition of
the competence groups is the same. The model does not appear to adequately reflect the
complexity of the problem being faced in classification problems.

It can be scen from this simple example that Smyth & McKenna's model can not
be used to provide benchmarks between different problem domains because it takes no

account of the difficulty of the problem being faced. If a model is to provide benchmarks

across problems it must consider problem complexity.
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3.2 Issues with Classification Problems

In classification tasks similar problems do not necessarily have a similar solution. The
disjoint nature of the problem space can result in cases with small changes in their feature
values having totally different solutions. In the previous section we examined the Brighton
& Mellish (2002) extension of Smyth & McKenna's (1998) competence model and found
that it does not provide a close correlation with accuracy for classification problems.
One reason for this is that the difficulty or complexity of a problem, introduced at the
classification boundaries, is ignored.

In order to create a model for classification problems we must first try to understand the
factors that affect the complexity of a problem. In other words what makes a classification
problem easy or hard? The difficulty of a classification problem is affected by the cascs
available to represent the problem space but also by the inherent problem complexity
contained within the problem space. In this section, we first look at inherent problem

complexity and the availability of cases in more detail before investigating the impact of

these factors on a typical accuracy graph.

3.2.1 Inherent Problem Complexity

Inherent problem complexity is a measure of how difficult the prbblem would be if the
number of cascs available in the case base was not an issue, or, in other words, the error
rate of a problem with all possible cases available in the case base.

If we assume a problem to be represented by a fixed set of cases, each consisting of
a collection of attribute/value pairs and an associated class label, then classification can
be viewed as the process of partitioning the problem space into labelled regions. Decision
boundaries are formed between these labelled regions.

A case is misclassified when it falls in a region which does not have the same class label
as itself. Complexity can be measured by the proportion of samples that are misclassified;
i.e. error rate. However, crror rate is dependent on the classifier chosen in so much as
different classifiers form different decision boundaries. We are looking for a measure that
correlates well with a classifier's typical performance and provides localised information

about areas within the problem space. In a situation where we have a complete sample
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of all possible cases, a measure of the separability of the class labelled regions provides a
good measure of the complexity of a classification problem.

A visualisation of two scenarios is shown in Figure 3.6. A case is represented by a
symbol on the plot with the class of the case distinguished by the shape; star or circle.
Class boundaries are formed by surrounding cases of each class with a boundary to form
two labelled regions. In Figure 3.6(a) there is no overlap between the labelled regions and
a margin of separation exists between the two classes. In Figure 3.6(b) there is an overlap
region where the two labelled regions meet, shown as the shaded region. Overlap regions
are the intersection of the class labelled regions and conceptually, misclassified cases will

occur in these overlap regions.

Figure 3.6: Effect of boundary overlap on accuracy in classification tasks

If the labelled regions are separable the problem can be considered easy and the larger
the gap or margin between labelled regions the easier the problem becomes. Conversely,
if the labelled regions overlap the problem becomes complex and the greater the overlap
the more complex the problem becomes.

The inherent complexity of a classification problem is dependent on the size or volume
of the overlap regions contained within the problem space. The size of each overlap region
will depend on the length of the decision boundary and margin of overlap. The number of
decision boundaries will depend, to some extent, upon the number of different classes that

exist in the problem domain but more directly on the number of separate homogeneous
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groups of cases that exist for each class.

In simple problems it may be possible to measure overlap directly, however, in multi-
dimensional and possibly, multi-class problems with large or infinitely sized problem spaces
measuring overlap directly becomes close to impossible, Measures that approximate over-
lap volume must be found and some of these will be discussed in the following sections.

Another concern is how to make comparisons between the level of overlap found, and
the overall problem space. If problems that a system will face are equally distributed across
the problem space then the volume of overlap in rclation to the total size of the problem
space would give a measure of inherent problem complexity. However, in real problems
this is rarely, if ever, the situation. An alternative approach is to assume that the case
base provides a representative sample of problems and then overlap can be measured by

relating the number of cases that fall in region of class overlap to the total number of

cascs,

3.2.2 Cases Available

We have scen in the previous section that a problem domain has an inherent problem
complexity that is independent of the availability of cases. However, in real problems, this
is unrealistic as there will not be an unlimited availability of cases. The availability or
sparsencss of cases within the case base presents another layer of complexity to a problem.
A lack of cases in the overlap regions make it difficult to identify the position of decision
boundarics and can give a false impression of low complexity. However, in contrast, cases
in the interior of labelled regions are irrelevant from a classification point of view and have
no impact on problem complexity.

A visualisation of two scenarios, using our established conventions, is shown in Fig-
ure 3.7. These scenarios highlight that counting the number of cascs or overall case densi-
tics is a poor indicator of problem complexity for classification problems. Both scenarios
show an identical problem-solving domain with the same inherent problem complexity.
Figure 3.7(a) contains dense labelled regions compared to Figure 3.7(b). However the
sparse case base retains all of the cascs near the decision boundary and would give a

similar level of accuracy and hence level of complexity.

In classification problems, counting the number of cases is not a good indicator of the
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Figure 3.7: Effect of the number and position of cases on classification complexity

effect of the sparseness of cases on problem complexity. Likewise overall case density is
not a good indicator. The positioning of cases within the problem space in relation to

decision boundaries appears to be an important factor as to whether a case has an impact

on problem complexity.

Figure 3.8: Effect of noise on problem complexity

A second important issue in relation to the availability of cases is the presence of

erroneous or noisy cases in the case base. If we look at the two scenarios shown in

Figure 3.8 the same problem domain is represented but Figure 3.8(b) contains a noisy,

circle case located in the cluster of star cases. This introduces a false overlap region and
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decision boundary into the problem space resulting in an increase in the number of regions

in which errors are likely. Noise adds to overall problem complexity.

3.2.3 Discussion of Classification Issues

We have scen that both the inherent problem complexity and the availability of cases has
an impact on the complexity of a specific problem-solving situation. In this section we will
consider the effect of these two factors on problem accuracy for different case base sizes.
A simplified, typical classification accuracy graph is shown in Figure 3.9. It is assumed
that we have a pool of all possible cases from which to sclect a case base and test sct.
The graph plots classification accuracy on a test set as the number of cases in the case
base increascs. There are a wide range of classification methods that can be used to
classify the unscen problems and calculate accuracy, besides the k-NN algorithm used
for classification experiments in this report, for example, support vector machines, naive
bayes and C4.5 decision trees. While the decision boundaries and hence accuracy obtained
by each classifier will be different, the graph obtained will have similar characteristics.
Similarly, there are a range of techniques that can be applied to sclect a test sct, for
cxample, cross validation, hold-out testing or leave-onc-out testing. Again, while the

exact values may vary depending on whichever technique is chosen, the characteristics of

the plot will be similar.
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Figure 3.9: Typical graph of test sct accuracy as a case base grows

The plot starts with its lowest accuracy where the plot intersects the y-axis. The
accuracy then increases steadily with a slope ‘s’ until the maximum accuracy of the system

is reached. The accuracy typically then remains stable no matter how large the case base

grows,



3.2. Issues with Classification Problems 53

The minimum or starting accuracy, achieved without any case knowledge, is shown as
‘a’ on the graph. This corresponds to a guess as to the class of the unscen problems and
is related to the number of classes in the problem but also on the distribution of casecs
between classes. The best starting accuracy that can be expected is the proportion of
cascs labelled as the class with most cases. The positioning of cases, obviously can not
affect starting accuracy and, likewise, there is no relationship between inherent problem
complexity and starting accuracy because no cascs are available to define the decision
boundaries.

The maximum accuracy achieved, shown by ‘b’ on the graph, after enough cascsbha.ve
been added to the case base to fully define the problem space. The maximum system
accuracy is, by definition, fully determined by the inherent complexity of the problem.
There is no relationship between the positioning of cases within the case base and the
maximum accuracy achieved. |

The slope of the increasing accuracy section of the plot is dependent on both inherent
problem complexity and the positioning of cases within the case base. If a problem has
low inherent complexity, perhaps because it contains few decision boundaries, then few
cases are required to define the decision boundarics. As cases are added to the case base
the decision boundaries will be quickly defined and accuracy will increase quickly resulting
in a steeper slope. In a complex problem, with many or long decision boundaries, more
cascs will be required to define the boundaries and accuracy will increase slowly. The
positioning of cases has an effect on the slope of the graph. If discriminating cascé aré
chosen that quickly define decision boundaries, accuracy will increase more quickly than
if the cascs chosen are poor discriminators, possibly far from decision boundaries.

The slope of the graph also determines the number of cascs required to achieve maxi-
mum accuracy identified by point ‘c’ on the graph. This could be considered an optimal
size for the case base because it provides the quickest retrieval time to give maximum

accuracy. Other operational factors may influence the actual size of case base used.
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3.3 Chapter Summary

The evaluation of Smyth & McKenna's (1998) model on classification problems has iden-
tified datasets in which the model’s predicted coverage does not give a good correlation to
classification accuracy. Three reasons for this lack of correlation have been identified: the
model docs not adequately reflect the inclusion of redundant cases within the case base,
statistical measures are not a good measure of competence in classification problems and
problem complexity is not reflected by the model.

Local information gained from a model that more closely predicts competence on the
global level could be expected to provide more useful information for case base maintenance
policies. A model is required that focuses on the positioning of a case within the case base
in relation to class boundarics. However, if we wish to make comparisons across problem
domains the model must also be sensitive to the difficulty or complexity of the problem
being faced.

In classification problems, the problem space can be split into regions where all cascs
have the same solution i.e. are labelled with the same class. These regions are scparated by
decision boundaries. The inherent problem complexity assumes that all possible examples
are available. In this situation problem complexity becomes the complexity of the decision
boundary and is dependent on the number and length of boundaries and the overlap at
the boundary.

The availability of cases adds another layer of complexity to the problem. However
standard statistical measures, such as a count of the number of cases or average case
density, provide little help in identifying the effect of the availability of cascs on problem
complexity. Rather, the positioning of the cases in relation to the decision boundaries is
the important factor.

The challenge in modelling the competence of classification problems is to quantify the

size or effect of overlap regions in conjunction with the effect of the sparseness of cases

available to the case base.



Chapter 4

Complexity Model for

Classification Problems

We have seen that complexity is a characteristic of the problem-solving system, dependent
on both the problem domain and the availability of cascs, that gives a measure of how
difficult it is to classify new problems. Complexity is determined largely by decision
boundary conditions through such factors as the number, length and overlap of decision
boundaries and the positioning of available cases in relation to the boundaries. Previous
research on case base editing has also highlighted the importance of cases in boundary
regions on the competence of a case base (Brighton & Mellish 2002, Wilson & Martinez
2000, Delany & Cunningham 2004). It scems reasonable to assume that in order to model
competence, consideration must be given to the interaction between cases on boundaries.

Two modelling approaches have been investigated that consider interactions between
cases at decision boundaries. We call the approaches the boundary approach and the com-
plexity approach. In the Boundary approach, cases on decision boundaries are explicitly
identified and these cases are used to calculate boundary measures that provide informa-
tion about the decision boundary. In the Complexity approach, a complexity value is first
calculated for each case by considering the class composition of the case’s neighbours. A
profile of these complexities is then plotted which provides the knowledge enginecr with
an insight into the structure of a case base from a global perspective.

In this chapter we introduce our two approaches to modelling the case base and show

Y
[
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how they both provide an indication of problem complexity and how the complexity ap-
proach, in particular, appears to provide a good correlation with test sct error rates. In
addition, the case complexity calculated as part of the complexity approach provides in-
formation on the level of uncertainty present in local areas of the case base that can be
uscd to inform maintenance algorithms. We discuss the boundary approach in Scction 4.1

and introduce our new complexity approach in Section 4.2.

4.1 Boundary Approach

We are attempting to create a model of a case base that will give an insight into the
characteristics of the problem domain that the case base is supporting. We have identified
that there is a relationship between complexity and the interactions between cases in
regions of the problem space at or near decision boundaries. An obvious approach to
modelling the case base is to attempt to measure thesc interactions directly. That is exactly
what we attempt in this boundary approach. Cases on decision boundaries are explicitly

identified and used to calculate measurements that aim to define the characteristics of a

particular decision boundary.

4.1.1 DBoundary Measures

This approach identifies cases near decision boundaries. Once these cases are identified,
metrics that measure the distance between boundary cases, the length of boundarics and
the density of cascs on the boundary are applied. The boundary model is implemented in

the following five stage approach:-

1. Cluster the case base: Clusters of cases, i.¢. competence groups, are formed using

the extension to Smyth and McKenna's competence approach for classification tasks

described in Scction 3.1.

2. Identify cases on cluster boundaries: Boundary cases for each cluster are found
by looking to within the cluster from all the cases outside it. Figure 4.1 shows a rep-
resentation of a case base with cases belonging to three different classes represented

by the shapes; circle, square and star. In order to identify boundary cases we look
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at each cluster in turn. If we consider the cluster containing circles first, then all the
cases that do not belong to this cluster are selected, i.e. star and square cases. For
each selected case their nearest neighbour case from within the cluster is identified,

shown by the dark circle cases in Figure 4.1. These nearest neighbours are deemed

to be the boundary cases for the circle cluster.

Figure 4.1: Identification of boundary cases within a cluster

3. Identify individual cluster decision boundaries: A cluster may have several
boundaries; i.e. a boundary with more than one opposing group. These individual
boundaries (i.e. with a single opposing cluster) are identified by looking from within
the cluster to the cases outside it. The nearest neighbour from an opposing group is

found for each boundary case. Figure 4.2 shows the boundary cases, related to the

circle cluster, from the square and star clusters.

- T 9=

= -
= * o W *

Figure 4.2; Identification of boundary cases from opposing group
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4. Identify decision boundaries: After the previous two steps have been completed
for each cluster, the individual boundaries are identified by grouping together bound-
ary cases that have neighbours from the same opposing groups. Figure 4.3 shows the
three decision boundaries for the example being considered, together with the cases
selected to represent the boundary. Of course, cluster boundaries are not necessar-
ily decision boundaries. The boundary is only considered further if it is a decision

boundary; i.e. it is between cases of a different class.

Figure 4.3: Identification of individual decision boundaries

5. Calculate boundary metrics: For each decision boundary, metrics giving infor-
mation about the boundary conditions are calculated using the cases selected to
represent the boundary and the similarity or distance function associated with the
cases. The following three metrics are used:-

e Boundary separation: Separation at each decision boundary is calculated as
the average distance from a boundary case to its nearest unlike neighbour; i.e.
the nearest case with a different class.

e Boundary length: For each side of the boundary, the boundary length is taken
to be the shortest distance to travel through all the cases selected to represent
the boundary. This is equivalent to the travelling salesman problem. A length
is calculated for both sides of the decision boundary and the boundary length
is taken to be the average of the two lengths.

e Boundary case density: The boundary case density is the average density of the
boundary cases. Where case density is the average similarity to its k-nearest

neighbours.
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4.1.2 Experimental Evaluation of Boundary Approach

One objective of our boundary approach is to create a model of the case base that will
provide a global measure that correlates well with the complexity of a problem, measured
by error rate or accuracy. In order to obtain this global measure the three boundary
metrics (separation, length and density) need to be combined to provide a single measure.
It is expected that accuracy will be directly related to separation and density but inversely

related to length.
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Figure 4.4: Graph of an artificial dataset identifying the decision boundary and separation
between classes

To help investigate the characteristics of these boundary measures in relation to ac-
curacy, we set-up a simple, artificial, problem-solving scenario with a binary classification
problem comprising two numeric features (z and y) with values in the range 0 to 10. This
representation allows the case base to be visualised in two dimensions corresponding to
the numeric features. In Figure 4.4 each case is plotted by a symbol (star or circle) on the
graph according to the value of its numeric features. A decision boundary at 45 degrees
from the origin, representing the line y = z, is shown by the solid line. A case is created
by first setting each feature to a randomly selected value between 0 and 10. Then the case
is allocated the class star if it lies above the line y = = + 5/2 on the graph, and circle if it

lies below the line y = = — s/2; where s is the enforced minimum separation between the
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classes, shown as the distance between the two dotted lines in Figure 4.4. A case is not
accepted if it lies between the dotted lines. The complexity of the problem being faced can
be changed by varying the enforced separation or the number of cases in the case base.
Experiments have been carried out on five similar datasets, each containing 100 cases.
The enforced separation is different for each dataset, varying in steps of 0.25 between 0
and 1. Each dataset was split into 10 disjoint sets. The smallest case base was formed by
selecting one of these sets and a growing case base was formed by successively adding an
additional set. Leave-one-out accuracy and the three boundary metrics were calculated

for each case base size on all five datasets.
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Figure 4.5: Graphs of leave-one-out accuracy and the three boundary metrics on an arti-
ficial dataset with varying boundary separation

The average results from 5 runs of the experiment on each dataset are shown in Fig-

ure 4.5. The results for leave-one-out accuracy testing (Figure 4.5(a)) show that for all five
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datasets accuracy initially increascs, as case base size grows, before reaching a maximum
value, The greater the enforced separation betwcen classes, the faster the accuracy grows
and the maximum accuracy is achieved with a smaller case base size. In addition, the
maximum accuracy is generally higher for problems with larger enforced scparations al-
though the case bases with enforced separations of 1.0 and 0.75 both reach 100% accuracy.
These results confirm that reducing the separation between classes results in an increase
in problem complexity.

The calculated boundary separation results (Figure 4.5(b)) show the boundary scpa-
ration falling as the case base size grows and the boundary becomes more defined. The
measure clearly identifies the differences in separation in the five datasets with plots for
datasets with higher enforced separation lying above those with lower separation.

Figure 4.5(c) shows the result for calculated boundary length. The results are very
irregular, giving only an indication of the rcal boundary length. There is no obvious
relationship between the calculated boundary length and the enforced minimum scparation
between classes.

Boundary case density, shown in Figure 4.5(d), rises initially before maintaining a sta-
ble value and appears to correlate well with leave-out-accuracy. However, all five datasects
give similar density results and there does not appear to be a clear link with enforced

scparation.

Discussion of Boundary Approach

Given the nature of the problem characteristics that have been created, in which for each
problem the enforced minimum scparation and length of the decision boundary remain
constant as the availability of cases increases, it was expected that boundary scparation
and boundary length would correlate well with inherent problem complexity while bound-
ary case density was expected to correlate well the number of cases in the case base. The
results only partially support these expectations.

The boundary separation metric was expected to give a measure of the complexity of
the decision boundary. The experimental results confirm that the metric is able to discrim-
inate between the different boundary complexities introduced by the different separations

in the five datasets. However, the measured boundary scparation is also dependent on the
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number of cases available to define the boundary.

The boundary length metric was expected to give a fixed value representing the fixed
length of the boundary in all five problems. The values obtained are irregular but appecar
to give a guide to boundary length that is independent of enforced separation and not
overly dependent on the number of cases. The results show this measure to be a rough
estimate rather than an accurate measurement of boundary length.

The boundary case density metric correlates well with accuracy in that it riscs initially
as the number of cases grow and then stabilises at a maximum value. However, as expected,
density does not provide a good measure of complexity on its own as it can not discriminate
between the different inherent complexitics of our five artificial problems.

In developing this approach of identifying and measuring boundary conditions directly,
several problems have become apparent, even in the simplified artificial datasct used for
testing. While there appears to be some correlation between accuracy and the individual
boundary metrics, it is not clear how these metrics should be combined to provide a
single measurement of complexity. Likewise, the experiments have made measurements
for a single boundary, and it is not obvious how measurements from numerous decision

boundaries should be combined to give values for a complete case base.

Scaling up this approach to real problems also introduces several additional difficulties.

e In real data sets, as the problem space gets more complex with increasing dimen-

sionality, a large number of cases in the casc base can be identified as boundary cases

and a large number of decision boundaries are formed.

e It is difficult to get accurate measurcments of boundary separation where there
is an overlap between the groups at the decision boundary and it is not possible
to determine if the value obtained refers to a margin of separation or is merely the

distance to a case’s nearest ncighbour belonging to a different class within an overlap

condition.

» Boundary length provides only a rough estimate. The positioning of cases at the de-
cision boundary has a large influence on the value obtained and consistent results are
difficult to obtain. In addition, finding the minimum distance through the boundary

cascs is akin to the travelling salesman problem and not casy to solve. As the num-
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ber and complexity of decision boundarics increases with real data scts calculating

this measure in a multi-dimensional problem space will become impractical.

Explicit modelling of the configuration of a boundary appears to give an indication
of the complexity of a problem, both as a result of its inherent complexity and the cases
available, on these simple artificial problems. However, scaling up this approach to real
problems does present scrious difficultics. Another limitation is that local information
is only provided about the boundary cascs, whercas maintenance policics may require

information at a case level about all cases in the case base.

4.2 Complexity Approach

Experimental work carried out on the boundary measure approach in the previous sec-
tion has identified problems in attempting to directly measure and combine the individual
components of problem complexity at a decision boundary. We require a more tractable
approach that provides an overall measure of problem complexity but one that also pro-
vides individual case information.

Our objective is to help the knowledge engincer make decisions on maintenance strate-
gics by providing a global case base measure of accuracy, noise and redundancy plus local
information on the structure of the case base. Our approach is to provide a profile of a
local case metric. We use a case complexity measure to provide the local measure and a
ranked profile of this measure to provide a view of the overall effect within the case base.
The complexity profile identifies the mix of local complexitics. In the rest of this section we

first define the local case complexity measure used and then look at our profiling approach

to providing a global picture of the case base.

4.2.1 Case Complexity

We have chosen an approach that allows us to measure the local complexity based on
the overall distribution of cases rather than on specific decision boundary metrics. The
building block of our approach is a local complexity measure calculated for cach case. In

this approach the complexity of each case is calculated based on the class composition
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of a case’s neighbours while incrementally increasing the size of the neighbourhood being

considered. The case complexity identifies areas of uncertainty within the problem space.

Figure 4.6: Class composition of a cases’s neighbourhood

In order to calculate case complexity we first consider the local mix of solutions present
in the region of a case, ¢;. Pi(c;) is the proportion of cases within ¢;’s k nearest neighbours
that belong to a different class from itself. In Figure 4.6 a case is represented by a symbol
on the plot with the class of the case distinguished by the shape; star or circle. If we
consider case ¢, then as the value of k increases, the sequence of Pi(c;) starts 1, 0.5, 0.67,
0.5.

If we look at Figure 4.7 we see a graph plotting the first 4 values of the nearest
neighbour profile for ¢; showing Pi(c1) as k increases. The case complexity measure is

based on the area of the graph under the profile and is calculated by

1
complexity(ci) = 7 Y Pile)

for some chosen K: where K is the largest neighbourhood considered. With K=4 the com-
plexity of case ¢; is (140.5+0.67+0.5)/4 = 0.67. The complexity measure is weighted to a
case’s nearest neighbours, hence, using a large value for K has little impact on the value.
However, setting too small a neighbourhood can result in overfitting, as the complexity
measure becomes overly influenced by a case’s immediate neighbours. We have found

that for most case bases K=10 gives a balanced size of neighbourhood and is used in our



4.2. Complexity Approach 65

experiments. The maximum neighbourhood size may be reduced for small case bases or
where the number of classes is large and results in small class groupings within the case

base.

0.67

0.5

2
0.5

Figure 4.7: Proportion of case ¢;'s neighbours belonging to a different class

The complexity of a group or the whole case base can now be calculated by taking an

average of the individual case complexities contained in the group or case base.

Discussion of Case Complexity

In this approach, we do not measure the boundary conditions directly but instead use
the cases held within the case base to provide a map of the local complexities within
the problem space. Unlike the boundary approach, the complexity approach provides
information on each case that can be used to develop informed maintenance policies. Cases
with high complexity are close to classification boundaries and identify areas of uncertainty
within the problem space. Cases with complexity greater than 0.5 are generally closer to
cases of a different class than those of their own class, and are potentially noisy. Cases
with low complexity are surrounded mainly by cases with the same class as themselves,
and are located in areas of the problem space in which the system would be more confident
in making a decision on the class of a new problem. Cases with a zero complexity value are
surrounded by a sizeable group of cases with the same class as itself, and may be considered
redundant because other cases in the group would be able to solve new problems in this

region of the problem space.
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The complexity measure can be used in providing a benchmark for the performance of
different case bases within the same domain. In addition, the complexity measure provides
a consistent and meaningful measure across different problem domains. As a result, the
measure can also be used to provide a benchmark across different problem domains.

In order to provide a good map of the problem space there needs to be a reasonable
coverage of cases across the space. If case coverage is poor the uscfulness of the complexity
measure will be reduced. This approach relics heavily on the standard CBR assumption
that the case base provides a representative sample of the problems that the system will
face.

In this approach complexity is measured using leave-onc-out testing and it is expected
to give a good measure of error rate. However, the real test is whether complexity reliably
predicts the problem-solving ability of a CBR system on unseen problems. An evaluation of

the relationship between complexity and unscen test set accuracy is described in Chapter 6.

4.2.2 Complexity Profiling

The complexity measure provides a local indicator of uncertainty within the problem space
and we will show that it is uscful for informing maintenance algorithms. IHowever, it is
difficult for the knowledge engincer to use this local information directly to gain an insight
into the structure of a case base from a global perspective. Our approach to providing the
knowledge engineer with meaningful access to this pool of local information is to present
the data as a ranked profile of case complexities. In this approach the mix of complexitics
within the case base can be viewed as a profile allowing comparisons to be made between
case bases. In addition to providing the knowledge engincer with a global measure of

complexity, the profile also provides a global measure of the level of noisc and redundancy

within the case base.

Creating a Profiling

The ranked complexity profile is created by first calculating the complexity of cach case.
The cases are then ranked in ascending order of complexity. Then, starting with cases
with the lowest complexity, case complexitics are plotted against the proportion of cases

used. Thus the x-axis shows a case’s normalised position in the ranked list and the y-axis
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gives the complexity value for a particular case. A typical profile plot, for a case basc
containing redundancy, is shown in Figure 4.8. Cascs with zero complexity are plotted
first on the left hand side of the graph followed by a rising curve as the plot breaks away

from the x-axis as the complexity of the cases increases.
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Figure 4.8: Typical graph of local complexity profile

Three key global indicators can be taken from this plot to give a measure of accuracy,
redundancy and noise respectively, as follows:-
e Error Rate: The arca under the curve, shown as the shaded arca on Figure 4.8,
gives the overall complexity of the problem being faced and provides a measure of
expected error rate. This is equivalent to the average case complexity of the cases

in the case basc.

e Redundancy: The position at which the plot breaks away from the x-axis, shown

on the profile as z, gives a measure of the level of redundancy within the case base.

This is a measure of the proportion of cases located in single class clusters.

o Noise: A case with a complexity greater than 0.5 has in most of its neighbourhoods
the majority of its ncighbours belonging to a different class. These cases can be
considered noisy. The proportion of noisy cases can now be portrayed as 1=z, the
distance to the right of 2.

The arca under the curve provides additional information. It gives a measure of the

positioning or contribution of the cases within the case base. If the case base contains
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many cascs contributing little to the classification task a typical exponential curve, as
discussed above, will be seen. However, if all the cases are positioned well and contributing
more evenly to the classification task a more straight line graph is expected as shown
in Figure 4.9. This would be the expected profile after a redundancy removal editing

algorithm has been applied to a case base.
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Figure 4.9: Typical complexity profile for an edited case base

The approach described here gives a measure of whether the number of cases in the
case base is appropriate to the domain and its level of complexity. It is expected that
the three indicators deseribed here will correlate well with typical measures of error rate,
redundancy and noise. This will be investigated further in Chapter 6. However, it is the
graph itself that provides the best insight into the structure of the case base, and allows
informed decisions to be made by the knowledge engincer in relation to whether the number

of cases in the case base is appropriate to the domain and its level of complexity.

Comparison of Case Base Profiles

We looked at a typical complexity profile and claimed that this profiling provided a good
approach at making comparisons across different domains. To examine this claim we look
at example complexity profiles from four domains. Figure 4.10(a)-(c) show the complexity
profiles for three public domain classification datasets from the UCI ML repository (Blake
ct al. 1998), togcther with the complexity profile for an artificial dataset in Figure 4.10(d).

Wine in Figure 4.10(a) is a simple three class problem with 14 numeric attributes and

178 instances. It can be scen from the profile that a high level of classification accuracy is
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Figure 4.10: Complexity profiles for sample datascts

expected due to the small arca under the complexity curve (0.05). The expected level of
noise is very low at 4% with the maximum complexity value being well below 1. A high
level of redundancy is also evident with 75% of the instances having a zero complexity
value. A case base created from this dataset, containing less redundancy, could form part
of an excellent CBR problem-solver because the similarity measure forms the instances
into clusters with the same solutions - similar problems have similar solutions.

Hepatitis (Figure 4.10(b)) is a smaller dataset of 155 instances represented by 20,
mostly nominal, features containing some missing values. This is a more complex problem
with an overall complexity of 20% and a gentler slope to the curve than for Wine, sug-
gesting more complex decision boundaries. There is a moderate predicted level of noise
(16%) but also several instances completely surrounded by instances of an opposing class
with a complexity value of 1. Although there is less redundancy than for wine, the level
is still high with 46% of the instances surrounded by at least 10 instances with the same
class. Applying noise reduction algorithms would probably improve the level of accu-

racy achieved and redundancy reduction algorithms could be applied to reduce storage
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requirements without affccting accuracy levels.

Breast Cancer in Figure 4.10(c) is a binary classification domain with 9 multi-valued
features containing missing data. This is a complex problem, with the low slope on the
graph indicating most instances lie close to decision boundaries., There is a high estimated
level of noise (28%) and little redundancy (8%). This profile would suggest a datasct that
is not suitable for a CBR application as it stands. Applying noise reduction algorithms
may improve accuracy levels. In addition, improvements in the similarity mcasure or case
representation could be investigated to create a design in which problems with similar
solutions are better recognised as being similar.

The final profile, Figure 4.10(d), is for an artificial dataset with 100 instances. This
is a binary classification problem with 2 numerical features where the class of an instance
is randomly selected. This is a problem that has been created so that similar problems
will not form into cluster of instances with similar solutions. The datasct would not make
a suitable case base for a CBR problem-solver and this is confirmed by the complexity
profile. As expected, the predicted error rate is 50% and the predicted noise level is also
50% because instances are as likely to be surrounded by instances of an opposing class as
the same class. There is no redundancy because the instances do not form into large same

class clusters,

4.3 Chapter Summary

In classification tasks the condition at class boundarics largely determine the complexity
of problem being faced. The Boundary approach to case base modelling attempted to
explicitly measure boundary scparation, length and case density by identifying boundary
cases related to each decision boundary. The results of initial investigation were promis-
ing but gave problems in combining the mecasures and scaling up the approach to more
complex, real-life domains.

A complexity measure has been developed that implicitly measures the level of com-
plexity within local arcas of the problem space by looking at the class composition of
a case's neighbours. A ranked profile plot of this measure has been used to provide a

model of the case base that supplies the knowledge engincer with global information on
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accuracy, noise and level of redundancy. The complexity profile also gives an insight into
the structure of the case base by making the mix of case complexities within the case base
transparent to the knowledge engincer.

Our complexity model is certainly concerned with estimating accuracy and providing
local case information. However, our model does more. Complexity profiling can play a
further role in assisting the knowledge engineer to make choices between alternative main-
tenance techniques depending on the structure of the data and a system's performance
requirements. Profiling also provides the opportunity to create a benchmark for compar-
ison with future versions of the case base to monitor the impact of changes over time or
to evaluate alternative system designs.

The use of our complexity model to maintain the case base by informing specific
maintenance algorithms is discussed in the Chapter 5 while the ability of the complexity

model to provide accurate predictions about accuracy, level of redundancy and level of

noise is evaluated in Chapter 6.



Chapter 5

Complexity-Guided Case base

Maintenance

The retention stage of the CBR process is now considered to involve far more than the
act of incorporating the latest problem-solving experience into the case knowledge. Casc
base maintenance is an integral part of the CBR process (Lopez de Mantaras ct al. 2006).

The objective of the complexity-guided case base model was two-fold: to provide the
knowledge engincer with a global overview of the case base, and to inform specific main-
tenance algorithms. We have scen how the model can give the knowledge engineer an
insight into the structure of the case base and can allow comparisons to be made between
alternative case bases or problem domains. The knowledge engincer can use this insight to
determine appropriate maintenance approaches for the specific case base being considered.
Now we will investigate how the model can be used to inform maintenance algorithms.

Maintenance may be required for many reasons, for example, to improve the systein
competence, to reduce retricval times, or to reduce memory storage requirements. What-

ever the objectives there are three common types of maintenance that can be applied to

a casc base to help achieve them:-

e Casec Discovery - is required where system accuracy is low because the case knowl-
edge is sparse due to a shortage of cases. These characteristics would typically be

represented on a case base complexity profile by low levels of redundancy and a large

72
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arca under the curve with high levels of complexity over the whole profile.

* Redundancy Reduction - is required where retrieval is slow and memory storage
requirements are high due to many similar cases being present in the case base. The
level of redundancy is apparent on a complexity profile by the high proportion of

cascs with zero or low complexity.

e Error Reduction - is typically required where accuracy is harmed by the presence
of noisy cascs in the case base. The need for error reduction would be visible on the

profile by the proportion of cases with high complexity.

We claim our complexity-guided model can inform specific algorithms to accomplish
the maintenance task. In this chapter we examine this claim and introduce new algorithms
to perform the common case base maintenance tasks. In Section 5.1 two new case discovery
algorithms are introduced. We develop a redundancy removal algorithm in Section 5.2 and

discuss a new approach to error reduction in Section 5.3.

5.1 Case Discovery

The availability of cases is crucial to a system'’s performance because the case base
is the main source of knowledge in a CBR system. It is often the availability of existing
data to form cases that supports the choice of CBR for a particular problem-solving task.
Commercial systems generally assume that a suitable case base already exists and give
the case author little help in building the initial case base. However, in real environments

there are often gaps in the coverage of the case base because it is difficult to obtain a

collection of cases to cover all problem-solving situations.

Adaptation knowledge can be used to provide solutions to new problems that occur in
the gaps that result from a lack of case coverage. However, gaining eflective adaptation
knowledge may require considerable knowledge acquisition effort. The inclusion of addi-
tional, strategically placed cases can provide a more cost-cffective solution. This presents
a more complex challenge when compared to the more commonly researched case base

cditing or sclective sampling problems that have a pool of existing cases from which to
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sclect cases (Wiratunga, Craw & Massie 2003). In contrast, the task of case discovery is
to add to the case knowledge using implicit information held within the case base.

A typical graph of system classification accuracy, measured as the case base size in-
creases with the addition of cases from the rctain stage of the CBR cycle is shown by
the solid line in Figure 5.1. It can be scen that classification accuracy initially increases
steadily to a maximum value (y;) with a case base size of x3. This is the development
stage of a case base in which gaps in coverage are gradually filled by the addition of cases.
As the casc base size continues to increase accuracy remains relatively stable. This is the
mature stage of the case base in which the addition of cases has little effect on accuracy.
Traditional case learning can be a slow process and case ciscovery can assist the case
author during the crucial case base development stage by actively identifying useful new
cascs to fill gaps that exist in coverage. Case discovery should result in a shift in the curve
to the left, during the development stage of a case base (shown by the dashed line). Little
impact would be expected on a system's maximum accuracy as a result of case discovery,

however, the number of cases at which the maximum accuracy is reached is fewer (x; as

opposed to xj).
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Figure 5.1: Typical graph of test set accuracy as a case base grows

We argue that gaps in the coverage of the case base are in regions of the problem-space

in which the system is uncertain of the solution.
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6.1.1 Complexity-Guided Approach

Our aim is to discover cascs that improve the CBR system's accuracy. We believe cascs
close to classification boundarics are most likcly to achicve this aim. The case discovery
problem can be considered in two stages: the identification of interesting arcas of the
problem space in which to place new cases is discussed In this section, while the creation
of new cases to fill these gaps is discussed in the following section.

Previous rescarch on case base editing has highlighted the importance of cases in
boundary regions for the competence of a case base (Brighton & Mellish 2002, Wilson &
Martinez 2000). It seems reasonable to expect a successful case discovery algorithm to also
identify cases on class boundaries. Our approach to identifying where new cases should
be placed, in order to improve a system's accuracy, involves several stages that combine

to identify boundary cascs.

Arcas of Uncertainty

The first step in finding intcresting arcas for new cases is to find arcas in which cases
are more likely to be wrongly classificd. We usc our case complexity measure, defined in
Section 4.2, to identify these arcas. This approach gives a measure of the local complex-
ity based on the spatial distribution of cascs rather than on a probabilistic distribution.
Cases with high complexity, which we refer to as target cascs, are close to classifica-
tion boundarics and identify areas of uncertainty within the problem space. The regions
around these target cases are identificd as requiring support. Target cascs are ranked in

descending order of complexity to prioritise between the different regions of the problemn

space.

Class Boundaries

Target cases identify regions of the problem space, near classification boundaries, that
would benefit from the support of additional cases but give no help as to where within
these regions the new cases should be placed. Following our hypothesis that cases close

to class boundarics are important in case discovery we want to discover cascs closer to
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the boundaries. Tomek (1976b) uses the distance to a case’s nearest unlike neighbour
(NUN) to rank cases prior to applying Hart’s CNN editing algorithm in order to ensure
boundary cases are retained. Likewise, Doyle, Cunningham, Bridge & Rahman (2004)
use the concept of a NUN to identify cases nearer to decision boundaries that are then
used to provide more convincing explanations to support the proposed solution. We use a
similar approach. There must be a classification boundary in the problem space close to
the target case, however its direction and location are not known. To find an outer limit
for the location of the boundary, the target case's NUN is found i.e. the nearest case that
has a different class. The boundary lies between the target case and its NUN. Figure 5.2

shows a target case’s NUN being identified on a representation of a small case base using

our standard nomenclature.
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Figure 5.2: A target case’s nearest unlike neighbour being identified

Clustering

Prioritising regions of the problem space using only the complexity value of cases is ex-
pected to identify interesting areas in which additional cases will help to improve the
system’s accuracy. However, prioritising on case complexity alone potentially gives two
problems. There is a danger that new cases will be concentrated in a small region of the
problem space as high complexity cases are likely to be located close to each other. In
addition, new cases may be concentrated on small pockets of cases whose classification is
different to their neighbours, as these cases will have high complexity values, resulting in
poorer performance in noisy or multi-class problems. Figure 5.3 shows five target cases
being identified by complexity ranking alone on a representation of a small case base. It

can be seen that four of the cases are concentrated in one area of the problem space.
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Figure 5.3: Target cases identified without clustering

Partitioning the case base into clusters may give a more balanced distribution of dis-
covered cases over the whole case base. Competence group clustering (Smyth & McKenna
1998) is a commonly used clustering technique in CBR and a similar approach has been
adopted here. Clusters are formed using leave-one-out testing to measure the problem-
solving ability of a case using: coverage and reachability. Next clusters of cases (i.e. com-
petence groups) are formed using their reachability and coverage sets to group cases that
have overlapping sets. This clustering model is typically applied to CBR systems incorpo-
rating an adaptation stage, however, here it is being applied to retrieve-only classification.
In this scenario, the reachability set of a case is its k-nearest neighbours with the same

classification but bound to the first case of a different class (Brighton & Mellish 1999).

Q

Class Boundary

Figure 5.4: Target cases identified with clustering

With the case base formed into clusters, the complexity of each cluster is defined as
the average complexity of the cases it contains. The clusters are then ranked in descending
order of complexity. Now, rather than choosing target cases purely on complexity ranking,
one case can be chosen from each cluster with cluster complexity used to prioritise the

target cases. The target case chosen from each cluster is the case with the highest com-
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plexity. In addition, there is now the opportunity to remodel the case base, by reforming
the clusters as new cases are added, and building the effect of the discovered cascs into
the next round of case discovery. Figure 5.4 shows the sclection of five target cases using
this approach. A more even distribution of target cascs along the decision boundary can

be seen.

5.1.2 Creating a new Case

The approaches described in the previous section are combined to identify gaps in the
coverage of the problem space. The sccond stage of the case-discovery process is to create
a candidate case to occupy the area between the two reference cascs (i.e. the target case

and its NUN). This involves setting suitable feature values for the candidate case.

Candidate Case Feature Values

Two approaches for setting the candidate case’s feature values have been investigated.
In the first, the feature values are set as either the mean (numeric features) or majority
(nominal features) of the feature values of the reference cases and their related sets: where
a case’s related set is the union of its coverage and reachability sets (McKenna & Smyth
2001a). This approach was found not to work well in domains containing small groups
of exceptional cascs. This may be due to one of the reference cases coming from a much
larger competence group and applying excessive influence on the feature values, and hence
location, of the candidate case. An alternative simpler approach was found to give more
consistent results and was adopted for the complexity-guided algorithms. In this simpler
approach the candidate case uscs only the two reference cases to sct its problem feature
values. This results in a discovered case more evenly spaced between the pair of reference
cascs.

Case discovery aims to create a new case for inclusion in the case base. Inclusion of
the candidate case may be automatic but, as there is no guarantee that a candidate case
will be a valid case occupying an active arca of the problem space, the more likely scenario
is for the case author to validate and possibly amend the case prior to its inclusion in the

case base.
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Noise Filter

A potential problem of discovering cases on classification boundaries is that noisy cases
may be discovered in domains containing significant levels of noise. Indeed, most modern
case editing algorithms (Brighton & Mellish 2002, Delany & Cunningham 2004) apply
noise reduction algorithms prior to an editing approach that retains boundary cases.

A typical approach to noise reduction is to remove cases that are incorrectly classi-
fied (Wilson 1972). We apply a similar approach to determine if a validated case should
be included in the case base. A friend to enemy distance ratio is calculated using the
similarity metric. The friend distance is the average distance to the validated case's three
nearest like neighbours whereas the enemy distance is the average distance to the validated
case’s three NUN’s,

A high ratio value indicates a validated case that may harm the system'’s accuracy and
would not be included in the case base. A conservative or aggressive approach to noise
filtering can be applied by varying the ratio above which a validated case is not added to
the case base. When applied, a conservative approach has been taken to noise filtering by

not accepting validated cases with a ratio greater than 1.5.
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Figure 5.5: Friend to enemy distance ratio

Figure 5.5 shows the impact of this friend:enemy ratio on the validation of two candi-
date cases. The two cases (¢; and ¢z) for which the distance ratio is being calculated are
shaded in black. It can be seen that case ¢, has a value for its friend to enemy ratio of

less than 1, as it is slightly closer to cases of its own class and would not be considered as
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noisy. However, case ¢ has a far higher value, in excess of 1.5, because it is close to cases

with a different class and would be considered noisy.

5.1.3 Algorithms

Two algorithms have been implemented and tested using the approaches discussed in the

previous two sections.

e COMPLEXITY is our simpler complexity-guided algorithm. The case complexity
measure is calculated for each case and the 50% of cases with the highest complexity
are ranked in descending order. Each case in turn (until the desired number of cases
are discovered) is selected as the target case and its NUN is identified as its paired
case. These two reference cases are used to create a candidate case to lie between
them by setting the candidate’s feature values as either the mean or majority of the
reference cases’ feature values. Figure 5.6 shows a simplified representation of the

algorithm operating on a small case base with cases belonging to two classes with a

class boundary between them.

Class Boundary

Figure 5.6: Illustration of COMPLEXITY

¢ COMPLEXITY+ is a more informed algorithm that uses clustering to create a
model of the case base. Figure 5.7 illustrates the operation of the algorithm on
a representation of a case base, with cases belonging to two classes and a class
boundary between them. The cases are formed into clusters and the case with the
highest complexity in each cluster is chosen as the target case (shown as a solid

case). The target case’s NUN is found (shown by an arrow) giving two reference
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cases and a candidate case is created to lie between them, as shown by the square.

Figure 5.7: Illustration of COMPLEXITY +

The implementation of the algorithm involves the following stages. The case com-
plexity measure is calculated for each case. Clusters are formed and their complex-
ity calculated, as discussed earlier. The 75% of clusters with highest complexity
are ranked in descending order of group complexity. A target case is selected from
each cluster in turn (until the required number of cases are discovered) and its NUN
is selected as its paired case. A candidate case is created in the same manner as
in COMPLEXITY. Where more cases are required than available clusters the stages

are repeated. This incorporates the effect of the already discovered cases into the

clustering model.

Both cOMPLEXITY and COMPLEXITY+ can be implemented with a post-processing
noise validation stage. An evaluation of both algorithms, applied to a range of datasets

from the UCI repository, is discussed in the next Chapter.

5.2 Redundancy Reduction

The CBR paradigm typically employs a lazy learning approach, such as k-nearest
neighbour (Cover & Hart 1967), for the retrieval stage of the process which delays gener-
alisation until problem-solving time. This is attractive because training is not necessary,
learning is fast and incremental, algorithms are simple and intuitive, and advance knowl-

edge of the problems to be faced is not required (Aha 1997). However, with large case
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bases, the drawbacks of lazy learning are high memory requirement since all examples are
stored, slow retrieval times and the possible inclusion of harmful cases.

At the initial case authoring stage, the case base can consist of all available examples.
Alternatively, the knowledge engineer can create a hand-crafted case base by storing only
selected examples in the case base giving rise to a need for algorithms that control the
size of the case base. In addition, the case base gets larger over time, often as a result of
indiscriminate storage of cases during the retain stage of the CBR cycle. The cascs may
be redundant and provide no improvement in competence or may even be harmful, noisy
cases that result in a reduction in competence. In cither case the inclusion of additional
cases will increase storage requirements and retrieval times. The cost of retrieval can grow
to the extent that it outweighs the benefit of additional cases. This is called the utility
problem (Francis & Ram 1993, Smyth & Cunningham 1996) and results in an ongoing

requirement to control case base growth.

We argue that there is not a single correct answer as to the level of editing a case
base requires because a balance has to be struck between the level of compaction and
competence, as shown in Figure 5.8. The best position on this balance is dependent
on a particular system's requirements. In one system fast retricval times may be vitally
important while in another maximum retricval accuracy may be the most important factor.

Understandably, there has been considerable rescarch on the case base editing problem
giving the knowledge engineer a choice of potential approaches. However, most contempo-
rary editing algorithms give no control over the size of the edited case base or the impact
on competence. In this section, we use our case base profiling technique to inform a new
editing algorithm that gives the knowledge engineer more control of the balance between
casc base size and competence and also provides a level of explanation of the editing
process.

The aim of redundancy reduction is to reduce the case base size while, at the same

time, retaining the original competence of the case base. Redundant cases will typically

have the following characteristics:-
¢ They are correctly classified in leave-one-out testing

e They are not required to classify other cases
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Conservative Aggressive
*High accuracy Lower accuracy
sLarge case-base *Small case-base
*Slow retrieval +Fast retrieval
*High storage *Low storage

Figure 5.8: Editing algorithms strike a balance between conservative and agressive editing

e They have larger coverage sets than related sets
e They will be further from class boundaries

Indeed some of these characteristics have been used in numerous editing algorithms to
identify redundant cases (Hart 1968, Aha et al. 1991, Wilson & Martinez 1997, Smyth &
McKenna 1999a, Brighton & Mellish 2001). Likewise, our approach uses a case complexity

measure which encompasses these characteristics to identify redundant cases.

5.2.1 Complexity-Guided Approach

The case base complexity profile provides a tool that can be used for informed redundancy
editing in which the knowledge engineer retains control over the level of compaction of the
case base. As with most redundancy editing algorithms, our approach aims to give a high
classification accuracy and to provide significant storage space reduction. However, these
objectives can be contradictory. Aggressive case editing can achieve large reductions in
case base size but at the expense of classification accuracy (Delany & Cunningham 2004).
The complexity profile provides a measure of the proportion of redundant cases compared
to cases near decision boundaries giving an explanation of the effect of different levels of
redundancy reduction on competence.

In classification problems redundant cases are found in clusters with the same clas-
sification preferably far from decision boundaries. Our approach to case base editing is

to identify and delete redundant cases while at the same time retaining boundary cases.
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Figure 5.9: Basic threshold approach to redundancy reduction illustrating the impact of
different thresholds on edited case base size

The complexity measure, described in Section 4.2.1, is a good identifier of boundary cases,
with a high complexity value, and redundant cases with a low complexity. We use the
local case complexity to guide our editing algorithm.

The benefits of this approach over existing techniques are two-fold. Firstly, the knowl-
edge engineer is in control of the maintenance process. An informed decision can be made
on a suitable level of case base compaction dependent on a system’s performance require-
ments. This decision is not made by selecting an arbitrary case base size. Rather, through
a review of the complexity profile, a judgement can be made on the impact of different
complexity thresholds. If storage space or retrieval time requirements are crucial to the
design a higher threshold can be chosen in the understanding that it will reduce compe-
tence. Secondly, the complexity profile provides an explanation of the editing process by
providing a transparency to the process and a justification for deleting the selected cases.

The basic approach is to set a complexity threshold and delete cases with a complexity
value equal to or less than the threshold. The threshold is set on the y-axis, and the
resulting reduction in the size of the case base can be noted on the x-axis. Figure 5.9 gives

an illustration of the threshold approach. In Figure 5.9(a) the threshold is set at zero and
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Figure 5.10: Illustration of Iris dataset highlighting need for refinements in relation to
mutual redundancy and noise

30% of the cases are edited giving a conservative editing approach. Figure 5.9(b) has a
threshold of 0.1 removing 55% of the cases, Figure 5.9(c) has a threshold of 0.2 removing
70% of the cases, while agressive editing is illustrated in Figure 5.9(d) with a threshold
of 0.5 removing 86% of the cases. Our expectation is that setting a zero threshold will
remove only cases that are likely to be redundant and not result in a fall in competence.
Competence is expected to decline gradually as the complexity threshold is increased.
The basic approach gives promising results but three refinements have been added
to improve performance. The thinking behind these refinements is demonstrated by an
example. In Figure 5.10 the Iris dataset is displayed on 2 dimensions using a spring
model diagram (Kamada & Kawai 1989) with cases being represented by a circle. The
diagram attempts to maintain the calculated distance between cases to be proportional to
the distance between them on the diagram. Iris is a three class problem and the class is
represented by colour: red, blue or black. The red class, highlighted in the figure, forms a
distinct cluster of cases all with zero complexity, which we term mutual redundancy. Two

refinements have been introduced to counteract the effect of mutual redundancy. Iris is



5.2. Redundancy Reduction 86

not a noisy dataset so one noisy case has been introduced artificially by changing the class

of one case to demonstrate the need for our final refinement.

e Mutual Redundancy:

— Setting a simple threshold can delete the complete cluster. It would be better
to retain at least one case to represent the cluster. To overcome this problem
an iterative approach is employed with case complexitics being recalculated
after each case deletion and the case base being re-ranked in ascending order
of complexity.

— A further problem with clusters of cases with zero complexity is the choice of
order of deletion. If a random sclection is made cases nearer decision bound-
aries may be sclected for deletion first. This would harm the performance of
the algorithm so we use the friend to enemy distance ratio, introducex in Scc-
tion 5.1.2, as a sccondary ranking. The friend distance is the average distance
to the case’s nearest like neighbours whereas the enemy distance is the average
distance to the case’s nearest unlike neighbours. A high ratio indicates a case
closer to a decision boundary and farther from cases of the same class. Whereas
a low ratio indicates a case farther from a decision boundary and in a cluster

of cascs all belonging to the same class.

e Noise: Noisy cases arc by their very nature boundary cases and hence will be re-
tained by this algorithm together with the cases surrounding the noisy case, Adopt-

ing the approach of most other contemporary cditing algorithms, a pre-processing

noise editing algorithm (RENN) is introduced.

5.2.2 Complexity Threshold Editing

The Complexity Threshold Editing algorithm (CTE), incorporating the three refinements

introduced above, is described in Figure 5.11. An evaluation of CTE applied to a range of

datascts from the UCI repository, is discussed in Chapter 6.
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i 7 Dataset of n cases (€ ....Cn)
COM(S), Calculate case complexity, distance

ratio and order cases inset S
RENN(S), Apply noise removal fo set S
Count=0

COM(T)
ForeachcinT
if ( complexity(c)<threshold) count++
End-For
E-Set <= RENN(T)
For 0 to count
COM(E-Set)
¢ < First case In E-Set
E-Set = E-Set-¢
End-For
Return (E-Set)

Figure 5.11: Complexity threshold editing algorithm

5.3 Error Reduction

In real environments the quality of the cascs cannot be guaranteed and some may
even be corrupt. Error rates in the order of 5% have been shown to be typical in real
data (Maletic & Marcus 2000). Corrupt cascs, also called noise, contain crrors in the
values used to represent the case. In classification tasks, noise can result from cither the
class labels being wrongly assigned or corruption of the attribute values (Zhu & \Wu 2004).
The CBR paradigm typically employs k-nearest ncighbour for the retrieval stage of the
process. While the nearest neighbour algorithm can reduce the impact of noise to some
extent by considering more than one neighbour, the existence of noise can still be harmful.
This is particularly true where the retrieved cases are being used to support an explanation
of the proposed solution (Roth-Berghofer 2004). Manually identifying noisy cases Is at best
time consuming and impractical with large case bascs duc to the scale of the task. Hence,
automated pre-processing techniques that remove noisy cascs are useful to the knowledge
engincer during both the initial case base development stage and the ongoing maintenance
of a case base.

One of the assumptions underlying the CBR methodology is that similar problems have
similar solutions. This assumption is challenged in classification tasks at class boundaries,
where the solution changes abruptly as the location of a target case crosses a decision

boundary in the problem space. Previous work has identified the importance of boundary
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regions for case base maintenance (Brighton & Mellish 1999, Delany & Cunningham 2004).
We agree that boundary regions are critical for error reduction. Smoothing the decision
boundary by removing selected, harmful cascs located near boundaries can improve ac-
curacy in some casc bascs, however, excessive smoothing of the boundary by removing
too many cases will reduce accuracy. The optimal level of smoothing depends on the
characteristics of the decision boundary and is not easily quantified.

Error reduction algorithms aim to improve the competence of a case base by removing
cases that are thought to have a detrimental cffect on the competence of a CBR system.
These cases may be cases that are mislabeled, cases on a boundary between classifications,
outlying cascs or simply exceptions. Two main approaches have been applied to error

reduction:-

1. Remove cases that are incorrectly classificd. Wilson editing (Wilson 1972) and sev-
eral extensions attempt to remove noise by considering each case in the case base and
removing it if it is incorrectly classified in lcave-one-out testing. DBrodley & Friedl
(1996) use an ensemble of different type classifiers and use the uncertainty within the
results to inform a noise reduction filtering algorithm. Each case is classified using
a cross-validation technique and, where there is a consensus among the ensemble a

misclassified case is removed. If there is uncertainty in the classification the case is

retained,

2. Remove cases that cause other cases to be misclassified. Delany & Cunningham
(2004) use leave-one-out testing to identify cases that cause other cases to be mis-
classified and build what they call the case's liability sct (cases where this case
contributes to a misclassification). Where a case causcs more cascs to be misclas-
sificd than correctly classified the case is removed e, where a cases liability sct is

bigger than its coverage sct. This is a more conservative approach resulting in the

removal of fewer cases.

Both these approaches have been shown to successfully remove noise. The criteria
used by these algorithms results in the removal of mislabelled cases plus varying levels of
boundary cascs. However, all these approaches have the disadvantage that they have no

control over the level of noise reduction. Each case is simply identified as a noisy case or
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not. There is no control over the number of cases removed.

We introduce a pre-processing technique to reduce the error rate in lazy learners by
identifying and removing both noisy cases and harmful boundary cases. Our approach
identifies potentially harmful cases with the aid of a case base profile and uses a stopping
criteria to vary the level of case removal at class boundaries to suit the domain. As an
additional benefit, the technique provides an insight into the structure of the case base

that can allow the knowledge engineer to make more informed maintenance decisions.

5.3.1 Profiling to Identify Harmful Cases

Our initial objective is to identify potentially noisy or harmful cases. By adopting the
basic premise that cases whose neighbours belong to a different class are more likely to
be harmful cases, we use a case distance ratio that provides a local measure of a case's
position in relation to neighbours of its own class and neighbours with a different class.
A ranked profile of this ratio provides a view of the overall structure of the case base. In
the rest of this section we first define the local distance ratio used and then look at our
profiling approach as a means of presenting a global picture of the composition of local

ratios contained within the case base.

Assessing Confidence

o NLN Distance Profile for C,
w 2
0 S S
o [ ]
(=]
O
b) t 2 3 <=

Figure 5.12: Calculation of friend:enemy ratio

The complexity measure we use to assess our confidence in a case compares distances

to a case’s nearest like neighbours (NLN’s) with distances to its nearest unlike neighbours



5.3. Error Reduction 90

(NUN’s), where the NLN is the nearest neighbour belonging to the same class and the
NUN is the nearest neighbour belonging to a different class. We call the complexity
measure the Friend:Enemy (F:E) ratio.

Figure 5.12 shows the calculation of the NLN distance (Dist(NLN)) for case ¢;. A case
is represented by a symbol with its class distinguished by the shapes: circle and star. Two
cascs are identified (c; and cz) and the distances to their three NLN's are represented by
solid lines and the distances to their NUN's by dashed lincs. Dy is the average distance to
a case’s k NLN's. In Figure 5.12(a), as the value of k increases, the sequence of Dy for ¢
starts 0.1, 0.15, 0.18. A profile of Dy (Figure 5.12(b)) can now be plotted as k increases.
Dist(NLN) is the average value of D for some chosen K. For ¢; with K=3, Dist(NLN) is
0.14; Dist(NUN) is 0.17 and the F:E ratio is 0.83 (0.14/0.17).

C, is a typical boundary case, positioned at a similar distance from its NLN's and
NUN'’s, with a F:E ratio in the region of 1. Whereas, Cz is a typical noisy case, positioned
closer to cascs belonging to a different class, with a FiE ratio much greater than 1 (2.36).
This complexity measure gives a higher weighting to nearer neighbours because they are
included repeatedly in D; and also allows the size of the neighbourhood to be easily varied
to suit different sized case bases. A small neighbourhood is typically more suitable for

identifying noise and K=3 has been used to calculate the F:E ratio for our experiments.

Profile Approach

The F:E ratio gives an indicator of the positioning of a case in rclation to other cascs of
the same and different class within its own local neighbourhood. This ratio can provide
an indication of the potential of a case to be harmful and we will show later that this
indicator can be used to inform an error reducing editing algorithm. However, it is difficult
for the knowledge engincer to use this local information directly to gain an insight into the
structure of a case base from a global perspective. Our approach is to present the data as
a ranked profile of case distance ratios. In this approach the mix of complexitics within
the case base can be viewed as a profile allowing comparisons to be made between case
bases.

The ranked complexity profile is created by first calculating the F:E ratio of each case

to give a local measure of system confidence. The cases are ranked in ascending order.
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Then, starting with cases with the lowest value, case distance ratios are plotted against the
normalised position of the case in the ranked list. Thus the x-axis shows the proportion
of the case base and the y-axis gives the F:E ratio for the particular case at the relative

position in the ranked list. A typical case base profile is shown in Figure 5.13.

threshold level
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Figure 5.13: Typical graph of Friend:Encmy ratio profile

Two thresholds are marked on the plot corresponding to F:E ratio values of 0.75 and
1.00. The proportion of the case base corresponding to these thresholds is marked as xy,
and x; respectively. These indicators provide an insight into the structure of the case base.
The proportion of cases above xg identifics cases closer to those belonging to a different
class and gives an indication of the level of noise present in the case base. The proportion
of cascs between x), and x; identifics the number of cases close to class boundarics and
gives an indication of the potential number of cascs that could be removed while sioothing

decision boundaries.

Interpreting Profiles

We have looked at a typical profile and claimed that these profiles provide a tool for
making comparisons of the structure of the case base, including the level of nolse, across
different domains. To examine this claim we look at example profiles from three domains.
Figure 5.14 shows the profiles for throe public domain classification datascts from the UCI
ML repository (Blake et al. 1998): House Votes, Lymphography and Breast Cancer.
House votes (Figure 5.14(a)) is a binary classification problem with 435 cases repre-

sented by 16 boolean valued attributes containing some missing values. It can be scen
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Figure 5.14: Sample profiles for three classic dataset

from the profile that a high level of classification accuracy s expected. There is a low level
of predicted noise (7%) based on the 1.0 threshold, and few cases (4%) lie between the
0.75 and 1.0 thresholds, indicating that few cases lie close to decision boundaries. Error
reduction techniques would not be expected to give a large improvement in accuracy levels
on this case base.

Lymphography (Figure 5.14(b)) is a smaller datasct with 4 classes and 148 cases rep-
resented by 19, mostly nominal, attributes with no missing values, There is a low level
of predicted noise (10%), however, this appcars to be quite a complex problem, with the
shape the profile indicating many cascs lie close to decision boundarics; 29% of the cnses
lie between the two thresholds. In this case base it is unclear if smoothing the decision
boundary will improve accuracy.

Breast Cancer (Figure 5.14(c)) has 286 cascs and i3 a binary classification domain with
9 multi-valued features containing missing data. There is a high estimated level of nolse
with 24% of cases with a ratio greater than 1 and a peak F:E value greater than 6. 12%

of cases lie between the 0.75 and 1.0 thresholds. Pre-processing to remove harmful cases
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would be expected to greatly improve accuracy on this case base.

5.3.2 Complexity-Guided Error Reduction

Our aim in creating an error reduction algorithm is to identify and delete both noisy
cases and harmful boundary cases from the case base. Noisy cases are expected to have a
F:E ratio greater than 1 while boundary cascs are expected to have a ratio in the region
of 1. The basic approach we adopt is to set a threshold for the F:E ratio and delete all
cases with values above the threshold. An obvious threshold is 1 such that cases positioned
nearer to those belonging to a different class will be removed from the case base. However,
conservative editing with only limited smoothing of the decision boundarics is possible by
setting a threshold above 1 while, conversely, aggressive editing with strong smoothing of
the decision boundaries is possible by sctting a threshold below 1. In order to establish a
suitable threshold across all domains we investigated the effect of setting different threshold

values.

Setting the Threshold Level

A ten-times 10-fold cross-validation experimental sct-up has been used, giving 100 case
base/test set combinations. For cach combination, cases with a F:E ratio above the spec-
ified threshold were deleted from the case base to form an edited case base. Test sct
accuracics were recorded on both the original and the edited ense bases. The threshold
was sct at one of fourteen levels between 0.2 and 5. Figure 5.15 plots average test sct
accuracy on the original case base and on the edited case bases formed with the different
thresholds for the three dataset discussed earlier: House Votes, Lymphography and Breast
Cancer. Similar patterns of results were observed across other domains,

House Votes shows a small improvement In accuracy as the threshold falls toward 1
but the performance suffers as useful boundary cascs are removed with lower thresholds.
Lymphography shows no improvement in accuracy from case editing and any boundary
smoothing appears harmful. In contrast with Breast Cancer, the accuracy continucs to
rise until the threshold falls to 0.4, highlighting a domain in which aggressive smoothing

of the decision boundaries helps performance.
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Figure 5.15: Accuracy of cdited case bases as cases with ratio above threshold are removed

The expected pattern of results was for the highest accuracy to be achieved with a
threshold of about 1. However, this pattern was not obscrved consistently, as in somne
domains any boundary smoothing proved to be harmful and reduce accuracy while in
others aggressive boundary smoothing with ratio thresholds as low as 0.4 gave the highest

accuracy. It is clear that there is not one optimal threshold to suit all domains.

5.3.3 Threshold Error Reduction Algorithm

The basic approach, of sctting a single threshold, gave promising results in some domalns

but also highlighted two problems.

o It is difficult to set a single threshold that works well across all domains. It would be
better to sct a threshold that suits the characteristics of the case base being consid-
cred. To overcome this problem and establish an appropriate threshold, we processes
cascs in batches by iteratively reducing the threshold in steps. After cach «diting
step a leave-one-out accuracy check is performed to provide a possible stopping crl-

teria, Leave-onc-out accuracy is calculated initially on the original case base and
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then on the edited case base after each batch of eases are processed. If the accuracy
falls the iterative process is stopped at the present threshold and the edited case

base from the previous iteration is accepted as the final edited case base.

e The use of the F:E ratio to identify potentially harmful cascs can result in the
ncighbours of a noisy case being falscly considered to be noisy themselves, simply by
the presence of the noisy case in their ncighbourhood. This is particularly likely when
looking at a very small neighbourhood and weighting the measure to the nearest
neighbours as we do with the F:E ratio. To prevent uscful cascs being mistakenly
removed we only delete cascs if their complexity is higher than their neighbours. Of
course, if a case, not deleted by this check, is truly noisy it will be identified on the

next iteration and considered for deletion again.

Our Threshold Error Reduction (TER) algorithm, incorporating the stop criteria and
neighbourhood check, is outlined in Figure 5.16. An evaluation of TER appliad to a range

of datascts from the UCI repository, is discussed in Chapter G.

5.4 Maintenance Algorithms in Practice

Case base maintenance can take one of two general approaches. The algorithim can
opcrate independently of the knowledge engineer, requiring no input in setting parameters
or the scope of the maintcnance. For example, many editing algorithins receive a case base
as input and output the edited case base without knowledge engincer intervention having
the advantage that knowledge of the editing process is not required. The disadvantage is
that many maintcnance tasks are a trade off between alternative factors that can only be
decided with knowledge of the system requirements. In addition, maintenance algorithms
are unlikely to be accepted, in a commercial environment, if the process Is not transparent.

An alternative approach is to leave control over the scope of the maintenance with the
knowledge engincer. This has the advantage that maintenance can be tailored to meet the
objectives of the system being developed. The disadvantage is that the approach must be

understandable requiring a transparent method in which the impact of decisions can be
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T-set, case-base of n cases (Cy ....Cn)

COM(S), calculate F:E ratio, F:E{c), for
eachcaseinsetS

ACC(S), retums leave-one-out accuracy
for set of cases, S

CHK(c), retums true if F:E(c) Is > F.E ratio of
each of its k-nearest neighbours

E-set = T-set

R-set = T-set

accuracy = ACC(T-Set)
threshold = 1.25

while (ACC(E-Set) >= accuracy)
COM(E-Set)
for (each ¢ in E-set)
It (F:E(c) > threshold && CHK(c))
E-Set = E-Set-¢
endif
endfor
If (ACC(E-set) >= accuracy)
accuracy = ACC(E-set)
threshold = threshold - 0.1
R-set = E-sel
endif
endwhile
return R-set

Figure 5.16: Threshold error reduction algorithm, TER

judged. We favour the sccond approach and have developed a prototype Interactive tool,
called ComCASE, that demonstrates the complexity-guided approaches developed in this
rescarch 1,

The complexity model and maintenance algorithms discussed in this thesis have all
been implemented and evaluated on CASE, which is a CBRR retrieve only system. CASE
has been developed in Java, using an object oriented design to allow easy extension,
and provides a work bench on which to test new or existing algorithms. Maintenance
algorithms can casily be incorporated with the addition of a new class module. Case:
takes an input in .arff file format (Witten & Frank 2000) and has data structures to hold a
case base as a collection of cases each composed of a set of features. Features have a name
and value and can be allocated one of three types: nominal, ordinal or real. Retrieval
is performed by an implementation of the A-NN algorithm with a solution by a weighted

majority vote for nominal classes, and by a weighted average for real valued classes. The

'I acknowledge Ilassan Khajeh-Ilosseini for his work in developing the Interface as part of a student
summer project which I supervised.
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Figure 5.17: Prototype interface for complexity-guided maintenance prior to parameter
setting

distance between cases is measured by Euclidean or Manhattan distance, calculated using
the normalised distance between feature values. Feature weights can be applied manually
or using a genetic algorithm approach if required. ComCASE has been developed as an
extension to CASE.

Our general approach is to present the complexity or F:E ratio profile and leave control
over the maintenance process with the knowledge engineer. Figure 5.17 shows the initial
interface for redundancy reduction maintenance with the CTE algorithm containing three

main panels.

 The panel on the upper left of the interface displays a dynamic visualisation of the
case base by using a spring based algorithm. The algorithm uses the attraction and
repulsion of the springs to spread the cases around a two dimensional graph in an
attempt to preserve the n-dimensional distances between cases. The class of a case
is represented by shape, and the complexity by a colour gradient; light grey for low

complexity cases through to black for the most complex cases.
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Figure 5.18: Prototype interface for complexity-guided redundancy reduction showing the
selected threshold and cases proposed for deletion

In the diagram we see the Iris dataset with the three classes represented by circle,
square and diamond. The circle class is well separated in an independent cluster
but the square and diamond classes show some overlap at a decision boundary. It

can be seen that the darker, and hence most complex cases are located close to the
decision boundary as expected.

* The panel at the top right shows the case complexity profile as discussed in Sec-
tion 4.2, It can be seen from the profile that the Iris dataset has a low overall level
of complexity and a high level of redundancy which suggests a redundancy reduction

algorithm may be appropriate. While the level of noise is low there are a few cases

with high complexity and a slight improvement in accuracy may result from applying

an error reduction algorithm.
e The lower right panel contains parameter setting boxes and control buttons.

In Figure 5.18 we see the interface after maintenance parameters have been selected.
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Figure 5.19: Prototype interface for complexity-guided case discovery

In this example a complexity threshold of 0.05 has been selected as can be seen by the
green line on the complexity profile. The cases selected by the algorithm for removal have
been colour filled in red. A large number of cases are selected reflecting the high level of
redundancy present in the case base. It can be seen that the cases retained are mostly close
to the decision boundary between the square and diamond class although a few cases are
retained to represent the circle class. The complexity profile that results from accepting
this editing proposal is shown on the profile plot as the blue line. The knowledge engineer
has the option to accept this editing proposal in its entirety, to try again with different
parameters, or to select and make decisions about individual cases. Case information on
selected cases is shown in a panel on the lower left of the profile.

The interface for case discovery is shown in Figure 5.19. The layout of the interface is
very similar to that for redundancy removal but with the number of new cases required
being the main parameter to set rather a threshold. The example shown is for the com-
PLEXITY algorithm being applied to the Zoo dataset. Three new cases have been selected

in the parameter panel and can be identified as green stars on the spring diagram. The
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Figure 5.20: Prototype interface for complexity-guided error reduction

reference cases related to the discovered case are identified by a connecting line. While
the algorithm does select a class for new cases, this is intended as an interactive approach
and the knowledge engineer can identify the new case on the spring diagram and select
the appropriate class in the case information panel on the lower left of the interface.
Figure 5.20 shows the interface for applying the error reduction algorithm, TER. In this
interface the F:E ratio ranked profile, which uses a smaller neighbourhood and is more
discriminating for identifying noise, is shown in the upper right panel rather than the
complexity profile shown in the previous interfaces. In the example shown we again see
the Iris dataset, however, the individual case positions on the spring based visualisation of
the case base have change when compared to Figures 5.17 & 5.18. This highlights one of the
disadvantages of the visualisation; it is not deterministic and different diagrams are likely
to be produced each time which can be confusing to the user. As expected from the low
level of noise present in the data, only a few cases, lying close to the decision boundary,
have been selected for removal (shown colour filled in red). The impact of the editing

proposal is shown on the F:E ratio profile as the blue line. Again, the knowledge engineer
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has the option to accept this editing proposal, to try again with different parameters, or

to sclect and make decisions about individual cascs.

Discussion

It should be noted that ComCASE is still at a development stage and a number of issucs
remain to be resolved before it is ready for a usecr evaluation. In particular, it would be use-
ful to display additional case base information, such as case basc size, case representation
details and the profile indicators for accuracy, redundancy and noise. On large case bascs
the spring algorithm display requires further development because it is computationally
demanding, slow to display and can be confusing with many overlapping cases.

Case base maintenance typically involves a trade-off betwoen competence and other
competing factors: case discovery is a trade-off betwoen accuracy and the cost of do-
main expert time in the validation or labelling of discovered cases; redundancy removal
is a balance between maintaining competence and a small case base giving fast retricval
times; error reduction is a trade-off between competence and the loss of case knowledge
through the deletion of exceptional cases. In developing an interactive approach to case
maintenance we aim to leave control of these trade-offs with the knowledge engincer 50
that informed decisions can be made that consider system requircments. The knowledge

engincer can exercise control over the maintenance process by:-

e choosing appropriate techniques based on the information provided on the structure

of the case base by the complexity profile.

e sctting suitable paramecters for particular algorithm e.g. sctting an editing threshold

for CTE, our redundancy removal algorithm

e accepting, rejecting or adapting the proposed case base as a result of a judgement on

its impact, shown on the spring diagram visualisation and on the complexity profile.

One of the main advantages in CBR lics in the transparency of the approach which
gives particular advantages when providing explanations to the uscr (Leake 199Ga). Expla-
nation has been a hot topic in CBR in recent years and the focus of considerable research

effort (Massie et al. 2004b, McSherry 2004, Nugent, Cunningham & Doyle 2005). However
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the research has been aimed almost exclusively at making the reasoning process, its result
or the usage of the result understandable to the user (Sormo, Cassens & Anmodt 2005).
Similar issues, in relation to the need for explanation, apply to CBR knowledge main-
tenance but have generally not been considered. If maintcnance algorithms are to be
accepted by knowledge engineers the process, result and benefit must be explained.

In developing our maintenance approaches we have been conscience that user confi-
dence may be harmed, due to a lack of understanding, if the processes are hidden. We aim
to make the maintenance process more transparent by presenting the mix of complexitics
within the case base as a profile. This gives the knowledge engincer an understanding of the
structure of the case base and a measure of the difficulty of the problem being faced. This
aids the choice of techniques to apply and gives an indication of the expected result. Using
the spring diagram to visualise the case base prior to applying the maintenance technique
and to highlight new cases or cases selected for deletion after applying the maintenance
technique gives an explanation of the process. The impact of the maintenance process can
be judged by the change to the profile and the spring diagram. Explanation is further
enhanced by adopting a consistent approach across all three maintenance tasks addressed
in this rescarch. The outcome is a transparent approach in which visualisation I3 uscd to
provide a knowledge-light explanation of the maintenance process and result, thus alding

understanding by the knowledge engincer.

5.5 Chapter Summary

In this Chapter we have looked at how the local case information generated from our
complexity-guided model for classification tasks can be uscd to inform case base mainte-
nance approaches. Specific algorithms have been developed for three common maintenance
tasks: case discovery, redundancy reduction and error reduction. A prototype system has
been developed which demonstrates the use of the algorithms in practice.

A complexity metric and a case’s NUN have been uscd to guide the case discovery
process by identifying interesting arcas of the problem space. The idea of placing new

cascs on classification boundaries appears to be intuitively sensible in that it mirrors the
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approach of recently developed case base editing algorithms., CoMpLEXITY and CoMm-
PLEXITY+, two new complexity-guided algorithms that adopt this approach, have been
introduced.

To identify redundant cases that contribute little to classification performance we com-
bine a local case complexity together with a case base profile to guide the editing process.
The complexity measure identifies redundant cascs for deletion and cases on class decision
boundaries for retention. By leaving control of the threshold parameter with the knowl-
edge engineer, an element of control is retained over the compromise required between the
contradictory objectives of the reduction in case base size and the retention of competence,

For error reduction we use an alternative local case distance ratio that considers the
distance to neighbours belonging to the same and different classes to aid identifying harm-
ful cascs. This measure together with a case base profile guides the editing process for lazy
learners. The algorithm (TER) focuscs on deleting harmful cases from boundary regions to
give smoother decision boundaries between classes. A stopping criteria s used to ensure
that the level of smoothing is adjusted to suit the domain. Noise reduction can also harm
performance, Carcful consideration should be given to the domain and the structure of
the case base to ensure there is a need for noise reduction before removing ease knowledge
with an editing algorithm. The F:E ratio profile provides a tool for the knowladge engincer
to make an informed decision on the need for error reduction.

ComCASE is an interactive case base maintenance tool that has been developed as
an extension of CASE to demonstrate our complexity-guided approach to maintenance.
ComCASE impliments the complexity model together with our new maintenance algo-
rithms: COMPLEXITY, COMPLEXITY+, CTE, and TER. The interface developed for ComCasg
displays the complexity profile and a two-dimensional visualisation for both the original

and the proposed case bases but leaves control of acceptance of proposcd changes with the

knowledge enginecr.



Chapter 6

Evaluation

We carry out an experimental evaluation of the complexity-guided case base model and
associated maintenance algorithms introduced in the preceding two chapters.  All the
experiments are carried out by implementing and adding the appropriate modules to CASE,
the experimental CBR retrieve only test bed described in section 5.4. The objective of the
evaluation is two-fold. First to show that the model provides an accurate global view of
the case base thus aiding the knowledge engineer to make informed maintenance decisions
and giving confidence in the local case information used to inform our new malintenance
algorithms. Seccond to establish the performance of the new maintenance algorithms in
relation to existing benchmark algorithms.

In the following scction the data used in the experimental evaluation i3 described. In
Section 6.2 the complexity profile indicators are examined to determine their ability to
predict the real dataset values. The new case discovery algorithms are experimentally
evaluated in scction 6.3 to cstablish whether useful new cases are discovered. In sections
6.4 and 6.5 the new redundancy reduction and error reduction editing algorithms arce

investigated and their performance compared with existing benchmark algorithms.

6.1 Datascts

Seven public domain classification datascts from the UCI ML repository (Blake ct al.
1998) have been used in the evaluations reported in this Chapter. The sclected datascts

have been chosen to provide varying number of cascs, features and classes and differing

104
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proportions of nominal to numeric attributes. Table 6.1 gives a summary of the datascts
used including a measure of the difficulty of the classification problem in the form of test sct
accuracies achieved with three standard classifiers!. Some of the datasets are recognised
to be noisy, e.g. Breast Cancer, and present more difficult problemns while others, c.g.
Wine, have no or low levels of erroncous data and present relatively casy problems with
accuracics of over 95% . Some of the datascts contain missing data and column G shows

the number of attributes which contain missing data.

Table 6.1: Comparison of UCI datasets used for evaluation

No. of | No. of NoO. OF ATTRIBUTES CLASSIFIER ACCUR. %
CAsE BaAse CASES | cLAsS | NOMINAL | NUMERIC | MISSING | 1-NN | J48 | N.Baves
Breast Cancer 286 2 9 0 2 724 | 75.5 7.7
Hepatitis 155 2 13 6 15 80.7 | 83.9 84.5
House Votes 435 2 16 0 16 92,4 | 96.3 20,11
Iris 150 3 0 4 0 053 | 96.0 96.0
Lymphography 148 4 15 3 0 824 | 77.03 83.11
Wine 178 3 0 13 0 049 | 93.8 96.6
Zoo 101 7 16 1 0 960 | 92.1 5.1

6.2 Complexity Model

Our complexity model profiles can be cvaluated on two levels: whether complexity pro-
filing can provide uscful comparisons of case bascs from different domains; and, sccondly,
whether the profile indicators accurately predict global error rates and levels of noise and
redundancy.

In Scction 4.2.2 we looked at profiles from different domains, discussed the insight these
profiles provide and demonstrated how they could clearly identify the differences between
example datascts. However, the assessment of the profiles assumes that the crror rate,
noise level and redundancy level indicators are good predictors of the real values contained
within the data. While conceptually the use of these indicators appears reasonable, we

want to investigate the rclationships empirically. In this section of our evaluation we aim

'Classification accuracy is measured using standard 10-fold cross validation parameters with the WEKA
machine learning workbench (Witten & Frank 2000)
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to confirm our assertion that the complexity profile indicators accurately predict global

error rates and levels of noise and redundancy.

Table 6.2: Results summary of complexity profile indicators compared to alternative mea-

sures
ERROR RATE NOISE REDUNDANCY
Case Base TesT SET | PROFILE | ENN | PROFILE PROFILE
Wine 0.037 0.050 0.033 0.04 0.75
Iris 0.059 0.058 0.048 0.05 0.79
Hepatitis 0.189 0.203 | 0176 | 0.16 0.46
Lymphography 0.187 0242 | 0155 | 0.14 0.23
Breast Cancer 0.339 0.344 0.306 0.28 0.08
House Votes 0.079 0.083 0.071 0.07 0.77
Zoo 0.038 0.085 0.061 0.06 0.70

Accuracy or error rate is the easiest indicator to comparc. We measure crror rate
experimentally using ten-fold cross-validation. Nine folds are retained as the training set
with the remaining fold being the unscen test sct. The average error rates for seven UCI
datascts, calculated using 1-NN, are shown in column 2 of Table 6.2 with the corresponding
crror rate indicator from the complexity profiles shown in column 3. In Figure G.1 the
average test sct error rate, measured for the seven datascts, i3 recordad along the x-axis
with the corresponding error rate indicator from the profile is recorded on the y-axis.
There is a strong correlation between the results as can be scen by the close fit to the

straight line.

There is not an obvious measure of noise with which to make a comparison. However,
ENN is one of the best known noise reduction algorithm, hence, we use the reduction in
the size of a dataset after applying ENN as a benchmark measure of noise with which to
compare our predicted indicator from the complexity profile. The average redduction in the
cdited sct size, after applying ENN, as a proportion of the original datasct size i3 shown
in column 4 of Table 6.2. This is compared with the average complexity profile noise
indicator, shown in column 5. Again there is a strong corrclation between the results,

shown by the fit to a straight line in Figure 6.2 which plots the complexity profile nolse

prediction on the y-axis with the proportional reduction in the size of the dataset from

applying ENN on the x-axis.
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These results confirm that the complexity profile indicators are good predictors of
accuracy and noise. The ability of the profile to predict redundancy is more difficult to
measure directly but is investigated in more detail in Section G.4.

To some extent the close correlation between the values predicted by the profile and
the real dataset values is to be expected because both the complexity measure and k-NN
look at the mixture of solutions present in a cases neighbourhood. Iowever, the actual
measurement used and the size of the neighbourhood are certainly different which makes
the closeness of the correlation encouraging with respect to the models ability to inform

maintenance algorithms.

:O: 0.4 a
S ‘5 0.3
:E 0.3 1 .E
@ -;
® & 02
E 0.2 1 ; E
3
_: 0.1 € 0.1
= =1
p 5 /"
* o - — - & 0
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3
Test set error rate ENN edited size reduction
Figure 6.1: Error rate corrclation Figure 6.2: Noise level correlation

6.3 Complexity-Guided Case Discovery

In order to confirm that complexity-guided case discovery s useful we need to demonstrate

that useful cascs are discovered. In order to establish this our two complexity-guided
algorithms have been compared with two benchmark algorithms. The test set accuracies
achieved, on five UCI datascts, as different numbers of eases are discovered are recorded

and the results from the four algorithms are compared.

6.3.1 Experimental Design

Four diffcrent case-discovery techniques have been implemented. All the algorithing iden-

tify two reference cases (a target case and its pair case) from within the case base. The
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main difference between the four algorithms is in their approach to identifying these ref-
erence cases. Two of the algorithms are our complexity-guided algorithms described in
Section 5.1.1 (CoMPLEXITY and COMPLEXITY+) while the remaining two algorithms,

which provide benchmarks for comparison, are as follows:-

e COMPETENCE uses competence-guided case discovery to create new cases between
the nearest neighbour competence groups (McKenna & Smyth 2001a). Two reference
cases are selected from different competence groups that are nearest to each other,
The candidate case’s feature values are set using the feature values of the reference
cases’ related sets. Figure 6.3 shows the algorithm operating on a representation of
a small case base with cases belonging to two classes with a class boundary between

them.

+
|a-

Class !
caans 7
e

Figure 6.3: Illustration of COMPETENCE

® RANDOM is an uninformed algorithm that selects two reference cases at random from
the case base and then uses these reference cases to create a candidate case in the

same way as COMPLEXITY. This process continues until the required number of

cases have been discovered.

Set-up of Experiment

Complexity-guided case discovery cannot guarantee that a valid case will be discovered.
The objective is to supply a complete, candidate case to the case author to either accept
or create a slight variation that corresponds to a valid case. This situation is difficult
to replicate in an experimental evaluation because a domain expert is not available to

validate the discovered cases. To simulate an expert our experimental design uses a pool
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Figure 6.4: Accuracy of growing case bases as cases are discovered

of independent cases to act as an oracle. The candidate case then acts as a probe into this
pool of cases to retrieve the most similar case from the oracle.

A 5-fold cross validation experimental design was used with the folds being stratified
to ensure a proportional representation of each class in each fold. One fold was used as
the training set, the test set is one of the remaining four folds in turn with the pool of
cases being made up of the three unallocated folds. This process was repeated with the
training set being allocated each of the 5 folds in turn resulting in 20 unique combinations
of training set, test set and pool cases. There was no overlap between a training set and
its associated test set and pool of cases.

The case base was initialised by randomly selecting a fixed number of cases from the
training set. The starting size of the case base varied between 10 and 35 cases, depending
on the dataset size and the difficulty of the problem. The algorithms were run on each
trial on each dataset to discover between 5 and 40 cases in steps of 5. The results are
plotted as a graph of the average accuracy for the test set for increasing case base size, as

an increasing number of cases are discovered.

The experiments evaluate the effectiveness of the complexity-guided algorithms on
test set accuracy with a varying number of cases being discovered. Test set accuracy is

evaluated by 1-NN.
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6.3.2 Results and Discussion

Significance is reported from a one-tailed paired t-test at 99% confidence, unless oth-
erwise specified. Figure 6.4(a) and (b) show average accuracy results for cach case base
size on the House Votes and Hepatitis domains. These are both binary classification
problems with a bias to one of the classes. House votes is the larger data set with 435
cascs containing 17 nominal features while Hepatitis is a smaller data set of 155 cases
represented by 20 mostly nominal features containing some missing values. As expected
we sce a significant improvement in accuracies on both House Votes and IHepatitis by
the two complexity-guided algorithms (COMPLEXITY and COMPLEXITY+) over RANDOM
and COMPETENCE. Perhaps surprisingly, the simpler COMPLEXITY gives the best perfor-
mance on these datasets. This might be explained by these being binary problems with
high accuracy suggesting a more simple boundary than on the other datascts. The simpler
algorithm, by concentrating on only few arcas of the problem space, appears to perform
well on this type of domain.

Average accuracy for the Zoo and Lymphography domains appear in Figure 6.4(c)
and (d). These are multi-class problems: Zoo has 101 cases split between 7 classes while
Lymphography has 148 cases covering 4 classes. These domains have a similar number of
features (18 and 19) with no missing values. Zoo contains only nominal features whercas
Lymphography contains both nominal and numeric valued features. In both these domains
COMPLEXITY+ produces the best performance with significant improvement over the other
three algorithms. CoOMPLEXITY shows a significant improvement over RANDOM on the
200 domain but no difference over COMPETENCE. On Lymphography COMPLEXITY gave
no improvement over cither benchmark algorithm. The relatively poor performance of
COMPLEXITY might be expected on these multi-class domains, as some of the classes
contain a very small number of cascs. In these situations CoMPLEXITY will concentrate
on providing cascs to support the classes with low representation and provide insufficient
support to the rest of the problem space. In contrast, COMPLEXITY+ uscs clustering to

provide a more balanced distribution of new cases.

Figure 6.4(e) shows average accuracy results on the Breast Cancer datasct. In Fig-
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Table 6.3: Results summary according to significance.

COMPLEXITY COMPLEXITY+
Vs. V8. VS. V8.
Data Set RANDOM | COMPETENCE | RANDOM | COMPETENCE
House Votes v v v v
Hepatitis v v v v
Zoo v no diff. v v
Lymphography no diff. no diff. 4 v
Breast Cancer Vv v (95%) v v
Breast Cancer-Noise v v v v

ure 6.4(f) a noise filter, as described in Section 5.1.2, has been applied to all four algo-
rithms for Breast Cancer. This is a binary classed domain with 9 multi-valued features
containing missing data. The noise filter has been added because Breast Cancer is a more
complex domain containing either noise or exceptional cascs resulting in lower accuracies
than the other domains. COMPLEXITY+ again produces the best performance with signif-
icant improvements over the other three algorithms. COMPLEXITY also shows a significant
improvement over the two comparison algorithms in both experiments although the im-
provement over COMPETENCE without the noise filter is only significant at 95% confidence.
The improved performance of COMPLEXITY+ over COMPLEXITY might again be explained
by the simpler algorithm concentrating on supporting the noise or exceptional cases, It
is interesting to sce that, although the noise filter results in a small improvement in the
performance of the benchmark algorithms it gives a large and significant improvement
to the accuracies achieved by both the complexity-guided algorithms. This improvement
is to be expected in noisy datascts because, by choosing cases on class boundaries, the

complexity-guided algorithms will have a greater tendency to pick noisy cascs.

Evaluation Summary

The results from the significance tests, comparing the two complexity-guided case
discovery algorithms with the benchmark algorithms on cach dataset, are summarised in

Table 6.3. The first two columns display the improvement with CoMPLEXITY while the
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other two columns show significance results for COMPLEXITY+.

Overall COMPLEXITY+'s performance shows a significant improvement over the com-
parison algorithms on all the datasets and it provides the most consistent approach to
case discovery of the algorithms studied. COMPLEXITY is shown to perform well on bi-
nary problems, particularly on simpler problems and on domains with low levels of noise,
however, its performance on multi-class problems is only comparable with the benchmark
algorithms.

The introduction of a noise filter stage gave significant accuracy improvements on
the two complexity-guided discovery algorithms with Breast Cancer. This highlights the

importance of noise filtering in noisy datasets.

6.3.3 Case Discovery with Noise Filtering

We have secn, in the previous scction, that performance improved for the Breast Cancer
dataset when a case validation stage was introduced, in which a discovered case Is only
accepted if its noise ratio lics below a predefined threshold. A conservative threshold of 1.5
was arbitrarily applied. It would be uscful to establish whether this noise filter validation
stage improves performance across all domains and to determine suitable threshold values.
In this Section we evaluate the impact of applying a noise filter validation stage with

different threshold levels to the complexity-guided case discovery algorithm.

Experimental Design

CoMPLEXITY and COMPLEXITY+ incorporating noise filtering have been applied to five
UCI datasets with a range of different noise ratio thresholds. The 5-fold cross validation
experiment, described in Scction 6.3.1, is repeated with only COMPLEXITY and COMPLEX-
ITY+ for each of the five datasets. However, a post-processing noise filter validation stage
is applied to both algorithms. The threshold at which the discovered case is excluded is
varied from 0.75 to 1.5 in 0.25 steps. This allows the effect of aggressive and conscrvative
noise filtering to be studied. The results from Section 6.3.2 (without noise filtering) pro-

vide a benchmark for comparison to evaluate whether noise filtering aids or hinders the

case discovery process.
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Figure 6.5: Accuracy as cascs are discovered with COMPLEXITY with differing noise filter-
ing levels

The aim of these experiments is to evaluate the cflectiveness of applying noise filtering
to the complexity-guided case discovery algorithms. Sample results are plotted as a graph,
for each threshold, of the average accuracy for the test sct for increasing case base size, as
an increasing number of cases are discovered. Test sct accuracy i3 again evaluated using

1-NN.

Results and Discussion

The average accuracy results for each case base size for the five datascts are shown graph-
ically in Figure 6.5(a)-(e) for CompLEXITY and Figure 6.6(a)-(c) for COMPLEXITY+.

Results for each different filtering threshold are plotted as individual lincs.
Due to the large number of results, rather than a detailed analysis for cach algo-

rithm, threshold and datasct, we make some general observations that apply across several

datasets as follows:-

* Aggressive noise filtering (0.75) is almost always harmful. Even on noisy datascts,
such as Breast Cancer, only small improvements in accuracy are achicved when

compared to no filtering and only for larger case base sizes with COMPLEXITY+,
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IF igure 6.6: Accuracy as cases are discovered with COMPLEXITY++ for varying noisc filtering
evels
» Moderate levels of filtering, at 1.0 or 1.25 thresholds, gencerally give the best perfor-

mance on the more noisy datasets such as Breast Cancer and Hepatitis.

e Conscrvative noise filtering (say at 1.75 or 1.5) provides a large improvement in test
set accuracy when compared to no filtering on noisy datasets e.g. Breast Cancer. In

general, conservative filtering is not very harmful even on data scts containing low

levels of noise e.g. House Votes.

* Applying no filtering gives the best performance on datasets containing no noise.

Two approaches toward the noise filter validation stage would appear reasonable. One
option is to apply conservative noise filtering at a threshold of 1.75 or 1.5 to the complexity
algorithms in all situations with an expectation of reasonable performance. An alternative
approach is to evaluate the noise characteristics of a dataset prior to applying the discovery
algorithms and make an informed decision as to the level of filtering to apply. In datascts
containing low levels of noise no filtering would be applied with conservative filtering being

applicd to datasets with moderate levels of noise and more aggressive filtering, using a

threshold of 1 or 1.25, being applied to noisy datasets.
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6.4 Complexity-Guided Editing

We evaluate our complexity-guided approach to redundancy removal from two perspec-
tives. Firstly, to confirm our hypothesis that setting an editing threshold of zero will result
in an edited case base with little or no loss in competence. Sccondly, to compare the per-
formance of our complexity-guided approach with several existing redundancy reduction

algorithms. The algorithms being compared can be split into three categorics.

 Complexity Threshold Editing (CTE) is our new redundancy reduction algorithm
described in Section 5.2.2 and is directly comparable with existing redundancy re-
duction algorithms. It is evaluated with four different complexity thresholds: 0,
0.1, 0.2 and 0.3. The zero threshold gives conservative editing with the level of
editing gradually increasing as the threshold increases. Thresholds of 0.1 and 0.2

give a moderate level of editing while he 0.3 threshold provides an aggressive editing

approach.

e Existing redundancy reduction algorithms: the three algorithms chosen are all based
on the competence model developed by Smyth & McKenna's (1998) and use coverage
and reachability sets to identify important cascs. These are modern redundancy
reduction algorithms that aim to reduce the size of the case base while maintaining
competence. They are described in more detail in Section 2.2.1 and have been shown
to perform well in previous comparisons (Delany & Cunningham 2004, Brighton &
Mellish 2002, McKenna & Smyth 2000). Each algorithm provides a different balance

between compaction of the case base and competence:

~ Conscrvative Redundancy Reduction (CRR) provides a conservative approach
to redundancy editing. With Delany & Cunninghamn’s (2001) algorithm a case
with the smallest coverage sct is sclected from the case base for addition to an
edited set first, and any cases that it solves are deleted from the case base. The
process is repeated until no more cases remain in the case base.

~ Iterative Case Filtering (1cF) falls in the middle giving a moderate level of case

base compaction. With Brighton & Mellish's (2001) editing algorithmn a case is

deleted if its reachability sct is larger than its coverage sct, i.e. more cascs can
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solve the case than it can solve itself. The process is repeated until no more
cases are removed. This results in boundary cases being retained and central
cases being removed. Wilson & Martinez's (1997) RT3 algorithm would also
have been a suitable algorithm for moderate levels of case base compaction.
However, as previous evaluations show similar performance to ICF only one

algorithm was chosen (McKenna & Smyth 2000).

= Relative Cover Editing (RC) is an aggressive algorithm deleting the highest
number of cases. Smyth & McKenna'’s (1999a) competence-guided editing tech-
niques use local case information from their competence model to rank cascs
prior to case selection using Hart's (1968) Condensed Nearest Neighbour rule,
so that redundant cases are presented later in the editing process. Several rank-
ing measures are proposed based on a case's coverage and reachability scts. We

use the relative cover ranking (RC), which is shown to give a large reduction in

case base size while retaining competence.

e Noise reduction algorithms (ENN and RENN). These algorithm, also described in
Section 2.2.1, aim to improve competence but remove only a few cases and are not
directly comparable with redundancy reduction algorithms. They are included in
the evaluation because RENN has been used as the pre-processing algorithm for all

the redundancy reduction algorithms including CTE. RENN provides a benchmark

for accuracy that the redundancy reduction algorithms aim to maintain,

6.4.1 Experimental Design

A ten times 10-fold cross validation experimental sct-up is used giving 100 case base/test
sct combinations per experiment. The editing algorithms were applied to cach case base
and the resulting edited sct size is recorded. Test sct accuracy, using 1-NN retrieval, was
measured for the original unedited case base and for cach of the edited sets created by the
editing algorithms.

Comparisons have been made on seven UCI datascts and the averaged results are
shown in Table 6.4 and 6.5. Table 6.4 contains the average test sct accuracy for the

uncdited dataset and for each editing algorithm on cach domain. The highcst accuracy
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result achieved by the redundancy reduction algorithms in each domain is highlighted
in bold. Table 6.5 gives the unedited datasct size in column 2 together with the edited
datasct size as a proportion of the original in the other columns. The values in bold are
the size reduction achieved by the redundancy algorithm with the highest accuracy. Both
tables include an average row which should be used with carc as it is calculated across

different domains.

Table 6.4: Comparison of average test sct accuracy for alternative editing algorithms

REDUNDANCY CTE Noise

CASE BaSE ORIG | CRR ICF RC 0 0.1 0.2 0.3 | RENN | ENN
Breast Cancer || 0.661 | 0.740 | 0.736 | 0.688 | 0.738 | 0.734 | 0.728 | 0.709 | 0.753 | 0.736
Hepatitis 0.808 | 0.839 | 0.833 | 0.821 | 0.859 | 0.853 | 0.847 | 0.822 | 0.834 | 0.8G2
House Votes 0.922 | 0.905 | 0.001 | 0.004 | 0.922 | 0.916 | 0.898 | 0.854 | 0.911 | 0.920
Iris 0.940 | 0.947 | 0.931 | 0.943 | 0.949 | 0.933 | 0.882 | 0.878 | 0.952 | 0.952
Lymphography || 0.812 | 0.759 | 0.749 | 0.757 | 0.775 | 0.775 | 0.776 | 0.758 | 0.772 | 0.781
Wine 0.963 | 0.957 | 0.934 | 0.923 | 0.950 | 0.924 | 0.884 | 0.822 | 0.948 { 0.053
Zoo 0.957 | 0.906 | 0.902 | 0.004 | 0.921 | 0.901 | 0.876 | 0.778 | 0.904 | 0.926
Average 0.866 | 0.865 | 0.855 | 0.850 | 0.875 | 0.862 | 0.842 | 0.803 | 0.8G8 | 0.876
bbb | Bt o |

Table 6.5: Comparison of edited case base size for alternative cditing algorithms

REDUNDANCY CTE NoOIsSE
CASE Base Oric | crr | 1CF RC 0 0.1 0.2 0.3 | RENN | ENN
Breast Cancer | 258 | 0.248 | 0.160 | 0.071 | 0.604 | 0.450 | 0.292 | 0.163 | 0.674 | 0.694
Hepatitis 140 | 0.403 | 0.082 | 0.061 | 0.355 | 0.265 | 0.186 | 0.102 | 0.706 | 0.824
House Votes 392 | 0.471 | 0.035 | 0.038 | 0.155 | 0.093 | 0.061 | 0.038 | 0.908 | 0.928
Iris 135 | 0.380 | 0.296 | 0.065 | 0.177 | 0.078 | 0.038 | 0.037 | 0.952 | 0.952
Lymphography || 134 | 0.415 | 0.180 | 0.152 | 0.625 | 0.460 | 0.322 | 0.189 [ 0.815 | 0.846
Wine 161 | 0.439 | 0.159 | 0.099 | 0.208 | 0.098 | 0.056 | 0.033 | 0.965 | 0.9G7
Zoo o1 | 0.355 | 0.486 | 0.110 | 0.241 | 0.138 | 0.09G | 0.075 | 0.927 | 0.938
Average 187 | 0.394 | 0.153 | 0.074 | 0.328 | 0.221 | 0.146 | 0.087 | 0.853 | 0.870

6.4.2 Results and Discussion

The results of the evaluation can be summarised in each of the categories as follows:
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* The CTE algorithm provides the highest accuracy of the redundancy reduction al-
gorithms in six of the seven domains. At zero complexity threshold, CTE has the
highest average accuracy of 87.5% compared to 86.5% for CRR. This is achieved
with smaller case base sizes, 32.8% of original size on average compared to 39.4%,
showing that CTE is an excellent algorithm for conservative redundancy reduction.
At moderate levels of redundancy reduction, with a threshold of 0.1, CTE achieves
slightly better accuracies than ICF but retains slightly more cascs. Overall the per-
formance is comparable with 1cF. With higher complexity thresholds, for agressive

redundancy reduction, CTE does not perform so well and is outperformed by RC.

¢ The three existing redundancy reduction algorithms all provide a different compro-
mise on the trade-off between case base compaction and maintaining competence.
CRR, designed to take a conservative approach to redundancy reduction, has the
highest accuracy on each domain and the highest average accuracy of 86.5% com-
pared to 85.5% for ICF and 85.0% for RC. However, CRR obtains the improved
accuracy by retaining, on average, 39% of the cases, more than twice that of ICF
(15%) and five times RC (7%). Very aggressive redundancy reduction is achieved
by RC but the results confirm that this is at the expense of loss of accuracy. The

performance of I1CF lies between the others on both competence retention and case

base size reduction.

» There is little to choose between the performance of the noise reduction algorithms.
In these datasets ENN gives the highest average accuracy but that is probably because
many of these datascts are not noisy and ENN gives the best results on data with
low levels of noise. RENN removes slightly more cases and generally performs better
on noisy data but worse on low noise datasets. It is worth noting that on four of the

datasets both the noise reduction algorithms harm accuracy but on Breast Cancer

and Hepatitis substantial accuracy gains are achieved by noise reduction.

CTE provides the best performance for conservative redundancy reduction, providing
superior accuracy on six out of the seven domains. We checked the significance of these
differences using a 2-tailed t-test with 95% confidence level, The supperiority of CTi2 was

found to be significant in 4 domains; Hepatitis, House Votes, Lymphography and Zoo.
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As expected, setting a zero level threshold maintained accuracy at a similar level
to that achieved after RENN noise reduction in all the domains and overall there was
actually a slight increase in accuracy from 86.8% to 87.5%. This confirms that at the
local level the case complexity measure identifies redundant cases and at a global level
the redundancy indicator estimated from the complexity profile is a good predictor of the
level of redundancy within a case base. When the complexity threshold is increased above
zcro, accuracy initially falls away gradually at first, as non-redundant cases start to be
deleted and then more quickly as cases nearer to decision boundaries are deleted.

The performance of CTE for aggressive levels of redundancy reduction with the higher
complexity thresholds was disappointing. This suggests that while case complexity pro-
vides a good measure for identifying redundant cases away from boundarics, it is not so
good at selecting between alternative boundary cascs.

The expectation that accuracy would fall as the size of the edited case base falls is
corroborated both for the existing redundancy reduction algorithmns and for CTE. This
confirms previous research results (Dclany & Cunningham 2001) that there is a trade-
off between the conflicting objectives of compaction of the case base and malintaining
competence.

The inconsistent performance of the noise removal algorithms across the different
datascts highlights the necd to apply different maintenance strategies for different do-
mains. Complexity profiling of the case base can play a role in identifying appropriate

strategies for a case base.

6.5 Error Reduction

In order to demonstrate that TER can improve accuracy we cvaluate its' performance
against several existing noise reduction algorithms. The algorithms are evaluated in two
stages in this scction. In our initial experiments wo apply the algorithms to existing UCI
datascts and compare accuracy and size reduction results achieved. Then in the second
stage of the evaluation we artificially introduce higher levels of noise into the datasets to
examine the algorithms performance in more challenging environments. TER is compared

with two classic benchmark noise reduction algorithms: Wilson Editing (ENN) and Re-
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peated Wilson Editing (RENN). The benchmark algorithms are described in Section 2.2.1.

6.5.1 Initial Experiments

A ten-times 10-fold cross-validation experimental set-up is used giving one hundred case
base/test set combinations per experiment. The editing algorithms were applied to cach
case base and the resulting edited set size recorded. Test sct accuracy, using 1-NN retrieval,
was measured for the original case base and for each of the edited scts formed by the editing
algorithms.

Comparisons have been made on seven UCI datascts. Table 6.6 contains the average
test set accuracy for each algorithm on each domain. Table 6.7 gives the unedited ease base
size in column 2 together with the edited case base size as a proportion of the original in
the other columns. In both tables the editing algorithm that achieved the highest accuracy

in each domain is highlighted in bold.

Table 6.6: Comparison of average test sct accuracy

Case Base ORIG | ENN | RENN | TER
Breast Cancer | 0.661 | 0.746 | 0.753 | 0.758
Hepatitis 0.808 | 0.826 | 0.827 | 0.837
House Votes 0.921 | 0.919 | 0.911 | 0.024
Iris 0.940 | 0.951 | 0.951 | 0.955
Lymphography || 0.812 | 0.777 | 0.765 | 0.798
Wine 0.965 | 0.954 | 0.948 | 0.965
Zoo 0.957 { 0.919 | 0.895 | 0.946

TER provides the highest accuracy in all seven domains. We checked the significance of
these differences using a 2-tailed t-test with 95% confidence level. The superiority of TER
was found to be significant in 4 domains: Ilepatitis, Lymphography, Wine and Zoo. TER
achieves its performance gain by using the stopping criteria to vary the level of aditing
at the decision boundarics. In some domains, where smoothing the decision boundary is
found to improve accuracy, TER removes far more cases than the benchmark algorithmns
e.g. Hepatitis, In other domains, where boundary smoothing s found to be harful, TER
removes less cases than the benchmarks, for example in Wine no cases are removed at all.

It is worth noting that in two domains the original accuracy was higher than any of the



6.5. Error Reduction 121

Table 6.7: Comparison of edited case base size

Case Dase ORIG | ENN | RENN | TER
Breast Cancer 258 | 0.69 | 0.67 | 0.67
Hepatitis 140 | 0.82 | 0.80 | 0.70
House Votes 392 | 093] 091 | 0.07
Iris 135 | 0.95( 0.95 | 0.93
Lymphography || 134 | 0.84 | 0.81 | 0.76
Wine 161 | 0.97 | 0.97 | 1.00
Zoo 91 | 094 093 | 0.98

editing algorithms. In these datasets any editing appears harmful although TER appears
least harmful. In a comparison of the benchmark algorithms RENN removes more cascs
but is slightly outperformed by ENN which achieves higher accuracies in four domains

compared to two for RENN .

6.5.2 Experiments on Datasets with Artificial Noise

The same experimental set-up used for the initial experiments was adopted for a sccond set
of experiments with the exception that differing levels of noise were artificially introduced
into the case base. Noise was introduced by randomly sclecting a fixed proportion of the
cascs in the case base and changing the class of their solution. The algorithms were evalu-
ated after the introduction of 10%, 20% and 30% noise levels. Table 6.8 shows the average
test set accuracy for each algorithm on Breast Cancer, Hepatitis and Lymphography with
10%, 20% and 30% noise introduced. Table 6.9 displays the unedited case base size in
column 2 and the edited case base size as a proportion of the original, for the relevant
dataset and noise level, in the remaining columns. Again, the algorithm that achicved the
highest accuracy for each domain and noise level is highlighted in bold and also in italics
if it significantly outperformed the other algorithms.

As expected the accuracy on the original case base falls dramatically with increasing
noise levels. All the noise reduction algorithms help slow the degradation in accuracy
and, unlike our initial experiment, they dramatically improve on the accuracy achiceved
with the unedited case base. Overall TER gives the strongest performance, recording the

highest accuracy in 6 of the 9 experiments. However, the improvement is only significant
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Table 6.8: Comparison of average test set accuracy
Case Base ORIG | ENN | RENN | TER

Breast Cancer (10%) || 0.631 | 0.708 | 0.729 | 0.733
Breast Cancer (20%) || 0.605 { 0.677 | 0.697 | 0.696
Breast Cancer (30%) | 0.583 | 0.646 | 0.673 | 0.655

Hepatitis (10%) 0.744 | 0.833 | 0.829 | 0.839
Hepatitis (20%) 0.708 | 0.816 | 0.810 | 0.817
Hepatitis (30%) 0.663 | 0.783 | 0.809 | 0.792

Lymphography (10%) || 0.753 [ 0.762 | 0.758 | 0.788
Lymphography (20%) || 0.713 | 0.734 | 0.731 | 0.762
Lymphography (30%) {| 0.641 | 0.688 | 0.718 | 0.724

in 2 experiments (Lymphography 10% & 20%) and RENN gives the highest accuracy in the
remaining three experiments. RENN is particularly strong with data containing a high pro-
portion of noise. It would appear that TER's competitive advantage gained by smoothing
the boundary regions between classes is deminished in data containing high levels of noise,
possibly because the noise creates false decision boundarics that the algorithm attempts

to maintain.

Table 6.9: Comparison of edited case base size
Case Base ORIG | ENN | RENN | TER
Breast Cancer (10%) 258 | 0.63 | 0.61 | 0.09
Breast Cancer (20%) 258 | 0.59 | 0.54 | 0.65
Breast Cancer (30%) 258 | 0.56 | 0.50 | 0.G3

Hepatitis (10%) 392 [0.73] 0.1 | 0.63
Hepatitis (20%) 392 [0.66) 062 | 0.50
Hepatitls (30%) 392 (060 | 0.58 | 0.47

Lymphography (10%) || 134 | 0.74 | 0.69 | 0.55
Lymphography (20%) | 134 | 0.65] 0.60 | 0.49
Lymphography (30%) || 134 | 0.58 | 0.50 | 0.44

6.6 Chapter Summary

The global indicators extracted from a case base’s profile of case complexitics give a

measure of the level of complexity, redundancy and noise inherent in the data. These
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indicators are shown to be good predictors of the real values inherent in the data by the
close correlation with alternative experimental measures.

The effectiveness of COMPLEXITY and COMPLEXITY+, our new case discovery algo-
rithms, were demonstrated on 5 public domain datasets. In gencral, a significant improve-
ment in test accuracy was observed with these new techniques compared to the random
and competence-guided algorithms used as benchmarks, COMPLEXITY performed well
on simple binary domains but suffered on multi-class problems or on datasets containing
noise. COMPLEXITY+, which incorporated a clustering stage, provided the most consis-
tent performance across the range of datascts. A conservative noise filter stage was found
to enhance the performance of COMPLEXITY and COMPLEXITY+ on noisy datascts.

The effectiveness of the new redundancy removal algorithm, CTE, was cvaluated on
seven UCI datasets. The algorithm was shown to provide supcrior performance char-
acteristics when compared to existing techniques for conservative levels of editing and
comparable performance at moderate levels of editing. One limitation of the approach is
an average performance for aggressive editing because the complexity measure does not
make a balanced sclection between alternative boundary cases. Enhancements are being
investigated to improve this selection on boundaries.

In general, TER is shown to provide superior error reduction performance when com-
pared to benchmark techniques for case bases containing low and medium levels of noise.
One limitation of the approach is its ability to identify harmful cases when the case base
contains high levels of noise and boundarics become difficult to identify. The results con-
firm that error reduction can harm performance in dataset with low levels noise. Carcful
consideration should be given to the domain and the structure of the case base to ensure
there is a necd for noise reduction before removing case knowledge with an editing algo-

rithm. The complexity and F:E profile provides a tool for the knowladge engincer to make

an informed decisions on the need for error reduction maintenance.



Chapter 7

Conclusions and Future Work

This thesis has investigated some of the theoretical and practical issucs surrounding
modelling and maintenance of the case knowledge used in CBR systems. This chapter

concludes the thesis with a discussion of the contributions made, future directions and

lessons learned.

7.1 Achicvements and Contributions

In this section we look at the contributions of the work by revisiting the initial project
objectives, described in Section 1.3, and considering the extent to which they have been

achieved.

1. Develop a technique to model the problem-solving capabilitics of a case
base.
This rescarch has highlighted the importance of modelling CBR competence in order
to reduce the need for case base evaluation experiments and to assist in the develop-
ment of case base maintenance algorithms. Experiments have identified classification
datasets in which the current models do not give a good correlation to competence.
Three reasons for this lack of correlation have been identified: the inclusion of re-
dundant cases is not adequately reflected, statistical mcasures such as group case

density do not give a good measure of competence, and, most importantly, problem

complexity is not considered.

124
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CBR is an effective problem-solving methodology in domains where similar problems
have similar solutions. The foundation of our approach is a complexity measure that
tests the extent to which this axiom holds true at a local level. This is accomplished
by making the assumption that the case base itsclf is representative of problems
the system will face. First the neighbours of cach case (i.e. similar problems) arc
identified and then the mix of solutions within this group of similar problems is

compared by way of our complexity mecasure.

A ranked profile of case complexitics has been used to give the knowledge engincer
a global view of the mix of complexitics within the problem space. We have also
shown how the complexity profile can provide a prediction of the level of complexity,

redundancy and noise inherent in the data that correlates well with the real values.

In the first instance the complexity profile gives an indication of the suitability of
a domain for problem-solving using the CBR methodology i.c. do similar problems
have similar solutions? The interpretation of several profiles has been discussed to
show how they can aid the knowledge engincer develop suitable case base mainto-
nance policies. Profiling also provides the opportunity to create a benchmark for
comparison with future versions of the case base to monitor the impact of changes

over time.

. Develop a technique to identify gaps and create new cases to fill them.

In a novel case discovery approach the complexity measure, in conjunction with a
case’s nearest unlike neighbour, guides the case discovery process by identifying arcas
of the problem space in which the system is unsure of the solution. The idea of plac-
ing new cases on classification boundarics appears to be intuitively sensible in that it
mirrors the approach of recently developed case base cditing algorithms. COMPLEX-
ITY and COMPLEXITY+, two new complexity-guided algorithms, are introduced and
their effectiveness demonstrated on public domain datasets. In general, a significant
improvement in test accuracy is obscrved with these new techniques compared to
the random and competence-guided algorithms used as benchmarks. COMPLEXITY
performs well on simple binary domains but suffers on multi-class problems or on

datascts containing noise. COMPLEXITY+, which incorporates a clustering stage,
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provides the most consistent performance across the range of datascts. A noise filter
stage was found to enhance the performance of COMPLEXITY and COMPLEXITY+

on noisy datasets.

. Develop a Case Base Maintenance algorithm that Identifics redundant

cases.

The contribution from this arca of the rescarch is in the use of the local case com-
plexity measure to identify redundant cases located in arcas of the problem space
in which the mix of solutions show a strong coherence. In classification tasks these
areas are typified by single class clusters. The redundant cases are identified by
applying a threshold to the complexity profile and editing cases with complexity
values on or below the threshold. The approach provides the knowladge engincer
with an element of control over the compromise required between the contradictory

objectives of the reduction in case base size and the retention of competence.

Several refinements that alleviate problems associated with mutual redundancy and
noise are incorporated into a new redundancy removal algorithin: Complexity Thresh-
old Editing. The algorithm is shown to provide superior performance characteristics
when compared to existing techniques for conscrvative levels of editing and compa-

rable performance at moderate levels of editing.

- Develop a Case Base Maintenance algorithm that identifies harmful cascs.

This objective is achieved with the aid of the F:E ratio caleculated for each case.
This local case distance ratio gives a mcasure of a casc's position in relation to
neighbours of its own class and neighbours with a diffcrent class. Following a similar
approach to the one adopted for complexity profiling, a ranked profile of the F:E
ratios is plotted and used to guide the editing process. In contrast to the redundancy
removal approach, harmful cascs are identified by applying a threshold to the ratio
profile and removing cases with ratios above the threshold.

The algorithm focuses on deleting both noisy cases and harmful cases from boundary
regions to give smoother decision boundaries between classes. A stopping criteria s

introduced to ensure that the level of smoothing is adjusted to suit the domain,
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We have introduced TER and demonstrated its effectivencss on UCI datascts. In
general, TER provides superior performance characteristics when compared to bench-

mark techniques for case basecs containing low and medium levels of noise.

Noise reduction can also harm performance. Careful consideration should be given
to the domain and the structure of the case base to ensure there is a need for noise
reduction before removing case knowledge with an editing algorithm. The F:E ratio
profile provides a tool for the knowledge engincer to make an informed decision on

the need for case base maintenance to remove noise.

5. Create a visualisation tool that demonstrates casc coverage and allows

the user to view redundancy and gaps.

A novel set of interfaces have been designed as the front end of an integrated case
base maintenance tool. The interfaces display the complexity profile to provide a
graphical view of the mix of complexitics in the case base. This gives a measure of
the complexity of the problem, the level of redundancy and the level of noise within

the data.

A two-dimensional spring based visualisation of the case base gives a map of the
case base displaying local complexitics as a colour gradient applicd to the individual
cascs.

The interactive prototype developed to demonstrate our approach to case base main-
tenance gives an explanation of the maintenance process by highlighting the differ.

ences between the original and proposed case bascs on the visualisations,

7.2 Going Forward

In common with most research activity, as this work has progressed potential new areas
of rescarch have been identified. In this section we look at some of the limitations of our
work in conjunction with possible extensions or future work. The limitations take two

forms: as a result of shortcomings in the approaches themselves, and through restrictions

placed on the scope of the work
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7.2.1 Shortcomings in Approaches

With hindsight some of the algorithms introduced in this thesis may have been developad
differently or, at least, a few alternative approaches or extensions would have been con-
sidered and investigated. Here we identify three such alternatives that provide potential

to improve the performance of our algorithms in future work.

e The complexity measure chosen looks at the mix of solutions in local arcas of the
problem space to identify areas of uncertainty. The measure used is calculated for
each case and considers the proportion of the casc’s ncighbours belonging to the same
class as itself giving a strong weighting to the nearcr neighbours. The weighting Is
applied in relation to a cases position in a ranked list but docs not consider the actual
distance to the neighbour from the case under consideration. A more complex but
finer grained, alternative approach would be to apply a weighting in relation to the
distance between a case and its neighbours. This could be considered similar to
using a weighted majority vote with k—~NN. A comparison between these alternative

approaches would be interesting and could identify the benefits of each.

e The complexity-guided redundancy reduction algorithms have exhibited excellent
performance for conservative redundancy reduction tasks. However, one limitation
of the approach is an average performance for aggressive editing when applying
higher valued thresholds. This is because using the complexity measure alone to
guide editing does not result in a balanced sclection between alternative boundary
cases. Rather the retained cascs are concentrate in only a few complez arcas of the
problem space. Adopting an approach in which the cases are formed Into clusters,
prior to the use of the complexity measure to guide the case editing selection from

cach cluster, may give a more even distribution of retained cases along the declsion

boundaries.

e One limitation of the complexity-guided case discovery algorithms is that they re-
strict their search space to finding new cascs within the problem space already identi-
fied by existing cases i.e. new cascs are discovered between two cxisting cases. Future

work may look at developing complimentary approaches for the very early growth
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stages of a case base, perhaps by using domain knowledge to sced the case base.

7.2.2 Limitations of Scope

Our work has focused on importance of decision boundarics and on the variance in solutions
present within local areas of the problem space. In taking this approach the scope of our
rescarch has been limited in several ways resulting in the potential for extensions that
expand the scope of the work. For example, only lazy learner classifiers, such as A=NN,
have been considered and it would be interesting to investigate whether other classificrs,
e.g. support vector machines, could benefit from a similar editing approach. However, two

key directions would seem to be particularly promising and exciting.

Beyond Classification Problems

In classification tasks it is relatively easy to measure the local mix of solutions by counting
the number of cases belonging to each class and, as we have discussed above, the approach
could be extended to consider the distance between cases. However in unsupervised tasks,
in which cascs are not assigned class labels, it may still be possible to measure the local mix
or variance in solutions. In order to extend our approach beyond classification problems
we need to be able to measure the similarity between solutions. In some tasks this is
achicvable, for example, in textual CBR both the problem and the solution are often in
textual form. If the similarity can be measurcd between the problem part of a case it

should be equally possible to measure the similarity between solutions.

Once the similarity between solutions has been identified, the cohierence among the
solutions could be measured, at a local level, cither independently or in relation to the
similarity between the problems. A measure of solution cohierence would allow the extent
to which similar problems have similar solutions to be gauged, thus, providing an indication
of the suitability of a domain for problem-solving by CDR. By adopting similar approaches
as used here for classification problems, ranked profiles of the case base could give a global

view of the case base and inform specific maintcnance algorithms.
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Beyond Case Base Maintenance

In this research we have developed a case base model based on a case complexity measure
that provides information about local areas of the problem space. The local information
has been used to maintain a CBR system's case knowledge. The variation in solutions
in local areas of the problem space could be used to maintain the other CBR knowledge

containers e.g. retrieval knowledge or vocabulary.

* Retrieval knowledge is used to identify similar cases to a target problem. In CBR
this often involves setting the relative importance of each attribute by means of an
attribute weight. Suitable attribute weights are typically determined by statistical or
evolutionary approaches and applied either globally in all situations or in relation to
each class. A measure of the local uncertainty, by way of the local mix of solutions,
gives the opportunity to apply a finer grained approach. The relative importance of
attributes could be determined such that class separation is maximised at a local level

with attribute weights being applicd locally and associated with either individual

cascs or clusters of cascs.

* Vocabulary refers to the way in which a case is represented and in CBR often involves
sclecting a suitable set of attributes. Because irrelevant attributes make classifica-
tion more difficult and computationally expensive, maintenance to this knowledge
container usually involves implementing filter or wrapper attribute sclection tech-
niques to identify a subset of discriminating attributes. A single representation is
normally used across the whole problem space, however, in an approach similar to
that discussed above for identifying local attribute weights, information about lo-

cal areas of the problem space could be used to inform a scarch for a local set of

discriminating attributes.

Knowledge of local areas of the problem space can be used to inform a broader range
of CBR maintenance tasks than just case base maintenance as considered in this research.
The complexity measure, giving a local measure of uncertainty, could potentially even be
uscd outside purely maintenance tasks, for instance to give a measure of solution confidence

or as an evaluation measure of alternative system designs.
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7.3 Final Comments

Finding a time at which to end a picce of work is never easy because research tends
to be a continuous process rather than independent picces of work. However the work
reported here provides a good place to draw breath and conclude the thesis. It provides a
comprehensive look at one type of CBR task (i.c. classification) and at the maintenance
of one of CBR’s knowledge containers (i.e. case knowledge).

The main contribution of the work is in identifying boundary regions as critical arcas
of the problem space for determining the performance of CBR classification systems and
showing how these region can be found by looking at the local mix of solutions. By
looking at the relationship between the similarity among problems and the similarity
among solutions independently we are able to measure the complexity within the case
base and gauge its suitability for problem-solving by the CBR methodology i.c. do similar
problems have similar solutions? The local information has been made available to the
knowledge enginecr graphically, reducing the need for experimental evaluation and has
been used to inform maintenance algorithms to perform typical maintenance tasks: case
discovery, redundancy reduction, and error reduction.

There has been considerable rescarch effort applied to case base maintenance for clas-
sification tasks over several decades. Most of the approaches have deliveraed algorithms
that perform only part of the overall maintenance task. This work has applied a consis-
tent approach across the range of typical maintenance tasks to give a set of integrated
techniques. It is hoped that in applying a consistent approach the overall contribution s

greater than a sum of the individual parts.

The performance of an algorithm is often not the only criterion on which it will be
judged as other, often less obvious factors, may affect the aceeptance of an algorithm in
real situations. Explanation and control arc two central themes that apply throughout our

work that should assist their transition or acceptance as suitable maintenance techniques

for commercial systems.

e Explanation
A knowledge engincer gains confidence in a maintenance approach that provides

strong performance. However, confidence is also improved in approaches where the
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process is transparent and deficiencies can be identified and resolved. Explanation
of the maintenance process and result should be a key criterion in the development
CBR knowledge maintenance techniques. We have applied a consistent and trans-
parent approach to case base maintenance throughout this research and developed a
prototype that demonstrates how visualisations can be used to assist in the provision

of explanations to the user.

¢ Control

Case base maintenance is a balance between competing factors. We have developed
an interactive approach in which the knowledge engincer retains control so that
informed decisions can be made that consider both the impact of the maintenance
algorithm and the system objectives. Leaving control of the maintenance process
with the knowledge enginecr is likely to aid the acceptance of maintenance as a

crucial aspect of CBR system development for commercial systems.

‘Two promising arcas for future work have been identified. First, extending the ap-
proach beyond classification problems to consider unsupervised tasks in which the simi-
larity between solutions can be identified. This is a hot topic, particularly in textual CBR
where large case bases are common and few reliable case base maintenance techniques have
been developed. Second, extending the approach to maintain the other CBR knowledge

containers, in particular the similarity knowledge, would appear to have great potential,
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Abstract. The contents of the case knowledge container is critical to the perfor-
mance of case-based classification systems. However the knowledge engincer is
given little support in the selection of suitable techniques to maintain and monitor
the case-base. In this paper we present a novel technique that provides an insight
into the structure of a case-base by means of a complexity profile that can assist
maintenance decision-making and provide a benchmark to assess future changes
to the case-base. We also introduce a complexity-guided redundancy reduction
algorithm which uscs a local complexity measure to actively retain cases close to
boundaries. The algorithm offers control over the balance between maintaining
compcetence and reducing case-base size. The ability of the algorithm to main-
tain accuracy in a compacted case-base is demonstrated on seven public domain
classification datasets.

1 Introduction

Case-Based Reasoning (CBR) is an experience based problem-solving approach that
uses a case-base of previously solved problems as a knowledge source to help solve
new problems, The case-base is a key knowledge container [13] and, as such, the CBR
process draws heavily on case knowledge. This is particularly true in case-based classi-
fication systems for which retrieval is the key stage.

The CBR paradigm typically employs a lazy learning approach, such as k-nearest
neighbour [5), for the retrieval stage of the process which delays generalisation until
problem-solving time. This is attractive because training is not necessary, learning is
fast and incremental, algorithms are simple and intuitive, and advance hnowledge of the
problems to be faced is not required. However, with large case-bases, the drawbachs of
lazy learning are high memory requirements since all examples are stored, slow retricval
times, and the possible inclusion of harmful cases.

Atthe initial case authoring stage, the case-base can consist of all available examples.
Alternatively, the knowledge engineer can create a hand-crafied case-base by storing
only selected examples in the case-base giving rise to a need for algorithms that control
the size of the case-base. In addition, the case-base gets larger over time, often as a
result of indiscriminate storage of cases during the retain stage of the CBR cycle. The
cases may be redundant and provide no improvement in compctence or may even be
harmful, noisy cases that result in a reduction in competence. In either case the inclusion
of additional cases will increase storage requirements and retrieval times. The cost of
retrieval can grow to the extent that it outweighs the benefit of additional cases. This

TR. Roth-Berghofer et al, (Eds.): ECCBR 2006, LNAI 4106, pp. 325339, 2006,
© Springer-Verlag Berlin Heidelberg 2006
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is called the wtility problem [7,14] and results in an ongoing requirement to control
case-base growth.

Understandably, there has been considerable rescarch on the case-base editing prob-
lem giving the knowledge engineer a choice of potential approaches. However, most
contemporary editing algorithms give no control over the size of the edited case-base
or the impact on competence, and provide no explanation of their decisions, We argue
that the knowledge engineer should have more control over the balance between the
reduction in the size of the case-base and maintaining competence.

It is often assumed that any of the numerous maintenance approaches available will
work well on all domains. However, research has identified that no one algorithm is best
in all situations [4,6). The knowledge engineer must make a choice between alternative
techniques based on knowledge of the case-base and the system’s competence, retrieval
and storage space requirements. What technique to choose is not obvious because it
requires knowledge about the structure of the case-base that is often hidden. Given a
dataset it is not clear what level of redundancy or noise it contains. Low accuracy may
be the result of a lack of case knowledge due to a sparse case-base, a difficult problem
with long, complex decision boundaries or noisy data. The knowledge engineer does
not know whether to apply a noise reduction algorithm, a case creation algorithmor a
redundancy reduction algorithm. Methods that improve the comprehension of the case-
base structure would aid this decision-making process.

In this paper, we present a novel case-base profiling technique that provides an in-
sight into the structure of the case-base, assisting informed maintenance decisions, In
addition, we introduce a new case-base editing algorithm that gives the knowledge en-
gineer more control of the balance between case-base size and competence and also
provides some explanation of its editing decisions. Both techniques are evaluated ex-
perimentally and shown to have benefit,

The remainder of this paper describes our approach and evaluates it on several pub-
lic domain case-bases. In Section 2 we review existing research on case-based editing
techniques. Section 3 discusses complexity profiling of a case-base and how it can aid
the knowledge engineer make maintenance choices. An evaluation of our profiling tech.
nique is presented in Section 4. Our new case-base editing technique is then introduced
in Section 5 with experimental results being reported on seven datascts in Section 6.
Finally, we provide conclusions and recommendation for future work in Section 7.

2 Related Work on Case-Base Editing in CBR

Considerable research effort has been aimed at case-base maintenance and much of the
research has focused on control of the case-base by case deletion or case sclection pc.)li-
cies. Two distinct areas have been investigated: the control of noise; and the reduction
of redundancy.

Noise reduction algorithms aim to improve competence by removing cases u!.-n are
thought to have a detrimental effect on accuracy. These may be corrupt cases with in-
correct solutions or, alternately, they may be cases whose inclusion in the case-base
results in other cases being incorrectly solved. These algorithms usually remove only
a few cases. Wilson Editing [20], also called ENN, is the best known algorithm and
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attempts to remove noise by removing cases that are incorrectly classified by their near-
est neighbours. ENN removes noisy cases but also deletes cases lying on boundaries
between classes leaving smoother decision boundaries. Tomek extends ENN with the
Repeated Wilson Editing method (RENN) and the All k-NN method [18). RENN ex-
tends ENN by repeating the deletion cycle until no more cases are removed. The All
k-NN is similar, except that after each iteration the value of k is increased. The Blame-
Based Noise Reduction (BBNR) algorithm [6] is a noise reduction algorithm that takes
aslightly different approach in attempting to identify cases that cause misclassification
and removing them if they cause more harm than good. Noise reduction can reduce
competence, hence careful consideration should be given to the domain and structure
of the case-base before applying these algorithms to ensure there is a need for noise
reduction. Our work does not advance research on noise reduction but rather identifies
datasets where noise reduction is required.

Redundancy reduction algorithms can be either incremental, starting with an empty
edited set and selecting cases, or decremental where cases are deleted from an initially
complete set. Hart’s [8) Condensed Nearest Neighbour rule (CNN) was an early in-
cremental approach in which only cases not solved by the edited set are added to it.
CNN is sensitive to the case presentation order and numerous extensions or modifica-
tions have suggested improvements [1,19). McKenna and Smyth's [11,17] competence-
guided editing techniques use local case information from their competence model [16)
to rank cases prior to case selection, so that redundant cases are presented later in the
editing process. Several ranking measures are proposed based on a case's coveruge
and reachability sets including relative cover ranking (RC), which is shown to give
a large reduction in case-base size while retaining competence. McKenna and Smyth
also developed the CASCADE authoring system [12] in which the case-base devel-
oper, guided by a model of case competence, could interact with an interface to manage
the selection of which cases to add or remove from the case-base.

Several contemporary decremental approaches use similar local case competence
knowledge to guide their editing decisions. Wilson and Martinez's Reduction Tech-
nique range of algorithms (RT 1-3) [21] is guided by a case’s associates. The associates
of a case is the set of cases which have that case as one of their nearest neighbours and
is analogous to Smyth & Keane’s [15] coverage set. The algorithms remove a case if at
least as many of its associates would be correctly classified after deletion. Brighton and
Mellish [3] adopt a similar approach with their Iterative Case Filtering algorithm (ICF).
A case is deleted if its reachable set is larger than its coverage set, i.e., more cases can
solve the case than it can solve itself, The process is repeated until no more cases are re-
moved. This results in boundary cases being retained and central cases being removed.
Delaney and Cunningham [6] employ a similar approach in their Conservative Redun-
dancy Reduction algorithm (CRR) in which a case with smallest coverage set is sclected
first and any cases that it solves are deleted from the training set. This algorithm was
tested on email classification where it is shown that conservative redundancy reduction
achieves a higher accuracy than comparable but more aggressive algorithms. .

Redundancy reduction algorithms require a trade off between the level of compaction
and competence preservation. The more modern algorithms (RC, RT3, ICF and CRR) all
provide a good but different balance between these conflicting objectives. Our approach
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gives the knowledge engineer control of this balance. The contemporary redundancy
editing approaches all rely on models [10,15,16] of the case-base to supply local infor:
maton about the relationship between cases. These relationships are used to indirectly
retain cases on decision boundaries. In our approach we also calculate local case i
formation but the information identifies the position of a case in relaton to a decision
boundary. We aim to directly identify and retain cases on or near decision boundaries

3 Case-Base Complexity Profiling

Our objective is to help the knowledge engineer make decisions on maintenance strate
gies by providing a global case-base measure of accuracy, noise and redundancy plus
local information on the structure of the case-base. Our approach is to provide a profile
of a local case metric. We use a case complexity measure to provide the local measure
and a ranked profile of this measure to provide a view of the overall effect within the
case-base. The complexity profile identifies the mix of local complexities. In the rest of
this section we first define the local case complexity measure used and then look at our
profiling approach to providing a global picture of the case-base.

31 Complexity Measure

The foundation of our approach is to measure the local complexity based on the spa
tial distribution of cases within the case-base. Complexity 1s calculated using a metric
based on the composition of its neighbours while incrementally increasing the size of
s neighbourhood.
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Fig. 1. Calculation of the complexity metric

The complexity measure is calculated for each case by looking at the class dist-
bution of cases within its local neighbourhood. P 15 the proportion of cases within
a case’s k nearest neighbours that belong to the same class as itself. In Figure 16 a
case is represented by a symbol on the plot with the class of the case distinguished by
the shape, star or circle. If we consider case ¢y, then as the value of k increases, the
sequence of P4 starts 1, 0.5, 0.67, 0.5. A nearest neighbour profile can now be plotted
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for ¢1 using P, as k increases. The complexity metric is based on the area of the graph
under the profile, the shaded area in Figure 1(b). Case complexity is calculated by

K
complexity =1 — }%.-Z Py
kwm]

_for some chosen K. With K=4 the complexity of ¢y is 0.33. A large value for K has little
impact on the results because the metric is biased towards a case’s nearest neighbours,
We have used K=10 in our calculations for all but the smallest case-base sizes.

Cases with high complexity are close to classification boundaries and identify arcas
of uncertainty within the problem space. Cases with complexity greater than 0.5 are
closer to cases of a different class than those of their own class, and are potentially
noisy. Cases with low complexity are surrounded mainly by cases with the same class
as themselves, and are located in areas of the problem space in which the system would
be more confident in making a decision on the class of a new problem. Cases with a
zero complexity value are surrounded by a sizeable group of cases with the same class
as itself, and may be considered redundant because other cases in the group would be
able to solve new problems in this region of the problem space.

3.2 Profile Approach

The complexity measure provides a local indicator of uncertainty within the problem
space and has been shown to be useful in informing a case discovery algorithm {9).
However, it is difficult for the knowledge engineer to use this local information dircctly
10 gain an insight into the structure of a case-base from a global perspective. Our ap-
proach to providing the knowledge engineer with meaningful access to this pool of local
information is to present the data as a ranked profile of case complexities. In this ap-
proach the mix of complexities within the case-base can be viewed as a profile allowing
comparisons to be made between case-bases.

The ranked complexity profile is created by first calculating the case complexity of
each case, as described in Section 3.1. The cases are then ranked in ascending order of
complexity. Then, starting with cases with the lowest complexity, case complexities are
plotted against the proportion of cases used. Thus the x-axis shows the proportion of
the case-base and the y-axis gives the complexity value for a particular case. A typical
profile plot, for a case-base containing redundancy, is shown in Figure 2. An exponen-
tially shaped curve is positioned to the right of the graph after the redundant cases with
zero complexity.

Three key global indicators can be taken from this plot to give a measure of accuracy,
redundancy and noise respectively, as follows:-

= Error Rate: The area under the curve, shown as the shaded area on the plot, gives
the overall complexity of the problem being faced and provides a measure of ex-

pected error rate. )
= Redundancy: The position at which the plot breaks away from the x-axis, shown
on the profile as x;, gives a measure of the level of redundancy within the case-base.

This is a measure of the proportion of cases located in single class clusters.
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Fig. 2, Typical graph of local complexity profile

= Noise: A case with a complexity greater than 0.5 has the majority of its neighbours
belonging to a different class. These cases can be considered noisy. The proportion
of noisy cases can now be portrayed as the distance from x3 to 15 i.e., 1-x2.

It is expected that these three indicators will correlate well with typical measures of
error rate, redundancy and noise, This will be investigated in the evaluation that follows,
However, it is the graph itself that provides the best insight into the structure of the case-
+ base, and allows informed decisions to be made by the knowledge engineer in relation
to whether the number of cases in the case-base is appropriate to the domain and its
level of complexity.

4 Experimental Evaluation of Profiling

We evaluate complexity profiles on two levels in this section. First we examine whether
complexity profiling can provide useful comparisons of case-bases from different do-
mains. Then we investigate our hypothesis that the complexity profile indicators accu-
rately predict global error rates and levels of noise and redundancy.

4.1 Cross Domain Comparisons

In the previous section we looked at a #ypical complexity profile and claimed that this
profiling provided a good approach at making comparisons across different domains.
To examine this claim we look at example complexity profiles from four domains, Fig.
ure 3(a)-(c) show the complexity profiles for three public domain classification datasets
from the UCI ML repository [2], together with the complexity profile for an antificial
dataset in Figure 3(d).

Wine (Figure 3(a)) is a simple three class problem with 14 numeric attributes and
178 instances. It can be seen from the profile that a high level of classification accuracy
is expected due to the small area under the complexity curve (0.05). The expected level
of noise is very low with an estimate of 4% and a maximum complexity value for an
instance being well below 1. A high level of redundancy is also evident with 75% of the
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Fig.3. Complexity profiles for sample datascts

instances having a zero complexity value. A case-base created from this dataset, con-
taining less redundancy, could form part of an excellent CBR problem-solver because
the similarity measure forms the instances into clusters with the same solutions - similar
problems have similar solutions.

Hepatitis (Figure 3(b)) is a smaller dataset of 155 instances represented by 20, mostly
nominal, features containing some missing values. This is a more complex problem
with an overall complexity of 20% and a gentler slope to the curve than for Wine,
suggesting more complex decision boundaries. There is a moderate predicted level of
noise (16%) with several instances completely surrounded by instances of an opposing
class resulting in a peak complexity value of 1. Although there is less redundancy than
for wine, the level is still high with 46% of the instances surrounded by at least 10
instances with the same class. Applying noise reduction algorithms would probably
improve the level of accuracy achieved and redundancy reduction algorithms could be
applied to reduce storage requirments without affecting accuracy levels.

Breast Cancer (Figure 3(c)) is a binary classification domain with 9 multi-valued
features containing missing data. This is a complex problem, with the low slope on the
graph indicating most instances lie close to decision boundaries. There is a high eslis
mated level of noise (28%) and little redundancy (8%). This profile would suggest a
dataset that is not suitable for a CBR application as it stands. Applying noise rrdt.sclion
algorithms may improve accuracy levels. In addition, improvements in the similarity
measure or case representation could be investigated to create a design in which prob-
lems with similar solutions are better recognised as being similar. .

The final profile, Figure 3(d), is for an artificial dataset with 100 instances. '!h:s isa
binary classification problem with 2 numerical features where the class of an instance
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is randomly selected. This is a problem that has been created so that similar problems
will not form into a cluster of instances with similar solutions. The dataset would not
make a suitable case-base for a case-based problem-solver and this is confirmed by the
complexity profile. As expected, the predicted error rate is 50% and the predicted noise
level is also 50% because instances are as likely to be surrounded by instances of an
opposing class as the same class. There is no redundancy because the instances do not
form into large same class clusters.

4.2 Accuracy and Noise Predictions

The evaluation of complexity profiles from different domains, and the insight the pro-
file provides, assumes that the error rate, noise level and redundancy level indicators
are good predictors of the real values contained within the data. While conceptually
the use of these indicators appears reasonable, we want to investigate the relationships
empirically,

Table 1. Results summary of complexity profile indicators compared to alternative measurcs

ERROR RATE NOISE REDUNDANCY
Case-Base TEST SET |PROFILE| ENN |PROFILE PronLe
Wine 0,037 | 0.050 |0.033] 0.04 0.75
Iris 0.059 | 0.058 [0.048| 005 0.79
Hepatitis 0.189 | 0.203 [0.176] 0.16 0.46
Lymphography|| 0.187 | 0.242 [0.155] 0.14 0.23
Breast Cancer 0.339 0.344 ]0.306] 0.28 0.08
House Votes 0.079 | 0.083 [0.071] 0.07 0.77
Zoo 0.038 | 0.085 “o.om 0.06 0.70

Accuracy or error rate is the easiest indicator to compare. We calculate error rate
experimentally using ten fold cross-validation. Nine folds are retained as the training
set with the remaining fold being the unseen test set. The average error rates for seven
UCI datasets, calculated usi ng 1-NN, are shown in column 2 of Table 1 with the cor-
responding error rate indicator from the complexity profiles shown in column 3. There
is a strong correlation between the results as can be seen by the close fit 1o the straight
line in Figure 4, which plots the complexity profile prediction against test st error rate.

There is not an obvious measure of noise with which to make a comparison, How-
ever, ENN is the best known noise reduction algorithm. Hence, we use the reduction in
the size of a dataset after applying ENN as a benchmark measure of noise with which
to compare our predicted indicator from the complexity profile. The average edited set
size after applying ENN as a proportion of the original datasct size is shown in column
4 of Table 1. This is compared with the average complexity profile noise indicator, as
shownincolumns. A gain there is a strong correlation between the results, as shown by
the fit to a straight line in Figure 5, which plots the complexity profile noise prediction
with the proportional reduction in the size of the dataset from applying ENN.
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lThcsc results confirm that the complexity profile is a good predictor of accuracy and
noise. The ability of the complexity profile to predict redundancy is difficult to measure
directly but is investigated in more detail in Section S.
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Fig.4. Error rate correlation Fig. 5. Noise level correlation

5 Complexity Threshold Editing

The case-base complexity profile provides a tool that can be used for informed redun-
dancy editing in which the knowledge engineer has control over the level of redundancy
reduction. As with most redundancy editing algorithms, our approach aims to give a
high classification accuracy and to provide significant storage space reduction. How-
ever, these objectives can be contradictory. Aggressive case editing can achieve large
reductions in case-base size but at the ex pense of classification accuracy [6]. The com-
plexity profile provides a measure of the proportion of redundant cases compared to
Cases near decision boundaries giving an explanation of the effect of different levels of
redundancy reduction on competence.

In classification problems redundant cases are found in clusters with the same clas-
sification preferably far from decision boundaries. Our approach to case-base editing is
to identify and delete redundant cases while at the same time retaining boundary cases,
The complexity measure, described in Section 3.1, is a good identifier of boundary
cases, with a high complexity value, and redundant cases with a low complexity. We
use the local case complexity to guide our editing algorithm.

The benefits of this approachover existing techniques are two-fold. Firstly, the hnow|-
edge engineer is in control of the maintenance process and is able to make an informed
decision on a suitable level of case-base compaction dependent on a system’s petfor-
mance requirements. This decision is not made by selecting an arbitrary case-base sfm.
Rather, through a review of the complexity profile, a judgement can be made on the im-
pact of different complexity thresholds. If storage space or retrieval time requirements
are crucial to the design a higher threshold can be chosen in the undcrstandnpg that it
will reduce competence. Secondly, the complexity profile provides an explanation of the
editing process by providing a transparency to the process and a justification for deleting
the selected cases,
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The basic approach is to set a complexity threshold and delete cases with a complex-

ity below the threshold. The threshold is set on the y-axis, and the resulting size of the
case-base can be noted on the x-axis. Our expectation is that setting a zero threshold will
remove only cases that are likely to be redundant and not result in a fall in competence.
Competence is expected to decline graduall y as the complexity threshold is increased.
The basic approach gave promising results but also highlighted several problems,

= Noisy cases are by their very nature boundary cases and hence will be retained by
this algorithm. Adopting the approach of most other contemporary editing algo-
rithms, we add a pre-processing noise editing algorithm (RENN).

Clusters of cases all with zero complexity can form. Setting a simple threshold
can delete the complete cluster. It would be better to retain at least one case to
represent the cluster. To overcome this problem an iterative approach is employed
with case complexities being recalculated after each case deletion and the cases
being re-ranked in ascending order of complexity.

A further problem with clusters of cases with zero complexity is the choice of order
of deletion. If a random selection is made cases nearer decision boundaries may be
selected for deletion first. This would harm the performance of the algorithm so
we introduce a friend to enemy distance ratio as a secondary ranking. The friend
distance is the average distance to the case’s nearest like neighbours whereas the
enemy distance is the average distance to the case’s nearest unlike neighbours. A
high ratio indicates a case closer to a decision boundary and farther from cases
of the same class, whereas a low ratio indicates a case farther from a decision

boundary and in a cluster of cases of same class.

The Complexity Threshold Editing algorithm (CTE), incorporating the changes intro-
duced above, is described in Figure 6.

T, Datasel of n cases (Cy ....Ca)
COM(S), Calculate case complexity, distance

ratio and order cases in set S
RENN(S), Apply nolse removal o set S
Count=0

COM(T)
ForeachcinT
if { complexity{c)<threshold) count++
End-For
E-Set == RENN(T)
For 0 1o count
COM(E-Set)
¢ + First case in E-Set
E-Set +-E-Sel-¢
End-For
Return (E-Set)

Fig. 6. Complexity threshold editing algorithm
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6 Experimental Evaluation of Complexity Threshold Editing

In this evaluation we compare the performance of Complexity Threshold Editing with
several existing redundancy reduction algorithms. The algorithms being compared can
be split into three categories.

= Complexity Threshold Editing (CTE) is our new redundancy reduction algorithm
and directly comparable with existing redundancy reduction algorithms. It is eval-
uated with four different complexity thresholds (0, 0.1, 0.2 and 0.3)

= Existing redundancy reduction algorithms (CRR, ICF and RC). These are modern
redundancy reduction algorithms that aim to reduce the size of the case-base while
maintaining competence. They have been shown to perform well in previous com-
parisons but each provides a different balance between compaction and compe-
tence: CRR provides a conservative approach to redundancy editing, RC is an ag-
gressive algorithm deleting the highest number of cascs, whereas, ICP falls in the
middle giving 2 moderate level of case-base compaction.

= Noise reduction algorithms (ENN and RENN). These algorithm aim to improve com-
petence but remove only a few cases and are not comparable with redundancy re-
duction algorithms. They are included in the evaluation because RENN has been
used as the pre-processing algorithm for all the redundancy reduction algorithms
including CTE. RENN provides a benchmark for accuracy that the redundancy re-
duction algorithms aim to maintain.

6.1 Experimental Setup

A ten times 10-fold cross validation experimental sct-up is used giving one hundred
case-base/test set combinations per experiment. The editing algorithms were applied
to each case-base and the resulting edited set size is recorded. Test set accuracy, using
1-NN retrieval, was measured for the original case-base and for cach of the edited scts
created by the editing algorithms.

Comparisons have been made on seven UCI datasets and the averaged results are
s.hown in Tables 2 and 3, Table 2 contains the average test set accuracy for each algo-
rithm on each domain. The highest accuracy result achieved by the redundancy reduc-
tion algorithms in each domain is highlighted in bold. Table 3 gives the unedited dataset
size in column 2 together with the edited dataset size as a proportion of the original in
the other columns, The values in bold are the size reduction achieved by the redundancy
algorithm with the highest accuracy. Both tables include an average row but this should
be used with care as it is calculated across different domains.

6.2 Results of Evaluation

The results of the evaluation can be summarised in each of the categories as follows:

= The CTE algorithm provides the highest accuracy of the redundancy reduction al-
gorithms in six of the seven domains. At zero complexity threshold, CTE has the
highest average accuracy of 87.5% compared to 86.5% for CRR. This is achieved
with smaller case-base sizes, 32.8% of original size on average compared to 39.4%,
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Table 2. Comparison of average test set accuracy for alternative editing algorithms

REDUNDANCY CTE Noise
Case-Base ORIG|CRR|ICF | RC | O | 0.1 | 0.2 0.3 [RENN|ENN
Breast Cancer |(0.661(0.740{0.736]0.688|0.738(0.734]0.728/0.709/0.753/0.736
Hepatitis 0.808{0.839/0.833|0.821/0.859/0.853/0.847(0.822/0.834 |0.862
House Votes  {/0.922{0.905 0.901~0.904 0.922(0.916/0.898]0.854/0.911)0.920
Iris 0.940[0.947(0.931(0.943/0.949/0.933(0.882/0.878]0.9520.952
Lymphography||0.812(0.759/0.749)0.757/0.775/0.775(0.776/0.758/0.772/0.781
Wine 0.963/0.957/0.934)0.923/0.959{0.92.4/0.884)0.822/0.948 /0.952
Zoo 0.957)0.906(0.902|0.904/0.921/0.901{0.876/0.778/0.904 [0.926
Average 10.8660.865] %&%&%ﬁ_ﬁf_ﬁﬂ&ﬁﬁi

Table 3. Comparison of edited case-base size for alternative editing algorithms

REDUNDANCY CTE NOISE
Case-Base ORIG{CRR | 1CF | RC | O | 0.1 ]0.2]0.3 [RENN]ENN
Breast Cancer || 258 (0.248]0.160]0.071]0.604]0.450]0.292/0.163]0.674 0,694
Hepatitis 140 [0.403(0.082(0.061]0.355]0.265/0.186/0.102(0.796 /0.824
House Votes || 392 |0.471{0.035/0.038/0.155]0.093/0.061/0.038/0.908 {0.928
Iris 135 [0.389]0.296[0.065/0.177(0,078/0.038/0.037/0.952(0.952
Lymphography|| 134 10.415/0.180(0.152|0.625/0.460{0.322(0.189]0.815(0.846
Wine 161 |0.439[0.159(0.099(0.208[0.098(0.056/0.033/0.965 [0.967
Zoo 91 (0.355/0.486/0.110(0.241{0.1380.096{0.075/0.927 (0,918
Average 187 10.394/0.153/0.074/0.328/0.221 0.146/0.087 ggg 0819

showing that CTE is an excellent algorithm for conservative redundancy reduction.
At moderate levels of redundancy reduction, with a threshold of 0.1, CTE achieves
slightly better accuracies than ICF but retains slightly more cases. Overall the per-
formance is comparable with ICF, With higher complexity thresholds, for agressive
redundancy reduction, CTE does not perform so well and is outperformed by RC.

The three existing redundancy reduction algorithms all provide a different compro-
mise on the trade-off between case-base compaction and maintaining competence,
CRR, designed to take a conservative approach to redundancy reduction, has the
highest accuracy on each domain and the highest average accuracy of 86.5% com-
pared to 85.5% for ICF and 85.0% for RC. However, CRR obtains the improved
accuracy by retaining, on average, 39% of the cases, more than twice that of ICF
(15%) and five times RC (7%). Very aggressive redundancy reduction is achieved
by RC but the results confirm that this is at the expense of loss of accuracy. The
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performance of ICF lies between the others on both competence retention and case-
base size reduction.

= Thereislittle to choose between the performance of the noise reduction algorithms.
In these datascts ENN gives the highest average accuracy but that is probably be-
cause many of these datasets are not noisy and ENN gives the best results on data
with low levels of noise. RENN removes slightly more cases and gencrally performs
better on noisy data but worse on low noise datasets. It is worth noting that on four
of the datasets all the noise reduction algorithms harm accuracy but on Breast Can-
cer and Hepatitis substantial accuracy gains are achieved by noise reduction.

CTE provides the best performance for conservative redundancy reduction, provid-
ing superior accuracy on six out of the seven domains. We checked the significance of
these differences using a 2-tailed t-test with 95% confidence level, The superiority of
CTE was found to be significant in 4 domains; Hepatitis, House Votes, Lymphography
and Zoo.

As expected, setting a zero level threshold maintained accuracy at a similar level
to that achieved after RENN noise reduction in all the domains and overall there was
actually a slight increase in accuracy from 86.8% to 87.5%. This confirms that at the
local level the case complexity measure identifies redundant cases and at a global level
the redundancy indicator estimated from the complexity profile is a good predictor of
the level of redundancy within a case-base. When the complexity threshold is increased
above zero, accuracy initially falls away gradually at first, as non-redundant cascs start
to be deleted and then more quickly as cases nearer to decision boundarics are deleted.

The performance of CTE for aggressive levels of redundancy reduction with the
higher complexity thresholds was disappointing. This suggests that while case com-
plexity provides a good measure for identifying redundant cascs away from boundarics,
itis not so good at selecti ng between boundary cases.

The expectation that accuracy would fall as the size of the edited case-base falls
is corroborated both for the existing redundancy reduction algorithms and for varying
complexity thresholds with CTE. This confirms previous research results that there is a
trade-off between the conflicting objectives of compaction of the case-base and main-
taining competence,

The inconsistent performance of the noise removal algorithms across the different
datasets highlights the need to apply different maintenance strategics for different do-
mains, Complexity profiling of the case-base can play a role in identifying appropriate
maintenance strategies for a case-base.

7 Conclusions and Future Work

The novel contribution of this work is the use of a local case complexity measure, to-
gether with a case-base profile to guide the case editing process, The complc:u)f mea-
sure identifies redundant cases for deletion and cases on class decision boundaries for
retention. Complexity profiling gives a measure of the level of complexity, redundancy
and noise inherent in the data. This knowledge provides an element of control over the
compromise required between the contradictory objectives of the reduction in case-base
size and the retention of competence.
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Complexity profiling can play a further role in assisting the knowledge engineer to
make choices between alternative maintenance techniques depending on the structure
of the data and a system’s performance requirements. Profiling also provides the op-
portunity to create a benchmark for comparison with future versions of the case-base to
monitor the impact of changes over time.

We have introduced the Complexity Threshold Editing algorithm and dcmonslrn!cd
its effectiveness on seven public domain datasets. The algorithm was shown 1o provide
superior performance characteristics when compared to existing techniques l’pl: conser-
vative levels of editing and comparable performance at moderate levels of editing. One
limitation of the approach is an average performance for aggressive editing because the
complexity measure does not make a balanced selection between alternative bou'ndary
cases. Enhancements are being investigated to improve this selection on boupdancs. .

Complexity profiling has also been introduced and evaluated on public domain
datasets, The interpretation of several profiles has been discussed to show how they
can help the knowledge engineer develop a suitable case-base maintenance policy. The
global indicators on accuracy, redundancy and noise, extracted from the profiles, are
shown to correlate well with alternative measures. ‘

In this paper we have concentrated on providing support for the knowledge engincer
in the redundancy editing problem. However we are keen to see how the use of profiling
might be used more generally to provide support in other case-base maintenance areas,
such as noise reduction.
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Abstract. Feature sclection for unsupervised tasks is particularly challenging,
especially when dealing with text data. The increase in online documents and
email communication creates a need for tools that can operate without the su-
pervision of the user. In this paper we look at novel feature selection techniques
that address this need. A distributional similarity measure from information the-
ory is applied to measure feature utility. This utility informs the scarch for both
representative and diverse features in two complementary ways: CLUSTER di-
vides the entire feature space, before then sclecting one feature 1o represent each
cluster; and GREEDY increments the feature subsct size by a greedily sclected
feature. In particular we found that GREEDY's local search is suited to lcaming
smaller feature subset sizes while CLUSTER s able to improve the global qual-
ity of larger feature sets. Experiments with four email data sets show significant
improvement in retrieval accuracy with nearest ncighbour based scarch methads
compared to an existing frequency-based method. Importantly both GREEDY and
CLUSTER make significant progress towards the upper bound performance sct by
a standard supervised feature selection method.

1 Introduction

The volume of text content on the Internet and the widespread use of email-based com-
munication have created a need for text classification, clustering and retrieval tools.
There is also growing research interest in email applications, both within the Case-
Based Reasoning (CBR) community [6,12] and more generally in Machine Learn-
ing [15). Fundamental to this interest is the challenge posed by unstructured content,
large vocabularies and changing concepts, Understandably, much of the research effort
is directed towards mapping text into structured case representations, so as to facilitate
meaningful abstraction, comparison, retrieval and reuse. .
Feature selection plays an important role for the indexing vocabulary acquisition
task. Often this initial selection can be either directly or indircctly applied to identify
representative dimensions with which structured cases can be formed from unstructured
text data. Applied directly, each selected feature corresponds to a dimension in the case
representation. When applied indirectly, selected features are first combined to idenufy
new features in a process referred to as feature extraction before they can be used as
dimensions for case representation [4,25). Although feature extraction is undoubicdly
more effective than feature selection at capiuring context, our expericnces with super-
vised tasks suggests that feature selection is an important complementary precursor to

T.R. Roth-Berghofer et al. (Eds.): ECCBR 2006, LNAI 4106, pp. 340354, 2006,
© Springer-Verlag Berlin Heidelberg 2006
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the extraction phase [24]. In this paper we are interested in feature selection applied
directly to derive case representations for unsupervised tasks involving text data.

Feature selection reduces dimensionality by removing non-discriminatory and some-
times detrimental features, and has been successful in improving accuracy, efliciency
and comprehension of learned models for supervised tasks in both structured (8,10}
and unstructured domains {26). Feature selection in an unsupervised setting is far more
challenging, especially when dealing with text data. Typical applications (e.g. email,
helpdesk, online reports) involve clustering of text for retrieval and maintenance pur-
poses. The exponential increase in on-line text content creates a need for tools that
can operate without the supervision of the user. However, in spite of this need, current
research in feature selection is mainly concerned with supervised tasks only.

The aim of this paper is to apply unsupervised feature selection to text data, We intro-
duce feature selection methods that are applicable to free text content as in emails and to
texts that are sub-parts of semi-structured problem descriptions. The latter form is typ-
ical of reports such as anomaly detection or medical reports. Analysis of similar words
and their neighbourhoods provide insight into vocabulary usage in the text collection.
This knowledge is then exploited in the search for representative yet diverse features.
In a GREEDY search, the next best feature to select is one that is a good representative
of some unselected words, but also unlike previously selected words. This procedure
maintains representativeness while ensuring diversity by discouraging redundant selec-
tions. Greedy search can of course result in locally optimal, yet globally non-optimal
feature subsets, Therefore, a globally informed search, CLUSTER selects representative
features from word clusters.

Central to feature selection methods introduced in this papers is the notion of simi-
larity between words. Word co-occurrence behaviour is a good indicator of word sim-
ilarity, however co-occurrence data derived from textual sources is typically sparse,
Hence, distance measures must assign a distance to all word pairs, whether or not they
co-occur in the data. Distributional similarity measures (obtained from information the-
ory) achieve this by comparing co-occurrence behaviour on a scparate disjoint sct of
target events [18]. In this paper events are all other words. Intuitively, if a group of
words are distributed similarly with respect to other words then selecting a single repre-
sentative from a neighbourhood of words will mainly eliminate redundant information,
Consequently, this selection process will not hurt case representation, but will signifi-
cantly reduce dimensionality. A further advantage of exploiting co-occurrence patterns
is that it provides contextual information to resolve ambiguitics in text such as similar
meaning words that are used interchangeably (synonyms) and the same wond being used
with different meaning (polysemies). In both situations similar cases can be ovetlooked
during retrieval if these semantic relationships are ignored.

Section 2 presents existing work in unsupervised feature sclection and work related
to distributional distance measures and clustering based indexing schemes. Next we
establish our terminology before presenting the baseline method in Section 3. Details
of distributional distance measures and the role of similarity for unsupervised feature
selection is discussed in Section 4. Section § introduces the two similarity-based selec-
tion methods, GREEDY and CLUSTER. Experimental results are reported on four email
datasets in Section 6, followed by conclusions in Section 7.
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2 Related Work

Feature selection for structured data can be categorised into filter and wrapper methods.
Filters are seen as data pre-processors and generally, unlike wrapper approaches, do
not require feedback from the final learner. As a result they tend to be faster, scaling
better to large datasets with thousands of dimensions, as typically encountered in text
applications. Comparative studies in supervised feature selection for text have shown
heuristics based on Information Gain (IG) and the Chi-squared statistic to consistently
outperform less informative heuristics that rely only on word frequency counts [26].

Unlike with supervised methods, comparative studies into unsupervised feature se-
lection are very rare. In fact, to our knowledge there has only been one publication
explicitly dealing with unsupervised feature selection for text data [16). Generally,
existing unsupervised methods tend to rely on heuristics that are informed by word
frequency counts over the text collection. Although frequency can be a fair indicator
of feature utility it does not consider contextual information. Ignoring context can be
detrimental for text processing tasks because ambiguities in text can often result in poor
retrieval performance. A good example is when dealing with polysemous relationships
such as “financial bank” and “river bank”, where the word frequency for “bank™ is
clearly insufficient to establish its context and hence its suitability for indexing or case
comparison,

In Textual Case-Based Reasoning (TCBR) research [22] the reasoning process can be
seen to generally incorporate contextual information in two ways: as part of an claborate
indexing mechanism [2]; or as part of the case representation [24]. The latter requires
simpler retrieval mechanisms, hence is a good choice for generic retrieval framewotks;
while the former, although better at capturing domain-specific information, is more
demanding of the retrieval process. A further distinguishing characteristic of TCBR
systems is the different levels of knowledge sources employed to capture context [14].
These levels vary from deep syntactic parsing tools and manually acquired gencrative
lexicons in the FACIT framework [7]; to semi-automated acquisition of domain-specific
thesauri with the SMILE system; to automated clause extraction exploiting heyword
co-occurrence patterns in Psi [25). Of particular interest to this paper is the capture
of co-occurrence based, contextual information within the case representation, Current
research in this area is focused on feature extraction, which unlike feature selection
aims to construct new features from existing features. Interest in this area has resulted
in extraction techniques for both supervised (e.g. [25.27]) and unsupervised sctungs
(e.g. [4,11)). .

In text classification and applied linguistic rescarch the problem of determining
context is commonly handled by employing distributional clustering nppfom’:hcs‘. In-
troduced in the early nineties for automated thesaurus creation [18], d:a.!nbuuonal
clustering has since been widely adopted for feature extraction with supervised tasks,
such as text classification [1,20]. Word clusters are particularly useful because con-
textual information is made explicit by grouping together words that are suggestive
of similar context. Additionally, word clusters also provide insight into vocabulary us-
age across the problem domain. Such information is essential if representative fcamr.cs
are to be selected. Of particular importance for word clustering are distributional dis-
tance measures, These measures ascertain distance by comparison of word distributions
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conditioned over a disjoint target set. Typically, class labels are the st of targets and so
cannot be applied to unsupervised tasks.

. The textual case retrieval system SOPHIA introduced a novel approach to combining
distributional word clustering with textual case base indexing [17]. Here feature dis-
tance is measured by comparing word distributions conditioned on other co-occurring .
words (instead of class labels). Indexing is enabled by identifying sced features that act
as case attractors, They argue that seed features are those that have non-uniform distri-
butions having low entropy, referred to as specific word contexts, However the entropy
based measure cannot di stinguish between representative and diverse features even if
they have specific contexts.

In structured CBR, clustering is commonly employed as a means to identify repre-
sentative and diverse cases for cascbase indexing. A good example is the footprint-
driven approach [21] where a footprint case is: representative of its neighbourhood
because of its influence; and diverse because its area of competence cannot be matched
by any other case, This notion of identifying diverse yet representative cascs has also
been exploited in casebase maintenance [6,23].

In summary, the representativeness and diversity of an entity can be measured by
analysing its neighbourhood. In this paper the entity is the feature and representative-
ness and diversity are also important for feature selection. Central to feature neighbour-
hood analysis is a good distance metric. When features are words, the distance metric
must take context into account. Distributional distance measures do this by exploiting
word co-occurrence behaviour.

3 Frequency Based Unsupervised Feature Selection

We first introduce the notation used in this paper to assist presentation of the different
feature selection techniques. Let D be the sct of documents and ¥V the sct of features,
which are essentially words. A document d is represented by a feature vector, X =
(Z14-..,2pwy), of frequencies in d of words from W [19). In some applications, the
frequency information is suppressed, in which case the ; are binary values indicating
the presence or absence of words in d. The main aim of unsupervised feature selection is
toreduce |W)| to a smaller feature subset size m by selecting features ranked acconding
to some utility criterion. The selected m features then form a reduced word vocabulary
set W/, where W ¢ Wand |[W'| < |[W|. The new representation of document d is the
reduced word vector x’, which has length m.

Frequency counts are often used to gauge feature utility particularly in an unsuper-
vised setting. The Term Contribution ( Tc) is one such measure, showing promising
results in [16):

Te(w) = Y F(w,di) ¢ F(w,dy)

i1
i)

F(w,d) = f(w,d) + on:l%-l

Here F computes the tf*idf score which is a measure of the discriminatory power of a
word given a document. Term frequency f is the within document frequency count of a
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feature and n is the number of documents containing feature w, Te's frequency based
ranking and selection of features is the base line feature selection method used in this
paper and we will refer to it as BASE (Figure 1).

m = feature subset size
BASE
Foreachw; € W
calculate Te score using D
sort W in decreasing order of Tc scores

W ={w1,...,wm}
Return W'

Fig. 1. Feature selection with T¢ based ranking

Te will typically rank frequent words appearing in fewer documents above those
appearing in a majority of documents. In this way the BASE method will attempt to
ignore overly frequent (or rare) features. Its main drawback is its inability to address
the need for both representative and diverse features. This leads to selection of non-
optimal dimensions that fail to sufficiently capture the underlying document content.

4 Role of Similarity for Unsupervised Feature Selection

A representative feature subset is one that can discriminate between distinct groups
of problem-solving situations. In a classification setting, these groups are identified by
their class labels and are typically exploited by the feature selection process. However
in the absence of class knowledge, we need to identify and incorporate other implicit
sources of knowledge to guide the search for features.

Similar problem situations are typically described by a similar set of features form-
ing an operational vocabulary subset. When these subsets are discovered the search for
features can be guided by similarity in problem descriptions. In particular hnowledge
about feature similarity enables the search process to address both the need for repre-
scntative and diverse features. The question then is how do we define similarity between
features. A good startin g point is to analyse feature co-occurrence patterns because fea-
tures that are used together to describe problems are more likely to suggest the same
operational vocabulary subset than features that rarely co-occur. In the rest of this sec-
tion we look at how feature utility can be inferred from similarity hknowledge extracied

from feature co-occurrence patterns.

4.1 Feature Utility Measures

For a given word w € W, our first metric estimates the average pair-wise distance Dist
between w and its neighbourhood of k nearest word neighbours.

Dist(w, A k) =+ 3. Dist(w,un)
' k wy ENa(w,A)
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where Ny returns the k nearest neighbours of w chosen from A C W, and Dist 15 the
distance of w from its neighbour wy. Lower values for Dist suggests representative
words that are centrally placed within dense neighbourhoods.

An obvious distance measure for words is to consider the number of times they
co-occur in documents [19]. However the problem with such a strasght forward co
occurrence count is that similar words can be mistaken as being dissimilar because they
may not necessarily co-occur in the available document set . This 1s typical with text
due to problems with sparseness [4].

4.2 Distributional Distance Measures

Often, related words do not co-occur in any document in a given collection, due 1o
sparsity and synonymy. This limits the usefulness of similanty measures based purcly
on simple co-occurrence. Distributional distance measures circumvent this problem by
carrying out a comparison based on co-occurrence with members of a separate dis
Joint target set [ 18]. Applied to text, the idea measures distances between word pairs by
comparing their distributions conditioned over the set of other words. Since the condy
toning is undertaken over a separate disjoint set, distances between non co-occurming
word pairs need no longer remain unspecified.

Let us first demonstrate the intuition behind distributional distance measures by con-
sidering three words, a, b and ¢, and their ficutious word distribution profiles (see
Figure 2). The x-axis contains a set of target events w,, while the y-axis plots the con
dinonal probabilities plw;|w), for w a, b, . Comparison of the three conditional
probability distributions suggests a higher similarity between a and b (compared to pro
files of a and ¢). When target events on the x-axis are words, then a comparison between
conditional probability distributions provides a similarity estmate based on word co
occurrence patterns. The next question then is how can we measure distance between
feature distributions,

08
06

B 04
02

w | w=a)

(@) : (b) ' ()
Fig. 2. Conditional probability distribution profiles

Let g and r be two features from W whose similarity 1s to be determined. For nota
tional simplicity we write g(w;) for p(w;|w = ¢) and r{w,) for plw,fu = r), where
wi € W\ {q,7} and p denotes probabilities calculated from the traning data . Re
search in linguistics has shown that the o-Skew metnic is a useful measure of the dis-
tance between word distributions, when applied to the task of identifying similar noun
pairs [13]. It is argued that the asymmetric nature of this distance measure is appro
priate for word comparisons, since one word (¢.g. ‘fruit’) may be a better substitute
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fc_)r another (e.g. ‘apple’) than vice-versa. Here we adopt this metric to compare word
distributions and thereby determine the distance from word ¢ € YV to word r € V.

. r(w)
Dist(q,r) = gr[wi)fogq(w‘)
is the Kullback-Leibler (KL) divergence, which is derived from information theory. It
measures the average inefficiency in using r(w;) to code for g(wy) [3].

In our context, a large value of Dist(q, r) would suggest that the word ¢ is a poorrep-
resentative of the word r, but not necessarily vice-versa. However, the Dist is undefined
if there are any words for which g{w;) = 0, but r(w;) # 0. The a-Skew metric avoids
this problem by replacing ¢ with aq + (1 — a)r, where the parameter c is less than one.
In practice, our Dist is the a-Skew metric with a = 0.99, as suggested in [13].

S Similarity Based Unsupervised Feature Selection Methods

Dist is the simplest measure that can be employed to rank features. However, we wish
to use it so that a diverse yet representative set of features is discovered. This can be
achieved in two alternatively ways: a GREEDY search that is locally informed; or a more
globally informed CLUSTER-based search.

5.1 Greedy Search for Features

What we propose here is a greedy local search for the best feature subset. At each
stage, the next feature is selected to be both representative of unselected features and
distant from previously selected features, The feature utility score FuSs. combines the
average neighbourhood distance Dist from both the selected and unselected feature
neighbourhoods as follows:

Dist(w, S, k)

Fusk(w) = 5= 000 %)

where U C W contains previously unselected features, and S = W \ I contains
previously selected features. Here the numerator penalises redundant features while the

denominator rewards representative features. )
The Fusy based ranking and selection of features is the first unsuperviscd feature

selection method introduced in this paper and we will refer to it as GREEDY (Fig-
ure 3). Unlike T¢, Fus,'s reliance on distributional distances to capture co-occurrence
behaviour undoubtedly makes it far more computationally demanding. However this
cost is justified by FUS's attempt to address the need for both representative and di-
verse features. One problem though is that GREEDY is a hill-climbing sFarrh uhcr}:
the decision to select the next best feature is informed by local information, hence it
can select feature subsets that, although locally optimal, can nevertheless be globally
non-optimal.
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m = feature subset size
S=0U=W
GREEDY
Repeat
Foreachw; € Y
calculate FUS, score
sort I{ in decreasing order of FUSs scores
wy = top ranked feature in/f
S=8SU {wy}
U=U\ {wy}
Until (/S| =m)
W=§
Return W

Fig. 3. GREEDY method using FUS, based ranking

5.2 Clustered Search for Features

Clustering of words provides a global view of word vocabulary usage in the problem
description space. Each cluster contains words that are contextually more similar to
each other than to words outwith their own cluster. Partitioning the feature space in this
way facilitates the discovery of representative features because each cluster can now be
treated as a distinct sub-part of the problem description space.

We use a hierarchical agglomerative (bottom-up) clustering technique, where at the
beginning every feature forms a cluster of its own. The algorithm then unites features
with greatest similarity in small clusters and these clusters are iteratively merged until i
number of clusters are formed. The decision to merge clusters is based on the furthest
neighbour principle, where those two clusters with least distance between their most
c!issimila: cluster members are merged. Typically, this form of cluster merging leads to
tightly bound and balanced word clusters.

Merging of clusters requires that a distance metric is in place. For this purpose we
use the Dist metric from Section 4. However, we must first address the question of
how to deal with the asymmetrical nature of this metric when comparing distances
between members of separate clusters. There are essentially three ways in which the
two distances can be consolidated: use the maximum; the minimum or the average. We
advocate the maximum distance, which combines with the furthest neighbour pringiple
to form clusters in which there are no large distances.

Figures 4 and 5 illustrates how the choice of distances can affect the final cluster
structure. In this example, clusters are formed with keywords extracted from a I'C-Mac
hardware FAQs mailing list. A closer look at the five word clusters formed using the
maximum of the assymetrical distance betweena feature-pair suggests that the resulting
groups are not only semantically meaningful (e.g. cluster membership of “dos™) but are
also more balanced (e.g. number of words in a cluster).

Once clusters are formed we need a mechanism to uniformly sclect one representa-
tive feature from each cluster. In Figures 4 and 5 underlined words indicate such repre-
sentatives (often referred to as cluster centroids or secds). Previously, we stated that a
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Fig. 8. Minimum distance

Fig. 4. Maximum distance

m = feature subset size
W =0
generate set of word closters {Cy. o G )
CLUSTER
Forecach ', © W
w; = feature with max Fusge in ¢,
W'=W Uuw,
Retrn W

Fig. 6. CLUSTER method using FUSe based ranking

representative feature is identified by its placement within dense neighbourhoods Us
ing this same idea and the Dist metric in Section 4 we estimate the representativencss
of feature w within a cluster C as a function of the average pair-wise distance between
itself and its cluster members:

Fuse(w) = (1 - Dast(w,C.|Cl))

The second unsupervised feature selection method introduced in this paper i CLUS
TER. It uses the FUse score 1o rank features in a cluster, choosing w with highest Fus,
from each cluster. The main steps appear in Figure 6 Here the number of clusters
formed 15 equal 1o the desired feature subset size, mi. This determines the stopping
criterion for clustering. Like GREEDY, CLUSTER also addresses the need for represen
tativeness and diversity, however, we expect CLUSTER 1o have an edge over GREEDY
because its selection is influenced more globally.



Unsupervised Feature Sclection for Text Data 39

6 Evaluation

We wish to determine the effectiveness of the two similarity-based searches for features,
compared to the frequency-based search:

~ GREEDY, introduced in this paper with ranking using Fus ! (Figure 3);

= CLUSTER, also introduced in this paper, exploits clustering and ranking using FUS¢
(Figure 6); and

~ BASE, the baseline with ranking on Tc (Figure 1).

The Tc-based ranking used by BASE is the only unsupervised method that has up to
now been shown to perform better than the basic document frequency and the term
strength methods [16]. We would hope to significantly improve upon the performance
of BASE. Now the upper-bound for any unsupervised technique is its supervised coun-
terpart, therefore, we also compare all our unsupervised methods with the standard
IG-based SUPERVISED feature ranking and selection method.

Itis generally harder to carry out empirical testing within a truly unsupervised sctting
compared to a supervised one, This is because, the absence of supervised labels calls for
alternative sophisticated evaluation criteria, such as comparison of retrieval rankings or
establishing measures of cluster quality. Instead, we applied our unsupervised methods
on labelled data ignoring labels until the testing phase. Essentially we are exploiting
class labels only as a means to evaluate retrieval performance which indirectly measures
the effectiveness of the case representation. Note that we are not interested in producing
a supervised classifier.

Experiments were conducted on 4 datasets; all involving email messages. Each email
message belongs to one mail folder. Here folders are the class labels. As in previous ex-
periments we used the 20Newsgroups corpus of 20 Usenet groups (9], with 1000 post-
ings (of discussions, queries, comments etc.) per group, to create 3 sub-corpuses [24]):
SCIENCE (4 science related groups); REC (4 recreation related groups) and HWw (2 hand-
ware problem discussion groups, one on Mac, the other on PC). With each sub-corpus
the groups were equally distributed. A further set of 1000 personal emails, used for
Spam filtering research forms the final dataset, USREMAIL, of which 50% are Spam [3].

We created 15 equal-sized disjoint train-test splits. Each split contains 20% of the
full dataset, selected randomly, but constrained to preserve the original class distribu-
tion. All text was pre-processed by removing stop words (common words) and punctu-
ation and the remaining words were stemmed. In the interest of reducing time taken for
repeated trials, the initial vocabulary size was cutdowntoa subset composed of the 500
most and 500 least discriminating words (using IG). These 1000 wonrds then form Y,
An effective feature selection method should eliminate the nor:-discriminating. words
and assemble a representative and non-redundant combination of the discriminating
ones.

The effectiveness of feature selection is directly reflected by the usefulness of the case
representation obtained. Therefore, case representations derived by GREEDY, CLUS-
TER, BASE and SUPERVISED are compared on test sct accuracy from a retrieve-only
system, where the weighted majority vote from the 3 best matching cascs are used to

" In our experiments k=135 s used as FUs,'s neighbourhood size.
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Fig. 7. KNN accuracy results for 4 datasets

classify the test case. For each test corpus and each method the graphs show the test set
accuracy (averaged over 15 trials) computed for representations with 5, 20, 40 and 60
feature subset sizes (Figure 7).

6.1 Results

Analysis of overall performance of SUPERVISED on the 4 datasets indicates that the
classification of emails from USREMAIL as Spam or legiimate presents the casiest task
Here, SUPERVISED obtained 80% accuracy with just 5 features, compared with only
60% accuracy on the SCIENCE dataset. In all datasets except SCIENCE, we observe
a steep nise in accuracy up to about 20 features, followed by a levelling-off as more
features are added. This indicates that SCIENCE is the most difficult problem. Unlike
USREMAIL, the other binary-classed Hw dataset is harder, because similar terminology
(e.g. monitor, hard drive) can be used in reference to both classes (1e. PC and Apple
Mac), Additionally, the same hardware problem can be relevant 1o both mailing lists,
resulting in cross-postng of the same message.

We note that BASE performs very poorly on all datasets compared 1o GREEDY,
CLUSTER and SUPERVISED. With the exception of the easiest problem (USREMATL), 1t
barely outperforms random allocation of classes and does not improve its performance
as more features are added. Both GREEDY and CLUSTER clearly outperform Has
on all four datasets and improve their performance as the number of features increase
BASE's poor performance is explained by the fact that it selects features purely on the
basis of term frequency information. Although frequent words will co-occur with many
other words these co-occurrences will not necessarily be with similar words. Since sim
tlar words are indicative of similar areas in the problem space, BASE s not able to
identify words that are representative of the problem space.
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As expected, the SUPERVISED method achieves highest accuracy. Although both
GREEDY and CLUSTER never match the performance of the supervised method, they
make good progress towards the upper bound which it is expected to provide. Inter-
estingly, CLUSTER improves relative to GREEDY as feature subset size increases and
by 60 features, it is clearly better on the three more difficult datasets and only slightly
worse on USREMAIL,

The fact that GREEDY is competitive with CLUSTER at lower feature subset sizes, but
falls behind at higher subset sizes, suggests that GREEDY is more susceptible to over-
fiing. This effect can be seen in Figure 8, which plots training and test set accuracy
for GREEDY and CLUSTER on the HW dataset, In these plots, data points lying signifi-
cantly above the line z = y are indicative of overfitting, Comparison of the scauer-plots
confirms that GREEDY is more likely to overfit the selected feature subsct to the training
set.

;g 90| GREEDY . . 90 { CLUSTER .
] . 17 s m
gso [ ] wl lk ?."‘. 80 . . .'ll .'..:'* ?~
[

= ] o . -
§70 -l | 0 e
=, - - -
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Fig. 8. Comparison of overfitting behaviour with GREEDY and CLUSTER on HW

6.2 Evaluation Summary

We checked the significance of observed differences between GREEDY and CLUSTER,
using a 2-tailed t-test with a 95% confidence level for feature subsct size, m equal to
60 (see Table 1). This test indicated that the superiority of CLUSTER over GREEDY
was significant in all three datasets (bold font), but that of GREEDY on USREMAIL
was not shown to be significant at this level. The superior scaling of CLUSTER can be
explained by the fact that small optimal feature subscts need not be subsets of larger
ones. GREEDY can be expected to suffer from overfitting at larger feature subset sizcs,
since the greedily chosen carly features are locked in and cannot be altered to improve

Table 1. Results summary for feature subsct size 60 acconding to significance

60 features |[USREMAIL[HW |REC|SCIENCE
GREEDY 89.3 [63.7]64.0f 510
CLUSTER 883 [69.1[62.7] 549
BASE 735 |51.7/126.5] 262
SUPERVISED 90.8 74.0|72.0| 587
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the global quality of a larger feature set. CLUSTER avoids this problcn.l by div:iing g‘:l
entire feature set into as many clusters as required, before then selecting one keyw
to represent each cluster,

7 Conclusions

The methods introduced in this paper are particularly suited to generating case rep-
resentations from free text data for unsupervised tasks. The novelty of these m‘c‘lhod;
lies in their exploitation of distributional similarity knowledge to assess the utility o
candidate features.

We introduce two unsupervised feature selection mcthcn!s: GREEPY and CLUSTER.
Key to both these methods is the selection of representative yet diverse rcalull'ts us-
ing similarity knowledge. Distributional distance measures are able to adcqufllc!y Cfip-
ture feature similarity by addressing sparseness in co-occurrence data [18]. L‘(’; Uﬂf:‘)@:
results show significant retrieval gains with case representations dcn-\-cd by REEI .
and CLUSTER, over an existing proven method (BASE) from a previous comEau::::
study [16]. It is also encouraging to report that both GREEDY and CLUSTER_::: reg‘
progress towards the upper bound which is provided by a standard supervi ci'; ure
selection method. Generally GREEDY is able to gencrate good feature subsfcts carly on
in the search for features while CLUSTER'S global search npp‘roach c9n§l$l¢ﬂlly Wh:
performs the GREEDY search with increasing feature sybsct sizes. This is due 191 ‘
locally informed GREEDY search identifying locally opumal._ yet globally n.:b-q\:::m.a .
subsets, Results also indicate that GREEDY is more susccptgb!c to ovcrﬁlt‘ml- ¢ In
tend studying the influence of representativeness and diversity on 0\'crﬁlt|:t’g‘i.t{s:ngl a
weighted form of FUS, to control the balance between representativencss an r;;_cr:u r);

Previously we have shown that feature selection is a pscfu! integral p:u'l‘o ca nl:n-
extraction when applied to text classification [24]. One difficulty that we have ence i!
tered since then, is that a majority of applications 1nvqlvmg text are not n'r:cpssa; ::
supervised. This work is a first step towards msolving q'ns shortcoming in em.!:;:g ¢
ture discovery tools. Future work will look at combining ‘fcnlurc sclection wi ::::
powerful feature extraction methods to create comprchcnswc. tools for text repre
tion, indexing and retrieval for both supervised and unsupervised tashs.
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Abstract, Case representation challenges Textual Case-Based Reasoning (TCBR)
system development, This is particularly true for unsupervised problem domaing,
We introduce a novel unsupervised feature extraction technique to derive a struc-
tured case representation from text data. Our approach analyses word co-occurrence
patterns to calculate similarity between words and uses this similarity knowledge
(0 select representative but diverse seed words. Sparse representations are avoided
by learning to gencralise seed words with feature extraction rules. Our approach

is demonstrated on a TCBR prototype, CAM, developed as an initial step towands
supporting the European Space Agency’s (ESA) anomaly report processing task.
ESA's reports are semi-structured, unsupervised documents composed mainly of
free-text. CAM currently implements the retrieve stage of CBR, where the aim
is to retrieve similar anomaly reports when prescented with a new anomaly. An
initial expert evaluation provides evidence to support CAM’s retricval.

1 Introduction

In this paper we look at the retrieval stage of the Case-Based Reasoning (CBR) cycle
applied to the complex task of anomaly report matching for the Curopean Space Agency
(ESA). In particular we address the problem of deriving a structured case representation
from unsupervised text data using feature selection and extraction techniques.

Case representation is a key design issue for the successful development of any CBR
system. This is particularly true for a Textual CBR (TCBR) system which generally re-
quires the application of feature selection or extraction techniques to reduce the dimen-
sionality of the problem by removing non-discriminatory and sometimes detrimental
features, Dimensionality reduction has been shown to be successful in improving accu-
racy and efficiency for supervised tasks in unstructured domains [20]. However, in an
unsupervised setting feature selection/extraction is a far more challenging task because
class knowledge is not available to evaluate alternative representations.

We introduce a novel feature selection technique where similarity between words is
calculated by analysing word co-occurrence patterns followed by seed word selection



using a footprint-based feature selection method. A feature extraction technique using
rules induced by Apriori is applied to generalise the seed words and reduce sparsencss
of the case representation. The technique is implemented in a prototype CBR Anomaly
Matching demonstrator called CAM. Currently, CAM is able to retrieve similar reports
when presented with a new anomaly and incorporates intuitive visualisation techniques
10 convey case similarity knowledge, An initial small-scale evaluation highlights the
effectiveness of our approach.

The problem domain and the key objectives for the prototype are presented in Scc-
tion 2. Section 3 discusses feature selection and extraction approaches used to create the
case representation, We describe how the prototype was implemented in Section 4. Ini-
tial evaluation results are presented in Section § followed by related work in Scection 6.
Finally, we provide conclusions and recommendations for future work in Section 7.

2 Anomaly Reporting

ESA is Europe’s gateway to space. Its mission is to shape the development of Europe's
space capability and ensure that investment in space continues to deliver benefits w the
citizens of Europe. ESOC, the European Space Operations Centre, is responsible for
controlling ESA satellites in orbit and is situated in Darmstadt, Germany. ESOC works
in an environment in which safety and Quality Assurance is of critical importance and,
as a result, a formal Problem Management process is required to identify and manage
problems that occur both within the operations of the space segment and of the ground
segment. Observed incidents and problems (the cause of the incidents), are reconded by
completing anomaly reports.

Anomaly reports are semi-structured documents containing both slruclum! and un-
Structured data. There are 27 predefined structured fields containing inform.'l‘tmn such
as: the originator's name; key dates relating to the report and the physical location of the
anomaly. Structured fields are used to group and sort reports, for example by urgency
or criticality. Importantly, for knowledge reuse purposcs the anomaly reports also have
an observation (the title of the report), description (facts observed), recommendation
(first suggestion on recovery) and resolution field (how the problem is malysqd and
disposed). These four unstructured fields contain free text that are not necessarily al-
ways spell-checked or grammatically perfect but contains valuable knowledge.

The Anomaly Report Tracking System (ARTS) is an application that supports ESA
staffin tracking the anomaly reports from the creation to the final closure, ARTS ensures
that reports have a standard format and allows the status of a report to be c(mtm_llcd
as it progresses through the life cycle of a problem (recording, preliminary review,
analysis, disposition, closure). There are approximately 1000 reports gcnf.‘ralcd per year
spanning multiple missions covering a variety of problems (e.g. operations incidents,
software problems, non-conformance). Report content is entered by different pmpIF
across different missions (or infrastructure entities) so report life chlc. lc.\tl of detail
and use of vocabulary varies, however some level of consistency in technical terms is
to be expected. Although reports can originate from as far back as ten years, the reports
in the ARTS system date back to just five years.



The work described in this paper involves the organisation and extraction of knowl-
edge from anomaly reports maintained by the ARTS system. The overall goal is to
extract knowledge and enable decision support by reusing past-experiences captured in
these reports. An initial prototype CAM supports report linking and resolution retrieval.

= Task 1: Report linking aims to discover similar technical problems across multiple
reports and to generate links between reports across projects. Reports can be related
because they either describe symptoms of the same problem within the same project
(indicating the re-occurrence of incidents associated with the same cause) or they
report a similar anomaly shifted in time occurring in different projects / missions.
Relating anomalies can highlight single problems that result in multiple incidents
which are recorded in different (and sometimes un-related) reports. One goal is to
find relationships in an automatic way.

= Task 2: Report reuse aims to retrieve similar reports so that their resolution can be
re-applied to the current problem. This involves retrieval and reuse of anomaly re-
ports with the requirement to compare new anomaly descriptions with past anomaly
reports. In standard CBR terminology the resolution field provides the problem so-
lution while the remaining fields decompose the problem description. Determin-
ing a suitable resolution for an anomaly is currently 2 manual decision making
process (using Anomaly Review Boards) requiring considerable domain expertise.
The prototype aids this decision-making process by providing the user with a list
of anomaly reports that have similar problem descriptions lo the current anomaly,

3 Document Representation

The first task for developing our prototype CBR system was 10 create a case fepresen-
tation for anomaly reports. The structured fields in the document were reduced to 13
relevant features following discussions with the domain experts.

Representation of the textual parts of the reports is a far harder task. The unstruc-
tured text has to be translated into a more structured representation of feature-value
pairs. This involves identifying relevant features that belong to the problem space and
solution space, The translation from text into a structured case representation can not
be performed manually because the dimensionality of the problem Is too great: there
is a vocabulary of approximately 220,000 words in the training sample of 960 reports.
An approach which can identify relevant features from the corpus is required. There
are numerous approaches to feature selection and extraction on supervised problems
where class knowledge can be used to guide the selection [11,20]. However since we
are faced with an unsupervised problem the selection needs to be guided by knowledge
other than class. For this purpose we exploit word similarity knowledge.

Our approach to unsupervised feature extraction consists of three stages: an !ﬂiﬁit
vocabulary reduction by pre-processing text using standard IR and NLP tcchmqu_cl:
next seed word selection using word distribution profiling; and finally feature extraction
using Apriori rules to avoid sparse representations.



3.1 Initial Dimensionality Reduction

The initial vocabulary of 220,000 words is reduced to 2500 words by applying the
following document pre-processing techniques:

- Part of Speech Removal: text is first tokenised to identify word entities then tagged
by its part of speech. Only nouns and verbs are retained.

~ Stop Word Removal and Stemming: removes commonly occurring words and re-
duces remaining words to their stem by removing different endings, e.g., both
anomaly and anomalous are stemmed to their root anomaly.

- Frequency Based Pruning: reduces the vocabulary, from approximately 8000 wonds
to 2500 words, by considering the inverse document frequency (idf) of each word
to determine how common the word is in all of the documents. Typically we accept
words with an idf value of between 3 and 6.

3.2 Seed Word Selection by Word Profiling

Our aim in this part of the document representation process is to sclect wonds that are
representative of areas of the problem space but that are also diverse so thal‘mgcll}vcf
they provide good coverage of the problem space. Knowledge about word similarity
enables the search process to address both these requirements. The question then is how
do we define similarity between words and thereafter how do we select representative
but diverse words.

Word Similarity: One approach is to consider the number of times wonds co-occur in
documents [14], however, a problem is that similar words do not ncc‘css:mly co-occur
in any document, due to sparsity and synonymy, and will not be identified as similar.

Our approach is to analyse word co-occurrence patterns with the set of words con-
tained in the solution, i.e., the remaining words from the resolution ficld. For example,
to calculate the similarity between words in the observation ficld of the anomaly re-
port, the conditional probability of co-occurrence is first calculated between each word
in the observation field with each word in the resolution field. A distribution of these
probabilities is then created for each observation word. A comparison bctu‘cgn these
distributions can then be made using the a-Skew metric derived from information the-
ory [10]. This comparison provides an asymmetric similarity estimate between \In.)h.ll
in the observation field. We repeat the same process for all the text fields. !_’.sscnmlly
similar words are those that have similar co-occurrence patterns with resolution words.
A full description of this word similarity approach is given in {19).

Representative but Diverse Selection: We use the similarity lnowla!gg dcrimi. from
the conditional probability distributions to aid the search for a representative !Jul diverse
set of seed words, These words form the dimensions for the case rcpn:scnuuon. Smyth
& McKenna developed a footprint-based retrieval technique in \uhach’l subset of Ilbc
case base, called footprints, is identified to aid case retricval [16). We use & similar
technique to cluster words and then select representative seed words from wond clusters,



Word clusters are created by first forming coverage and reachability sets for each
word. In our scenario, the coverage set of a word contains all words within a predefined
similarity threshold. Conversely, the reachability set of a word is the set of words that
contains this word in its coverage set. Clusters of words are then formed using the
reachability and coverage sets 1o group words that have overlapping sets. In Figure 1,
SIX words (1) 10 wg) are shown spaced in relation to their simulanity to each other. The
coverage of each word is shown by a circle with a radius corresponding to the similanty
threshold. It can be seen that two clusters are formed: 1wy (o ws 1 one cluster and v 1n
the other. A representative set of seed words 1s selected for cach cluster by first ranking
the words in descending order of relative coverage [16]. Each word is then considered
in turn and only selected if it is not covered by another already selected word In Figure
I the words are shown, in ranked order, with their coverage sets and related coverage
scores. Hence wy, wy, and wyg will be selected as the seed words. The composition of
the coverage sets depends upon the similarity threshold chosen and so the number of
seed words formed can be varied by adjusting this threshold
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Fig. 1. Seed word selection using the footprint technique

13 Feature Extraction using Apriori Rules

Each seed word forms a feature in the case representation. A feature value s derived
based on the presence of a seed word in the report. Using seed words alone i this way
to represent free text results in a sparse representation. This is because reports may sull
be similar even though they may not contain seed words. One way around this problem
18 to embed the context of the seed within the case. We achieve this by the induction of
feature extraction rules [ 18].



Context
Relevance Expert's Comments
Fesdback for Seed Word 1] 2/3|4] s
TLM <= |ost X Also B type of probiem about lolemetry” we Inows
TLM <= process & receive x We receive # and we process #. These are actiong
TLM <= lock x_| Bingo: We sometimes have “Teiametry lock problems®
TLM <= telemetry It is the abbreviation / synonym
|.TLM <= available & generated | x 8 bit weird
TLM_<= product & generated x A more elaborated processing of_the twiemetry

Fig. 2. Feature extraction rules concluding the sced word, TLM.

Each rule associates words with a selected seed word, such that the rule conclusion
contains the seed word and the rule body (or conditions) consists of associated words.
The presence of associated words in a report (in the absence of the seed word) acti-
vates the rule, inferring a degree of seed word presence in the report. The mechanism of
translating rule activations into feature values involves combining evidence from multi-
ple rule activations. Essentially with increasing rule activations the problem with spane
representation decreases.

A rule’s accuracy is reflected by its confidence score. When a rule with high confi-
dence is activated it suggests higher belief in the presence of the seed word. Therefore,
an activated rule’s confidence score can be used to arrive at a feature value. Since a sin-
gle seed word can be inferred from multiple rule activations, we need a mechanism to
aggregate, the degree of seed word presence, inferred by these multiple activations. One
approach to combining belief values from multiple rules is Mycine's approach to com-
bining evidence for medical reasoning [4]. Here, if two rules x and y activate concluding
the same seed word, then the confidences are aggregated to generate the feature value
for the feature represented by the seed as follows: conf(x) + conf(y) - conf(x)*conl(y)

We use the Apriori [1] association rule learner to extract feature extraction rules,
Apriori typically generates many rules, and requires that confidence, support and dis-
criminatory thresholds be set before useful rules are generated. Here expert feedback
on the quality of generated rules is vital. The explicit nature of rules is an obvious
advantage both to establish context and also to acquire expert feedback (see Figure 2).

4 The CAM Prototype

Our CAM demonstrator uses the structured representation of the anomaly reports, cre-
ated by the feature extraction process described in Section 3, as its case base. The rep-
resentation process provides a 5 part case representation for each report. One of thcse
contains the 13 features from the original structured report ficlds, while .lh? remaining
four parts are representations of the text data in the observation, description, recom-
mendation and resolution fields of the report. These are represented by 75, 54, 80, and
150 features respectively, and correspond to the number of seed words e:u::v:tcd by Ehc
footprint-based feature selection, The similarity threshold controlling this extraction



was set to encourage balanced word clusters, We are currently working with a sample
of 960 reports, supplied by ESA, for training purposes.

The retrieval strategy implemented on CAM uses the k Nearest Neighbour algo-
rithm (k-NN) with feature weighting to identify the k most similar cases to the current
problem. The relative importance of each field (1 structured + 4 text) in relation to iden-
tifying similar anomaly reports is established by setting a weight for each field. Feature
weights can also be set within each field to establish the importance of individual fea-
tures. A common approach for setting retrieval weights is to learn feature inlmonmc.e
from the available cases [7). However, this is difficult in an unsupervised setting and is
currently a manual process.

CAM provides an interface (see Figure 3) that displays the current report at the top
with a ranked list of similar, retrieved reports below together with their similarity scores.
Both the current or retrieved reports can be viewed as a combined or as a field-based
representation by selecting the tab for the appropriate pane. The wuclu.n:.d representas
tion is the default report view, however, alternative views display the original text. The
seed words selected are used in the structured representation to label the features and
the relevant feature extraction rules are also accessible by the user. ‘

Two visualisations are available to assist the user compare similarities and differ-
ences between retrieved reports. A parallel co-ordinate plot, displayed on the bottom
left of Figure 3, shows the similarity of the retrieved nearest neighbours to !hc current
report. The similarities are shown for the overall representation and individually for
each of the five fields. This visual representation of similarity knowledge is uscful to
explain retrieval results to the user. A second visualisation, displaycq on-thc bou_om Ic‘ﬂ
of Figure 3, uses the spring-embedder model [9] to preserve the similarity n:'lalamx_hlp
between cases as on-screen distances. This visualisation provides a 2-dimensional view
of the case-base that allows clusters of cases to be identified.

$ Experimental Evaluation

Itis generally accepted that evaluation is a challenge for TCBR systems. Standard IR
systems advocate precision and recall based evaluation on tagged corpuses. The man-
ual tagging involves not only class assignment but often assignn?c‘nt of relevance judsg-
ments on retrieved sets, In practical situations it is clearly prohibitive to expect a domain
expert to tag substantial numbers of cases with relevance judgements. A more reason-
able approach is to acquire qualitative feedback on a few selected test cases.

In order to evaluate the CAM prototype, 5 probe reports were randomly selected
from the sample of 960. For each probe the 3 most similar reports retrieved by C‘A M
were noted. A further 3 randomly selected reports were then added to create a retrieval
set size of 6, Each probe and the corresponding retrieval set was then presented to the
domain expert. Importantly the domain expert was unaware about lhc‘ source of the
retrieval set. A standard questionnaire was then used to obtain our expert’s feedback for
e probe. The graph in the figure, summarises

Figure 4 shows a snippet of the questionnaire. The graph in igure, su
the quglilative feedback fcl::iivcd for all § probes. Itis cIFar that CAM’'s mcdmn’\'alucs
are significantly higher across the 5 probes (Mann-Whitney p=0.0001). CAM’s poor
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Fig. 3. Screen shot of CAM's interface

performance with probe 5 is due to the lack of text in the description, recommendation
and resolution fields. With each of the remaining probes, the CAM generated retneval
set achieved the highest score of 4 for at least one of the cases in the set and a score of
3 with the other,

6  Related Work

A common problem for TCBR system development is the demand on knowledge acqui

sition. For instance in the EXPERIENCEBOOK project (wimed at supporting computer
system administrators) all knowledge was acquired manually. This s not an exception,
because current practice in TCBR system development show that the indexing vocabu

lary and similarity knowledge containers are typically acquired manually [17] Conse

quently maintenance remains a problem since these systems are not able 10 evolve with
newer experiences. These difficulties have created the need for fully or semi automated
extraction tools for TCBR.

Tools such as stemming, stop word removal and domain specihc dictionary acquisi-
tion are frequently used to pre-process text and are mostly automated. Acquinng knowl-
edge about semantic relationships between words or phrises is important but is harder
to automate. Although NLP tools can be applied they are often too brittle partly be-
cause they tend to analyse text from a purely hnguistic pont of view. Furthermore the
reliance on deep syntactic parsing and knowledge mn the form of generative lexicons
still warrants significant manual intervention [6].
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Fig. 4. Comparison of random and CAM generated retrieval sets,

Research in text classification and information retrieval typically adopts statistical
approaches to feature selection and extraction, The main pre-requisite is access to a
significant number of cases. With the anomaly reporting problem domain case base
size is not a constraint. Consequently, word co-occurrence based analysis becomes
particularly attractive for automated indexed vocabulary acquisition. A common ap-
proach to determining representative features involve the use of distributional cluster-
ing approaches [13], and has since been adopted for feature extraction with supervised
tasks [15,2]. Of particular importance for word clustering are distributional distance
measures, These measures ascertain distance by comparison of word distributions con-
ditioned over a disjoint target set. Typically, class labels are the set of targets and so
cannot be applied to unsupervised tasks. However, in the SOPHIA retrieval system re-
liance on class labels was dropped by comparing word distributions conditioned on
other co-occurring words (instead of class labels) [12). Unlike with anomaly reports,
SOPHIA operates on IR like documents, hence there is no requirement to lear from the
differences between solution and problem space vocabulary. Our approach to calculat-
ing distributional distances is novel in that words from the problem space are compared
conditioned on the solution space, This creates a distance measure that is guided by
both the similarity and differences between problem and solution vocabularies.

Formation of newer and improved dimensions for case representation fall under
feature extraction research. Ls1 is a popular dimensionality reduction technique partic.
ularly for text. Extracted features are linear combinations of the original features which
unfortunately lack in expressive power [5). Modelling keyword relationships as rules is
a more successful strategy that is both effective and remains expressive. A good exam-
ple is RIPPER [3], which adopts complex optimisation heuristics to leam propositional
clauses for classification. Unlike RIPPER rules, association rules do not rely t_m‘class
information and incorporates data structures that are able to generate rules efficiently
making them ideal for large scale applications [21,8]. The sced gcnc{alisatmn approach
discussed in this paper is similar to that employed by the Pst tool introduced in (18],
but unlike PSI here generalisation does not rely on class knowledge.



7 Conclusions and Future Work

The paper presents an initial approach to case retrieval applied to anomaly reports. It
is a first step towards developing a CBR system to support the ESA’s anomaly report
processing task. Like most text applications, anomaly processing is unsupervised. It
requires automated knowledge acquisition tools that are not reliant on class knowledge.

The paper introduces a novel unsupervised index vocabulary acquisition mechanism
to map unstructured parts of text data to a structured case representation. For this pur-
pose word pair-wise distances are calculated according to similarity in co-occurrence
patterns over the solution space. This facilitates problem space words to be considered
similar with specific reference to the solution space vocabulary.

Seed words are identified using word clusters and forms the features vector for the
case representation. The idea of using a footprint-based feature selection strategy is
novel. It facilitates selection of representative and diverse words but importantly does
not require that the number of seed words be pre-specified, It does however require a
similarity threshold to be in place which directly controls the feature vector size.

Presented techniques are implemented in the CAM prototype. Initial results from a
small-scale qualitative evaluation of CAM’s retrieval sets shows significant qualitative
improvements over random retrieval, However we have yet to establish a principled
approach to setting Apriori’s parameters and the similarity threshold for the feature
vector size. We expect that this will require better use of word similarity know ledge.
Future work will extend CAM for the reuse and revision stages of the CBR cycle.
Importantly more effort will be invested on evaluating all stages of the CBR ¢ycle.
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Abstract

The distribution of cases in the case base is critical to the per-
i v ut:l:' aCase Based Reasoning system. The case author
il ¢ support in the positioning of new cases during
v ‘?}}mcpt stage of a case base. In this paper we argue
oy k‘:lcauon boundaries represent important regions of
pd sk ‘hsp:lnfic. They are used to identify locations where
puded 4 ould be acquired. We introduce two complexity-
gorithms which use a local complexity measure and

Io b::::nu fication techniques to actively discover cases
Cover e ndaries, The ability of these algorithms to dis-
o ica;ccs that significantly improve the accuracy of
. : monstrated on five public domain classifica-

Introduction

&':c‘g;udlkgasonxng (CBR) solves new problems by re-
_ lh:o ution of previously solved problems. The case
15 the main source of knowledge in a CBR system and,
s the l\h?llablllly of cases is crucial to a system's per-
ﬂ:mm_ . ‘l;f:(s: the availability of cases that often supports
mmhon BR for problem-solving tasks, however, in
Cone b be?cms 'thf:rc_are often gaps in the coverage of the
Py ause 1t is difficult to obtain a collection of cases
erall o]:'rokt::em]-sglvmg situations.
owledge can be used to provide solutions
a:t‘:r Emblcms that occur in the gaps that result from a
ion imwa;:d coverage, Itlowcvc:r. gaining effective adapta-
v ge may be impossible or require considerable
Wﬂr;tcf]el acquisition effort. The inclusion of additional,
e ¥ placed cases can provide a more cost-effective

u&:?ﬁmwry is the process of identifying useful new
This is dify gaps that exist in the coverage of the case base.
Hovily erent from traditional case learning, through the
i ge of the CBR cycle, in which newly solved prob-
c muyncly added to the case base to assist future
Mm-iwlvm‘g. Ralht‘:l: case discovery is an active learning
*n ‘Mcn_whlcp the aim is to identify areas of the prob-
Sy in which new cases would help to improve the
performance and to create cases to fill these £aps.

ial systems generally assume that a suitable case

Ly .
7”&’: © 2005, American Association for Artificial Intelli-
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base already exists and give little help 1o the case author in
the case discovery stage of building the case base. There is
a need for techniques to assist the case author during this
crucial case base development stage.

We argue that new cases should be placed in regions of
the problem-space in which the system is uncertain of the
solution, and that these regions are generally close to bound-
aries between classifications. In this paper we present a new
technique to identify and rank these areas of uncertainty and
create candidate cases to assist the case author place new
cases in these regions.

The remainder of this paper describes our approach and
evaluates it on several public domain case bases. The next
section discusses existing work on case discovery. The fol-
Jowing sections outline how we use a complexity metric,
boundary detection and clustering to idenufy arcas of the
problem-space that need the suppait of new cases and how
these cases are created.  The approach is then evaluated
against two benchmark algorithms before we draw some fi-

nal conclusions.

Related Work in Case Discovery

The case discovery problem can be comidered in two
stages. First interesting arcas or gaps within the coverage
of the case base must be identified and secondly cases must
be created to fill these gaps. This presents a more complex
challenge when compared to the more commonly rescarched
case base editing or selective sampling problems that have a
pool of existing cases from which to sclect cascs. In contrast,
the task of case discovery is to add to the case knowledge us-
ing implicit information held within the case base.

Some research has focused on the first stage of the dis-
covery process. One approach 10 identifying gaps has been
to focus on locating maximal empty hyper-rectangles within
k-dimensional space (Liu, Ku, & Hsu 1997). In their later re-
search the algorithm is capable of locating hyper-rectangles
within data containing both continuous and dicrete valued
attributes (Liu et al. 1998). The main problem with this ap-
proach is that there is no way to identify if the gap found
in the problem space is interesting from a problem-solving
view-point, or even represents a possible combination of at.
wribute values. An altemative approach to idenufying inter-
esting areas for new cases is proposed in (Wiratunga, Craw,
& Massie 2003) os part of a sclective samphing technique,
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i s approach the case base plus unlabelled examples are
into clusters using a decision tree technique. The
usters are then ranked based on the mixture of classes
::ml. and then unlabelled examples are ranked based on
distance from labelled cases and closeness to other un-
wwlemples‘ However this approach draws on knowl-
ganed _fmm a pool qf unlabelled cases not normally
"lli-lblecu during the case discovery process.
i mMakcr (McSherry 2001) is a knowledge acquisition
: addresses both stages of the discovery process. A
w set of all uncovered cases is found by exhaus-
m)’ T‘?I:Chmg the space of allowable feature combina-
- Ihese cases are ranked based on their potential cov-
mzrl?bulmn;s. calculated using an adaptation function
= cature differences. This approach has been shown
successful in finite domains where suitable domain
knowledge and ndagtation knowledge are available.
nee-guided case discovery is an alternative ap-
;m h’l‘i‘:d:;n;da Icmmpc:u:m'r: model (McKenna & Smyth
o i ) t e g.ruups together cases that solve cach
- 20;)’:'““[: called competence groups (Smyth &
'wx-ﬂ'nlcmﬂ casci or cagh. pair of competence groups the
o s are ?dcmlhcd as the boundary pair and gaps
ihed as the space between these nearest neighbour
“""Pﬂﬂw‘c}:“iﬂ;uris. Starting with the smallest gap a case Is
u"‘ﬂ: .rh c:):(t’urg values are delcr.mincd by the cases in
lhbouls lik(;( of thc huumla_ry pair. While this intuitive
“WMthm . c y to discover valid cases in active regions of
el i Pdt.c_ It gives no guarantee on finding the most
E&ploif B‘tPhu& itignores large parts of the problem space.
II:FIII l;]c}flsllng knuw]t;dge within the case base 1s
m&m:h all the approaches discussed here and, likewise,
15 knowledge source to identify areas of uncertainty

witlun the problem spac identi
: space and then to identify cases on clas-
shication boundaries. e

Complexity-Guided Case Discovery

le:? am l.\._to ducnvcr_cases that improve the CBR sys-
accuracy. Wc‘ behieve cases close to classification
ol d‘:u:c .mt:ls_l\l‘lkcly to achieve this aim. As discussed
o . i::‘ ll,l‘swvcry prphlem can be considered in
ot w‘“&? .in o l}:cnlmn of Interesting areas of the prob-
s n:. 1o place new cases is discussed in this
*achon ¢ creation of new cases to fill these gaps 1s

sed i the following section.
. Y0us research on case base editing has highlighted
Hl'lpt:ftancc.of cases in boundary regions for the com-
Pence 2: case base (Brighton & Mellish 2002; Wilson &
e ue:uc::?l}- It Tcems reasonable to expect a successful
Wies, Our o L“I"Il m (o also identify cases on class bound-
e it pproach to identifying where new cases should
— u;m pnler fﬂ improve a sysgqm‘s accuracy, involves

ges that combine to identify boundary cases.

Ateas ;

- of }Jllcertalnly The first stage in finding interest-
il'ld:mw bcwwne‘w ;:ust;s 15 1o find areas in which cases are
> rongly classified. We do this by using a local
“uplexity metric, 4 e

Classification complexity 1s an inherent problem « hara
teristic that gives a measure of how dificultatas o ¢ lassily
new problems. It is determined by such factors as the over
lap and length of decision boundanes, the dimensionality of
the feature space, the noise level and the spansencss of avinl
able cases. ACCUricy gives one measure of complexaty bt is
dependent on the classifier chosen and provides no local in
formation on areas of complexity within the problem space

Several approaches have been used 1o estimate O crall
classification complexity. However, in case discovery we are
interested in the complexity at local arcas. We have chosen
an approach that allows us to measure the local complex
ity based on the spatial distribution of cases rather than on a
probabihistic distribution. In this approach the complexaty of
each case is calculated using a metric based on its k Nearest
Neighbours while incrementally increasing the value of k

B _; Q ; o .0 Nearont Naighbou! Profile lorc
+ 3 2 BN &
+ + o ,_,EL_. ", ’_:- &
< G ( 5
L il
+ 4 & 0 8% F A & a
a) b)

Figure 1: Complexity metric calculation

The complexity measure 15 cak ulated for each case by
looking at the class distnbution of cases within 1ts local
neighbourhood. Py 1s the proportion of cases within a case’s
k nearest neighbours that belong to the same class as itself
In Figure la, as the value of k increases, the sequence of
P, starts 1, 0.5, 067, 0.5 A nearest netghbour profile can
now be plotted of Fy as k increases The complexity metri
used is the area of the graph under the profile with the x-axis
normalised, shown by the shaded area on Figure 1b. Case
complexity is calculated by

K
S A

complexity = | :
A
for some chosen K. With K=4 the complexity of ¢y i 033
As the metric 1s weighted 10 a case’s nearest neighbours us
ing a large value for K has little impact on the results and
K=10 was used in our calculations
Cases with high complexity are close 10 classification
boundaries and identify areas of uncertunty W ithin the prob
lem space. The regions around these target cases are iden
tfied as requining support. Target cases are ranked in de
scending order of complexity 1o priontise between the dif
ferent regions.

Class Boundaries  The case complexity metnc s used 10
identify target cases in regions of the problem space near
classification boundaries that we believe would beneht from
the support of additional cases However, it gives no help on
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where, within these regions, the new cases should be placed.
Fqllowmg our hypothesis that cases close to class bound-
aries are important in case discovery we want to discover
cases closer to the boundaries. There must be a classifica-
tion boundary in the problem space close to the target case,
however its direction and location are not known. To find an
outer limit for the location of the boundary the target case's
nearest unlike neighbour (NUN) is found i.e. the nearest
case that has a different class. The boundary lies between
these two reference cases i.e. the target case and its NUN.

Clustering  Prioritising regions of the problem space using
only the complexity value of cases is expected to identify
Interesting areas in which additional cases will improve the
system’s accuracy. However, prioritising on case complex-
ity alone potentially gives two problems. There is a danger
that new cases will be concentrated in a small region of the
problem space as high complexity cases are likely 1o be lo-
cated close to each other. In addition, new cases may be
concentrated on small pockets of cases whose classification
1s different to their neighbours, as these cases will have high
complexity values, resulting in poorer performance in noisy
or multi-class problems.

Partitioning the case base into clusters may give a more
balanced distribution of discovered cases over the whole
case base. Competence group clustering (Smyth & Keane
1995) is a commonly used clustering technique in CBR and
a similar approach has been adopted here. Clusters are
formed using leave-one-out testing to measure the problem-
solving ability of a case using: coverage and reachability.
Coverage of a case is the set of problems that case can solve;
conversely, reachability is the set of all cases that can solve
It Next clusters of cases, called competence groups, are
formed using their reachability and coverage sets to group
Cases that have overlapping sets. This clustering model is
typically applied to CBR systems incorporating an adapta-
tion stage, however, here it is being applied to retrieve-only
::Ia-ss:ﬁcation. In this scenario, the reachability set of a case
15 its k-nearest neighbours with the same classification but
bound to the first case of a different class (Brighton & Mel-
lish 1999),

With the case base formed into clusters, the complexity of
each cluster can be defined as the average complexity of the
cases it contains, The clusters can be ranked in descending
order of complexity, Now, rather than choosin g target cases
purely on complexity ranking, one case can be chosen from
cach cluster with cluster complexity used to prioritise the
larget cases. The target case chosen from each cluster is the
€ase with the highest complexity. In addition, there is now

opportunity to remodel the case base, by reforming the
clustgrs as new cases are added, and building the effect of
the discovered cases into the next round of case discovery.

Creating a New Case

The methods described in the previous section are used
10 identify interesting areas of the problem space for new
Cases. The second stage of the case-discovery process is (0
Creale a candidate case to occupy the arca between the two

reference cases, This involves setting suitable feature values
for the candidate case.

Candidate Case Feature Values Two approaches for set-
ting the candidate case's feature values were investigated.
In the first, the feature values are set as either the mean (nu-
meric features) or majority (nominal features) of the feature
values of the reference cases and their related sets. A case’s
related set is the union of its coverage and reachability sets.
This approach, used by McKenna & Smyth, was found not
to work well in domains containing small groups of excep-
tional cases. This may be due to one of the reference cases
coming from a much larger competence group and applying
excessive influence on the feature values, and hence loca-
tion, of the candidate case. An alternative simpler approach
was found to give more consistent results and was adopted
for the complexity-guided algorithms, In this simpler ap-
proach the candidate case uses only the boundary pair to set
its problem feature values. This results in a discovered case
more evenly spaced between the reference pair.

Case discovery aims to create a new case for inclusion in
the case base. Inclusion of the candidate case may be au-
tomatic but, as there is no guarantee that a candidate case
will be a valid case occupying an active region of the prob-
lem space, the more likely scenario is for the case author to
validate the case prior to its inclusion in the case base,

Noise Filter A potential problem of discovering cases on
classification boundaries is that noisy cases may be discov-
ered in domains containing significant levels of noise or ex-
ceptional cases. Indeed, most modern case editing algo-
rithms (Brighton & Mellish 2002; Delany & Cunningham
2004) apply noise reduction algorithms prior to an editing
approach that retains boundary cases.

A typical approach to noise reduction is to remove cases
that are incorrectly classified (Wilson 1972). We apply a
similar approach to determine if a validated case should be
included in the case base. A friend 1o enemy dislance ratio is
calculated using the similarity metric, The enemy distance
is the average distance within the case base to the validated
case's three NUN's whereas the friend distance is the aver-
age distance to the validated case’s three nearest like neigh-
bours. A high ratio indicates a validated case that may harm
the system’s accuracy and would not be included in the case
base. A conservative or aggressive approach 1o noise filter.
ing can be applied by varying the ratio above which a val-
idated case is not added to the case base. Noise filtering
has only been used on known noisy datasets and has been
applied using a conscrvative approach by not accepting val-
idated cases with a ratio greater than 1.5,

Evaluation

In order to confirm that complexity-guided case discovery is
useful we need to demonstrate that useful cases are discov.
ered. Two complexity-guided algorithms have been com-
pared with two benchmark algorithms to determine whether
they result in case bases with increased accuracy, Five pub-
lic domain classification datasets from the UCI ML repos-
itory (Blake, Keogh, & Merz 1998) have been used in the
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evaluation, The selected datasets have varying numbers of
features and classes, proportion of nominal to numeric at-
tabutes and level of noise. In addition, some datasets have
mussing values,

Cmnglcxity-guidcd case discovery cannot guarantee valid
cascs will be discovered. The objective is to supply a com-
plete, candidate case to the case author to either accept or
€reale a slight variation that corresponds to a valid case.
!mﬂcr. this situation is difficult to replicate in an exper-
smental evaluation because a domain expert is not available
W validate the discovered cases. To simulate an expert our
experimental design uses a pool of independent cases to act
& an oracle. The candidate case then acts as a probe into
::l:ctml of cases to retrieve the most similar case from the
. Each dataset was split into 5 independent folds with the

ulds being stratified to ensure a proportional representation
of each class in each fold. One fold was used as the training
se, one of the remaining four folds was used as the the test
sct with the pool of cases being made up of the three unallo-
ated folds, This process was repeated for each combination
89 turn resulting in 20 experiments (unique combinations of
:nmng set, test set and pool cases) for each dataset, There
as no overlap between a training set and its associated test
set and pool of cases.
¢ The case base was initialised by randomly selecting a
sed number of cases from the training set. The starting size
of the case base varied between 10 and 35 cases, depending
©a the dataset size and the difficulty of the problem. The al-
gorthms were run on each trial on each dataset to discover
batween S and 40 cases in steps of 5. The results, averaged
over the 20 runs, are plotted as a graph of the average ac-
curacy for the test set for an increasing case base size, as an
ticreasing number of cases are discovered. Test set accuracy
# evaluated by a straightforward k-NN.
'he experiments evaluate the effectiveness of the four al-
onthms described below on test set accuracy with a varying
sumber of cases being discovered.

Algorithms

Four different case-discovery techniques have been imple-
ficated. Two are complexity-guided algorithms using a
g:nbmauon of the previously discussed techniques while
femaining n!goruhms provide benchmark comparisons.
All lhe. algo!'uhms identify two reference cases (a target
?; and its pair case) from within the case base. The main
” Encnpe 'bclwccn the four algorithms is in their approach
ufying these reference cases.

* COMPLEXITY is our simpler complexity-guided algo-
‘;‘ﬂl}m. The complexity metric is calculated for each case
the 50% of cases with the highest complexity are
ranked in descending order. Each case in turn (until the
desired numbel: of cases are discovered) is selected as the
:&rxet case and its NUN is identified as its pair case. These
l:ﬂ reference cases are used to create a candidate case to
between them by setting the candidate’s feature val-
?Cl as either the mean or majority of the reference cases’
cature values.

o COMPLEXITY+ is a more informed algorithm that uscs

clustering 1o create a madel of the case base, Figure 2
shows a simplified view of how this algonthm works in 2
dimensions. There are cases belonging t two classes with
a class boundary between them, The cases are formaed into
clusters and the case with the highest complesity in each
cluster is chosen as the tarpet case (shown as asolid cane).
The target case’s NUN is found (xbown by an arrow) give
ing two reference cases and a candudate case is created 1o
lic between them, as shown by the square,
The implementation of the algonthm involves the follows
ing stages. The complexity metric is calculated for each
case. Clusters are formed and their complexity calculated
as discussed earlier. The 75% of clusters with highest
complexity are ranhed in descending onder of complexity,
A target case is selocted from each clustet intum (until the
required number of cases are dscovernd) and ju NUN s
selected as its pair case, A candidate case is created in
the same manner as in COMILEXITY, Where nxwe cascs
are requircd than available clusters the stages are repeated
including the complexity calculation and clustering, Ths
incorporates the effect of the already discovered cases into
the model.

o COMPETENCE uscs competence-guided case discovery
10 create new cases between the nearest neighbour com-
petence groups (McKenna & Smyth 2001), Two reference
cases are selected from different competence groups that
are nearest to each other. The candulate case’s feature val-
ves are st using the feature values of the reference cares’

related sets.

o RANDOM is an uninformed algorithm that selects two refe
erence cases at random from the case base and then uses
these reference cases to create a candadate care in the
same way as COMPLEXITY. This proxess continucs unul
the required number of cases have been discovered.

- e 4

» it §

| i
e

v

Figure 2: Hlustration of COMMLEXITY ¢

Results

Significance is reported from a one-tailad pawed Lot ot
99% confidence, unless otherwise speaified. Tigure 3 (a)
and (b) show average accuracy results for cach case base
size on the House Votes and Hepatitis domains. Thewe are
both binary classification problems with & bias W one of the
classes. House votes s the larger data sct with 435 cares
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Figure 3: Accuracy of Growing Case Bascs as Cases are Discoverad

mmgfl'l nominal features while Hepatitis is a smaller
s [ l.'fS_ cases represented by 20 mostly nominal
. § containing some missing values, As expected we
1“hmslg"lz;ficant improvement in accuracies on both House
i Hepatitis by the two complexity-guided algo-
v u(;d (():MPLEXITY and COMPLEXITY+) over the RAN-
iidsicdn OMPETENCE. Perhaps surprisingly, the simpler
This o TY gives l_hc best performance on these datasets,
b-x:hhj‘gm be explained by these being binary problems
b %llll;ccuracy suggesting a more simple boundary than
Vo r datasets. The simpler algorithm, by concen-

$ on only few arcas of the problem space, appears to
perform well on this type of domain,

Average accuracy for the Zoo and L
A cura ymphography do-
fung lP!:"Ca.r in Figure 3 (¢) and (d). These are mui;tgclass
prublems: Zoo has 101 cases split between 7 classes while
g ap!_iy has 148 cases covering 4 classes. These do-
g ve similar numbc.r of features (18 and 19) with no
sing values. Zoo contains only nominal features whereas
Fidi i, phy contains both nominal and numeric. In both
wgrllhalr!s COMPLEXITY+ produces the best perfor-
:‘mwm‘t cSlgmﬁcant improvement over the other three al-
e lar:ano(:qMPLEx‘TY shows a significant improvement
COMPETENCE 08 the zoo domain but no difference over
i“'ﬂw . On !..}rmphography COMPLEXITY gave no
o ment over either benchmark algorithm. The rela-
o ui Poor performance of COMPLEXITY might be expected
s s¢ multi-class domains, as some of the classes con-
';c‘:'y s_rlnail number of cases. In these situations COM-
e w':l:lll concentrate on providing cases to support the
s th; Ow representation and provide insufficient sup-
rest of the problem space. In contrast, COMPLEX-

TYe : . o
uses clustering to provide a more balanced distribution
hew cases,

Figure 3 (¢) shows average accuracy results on the Iieast
Cancer dataset. In Figure 3 (1) a none filter, s decnbed
carlier, has been apphed W all four algonthms for lireant
Cancer. ‘This is a binary classed domain with 9 mulis.
valued features containing missing data. The none filiet has
been added because Breast Cancer is 8 more complen do-
main containing cither noise o exceptional Caves resuliing
in lower accuracies than the other domains, COMFLIAITY ¢
again produces the best perfarmance with sigmificant im-
provements over the other three algonthms, CoMrLLXITY
also shows a significant improvement ovet the two compane
son algorithms in both experiments although the impvore-
ment over COMPETLNCE Without the nonse filter §s vnly
significant at 95% confidence. The improved performance
of COMPLEXITY + over COMPLLXITY might agan be ex-
plained by the simpler algorithm concentrating o supjet-
ing the noise of exceptional cases, It by intoresting W aee
that, although the noise filter results fn 8 small imgworeinent
in the performance of the benchmark algonthms it pres 8
large and significant improvement to the accur s achieved
by both the complexity-guided algurithms, This imyproves
ment is to be expected in nobry datascts because, by cham.
ing cases on class boundaries, the complenity gusdad algo-
rithms will have a greater tendency o pick noivy €ascs.

Evaluation Summary

The results from the significance tosts, companng the
two complexity-guided case discovery algorithms with the
benchmark algorithms on cach datasct, are summatised in
Table . The first two columns display the improrvement with
COMPLEXITY while the other two columna show stgfi-
cance results for COMPLEXITY #,

Overall COMPLEXITY+'s performance shows & mignifie
cant improvement over the comparivon algogithm on all the
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COMPLEXITY COMPLLXITY +
vs. vs. Vs, vi.
}I:ata S:,t RANDOM COMPETENCE | RANDOM | COMPETIENCE
ouse Votes
Hepatitis 5 5 v 5
Zoo Vv no difference v v
Lymphography no difference { no difference v v
Breast Cancer v v (95%) v v
Breast Cancer-Noise VA Y, Y

Table 1: Results summary according to significance

datasets and it provides the most consistent approach to case
discovery of the algorithms studied. COMPLEXITY is shown
W perform well on binary problems, particularly on simpler
problems and on domains with low levels of noise, however,
1§ performance on multi-class problems is only comparable
with the benchmark algorithms.

The introduction of a noise filter stage gave significant
Accuracy improvements on the two complexity-guided dis-
Covery algorithms with Breast Cancer. This highlights the
importance of noise filtering in noisy datasets,

Conclusions

The novel contribution of this paper is the use of a com-
Plexity metric and a case’s NUN to guide the case discov-
&7y process by identifying interesting areas of the prob-

em space. The idea of placing new cases on classifica-
Lon boundaries appears to be intuitively sensible in that it
furrors ll3c approach of recently developed case base edit-
19g algorithms, COMPLEXITY and COMPLEXITY+, two
bew complexity-guided algorithms, were introduced and
Ceir effectiveness was demonstrated on § public domain
utasets, In general, a significant improvement in test ac-
gncy was observed with these new techniques compared
the random and competence-guided algorithms used as
ks. COMPLEXITY performed well on simple bi-
Rary domams_but suffered on multi class problems or on
1s containing noise. COMPLEXITY+, which incorpo-
faied a clustering stage, provided the most consistent per-
o ¢ across the range of datasets. A noise filter stage
a5 found to enhance the performance of COMPLEXITY and
COMPLEXITY+ on noisy datasets.
% One limitation of the complexity-guided algorithms is that
€Y restrict their search space to finding new cases within
mgmb_lcm space already covered by existing cases. Future
uu:'u focus on developing a complimentary approach
“w very early growth stages of a case base, perhaps by
Nng df)mam knowledge to seed the case base,

Ia this paper we have concentrated on providing support
. the case author in the case discovery problem. However
e ;\: keen to see how the use of a complexity measure

81t be used more generally to provide support to the case
m In other case base maintenance areas, such as case
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Abstruct

Case Based Reasoning (CBR) systems solve new problems by reusing solutions
of similar past problems. In complex tasks, such as configuration and design, it is
not suflicient to merely retrieve and present similar past experiences. This is be-
Cause the user requires an explanation of the solution in order to judge its validity
and identify any deficiencies. Case retrieval with k-nearest neighbour relics heave
ily on the availability of cases, knowledge about important problem features and
the similarity metric. However, much of this information, utilised by the sysiem,
is not transparent to the user. Consequently there is a need for tools that can help
instil confidence in the system by providing useful explanations to the uscr. This
paper proposes an approach that explains the CBR retricval process by visualising
implicit system design knowledge. This is achieved by visualising the immeds-
ate neighbourhood and by highlighting features that contribute to similanty and
to differences. The approach is demonstrated on a pharmaceutical tablct formu-
lation problem with a tool called FormuCaseViz. An expent evaluation provies
evidence to support our approach,

1 Introduction

The problem being considered here is the formulation of a pharmaceutical tablet for a
given dose of a new drug. Inert excipients (e.g. Lactose, Maize Starch, etc.) are chosen
to mix with the new drug so that the tablet can be manufactured in a robust form. In
addition to the drug, a tablet consists of five components each with a distinct role; Le.
Filler, Disintegrant, Lubricant, Surfactant, and Binder (see Figure 1). The formulation
task entails identifying a suitable excipient and amount for each chosen component.
Each chosen excipient must be suitable for its desired role and be compatible with each
other and the drug. A more detailed description of the problem domain is available
in [3].
A case-based reasoning (CBR) system solves new problems by reusing solutions
from previously correctly solved similar problems [9). Case retrieval is the fint stage
of the CBR cycle in Figure 2. For a tablet formulation, given a description of the hew
drug's chemical and physical properties together with specific requirements for the
tablet, a similar case or a subset of similar cases useful for solving the new problem
are retrieved from the case-base. Depending on the differences between the current
problem and the retrieved cases some adaptation of the retrieved cases might be nec-
essary before the retrieved solution can be reused. Here the proposed system solution
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Figure 1: Tablet formulation problem

will be the excipients names and quantities that would enable the manufacture of a
viable tablet. Subsequent stages include verfication of the proposed solution and
If necessary retention of the new problem and the moditied solution with the am of

reusing it in the future.
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Figure 2: CBR cycle applied to the tablet formulation domam

An obvious advantage of CBR is its ability to present stmilar past expeniences 1o
an end-user instead of, for example a set of rules from a rule-base system. Clearly
humans find it easier to relate to similar past experiences, however with domains such
as tablet formulation where a case is described using 35 features simply presenting the
cases will not aid the end-user's understanding of the reasoning behind the retneval
or even the proposed system solution, Mechanisms that aid human understanding of
the system’s problem solving process is vital because it helps instil confidence m the



system and may eventually determine the success of the system's deployment in the
real world.

In this paper we look at the retrieval stage of the CBR cycle and pck le I!'lc pr.obl!:m
of improving comprehension of this important stage by incorporating a visualisation
tool. Our approach is applied to the tablet formulation domain but shc.m!d be gener-
ally applicable across a wide range of domains. The usefulness of this approach is
measured by conducting an expert user evaluation. . ‘

In Section 2 we explore in more detail the importance of explaining the solution in
CBR. Section 3 discusses the information that different users cxpcf:t.ffom an explana-
tion in order to increase their acceptance of the CBR system. The mm:!l tablet formu-
lation tool which provided the user with a textual solution is discmss_cd in Section 4. A
knowledge-light approach to providing an explanation of the solu_t ion is prcscqlal in
Section 5. In Section 6 the design of the user evaluation is described along with the
results. In Section 7 we review recent CBR research in this area. Finally we provide
conclusions and recommendation for future work.

2 Solutions Require Explanations

Case Based Reasoning (CBR) is experience based problem-solving that mimics the
approach often used by humans. One of the many advantages associated with CBR
is its understandability as it can present previous cases 10 support or explain its con-
clusions [10]. Recent research provides evidence to suppornt this view that a solution
based on a previous experience is more convincing than one based on rulﬁs (4]

In contrast to the idea that the CBR methodology is understandable, King et al. ls.l
grade classification algorithms based on the comprehensibility of the resulis. The k-
nearest neighbour (k-NN) algorithm, generally used in CBR systems, was graded at
only 2 out of 5 by users, with only neural network algorithms bc:lng graded '0‘}'“-
One reason is that the similarity measure, usually compacted into a single value, hides
the knowledge gained during system development and encoded into the design (2]
Revealing this knowledge aids interpretation of results, exposes deficiencics and in-
creases confidence in the system. . ,

Explanation of CBR solutions is typically based on presenting lhc‘smgl‘c mast
similar case to the new problem, and possibly a similarity value. While this level
of explanation might suffice in relatively simple, easily understood domains, it is mt
sufficient for tasks that are knowledge intensive. Individually the nearest casc can
provide an explanation. However, as with CBR solutions that can be improved *;!
using several cases to provide a combined solution, likcw'?{“’m _i’ adJed “I,‘}eu "
providing an explanation based on several similar cases. This is nm}lcularly.lm‘cll ‘j
similarities and differences within these cases can be made explicit; e.g. with the ai
of visualisation, :

In this paper we address this apparent contradiction that the CDR paradigm Is
transparent and understandable, yet the results of A-NN rctncwfl are not casy 1o come
prehend. The CBR process draws heavily on knowledge held in the I‘mm‘?ﬁ,m'
tainers. Vocabulary, case and retrieval knowledge are three of the CBR 4now ;u,‘:
containers proposed by Richter [13]. In order to encourage uscr acceplance o



system the contents of these containers should be visible to the user. We present an
approach that explicates this underlying knowledge to generate an explanation of the
system solution formed on the basis of one or more nearest neighbours.

3 What Needs to be Explained

Knowledge intensive tasks require a better explanation than simply a proposed solu-
tion and a set of retrieved cases. This is particularly true of design problems, such
as tablet formulation, where the case-base does not contain all possible designs. The
proposed solution is only an initial draft, which may need to be adapted to compensate
for differences between retrieved similar problems and the current problem at hand.
The domain expert requires additional information and explanations to make the de-
cision making process more transparent and to allow him to judge the validity of the
solution. A visualisation tool for explanation must therefore highlight knowledge that
not only drives the retrieval stage (¢.g. retrieval knowledge containers), but alvo that
suggests the need for adaptation (e.g. problem and solution differences).

3.1 Knowledge Containers

Knowledge elicitation for a CBR system, particularly applicd to design tasks, can be
substantial. A retrieve only CBR system will utilise the following know ledge contain-

€rs:

o the case representation, generally containing two parts (the problem and solu-
tion), normally consists a set of attributes and values but can be a nuxe mmnlcu
structure. It is important for the user to be able to verify that this represeatation

is suitable for the problem-solving task at hand.

e the case-base is the main knowledge source of a CBR system and usually de-
termines its competence. It is not sufficient to expect the user to accept that
the case-base provides representative problems. The user must be able to judge
its quality and coverage in order to decide if it is suitable to address current
problems. This will allow gaps in the case-base knowledge to e addressad and

rectified.

e the retrieval process usually involves a similarity function that compares the
cases held in the case-base with the new problem. This can be a Euclidean dus-
tance function or some domain specific function. The importance of individual
features is often identified by feature weighting. The user needs to be able w
decide if the similarity function is appropriate and if the importance of features

is correctly represented.

This knowledge is often hidden from the user and can result in two effects: the
user may accept the hidden knowledge as fact and not question it, of ‘"‘"‘""“')’o
confidence in the system may be harmed due to a lack of undentanding of the hidden

process. Either of these effects can be harmful to the usage of a CBR system.



3.2 The Proposed Solution

In addition to general information about the underlying CBR model being used, lo-
cal information specific to the current problem must be visible to the user. This will
allow a judgement to be made on the quality of the proposed solution and provide
the relevant information to make manual adaptations. Visible, local information helps
identify deficiencies in the current problem solving experience (e.g. quality of case-
base, similarity function). It can be provided by comparing the new problem with
cither the case-base as a whole or with the most similar cases identified by the simi-
larity function (its nearest neighbours). Local information is required in the following
areas:

e Similarities & Differences within Best Matching Cases and the I'n?blrm.
Easily interpretable information is required that allows the user to identify lhc
attribute values that are common to both the problem and the best m:nc'hmg
cases. More importantly it allows specific attribute value differences to be iden-
tified. This is the information needed to allow adaptation of the pmpos&:d solu-
tion. A one dimensional similarity value can hide these differences and is often
not sufficient.

* Relationship Between Neighbourhood & Case-base. This allows the user {o
identify whether the case-base coverage is sufficient in the local region f_ur this
particular problem and allows an area of the problem space to be highlighted.
Any deficiencies in coverage can be addressed by adding new relevant cases to

the case-base.

4 Textual FORMUCASE

Our initial version of this application, called FORMUCASE, was developed nlon; tra-
ditional CBR lines. Each case has a problem and solution rcprcscmql by a I;st‘ of
attribute values. The problem attributes consist of five physical propertics dcscnhalng
the drug itself and twenty chemical properties which describe how the drug reacts with
possible excipients. All these attributes have numerical values. The solution has ten
attributes; five with nominal values identifying the excipients used and five numeri¢
values identifying the quantity of each excipient. When formulating a tablet I'Iur a new
drug the attribute values representing the drug are entered and its nearest n.clghhmrs
identified using the k-NN algorithm. The multi-component proposed splu!mn.u? the
problem is a weighted majority vote of its nearest neighbours to determine excipicnts
and a weighted average for excipient quantities. _

The output from FORMUCASE (see Figure 3) is prescnlcd.in report format daf-
playing the nearest neighbours, their problem and solution attribute val ues and their
similarity to the new problem, The feature values of the proposcd mlunonlm lhf:u
displayed. This retrieve-only system forms the first step in a tablet I:onpu lation. Dif-
ferences between the new test problem and the retrieved cases may indicate the need
to refine the predicted solution by manual adaptation. )

An initial evaluation of FORMUCASE identified two problems. Firstly, confidence
in the retrieval stage of the system is low as there was a reluctance to acoept that



1 Nearest Nelghbour: DrugT-200 Pearcentage match : 88.84%

PROBLEM: Drug Solubllity ;0.8 SOLUTION: Filler; Amoumt i Lactose 184 Bomg
Drug Contact Angle : 58.0 Disint; Amount : Croscarmeiose § mg
Drug Yieid Press 1 75.24 Binder; Amoum n.P.qm 4 g
Drug Yield PressFast; 81,38 Lubricant; A 1 i MyBmensie 3 43mg
Drug Dose 1 200 Buwfactant, Amount; null 0 Omg
Stabilitles: 89.6;100; 100; 99.5; 0.0

2 Nearest Neighbour: DrugQ-100 Perceniage match : TO.2T%

[PROBLEM: Drug Solubiiity 11 SOLUTION: Filler; Amount  : Lactose 182 2mg

Drug Contact Angle :42.0 Disint; Amount  : NeStarchGhya 17 Smg
Drug Yield Press :24.84 Binder; Amount  : PreGeiBlarch § dmg

Lubricant; Amount ;| MgSisarete 3 Tnyg

Drug Yleld PressFast : 45.6
Drug Dose : 100.0 Surfactsnl, Amount. nult 0 Omg

Stabilities: 100; 100; 100; 92.8; 0.0

Suggested Tablet Formulation :

Filler; Amount : Lactose 187.04mg
Disintegrant; Amount : Croscarmaioss 11.06mg
Binder; Amount i PreGelStarch 8.63mg
Lubricant; Amount : MgStearate 3.28mg
Surfactant; Amount : null 0.0mg

Figure 3: FormuCase report format output

the similarity metric used provided similar cases to the current problem. Secondly,
it was difficult to perform adaptation because differences between the new problem
and the retrieved cases were not obvious. A revised version of this application, called
FORMUCASEV1Z, was developed to alleviate these problems.

5 FORMUCASEVIZ

We demonstrate our approach to explanation using visualisation with this tablet for-
mulation problem. Our hypothesis is that the visual vcrsioq (l-‘omw(_!.\s&\.'iz) will
help explain the CBR process and increase user confidence in the solution. The prob-
lem and solution are displayed in parallel co-ordinate plots in onder W address the
issues discussed in Section 3. .

A parallel co-ordinate graph's primary advantage over other types of sum‘tml
graphics is its ability to display a multi-dimensional vector or case in two duncnsions.
Figure 4 shows a plot with five dimensions. Each attribute is represented by a I.ahcllod
vertical axis. The value of the attribute for each case is plotied along cach axis. The
points are then connected using horizontal line scgments such that each case Is repre-
sented as an unbroken series of line segments which intersect the vertical ancs, Each
axis is scaled to a different attribute. The result is a signature across n du’uc\mimps for
each case. Cases with similar data values across all features u:ull.;h:uc similar signa-
tures. Clusters of like cases can thus be discerned, and associations among features
can also be visualised. ' _

The basic layout of the graphical display for the tablct formulation task takes the
form of three panels each containing a parallel co-ordinate graph (sce Figure 3). The
top graph contains twenty axes and provides attribute value lnrqm\alam for the drpgs
chemical properties. The lower left graph contains five axes with the drugs physical



Figure 4: Parallel co-ordinate plot showing the drug physical properties of a case-base

properties and the lower right graph displays the solution attribute values. Thus the top
and lower left panel contain attributes from the problem domain and the lower night
graph contains attributes from the solution space.

Loading a case-base results in the vertical axes being drawn and labelled with an
attribute’s name and minimum and maximum value. The case lines, mtersecting the
axes, are also shown (see Figure 4). A visual picture of case-base coverage can now
be seen with darker regions representing well covered areas of the problem space and
gaps being visible as portions of the axis without case lines. The encoded retrieval
knowledge in the form of feature weights is represent by the width of each axis. Fig
ure 4 shows a case-base displayed on the drug physical properties graph. 1t can be
seen that the atributes SOL and Dose have the highest weights.

We see in Figure S that on entering a new problem a black hne representing it i
drawn on the two problem domain graphs. This provides mformation on the local cov
crage provided by the case-base in relation to this particular problem. As no solution
IS yet available there is no black line representing the problem i the solution panel

Figure 6 shows a solution to a new problem. The nearest neighbours are idents-
fied in the case-base and displayed as coloured dashed lines. The nearest neighbour
solutions are also displayed in the solution panel along with the proposed solution for
the new problem. A new axis is added to the drug physical properties problem panel
showing the similarity value between the problem and is nearest neighbours along
with labels for each case. This visualisation allows the similanities and differences to
be viewed in terms of the real data aiding interpretation of the proposed solution and
making the adaptation stage easier. For example, in Figure 6, 1t can be seen that the
best matching cases disagree on which filler to use. LAC is the proposed solution but
reference to the chemical stabilities show DCP would be a better choice as it has a
higher chemical stability.
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Figure 5: Output screen of FORMUCASEV1Z with an unsolved problem entered

5.1 Ordering the Attributes

The order or arrangement of the attributes 1s important when using parallel co-ondimare
graphs. The arrangement can improve the visualisation by helping o wdentify trends
or correlations within the case-base. Many approaches 1o multi-dimensional data v
sualisation arrange the attributes arbitrarily, possibly in the order that they appear in
the case representation. We have taken the approach of arranging the attnibute axn
based on their similarity to each other in order o reduce hine crossing on the graph
To achieve this axis arrangement we first use an axes similanty function to dentify
the pairwise similarities between the axes and then determine an arrangement so that
similar axis are placed adjacent to each other.

An obvious way to measure axis similarity is to compare values across the cases
The similarity between axes A, and A, is measured using the attnbute value similanty
across the cases, rather than across the attributes as for case simlarity. Thus, when
case ¢y is described by the n-tuple of attribute values (ayx, a0 ), the axis sl
from cases ¢y ... ¢, 1s defined as follows:

m
Similarity(A,, A;) = Z similarity(a, a)
k=1

where similarity is the inverse Euclidean distance defined for indivadual (nommalised)

attrnibute values.
Determining a linear arrangement for the axes such that similar anes are placed
close to each other is still not straightforward. We adopt the approach of st looking

at the pairwise similarity values between the axes and picking the most simiar par
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Figure 6: Output screen of FORMUCASEVIZ with a problem and proposed solution

These are placed 1o the left of the graph, The most similar unallocated axis is placed
next to it. This process continues until all the axes have been allocated a position in
the graph.

An alternative approach, which may give an optimal arrangement, is 1o find the
order with the minimum total similarity when adjacent axis similarities are summed
However Ankerst et al [1] show that this problem is NP-complete. The use of a genetic
algorithm or optimisation approach may be appropriate.

The arrangement of the axes can be carried out from a global or local context. The
global arrangement looks at the whole case-base and takes no account of the current
problem. This approach is best for looking at case-base coverage or when trymg o
identify trends within the case-base. It also has the benefit that it can be used prior to a
problem being entered and is more stable as it remains unchanged as cach new problem
is entered. The local arrangement only looks at a portion of _lhc case-base, t.\['u-;d'l.\
around the new problem by only using its nearest neighbours i the calculation of the
axes similarities.

FORMUCASEVIZ was implemented with the global arrangement on the two prob
lem domain panels as it was found that the continual rearranging of axes gave pi b-
lems in interpreting the results. However in other domains the advantages of a local
approach may outweigh this disadvantage. No ordering of axes was apphied to the
solution panel as a fixed order was found to be more easily understood.



6 User Evaluation of FormuCascViz

The purpose of the domain expert evaluation was to investigate how well FORMU-
CASE and FORMUCASEVIZz explain their solution and the process undertaken o ar-
rive at the solution. This was done by looking at how easily the solutions could be
interpreted and the confidence the domain expert has in the system’s solution,

Three new tablet formulation problems were created to act as test queries for these

evaluations. Test case 1 and 2 were created by making minor changes to an existing
case held in the case-base. As a result, these test cases had similar nearest neighbours
and a competent proposed solution was gencrated by the system. The thind test case
was created by removing an existing formulation from the case-base and making minor
variations to it. This had the effect of creating a test case that had no similar cases in
the case-base. There was considerable variation within the solutions of the retrieved
nearest neighbour cases and confidence in the proposed solution was expected to be
lower.
The questionnaire, containing thirty questions in total, was designed to ascertain
the evaluators confidence in the system given the tool's ability to explain its reasoning.
It contained three parts. Part A and B involved answering questions, as the three
test cases were solved, using FORMUCASE and FORMUCASEVIZ respectively. The
questions varied from specific questions e.g. What is the similarity value of the best
matching case? to more abstract questions e.g. Are you more confident in excipient
prediction for the Filler or the Binder?. Part C contained general questions comparing
the advantages and disadvantages of two versions of the application.

Two domain experts were given both versions of FORMUCASE, a case-base and
the three sample problems to solve. The evaluation required the expert to fill out the
questionnaire while solving the three different test problems, on the same case-base,
first with FORMUCASE and then with FORMUCASEVIZ. While the results of the
evaluation are not published in detail here, we summarise our findings by highlighting

some of the interesting observations.

¢ The experts agreed that FORMUCASEVIZ explains the CBR process of gener-
ating a solution better than the textual output version.

* There was a reluctance to accept a single similarity value alone as a measure
of the case-base’s competence to answer a specific new problem. In answer
the question Does the case-base contain similar cases 10 the problem? an un-
sure answer was usually given with FORMUCASE. In contrast, when presented
with the same problem on FORMUCASEVIZ a definite and expected answer was

always given.
o There was generally more confidence in the solutions provide by FORMUCA-

SEVIZ and it was possible for alternative solutions 1o be suggested by the expert
as would be required during the manual adaptation stage of the CBR cycle.

e The evaluators were better able to answer questions requiring them to ken-
tify differences within the nearest neighbours and between the problem and the
neighbours. One evaluator commented The graphical display is excellent and
shows up similarities and differences in a very clear way.



* Exact numerical values cannot be read from FORMUCASEVIZ as the values
have to be interpolated from the axes. One expert highlighted this problem by
commenting the absence of easily readable numerical data is a big problem.
This deficiency needs to be addressed.

The positive results from our evaluation suggest that FORMUCASEVIZ provides a
useful and more informative explanation of the proposed solution than FORMUCASE.

7 Related Work

CBR systems using decision tree guided retrieval typically provide their explanations
by highlighting feature values of decision nodes traversed in order to reach the I-cnf
node [4]. This is similar to the methods adopted in rule-based expert systems which
often show rule activations [14]. Such rule-based explanation is not possible in sys-
tems using only k-NN retrieval because a set of discriminatory features is not iden-
tified as part of the algorithm. In these systems a typical approach is to present an
explanation in terms of feature value differences between the query and the rcl{ic\.ul
case. Cunningham et al. [4] suggest that explanations, expressed in terms of similarity
only, can be useful in some domains (e.g. medical decision support) but is inadequate
in others. McSherry’s [12] approach to explaining solutions is based on idcntffymg
features in the target problem that support and oppose the predicted outcome. D‘:s‘cov-
ery of the supporters and opposers of a predicted outcome is based on the conditional
probabilities, computed from the cases available at run time, of the observed features
in each outcome class. ‘

Hotho et al. [6] provide explanations that are not solely similarity bnsod In their
approach text documents are formed into clusters using a similarity metric and k-
means clustering. The importance of the features or words in each cluster are ranked
and the most important are used to represent the cluster. The relationship hctwgcn
clusters can then be identified using WordNet concept hierarchies. An explanation
can now be given not only by the similarity of a document to other members in its
cluster, but also on the relationship to other clusters. )

Another approach to providing an explanation is through visunlis:mop. McArfllc
& Wilson [11] present a dynamic visualisation of case-base usage by using a spring
based algorithm. The algorithm uses the attraction and repulsion of the springs to
spread the cases around a two dimensional graph in an attempt to pncscrv_c lhc 'n-
dimensional distances between cases. This provides more insight into the similarity
assessment than the usual single dimensional value. However, the knowledge held
Within the similarity metric is still hidden. Although this approach is Pscd‘l'or support-
ing the maintenance of large case-bases it could also be adoptcd’lq visualise retrieved
cases. An alternative approach is the parallel co-ordinate plot, originally proposed and
implemented by Inselberg [7]. Falkman [5] uses this approach to develop an mfopm-
tion visualisation tool, The Cube, which displays a case-base using three d:m;cnsu'mal
parallel co-ordinate plots. This approach allows the underlying dm- 1o be visualised
as well as the similarity metric. We exploit this approach by also using a paralle] co-
ordinate plot to display the case-base but in addition we display underlying knowledge
from the CBR knowledge containers and the retricval process itself .



8 Conclusions and Future Work

A user gains confidence in a system that provides correct results. However confidence
is also improved in systems where the decision making process is tramparent and
deficiencies can be identified and resolved. The explanation of results should be a key
design criterion in CBR systems.

In this paper we have identified some of the reasons why CBR systems, particularly
those using k-NN retrieval, are not as successful as they might be. We have presented
an approach that can address some of these problems using a parallel co-ordinate vi-
sualisation of the problem and solution. This approach has been demonstrated on
FORMUCASEVIZ in a tablet formulation problem domain in which thinty-five dimen-
sional data is viewed in a single representation. A user evaluation confitmad that this
explanation based approach made interpretation of the results easicr than on the teatual
version, and better explained the CBR process. The need for exact numerical values
to be available on the visualisation was also identified. While we have used tablet fow-
mulation in this paper our approach would be applicable across a wide range of CBR
problem domains.

Future work will look at providing more local information related directly w the
problem rather than to the case-base as a whole. This may imvolve a re-ondering of
the attribute axes. Alternative, we may look at identifying or highlighting attnibutes in
the problem domain that have the biggest impact in determining specific parts of the
solution. This could be done by looking for correlations between axes in the problem
and solution space. In addition we will also look at providing a more dynamic visuali-
sation that allows the user to interact directly with the data, for example to change the

problem or highlight certain areas of the case-base.

Acknowledgments

We acknowledge the assistance of PROFITS, Bradford Univenity for funding the
FORMUCASE demonstrator, providing the tablet formulation data and supplying will-

ing domain experts for user evaluations.

References

[1] M. Ankerst, S. Berchtold, and D. A. Keim. Similarity clustering uf dmmﬁ:m
for an enhanced visualization of multidimensional data. In Proceedings of IEEE

Symposium on Information Visualization, pages 52-60. IEEE Computer Society
Press, 1998,

[2] R. Bergmann. Experience Management: Foundations, Development Methadol-
ogy, and Internet-Based Applications. Springef, 2002.

[3] S. M. Craw, N. Wiratunga, and R. Rowe. Case-based design for tablet formulas
tion. In Proceedings of the 4th European Workshop on Case-Based Reasoming,

pages 358-369. 1998,



[4] P. Cunningham, D. Doyle, and J. Loughrey. An evaluation of the uscfulness of
case-based explanation. In Proceedings of the Sth International Confercnce on
Case-Based Reasoning, pages 122~130. Springer, 2003.

[5] G.Falkman. The use of a uniform declarative model in 3D visualisation for case-
based reasoning. In Proceedings of the 6th European Conference on Case-Based
Reasoning, pages 103-117. Springer, 2002.

[6] A. Hotho, S. Staab, and G. Stumme. Explaining text cl:xstcring results using
semantic structures. In Principles of Data Mf'm'ng and Knowledge Discovery,
7th European Conference, pages 217-228. Springer, 2003.

[7] A.Inselberg. The plane with parallel coordinates. The Visual Compurer, 1:69=
91, 1985,

[8] R.King, C. Feng, and A. Sutherland. Statlog: comparison of c!assiﬁcatk;n.;?;;'
rithms on large real-world problems. Applied Antificial Intclligence, %3):259~
287, 1995.

[9] J. Kolodner. Case-Based Reasoning. Morgan Kaufmann, San Mateo, CA, 1993.

(10] D. B. Leake. CBR in context: The present and future. In D B..Lulc. cdsl;r.
Case-Based Reasoning: Experiences, Lessons and Future Directions, Pages 5=
30. MIT Press, 1996.

[11] G.P.McArdle and D. C. Wilson. Visualising case-base usage. In Workshap Pﬂ;
ceedings of the S5th International Conference on Case-Based Reasoning, pag
105-124. NTNU, 2003.

[12] D. McSherry. Explanation in case-based reasoning: an evidential RPP“’-‘;‘;'_;’"
Proceedings of the 8th UK Workshop on Case-Based Reasoning, pages .
2003.

[13] M. Richter. Introduction. In M. Lenz, B. Bartsch-S.por!. and S..Wc‘u. edlm:‘.
Case-Based Reasoning Technology: From Foundations to Applications, pag

1-15. Springer, 1998.

[14] R. Southwick. Explaining reasoning: an overview of explanation in how ledge-
based systems. Knowledge Engineering Review, 6:1-19, 1991.



Appears in Proceedings of the 7th European Conference on Case-Based Reasoning,
Pp- 806-820, Copyright © 2004 Springer-Verlag (www.springer.de). All rights reserved.

Feature Selection and Generalisation for Retriceval of
Textual Cascs

Nirmalie Wiratunga!, Ivan Koychev?, and Stewart Massie!

! School of Computing,

# Smart Web Technologics Centre,
The Robent Gordon University,
Aberdeen AB25 1HG, Scotland, UK
{nw|ik|sm}@comp.rgu.ac.uk

Abstract. Textual CBR systcms solve problems by reusing experiences that are
in textual form. Knowledge-rich comparison of textual cases remains an impoe-
tant challenge for these systems. However mapping text data into @ structuned case
representation requires a significant knowledge engincering effort. In this paper
we look at automated acquisition of the case indexing vocabulary as 8 two sicp
process involving feature selection followed by feature gencralisation, Boosted
decision stumps are employed as a means to select features that are prodictive an
relatively orthogonal. Association rule induction is employed to capture feature
co-occurrence patterns. Generalised features are constructed by applying these
rules. Essentially, rules prescrve implicit semantic relationships between features
and applying them has the desired effect of bringing together cases that would
have otherwise been overlooked during case retrieval. Experiments with four tex-
tual data sets show significant improvement in retrieval accuracy whenevet gonee
alised features are used. The results further suggest that boosted decision sturmp
with generalised features to be a promising combination.

1 Introduction

Past problem solving experiences captured in textual form present an interesting chal-
lenge to CBR system development. This is because experiences in unstructured form
containing free text must first be mapped into structured cases before they can be mean.
ingfully compared and reused for future problem solving. Texwal CBR (TCBR) in-
volves reuse of experiences that are in text form {14). Unlike Information Retneval
approaches TCBR aims to develop case representation mechanisms that can hetter sup-
port knowledge-rich comparison of cases. )
TCBR systems often access a variety of knowledge sources (e.g. domain specific
thesauri, natural language parsers etc.) to establish an indexing vocabulary [$]. The
general aim is to facilitate structured case representation and enhance retrieval, In this
paper we investigate how introspective learning can be cmploy‘cd (o automate the ace
quisition of the case indexing vocabulary [13]. We present techniques that are gencrally



applicable when textual experiences are pre-classified according 1o the types of prob-
lems they solve. Essentially we shall exploit implicit knowledge already existing in text
documents to discover keywords that on their own or as a sct in combination with oth-
ers, are predictive of the problem class. The case indexing vocabulary will constitute
just these selected keywords and so this process can be viewed as dimension reduction
or feature selection.

Feature selection techniques employed by machine learning algorithms for super-
vised learning tasks such as classification are known to successfully improve accuracy,
efficiency and comprehension of learned concepts [12). Typically these techniques have
been applied in problem domains consisting of structured cases. They have also boen
employed by CBR systems to identify relevant features for building an index for case
retrieval [11]. A feature selection technique can be categorised as ¢ither being a filteror
a wrapper approach. The wrapper approach uses feedback from the final leaming algo-
rithm to guide the search for the set of features. Generally this feedback ensures sclec-
tion of a good set of features tailored for the learning algorithm but has the disadvantage
of being time consuming because feedback involves learner accuracy ascertained from
cross-validation runs. Filters are seen as data pre-processors and gencrally do not re-
quire feedback from the final learner. As a result they tend to be faster, scaling better o
large datasets. Selection techniques presented in this paper fall under filter approaches
which are particularly suited to processing of medium to large text collections.

In classification problems a good feature is one that is predictive of the problem
class on its own or in combination with other features. Selection acconding to the per-
formance of a combination of features is particularly useful for text data because there
is often the need to identify similar meaning words that are used interchangeably (syn-
onyms) and the same word being used with different meaning (polysemies). In both sit-
uations similar cases can be overlooked during retrieval if these semantic rlelatkmdaips
are ignored. This paper introduces a novel feature selection technigue that discovers and
preserves semantic relationships in the case representation as part of the slection pro-
cess. Boosted decision stumps are used for feature selection and semantic relationships
are captured using association rule induction. )

Section 2 describes the commonly used information gain based feature sclection
technique which is then used by the boosted feature selection technique in Section 3.
The Apriori association rule learner is discussed in Section 4 and s employed as a
means to capture semantic relationships between features. In Section 3, induced rules
are utilised to form a generalised document representation and in doing 50 introduces
novel ways of combining it with feature selection. Experimental results are tr;n‘md on
four textual classification tasks in Section 6. An overview of case representation and
indexing issues in textual CBR research and how techniques presented in this paper
relate to existing ones are discussed in Section 7, followed by conclusions in Section 8.

2 Feature Selection with Information Gain

We first introduce the notation used in this paper to assist presentation of the different
feature selection techniques. Let D be the sct of all labcllc_d thu.mcnu. IV the set
of all features which are essentially words. A document d is & pair (£,y), where Z



= (z1,...,2Zjwy) is a binary valued feature vector corresponding to the presence of
absence of words in W; and y is d's class label [18]. The experiments in this paper use
binary class domains so y is either O (negative class) or 1 (positive class). Let S be the
training subset containing labelled documents {dy,...,dn}-

The main aim of feature selection is to reduce |V to a smaller feature subact size
m by selecting features ranked according to some goodness criteria. The sclected m
features then form a new binary-valued feature vector 2 and a corresponding reduced
word vocabulary set W, where W' € W and [W| < [WV]. The new representation of
document d with W' is a pair (2, ).

A feature’s discriminatory power is a useful gauge of its goodness and is commonly
ascertained using the information gain (IG) score ([17], [16])).

XmzlV =
O S

z€0,1 yeo,1

H‘_"’ the probabilities are estimated from S using m-estimates ;Ii]. The information
gain based ranking and selection of features is the base line algorithm used in this paper
and we will refer to it as BASE (Figure 1).

m = feature subset size
BASE
Foreachw; € W
calculate 13 score using S
sort W in decreasing order of 10 scores
W = {w:,.-o.u-'m}
Return W

Fig. 1. Feature sclection with IG based ranking.

A feature goodness score like IG reflects a feature's ability to discriminate between
classes. A possible shortfall with BASE is that selected features although having high
scores may exercise their discriminatory power in similar ways, Consider documents
from two mailing lists about computer hardware, one list containing mcssages abaut
solving PC problems and the other dedicated to Apple Macs. An example of the top
ranked words might be: “centris”, “quadra”, “eisa”, “bus™, “client”, “server” etc. HNere
both “centris” and “quadra” are likely to suggest a hidden concept such as machm_e
type. Similarly “eisa” and “bus” are likely to co-occur in similar documents an poasie
bly relate to an implicit concept like internal architecture, while “client” and “server™
are also features that can be viewed as belonging to a further implicit concept such as
process communication. Ideally we would like to explicate these semantic relatioaships
but firstly we need to ensure that as many of the hidden concepts are captured by at lean
a single representative discriminatory feature. This means that ifwe wcm“qulfd W
select just three out of the six words a useful selection might be: “quadra™, “cira™ and



“server” to cover each of the hidden concepts; instead of just the top three “centris™,
“quadra” and “eisa”, What this example is highlighting is that selecting just the top
ranked features with BASE can result in a feature set that is not particularly representa-
tive of hidden concepts thereby having a detrimental effect on case comparison. In the
following section we combine IG based feature selection with boosting as a finst step
towards dealing with this problem.

3 Feature Selection with Boosted Decision Stumps

Boosting is known to improve the performance of learning algorithms particularly with
tasks that exhibit varying degrees of difficulty [9]. The gencral idca of bomting s
iteratively generate several (weak) learners, with each learner biased by the training
set error in the previous iteration or trial. Each learner works hard at solving training
instances that were incorrectly classified in previous iterations. This is achicved by as-
sociating weights with instances in the training set and updating these weights at each
trial. Weights of instances correctly solved by the most recent leamer are decreased, and
this has the effect of increasing weights of incorrectly classified instances. It means that
at the next trial the learner is forced to work harder at solving these difficult instances,
In order to classify a new test instance, the votes of each learner are combined to form
a majority vote. Each vote is typically weighted by learner accuracy because it males
sense to trust those learners that have a higher accuracy on the training sct.

An interesting approach to feature selection is to use boosting with a onc-level dqtl-
sion tree, known as a decision stump, as the learning algorithm ( {6], [8]). Constructing
such a learner involves selecting a single feature, based on its ability to discriminate
between classes [10]. For this purpose decision stumps are typically formed from fea-
tures with high information gain. An example of two decision stumps from the binary
classed computer hardware domain appear in Figure 2. Here 2 “+” denotes documents
from the Apple mailing list and “-* the PC mailing list. With the “centris™ stump the
left leaf is formed by documents in which “centris” is present and the right leaf containg
documents where it is absent. Predicting the class of a test document using this deci-
sion stump involves traversing the left or right branch leading to a leaf depending on the
presence or absence of “centris” and labelling the document with the majority class at
that leaf. Similar explanations hold for the stump having “bus” as the splitting feature.
The stump error on the trainin g set (err) is the percentage of the number of minotity
class documents in both branches. .

Since a decision stump partitions the domain based on the valucs of a single feature,
the set of stumps generated with boosting form the set of selected features, Therefore
with m boosted iterations a set of m features are selccted and these form the reduced
feature subset W'. The BOOST feature selection technique is shown in Figure 3. At
each boosted iteration the feature with highest IG is sclected forming the stump for the
training set . Initially all n documents are assigned the same weight of 1/n. With each
trial these weights are updated so that the weights of correctly classified examples are
reduced according to the error of the stumps. In practice once weights are updated, they
need to be re-normalised so that their sum remains one. The impact of updated weights
will be reflected in the IG scores where the prior and conditional prohabilitics are caku-
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Fig. 2. Decision stumps. Fig. 3. Feature selection with boosted stumps

i e W.ci.i.!hif:d documents, and this in turn will influence the feature selected in the
next iteration when forming the stump. The boosting mechanism adopted here s sim
flar 1o AdaBoost. M1 [9], the only difference being that updating of document weights
1s based on the error of the committee of stumps learned thus far, instead of the e
Uf‘lhe most recent decision stump. With initial stumps contamning features with highes
o scores the committee approach to updating document weights enables stumps from
earlier iterations (o exert a greater influence on feature selection.

- Features that are discriminatory in similar ways have less opportunity 1o be selecied
w!lh BOOST. However, with most tasks, information about which features co-ocour
with selected features can provide useful knowledge for case similanty, particularly in
!llc presence of hidden concepts. In the next section we use an association rule learner o
identify co-occurring features for sclected features. A generahised feature space formed
by applying these learned rules to selected features provides a richer case reprosentation
which in turn will enrich case comparison.

4 Feature Generalisation with Association Rule Induction

Apriori [1] is a well known association rule induction algorithm introduced for the
milfkcl-haskel analysis domain where one wishes to find regularitics in people s shop
ping behaviour. It generates rules of the form H « B, where the rule body B a



conjunction of items, and the rule head H is a single item. Association rules are discov-
ered in two stages. Firstly Apriori identifies sets of items that frequently co-occur, i.e.
above a given minimum threshold. It then generates rules from these itemsets ensuring
frequency and accuracy are above minimum thresholds.

4.1 Rule Generation and Selection

+rlicentri<- print (6.5%, 17.2%, 0.3V}
+r2i1centric- card (6.6%, 25.4%, 1.1%)
+r3icentric~ fpu (5.5%, 24.5%, 0.8%)
+rd:centri<- 1isi (7.7%, 14.5%, 0.1%)
+rS5:centri<- simm (9.0%, 16.3%, 0.3%)
+r6icentric- quadra(10.8%, 24.0%, 1.5%)
+r7:centri<~ 1c (9.0%, 16.3%, 0.3%)

-rlibus <- local (7.7%, 46.4%, 3.0%)
-r2:bus <- ptandard (10.3%, 31.5%%, 1.2%)
-r3ibus <« window (13.6%, 29.5%, 1.2W%)
-rdibus <- id (20.5%, 28.3%, 1.7%)

-rS5:bus <- drive (29.6%, 31.7%, 4.8%)
-r61bus <- id local (9.0%, 42.0%, 3.7%)
-r7:bus <- drive local (10.3%, 37.0%, 2.1%)

Fig. 4. Example list of rules from the hardware domain.

An obvious analogy exists between frequently occurring itemsets in shopping trans.
actions and frequently occurring words in a set of documents. This means that rules can
be used to predict the presence of the head feature given that all the features in the body
are present in the document. This means that a case satisfying the body even when the
head feature is absent, will be considered closer to other cases that actually have the
head feature present. Figure 4 lists two sets of rules gencrated for the handware mail-
ing list domain. The first rule set corresponds to rules generated with “centris™ as the
rule head and the other set with “bus” as the head. The class of documents from which
these rules were induced are indicated by the rule prefix. This is important because
co-occurrences of features are a signature of a particular class of documents. ‘

In order to tie in a set of rules to a class it is necessary to constrain rule generatun
so that a rule’s body contains features that are predictive of the same class as the rule’s
head, and learning is restricted to documents from this class. The predictive class of
features is estimated according to class conditional probabilitics. Going back "‘,"‘“
ure 2, if “‘centris” is to be used as the head feature of the rule then the higher conditional
probability, P(centris = 1|+) indicates that it is most likely 10 appear in documents
from the positive class. If instead “bus” is the head feature then the higher conditional
probability P(bus = 1|~) suggests the negative class. _ _

An informed rule selection strategy is necessary because Apriori typically will gen-
erate many rules [3]. The percentages in Figure 4 are the coverage, accuracy and in-
formation gain for each generated rule. Generally the first two mcasurcs are used by



Apriori during rule generation to prune the search space. Here coverage (or frequency)
is the percentage of documents in which a rule is applicable; and confidence (or accu-
racy) is the proportion of documents in which the rule prediction is correct. The thind
measures the gain in information due to the rule’s body, and indicates how well the
body is able to predict the presence or absence of the head feature. It is this measure
that we have found most informative when selecting the K best rules from those gen-
erated. The three best rules predictive of each of the two head features (i.¢. “centris™,
“bus”) according to information gain are in bold.

4.2 Feature Generalisation

The objective of applying learned association rules is to improve case comparison by
providing a more generalised case representation. Good generalisation will have the
desired effect of bringing cases that are semantically related closer to each other that
previously would have been incorrectly treated as being further apart, Association rules
are able to capture implicit relationships (e.g. like synonyms) that exist between fea-
tures. When these rules are applied they have the effect of squashing these features,
which can be viewed as feature generalisation.

For a feature w; € W, let R; be the set of association rules induced with‘w. as
the head feature, where r;; : w; + Dj. Here the rule body Dj is a conjunction of
features from W \ {w;} and when true implies the presence of the head feature w,
Given a document’s initial representation d = (&, y) (i.e. using all featurcs in }V), the
generalised representation d = (", y) is obtained by applying ris : Zi ¢= Zit A AL,
where z;, # z;, giving;

1 ifzy=1
:L';' =<1 lf(A:‘;l 2‘;‘*)81
0 otherwise

All this means is that z!/ is instantiated with value 1 if either the head of the rule of
its body is true, and is 0 otherwise. Consequently, the generalised new document rep-
resentation " tends to be less sparse than &, because O values are likely to have their
values flipped to 1. Essentially 2 remains a binary valued feature vector, whose wa!ucs
indicate the presence or absence of a feature w”, where w" € ", but }V" ¢ W, since
these features no longer correspond to presence or absence of single wonds.

Figure 5 illustrates how rules are used to generalise feature vectors. Here two forms
of five trivial feature vectors are shown. The left table shows values for e‘an:h vees
tor using all the features in W = {*centri”, “bus”, “drive”, “quadra”,.. J. with lhﬁ y
column showing the document class. The right table shows the effect of gcncn‘lua-
tion after the sets of rules are applied. For sake of simplicity we use only the single
best rule from each of the rule sets {Rcentri» Rbusr Rdrives Rysadre ook listed at
the top of the figure. The first two rule sets contain a complete rule each: Reentes =
{416 : centri « quadra}, Rpus = {-15 : bus ¢ drive). So for ﬁ;amplc any
rule from Reensr (€.8. +76 ¢ centri) is applied to the left table's “centn column on
any document from the positive class, while rules from Ry, arc applicd to the “buy



sets of rules ={ {+r6:centri <- quadra}, {-rS:bus <- drive ), [ -10:drive< Q). [+10-quadra<c- §)

using all features pencralised features
N 4 | e )
’> | [ | [ L 4r6: S| or0: | 410
centri bus drivelquadra - centn! bus drive quadia
d;J 0 nl 0 N | dy | 1 0 0 ! .
d, " 1 0 | 0 0 || + nplply dy,| 1 o/l ol o .
' : rules r ot t |
d1] 0 1 } 6l G | dy| O 1 0 0
—— ——— - . } ’ 4
4] o0 | o | 1] o dy 0 i 1| o
— } ‘ ' 1
ds| t)l 0| 1 ||+ ! dsi 0 0 1 .

Fig. 5. Example of generalisation with rules

column on any document from the negative class. The night table 1s the result of ap
plying these rule sets. The other two rule sets: Rypive and Ryyadea cONtain rules that
have empty bodies. Such rules are not uncommon and indicate that Aprion was unable
to find rules above specified minimum thresholds. Applying empty rules amounts o
unchanged values, i.c. no generalisation takes place.

5 Combining Feature Selection with Generalisation

An obvious manner in which to perform generalisation s after feature selecnon. In
Figure 6 BASEGEN does exactly this using BASE first to form W', It then uses Wasa
handle on ruleset generation, where a ruleset R, is generated for each selected feature
w; € W'_This restricts the number of generated rule sets to m, so W] = [W/ Here
rule ri; € R; is of the form r; : w) « B;, where the rule body 1, is still a conjunction
of features in W\ {w!}, but the head now applies to a selected feature in 37, where
W cw.

Interestingly we can also combine feature generalisation with boosted feature se
lection so that the boosted search for the best set of features is influenced at cach itera
tion by the generalisation of the feature selected in the previous iteration. BOOSTGES
achieves this as shown in Figure 7. It calls generalise before forming the decivion
stump, as a result the decision stump is formed by sphtting the traming set ac CORENG 20
the new generalised feature.

Generalisation after feature selection is attractive because generated rules will con
tain rule bodies that bring in features from the larger feature pool W In this mannes
both BASEGEN and BOOSTGEN are able to link selected features from W' with other
less frequently used features. This may be seen as supplementing selected features in
W' with background knowledge from W. Additionally BOOSTGEN's hoosted feature
selection will tend to discover generalised features that are less likely to have overlap
ping semantic relationships with other generalised features.



"=0; W =0;stumps =0
WY =0: W =0 W'=0

max-trial =m
call BASE to form W
Foreachd; € § BOOSTGEN
Foreach wy € (W' n W} ,

z{;=generalise(z;, wy) :

wj'=new generalised feature Repeat

W = WE U wy F = highest ranked features from BASE
Return W" F=F\W

wy = highest of F
generalise(z, w) WsWUus

R = select-rules(w)
apply eachrulein R
generalising z to z”

Foreachd; € S
zl; = gencralise(xig, wy)
wj!' = ncw generalised feature

Return z” stumps = stumps U DecisionStump(w’y’.5)
W aW'Uu)
select-rules(w) err = error rate of stumps on S
R = rules with w as rule head .
sort R decreasing order of rule IG :|-+tri al
brea_k ties with coverage Until (trial = max-trial)
retain the best K in R Return W
Retum R

isation wi od sclection,
Fig. 6. Generalisation after feature selection.  Fig.7. Generalisation with boost

6 Evaluation

: i ual docu-
Feature selection and generalisation techniques enable the maPP"’_ﬂlT :;i :::lcta ” )
ments into structured cases with which the case base is fo::mcd. Di Fepee
sentations are formed using the 4 algorithms presented in this paper:

1. BASE, feature selection using the standard IG ranking (Figure 1)

2. BOOST, feature selection with boosting (Figure 3

3. BASEGEN, generalisation after feature selection (Figure 6); and 9
4. BOOSTGEN, generalisation in combination with boosting (Figure 7)

The case retrieval performance using test set accuracy W'fh 3 " lxi‘mz
used to compare the above algorithms. A modified case similarity mcncc of words.
refrain from treating the absence of words in the same v'vay as the prese im nt for
This is because the presence of a word in documents is intuitively ;!;u\: b r:g:h!ins
measuring their similarity, than its absence. We accomplish this bs:;c;izi What this
the similarity in non-present words by the inverse of the feature su B cuments, the
means is that as increasing number of features are used to ::;l;m:cd
influence of similarity due to the absence of similar words is u; ‘
Textual cases were formed by pre-processing documents by ;:s
words (common words) and special characters such as quote marks,

ly removing stop
commas and full



stops (except for "1”, "@", "%", "'$"” because they have been found to be discriminative
for some domains [17]). Remaining words are reduced to their stem using the Porter's
algorithm, Essentially, W is formed by all word-stems (JW| & 8000) remaining after
document pre-processing. For our experiments we use pre-processed documents from
the following text corpuses:

- LingSpam dataset has been formed to study the problem of spam. It contains 2893
email messages, of which 83% are non-spam messages related to linguistics, and
rest are spam [17].

= 20 Newsgroups dataset is a corpus of about 20,000 Usenct news postings into 20
different newsgroups. One thousand messages from each of the twenty newsgroups
were chosen at random and partitioned by newsgroup name [15]. For our exper-
Iments we use three sub-corpuses, where the messages from two newsgroups are
combined to form a binary classification as follows: Religion and Politics (Rell'ol);
Apple Mac and PC Hardware (MacPc); and Space and Medical Scicnce (SpcMed).

We created equal sized disjoint training and test sets, where each set contains 20%
of documents randomly selected from the original corpus, preserving class distribution
in the _ori ginal corpus. For repeated trials, 15 such train test splits are formed. Signifi-
€ance 1s reported from a paired one tailed t-test with 99% confidence. The graphs show
averaged accuracy on test set with increasing number of selected features.

6.1 Results
L """ BASE —x— BASEGEN ~+—BOOST  —e— BO(JGTGLN_]
100 -
K
:
95 4
[
-]
]
<
90 T T -
5 20 as 50 65 80 93 110

Feature Subset Site

Fig. 8. Accuracy results for LingSpam.

. The general behaviour of all four algorithms with the LingSpam corpus indicate an
initial steep rise in accuracy (upto 20 features) after which there is handly any improve-
ment with increasing numbers of features (see Figure 8). The generalisation achieved



with BASEGEN has resulted in a small but significant increase in accuracy over BASE,
while BOOST has only managed a slight improvement. However, BOOSTGEN's gencr-
alisation combined with boosting has significantly outperformed the other algorithms,
achieving the highest accuracy approaching 99%. The overall accuracy results suggest
that this domain is relatively easy because BASE achieves 93.6% accuracy with only
five features and improves this accuracy to over 97% with twenty features and above.
The reason for this is due to the nature of the LingSpam corpus, where there are a few
very discriminatory features from non spam messages that are sufficient to differentiate
spam messages.

| roerer BASE —=—BASEGEN _ ——BOOST _ —e—DBOOSTGLN |

g

8

Accuracy on Test Set
g

S 20 35  s0 65 80 98 1o
Fearture Subset Size

Fig. 9. Accuracy results for RelPol.

Figure 9 shows the results with the RelPol task. Compared to LingSpam the classi-
fication of documents in to Religion and Politics seems to present a harder task because
overall accuracy is lower. BOOST results are comparable to BASE where boosted fea-
ture selection shows improved accuracy with relatively smaller feature subsct sizes. As
before algorithms employing generalisation (BASEGEN and BOOSTGEN) outperform
those without generalisation (BASE and BOOST), with BOOSTGEN having significantly
improved performance over all other algorithms (including BASEGEN).

The results from the MacPc classification task appear in Figure 10. This task is ex-
pected to be the hardest, because similar terminology (¢.g. monitor, hard drive) can be
used in reference to both PC and Apple Mac hardware. Additionally the same hardware
problem can be applicable in both mailing lists resulting in cross posting of the same
message. Although boosting on its own has not improved accuracy, boosting c:omhincd
with generalisation (BOOSTGEN) is significantly better than all other algmmn_\s in-
cluding BASEGEN at all feature subset sizes. Interestingly the accuracics for algorithms
using generalisation (BASEGEN and BOOSTGEN) continue 1o fis¢ with increasing fea-
ture subset sizes. The poor performance of BOOST can be explained by the relatively
low discriminatory power of features in this domain. In fact selecting the most discrimie
natory feature followed by boosting of incorrectly classified documents can be hanmful,
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Fig. 10. Accuracy results for MacPe.

because updating of document weights prevents discovery of supportive features in sub-
sequent boosted iterations.

| -BASE  —s—BASEGEN  —+—BOOST  ~e—BOOSTGLN |

Accuracy on Test Set

93 110

s 20 35 o 6 B0
Feature Subset Size

Fig. 11. Accuracy results for SpcMed.

A similar significant increase in classification accuracy with generalisation com-
pared to without it is seen with the SpcMed domain (sec Figure 11). Noticcably the
overall winner here is BASEGEN having done significantly better than BOOSTGEN
for the first time, Furthermore, boosting is not helpful and its performance is signifi-
cantly worse than BASE. Closer examination of BOOST's results indicate over-fitting
behaviour, because the accuracy on training set is higher than that of BASE's accuracy



on training set, but this gain is not reflected in test set accuracy. The generalisation
used in BOOSTGEN maintains comparable performance to BASEGEN with up to 35
features, after which accuracy drops quickly as more features are used and over-fitting
from boosting takes effect.

6.2 Evaluation Summary

Table 1. Results summary according to significance.

Boosting Generalisation

BOOST | BOOSTGEN |BASEGEN|BOOSTGEN

Data Set ||vs. BASE|vs. BASEGEN| vs. BASE | vs. BOOST
LingSpam|| no diff. v v v
RelPol no diff. v Vv v
MacPc X v v v

SciMed X x Vv Vv __J

The results from the significance tests are summarised in Table 1. The finst two
columns convey the gain with boosting (BOOST vs. BASE and BOOSTGEN vs. BASEGEN):
and the other two the gain with generalisation (BASEGEN vs. BASE and BOOSTGEN
vs. BOOST). Overall feature generalisation improves algorithm performance signifi-
cantly It is worth noting that generalisation is able to continuously improve accuracy
with increasing feature subset sizes with all domains, making it clearly more robust to
over-fitting. Generally boosting is not helpful on its own, but BoosTGEN comb‘mmg
boosting with generalisation achieves significant improvement over all other algonthms
in 3 out of 4 domains.

7 Related Work

Current practice in TCBR system development show that the indexing vocabulary and
similarity knowledge containers are typically acquired manually [19]. This Is not sur-
prising because of the ambiguous nature of free text. Although NLP tools can be applicd
to analyse free text they are often too brittle partly because they tend to analyse text
from a purely linguistic point of view. Instead a piccemeal approach involving increas.
ing levels of knowledge intensive containers have been identified as the basis for '!CBR
system development [13). Generally these levels are broadly seen as conucctcd’mm the
case representation vocabulary or the similarity measure. Tools such as stemming, stop
word removal and domain specific dictionaries form less intensive knowledge levels and

are mostly automated. Acquiring semantic relationships between words typically form
higher knowledge levels and are harder to automate and remain an important challenge.
bulary and the need for

The difficulty with acquiring an appropriate indexing vocabular,
structured case representation within the law domain is discussed in [4]. The SMILE



System adopts a fine-grained sentence level class, whereby sentences are manually cat-
egorised into classes. It is interesting to note that although our approach does not ex-
Plicitly assign classes at the sentence level, we also found it necessary to automatically
link induced rules to applicable document classes. SMILE employs a decision tree based
index scheme to partition the case base, but this is only possible after case sentences are
manually marked-up (with words specified in a domain specific thesauri) 1o mitigate
the synonym problem. We believe that our approach to feature generalisation with as-
sociation rules helps automate the extraction of synonym relationships, provided that
these relationships are already implicit in the textual case base.

Association rules have previously been used to reduce sparseness of initial user
rating tables in collaborative recommendation [2). Unlike traditional comelation based
approaches Apriori is able to capture statistics about co-occurring features efficiently
because it exploits the fact that no superset of an infrequent itemset can be frequent.
Work presented in this paper combines feature selection with rule induction pm\:ldmg
a useful strategy to manage rule generation and selection. Additionally the boo;lmg. in
our approach attempts to capture features that tend to be orthogonal and with which
hidden concepts can be discovered by exploiting rules generated by Apriori.

The aims of feature generalisation discussed in this paper are similar to those of La-
tent Semantic Indexing (LSI); a popular dimension reduction technique for text d.m‘. It
uses singular value decomposition to map the word based feature vector representation
into a lower dimensional latent space of artificial features [6). Recently LSI was_also in-
tegrated with textual case retrieval, where case similarity is computed on the basis of the
lower dimensional case representation [7]. Unlike LSI our approach to feature vector
generalisation explicitly captures hidden semantic relationships by way of association
rules, enabling easier interpretation of generalised features during case comparison.
Still it will be intriguin g to see how the feature selection and generalisation techniques
introduced in this paper compare with LSI based case representation.

8 Conclusions

The idea of feature generalisation and combining this with feature selection to form
structured cases for textual retrieval is a novel contribution of this paper. }”-catum sen-
eralisation helps tone down ambiguities that exist in free text by capturing scimantic
relationships and incorporating these in the case representation. This enables a much
better comparison of cases. ’

The two main approaches presented in this paper are feature selection Wl.ﬂl boost-
ing and feature generalisation with association rules. Essentially feature selection helps
with identifying discriminatory features while feature gencralisaliop captures seman-
tic relationships. Overall case representation with generalisation sigml’icarul;.r.il'dl‘ﬂi“’nd
accuracy over algorithms without generalisation, and promises great potential for au-
tomated acquisition of both the indexing vocabulary and the similarity containers. The
effect of boosting is mixed where on its own gives modest improvement of even hann-
ful in some domains, where it is more prone to over-fitting. Further rescarch is needed
to understand the relationship between types of problem domains and boosting per-
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formance. However the best results in 3 of the 4 test domains were obtained by the
combination of generalisation with boosting.

An interesting observation is that with feature selection and generalisation a more

effective case retrieval is achieved even with a relatively small set of features. "nli‘s is
attractive because smaller vocabularies can effectively be used to build concise indices
that are understandable and easier to interpret.
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Abstract. It is not sufficient for Case Based Reasoning systems to merely pro-
vide competent solutions. In complex tasks, such as configuration and design,
the user requires an explanation of the solution in order to judge its validity and
identify any deficiencics. Providing this explanation is not a straightforwand task,
particularly in systems using k-ncarest neighbour retrieval, because much of the
knowledge used to design the system is hidden from the user. This paper presents
an approach to explaining the solution reached by a CBR system as well as high-
lighting differences between the target problem and most similar cases that may
help to inform the adaptation process. This is achicved by presenting the best
matching cases along with the systcm solution through a visualisation. The ap-
proach is demonstrated on a pharmaceutical tablet formulation problem with a
tool called FormuCaseViz. An expert evaluation provides evidence of the poten.

tial benefits of our approach.

1 Introduction

Case Based Reasoning (CBR) is experience based problem-solving that mimics the ap-
proach often used by humans. One of the many advantages often associated with CBR
is its understandability as it can present previous cases to support or explain its conclu-
sions [8]. Recent research provides evidence to support this view that an explanation
based on previous experience is more convincing than one based on rules [4).

In contrast to the idea that CBR techniques are understandable, King et al. [7] grade
classification algorithms based on the comprehensibility of the results. The k-ncarest
neighbour (k-NN) algorithm, often used in CBR systems, was graded at only 2 outof §
by users, with only neural network algorithms being graded lower. One reason is that the
similarity measure, usually compacted into a single value, hides the knowledge gained
during system development and encoded into the design [2]. Making this know ledge
more accessible to users is an important challenge; we believe the potential benefits
include simplifying the interpretation of results, exposing deficiencies in the reasoning
process, and increasing user confidence in the system.

Explanation of CBR solutions is typically based on the single most similar case
to the new problem, and possibly a similarity value. While this level of explanation
might suffice in relatively simple, easily understood domains, itis not sufficient for tasks
that are knowledge intensive. Individually the nearest case can provide an explanation.
However, as with CBR solutions that can be improved by using several cases to provide



a combined solution, likewise there may be added value in providing an explanation
based on several similar cases. We believe this is particularly true if the similaritics and
differences within these cases can be made explicit with the aid of visualisation.

In this paper we attempt to address the apparent contradiction that the CBR paradigm
is transparent and understandable, yet the results of k-NN retrieval are not easy to com-
prehend. The user is expected to accept that the case-base contains representative prob-
lems and that the similarity measure used is appropriate to his problem. By hiding its
similarity knowledge the system is not providing a satisfactory explanation of the solu-
tion and it is difficult for a user to have confidence in the system. We present an approach
that makes this underlying knowledge and an explanation of the solution available. We
demonstrate our approach on a tablet formulation problem domain. The usefulness of
this approach is assessed in an expert user evaluation.

In Section 2 we review recent research on explanation in CBR. Section 3 discusses
the information that different users need to explain a solution and to increase their
acceptance of CBR systems. The problem domain on which we test our approach is
discussed in Section 4. A knowledge-light approach to providing this inl'mnutit‘:m for
a tablet formulation application is presented in Section 3. In Section 6 the design of
the user evaluation is described along with the results obtained. Finally we provide
conclusions and recommendation for future work in Section 7.

2 Related Work on Explanation in CBR

CBR systems using decision tree guided retrieval typically provide explanations by
highlighting feature values of decision nodes traversed in order to reach the leaf node [4].
This is similar to the methods adopted in rule-based expert systems which often show
rule activations [11]. Such rule-based explanation is not possible in systems using only
k-NN retrieval because a set of discriminatory features is not identificd as part of the al-
gorithm. In these systems a typical approach is to present an explanation in terms of fea-
ture value differences between the query and the retrieved case. Cunningham ctal. {4
suggest that explanations, expressed in terms of similarity only, can be uscful in some
domains (e.g. medical decision support) but is inadequate in others. McSherry's [10)
approach to explaining solutions is based on identifying features in the target problem
that support and oppose the predicted outcome. Discovery of the supporters and op-
posers of a predicted outcome is based on the conditional probabilitics, computed from
the cases available at run time, of the observed features in each outcome class. |

Hotho et al. [6] provide explanations that are not solely similarity _basa!. In their
approach text documents are formed into clusters using a similarity metric and A-mcans
clustering. The importance of the features or words in each cluster are ranked and the
most important are used to represent the cluster. The relationship between cluslm‘can
then be identified using WordNet concept hierarchics. An explanation can fow be givea
which is based not only by the similarity of a document to other members in its cluster,
but also on the relationship to other clusters. o

Another approach to providing an explanation is through visuallsallqn. McAndle
& Wilson [9] present a dynamic visualisation of case-base usage by using a spwing
based algorithm. The algorithm uses the attraction and repulsion of the springs to speead



the cases around a two dimensional graph in an attempt to preserve the n-dimensional
distances between cases. This provides more insight into the similarity assessment than
the usual single dimensional value. However, the knowledge held within the similarity
metric is still hidden. Although this approach is used for supporting the maintenance
of large case-bases it could also be adopted to visualise retricved cases. An alternative
approach is the parallel coordinate plot. Falkman [5) uses this approach to develop
an information visualisation tool, The Cube, which displays a case-base using three
dimensional parallel co-ordinate plots. This approach allows the underlying data to be
visualised as well as the similarity metric. We exploit this approach.

3 What Needs to be Explained

Knowledge intensive tasks require a better explanation than simply a proposed solution
and a set of retrieved cases. This is particularly true of design problems where the case-
base does not contain all possible designs, and the proposed solution is only an initial
draft, which may need to be adapted. The domain expert requires additional information
and explanations to make the decision making process more transparent and to allow
him to judge the validity of the solution. Further information is nceded to explain both

the CBR process and the proposed solution.

3.1 The CBR Process

Knowledge embedded in the CBR system in the form of stored cases and the similarity
measure on which retrieval is based should be visible to the user:

~ the case-base is the main knowledge source of a CBR system and usually deter-
mines its competence. The user must be able to judge its quality and coverage in
order to decide if it is suitable to address current problems. This will allow gaps in
the case-base knowledge to be addressed and rectified.

~ the retrieval process usually involves a similarity function that compares the cases
held in the casc-base with the new query. This can be a Euclidean distance function
or some domain specific function. The importance of individual features is often
identified by feature weighting. The user needs to be able to decide if the similarity
function is appropriate and if the importance of features is correctly represented.

This knowledge is often hidden from the user and can result in two effects: the user
may accept the hidden knowledge as fact and not question it, or alieratively, confidence
in the system may be reduced due to a lack of understanding of the hidden process.
Either of these effects may have a negative impact on the acceptability of a CBR system.

3.2 The Proposed Solution

In addition to general information about the underlying CBR model bcin.g ust.:d. local
information specific 10 the current query must be visible w the user. This will allow

a judgement to be made on the quality of the proposed solution and provide the rele-
vant information to make manual adaptations. Visible, local information helps identify
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::I‘r’;‘::":'hl‘l‘: ﬁg::;fvnmes within Best Matching Cases and the Query. Iy
s e mmm!mn lsb:cqulrcd that allows the user o denufy the attribuie
poriantly i ‘allnwx .:m.“,l-:-lt \ !tl} the query n!l.l! the best matching cases. More i
S .'db Ftu (ljt dllr!hutc value differences 1o be Iuictmhnl This 1s the
S L‘ .nr‘a "?plalmn of !hc pmpnscq solution. The overall similarty
on which retrieval is based are inadequate for this purpose

This additional infi ar
Sié ngcs mal information should be presented in an easily interpretable Tormat that
swamp the user with detail. We have employed a visualisation approach

» .
4 Problem Domain and FORMUCASE

Fillor: providos bulk 10 De lange
anough 1o handle and Comprass

Lubricant

Bindor: makas it cohasive 1o
hold together

Lubricant 10 eject tabkel from e

Disintogrant alkows el
broak down after swaliowing

Surfactant alds drug wetting
and dissolution

Fig. 1. Tablet formulation problem

!"_’R’_\“'CASI-Z is a CBR system that formulates a tablet for a given dose of a new
dl'_ug- This involves choosing inert excipients (e.g. Lactose, Maize Starch, efc ) to mix
with the new drug so that the tablet can be manufactured 1 a robust form. In addition
:‘;l:::;:::ru'i! dl Iilhllc‘ll cuns.;ist?; of five cnml[mncm.u c:i.u:h wulh‘ a t!l\tllhl role; 1e. Filler,
% tegrant, _ubricant, Surfactant, and Binder (see Fig. 1) The formulation task entails
'dc'_‘“_'ymil a suitable excipient and amount for each chosen component Each chosen
excipient must be suitable for its desired role and be compatible with each other and the
drug. A more detailed description of the problem domain is avatlable in [ 1]



1 Nearest Neighbour: DrugT-200

PROBLEM: Drug Solubllity ;0.8
Drug Contect Angle : 8.0
Drug Yield Press :75.24

Drug Yield PressFast: 81,36
Drug Dose .

Stabllities: 99 6;100; 100; 99.5; 0.0

2 Nearest Neighbour: DrugQ-100

Percentage match ! 85.54%

SOLUTION: Flller; Amount
Disint; Amount
Binder; Amount
Lubricant; Amount :
Surfectant; Amount:

Percentage match ; T0.27%

: Lactone 154 .80mg
! Croscarmeiose @ Bmg
! PreGelStarch 8 Bmg

' Lactoss 182.2mg

MgSiearaie 3 43mg
null 0.0mg

PROBLEM: Drug Solubllity :1.0 BOLUTION: Filier; Amount
Drug Contact Angle :42.0 Disint; Amount i NaSierchGlyg 12 8mg
Drug Yield Press ;24 B4 Binder; Amount : PreGeiStarch 8.3mg

Lubricant; Amount : MgStearats 3.1mg

Drug Yield PressFast : 45 8
Surfaciant; Amount. null 0.0mg

Drug Dose : 100.0
Stabliities: 100; 100; 100; 82 8; 0.0

Suggested Tablet Formuilation ;
Filler; Amount : Lactose 187.04mg
Disintegrant; Amount : Croscarmelose 11.08mg
Binder; Amount : PreGelStarch 8.63mg

Lubricant; Amount : MgStearate 3.28mg
Surfactant; Amount i null 0.0mg
Fig. 2. FormuCase output

Each case has a problem and solution represented by a list of attribute values. The
problem attributes consist of five physical propertics describing the drug itself and
twenty chemical properties which describe how the drug reacts with possible excip-
ients. All these attributes have numerical values. The solution has ten attributes; five
with nominal values identifying the excipients used and five numeric values identifying
the quantity of each excipient. When formulating a tablet for a new drug the attribute
values representing the drug are entered and its nearest neighbours identified using the
k-NN algorithm. The multi-component proposed solution to the query is a weighted
majority vote of its k nearest neighbours to determine excipients and a weighted aver-
age for excipient quantities.

The output from FORMUCASE (see Fig. 2) is presented in report format displaying
the nearest neighbours, their problem and solution attribute values and their similarity
to the new query. The feature values of the proposed solution are then displayed. This
retrieve-only system forms the first step in a tablet formulation. DifTerences between the
new test problem and the retrieved cases may indicate the need to refine the predicted

solution by manual adaptation.

S FORMUCASEVIZ

We demonstrate our approach to explanation using visualisation with this tablet for-
mulation problem. Our hypothesis is that the visual version (FORMUCASEV1Z) will
help explain the CBR process and increase user confidence in the solution. The prob-
lem and solution are displayed in parallel coordinate plots in order to address the issues
discusscd in Section 3.

A parallel co-ordinate graph's primary advantage over other types of statistical
graphs is its ability to display a multi-dimensional vector or case in two dimensions,
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Fig. 3. Parallel co-ordinate plot showing the drug physical properties of o case-base

Fig. 3 shows a plot with five dimensions. Each attribute is represented by a labelled ver-
tical axis. The value of the attribute for cach case is plotted along each axis. The ponts
are then connected using horizontal line segments such that each case 1s represented
as an unbroken series of line segments which intersect the vertical axes. Each axis s
scaled to a different attribute. The result 1s a signature across n dimensions for each
case. Cases with similar data values across all features will share sumilar signatures
Clusters of like cases can thus be discerned, and associations among features can also
be visualised.

The basic layout of the graphical display for the tablet formulation task takes the
form of three panels each containing a parallel coordinate graph (see Fig. 4). The top
graph contains twenty axes and provides attribute value information for the chemical
stabilities of cach drug with respect to the excipients commonly used i drug formu-
lation. The lower left graph contains five axes with the drugs physical properties and
the lower right graph displays the solution attribute values. Thus the top and lower left
panel contain attributes from the problem domain and the lower right graph contams
attributes from the solution space.

Loading a case-base results in the vertical axes being drawn and labelled with each
attribute’s name and minimum and maximum value. The case hnes, mtersectng the
axes, are also shown (see Fig. 3). A visual picture of case-base coverage can now be
seen with darker regions representing well covered areas of the problem space and
gaps being visible as portions of the axis without case lines. The encoded remneval
knowledge, in the form of feature weights, is represented by the width of each axis
Fig. 3 shows a case-base displayed on the drug physical properties graph. It can be seen
that the attributes SOL and Dose have the lnghest weights,

We see in Fig. 4 that on entering a new query a black line representing it is drawn
on the two problem domain graphs. This provides iformaton on the local coverage
provided by the case-base in relation to this particular query. As no solution 15 yet
available there is no black line representing the query in the solution panel

Fig. 5 shows a solution to a query. The nearest neighbours are identihed in the case-
base and displayed as coloured dashed lines. The nearest neighbour solutions are also
displayed in the solution panel along with the proposed solution for the new query. A
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Fig. 4. Output screen of FORMUCASEVIZ with an unsolved problem entered

new axis is added to the drug physical properties problem panel showing the similarity
of the query to each of its NN along with labels for cach case. This visualisation allows
the similarities and differences to be viewed in terms of the real data ading interpreta-
tion of the proposed solution and making the adaptation stage easier. For example, in
Fig. 5, it can be seen that the best matching cases disagree on which filler o use. LAC
is the proposed solution but reference to the chemical stabilities show DCP would be a
better choice for the new drug as it has a higher chemical stability.

5.1 Ordering the Attributes

The order or arrangement of the attributes 1s important when using parallel co-ordinate
graphs. The arrangement can improve the visualisation by helping to identify trends or
correlations within the case-base. Many approaches to multi-dimensional data visuali-
sation arrange the attributes arbitrarily, possibly in the order that they appear in the case
representation. We have taken the approach of arranging the attribute axes based on
their similarity to each other in order to reduce line crossing on the graph. To achieve
this axis arrangement we first use an axes similarity function to identify the pairwise
similarities between the axes and then determine an arrangement so that similar axis
are placed adjacent to each other.

An obvious way to measure axis similarity is to compare values across the cases,
The similarity between axes A; and A, is measured using the attribute value similarity
across the cases, rather than across the attributes as for case sumlarity. Thus, when
case ¢y is described by the n-tuple of attribute values (a4, ... ayi), the axis similarity
from cases ¢, . .. ¢, is defined below where similarity is the inverse Euclidean distance
defined for individual (normalised) attribute values.
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Fig. 5. Output screen of FORMUCASEV1Z with a problem and proposed solution

Similarity(A;. A;) = Z.wnmhn'u_.';(n,;..r:;l,}
Je=1

Determining a linear arrangement for the axes such that similar axes are placed
close to each other is still not straightforward. We adopt the approach of first looking at
the pairwise similarity values between the axes and picking the most similar pair. These
are placed to the left of the graph. The most similar unallocated axis is placed next to
it. This process continues until all the axes have been allocated a position in the graph.

An alternative approach, which may give an optimal arrangement, is to find the
order with the minimum total similarity when adjacent axis similarities are summed.
However Ankerst et al [ 1] show that this problem is NP-complete, The use of a genetic
algorithm or optimisation approach may be appropriate.

The arrangement of the axes can be carried out from a global or local context. The
global arrangement looks at the whole case-base and takes no account of the current
query. This approach is best for looking at case-base coverage or when trymg to identify
trends within the case-base. It also has the advantage that it can be used prior to a query
being entered and is more stable as it remains unchanged as each new query 1s entered.
The local arrangement only looks at a portion of the case-base, typically around the new
query by only using its nearest neighbours in the calculation of the axis similarities.

FORMUCASEVIZ was implemented with the global arrangement on the two prob-
lem domain panels as it was found that the continual rearranging of axes gave problems
in interpreting the results. However in other domains the advantages of a local approach
may outweigh this disadvantage, No ordering of axes was applied to the solution panel
as a fixed order was found to be more easily understood.



6 Evaluating the Explanation

The purpose of the domain expert evaluation was to investigate how well FORMUCASE
and FORMUCASEVIZ explain their solution and the process undertaken to arrive at the
solution. This was done by looking at how easily the solutions could be interpreted and
the confidence the domain expert has in the system’s solution.

Two domain experts were given both versions of FORMUCASE, a case-base and
three sample problems to solve. The evaluation required the expert to solve three dif-
ferent test problems on the same case-base. The evaluation is carried out first with
FORMUCASE and then FORMUCASEVIZ. The experts were asked to fill out a ques-
tionnaire, containing thirty questions, that was designed to ascertain their confidence in
the system given the tool's ability to explain its reasoning.

While the results of the evaluation cannot be presented in detail here, we summarise
our findings by highlighting some of the interesting observations.

~ The experts agreed that FORMUCASEVIZ explains the CBR process of gencrating
a solution better than the textual output version.

— There was a reluctance to accept a similarity value alone as a measure of the case-
base’s competence to answer a specific query. In answer to the question does rthe
case-base contain similar cases to the query? with FORMUCASE an unsure answer
was usually given. In contrast, when presented with !hc same query on FORMUCA-
SEVIZ a definite and expected answer was always given.

— There was generally more confidence in the solutions provide by FORMUCASEVIZ
and it was possible for alternative solutions to be suggested by the expert.

~ The evaluators were better able to answer questions requiring them to identify dif-
ferences within the nearest neighbours and between the query and the neighbours.
One evaluator commented The graphical display is excellent and shows up similar-
ities and differences in a very clear way.

- Exact numerical values cannot be read from FORMUCASEVIZ as the values have
to be interpolated from the axes. This is not ideal with one expert commenting the
absence of easily readable numerical data is a big problem. This deficiency needs
to be addressed.

The positive results from our evaluation suggest that FORMUCASEVIZ provides a
useful and more informative explanation of the proposed solution than FORMUCASE.

7 Conclusions and Future Work

A user gains confidence in a system that provides correct results, However confidence
is also improved in systems where the decision making process is understood and de-
ficiencies can be identified and resolved. The explanation of results should be a hey
design criterion in CBR systems.

In this paper we have identified some of the reasons why CBR systems, particularly
those using k-NN retrieval, are not as successful as they might be. We have presented an



approach that can address some of these problems using a parallel co-ordinate visuali-
sation of the problem and solution. This approach has been demonstrated on FORMU-
CASEVIZ in a tablet formulation problem domain in which thirty-five dimensional data
is viewed in a single representation. A user evaluation confirmed that this explanation
based approach made interpretation of the results easier than the textual version, and
better explained the CBR process. The need for exact numerical values to be available
on the visualisation was also identified. While we have used tablet formulation in this
paper our approach would be applicable across a wide range of CBR problem domains.

Future work will look at providing more local information related directly to the
query rather than to the case-base as a whole either by re-ordering all the axes or high-
lighting specific axis where correlations can be identified. In addition we will look at
providing a more dynamic visualisation that allows the user to interact directly with the
data, for example to change the query or highlight certain areas of the case-base.
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Case-based reasoning (CBR) is a popular approach to problem-solving because
many of the knowledge engineering demands of conventional knowledge-based
systems are removed. CBR solves new problems by re-using the solutions of
previously solved similar problems. This research investigates the coverage,
competence and problem-solving capacity of case knowledge with one of its
aims being to develop a technique to model these aspects of a case-base and

the clusters of cases within it.

What is competence?

Competence is a measure of how well a CBR system fulfils its goals. As CBR
is a problem-solving methodology, competence is usually taken to be the pro-
portion of problems faced that it can solve successfully. -Other measures are
also possible and indeed much recent rescarch has looked at diversity as one of
the possible goals of CBR [2]. Competence Is a fundamental evaluation criteria
vital to a system’s performance. It is usually measured by either test set accu-
racy or cross-validation. These evaluation techniques are very time consuming
to perform correctly, and methods of modelling the CBR system’s competence
could greatly reduce the need for this exhaustive evaluation. A good compe-
tence model would also help greatly in case-base maintenance research which
has proposed numerous policies that either maintain or improve the competence
of a system [4]. However there has been limited research aimed at modelling a
case-base to provide values for competence in real situations,

Competence Models

Two different approaches have been used: the coverage approach [1] and the
competence model approach [3]. Coverage assumes a finite problem space and
attempts to measure the number of points within this problem space covered
by the case-base. This empirical coverage only applies where the cases are
represented by attribute vectors with nominal values providing a finite problem
space, and simple adaptation methods Identify all points in the problem space
covered. This approach could not be applicd to most CBR systems.



Smyth & McKenna’s competence model assumes that the case-base con-
tains a representative sample of problems. This is reasonable since a CBR
system could not be a good problem solver if the case-base were not repre-
sentative. Competence depends on properties like the number and density of
cases. However, as competence is concerned with the range of target problems
that a given system can solve, it also depends on the problem-solving ability of
the system and must involve the retrieval and adaptation process of a system.
The number and density of cases can be readily measured, but the problem of
how to measure the problem-solving ability of a case in terms of its retrieval
and adaptation characteristics is not so simple. Smyth and McKenna (3] sug-
gest a four stage competence model which uses the representative assumption
of the case-base to simulate the full domain. First leave-one-out testing is used
to measure the problem-solving ability of a case using two important notions:
coverage and reachability. Coverage of a case is the set of problems that case
can solve; conversely, reachability is the set of all cases that can solve it. Next
clusters of cases, called competence groups, are formed using their reachability
and coverage sets to group cases that have overlapping sets. The coverage of
each competence group is then measured by the group size and density. In
the final step the overall competence of the case-base is simply the sum of the

coverage of each group.

Experimentation

The true test of Smyth & McKenna’s competence model is whether it reliably
predicts the problem-solving ability of a CBR system. Experiments have been
carried out using it applied to classification problems. In this scenario the
reachability set of a case is its nearest neighbours with the same classification;
i.e. the most similar k cascs retrieved by the k Nearest Neighbour algorithm (k-
NN) which have the same classification. Using this approach, the competence
model was implemented on four classification datasets from the UCI Machine
Learning Repository: iris, tic-tac-toe, zoo and house-votes.

Bach of these datasets was split into training set and test set approximately
in the ratio 70:30. Initially the training set was partitioned into fourteen dis-
joint sets. The smallest case-base was created using one of these sets, and
a growing case-base was created by successively adding either one or two of
these sets. Larger case-bases (800+ cases) were formed by adding duplicate
cases to introduce redundancy into the case-base with 700 cases. The test sets
were unscen target problems to calculate case-base accuracy and predict actual
competence value for the case-bases.

The competence model was applied to each case-base and its predicted
competence compared to the test set accuracy. Figure 1 shows the results for
Tic-Tac-Toe and is typical of all four datasets. The left hand graph shows
the accuracy obtained when using the unseen test set to evaluate the different
sized training sets for 1-NN and 3-NN retrieval. The right hand graph shows the
competence prediction made by the model for each different sized training sets
for k=1 and k=3 in the leave-one-out testing stage of the model. It can be seen



from these graphs that there is little correlation between the model’s predictions
and test set accuracy. Hence the model does not produce an accurate prediction
of the problem-solving ability of a CBR system in these situations.
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Figure 1: Graphs showing Accuracy on Test Set and Competence Prediction
for different Case-base Sizes of the Tic-Tac-Toe Dataset

Proposed Competence Model

We wanted 1o invest igate the low correlation between test set accuracy and t?le
competence model prediction. A simple binary classification problem compris-
ing two numerical features was created. This allows an easy visualisation of
the problem space showing feature values, class and competence group mem-
bership for each case (Figure 2). Each case is represented by plotting a symbol
on the graph according to the values of its two features. The two classes are
distinguished by the shapes square and circle. The two competence groups are
shaded differently in black or white.

Looking at a range of situations has identified two areas in which the model
does not appear to reflect the problem-solving perspective. Figure 2 shows
a visualisation of two case-bases for which the predicted competences for 3-
NN is 15.6 in Figure 2a and 33.1 for Figure 2b. The same boundaries exist
between the two classifications in each figure and so an identical problem is
being viewed. However there is a far greater density of cases in Figure 2b.
This increase in case density, including substantial redundancy within each
competence group, has minimal effect on problem-solving ability but results
in a large increase in predicted competence from the model. The average case
density of a competence group does not appear to give a good measure of
competence. )

Similarly, the situation in which the boundaries between the two cl.a.ss:ﬁ—
cations are very different but the case-base composition is alike results in t!ie
predicted competence of the two situations being similar. However, the (.hf-
ferent boundaries between the classifications can result in one problem-solving
situation being far more complex than the other. Hence the abili?y of thfa case-
base for the more complex situation to correctly solve problems is less, i.e. its



competence is less. Again the model does not appear to adequately reflect the
complexity of the problem being faced.
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Figure 2: Visualisation of two different case-bases for a problem with the same
boundaries between classification areas.

Conclusion

The research to date has highlighted the importance of modelling _( ‘BR com
petence in order to reduce the need for case-base evaluation experiments and
to assist case-base maintenance research. Experiments have identified datasets
in which the current models do not give a good correlation to the normal eval
uation methods used to measure competence. Two reasons for this lack of
correlation have been identified: group case density does not give a good fmea
sure of competence and problem complexity is not adequately reflected by the
model. It is hoped that in future work a new model can be developed that
concentrates on the boundary areas between classes.
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Abstract. In real environments it is often difficult to obtain a collection of cases
for the case base that would cover all the problem solving situations. Although it
is often somewhat easier to generate potential problem cases that cover the do-
main tasks, acquiring the solutions for the problems captured by the cascs may
demand valuable time of a busy expert. This paper investigates how a Case-Based
Reasoning system can be empowered to actively select a small number of uscful
cases from a pool of problem cases, for which the expert can then provide the
solution. Past cases that are complete, containing both the problem and solution,
together with partial cases containing just the problem, are clustered by exploiting
a decision tree index built over the complete cases. We introduce a Cluster Utility
Score CIUS and Case Utility Score CaUS, which then guide case selection from
these clusters. Experimental results for six public domain datascts show that se-
lective sampling techniques employing C1US and CaUS are able to sclect cases
that significantly improve the accuracy of the case base. There is further evidence
to show that the influence of complete and partial cases utilised by these scores
needs also to consider the number of partitions created by the case base index.

1 Introduction

The main knowledge source in a Case-Based Reasoning (CBR) system is the case base.
Typically a case consists of a problem description and the solution, of case label. When
a new problem is encountered, a case with a similar problem part is retricved from the
case base, and its solution is reused. The availability of suitable cases is one of the
arguments that supports the use of CBR for many problem-solving tasks., However, for
some tasks the knowledge engineering effort can be significant [S].

There may be knowledge acquisition problems associated with other know ladge
containers; e.g. specialised retrieval knowledge is required, or the problem solving relics
on the availability of effective adaptation knowledge. However, it may also be caused
by a lack of suitable cases. There may be few problem-solving expericnces (o recond as
cases, as in our tablet domain where the complex formulation task has been cap!um.!
in relatively few manufactured tablets [4]. It could even be that the case base is biasad

with some areas of the problem space being very poorly represented. Although this is



often a consequence of a sparse case base, it can also occur in a plentiful case base,
where there are holes in the coverage. Finally, a plentiful source of problems might be
easily available but acquiring solutions for these problems might be harder: e.g. easy
access to patient information related to a disease but acquiring laboratory results might
be costly; or easy access to documents on the web but acquiring relevance feedback is
time consuming.

The approach we investigate here is selective sampling, where although a source of
new problems is readily available, the choice of cases for the case base is crucial because
constraints limit the availability of case labels. This is a relatively common problem
in a real environment, where labelling many problems with the expert’s solution may
require significant interaction with a busy expert. Unlabelled cases are often generated
by analysing all labelled cases that are available with the aim of identifying holes in
the domain [9], or random case gencration might be adopted when there are no labelled
cases initially. Unlike the labelling task, gencrating unlabelled cases does not typically
require the assistance of an expert.

The work described in this paper performs an informed selection from a set of unla-
belled cases. The expert must subscquently label only this subset, thereby reducing the
demand on the expert, However, we must ensure that the informed selection of relevant
cases does not hamper the competence of the case base by omitting cases that uniquely
solve problems. Although we do not directly deal with the case discovery problem,
we believe that useful insight in this direction can also be gained from the selective
sampling approach presented in this paper.

The remainder of this paper describes our approach and evaluates it on several pub-
lic domain case bases. Existing work in case selection and discovery are discussed in
Section 2. A generic selective sampling process is presented in Section 3. It exploits a
domain model created by labelled cases to sample unlabelled cases. Section 4 outlines
how we use a case base index as our domain model to cluster all cases (labelled and un-
labelled) in order to select unlabelled cases that are potentially useful, using heuristics
described in Section 5. The approach is evaluated on several public domain datasets in

Section 6, before we draw some conclusions in Section 7.

2 Related Work in Case Selection

The problem of unavailability of labelled cases and sample selection of relevant cases
from a set of unlabeled cases falls under the paradigm of active Icapting and more
specifically, selective sampling. Much work has been done in sclective sampling of
examples mainly related to training classifiers: using information about the statisti-
cal distribution of case feature values for nearest neighbour algorithms (8] using a

committee-based approach combined with expectation maximization for text classifica-
tion [10]; and using a probabilistic classifier that selects cases based on class uncertainty

for C4.5 (7). Increasingly, estimation and prediction techniques with roots in statistics
are being applied to classifiers with resulting improved accuracy [3).

Partitioning all Jabelled and unlabelled cases is a common approach that is em-
ployed by many active sampling techniques. Clustering cases in this manner helps
identify interesting cases; i.¢. those that have the potential to refine the domain nxxdel



learned thus far. But the use of cases for training classifiers differs from their use for
a CBR system. In CBR, case retrieval is typically aided by a case base index, and re-
trieved cases may be directly reused to solve the new problem, or revised before being
presented as a solution.The case base index which partitions cases into distinct problem
solving areas in a CBR system will be exploited in this paper as a means to cluster
labelled and unlabelled cases. Importantly by using the case base index we ensure that
both the retrieval and adaptation stages influence the case selection process as opposed
to simply exploiting the statistical distribution of cases.

Other CBR researchers utilise the CBR process when partitioning the cases. Smyth
& Keane's coverage and reachability [13] are used to form competence groups of cases
which can be used to solve each other [15]. These competence groups define the cov-
erage of the case base, and allow narrow gaps to be identified where new cases can
be proposed [11]. Competence groups are identified by applying the CBR retrieval and
adaptation to cases in the case base. Boundary cases are pairs of cases, one from each
of a pair of similar competence groups, chosen because they are most similar to each
other. New cases are proposed that are midway between the boundary cases of the pairs
of most similar competence groups. Their motivation is that close competence groups
are more likely to merge with the addition of a new case that spans the narrow gap be-
tween them. This approach applies the model of the CBR reasoning to identify clusters
of cases and hence small gaps between clusters.

CaseMaker [12] is an interactive knowledge acquisition tool that suggests poten-
tially useful new cases for the case base by evaluating the coverage of possible new
cases. It also applies the retrieval and adaptation knowledge to identify new cases.

This paper explores the same problem of identifying potentially useful cases to add
to the case base. The case base index is used as a means to cluster the existing cases,
to analyse the spread of existing cases and to suggest new cases that fill gaps identified
by the clustering. Although retrieval and adaptation knowledge is not explicitly applied,
the use of the index implicitly captures this knowledge. In contrast to competence-based
case discovery [11], we select new cases that are dissimilar to existing ones, rather than
discovering cases between close boundary cases. Although narrow gaps between large
groups are interesting it is also vital to identify gaps within existing groups or even
isolated gaps outwith existing groups.

3 Selective Sampling Process

The approach we investigate here is informed selection, where a source of new problems
is available, and selective sampling identifies the most useful problems for which the
expert should provide solutions, so that new cases can be added. This approach can
also be used for case discovery where possible new problems are generated, and those
that are selected for inclusion can be validated for consistency by the expert when he
provides the solution.

Figure 1 outlines the selective sampling process for a set of unlabelled cases U by
incorporating knowledge from labelled cases L. It would not be unusual to expect L
to comprise a very small number of cases, while U would ideally contain a large set
of cases. An initial model is created using the cases in the labelled set L. Using this



model, cases in both L and U are partitioned to form clusters. The aim is that each
cluster contains cases that reflect the common problem solving behaviour abstracted by
the model. In this paper we use a C4.5 decision tree as the model. Each cluster may
contain zero or more cases from L, U, or both. The next step selects K clusters. This
selection should ideally be guided by the labelled and unlabelled cases grouped together
in a cluster. Once the K clusters are chosen, unlabelled cases are selected from these
clusters. Max-Batch-Size is simply a constant that restricts the number of cases

selected per sampling iteration.

L = set of labelled cases
U = set of unlabelled cases
Loop
model + create-domain-model (L)
clusters ¢+ create-clusters(model, L, U)
K-clusters « select-clusters(K, clusters, L, U)
FOR 1 to Max-Batch-Size
case 4 select-case(K-clusters, L, U)
L + L U get-label(case, oracle)
U ¢ L \ case
UNTIL stopping-criterion

Flg. 1. Selective sampling process

Case selection is incremental, and once labelled, by obtaining the solution from a
domain expert or oracle, the new cases are appended to L, and U is updated accordingly,
before a new domain model is created. So the aim then is to select cases that are most
likely to trigger refinements (or improvements) to the domain model. This selection
process iterates until a desirable level of accuracy is achieved on L, a sufficient number
of new cases are added, or until the participation limit of the oracle is reached.

4 Case base Index : A Domain Model for Sampling

Several commercial CBR tools (e.g. RECALL, REMIND and KATE) use decision trees
to index the case base in order to improve the efficiency of case retrieval [1]. Addi-
tionally these trees provide a useful means to explain the underlying reasoning for the
retrieval. In previous work, we have shown that optimising the case base index im-
proves the reuse stage [6] and that the partitions created by the case base index can
further be exploited to acquire adaptation knowledge [16]. Therefore a CBR case base
index forms a useful domain model since it identifies the areas of different problem
solving behaviours in a case base. Here we look at how a case base index is created and

how it can be used to form clusters.



4.1 Decision Tree Indexing

Figure 2 illustrates how a case base index can be created by inducing a C4.5 deci-
ston tree. The case base contans 20 (labelled) cases for a classification task with three
Classes X. Y and Z. The 3 decision nodes are tests associated with 3 of the features that
describe the problem scenano captured by a case. Now let us see how the decision tree
index is used within CBR retrieval Assuming that a new problem is described as f; = a
and f; = d, then the tree would be traversed reaching the leftmost leaf node containing
3 labelled cases. These S cases form the relevant cases for the new problem, and by
applying k-Nearest Neighbour (k-NN), we obtain the k nearest neighbours for the new
case that hie within the leaf partition. Notice that here retrieval knowledge encompasses
the nodes traversed and the feature weights that might be employed by k-NN. The new
solution is obtained by reusing the majonity solution suggested by the retrieved k cases,
possibly with an adaptaton stage added.
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Fig. 2. Decision tree index Fig. 3. Index for clustering

4.2 Index-Based Clustering

For sampling purposes we wish to partition all our cases sO that cases in a givcn clus-
ter share common retrieval and/or adaptation knowledge. The obvious candidates for
a Cluster are cases that are grouped together in a leaf node of the decmon‘u.'ee. Al-
though leaf nodes of a case base index contain only labelled cases, the decision tree
can be applied 10 unlabelled cases to allocate them to a leaf node, z.md hence a cluster.
The problem description part of an unlabelled case alone is sufficient for tree traver-
sal. Therefore. once an index is created using labelled cases, it is trivial to 1dennf)_f also
the leaf nodes 1o which the unlabelled cases belong. Figure 3 shows the same index
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Figure 2 illustrates how a case base index can be created by inducing a C4.5 deci-
sion tree. The case base contains 20 (labelled) cases for a classification task with three
classes X, Y and Z. The 3 decision nodes are tests associated with 3 of the features that
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4.2 Index-Based Clustering

For sampling purposes we wish to partition all our cases so that cases in i given clus-
ter share common retrieval and/or adaptation knowledge. The obvious candidates for
a cluster are cases that are grouped together in a leaf node of the decision tree. Al
though leaf nodes of a case base index contain only labelled cases. the decision tree
can be applied to unlabelled cases to allocate them to a leaf node, and hence a cluster.
The problem description part of an unlabelled case alone 1s suthicient for tree traver
sal. Therefore, once an index is created using labelled cases, itis trivial to identity also
the leaf nodes to which the unlabelled cases belong. Figure 3 shows the same mdex



after 18 unlabelled cases are introduced. Here we have 5 clusters: three contaming ei-
ther unlabelled or labelled cases and the other two contamning a mixture of labelled and

unlabelled cases.

Since the initial index was created with a small number of labelled cases, 1t is likely
that the decision nodes, and hence the traversal paths, need 1o be refined. Therefore the
clusters which are created according to the index are also bound to capture this icorrect
traversal behaviour. The aim then is to identify clusters that contain useful cases in that
they solve diverse problems whose solutions would provide useful new cases for the
case base. Moreover the addition of these cases will bring about changes to the case
base index, thereby refining the retrieval and adaptation stages.

5 Cluster and Case Selection

In this section we look at the sort of evidence that will aid the identification of nter
esting clusters that are likely to contain useful new cases. Figure 4 illustrates a detatled
view of the 5 clusters formed in Figure 3. The small rectangles denote cases, and la
belled cases are distinguished by shading and labels.
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Fig. 4. Sclecting a cluster
Since clusters (i) and (iii) do not contain any unlabelled cases there is no need 10

concentrate on them, because they are not a source of nEw Cases. In contrast cluster (1)
contains 6 unlabelled cases and, since there are no labelled cases representing this area



of problem solving, it would be useful to select this cluster. If however we had to select
between clusters (iv) and (v), each containing some labelled and unlabelled cases, we
would wish to pick the one that contains atypical cases; i.e. the cluster with low intra-
cluster similarity. Additionally, the fact that there is a greater mixture of labelled cases
with cluster (v) indicates more uncertainty, and so it should be considered most fruitful,

Once an interesting cluster is identified what criteria should we employ to ascertain
the usefulness of a new case? Certainly a case that is representative of other unlabelled
cases is useful because by selecting such a case we cover a greater number of problem
solving situations. In contrast selected cases also need to be different from labelled
cases that are already in the cluster. With cluster (ii) the bold rectangle indicates a
candidate case that is sufficiently representative of (ii), in that it has the least distance to
its unlabelled 3 nearest neighbours. With cluster (v) the bottom-most case is sufficiently
similar to its unlabelled 3 nearest neighbours but also farthest away from its labelled 3
nearest neighbours, and so would be a good candidate case for selection.

5.1 Cluster Utility Score

We first consider the problem of choosing the most interesting cluster. We look at how
distances between cases and information gleaned from both labelled and unlabelled
cases can be exploited when formulating a Cluster Utility Score CIUS. .

For a given case c in a cluster C, our first metric estimates lhclnvcragc distance
distancey between ¢ and its neighbourhood of k nearest neighbours in C.

distancen (¢, C, k) = : Y distance(c,n)
k
neNu(e,C)

where Ny (c, C) returns the k nearest neighbours of ¢ in C, and distance(i, j) is the
normalised distance between cases i and j. )
The simplest utility score for cluster C is the average distancen for the cases in
the cluster. However, we further wish to influence this by the error associated with .llu:
incorrectly classified labelled cases in the leaf node of the decision tree corresponding
to the cluster C. The intuition behind this is that if two clusters have the same score
then the cluster containing cases with different class labels should be chosen over a
cluster containing cases with similar class labels. Therefore CIUS combines the average
neighbourhood distance distance,y and the entropy of C's subset of labelled cases Le.

QWS(C) = L"‘f-l’%fﬁgl S distancen (¢, C, k)
ceC

where entropy is the standard information theoretic measure

m ! ‘l
entropy(Lo) = - (] L; |) fogs (I Lo |)

i=1
m is the number of classes, and I; is the number of cases in Lg belonging toclass i

However in a decision tree with nominal attributes, a leaf node may contain no la-
belled cases (e.g. cluster (ii) in Figure 4). Entropy is meaningless because L¢ isempty,



but yet this is an interesting cluster for case selection. To overcome this problem we
increment the class counts for each cluster by one. Thus I; becomes iy + 1, and | L¢ |
becomes | Le | +m. The revised definition for entropy follows and is used in the
definition of CIUS above.

F s Li+1 ) ( L+1 )
entropy’ (L¢) = — él: (I Lo+ loga "'—"“'—'I Io|+m
Let us demonstrate the effect in a binary classification domain. If a leaf contains
only unlabelled cases then the revised entropy for this cluster is 1 (loga2). However if
there are labelled cases for each class, say 6 positives and 1 negative, then the class
counts will be updated to 7 positives and 2 negatives, and the cluster entropy will be
reduced from 1 to 0.76.

5.2 Case Utility Score

While CIUS captures the uncertainty within a cluster, the case-utility-score CaUS cap-
tures a case’s impact on refining the case base index. The decision nodes that are tra-
versed in order to reach a leaf node are chosen because of their ability to identify la-
belled cases with similar retrieval behaviour, by discriminating them from the rest of
the labelled cases. Essentially the cases in a cluster share a common traversal path, and
those that are likely to cause a change are unlabelled cases that are least similar to la-
belled cases in the cluster. However we would also like to ensure that selected cascs are
representative of any remaining unlabelled cases in the cluster. .

CaUS is calculated for a case ¢ in a selected cluster C by calculating the d;lstnnccs
to remaining labelled cases in L¢ and the unlabelled cases in the cluster Ue. Since we
are only interested in selecting unlabelled cases labelled cases will have a CaUS score
of zero. The diversity measure (adapted from [14]) assigns higher scores to cases that
are farthest away from labelled cases, but also favours cases that are part of a tightly
knit neighbourhood of unlabelled cases. Essentially it attempts to address the lradc-o'f f
between selecting labelled cases that are not too similar to already labelled cases in
the cluster, yet ensuring that they are sufficiently similar to unlabelled cases, thereby
representing a higher proportion of unlabelled cases in C.

0 ifce Lg
CaUS(c,C) = { diversity(c, C) otherwise

diversity(c, C) = distancen(c,Lg, k) # (1 — distancen (e, Ucy k)

5.3 Sampling Heuristics

Let us revisit Figure 1 and see how the different steps fit together. crea te.-domai.r?-
model uses available labelled cases to derive a model; here the case base index. This
model is used to partition all the labelled and unlabelled cases to form cluate::s.
CIUS is calculated for each cluster. These scores identify K-clusters from which



we select cases based on their CaUSs. Case selection is incremental, in that once a
selected case is labelled, the Le and Ug are updated, before another unlabelled case is
selected.

Several incremental sampling techniques have been implemented with the more
;nformed sampling techniques employing CIUS and/or CaUS for cluster and case se-
ection.

— RND selects a cluster randomly and selects cases randomly (without replacement)

-~ RND-CLUSTER selects one cluster randomly and incrementally selects the cases
with highest CaUS from this cluster;

- RND-CASE selects the one cluster with highest CIUS but selects cases randomly;

- INFORMED-S selects a single cluster with highest C1US and incrementally selects
highest CaUS cases from this cluster;

~ INFORMED-M selects K (multiple) clusters (K'=3) with highest CIUS and selects
the case with highest CalUS from each cluster. Notice here case selection need
not be incremental, hence the L¢s and Ugs are updated once in a single sampling
iteration.

With all techniques in each iteration of the sampling loop unlabelled cases are in-
crementally selected until a sample of Max~-Batch-Size is formed. We use RND as
the technique with which to compare the more informed selection techniques. RND-
CASE and RND-CLUSTER demonstrate the impact of CIUS and CaUS independently.
INFORMED-S and INFORMED-M both use CIUS and CaUS, and should be better able
to pick useful cases compared to RND-CLUSTER and RND-CASE. However it is harder
to postulate the impact of selecting from a single cluster versus multiple clusters; it is
likely that this is domain dependent.

6 Evaluation

We evaluated the different case selection techniques to determine whether informed
case selection leads to case bases with increased accuracy. We selected six datasets from
the UCI ML repository [2]. They have varied number of features, number of classes,
proportion of nominal to numeric features, and some have missing values. In order to
simulate similar problem-solving experiences in the case base the size of each dataset
was doubled by randomly duplicating cases. The intuition behind lhl.s is that an in-
formed sampling technique would avoid selecting similar problem-solving experiences
that are already covered by the labelled cases in the case base. Two of the fic]mnlns
have in excess of 400 cases (IHouse votes and Breast cancer). For these, a training set
of 350 is randomly selected while the remaining cases form the test set. For l!'lc smaller
domains (Zoo, Iris, Lymphography and Hepatitis), we formed a training sct size ‘of 150
and a disjoint, similarly sized, test set. Experiments with five increasing training set

sizes were carried out starting at:

~ 150 with an increment of 50 for the larger training sets; and
- 50 with an increment of 25 for the smaller training sets.



Although all cases in the training set are labelled for experimentation purposes,
these labels are ignored until cases are selected from the training set. The labelled cases
(L) forming the case base is initialised by selecting 35 cases from the training set (we
use 15 for the smaller domains), the rest of the cases form the set of unlabelled cases
(U). The sampling process terminates once 3 sampling iterations are completed, simu-
lating a sampling process constrained by expert availability. The Max-Batch-Size
is set at 3 which generally gives a selection technique the opportunity to select not more
than 9 new cases for the case base.

The experiments aim to evaluate the effectiveness of informed case selection on
case base accuracy and the efficiency on sampling time. We note the time taken to
complete the sampling iterations. The accuracy of the case base, now with the newly
sampled cases, is evaluated on the test set by a straightforward k-NN. The graphs plot
the average accuracy over 25 trials for increasing training set size.
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Fig. 5. Results for: (a) Zoo (b) Iris

6.1 Accuracy Results

Figures 5 (a) and (b) show average accuracy results for the Zoo and Iris 'dom.'lin_s. Both
have no missing values, while Zoo has 7 classes and 18 features (all nominal), Iris has 3
classes and 4 features (nominal + numeric). As expected we se¢ a significant difference
between informed selection techniques INFORMED-S and INFORM ED-M compared to
RND (Zoo p=0.001 and Iris p=0.001). Although with Zoo we sce that the difference
between informed techniques and RND increase with increasing training sct size this
is not obvious with Iris. This might be explained by the contrasting difference in aver-
age index complexity (or number of nodes): 3 for iris and 8 for Zoo. When comparing
INFORMED-M and INFORMED-S we see that the increase achieved by l.hc former is
significantly higher for Zoo (p=0.016), but that there is no diffcrcncc_for Iris (p=0.3?!).
Again this is related to the relative difference in concept complexity, hence the _dlf-
ference in the number of partitions or clusters. It also suggests the need to consider



more than one cluster and possibly the inter relationship of clusters when selecting
cases for domains with flatter and broader indices such as Zoo. The performance of
RND-CLUSTER is less consistent compared to RND-CASE. This is interesting because
it confirms that working hard at selecting a cluster is important.
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Fig. 6. Results for: (a) Lymphography (b) Hepatitis

Evaluation results for Lymphography and Hepatitis domains appear in Figures 6 (a)
and (b). These domains have similar number of features (19 and 20), but Lymphography
has nominal and numeric with 4 classes, while Hepatitis is binary classification with
nominal features. Additionally the Hepatitis dataset contained missing values and when
building the index a fraction of a case with missing values passes down ca_ch_ branch of
an unknown decision node. For clustering, this means that a case with missing values
can end up in two or more clusters. Here, we assigned cases with missing values to a
single leaf; i.e. the leaf associated with the highest case fraction.

Again we find a significant difference between the informed techniques and RND
(Lymphography p=0.001 and Hepatitis p=0.001). With Lymphography the average con-
cept complexity is 9 and, as with Zoo, INFORMED-M’s performance is significantly bet-
ter than INFORMED-S (p=0.005). With certain test runs RND-CASE has out performed
INFORMED-S suggesting that random case selection is better than selection based on
CaUS. We believe that there can be a danger of exploiting information from already !a-
belled cases where selection can be too biased by labelled cascs in the cluster; hcre with
CaUS the distances to labelled cases distance, may become an ur.rdf:swablc .mﬂucncc
when the distribution of labelled cases is skewed, possibly explaipmg the improved
performance of random case selection. With Hepatitis the increase in accuracy by the
informed techniques over RND though significant is small 2%) t:‘ompared with other
domains. It seems that the initial selection of labelled cases forming the case base al-
ready achieved high accuracy, therefore the impact of the newly sampled 9 cases secems
to be less obvious.



rre:sRnd  —O— Rnd-cluster ={}—Rod-case  ~—@—Informed-S == Informed-M

(]
g @
k1
B A
ig ‘5 67
S P
g., 5
< g“
T8
50 62
150 00 220 00 50 150 200 Fi 300 30
Training Set Size Training Set Size

Fig.7. Results for: (a) House votes (b) Breast cancer

The results from the larger datasets; House votes and Breast cancer appear in Fig-
ures 7 (a) and (b). These are both binary classed domains containing missing data.
House votes has 16 binary valued features while Breast cancer has 9 multi-valued fea-
tures. With House votes we have a significant improvement with INFORMED-M and
INFORMED-S over RND (p= 0.001). The concept complexity with House votes on av-
erage is 3 which suggests fewer partitions of the case base explaining INFORMED-S's
significant improvement over INFORMED-M's performance (p = 0.023).

Unlike the House votes domain, Breast cancer is more complex because the fea-
tures are not just binary valued. Still the results are very encouraging, in that we have
significant improvements with all informed techniques. We also see that RND-CASE
has significantly better performance over INFORMED-S and RND-CLUSTER. This is
most likely due to the increased concept complexity (here an average of 7, with adepth
bound of 5 on the index tree) and so increased number of partitions to the case base.
With fewer labelled cases in a cluster, CaUS would have been overly influenced by the
labelled cases particularly in distancey. This then suggests that for CaUS we nced
to consider the distribution of labelled cases and use this information to regulate the
influence of labelled cases on CalUS.

6.2 Efficiency Results

So does the increase in accuracy justify the increase in training time? For domains with
many features, and in particular those with many classes (¢.g. Zoo), there is almost a
3-fold increase in training time with INFORMED-M compared to RND (sce Table 1).
This increase can amount to as much as a 40-60 seconds difference and for the larger
datasets with 350 cases a 5-fold increase can mean up to a 150 second difference. For
real applications this is an obvious drawback. However since the main processing cost is
associated with the pairwise case distance calculation associated with CIUS, an efficient
feature subset selection technique will help improve efficiency.

Generally when operating with a fixed expert availability time constraint the trade-
off here depends on whether during this time we wish to present an expert with: fewer



Table 1, Increased training time ratio of INFORMED-M compared to RND

Training set size| 50 75 100 125 150

Zoo 1.1 1.6 23 26 2.9
Iris 1.5 1.7 192123
Lymphography [1.5 1.9 2.1 24 2.6
Hepatitis 19 1.9 2.1 2.1 2.3

Training set size|150 200 250 300 350
House Votes 2328 34 3945
Breast Cancer (2.6 3.3 4.1 4.4 4.7

yet different problems selected using informed techniques; or many problems selected
randomly with the hope that a sufficient spread of problems is covered.

7 Conclusions

The idea of exploiting the partitions formed by the case base index as the basis for
selective sampling for CBR is a novel contribution of this paper. It is also a sensible
thing to do because the index invariably captures the CBR system's problem solving
behaviour. The sampling approach is iterative and attempts to identify new cases that
when added into the case base are most likely to trigger refinements to the index. The
paper introduces a cluster utility score CIUS, which reflects the uncertainty within a
cluster by deriving information from both labelled and unlabelled cases. High scores
denote interesting clusters that are a source of useful unlabelled cases. A further case
utility score CalUS then helps rank these cases by maximising distances to labelled
Cases yet minimising distances to unlabelled cases. ‘

The effectiveness of informed sampling techniques using CIUS and CaUS was
demonstrated on 6 public domain datasets. In general, a significant improvement in
test accuracy was observed with these techniques compared to random sampling. Case
selection from multiple clusters outperformed selection from a single cluster on several
domains. However there seems to be an obvious relationship between index dcpl!l and
breadth, and hence the partitions, and the sampling techniques. Generally for an index
with fewer leaf nodes, selection from a single cluster works better but the opposite is
true for a flatter index.

In this paper we have primarily concentrated on a case base index created by a de-
cision tree structure formed using C4.5's information gain ratio. However, we are heen
to see how the sampling approach presented in this paper might be more generally ap-
plied with other case base indexing schemes, such as k-means and bottom-up clustering.
Another area of interest is to explore how incomplete case base mdlc_cs might be ma-
nipulated as evidence of holes in the case base and then to exploit this as a means to
discover new cases.

Selective sampling tools are useful for CBR systems whether labcllcfl cascs are
plentiful or not. If there is a constraint on availability of labels then certainly a CBR



system with sampling capability will be very attractive. Conversely if there are many
labelled cases then sampling techniques can be adapted as a means to identify few yet
useful cases thereby ensuring that CBR retrieval efficiency is maintained.
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