OpenAIR@RGU

The Open Access Institutional Repository
at Robert Gordon University

http://openair.rgu.ac.uk

This is an author produced version of a paper published in

Electronics World (ISSN 0959-8332)

This version may not include final proof corrections and does not include
published layout or pagination.

Citation Details

Citation for the version of the work held in ‘OpenAIR@RGU’:

MACLEOD, C. and MAXWELL, G. M., 2009. Minds for robots.
Available from OpenAIR@RGU. [Jonline]. Available from:
http://openair.rgu.ac.uk

Citation for the publisher’s version:

MACLEOD, C. and MAXWELL, G. M., 2009. Minds for robots.
Electronics World, 115 (1873), pp. 16-19.

Copyright
Items in ‘OpenAIR@RGU’, Robert Gordon University Open Access Institutional Repository,
are protected by copyright and intellectual property law. If you believe that any material
held in ‘OpenAIR@RGU’ infringes copyright, please contact openair-help@rgu.ac.uk with
details. The item will be removed from the repository while the claim is investigated.

http://openair.rgu.ac.uk/�
mailto:openair�help@rgu.ac.uk�

Minds for Robots
Christopher MaclLeod and Grant M Maxwell

In the 1950s and 60s, popular culture was entranced by robots. There was Robby in
“Forbidden Planet,” Gort in “ The day the Earth stood still” and many others. This
fascination has continued to the present day, only the names have changed, now we
have Commander Data of “ Startrek” and the NS-5 of “| Robot.” Y et despite the
interest and the obvious advantages of having intelligent machines to do dirty, boring
or dangerous jobs, we are little nearer to creating a similar technology in the real
world. This article outlines a new route towards such intelligence in machines -
Incremental Evolution.

Approachesto Al

Historically there have been three approaches to creating intelligent machines. The
first approach was to try and copy the biological brain. However, this contains billions
of nerve cells (also called neurons), interlinked by trillions of connections and
unravelling it iswell beyond our current scientific capabilities.

The second approach, known as symbolic Al, was to build alarge database of rules
and instructions to allow the machine to make complex decisions. But we know that
biological brains don’t work like this. Simple rules also don’t have the flexibility to
work in real-world situations and in any case, the database soon grows to
unmanageable proportions.

Finally, there is the approach of modelling simple neural circuitry using “Artificial
Neura Networks” - networks of simple processors, loosely based on real nerve cells.
But the resulting circuits are not complex or flexible enough to allow intelligence to
emerge.

Artificial Evolution

The problems outlined in the paragraphs above led researchers to consider the
mechanism which allowed nature to design the biological brain - Evolution. Evolution
works because the fittest individuals in a society tend to survive better and therefore
have a higher chance of breeding and passing on their traits to the next generation.
Over many generations, therefore, the fitness of the whole population increases.

Engineers have designed artificial versions of evolution called Evolutionary
Algorithms. We can illustrate how these work using an example. Suppose we want to
design afilter as showninfig 1.

L1 L2 L3

C1 Cc2 C3 c4

Fig 1. A simplefilter circuit.

The circuit can be represented by a string of numbers which are its component values.
Fig 2 shows a circuit with its components and the string which representsit.

mmm
36uH 98uH 2puH

?7pF %pF

[76pF [6pF

String or Chromosome representing circuit |37]36]23|9876(12] 6 |

Fig 2. An particular filter and its representative string.

We can generate lots of such strings (also sometimes called chromosomes)
representing circuits like this - each chromosome is the component values of a single
circuit. The starting point of an Evolutionary Algorithm is a number of such strings
(called the population) filled with random numbers - that is, with random component
values.

We then test each of these random strings to see how well it performs - in this case by
comparing how good it is with the perfect response. Having done this, we get rid of
the worst strings - if we have a population of 99 strings say, we' d delete perhaps two
thirds of them - the two thirds which are furthest from the ideal response. This would
leave us with 33 strings. What we do next is breed them - just as in a population of
animals, the fittest survive and breed together. The breeding process is called
crossover or recombination. It works like this: take two random strings and select a
random point on them, then cross over al the numbers to the right of that point into
the opposite string and vice versa, fig 3 shows the idea.

Before breeding:
12 54 34{65 03 87 67
37362398 76 12 06

After breeding:
12 54 34 98 76 12 06
37 36 236503 87 67

Fig 3. Crossover, also called Recombination

Hopefully, in some of these events, the new string will inherit some good traits from
the mother string and some different ones from the father - and will therefore be better
than both. Once this is done, the original population of 99 is recreated (the 66 new
strings being the result of breeding). A small percentage of the numbers are then
changed at random to add some variation into the population - an operation called
mutation and we start the whole process all over again - evaluation, culling, breeding
and mutation. Over many generations of doing this, the population will improve to the
point where some of them can solve the design problem satisfactorily. The technique
is particularly useful in circuits which don't have good design rules or where
compromises have to be made in the design.

Problems

The procedure outlined above has been shown to work well in many problems. It has
been used to design Analogue and Digital Circuits as well as DSP systems and
Artificial Neural Networks.

However, when we try and use it to design circuits to control intelligent machines, it
has only limited success. The main reason for this is that the algorithm is inefficient
when applied to large circuits. This is because of the many different combinations of
components and wiring possible in such circuits - we say that the circuit has a large
search space. So what is successful for small problems is unworkable for large ones.

A related problem is that it is difficult to design the algorithm so that it can evolve a
circuit which deals with many different kinds of input and output. For example, in a
robot, there may be inputs from vision sensors, bump sensors and audio sensors. If
you try and integrate these together, they sometimes conflict and interfere. Thisiswhy
the human brain is not one big network, but lots of little ones (sometimes called
modules), al doing their own thing but co-operating together.

How naturedoesit

Although current Evolutionary Algorithms model the selection of good traits within a
population, thisis only one feature of natural evolution. If we look at the evolution of
animals over time, the other important aspect is growth in complexity - animals have
changed from simple to complex forms over time, driven by competition.

When life started on Earth it was very simple - just single cells in fact. From then until
now, it has slowly but surely become more complex. Single celled forms were

replaced by ssimple multicellular animals, which eventually developed into jellyfish,
then worms, complex invertebrates, fish, amphibians, reptiles and finally mammals - a
march of progress from simple to complex. The extraordinary animals of today are
only possible because they built on the successes of the past - adding more
functionality to those which had gone before.

So, it is not just about blind growth - but about building upon a previously laid, firm
foundation. The past triumphs of evolution are not discarded by nature, but new
developments are built on top. This is particularly obvious in the brain, were it would
have been impossible to rewire billions of neurons and trillions of connections each
time it developed - the new changes had to build on top of the older ones. In fact,
Richard Dawkins, in his famous book on evolution: “The Blind Watchmaker,” points
out that incremental changeisthe only realistic way to evolve complex animals.

In other words, a traditional Evolutionary Algorithm simulates the selection of good
traits in a population of (say) amoebas, but the amoebas can never evolveinto jellyfish
because the strings which represent the population members cannot become larger and
more complex - and even if they did, the algorithm could not handle the extra
complexity of the search-space generated.

I ncremental Evolution
Incremental Evolution adds the idea of growth in complexity into Evolutionary
Algorithms. We can illustrate how it works by considering the evolution of acircuit.

The algorithm works by initially making the circuit as smple as possible. An ordinary
Evolutionary Algorithm is then used to evolve this simple system until it performsits
task perfectly (or cannot get any better). This ssmple evolved circuit is then fixed and
not allowed to change. Next, a module of new components is added to the circuit;
these are added to the pre-existing structure and are allowed to evolve. Again, when
they can’'t get any better, the whole is fixed and another new module is added. Fig 4
shows this process operating on afilter.

)

Z2

=)

New module

Y Y LYY YL _YYY L
102 211 321

22 74 19

wl |

Previoudly evolved section
Fig 4, A new module being added to a pre-evolved section.

A better understanding of this can be had by considering the evolution of aradio
circuit. If we were to take dozens of transistors and other components and use a
traditional Evolutionary Algorithm to design aradio receiver, it wouldn’t get very far;
the circuit istoo complex - the search space too large. However, if we only allowed
one transistor and afew components, chances are that it would evolve asimple
detector circuit, rather like a crystal set. Now, this doesn’t work very well, but it does
demodulate signals. If we now fixed this and allowed the algorithm to add a module,
we have a good chance of evolving an RF amplifier in front of the detector. Fix all
this and we might get an AF amplifier behind it. Try again and you might get a
selection filter to tuneit at the very front.

S0, by allowing the system to grow like this, we can evolve much more complex
systems than a simple Evolutionary Algorithm can - and systems which are
automatically modular; for example, the filter in fig 4 can evolve to give amuch more
complex multi-stage response than is likely to be produced by a single stage of
evolution. In fact, it turns out that in large systems with many connections, the search
space of atraditional Evolutionary Algorithm grows frightenly quickly, whereasin
Incremental Evolution, the search space is simply that of the added module.

Robots
In our lab at the Robert Gordon University in Aberdeen, Incremental Evolution was

used to evolve alegged robot with vision sensors. The robot’ s sequence of evolution
isshowninfig 5.

=

Robotic “mudskipper” “Mudskipper” with

advanced legs)/‘
= =

‘— <—L C_)J <:U

Quadruped robot Quadruped robot with camera

Fig 5, An evolving legged robot.

An important principle can be seen in operation here. The robot’s “body” and “mind”
must evolve together - the principle of Incremental Evolution appliesto the whole
system, not just the circuit which controlsit. This again keeps the search space in each
iteration small - you might call it aholistic form of Artificial Evolution. After al, in
nature, the brain of jellyfish goes with its particular smple body plan. In the terms of

Evolutionary Algorithms, we say that the “fitness function” changes along with the
current evolutionary stage.

The robot started of as ssmple as possible; in this case as a robotic “mudskipper.” All
it was able to do was pull itself along the floor with two simple inflexible legs. A
neura network controller (basically a control circuit) was evolved to alow it do this.
Next, the robot was given more complex legs - with two active degrees of freedom (a
“hip” and a“knee”). Keeping the previously evolved network, another was evolved to
control these new functions - the old network controlled the “hip” and the new, added
one, the “knee.” Having done this, another two legs were then added, making the
robot into a quadruped; again, what was previously evolved was kept and further
modules added on top of the old to control the new legs (although the agorithm was
allowed to “cut and paste” previously evolved modules into new positions).

Having got our walking four legged robot, a vision system was evolved for it. This
started off asjust as one pixel and was allowed to evolve slowly - using the principles
above, into afive by five pixel “robotic eye” which could recognise simple patterns as
shown in fig 6.

Simple shadow

response Simple left / right turn
|:| obstacle avoidance

More complex pattern recognition

Fig 6, The development of arobotic eye.

New networks were then added to interface those of the legs with the eye and produce
arobot which could recognise patterns, turn and ater its gait accordingly. The fina
robot had over two hundred neurons in twenty two modules and could operate
successfully in avariety of environments. Fig 7 shows how one particular function
evolved (in this case, the controller for aleg) as new modules were added.

Di stﬂnce moved

370

304

1 2 3 4 5 6
Number of modules added

Fig 7, A typica graph showing performance improvement as new modules are added.

The result of al this, isthat, not only can a much more complex system be evolved,
but the result is modular with parts of the network handling different functions.
Hence, it has the ability to connect and integrate different sensor and actuator
functions together; this modular network, however, is part of afully functioning and
co-operating whole.

Rules of Evolution

During the process of evolving the robot, it was discovered that there are some
important “ground rules’ for making the method work. If these are ignored then the
evolution will stall and the system won't reach its full potential.

Firstly, the components in each module added must be as flexible as possible - in the
case of electronics, the algorithm should be allowed to choose these to be any
component (resistor, capacitor, inductor, etc). In the case of a neural network, the
flexibility of the neurons must be as high as we can make them.

Secondly, the agorithm evolving the system must be able to choose which
connections are made as well as the component values and types. It was found that if
this wasn’t allowed to happen, the connections interfered with each other and stopped
the system reaching its full potential.

Finally, there is usually a minimum number of components needed in each new
module, if there are not enough, then the system won't evolve correctly. This is
similar to the first and second points - they all indicate that the functionality of the
added modulesis critical and that each module must be as flexible as it can be.

It's also worth noting that even when the rules are followed, it is possible for
evolutionary “dead ends’ to be reached, where further improvement is not possible -
this aso happensin the world of nature. In this case, modules must be removed and
the system allowed to re-evolve in a different direction.

Applications

There are also many possible applications of Incremental Evolution in other areas of
engineering. One of the most interesting is in biomedical engineering, in the
development of prosthetic limbs. In this case, there is a direct incrementa route from
a simple system with all the joints of the limb fixed in place, to a complex system
with al the joints free and controlled. As each joint is freed the controlling circuitry
can be allowed to develop by adding to its structure, in the same way as in the robot.
Other examples include mechanical engineering - for example in aerospace
engineering; heretoo it isfairly obvious that sections of an aerodynamic design can be
added incrementally. There may even be lessons which biologists can learn about the
early development of life and what works and doesn’t in terms of evolutionary
mechanisms.

Today we try and design complex systems inspired by biology, like intelligent robots,
by analysing how humans and animals work and copying them. But when we see a
human, we see four and a half billion years of evolutionary progress. Each stage of
that journey was built on the previous stage. Humankind did not come into being
suddenly, without warning. They began their long trek as a single celled organism in
the primeva seas. We, our behaviour and our physical makeup, are a result of that
development.

What, therefore, makes us think that we can build sophisticated intelligent systems
like robots from scratch? Surely they too must build up their bodies and their
behaviour in asimilar way, just as we did, piece by piece, one step at atime.

References:
http://mww.rgu.ac.uk/eng/compint/page.cfm?pge=12909

S Muthuraman, C MacLeod and G Maxwell, The development of Modular Evolutionary Artificial
Neural Networks for Quadruped Locomotion, IASTED ACS 03. p268 - 273

S Muthuraman, G Maxwell, C MacL eod, The Evolution of Modular Artificial Neural Networks for
Legged Robot Control, Artificial Neural Networks and Neural Information Processing, Springer (LNCS
2714), 2003, p488 - 495.

Sethuraman M uthuraman, " The Evolution of Modular Artificial Neural Networks', PhD Thesis, The
Raobert Gordon University, 2005

C. MacLeod, G. M. Maxwell, S. Muthuraman, Incremental Growth in Modular Neural Networks,
Engineering Application of Artificial Intelligence, Vol 22, Issue 4/5, 2009. pp 600 — 666,
doi:10.1016/j .engappai.2008.11.002.

MacLeod C, Practical Algorithmsfor Incremental Growth, The School of Engineering, The Robert
Gordon University, Aberdeen, 2010.

	MacLeod Electronics World coversheet
	Minds for Robots

