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Abstract 

 

When exposed to UVA light TiO2 demonstrates an effective bactericidal activity.  

The mechanism of this process has been reported to involve attack by valence band 

generated hydroxyl radicals. In this study when three common bacterial pathogens, 

Escherichia coli, Salmonella enterica serovar Enteritidis and Pseudomonas 

aeruginosa, were exposed to TiO2 and UVA light a substantial decrease in bacterial 

numbers was observed. Control experiments in which all three pathogens were 

exposed to UVA light only resulted in a similar reduction in bacterial numbers.  

Moreover exposure to UVA light alone resulted in the production of a smaller than 

average colony phenotype among the surviving bacteria, for all three pathogens 

examined, a finding which was not observed following treatment with UVA and 

TiO2. Small slow growing colonies have been described for several pathogenic 

bacteria and are referred to as Small Colony Variants. Several studies have 

demonstrated an association between Small Colony Variants and persistent, recurrent 

and antibiotic resistant infections. We propose that the production of Small Colony 

Variants of pathogenic bacteria following UVA treatment of drinking water may 

represent a health hazard. As these Small Colony Variants were not observed with the 

UVA/TiO2 system this potential hazard is not a risk when using this technology. It 

would also appear the bactericidal mechanism is different with the UVA/TiO2 process 

compared to when UVA light is used alone.   
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1. Introduction 

 

The spread of water borne infection is a problem in both developed and 

underdeveloped countries.  However it is a greater problem in the latter for several 

reasons including the lack of adequate sanitary conditions and insufficient health care.  

Many infectious diseases are transmitted via the faecal-oral route and in countries 

where sanitation practices are less than adequate, faecal contamination of water 

supplies is a common occurrence.  Thus the presence of individuals in a community 

with active disease (or in a carrier state) often results in contamination of the water 

supply.  Most cases of water borne infection are acquired via the subsequent 

consumption of this water.  However in addition, the use of such water for bathing or 

even inhalation of water aerosols may also cause infection.   

In recent years the use of titanium dioxide (TiO2) as a photocatalyst for water 

treatment has been extensively reported. When TiO2 is illuminated with light of 

wavelength less than 380 nm it generates highly active reagents such as valence band 

holes, h+, or hydroxyl radicals generated via oxidation of water by the valence band 

holes. These species have been demonstrated to mineralise a wide range of organic 

compounds including aromatics and aliphatics, dyes, pesticides and herbicides [1-4]. 

TiO2 is especially suitable as a photocatalyst for water treatment, compared to other 

semiconductors, because it is highly photo-reactive, cheap, non-toxic, chemically and 

biologically inert, and photostable [5]. Due to the effectiveness of this process as a 

water treatment technology, the suitability of TiO2 photocatalysis for water 

disinfection has been investigated by a number of authors, who have reported vary 

degrees of efficacy of this technique [6-14].   
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The disinfecting properties of UV light alone (photolysis) have also been documented 

[15, 16, 17]. While this technique has been shown to be very effective for disinfection 

purposes, there are certain factors which need to be considered prior to use. Firstly, 

the sensitivity of the target micro-organism to UV light, since it is now known that 

different micro organisms respond to the lethal effects of UV light in different ways 

[16, 18, 19]. Furthermore, the choice of UV wavelength is important since the 

mechanism of UV light induced inactivation differs with different wavelengths used. 

In addition, both UV photolysis and TiO2 photocatalysis have been reported to suffer 

from the possibility of photo reactivation i.e. the process by which UV inactivated 

micro organisms use sunlight energy and the enzyme photolyse to repair UV induced 

DNA lesions and hence regain their viability.  Dark repair mechanisms i.e. repair in 

the absence of light can also take place, however photo reactivation is considered to 

be the more problematic of the two methods since it can in some cases reverse the 

effects of UV disinfection within several hours of treatment [15].  

 

In this work we have compared the effectiveness of TiO2 photocatalysis and UVA 

photolysis for the destruction of three important human waterborne bacterial 

pathogens, Escherichia coli, Salmonella enterica serovar Enteritidis and 

Pseudomonas aeruginosa.  
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2. Materials and Methods.  

2.1 Bacterial strains and culture conditions  

Stock cultures of Escherichia coli K12, Salmonella enteritidis strain S1400/95 and 

Pseudomonas aeruginosa (NCTC 10662) were sub-cultured on to nutrient agar plates 

(Oxoid, UK) and grown at 37 oC overnight (16 hours).  Several colonies were 

removed from each plate and used to inoculate 20 ml of Nutrient broth (Oxoid, UK) 

and these were grown overnight at 37 oC.  Overnight cultures were washed twice in 

sterile distilled water by centrifuging at 4,500 rpm for ten minutes and were finally re-

suspended in 10 ml of sterile distilled water to a concentration of approximately 1x108 

colony forming units (CFU) ml-1.  

 

2.2 Photocatalytic reaction 

A stock solution (1 g L-1) of Titanium dioxide (P-25 Degussa, UK) was freshly 

prepared in sterile distilled water. Aliquots (100 ml) of the solution were inoculated 

with 1 ml of the appropriate bacterial culture. Samples were irradiated for 2 hours 

using a xenon UVA lamp (480 W UVA spot 400 lamp, UVA light Technology Ltd; 

spectral output 330-450 nm) placed at a distance of 10 cm from the reaction vessel. 

The light intensity at this distance was calculated to be 3.42 x 10-5 Einsteins s-1 using 

ferrioxalate actinometry.   Reactions were carried out in sterile 125 ml glass beakers 

with continuous stirring to ensure adequate mixing of TiO2 and bacteria.  Samples of 

these solutions were collected in triplicate at half hourly intervals and bacterial 

numbers were assessed by means of a viable count [20].  Control samples which 

consisted of bacterial suspensions exposed to UVA light in the absence of TiO2 and 

bacterial suspensions containing TiO2 in the dark were run in parallel.  Temperature 

and pH were monitored at half hourly intervals but did not appear to have any 
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influence on experimental outcome. None of the samples were aerated either prior to 

or during the experimental procedure.  

 

3. Results and Discussion. 

For each of the species under investigation the reduction in colony forming units 

following irradiation, in the presence and absence of TiO2, are displayed in figures 1-

3. A relatively high rate of bacterial inactivation was observed for all three bacterial 

samples (Table 1) when irradiated in the presence of TiO2. The viable cell count 

decreased with time and after 120 minutes a four log order reduction in bacterial 

numbers was observed for all three strains. When the bacteria were exposed to TiO2 

in the dark no reduction in viable counts was observed.  

 

Exposure of all three pathogens to UVA light alone also resulted in a significant 

reduction in bacterial numbers. In the case of Ps. aeruginosa, however, the rate of 

UVA inactivation was greater than that observed for TiO2 photocatalysis.  Moreover, 

the exposure of all three pathogens to UVA light only resulted in the production of a 

smaller than average colony phenotype as well as the expected phenotype among the 

surviving bacteria (figure 4). These small colony phenotypes were not observed in the 

samples that were irradiated in the presence of the TiO2 (figure 5).  

 

The effects of temperature and pH on experimental outcome have been examined by 

several authors [6, 21, 22]. On the whole, pH changes in the range 5-8 do not appear 

to have any influence on experimental outcome [21]. Results from the current study 

show that the average starting and finishing pH values fell within this range i.e. 5.7- 

4.9 respectively. With respect to temperature effects, the rate of bacterial disinfection 
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has been shown to increase with increasing temperature [6, 13]. Wei et al [6] reported 

that the bacterial inactivation they observed in solar disinfection studies was due to a 

rise in the temperature of their water samples, in excess of 40oC. In the current study 

the average initial starting temperatures were around 21oC. The highest temperature 

recorded at the end of any irradiation period was found to be 29oC thus disinfection 

due to temperature is highly unlikely. 

 

The results obtained in this study for the photocatalytic destruction of bacterial 

pathogens are similar to those reported by several other authors [7,8,10,13,23,24]. The 

true significance of these results, however, is unclear since exposure of contaminated 

water to UVA light alone also resulted in a strong bacterial disinfection. These results 

are similar to those of Herrera-Melián et al [22] who found little difference between 

TiO2 photocatalysis and direct UVA light irradiation of urban waste waters. Although 

care should be taken when making such comparisons since, as several workers have 

highlighted, significant differences exist between the photocatalytic response of 

microbes in natural water conditions and those under simulated laboratory conditions 

[23-25]. 

 

The mechanism for bacterial destruction by TiO2 has been proposed to occur via 

attack by hydroxyl radicals generated on the photocatalyst surface [8]. Recent works 

concentrating on the mode of microbial destruction suggest that initial target for 

photocatalytic attack is the bacterial cell wall [8, 9, 26, 27, 28]. On the other hand the 

mechanism of destruction of bacterial pathogens by UV light only varies with UV 

wavelength. Thus while UVB and UVC inactivate the organism by  producing DNA 

lesions in the organisms genome which inhibit normal DNA replication,  UVA 
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damage  occurs following excitation of photosensitive molecules within the cell 

resulting in the production of active species such as O2
·-, H2O2, and ·OH. These 

species can have both lethal and sub lethal effects on the bacterial genome and other 

intracellular molecules resulting in physiological alterations, growth delay and 

oxidative disturbances of bacterial membranes resulting in growth inhibition [29, 30]. 

The lethal and mutagenic effects of UVA (320-400 nm), in particular, on bacterial 

cells has been investigated using E. coli as a model organism [31, 32].  

 

In this work the production of a smaller than average colony phenotype among the 

surviving bacterial population is likely to be the result of a UVA induced mutation 

resulting in reduced cell viability particularly since this colony phenotype is not 

observed in the case of the TiO2/UVA system.  Small colony phenotypes have 

previously been observed in S. typhimurium [33], Ps. aeruginosa [34], Burkholderia 

psuedomallei [35] and Staphlyococcus aureus [36, 37, 38]. They were first described 

over eighty years ago and are referred to as Small Colony Variants (SCV’s). Many 

studies have demonstrated an association between SCV’s and persistent, recurrent and 

antibiotic resistant infections [33, 36, 37, 38].  

 

SCV’s of several pathogenic bacteria have been phenotypically characterised as 

hyperpilated, slow growing, non-pigmented strains which produce less toxin than and 

exhibit a different pattern of carbohydrate utilisation to the parent strain. [34]. A 

typical feature of SCV’s is that they revert to the parent phenotype when sub-cultured 

onto nutrient agar.  This complex phenotype is due to deficiencies in electron 

transport, specifically mutations in the genes responsible for menaquinone or heme 

biosynthesis [34, 36, 37]. Several studies have shown that SCV’s are highly invasive 
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for host cells but due to the reduction in toxin production these variants do not 

damage such cells and thus may persist for long periods within them [33].  Problems 

arise however because as already stated, SCV’s can revert to the parent colony 

phenotype and this can result in the production of disease.  Furthermore SCV’s of S. 

aureus and Ps. aeruginosa have been isolated from patients with persistent and 

relapsing infections and represent a significant problem when it comes to treatment 

[36-39].   

 

The likelihood of an infection occurring and it’s severity in a particular host is a 

multifactorial event depending on a number of host and pathogen factors.  Thus there 

is no tolerable lower limit for pathogens, even very small numbers present a serious 

risk, to certain members of the population, i.e. immunocompromised individuals. 

Hence water intended for human use should be pathogen free. While treatment of 

contaminated water with UVA irradiation alone appears to be a very effective 

disinfection method, the possible production of SCV’s of target pathogenic organisms 

represents an increased risk of producing infection with a pathogen that is more 

difficult to treat.   

 

Moreover, it is now apparent that different bacteria respond differently to the effects 

of UVA [18]. Recent studies have shown that Ps. aeruginosa is more susceptible to 

the effects of UVA irradiation than other Gram negative bacteria [16, 19]. Thus while 

E. coli has been shown to suffer merely from growth delay following UVA treatment, 

the effects of such treatment on Ps. aeruginosa appear to be lethal [16]. This growth 

delay has been proposed to represent a phase of DNA repair taking place before any 

further cell division can occur [17]. Further more the repair mechanism in E. coli is 
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thought to operate at much lower fluences than the similar system in Ps. aeruginosa 

[16]. Fernandez et al showed that while UVA induced membrane damage 

undoubtedly contributed to cell death in Ps. aeruginosa they proposed that UVA also 

produced DNA lesions which resulted in cell death due to inherent deficiencies in the 

DNA repair mechanisms [16].  The results obtained in the current study show that the 

rate of destruction of Ps. aeruginosa in the presence of UVA light is greater than that 

of either E. coli or S. typhimurium.  Alternatively Oppezzo and Pizarro [18] showed 

that Enterobacter cloacae was more resistant to the effects UVA than several other 

Gram negative bacteria.  These authors suggested that this increased resistance was 

due to an increased ability of En. cloacae to overcome oxidative stress during 

exposure to UVA.  Hence the effects of UVA irradiation on different bacterial species 

warrants closer investigation. 

 

The use of solar water disinfection processes in underdeveloped countries e.g. SODIS 

and of UV home water treatment systems, is rapidly gaining in popularity not least 

because of the fact that such treatment systems do not involve the use of chemicals 

and the production of their associated hazardous by-products but also due to factors 

such as ease of installation and use and lack of interference with the taste, colour and 

odour of the treated water.  It should however, be noted that most home water 

disinfection units utilise UVC sources and that to date no reports have been made on 

the production of SCV’s with this method.  

 

The success of any UV water treatment system method depends upon UV intensity 

and the amount of time the micro-organisms are exposed to the radiation.  Other 

limitations associated with this form of water treatment include a dependence on the 
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characteristics of the wastewater being treated i.e. concentration of colloidal and 

particulate constituents in the wastewater which can shield target organisms against 

the light and the possibility that UV treated organisms can sometimes repair and 

reverse the damaging effects of UV. Hence it is recommended that community 

potable water treated in this way is already partially treated with e.g. reduced 

chlorination, prior to passing through the UV disinfecting system.  Findings from the 

current work not only suggest further limitations for the use of UVA light as a method 

of water disinfection but may actually represent a detrimental effect of this process. 

Further work on is required to establish whether or not this is the case. 
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4. Conclusion. 

TiO2 photocatalysis is a more effective technology than UVA irradiation, for 

disinfection of water contaminated by E. coli and S. enteritidis. Direct UVA 

irradiation, however, appears to be more effective for removal of Ps. aeruginosa.  

UVA irradiation, however, results in the generation of small colony variants which 

are not observed when the TiO2 photocatalyst is present. These results suggest that 

when UVA light is used alone the micro organisms may reactivate, which does not 

appear to occur in the TiO2 photocatalytic system. This potentially may be a 

limitation for the use of UVA light as a disinfection method. 
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List of captions for Figures 

Figure 1 – Effect of UVA light and TiO2 on viability of Escherichia coli  

Figure 2 - Effect of UVA light and TiO2 on viability of  Salmonella enteritidis 

Figure 3 - Effect of UVA light and TiO2 on viability of  Pseudomonas aeruginosa 

Figure 4. Escherichia coli colonies from UVA treated sample showing both regular 

and small colony phenotypes.   

Figure 5.  Escherichia coli colonies from UVA/TiO2 treated sample showing uniform 

colony phenotype                   

Table 1.  Bacterial counts (CFU ml-1  SD) before and after 2 hours exposure to TiO2 

and UVA light or UVA light alone. 
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Bacteria          TiO2 photocatalysis UVA light only 

Initial count     Final count Initial count     Final count  

 

E. coli 

S. enteritidis  

Ps. aeruginosa 

 

5.2x106 

1.7x107 

1.0x107 

 

150 

825 

1016 

 

8.0x106 

1.3x107 

1.1x107 

 

50 

4.0x103 

50 

Table 1. 
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Figure 1.  
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Figure 2. 
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Figure 3. 
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Figure 4 
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Figure 5 
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