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Abstract 
 
Titanium dioxide (TiO2) photocatalysis has been used to initiate the destruction of 

nodularin, a natural hepatotoxin produced by cyanobacteria. The destruction process 

was monitored using liquid chromatography-mass spectrometry analysis which has 

also enabled the identification of a number of the photocatalytic decomposition 

products. The reduction in toxicity following photocatalytic treatment was evaluated 

using protein phosphatase inhibition assay, which demonstrated that the destruction of 

nodularin was paralleled by an elimination of toxicity. 
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1. Introduction. 

 

Cyanobacterial toxins produced and released by cyanobacteria around the world have 

been well-documented [1,2]. Nodularins (figure 1), produced by the cyanobacterium 

Nodularia spumigena, are structurally and biologically similar to microcystins (figure 

2) and both groups of these toxins are among the cyanobacterial toxins usually 

detected in water [3]. It has been shown that the mode of action of these toxins at a 

molecular level is caused by the inhibition of serine/threonine protein phosphatases 1 

and 2A. Chronic exposure due to the presence of hepatotoxic cyanotoxins in drinking 

water is thought to be a contributing factor in primary liver cancer (PLC) through the 

known tumour-promoting activities of these compounds [5-7].  

 

Since cyanobacterial toxins pose a considerable threat to human health, various water 

treatment processes have been evaluated to degrade these toxins. It is believed, 

however, that conventional water treatment systems have proven unreliable for the 

removal of these toxins from water [8,9]. In recent years the use of titanium dioxide 

(TiO2) as a photocatalyst for water treatment has been extensively reported. When 

TiO2 is illuminated with light of an appropriate wavelength it generates highly active 

oxidising sites, which can potentially oxidise a large number of organic wastes such 

as dyes, pesticides, bacteria and herbicides [10-13]. TiO2 is especially suitable as a 

photocatalyst for waste treatment, compared to other semiconductors, because it is 

highly photo-reactive, cheap, non-toxic, chemically and biologically inert, and 

photostable [14]. Previous work has demonstrated the effectiveness of TiO2 

photocatalysis for the destruction of microcystin-LR in aqueous solutions even at 

extremely high toxin concentrations, however, a variety of by-products were 

generated [15,16]. Further mechanistic studies of the process enabled the 

characterisation of some of the breakdown products and the assessment of their 

toxicity using protein phosphatase inhibition and brine shrimp bioassays [17,18]. The 

effectiveness of TiO2 photocatalysis for destruction of other groups of cyanobacterial 

toxins such as nodularins has not yet been reported. In this study, we report the 

destruction of nodularin by TiO2 photocatalysis. The toxicity of the photocatalytic 

reaction degradation products has been determined using a protein phosphatase 

inhibition bioassay. 
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2. Experimental  

2.1. Materials.  

Nodularin was obtained from a laboratory culture Nodularia spumigena KAC 66 

(University of Kalmar, Sweden). Harvested cells were frozen and then extracted in 

50% aqueous methanol. The filtered extract was isolated by solid phase extraction 

followed by separation using preparative HPLC on a C18 column to obtain purified 

nodularin (18 mg). The purity of the nodularin was subsequently confirmed by 

comparison to previously purified standards by LC-MS data and by LC photodiode 

array analysis. Titanium dioxide (Degussa P-25) was used as received. Protein 

phosphatase 1 was obtained from Sigma, Pool, UK. All other reagents and solvents 

used were analytical grade or HPLC grade. Aqueous solutions were prepared in Milli-

Q water.  

 

2.2. Photocatalysis.  

 

Aqueous solutions (10 ml) of nodularin containing 0.1% (w/v) TiO2 were illuminated 

in the presence of air with a 480 W Xenon lamp (Uvalight Technology Ltd.; spectral 

output 330-450 nm, with light filtered out below 350 nm).  The reactions were carried 

out in glass universal bottles with constant stirring. The distance from the UV lamp to 

surface of the test solution was 30 cm and the light intensity at this distance was 

calculated to be 1.91 x 10-5 Einsteins s-1 using ferrioxalate actinometry. On irradiation 

temperature of the reaction solution stabilised at 30 oC. At timed intervals, samples 

were taken (0.5 ml) and centrifuged to remove TiO2 prior to analysis by LC-MS and 

protein phosphatase inhibition assay. The initial concentration of nodularin was 1 mg 

ml-1 for the photocatalysis. Controls were performed, both in the dark and in the 

absence of TiO2. 

 

2.3. Analysis. 

 

The LC-MS system used in the study was a Waters Alliance 2690 HPLC Pump 

connected with Waters 996 PDA and Micromass ZQ Mass spectrometer with 

electrospray ionisation source (Manchester, UK). The HPLC column was a Waters 
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Symmetry 300TM C18 column (5 m, 2.1x150 mm, Waters, USA). Treated samples 

were diluted 10-fold with Milli-Q water before analysis and the injection volume was 

10-50 l. Mobile phases were water and acetonitrile, both containing 0.05% 

trifluoroacetic acids (TFA). Gradient elution was programmed as 5-20% of 

acetonitrile in 10 minutes increasing to 80% in 42 minutes. The flow rate was 0.3 ml 

min-1. The eluent was directly introduced to the mass spectrometer ion source without 

a splitter.  The mass data was obtained in the positive ion mode by full scanning from 

m/z 150-1000 at a dwell time of 5 seconds with cone voltage at 80eV.  Cone induced 

Dissociation (CID) mass data were obtained by full scanning from m/z 100-1000 at a 

dwell time of 2 seconds with the cone voltage at 100eV. A Masslynx software 

workstation was used for the LC-MS instrument control, data acquisition and data 

processing. 

 

2.4. Protein phosphatase inhibition assay 

 

Protein phosphatase inhibition assay was performed using a modification of 

previously reported colorimetric procedures.[17, 19-21].  Protein phosphatase 1(PP1) 

was diluted with buffer containing 50 mM Tris-HCl,  1.0 g l-1 BSA, 1.0 mM MnCl2 

and 2.0 mM dithiothreitol, pH 7.4.  p-Nitrophenyl phosphate (5 mM) was prepared in 

buffer containing 50 mM Tris-HCl, 20 mM MgCl2, 0.2 mM MnCl2 and 0.5 g l-1 BSA, 

pH 8.1.  All buffers were freshly prepared before use.  Microcystin-LR, nodularin and 

test samples were prepared with Milli-Q water. The assay was conducted by addition 

of 25l of test solution to 25l of PP1 solution in a 96-well polystyrene microtitre 

plate. After a few seconds gentle shaking, the microtitre plate was kept at room 

temperature (c. 22 ºC) for 5 minutes followed by addition of 200 l of p-nitrophenyl 

phosphate solution (substrate).  The plate was incubated at 37 ºC for 60 min.  The rate 

of production of p-nitrophenol was measured at 4 minute intervals for 60 minutes at 

405nm on a Dynatech MR 5000 Reader. The dose dependent kinetic activity of PP1 

against p-nitrophenyl phosphate was established to assess the enzyme activity prior to 

sample test. A standard inhibition curve of microcystin-LR and nodularin was 

constructed by measuring the percentage inhibition of enzyme activity against a 

negative control of Milli-Q water. All enzyme assays were performed in triplicate.  
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3. Results and discussion 
 
When aqueous solutions of nodularin were subjected to TiO2 photocatalysis, a rapid 

decomposition of the toxin was observed (figure 3). It can be seen that the reduction 

of the nodularin peak in the mass chromatogram at 21.76 (figure 3) is accompanied by 

appearance of new peaks corresponding to decomposition products. On continued 

irradiation, the nodularin peak rapidly decreased and was no longer detectable after 30 

minutes of photocatalysis in a full scan LC-MS mode. The toxicity of the reaction 

mixture was assessed by protein phosphatase inhibition assay to determine whether 

the decomposition of nodularin and production of degradation products were 

paralleled by reduction in toxicity. 

 

The standard inhibition curve (figure 4) of nodularin and microcystin-LR against 

protein phosphatase 1 demonstrated a nearly 100%  inhibition of the enzyme at toxin 

concentrations over 250 ng ml-1, with a detection limit around 4.0 ng ml-1 for 

nodularin and 15.7 ng ml-1 for microcystin-LR (20% inhibition). The linear region of 

the curve appeared between 15.7-62.5 ng ml-1 of the toxins. The concentration that 

inhibits the enzyme activity by 50% (IC50) level was determined to be around 9 ng ml-

1 for nodularin and 45 ng ml-1 for microcystin-LR. Microcystin-LR, therefore appeared 

to have about 5 times stronger protein phosphatase inhibition activity than nodularin. 

The IC50 of microcystin-LR and nodularin obtained in this study is in good agreement 

with that previously reported as 47 ng ml-1 for microcystin-LR and 5.6 ng ml-1 for 

nodularin [17,22].  

 

Based on the standard inhibition curve, the toxicity of the reaction mixture was 

assessed. Figure 5 shows that the relative content (bar) of nodularin and the 

corresponding inhibition (line) against PP1 with irradiation time. It was observed that 

with the destruction of nodularin following photocatalysis, the enzyme inhibition 

reduced dramatically after 20 minutes irradiation. After 60 minutes photocatalysis no 

protein phosphatase inhibition was detectable. This observation indicated that the 

destruction of nodularin was accompanied by the elimination of toxicity against PP1. 

The degradation products in the reaction mixture did not show any detectable 
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inhibition activity against protein phosphatase. The results are similar to those 

obtained for microcystin-LR decomposition products with photocatalysis [17]. 

 

Further characterisation of the by-product peaks were performed using ion extraction 

techniques. This enabled the preparation of an extracted-ion chromatogram for the 

process. The extracted-ion chromatogram from full scan TIC of 10 and 20 minutes 

photocatalysis indicated 11 breakdown product peaks (Table 1).  The extracted peak 

areas from 0 to 100 minutes of photocatalysis were calculated by integration of the 

peaks in order to demonstrate how the relative amount varied during photocatalysis. 

Table 1 summarises the peak areas together with their molecular ions and LC 

retention times. The difference to the levels indicated by “original” and photocatalysis 

time of 0 min corresponds to dark adsorption of the nodularin to the surface of the 

photocatalyst; the “original” sample is before the TiO2 was added and time 0 is where 

the catalyst has been added but prior to irradiation. As indicated in figure 3 and Table 

1, decomposition of nodularin occurred rapidly, after only 2 minutes photocatalysis, 

degradation was clearly observed. The by-product peaks initially increased during the 

first 20 minutes irradiation then subsequently decreased with a complete 

disappearance of all detectable peaks at 100 minutes of photocatalysis. This indicated 

that the by-products themselves were not stable under photocatalysis and were 

decomposed further into fragments with mass below the detectable limit for the 

instrument (<150 Dalton).  

 

Analysis of the full scan mass spectrum of the 11 extracted peaks observed during the 

photocatalytic degradation of nodularin (Table 1) revealed that all mass spectra of the 

peaks had their predominant ions with 100% abundance, and were therefore identified 

as the molecular ions representing the corresponding breakdown products of 

nodularin.  In order to assist in structural elucidation of the by-products, the Cone 

induced Dissociation (CID) technique was used to obtain fragment information for 

each of the major peaks obtained from full scan Total Ion Chromatogram (TIC) at 

cone voltage 80 eV. CID data of the peaks was obtained by increasing the cone 

voltage to 100eV.  The fragment ions associated with nodularin and its by-product 

peaks were observed at m/z 691, 389, 383, 366, 253, 227 and 135. The CID mass data 

for nodularin and the observed by-product peaks together with proposed structural 

assignments [23] are summarised in Table 2.  These structure assignments of the 

 6



nodularin breakdown products was based on the analysis of the LC-Mass 

chromatogram and corresponding mass spectrum of by-products (peaks 1-11) assisted 

by their CID mass data.  This data was subsequently used for the elucidation of a 

proposed mechanism for the photocatalytic destruction process (scheme 1).  

 

In Scheme 1, peak 6 (consisting of peaks 6a-d) was assigned to the dihydroxyl 

isomers of nodularin resulting from an initial photoisomerisation [24,25] followed by 

dihydroxylation of the conjugated diene structure system in the Adda side chain. The 

geometrical isomers share the same molecular ion [M+H]+ at m/z 859 with different 

LC retention times (16.6-17.9 min) to form the product indicated by peak 6 (a-d). This 

process appears to be the same as that obtained for microcystin-LR [18], where the 

Adda diene structure was converted to a (4E), 6(Z) or 4(Z), 6(E) configuration and 

then formed dihydroxyl  products. Since it is impossible to assign the configurations 

of the isomers to each peak of 6a-6d with LC-MS analysis in this study, precise 

identity for peaks 6a - 6d could not be assigned.  

 

Following further photocatalytic oxidation, the dihydroxylated Adda bonds were 

cleaved generating products with peaks 4 and 2, indicated by ion [M+H]+ at  m/z  665 

and 625 respectively. The product at peak 4 (m/z 665) was further oxidised to form a 

peroxide product, indicated by peak 3 with ion [M+H]+ at m/z 695 following a 

peroxidation reaction [26]. Following the peroxide bond cleavage, by-product 3 (peak 

3, m/z695) transformed into by-product 2 (peak 2, m/z 625) on further photocatalysis.  

It is proposed that mass ion [M+H]+ observed at m/z 286 (peak 1) resulted from the 

further breakdown product indicated by peak 2 via hydrolysis on the peptide chains of 

Adda residue-Arg to Glu, and Adda residue-Arg to MeAsp as illustrated in Scheme 1.  

Adda residue-Arg peptide bond cleavage of this compound at peak 1 resulted in the 

release of arginine since ion [M+H]+ observed at m/z 175 (peak 7) would be in 

agreement with this assignment. In the CID mass spectrum (summarised in Table 2), 

fragment ions at m/z 253, 227 were observed in moderate intensities for peaks 2, 3, 4 

and 6.  Since m/z 253 was an indication of a moiety of (CO-Glu-Mdhb-H) while ion 

m/z 227 corresponded to fragments of (Glu-Mdhb+H) or (Mdhb-MeAsp + H), the 

parent structures (peaks 2, 3, 4 and 6) of these fragments in the nodularin peptide ring 

appeared to be intact in the early stages of photocatalytic degradation. Moreover,  the 

CID ion at m/z 135, considered to be a characteristic fragment (PhCH2CH(OCH3)) of 
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Adda moiety in microcystin or nodularin [23], was absent for peaks 2, 3 or 4 but 

present for peak 6. This observation would suggest that the isomerised nodularin 

dihydroxyl products with an Adda moiety and an un-modified Mdhb moiety in 

peptide ring (peak 6, [M+H]+ at m/z 859) were the precursor of products with peaks 2, 

3 and 4.  

 

To summarise, the destruction of nodularin (Scheme 1) therefore appears to be 

initiated via three processes, ultraviolet (UV) irradiation, hydroxyl radical attack and 

oxidation [16-18, 27]. UV irradiation induced a geometrical isomerisation of 

nodularin on the Adda conjugated diene structure to form (4E), 6(Z) or 4(Z), 6(E) 

Adda configuration. Hydroxyl radical attack decomposed the conjugated diene 

structure to form the dihydroxylated products. Further photocatalytic oxidation 

resulted in cleavage of the hydroxylated 4-5 and/or 6-7 bond of Adda to form 

aldehyde and ketone peptide residues. These by-products subsequently were oxidised 

to corresponding peroxidated products followed by hydrolysis of peptide bonds 

forming amino acid fragments.  

 

4. Conclusions 

 

TiO2 photocatalysis appears to be a highly effective method for the removal of the 

cyanotoxin nodularin from water. Not only is the nodularin rapidly decomposed by 

the photocatalytic process, but the toxicity of the toxin is also eliminated. In addition 

the photocatalytic process effectively destroys the major by-products of the 

decomposition process with LC-MS detectible products completely degraded within 

100 minutes photocatalysis. The major mechanism of the photocatalytic process 

appears to involve isomerisation, substitution and cleavage of the Adda conjugated 

diene structure in either nodularin or its resulting derivatives. As the Adda conjugated 

diene structure in the molecule is believed to be associated with toxicity consequently 

the toxic effects are eliminated.  
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List of Captions for Figures. 
 
Figure 1. Nodularin. 
 
Figure 2. Generic structure of microcystins where X and Z represent the variable 
amino acids and, D-Me-Asp is D-erythro--methylaspartic acid, Adda is(2S, 3S, 8S, 
9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4(E),6(E)-dienoic acid , D-
Glu is D-glutamic acid and Mdha is N-Me-dehydroalanine. 
 
Figure 3. Total Ion Chromatograms (TIC) of the breakdown of nodularin following 
TiO2 photocatalysis 
 
Figure 4. Standard inhibition curve of microcystin-LR and nodularin against protein 
phosphatase (PP1),  
 
Figure 5. Destruction of nodularin (bar) and elimination of protein phosphatase 
inhibition (line) following photocatalysis with TiO2. Each point plotted for PP1 
inhibition is the means of 3 observations, and the vertical bars indicate the standard 
deviation (STDEV) of the means. 

 
Table 1. Peak area (counts x 10 5) of nodularin degradation products detected with 
LC-MS 
 
Table 2. ESIMS/CID/MS data for nodularin degradation products 

 12



O C H3

 
 
Figure 1.

OCH3

CH3

NH

O

HN

CNH

H
N

O

NH

COOH

NH2

C H3

N
H

H COOH

N

O

C 

O

CH3

H

H

H3C

CH3H

 13



HN
N

NH

NH

NH

O
O

O

CH2O
H H

CH3 H

O

COOH

H3COCH3

H3C

H

H

H

CH3

COOHH

H

H

H

H3C

CH3

O

Y
X

 
 
Figure 2. 
 
 

 14



 
 
 
 

 

 

 
 
Figure 3. 

 15



 
 
 

-10

0

10

20

30

40

50

60

70

80

90

100

0 4 7.9 15.7 31.3 62.5 125 250 500

Toxin concentration (ng mL-1)

P
ro

te
in

 p
ho

sp
ha

ta
se

 in
hi

bi
ti

on
 (

%
).

..

microcystin-LR

nodularin

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4  

 16



0

50

100

150

200

250

300

350

400

450

500

or
igi

na
l 0 2 5 10 20 30 45 60 10

0

Irradiation Time (mins) 

P
ea

k 
ar

ea
 (

lo
g 

10
6 )

0

20

40

60

80

100

120

P
P

1 
In

hi
bi

ti
on

 (
%

).

Peak area

Inhibition

 
 
 
Figure 5. 

 17



OCH3

CH3

NH

O

HN

CNH

H
N

O

NH

COOH

NH2

CH3

N
H

O
COOHH

N

O

C

O

CH3

H

CH3

H

H3C

CH3H

OCH3

CH3

NH

O

HN

CNH

H
N

O

NH

COOH

NH2

N
H

O
COOHH

N

O

C

O

CH3

H

CH3

H

H3C

CH3H

NH

O

HN

CNH

H
N

O

NH

COOH

NH2

CH3

N
H

O
COOHH

N

O

C

O

CH3

H

CH3

H

H3C

CH3H

O

OH

OCH3

CH3

NH

O

HN

CNH

H
N

O

NH

COOH

NH2

CH3

N
H

O
COOHH

N

O

C

O

CH3

H

CH3

H

H3C

CH3H

OH
OCH3

CH3

NH

O

HN

CNH

H
N

O

NH

COOH

NH2

N
H

O
COOHH

N

O

C

O

CH3

H

CH3

H

H3C

CH3H

HO

OH

Nodularin degradation scheme 1.

NH

O

HN

CNH

H
N

O

NH

COOH

NH2

O

N
H

O
COOHH

N

O

C

O

CH3

H

CH3

H

H3C

CH3HH

NH

O

HN

CNH

H
N

O

NH

COOH

NH2

CH3

N
H

O
COOHH

N

O

C

O

CH3

H

CH3

H

H3C

CH3H

O

OH

OH

NH

O

HN

CNH

H
N

O

NH

COOH

NH2

CH3

N
H

O
COOHH

N

O

C

O

CH3

H

CH3

H

H3C

CH3H

O

O

O

NH

O

HN

CNH

NH2

NH2

O

H

H3C

HO

O
OH

N

O

HN

CNH

NH2

NH2

O
H

H3C

HO

O

O

H
N

CNH

NH2

NH2

OH

 18



 
 
Table 1.  
 
 

peak name 1 2 3 4 5* 6* 7 8* 9 10 11 nodularin 
RT(min) 2.0-

2.1 
7.7 8.3 8.3-

8.4 
9.2-
10.9 

16.6-
17.9 

16.6-
17.2 

18.5-
19.7 

21.4-
21.5 

21.9-
22.0 

23.5-
23.6 

21.7-21.8 
Time (min) of 
photocatalysis 

M+H(m/z) 286 625 695 665 635 859 175 829 797 811 795 825 
original   0 0 0 0 0 0 0 0 0 0 0 1724.4 
0   0 0 0 0 0 0 0 0 0 0 0 908.7 
2   2.7 1.7 5.3 9.3 0 13.6 8.4 0 2.6 0 23.3 516.2 
5   5.5 2.4 7.8 17.9 0 17.6 11.7 0 6.5 0 43.2 318.1 
10   8.3 1.0 12.2 19.3 1.1 25.2 13.5 4.7 8.2 0 58.3 44.6 
20   13.3 0 8.4 7.5 1.9 20.0 11.4 13.4 4.8 2.8 35.7 0 
30   8.8 0 3.1 1.5 2.4 11.1 5.8 9.0 2.4 4.1 14.4 0 
45   6.7 0 0 0 1.9 3.1 2.2 8.2 1.0 3.5 5.0 0 
60   7.5 0 0 0 1.2 0 0 7.7 0 2.8 0 0 
100   0 0 0 0 0 0 0 0 0 0 0 0 

 
* Multiple-peaks with area cited here for principal peak 
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Table 2.  
 
Fragment formula   Peak name 1 2 3 4 5* 6* 7 8* 9 10 11 nodularin 
 RT(min)  

 
2.0-
2.1 

7.7 8.3 8.3-
8.4 

9.2-
10.9 

16.6-
17.9 

16.6-
17.2 

18.5-
19.7 

21.4-
21.5 

21.9-
22.0 

23.5-
23.6 

21.7-21.8 

 

ion 

M+H(m/z) 286 625 695 665 635 859 175 829 797 811 795 825 
M - 135 + H 691   - - - - - - - - - nt - 691 
C11H15O-Glu-Mdhb 389   - - - - - - - - - nt - 389 
Mdhb-MeAsp-Arg+H 383   - - - - - - - - - nt - 383 
Mdhb-MeAsp- 
Arg+H- OH 

366   - - - 366 - 366 - - - nt - 366 

CO-Glu-Mdhb - H 253   - 253 253 253 - 253 - - - nt - 253 
Glu-Mdhb +H / Mdhb-
MeAsp + H 

227   - 227 227 227 - 227 - - - nt - 227 

PhCH2CH(OCH3) 135   - - - - - 135 - 135 135 nt 135 135 
                

* Multiple-peaks with CID ions cited for the largest peak 
nt. not tested 
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