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Abstract 

TiO2 Photocatalysis is a promising technology for the destruction of organic pollutants in 

both waste and potable waters with the mineralisation of a wide range of compounds 

having been reported. TiO2 has many advantages over other semiconductors, it is highly 

photoreactive, cheap, non-toxic, chemically and biologically inert, and photostable. The 

photocatalytic activity of TiO2 has been shown to depend upon many criteria including 

the ratio of anatase/rutile crystal phase, particle size and oxidation state. This paper 

reports the use of optical Surface Second Harmonic Generation (SSHG) to monitor 

modifications in TiO2 powder induced following laser treatment. SSHG is a non-contact, 

non-destructive technique, which is highly sensitive to both surface chemical and 

physical changes. Results show that three different SSH intensities were observable as 

the TiO2 samples were irradiated with the laser light. These regions were related to 

changes in chemical characteristics and particle size of the TiO2 powder. 
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1. Introduction 

The use of titanium dioxide as a photocatalyst for the destruction of polluting materials 

has demonstrated great potential as remediation technology for both water and gas phases 

[1]. Since TiO2 is cheap, non-toxic, chemically and biologically inert and highly 

photoreactive, it is a practical material for a wide range of effluent treatment applications. 

The effectiveness of TiO2 as a photocatalyst depends on a number of factors including 

particle size, crystal structure and surface electronic states. These properties are usually 

determined using surface analysis methods such as XPS, XRD or TEM, which require 

significant sample preparation and must be operated under vacuum. Recently Lee et al 

reported a modification of crystal structure and oxidation state of TiO2 powders, which 

also changed in colour from white to blue grey, following exposure to pulsed laser light 

[2, 3]. Further work has shown that the laser induced alterations were dependent on the 

exposure parameters i.e. time, optical power density, and wavelength. In order to 

optimise the laser modification of the TiO2 it is necessary to have a method for on-line 

monitoring of the changes induced in the TiO2 during the laser treatment. Therefore there 

is a need for surface monitoring methods that require little sample preparation and can be 

operated under ambient conditions. 

 

Surface Second Harmonic Generation (SSHG) is a technique that possesses such 

advantages. Second harmonic generation is the lowest order nonlinear optical process, 

which nonlinearly converts two incident photons of frequency  into a single photon of 

twice the frequency, 2. In the electric dipole approximation, this phenomenon only occurs 

in non-centrosymmetric media or where the centre of symmetry is broken i.e. at any surface 
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[4]. The SSHG is highly sensitive to chemical and physical surface changes. It has been 

recently applied to study the surface characteristics of single crystals of TiO2 under various 

conditions [5-8]. Shultz et al [8], previously reported an increase in Surface Second 

Harmonic (SSH) signal following the generation of Ti3+ defects on a (110) single crystal 

rutile surface on exposure to ultraband gap UV irradiation. The enhanced SSH signal 

together with the Ti3+ species disappeared following exposure of the TiO2 surface to 

oxygen. Similar behaviour in the SSH signal was observed by Kobayashi [6] when a rutile 

TiO2 (110)/H2O interface was exposed to UV illumination. Kobayashi also reported the 

resonance of the SSH signal with a surface electronic excitation of the (110) rutile crystal at 

3.4 eV [5]. All these investigations, however involved single crystals of rutile TiO2. To date 

there has been no reports on studies of SSHG characteristics of TiO2 powders, the form 

most commonly used in photocatalytic treatment. In this paper some initial results on the 

application of SSH to monitor laser-induced effects on Degussa P25 TiO2 powders are 

reported.  

 

2. Experimental  

 

2.1.Laser Treatment of Titanium Dioxide. 

The SSH response of TiO2 was studied on Degussa P25 TiO2 (Degussa, UK) which is 

roughly an 80:20 anatase:rutile mixture, rutile TiO2 obtained from P25 and anatase TiO2 

from Aldrich. The average particle size was the same for all three powder samples.    

Samples were placed in rectangular plastic chambers (Hybri-well Press-Seal 

hybridisation chamber from Sigma, 200 l volume). The chambers were then sealed onto 
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microscope glass slides, which had previously been washed in ethanol. Once prepared, 

the samples were placed in a sample holder mounted on an XY scanner. The output beam 

of a tripled Nd:YAG laser was directed at the sample. In this way an area of 

approximately 3 cm² of the sample surface could be subjected to specific laser exposures 

using the scanner. The output wavelength of the laser system could be set to 355, 532 or 

1064 nm.  In all cases an iris diaphragm and appropriate optical filters controlled the 

beam diameter and monochromaticity. Individual samples were exposed to specific 

wavelength and laser power densities for a fixed scan rate. 

 

After treatment, colour and SSH measurements were obtained for each sample. The 

colour measurements were carried out using a Minolta colorimeter (CR-200). The SSH 

measurements were taken using a laboratory developed system, as described in the 

following section.  

 

2.2. Surface Second Harmonic System 

A schematic of the SSH system used for the investigation is shown in figure 1. The 

system comprised a Q-switched, flashlamp pumped, Nd:YAG laser (Spectron, UK, 

model SL281) operating at 10 Hz, with an output at 1064 nm. The output beam passed 

through a long pass Schott-glass filter (cut-on wavelength = 695 nm) to eliminate any 

flashlamp light. The beam was then passed through a half wave plate and polariser in 

order to maintain a constant beam polarisation at the sample. 20% of the beam was 

removed by a beam splitter to allow monitoring of laser output power using a “reference 

arm”. This reference arm consisted of a cut on Schott-glass filter, a thin layer of lithium 

 5



niobate powder, a 1064 nm blocker and a large area photodiode. The remaining 80% of 

the beam was directed, through another cut on Schott-glass filter, onto the sample 

mounted in the XY scanner. The laser beam was set at a fixed angle of incidence of 45 

from the sample normal. A photomultipier (Thorn EMI, UK, 9956L), was positioned at 

45 from the sample’s normal and collected the resultant SSH signal. A series of two 

short pass filters (cut off wavelength = 668 nm) and one band pass interference filter 

centred at 532 nm with a full width at half maximum of 10 nm were mounted in front of 

the photomultipier to ensure that only the second harmonic light was detected. Both the 

signals from the reference arm and the photomultipier were recorded on a TDS 620 

Tektronix digitising oscilloscope. In order to obtain a representative measure of the effect 

of the laser exposure, the average SSH data from an area of 0.3 cm² was scanned, with 

readings taken every millimetre. Each SSH value shown in this work is the average of 30 

readings, unless otherwise stated. 

 

2.3. Colour measurement  

The colour measurements induced in the titania samples following laser irradiation were 

monitored out using a Minolta colorimeter (CR-200). For each measurement three 

reading points were recorded, averaged and the colour difference calculated by taking a 

reading consisting of three parameters, L*, a* and b* which are the lightness, and 

chromaticity co-ordinates respectively. From two readings taken at a different points in 

time, the colour difference can be calculated, and this is a standard value used in colour 

measurement. This colour difference is defined as: 

     2*2*2* baLdE   

 6



Where  represents the difference between the original colour parameters and the sample 

colour parameters after a given treatment. 

 

3. Results and discussion. 

3.1. Power dependence 

Irradiation of the TiO2 specimens with laser light resulted in the distinctive colour change 

from white to blue/grey. This colour change for a P25 TiO2 sample with increasing 

irradiation times is displayed in figure 2. 

 

The SSH response of a variety of titanium dioxide samples as a function of the square of 

the incident laser peak power density was then examined. Figure 3 displays the 

relationship between SSH signal intensity and the Squared Peak Power (SPP) density of 

the probing beam. The SSH intensity of the signal generated at the titanium dioxide 

surface increases with the peak power density of the probing beam. In all three samples, 

anatase, rutile and P25 the increase is initially linear with respect to the SPP, then 

different relationships are observed. A careful examination of figure 3 shows that the 

curves are divided in two regions. The lower regions of the curves is between 5 and 20 

GW²/mm² for pure anatase and rutile TiO2 while for P25, which is a mixture of the 

crystal phases, this region is between 5 and 40 GW²/mm². The higher region suggested 

that for SPP density above 20 GW²/mm² (40 GW²/mm² for P25 TiO2), the probing beam 

caused changes at the sample surface. A consistent and permanent (at room temperature) 

change in colour from white to dim blue was observed by the naked eye, for samples 

irradiated with SPP density above 20 GW²/mm² (40 for P25 TiO2). This colour change is 

characteristic of a slight oxygen deficiency in the material. Even a small deviation from 
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the equilibrium stoichiometry of TiO2 lead to a colour change from white to blue/black 

and is accompanied by a strong increase in the electric conductivity [9-11]. This 

observation confirmed that material changes occurred for these power densities. From 

these observations it is clear that there is a threshold power density above which these 

material changes occur. It is therefore important to work under the higher threshold 

power density if we want to access the changes caused by laser radiation. However if the 

probing beam power density is close to the lower threshold it becomes difficult to 

differentiate between the different forms of TiO2. For these reasons the SPP density of 

the probing beam was kept at 18 GW²/mm² for all the measurements in order optimise 

the sensitivity of the system. The SSH response of P25 titanium dioxide samples treated 

with different laser wavelengths, powers and times was then examined. 

  

3.2. Laser Treatment using 355 nm 

The results obtained following irradiation with a 355 nm (3.49 eV) laser beam are 

displayed in figure 4.  With low SPP density laser irradiation (up to 20 GW²/mm²) the 

SSH intensity was relatively stable over the time period studied. At higher SPP densities, 

the SSH intensity increased sharply with time, reaching a maximum for around a 0.2 

second exposure to the 355 nm beam. The SSH signal then decayed to the initial intensity 

after 1.6 seconds laser irradiation. No significant differences in the SSH signal intensity 

were, however, observed on increasing the SPP density. These results clearly indicate the 

presence of two distinct phenomena (having opposite effect on the SSH signal) occurring 

at the titanium dioxide surface and are in good agreement with data obtained previously 

in our group [12]. In this paper it was demonstrated that variations of the SSH signal with 
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laser treatment time, at 355 nm, were related to changes in the oxidation state, crystal 

structure and particle size of the TiO2 material. The region where the SSH intensity 

increases is probably due to the generation of Ti3+ species which was confirmed by 

electron spin resonance spectroscopy [13]. The Ti3+ species are also the cause of the blue 

colour in the titania samples. In addition transmission electron microscopy showed no 

variation of the crystal size of the titania, while Raman spectroscopy showed very small 

differences in the anatase/rutile ratio for this region [14]. It is therefore proposed that the 

observed increase in SSH signal for irradiation SPP density higher than 20 GW²/mm² and 

for 0.2 second irradiation period results primarily from the formation of Ti3+ species in 

the TiO2 matrix. Previous work by our group also suggested that the decrease in SSH 

intensity (above 0.2 second in this work) was coincident with a change in the crystal 

phase of the titania from anatase to rutile [12-14]. Similar changes have been reported by 

Le Mercier and co-workers when the single crystal TiO2 materials were exposed to high 

power 355 nm laser [15, 16]. 

 

3.3 Treatment using 532 nm 

A similar experiment was carried out for an irradiation wavelength of 532 nm (2.33 eV), 

(figure 5). Identical behaviour of the SSH intensity was observed at this wavelength with 

a relatively stable SSH signal for SPP density up to 110 GW²/mm². It is worth noting, 

however that the SPP density required to produce a significant change in the SSH 

intensity is about 2.6 times greater than in the case of the 355 nm radiation. In addition, 

the exposure time required to reach the maximum SSH intensity, between 0.4 an 0.8 

second, is also longer than for an irradiation at 355 nm.  
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3.4 Treatment using 1064 nm  

In the case of an irradiation wavelength of 1064 nm (1.16 eV), the SSH intensity was 

stable for SPP densities up to 362 GW²/mm², as shown in figure 6. Above this SPP 

density threshold, the SSH intensity behaved as observed for the two other radiation 

wavelengths. The SPP density required to produce a change in the SSH intensity is about 

eight times higher than for an irradiation at 355 nm, and the time require to reach the 

maximum SSH intensity was also significantly longer (1 to 1.2 seconds). 

 

3.5 Discussion. 

To summarise the observations for irradiation at each wavelengths, as the irradiation 

wavelength increased, the threshold SPP density and exposure time required to induce 

changes in SSH intensity increased. An increase in the maximum SSH intensity was also 

observed with increasing irradiation wavelength. In addition no colour changes of the 

samples were observed for the SPP densities inferior or equal to the threshold detected by 

SSH. In order to determine a better understanding of these observations the SSH data 

were compared with colour measurements of the laser irradiated samples. 

 

It is interesting to note that changes in the SSH signal were observed on irradiating the 

titania samples with both ultra band gap (355 nm) and sub band gap (532 and 1064 nm) 

laser sources. Schultz [8] only observed the enhanced SSH signal when the specimens 

were irradiated with UV light of energy greater than the TiO2 band gap (4.7 eV, 264 nm). 

The enhanced SSH signal was believed to be due to the formation of Ti3+ species at the 
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surface of the titania specimen. The presence of this species was confirmed by XPS. The 

Ti3+ species generated by Schultz were unstable and rapidly disappeared on introducing 

oxygen into the reaction vessel. Other workers have also reported the generation of Ti3+ 

sites in TiO2 samples on irradiation with short wavelength UV light, with the TiO2 

samples changing to a characteristic blue colour [17]. We have also confirmed the 

presence of Ti3+ in our laser irradiated samples using ESR spectroscopy [2]. These 

species are formed following band gap excitation of the samples. The fact that similar 

effects were observed in our samples irradiated with 532 and 1064 laser light is probably 

due to a multiphoton effect.  

 

In order to compare the relative efficiency of the three wavelengths to induce the changes 

in the TiO2 the SSH and colour difference as a function of the density of energy 

deposited were compared (figure 7). In each case only two of the irradiation times below 

(or equal to) the maximum SSH intensity as observed in figures 4, 5 and 6 are shown. 

From figure 7 (a), the SSH data can be divided in three regions. Between 0 and 0.5 

mJ/mm² the signal is constant and close to zero, which suggests that the laser radiation 

does not affect the sample. The second region between 0.5 and 1.5 mJ/mm², where the 

intensity of the SSH increases by a factor of by 2.5, suggesting alterations to the titanium 

dioxide specimens. Finally at energy densities above 1.5 mJ/mm² no significant change in 

the signal is observed. Interestingly the colour difference (dE) shows similar behaviour. 

The colour change, however keeps increasing, although at a slower rate, for energy 

density higher than 1.5 mJ/mm². For the titanium dioxide samples irradiated with 532 nm 

laser light, three regions were also observed (figure 7 (b)). These three regions were from 
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0 to 1.2 mJ/mm², 1.2 to 2.4 mJ/mm² and above 2.4 mJ/mm². Figure 7 (c) shows the 

results obtained for the irradiation at 1064 nm. In this case the three regions were from 0 

to 2.3 mJ/mm², 2.3 to around 5 mJ/mm² and above 5 mJ/mm². This suggests that the 

same phenomena occur at all wavelengths although the energy densities required to 

induce changes increased with irradiation wavelength. The energy density at which the 

maximum change in SSH intensity (or colour) occurs is related to the irradiation 

wavelengths. Further experiments will be needed to determine the exact relationship 

between irradiation wavelength and maximum change in SSH intensity. However, from 

our data, it is possible to give a rough estimate of the amount of energy necessary to 

reach the maximum SSH intensity. Table 1 resumes two of the key factors influencing 

the SSH intensity for the three studied wavelengths, namely time and energy density. The 

times were the estimated time to reach the maximum SSH intensity and were deduced 

from figures 4 to 6. The energy density values were taken as the minimum energy density 

required to reach the maximum SSH intensity on figure 7 (a), (b) and (c). The total 

deposited energy densities were then calculated and summarised in table 1. It could be 

seen that 7 times more energy is required at 532 nm than at 355 nm to obtain a similar 

change in SSH intensity and therefore to create Ti3+ species. Similarly 22 times more 

energy is needed if the titania samples were irradiated at 1064 nm.  

 

The fact that the SSH signal reaches a maxima in each sample while the colour change 

continually rises may be due one of two factors. Firstly on prolonged laser irradiation in 

addition to the generation of Ti3+ sites the crystal phase changes from anatase to rutile. 

The formation of the rutile phase may suppress the SSH signal. An alternative more 
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probable reason is the fact that SSH generation is a surface phenomena. The additional 

colour change in the titania samples may be due to changes in the bulk of the specimens 

and will consequently have a reduced effect on SSH signal. Further work is on going to 

elucidate this observation. It should be noted that the Ti3+ species generated on laser 

irradiation are significantly more stable than those produced on irradiating with standard 

UV sources as the samples are stable in the open lab for several months. These species 

are therefore likely to predominate in the bulk of the material where they are less 

susceptible to attack by oxygen. 

 

4. Conclusion. 

SSH has been demonstrated to be highly sensitive to chemical/physical changes in TiO2 

powders following laser treatment. Similar trends in the SSH signal intensity were 

observed when TiO2 was treated with a variety of laser wavelengths above and below the 

band gap energy level. The minimum threshold power densities required to induce 

observable changes in the specimens varied greatly and longer wavelengths were 

significantly less efficient. SSH provided complementary data to dE measurements 

obtained from the colour meter. Since the SSH is sensitive to many parameters 

influencing the photocatalytic activity of TiO2 (crystal structure, oxidation state, particle 

size), it has therefore been demonstrated to be a powerful tool for monitoring these 

changes when TiO2 was exposed to laser irradiation. So far only the enhanced 

photocatalytic activity of heavily treated P25 has been reported [2,3]. It would be 

interesting to study the photocatalytic activity of the TiO2 during the different stages of 

modifications. In particular at the point where SSH intensity reached a maximum where 
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the Ti3+ species have been generated and prior to the change in crystal phases from 

anatase to rutile indicated by the subsequent drop in SSH intensity. 
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Legends for Figures. 

Fig. 1. Schematic diagram of the Surface Second harmonic System. a) visible cutter,  

b)  1/2 plate, c) polarizer, d) iris, e) 20% beam splitter, f) reference arm, g) photodiode, 

h) 1064 nm absorber, i) 532 nm band pass filter. 

 

Fig. 2. Example of P25 TiO2 powder irradiated for 0, 0.1, 0.5, 1, 2, 4 and 6 seconds (left 

to right) at 355 nm, with a power of 23 mW.  

 

Fig. 3. SSH power dependence of a variety of titanium dioxide powders.  

 

Fig. 4. Relative SSH intensity of P25 as a function of time and squared peak power 

density of the treatment laser beam at 355 nm. 

 

Fig. 5. Relative SSH intensity of P25 as a function of time and squared peak power 

density of the treatment laser beam at 532 nm. 

 

Fig. 6. Relative SSH intensity of P25 as a function of time and squared peak power 

density of the treatment laser beam at 1064 nm. 

 

Fig. 7. SSH intensity and colour difference (dE) as a function of the irradiation energy 

density for the three studied wavelengths: (a) 355 nm, (b) 532 nm, and (c) 1064 nm. The 

open and closed triangles and diamonds represent two irradiation times for dE and SSH 

respectively. 
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Irradiation 
Wavelength/ 
nm 

Photon Energy/ 
eV 

Energy Density/ 
mJ mm-2  

Irradiation 
Time/ sec 

Total Deposited 
Energy Density/ 
mJ mm-2 

355 
 

532 
 

1064 

3.49 
 

2.33 
 

1.16 

1.5 
 

2.5 
 

5.5 

0.2 
 

0.8 
 

1.2 

3 
 

20 
 

66 
 
 
Table 1. Total Deposited Energy Density of Different Laser Irradiation Wavelengths. 
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