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Abstract

A coarse-grained Distributed Constraint Satisfaction Problem (DisCSP) is
a constraint problem where several agents, each responsible for solving one
part (a complex local problem), cooperate to determine an overall solution.
Thus, agents solve the overall problem by finding a solution to their complex
local problem which is compatible with the solutions proposed by other agents
for their own local problems. Several approaches to solvingDisCSPs have
been devised and can be classified as systematic search and local search
techniques. We present Multi-Hyb, a two-phase hybrid algorithm for solving
coarse-grained DisCSPs which uses both systematic and local search during
problem solving. Phase 1 generates key partial solutions tothe global problem
using systematic search. Concurrently, a penalty-based local search algorithm
attempts to find a global solution to the problem using these partial solutions.
If a global solution is not found in phase 1, the information learnt from phase 1
is used to inform the search carried out during the next phase. Phase two runs
a systematic search algorithm on complex variables guided by the following
knowledge obtained in phase 1: (i) partial solutions and ; (ii) complex local
problems which appear more difficult to satisfy. Experimental evaluation
demonstrates that Multi-Hyb is competitive in several problem classes in terms
of: (i) the communication cost and (ii) the computational effort needed.

1. Introduction

A Constraint Satisfaction Problem (CSP) is a problem which
can be represented by a set of variables, a corresponding set
of domains (one per variable) and a set of constraints which
restricts the values that variables can take simultaneously. A
solution to a CSP is an assignment of a value for each variable
which satisfies all constraints. Two main classes of algorithms
are used for the resolution of CSPs: (i) Systematic search
algorithms, which ensure completeness but can be slow and;
(ii) Local search algorithms, which are incomplete, but canbe,
for large problems, faster than systematic algorithms [1].

Distributed Constraint Satisfaction Problems (DisCSPs) [2]
are CSPs where each triplet[variable, its domain, the con-
straints it is involved in] is assigned to an agent, who is
responsible for finding a consistent value to that variable.
Agents only know about their own variables, the constraints
they are involved and the current value for variables related
(via constraints) to its own variables.

DisCSPs are frequently naturally coarse-grained, i.e. they
consist of a set of inter-related sub-problems (complex local
problems), each of which can be represented by a CSP with a
set of variables, a corresponding set of domains and a set of
constraints between variables (intra-agent constraints). Com-
plex local problems are linked together by a set of constraints
which relate variables in two or more local problems (inter-

agent constraints). Specifically we concentrate on naturally
distributed problems, i.e. those where the number of inter-
agent constraints is substantially smaller than the numberof
intra-agent constraints.

Systematic search algorithms for coarse-grained DisCSPs
have been proposed based on Asynchronous Backtracking
(ABT) [2] and Asynchronous Weak Commitment Search
(AWCS) [2]. Multi-AWCS [3] uses a local AWCS solver
to ensure the satisfaction of intra-agent constraints, whilst a
global AWCS solver ensures the satisfaction of inter-agent
constraints. Multi-ABT [4] is a comparable extension to
coarse-grained DisCSPs for ABT. Whilst these algorithms are
complete, they can take exponential time and, in the case of
Multi-AWCS, exponential nogood storage.

Distributed local search approaches for DisCSPs with com-
plex local problems include DisBO-wd [5] which attaches
weights to constraints with a decay mechanism and Multi-
DisPeL [5] which assigns penalties to values to escape quasi-
local-optima.

Whilst distributed hybrid approaches exist for one variable
per agent (e.g. PenDHyb [6]), to the best of our knowledge,
there are no hybrid approaches specifically designed for solv-
ing DisCSPs with complex local problems.

We present Multi-Hyb, a distributed hybrid algorithm for
coarse-grained DisCSPs which combines systematic and local
search techniques [7]. Multi-Hyb uses a two-phase strategy:
(i) In the first phase, it concurrently learns consistent com-
binations of values for each complex local problem using
systematic search while, at the same time, attempting to find
a global solution using local search. (ii) If the first phase
does not solve the problem, knowledge learnt during both
systematic and local search in the first phase is used to guide
a systematic search algorithm on complex variables.

2. The Multi-Hyb Algorithm

Multi-Hyb (see algorithm 1) is a novel two-phase complete
distributed hybrid algorithm for solving DisCSPs with com-
plex local problems which are naturally distributed, i.e. with
a high intra-agent to inter-agent constraint ratio. In order to
explain each phase and the interaction between the two phases
a simple scheduling DisCSP (see figure 1) with complex local
problems is used. A diagram of the two phases of Multi-Hyb
is shown in figure 2.



Fig. 1. A scheduling DisCSP with complex local prob-
lems.

Fig. 2. The two phases of Multi-Hyb.

A University has three schools: Computing, Business and
Art. Each school has a number of courses and teaches a
number of modules (variables) which can either be taught
by the school or by other schools (external modules). Two
modules sharing a common course cannot be scheduled at
the same time. When preparing their individual timetable,
schools must consider their internal modules (i.e. internal
constraints) as well as ensure there are no clashes with external
modules (i.e. external constraints). For simplicity, classes can
be scheduled at 9am, 10am, 11am and 12noon on Mondays.

Phase 1

In Phase 1, each agent finds all ‘relevant’ (non-
interchangeable) solutions to its complex local problem using
the Synchronous Exhaustive Backjumping (SEBJ) algorithm
(see below). While agents are concurrently searching for local
solutions with SEBJ, a DisPeL-1C (see below) search attempts
to find a solution to the global problem. Phase 1 finishes when:
(i) an agent detects no solution to its complex local problem

Algorithm 1 Multi-Hyb
1: Initialise all agents with their subproblem.
2: Run SEBJ and dynamically pass subproblems solutions to

DisPeL-1C
3: CONCURRENTLY run DisPeL-1C
4: if SEBJ found solutions and DisPeL-1C did not find a global

solution then
5: Run SynCBJ-CLP algorithm
6: end if

and, therefore, the overall problem is unsolvable; (ii) all
agents have found all ‘relevant’ local solutions using SEBJ
or; (iii) DisPeL-1C finds a solution to the global problem.
If a solution is not found, and no unsolvability has been
detected, Multi-Hyb starts Phase 2 which runs the SynCBJ-
CLP algorithm.

SEBJ (see Algorithm 2) is a systematic search algorithm
which finds all non-interchangeable solutions to a complex
local problem, i.e. the set of all solutions which differ on at
least one value for an external variable (a variable linked to
another complex local problem).

Algorithm 2 SEBJ
1: initialise - order external variables before internal variables
2: SetsolutionFound← false andsolutionCount← 0
3: for each variablevi do
4: for each valuedi in variablevi’s domaindo
5: if all higher priority constraints are satisfiedthen
6: if solutionFound = true ORsolutionFound = false

AND all higher priority nogoods are not consistent with
all variable valuesthen

7: assign valuedi to variablevi

8: move to next variable in for loop.
9: end if

10: else if solutionFound = false then
11: for each higher priority constraint which is violateddo
12: Add the variable/value pair to a nogood for valuedi

to variablevi

13: end for
14: end if
15: end for
16: if variablevi has no assigned valuethen
17: if first variable isvi andsolutionCount = 0 then
18: return ”unsolvable problem”’
19: else if first variable isvi then
20: return ”all solutions found”
21: else if solutionFound = false then
22: Create variablevi’s conflict set with all variables in-

volved in nogoods for values of variablevi

23: Backjump to lowest priority variable in the conflict set.
24: else if solutionFound = true then
25: Backtrack to previous variable in for loop.
26: if lowest priority variable is first variablethen
27: setsolutionFound← false.
28: end if
29: end if
30: end if
31: end for
32: Add solution to solution store.
33: SetsolutionFound← true and incrementsolutionCount

34: Restart for loop with variablevi as last variable which has
external links with valuedi as the next value in its domain.



SEBJ is similar to the local solver algorithm with inter-
changibility solutions presented in [8] with the following
differences: (i) SEBJ uses conflict-directed backjumping to
determine all possible solutions; (ii) SEBJ runs concurrently
with DisPeL-1C once at least one solution to each local
complex problem is found. SEBJ is sound and complete with
regard to identifying all solutions of external relevance.

SEBJ terminates since it is a systematic algorithm run in a
centralised environment so each instance of SEBJ terminates
when either: (i) it has found all non-interchangeable solutions
to its local problem; (ii) it finds that it has no solution to its
local problem and has informed all other agents; (iii) one ofthe
agents sends a message stating that the problem is unsolvable;
(iv) DisPeL-1C sends a message stating that it has found a
solution.

DisPeL-1C: The DisPeL local search algorithm [9] uses
a penalty-based approach to escaping local minima which
is further improved in [10]1. DisPeL-1C substantially differs
from DisPeL as follows; (i) DisPeL-1C continuously imposes
penalties when values are inconsistent without waiting until
a quasi-local-minimum is detected; (ii) DisPeL-1C’s variables
are complex, each representing all externally relevant variables
for a complex local problem; (iii) In DisPeL-1C variable
values are dynamically added to their domain (as SEBJ
finds them); consequently, DisPeL-1C could solve a problem
without knowing all solutions to the local problems that SEBJ
instances will generate; (iv) DisPeL-1C keeps track of the
best solution (with fewest contraint violations) found so far;
(v) DisPeL-1C only considers the inter-agent constraints since
the intra-agent constraints have already been checked by SEBJ.
DisPeL-1C may discover that the subproblem’s solutions can
be extended to form a global solution to the problem. If this is
the case, Multi-Hyb terminates. Otherwise, if one instanceof
SEBJ terminates with no solutions for a complex local problem
then both DisPeL-1C and Multi-Hyb terminate. However, if all
SEBJ instances find at least one solution and then terminate,
DisPeL-1C terminates and Multi-Hyb moves to phase 2.

Phase 2

Phase two runs a single algorithm, SynCBJ-CLP.
SynCBJ-CLP: The SynCBJ algorithm [11] for complex

local problems (SynCBJ-CLP) uses one complex variable
per agent, with each variable representing all the externally
relevant variables of a complex local problem. The algo-
rithm explores partial solutions generated by SEBJ such as
(OOP = 9am,Databases = 10am) and (Manag = 10am)
to see if they extend to a global solution. Hence, SynCBJ-
CLP only considers the inter-agent constraints (for example
OOP 6= Manag) and ignores the intra-agent constraints,
since these have already been checked by SEBJ. Knowledge
sharing inspired by PenDHyb [6] exists so that SynCBJ-
CLP uses the following knowledge learnt by DisPeL-1C:
(i) difficult areas of the problem and; (ii) best ‘solution’ found

1. In the remainder of this paper, we refer to this latter version as DisPeL.

so far learnt by DisPeL-1C. Thus, the penalties incurred by
a variable’s values during the running of DisPeL-1C indicate
the comparative level of difficulty the algorithm has had in
finding a consistent value for that variable. SynCBJ-CLP uses
a reordering scheme combining a weight of 70% for the sum of
DisPeL-1C’s incremental penalties on variable values (which
is periodically reset) with a weight of 30% of the cumulative
penalty count of all penalties imposed by DisPeL-1C on a
variable and max-degree ordering so that agents with ‘difficult’
variables have a higher priority. In addition, the variablevalues
involved in the best ‘solution’ found by DisPeL-1C are tried
first (value ordering).

SynCBJ-CLP is efficient through its use of: (i) complex
variables, aggregating all variables of the agent’s complex
local problem thereby having one complex variable per agent;
(ii) only inter-agent constraints are given consideration(the
same constraints considered by DisPeL-1C). Since SynCBJ is
complete and variations introduced only change the ordering
of agents and first variable value, this phase is complete. Since
this phase will run if DisPeL-1C is unable to find a solution,
the Multi-Hyb algorithm is complete.

3. Experimental Evaluation

We compared Multi-Hyb with Multi-AWCS, Multi-DisPeL
and DisBO-wd on distributed randomly generated problems,
distributed graph colouring problems and distributed schedul-
ing problems. We measured: (i) the number of Non-Concurrent
Constraint Checks (NCCCs) performed; (ii) the number of
messages sent and; (iii) percentage of problems solved (only
Multi-DisPeL and DisBO-wd as they are incomplete algo-
rithms). For Multi-DisPeL and DisBO-wd, we use a cut-off of
100n iterations (wheren is the number of variables) and 200n

iterations respectively (since 2 DisBO-wd cycles ofimprove
andok? equal one Multi-DisPeL cycle).

Extensive empirical evaluations varied the number of vari-
ables (60-200), the domain sizes (5-10), constraint tightness
(0.35-0.5), constraint densities (0.15-0.2) and number ofagents
(5-25). We considered naturally distributed DisCSPs with
complex local problems having 70% to 90% intra-agent con-
straints with the remainder being inter-agent constraints. For
each problem type, 100 different problems were solved and
average and median results calculated.

Median results for distributed randomly generated problems
appear in Table 1 withn ∈ {60, ..., 175}, 5 agents,8 domain
values,0.2 constraint density and0.35 constraint tightness.
Bold indicates the best performing algorithm. * indicates that
the algorithm could not solve all problems. In these cases, the
effort wasted (number of NCCCs and number of messages)
was not included in the results.

For larger randomly generated problems (80 variables and
above), Multi-Hyb gives the best results. There are a few
occasions where Multi-DisPeL uses slightly less messages but
the difference is very small when compared with the large
difference in the number of NCCCs. For smaller problems,
Multi-AWCS is best for NCCCs but uses substantially more



TABLE 1. Results for solvable random problems

Median n. of messages
n. % intra-:inter Multi Multi Multi DisBO

vars agent constr. -Hyb -AWCS -DisPeL -WD
60 90:10 399 4834 536 1150*
60 80:20 197 5287 422 1165
60 70:30 818 4475 496 985
80 80:20 143 3991 104 335
80 70:30 89 6076 108 295
100 80:20 56 5922 56 235
100 70:30 78 7235 60 225
125 80:20 20 6297 40 225
125 70:30 60 9218 40 205
150 80:20 20 6803 28 215
150 70:30 30 14554 32 195
175 80:20 20 10707 24 210
175 70:30 20 15126 24 190

Median n. of NCCCs
n. % intra-:inter Multi Multi Multi DisBO

vars agent constr. -Hyb -AWCS -DisPeL -WD
60 90:10 163585 1651181187335469162*
60 80:20 277408194432 949616 440862
60 70:30 2761171182936 1148704353862
80 80:20 118874 149599 588111 283827
80 70:30 169884 265274 606084 262707
100 80:20 107836 285431 690977 339423
100 70:30 132031 385969 690455 324668
125 80:20 106435 357508 952787 509090
125 70:30 125553 600688 936775 485739
150 80:20 100020 4412871362161728427
150 70:30 120105 13025701281866682116
175 80:20 98875 8853391926771976712
175 70:30 110325 14539961831216908710

messages. There is only one occasion (60 variables, 70:30
intra-agent to inter-agent constraints) where Multi-Hyb does
not give the best results for either messages or NCCCs - this
is because 60-variable problems are fairly small.

We also compared Multi-Hyb against Multi-AWCS on un-
solvable distributed randomly generated problems. A com-
parison with Multi-DisPeL and DisBO-wd for unsolvable
problems is not possible since these algorithms are incomplete.
Multi-Hyb quickly determined that the problem was over-
constrained, particularly for problems with an inconsistent
complex local problem. Multi-AWCS used far more messages
and NCCCs. The results are not shown owing to space
limitations.

We conducted experiments on distributed graph colouring
problems with 150 and 200 nodes with 15 to 25 agents,
3 colours and degree∈ {4.9, 5.1}. The ratio of intra-agent
to inter-agent constraints was85 : 15 and 90 : 10. For
solvable problems, Multi-Hyb was always best in terms of
messages and whilst occasionally Multi-AWCS used slightly
less NCCCs, Multi-AWCS used far more messages. For un-
solvable problems, Multi-Hyb outperformed Multi-AWCS by
several orders of magnitude for both messages and NCCCs.
We also ran tests on distributed scheduling problems based on
Brito’s generator [12]. Our problems had 50-80 meetings, 5
departments (agents), a timeframe of 6 or 7 time units and
a 0.18 constraint density. The ratio of intra-agent to inter-
agent constraints was85 : 15 and 90 : 10. Departments with
common meetings have a random distance∈ {1, 2, 3} time
units. For most solvable problems, Multi-Hyb performed best
for both number of messages and NCCCs. For unsolvable

problems, Multi-Hyb outperformed Multi-AWCS by several
orders of magnitude. These results are not shown owing to
space limitations.

4. Conclusions

We have presented Multi-Hyb, a concurrent distributed
complete algorithm for solving DisCSPs with complex local
problems. Multi-Hyb uses SEBJ to concurrently find all exter-
nally relevant solutions for each agent’s local problem whilst
also running DisPeL-1C to find a suitable combination of
local problem solutions which does not violate any inter-agent
constraint. If SEBJ does not detect unsolvability and has found
all non-interchangeable solutions and DisPeL-1C does not find
a solution to the problem, SynCBJ-CLP algorithm is run. This
algorithm benefits from: (i) not having to check intra-agent
constraints since it has the local problem solutions obtained
by SEBJ; (ii) being able to use possible ‘best values’ found
by DisPeL-1C; (iii) using the penalty information gained by
DisPeL-1C to determine ‘difficult local problems’ and hence,
reorder agents. Multi-Hyb generally significantly outperforms
Multi-AWCS, Multi-DisPeL and DisBO-wd often by several
orders of magnitude.
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