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Abstract 

 

In Aberdeenshire, approximately 25,000 people rely on potable water from private 

water supplies. Many of these supplies are of questionable quality with regards to 

microbiological contamination, which is often due to a lack of maintenance and 

protection of these supplies. Agricultural practices such as the spreading of slurry 

and grazing animals in the proximity of supplies all increase the risk of 

contamination.  

 

The presence of coliform bacteria and in particular E. coli, in private water supplies 

is an indication of the potential for the water supply to be contaminated with 

pathogenic microorganisms. With the increasing occurrence of severe illness from 

pathogens such as E. coli O157, which have been found in a number of private 

water supplies, there is an increasing concern with regards to groundwater quality.  

 

This study was conducted initially to determine the magnitude of private water 

supply contamination in Aberdeenshire and to investigate any links between this 

contamination with seasonality and rainfall. To enable analysis of a large number 

of water samples to be carried out within an accepted timeframe, Colilert 18™ was 

validated for the detection and enumeration of coliform bacteria in potable water 

and was compared to the accepted standard method, membrane filtration. Colilert 

18™ was further validated for use with soil samples to allow the study of factors 

affecting coliform survival in water and soil to be carried out. Coliform survival in 
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soil was found to be influenced particularly by temperature and soil texture. The 

transport of coliform bacteria in soil was investigated using repacked and 

undisturbed soil columns, with transport enhanced by rainfall. However even with 

heavy rainfall coliform bacteria can become attached to or trapped within the soil 

structure. It was evident from these studies that coliform bacteria and therefore 

pathogenic microorganisms have the potential to survive in the environment and to 

travel through the soil structure and enter groundwater.   
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Chapter 1 Introduction 

 

 

1.1 Global water distribution and water usage 

 

Seventy one percent of the earth’s surface is covered by water. The majority of 

this is saltwater (97.5%) which is found in the oceans and seas. The remaining 

2.5% is freshwater yet two thirds of this is unavailable as it is trapped in the 

polar ice caps and glaciers. The majority (96%) of the available freshwater is 

found as groundwater (Shiklomanov and Rodda 2003). The rest is distributed 

between lakes, rivers, wetlands, soil and the atmosphere with a small quantity 

held by plants. Figure 1.1 shows a graphical representation of the percentage 

distribution of the world’s water.  

 

Globally the majority of freshwater is used for agricultural irrigation with 70% 

used for this purpose. Industrial use and energy production utilises a further 

20% and only 10% is used for domestic purposes including potable water. Of 

the total global water usage, 20% is obtained from groundwater (UN 2009). 
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Figure 1.1 Global distribution of water (Data from Shiklomanov and  
Rodda 2003).  Sources of drinking water: (     ) groundwater = 
30.1 % of global freshwater (0.75% of global water); (    ) 
freshwater lakes = 0.27 % of global freshwater (6.74 x 10-3 % 
of global water); (     ) rivers = 0.0064% of global freshwater 
(1.60 x 10-4 % of global water) 
 

 

Water is a basic necessity for life itself. In many countries worldwide, the 

availability of drinking water of acceptable quality is often taken for granted. 

However safe drinking water in many parts of the world is not something that is 

easily accessible or available. With the effects of climate change likely to 

increase drought in places already suffering from water shortage (UN 2009), the 

scarcity of fresh water is likely to be an increasing problem.  
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It was estimated in 2006 that 13% of the world’s population, approximately 884 

million people, did not have access to safe drinking water (WHO/UNICEF 

2008). The world population is projected to increase between 70 to 80 million 

people per year to reach approximately 9 billion by 2050 (UN 2006; UN 2009). 

This in itself will mean an increased demand on the world’s water resources for 

use in agriculture, energy production and for personal use.   

 

 

1.2 Water and disease  

 

The link between water and disease with regards to public health has been 

recognised since the 19th century. If the quality of drinking water is 

compromised it can lead to serious ill health in the general population.  There 

are an estimated 3 million deaths per annum linked to water and disease. The 

majority of these are from diarrhoea which causes 1.8 million deaths, and 

malaria which accounts for 1.3 million deaths (WHO/UNICEF 2008). Most of 

those dying from water-related disease are small children struck by virulent but 

preventable diarrheal diseases (UN 2009; WHO 2000).  

 

Water-related diseases are typically placed in four classes: waterborne, water-

washed, water-based, and water-related disease. The first three are associated 

with lack of clean domestic water supplies while the latter class is often related 

to large scale water systems which create suitable breeding grounds for their 

hosts (Hassan, Scholes and Ash 2005). 
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Waterborne diseases are enteric diseases caused by the ingestion of 

pathogens which are present in water contaminated by human or animal faeces 

or urine. Waterborne diseases include typhoid, cholera, hepatitis, salmonellosis, 

leptospirosis, giardiasis, ameobiasis, roundworm, tapeworm and hookworm 

(Hassan, Scholes and Ash 2005).  

 

Water-washed diseases are caused by poor personal hygiene and skin or eye 

contact with contaminated water and are usually due to scarcity of water. These 

include scabies, typhus, trachoma and flea, lice and tick-borne diseases 

(Hassan, Scholes and Ash 2005). 

 

Water-based diseases are caused by parasitic worms that require an 

intermediate aquatic host for part of their life cycle. These diseases are usually 

passed to humans when they drink contaminated water or use it for washing. 

The most prevalent examples are schistosomiasis and drancunculiasis 

(Hassan, Scholes and Ash 2005).  

 

Water-related diseases are caused by insect vectors, especially mosquitoes 

that breed in water. As well as malaria it includes two viral diseases, yellow 

fever and dengue (Hassan, Scholes and Ash 2005).  

 

It has been assessed that by the year 2015 there will remain almost 1 billion 

people around the world who lack access to an “improved water supply” and 

more than 2.4 billion will still lack access to “improved sanitation” (WHO/ 

UNICEF 2008). Improved water supply refers to water sources which are 



5 
 

protected from contamination particularly by faecal matter. Improved sanitation 

ensures that human excreta are disposed of hygienically, thereby preventing 

human contact. This includes flush and pour/flush toilets that discharge into a 

piped sewer, septic tank or pit latrine and does not included waste which enters 

open drains or other water bodies. Access to safe water and acceptable 

sanitation as well as improving water resource management all play a huge part 

in improving human health and reducing deaths linked to water (WHO 2009). 

 

 

1.3 Water related health issues in the UK 

 

Waterborne disease is not just a problem seen in underdeveloped countries but 

has also been linked to disease outbreaks in developed countries. In the UK, 

there have been numerous outbreaks of illness related to potable water, from 

both public and private water supplies. Contamination of potable water supplies 

can lead to serious illness and disease and sometimes death.  

 

During the early part of the 20th century many recorded cases of disease were 

caused by Salmonella typhi and Salmonella paratyphi, which are bacteria 

causing typhoid and paratyphoid fever respectively. These diseases were linked 

to the inadequate chlorination of water supplies. A reduction in the number of 

these infections was most likely linked to better hygiene and sanitation 

(Galbraith, Barrett and Stanwell-Smith 1987; Furtado et al. 1998).  During the 

latter part of the 20th and into the 21st century the majority of waterborne 

diseases recorded in the UK have been linked to contamination of water 
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supplies by campylobacter, cryptosporidium, and more recently Escherichia coli 

(E. coli) O157 (Furtado et al. 1998).  

 

Although less common in the UK it is possible that drinking water contamination 

can be chemical, for example nitrates, heavy metals and other toxins, and must 

also be considered (Galbraith, Barrett and Stanwell-Smith 1987; Pretty et al. 

2000; Reimann and Banks 2004; Scottish Executive 2006; Hooda et al. 2000).   

Naturally occurring nitrate is released when bacteria in the soil break down 

organic matter. The normal concentration in areas without intense agriculture is 

between 0 and 10 mg/l (EEA 1999). This level is increased by the addition of 

fertilisers and manure. Any nitrate not utilised by plants is liable to be carried 

through soil by rainwater as nitrate has a high solubility, making it highly mobile 

given the right conditions. Nitrate (NO3) should not exceed 50 mg/l in any 

drinking water sample as stated in the Private Water Supplies (Scotland) 

Regulations, 2006 and also stated in guidelines set by the World Health 

Organisation (WHO 2008).  

 

Methaemoglobinaemia, which is a condition resulting in the blood being unable 

to carry oxygen to cells in the body, is the main health issue linked to nitrate. It 

can occur in adults and children as a result of extremely high nitrate intake 

however it is more likely to occur with bottle-fed infants and is known as blue-

baby syndrome. A small percentage of ingested nitrate is converted to nitrite by 

the action of bacteria in the mouth, and also in the stomach. Available nitrite 

then binds with haemoglobin in the red blood cells to form methaemoglobin, 

which binds oxygen preventing oxygen transport, and thus causing cyanosis. 
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Bottle-fed infants are considered to be at greater risk because the intake of 

water in relation to body weight is high and, in infants, the development of repair 

enzymes is limited (Fewtrell 2004).  

 

 

1.4 Pathogens and sources  

 

There are many human pathogens that can be transmitted orally by drinking 

water, including Salmonella spp, Shigella spp, parasitic protozoa such as 

Giardia lamblia, and viruses. However Campylobacter, Cryptosporidium parvum 

and pathogenic E. coli, in particular E. coli O157, are the pathogens of most 

concern in this present day.  

 

 

1.4.1 Campylobacter 

 

Campylobacter has been a recognised human enteric pathogen since the early 

1970’s. It is the most common reported bacterial cause of infectious intestinal 

disease in the UK with 49,880 cases recorded in England and Wales during 

2008 (Health Protection Agency 2009) and 4878 cases recorded in Scotland 

over the same period (Health Protection Scotland 2009).  Campylobacter jejuni 

and Campylobacter coli are the two species which account for the majority of 

infections.   
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Campylobacter is a Gram-negative motile bacterium which has the ability to 

enter a viable but non-cultivable state when subjected to adverse environmental 

conditions. Optimal growth occurs at temperatures between 30 and 45˚C. The 

main reservoir of Campylobacter is within the gastrointestinal tract of many wild 

and domestic animals, in particular cattle. Deposition of contaminated faecal 

material can enter the environment and lead to human exposure through 

contaminated soil or water (WHO 2008). 

 

   

1.4.2 Cryptosporidium  

 

Cryptosporidium spp. are protozoan parasites that cause an infection called 

cryptosporidiosis.  In 2008, 4151 cases were recorded in England and Wales 

(Health Protection Agency 2009) and a further 613 cases in Scotland (Health 

Protection Scotland 2009). Oocysts are the infectious stage of the 

cryptosporidium spp. life cycle and are shed in the faeces of infected animals 

and humans and then ingested by a suitable host. The organism is extremely 

virulent and a low dose can result in infection. Oocysts are destroyed by 

temperature extremes (Dubey, Speer and Fayer 1990; Fayer and Nerad 1996), 

with their optimal survival occurring between 0 and 20oC (Fayer, Trout and 

Jenkins 1998b). Oocysts can tolerate chlorination which can result in their 

persistence in treated water supplies (Fayer 1995).  

 

Cryptosporidium spp. can be found in soil, food, water or surfaces that have 

been contaminated with infected human or animal faeces. Infection occurs 
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following consumption of contaminated water or food, or by swimming in 

contaminated water such as lakes or rivers. Transmission also occurs through 

direct animal-to-human or human-to-human contact (Medema, Bahar and 

Schets 1997; Pell 1997).  

 

 

1.4.3 E. coli O157 

 

There are many strains of the E. coli bacterium most of which are harmless 

organisms found in the intestinal tract of warm-blooded animals. However, 

serotypes belonging to the category referred to as enterohaemorrhagic E. coli 

(EHEC) or often referred to as verocytotoxin producing E. coli (VTEC) are 

recognised as causing the most severe illness.  They are known to produce 

potent toxins and can cause a range of illnesses which may be severe and 

sometimes fatal, particularly in infants, young children and the elderly. The most 

important toxin-producing strain associated with human illness is known as E. 

coli O157:H7 (Meng et al. 2001).  

 

E. coli O157 can cause a range of symptoms from mild diarrhoea to bloody 

diarrhoea (haemorrhagic colitis) with a small percentage (5 %) developing 

haemolytic uraemic syndrome (Parry and Palmer 2000). Haemolytic uraemic 

syndrome (HUS) is characterised by acute renal failure, haemolytic anaemia 

and thrombocytopaenia (Jones, Campbell and Kaspar 2002; Meng et al. 2001; 

Chalmers, Aird and Bolton 2000; Parry and Palmer 2000).  
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The infectious dose of E. coli O157 appears to be very low, probably between 

10 and 100 organisms. Humans become infected through the consumption of 

contaminated foods or water although transmission can also occur following 

direct contact with animals, particularly cattle. The main reservoir for E. coli 

O157 is the intestine of healthy cattle but carcasses can become contaminated 

through contact with intestinal contents at slaughter. Unlike the majority of E. 

coli strains, E. coli O157 is not thermotolerant therefore does not confirm as a 

faecal coliform using standard methods for detection. It also lacks the ability to 

produce β-D-glucaronidase therefore cannot be detected using many of the 

newer rapid enzymatic detection methods (Meng et al. 2001). 

 

The incidence of E. coli O157 infections is variable throughout the UK with the 

highest rate in Scotland, 243 cases being recorded in both 2006 and 2007 and 

241 cases recorded in 2008 (Health Protection Scotland 2009). In England and 

Wales 1003 cases were recorded in 2006 (Health Protection Agency 2009).  

 

 

1.5 Private water supplies in the United Kingdom 

SYSTEMS 

In the United Kingdom the majority of potable water is provided from public 

mains supply by the water utilities in England and Wales and government 

owned Scottish Water in Scotland. However, throughout the UK there are also 

approximately 140,000 private water supplies providing potable water to many 

rural homes and communities, with 38,000 of these located in Scotland (DWI 

1993).  
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A private water supply is any water supply not provided by a water utility or 

government authority. Private water supplies can originate from a variety of 

sources. The water is often groundwater and is commonly abstracted from deep 

or shallow wells, boreholes or spring sources, but can also be surface water 

from a loch or lake, stream or river. Often these sources can be shallow and 

unprotected from contamination by livestock and other agricultural activities.  

The majority of private water supplies receive little or no treatment or 

maintenance (Reid et al. 2003).  

 

In Scotland it is estimated that over 60,000 people are dependent upon private 

water supplies for their drinking water (Reid et al. 1999). Approximately 50% of 

these people are drawing water from supplies which are not monitored under 

any legislation. As the responsibility for the upkeep and maintenance of the 

supply and water testing lies with the home owner, many people are drinking 

water of unknown quality and therefore putting themselves at risk of illness due 

to water contamination.  

 

 

1.6 Water quality and contamination issues  

 

The presence of pathogenic microorganisms in drinking water supplies is 

usually due to faecal contamination either at the water source or during its 

distribution. Field application of manure or slurry, human sewage from septic 

tanks in the vicinity of the supply, grazing animals in the vicinity of the water 
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supply and contamination from birds and wildlife are all possible sources of 

faecal contamination (Davies and Mazumder  2003). 

 

The management of animal waste is of major importance in the prevention of 

microbial water contamination. Traditionally farmyard manure and straw used 

for animal bedding was composted (Jones 1982). Composting is an aerobic 

process where temperatures can rise as high as 70˚C which eradicates most 

pathogens. Farmyard manure would typically be applied annually in the spring 

when new plant growth would make use of available nutrients. However due to 

intensive farming methods, both herd size and housed animal numbers have 

increased. This has changed the management of waste collection and storage, 

with waste generally collected as slurry containing only a minimum amount of 

solid bedding material. This slurry is stored in large tanks and rapidly becomes 

anaerobic, hence temperature does not rise and pathogens are not destroyed 

(Mawdsley et al. 1995). Slurry is then applied to land often by spraying. 

Nicholson, Webb and Moore (2002) found that pathogens including E. coli O157 

and Campylobacter could not be detected in an unturned manure heap after 1 

week while the same pathogens could still be detected in batched stored dairy 

slurry 3 months later. In contrast to this, Maule (1997) and Kudva, Blanch and 

Hovde (1998) found that E. coli O157 survived longer in cattle manure than in 

cattle slurry, survival in the slurry being less than 10 days. Following manure 

and slurry application to land, pathogen numbers will reduce due to exposure to 

UV light and the drying effects of weathering. However if these organic wastes 

are readily exposed to rainfall the potential for runoff is greatly increased (Crane 

et al. 1983).  
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The Control of Pollution (Silage, Slurry and Agricultural Fuel Oil) (Scotland) 

Regulations 2003 (SSI. 2003/531) regulates farms where slurry is produced. 

Slurry facilities should usually have a 6 month storage capacity. Guidelines 

offering best practice advice are given in the Code of Good Practice (Scottish 

Executive 2005, DEFRA 2009) on storage and application to land of manure 

and slurry. Application of solid manure or slurry should not be made to 

waterlogged, frozen or snow covered ground or where there is a likelihood of 

heavy rain in the 48 hours following application. Organic waste should not be 

applied within 10 m of surface waters and 50 m of springs, boreholes or wells.  

Application rates are specific to each site depending on loading and crop 

requirements. However the rate should never exceed either 50 m3/ha for 

surface spreading although the normal rate is 25-30 m3/ha (Scottish Executive 

2005; DEFRA 2009).  

 

Direct deposition of faecal material by farmed animals also poses a risk to the 

contamination of surface waters and private water supplies where there is no 

protection provided for the water supply. The Scottish Executive (2005) and 

DEFRA (2009) give guidelines on grazing animals in the vicinity of surface 

waters and wells, springs or boreholes.  

 

Microorganisms inside faecal waste deposits have protection against the effects 

of weathering and predators. Faecal coliforms have been shown to survive 

intense sunlight and heat for at least one summer (Buckhouse and Gifford 

1976). Direct deposition of faecal material by birds and wildlife is much more 

difficult to manage with regards to surface waters. However private water 
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supplies can be protected by ensuring they are encased in a secure unit to 

prevent access by small animals. Regular checks and maintenance is also of 

utmost importance. 

 

Septic tank storage of human waste has the potential to contaminate water 

supplies. Recommendations for private water supplies state that they should be 

sited uphill of and at least 50 m away from potential sources of pollution 

(McGaw et al. 1998).  

 

 

1.7 Survival of Bacteria   

 

Bacteria that have the ability to survive for long periods of time in water and soil 

environments increase the potential for groundwater contamination which may 

in turn contaminate potable water supplies.  

 

The introduction of microbes into water or soil often has a dramatic effect on 

their survival and activity. There is often a rapid decline in their numbers and a 

decrease in the average activity per cell of the surviving introduced microbes. 

This has been attributed to the scarcity of available nutrients and the hostility of 

the soil environment to incoming microbes including competition from 

indigenous microorganisms (Van Veen, Overbeek and Van Elsas 1997).  

 

In general, the survival of microorganisms depends on a number of factors such 

as temperature, pH, soil moisture and texture, nutrient availability and the 
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presence of predators and competing microbial species. Temperature is thought 

to be one of the major factors influencing bacterial survival (Davenport, Sparrow 

and Gordon 1976; Gerba and Bitton 1984). Survival of microorganisms has 

been found to be prolonged at low temperatures. E. coli has been shown to 

survive longer at 4˚C than at 25˚C (Rattray et al. 1992; Bogusian et al. 1996; 

Cools et al. 2001). Increased exposure to UV light can also reduce bacterial 

survival (Crane et al. 1983).  

 

Temperature can affect microbial activity by altering the moisture content of 

soils (Entry et al. 2000). Microorganisms require a certain amount of moisture to 

avoid desiccation. Bacterial survival has been shown to be greater in finer soils 

as water retention is increased (Abu-Ashour et al. 1994).  However, an 

excessive increase in moisture content can lead to oxygen depletion as pore 

spaces become saturated. This has been shown to lead to a decrease in 

microbial numbers (Postma and van Veen 1990). In addition, microbial 

predators such as protozoa tend to be more active at higher soil moisture 

contents, perhaps because increased water tends to provide a mechanism for 

movement between pores, although protozoa may be excluded from some 

pores due to their size (Abu-Ashour et al. 1994). In clay-rich soils bacteria 

adsorb more readily to particles and gain increased protection from predation 

(Abu-Ashour et al. 1994; Stotzky 1989).  
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1.8 Transport of bacteria through soil 

 

The soil serves as a natural filter by providing adsorption sites for the removal of 

bacteria and viruses. It can therefore reduce microbial transport to a certain 

extent but its retention capabilities are finite (Gerba and Bitton 1984).  

 

There are many factors which are thought to have an effect on bacterial 

transport through soil. The soil itself is of utmost importance with factors such 

as soil texture, particle size distribution, organic matter content, pH, ionic 

strength of soil solution and bulk density, all shown to impact microbial transport 

(Bitton, Lahav and Henis 1974; Smith et al. 1985; Paterson et al. 1993).  Soil is 

comprised of a combination of sand, silt, clay and organic matter and the 

combination of these helps to determine its adsorptive properties and physical 

structure. The organic matter and clay particles have a significant effect on 

bacterial movement due to microbial attraction to their negatively charged 

surfaces (Mawdsley et al. 1995). The highest organic matter content is found in 

the surface layer of soil which explains why the surface layer is very effective at 

removing bacteria by both filtration and adsorption mechanisms (Gerba, Wallis 

and Melnick 1975; Crane et al. 1983). Gerba, Wallis and Melnick (1975) found 

that 92% or greater of the bacteria studied were removed in the top 1 cm of soil.  

 

One of the most important environmental factors with regards to bacterial 

movement in soil appears to be the water content of the soil, and water 

movement through the soil. In unsaturated soil, water movement is primarily 

vertical because of the force of gravity, however, water movement in the 
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saturated zone or groundwater is horizontal because of the differences in 

pressure or elevation. Madsen and Alexander (1982) found that there was 

almost no transport in soil microcosms when there was no water movement but 

when water was present vertical transport occurred. Increased movement of 

bacteria in saturated soils has been found in a number of studies (Wong and 

Griffin 1976; Worrall and Roughley 1991). 

 

Many studies of bacterial movement show rapid movement and a high 

concentration of bacteria reaching receiving waters. This is thought to be due to 

preferential flow of microorganisms through macropores in the soil. These can 

be cracks, fractures, worm holes or channels formed by plant roots or animals. 

Preferential flow through macropores has been observed in both laboratory and 

field studies (Chandler, Farran and Craven 1981; Thomas and Phillips 1979). 

Smith et al. (1985) found greater retention of E. coli in disturbed soil compared 

to a corresponding intact soil. The disturbed soil had been mixed which 

removed most of the macropores. The role of macropores in bacterial transport 

was also indicated by van Elsas, Trevors and van Overbeek (1991) when it was 

shown that Pseudomonas fluorescens was transported to greater depths in 

undisturbed soils than in those which had been repacked.  

 

 

1.9 Monitoring methods 

 

The identification of pathogens in drinking water can be difficult due to their low 

numbers. Their detection may require the examination of large volumes of water 
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using time consuming methods. It is recognised that contamination of water 

may be intermittent and so may not be revealed by the examination of a single 

sample. It is therefore of greater value to examine a supply frequently by a 

simple test than occasionally by a more complicated test (Anon 1994). 

 

When pathogens are present in water they are usually greatly outnumbered by 

the normal commensal bacteria of the human or animal intestine and therefore 

detection of an indicator organism is used to show the likelihood of pathogens 

being present in a water supply. An indicator organism should be present in the 

intestinal flora of healthy people, and in higher numbers than those of the 

pathogens they are intended to indicate.  They should be unable to grow out 

with the intestine and must die off at a slightly slower rate than that of the 

pathogens.  They should also be non-pathogenic and easy to isolate, identify 

and count (Oliveri 1982).  

 

Coliform bacteria meet most of these criteria. Coliforms are recognized by their 

ability to ferment lactose at 37 °C and the presence of the enzyme β-

galactosidase.  Coliforms do not possess the enzyme cytochrome oxidase and 

therefore are oxidase negative (SCA 2002). Coliforms are members of the 

Enterobacteriaceae family.  Genera which belong to this family are Escherichia, 

Citrobacter, Enterobacter and Klebsiella.  Many coliforms are ubiquitous to soil 

but the coliform E. coli is known to be present in the gut of warm-blooded 

animals. Some species of Escherichia, Citrobacter, Enterobacter and Klebsiella 

are thermotolerant however some thermotolerant species may not be faecal in 
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origin unlike E. coli which is solely faecal and is regarded as the only true faecal 

coliform (Waite 1985). 

 

The detection and enumeration of coliform bacteria is the standard 

microbiological analysis used in the UK to determine water quality, however 

there are a number of different methods used. The two most common methods 

are membrane filtration (MF) and the multiple tube fermentation method 

(MTFM).  Both standard methods have their advantages and disadvantages. 

The membrane filtration is quicker and easier to perform than the multiple tube 

method, however high background bacterial numbers can interfere with the 

results as the growth of indicator organisms may be inhibited (Fricker, 

Illingworth and Fricker 1997).  In a 100 ml sample of drinking water, coliforms 

must not be detected. The presence of one or more coliform bacteria indicates 

a fail for that water sample.  

 

There have however been advances in more rapid detection techniques of the 

coliform organisms. Chromogenic and fluorogenic compounds have been 

developed following the understanding of the biochemical actions of the β-D-

galactosidase and  β-D-glucoronidase enzymes which are primary 

characteristics of coliforms and E. coli respectively. Media has been developed 

by several companies which contain a specific substrate for each of these 

enzymes. These include Colilert (IDEXX), Coliquick™ (Hach) and Colisure™ 

(Millipore). Colilert 18™ gives results in 18 to 22 hours. It utilises the most 

probable number (MPN) method of statistical analysis providing a counting 

range from one to 2419 colony forming units per 100 ml.     
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1.10 Statement of aims 

 

The aim of this thesis is to evaluate methodology that can reliably detect and 

quantify coliform bacteria in potable water and soil and to use this method to 

study factors which influence the survival and transport of coliform bacteria in 

the environment. The extent and severity of drinking water contamination from 

private water supplies in the north east of Scotland will be determined along 

with potential factors increasing the likelihood of contamination. These aims will 

be achieved through the following objectives: 

 

• Background research of private water supplies in Aberdeenshire, 

Scotland using data provided by Aberdeenshire council 

 

• Study of a number of private water supplies in Central Aberdeenshire to 

investigate microbiological quality of potable water from supplies 

 

• Evaluation of a rapid testing method (Colilert 18™) for the detection and 

enumeration of coliform bacteria in potable water and soil samples 

 

• The application of this testing to potable water samples and soil samples 

to study factors affecting coliform survival  

 

• The application of this testing to study factors affecting the transport of 

coliform bacteria in repacked and intact soil columns 
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Chapter 2 Evaluation of Colilert 18™ as a replacement method 

for detection of coliform bacteria in water compared 

to the standard method, membrane filtration 

 

 

2.1 Introduction 

 

The detection and enumeration of coliform bacteria particularly E. coli is well 

recognised as the standard microbiological analysis to indicate the presence of 

faecal contamination of drinking water.  Coliform bacteria particularly E. coli are 

present in large numbers in the gut of humans and warm blooded animals. The 

presence of these ‘indicator’ bacteria in drinking water highlights the potential 

for waterborne pathogens to be present. Pathogens, if present, are usually 

found in low numbers and therefore are more difficult to detect whereas 

coliforms are relatively easy to test for. Not all coliform bacteria are of faecal 

origin, many are found naturally in the environment. However the presence of 

any coliform bacteria in potable water can be an indication of the failure of a 

treatment system or a poorly protected groundwater supply. Coliforms have 

similar survival patterns to many waterborne pathogens and are effective at 

indicating the potential presence of these pathogens (Geldreich 1978; Gleeson 

and Gray 1997; SCA 2002).  

 

The two most commonly used tests for the detection and enumeration of 

coliforms in potable water are the membrane filtration method (MF) and the 

multiple-tube fermentation method (MTFM). In these methods, the ability of 
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coliform bacteria to ferment lactose at 37°C is used as a means of identifying 

them.  Faecal coliforms including E. coli are further identified by their ability to 

ferment lactose at 44°C. These established methods initially give a presumptive 

count with further confirmatory tests required to eliminate any false positive 

results. However these tests are time consuming and labour intensive, with the 

final confirmed result taking up to 72 hours to achieve.  

 

The historic definition of coliform bacteria based on their ability to ferment 

lactose (Anon 1994) was revised and now includes their enzymatic properties, 

coliform bacteria possessing the enzyme β-D-galactosidase and E. coli 

possessing β-D-glucoronidase. By understanding the actions of the enzymes, 

chromogenic and fluorogenic compounds have been developed which can 

result in colour changes and fluorescence respectively in specific growth media.  

This has seen advances in more rapid detection techniques of the coliform 

bacteria. Such media are now being used as an alternative method for the 

detection and enumeration of coliforms and E. coli.  

 

One of these methods is Colilert 18™ which is also referred to as Defined 

Substrate Technology (DST). This method identifies bacteria through the effect 

of their constitutive enzymes on chromogenically labelled specific substrates. 

For β-D-galactosidase, the substrate galactopyranoside is present, conjugated 

with ortho-nitrophenol as a chromogenic indicator, in the form of the molecule 

ortho-nitrophenol-β-D-galactopyranoside (ONPG). When coliforms grow in 

Colilert 18™ the enzyme β-D-galactosidase allows them to metabolise the 
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galactopyranoside component of ONPG, thereby releasing free ortho-

nitrophenol which changes the solution from colourless to bright yellow. 

 

For β-D-glucuronidase, the substrate glucuronide is present in Colilert 18™ 

conjugated with methyl umbeliferone as a fluorogenic indicator, in the form of 

the molecule 4-methylumbeliferyl-β-D-glucuronide (MUG). When E. coli grows 

in Colilert 18™ the enzyme β-D-glucuronidase allows metabolism of the 

glucuronide component of MUG, thereby releasing methyl umbelifererone, 

which can be seen as a bright blue fluorescence under UV light at 365 nm. 

Organisms that do not possess the target enzymes cannot utilise the specific 

substrate used in DST media therefore are unable to grow and cause 

interference (Sartory and Watkins 1999). Colilert has a special formulation 

which suppresses non- coliforms which do have these enzymes, minimizing 

false positives and false negatives (IDEXX 2007).  

 

An alternative method for the microbiological assessment of private water 

supplies in Aberdeenshire was required for this project. The water to be 

analysed was non-chlorinated groundwater collected from private water 

supplies. The technique to be used had to make the workload more 

manageable. In particular, preparation and analysis time had to be reduced. 

The replacement technique had to be shown to be at least as reliable as the 

standard techniques. The cost also had to be comparable with standard 

methods. It is recognised that water contamination can be of a sporadic nature 

and that a single water sample may not give an accurate representation of the 

quality of a body of water. Faster analysis of samples would increase the 
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potential for a greater number of samples to be tested and so gaining a clearer 

picture of the microbiology of the water. 

 

Validation of Colilert 18™ for the microbiological analysis of water in this project 

required the use of Colilert 18™ in parallel with an existing method for the 

examination of drinking water, which in this case was the membrane filtration 

method, with further confirmation using a modified Miles Misra (MMM) method.  

Methods were compared using several Gram negative bacterial isolates which 

have a widespread occurrence in the environment, namely Escherichia coli, 

Pseudomonas aeruginosa, Enterobacter aerogenes and Aeromonas hydrophila.  

 

E. coli and E. aerogenes are both coliform bacteria, but can be differentiated 

between due to E. coli being a faecal coliform.  P. aeruginosa and A. 

hydrophila, although not coliform bacteria, are opportunistic potentially 

pathogenic bacteria which can occur in drinking water.   

 

 

2.2 Material and methods   

 

 

2.2.1 Preparation of bacterial cultures 

 

Stock cultures were prepared from Cultiloops supplied by Oxoid (Basingstoke, 

UK). The organisms used were Escherichia coli (ATCC 35218), Pseudomonas 

aeruginosa (ATCC 27583), Enterobacter aerogenes (ATCC 13048) and 

Aeromonas hydrophila (ATCC 7966). 
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Stock cultures were prepared under aseptic conditions by streaking the 

Cultiloop onto nutrient agar (Oxoid, Basingstoke, UK)) plates and placing them 

in an incubator at 37+0.5°C for approximately 24 hours. This allowed for visible 

growth of the bacteria.  

 

 

2.2.2 Preparation and quantification of bacterial suspensions of stock 

cultures for serial dilution using turbidity measurements 

 

Sterile ¼ strength Ringers solution (Oxoid, Basingstoke, UK) (10 ml) was 

pipetted into a sterile universal container. A turbid suspension of each of the 

cultures was prepared by removing bacterial culture from the nutrient agar 

plates and mixing it with the ¼ strength Ringers solution.  

 

A turbidity meter was used to standardise bacterial suspensions. An aliquot (3 

ml) of the 100% turbid suspension was removed and mixed with 10 ml ¼ 

strength Ringers solution in a turbidity tube. More Ringers solution was added if 

required to produce a stock suspension of 60 % transmittance measured on the 

turbidity meter. Further dilutions were prepared from this stock suspension. 

Serial dilutions were prepared by removing 1 ml of the stock suspension and 

placing it in a sterile universal container, containing 9 ml of sterile ¼ strength 

Ringers solution. The bottle was inverted to ensure mixing of the organism. This 

process was continued, each time obtaining a tenfold dilution. The stock 

suspension was referred to as ‘0’ dilution, each successive dilution being 

labelled accordingly (1, 2, 3 etc).  
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Working suspensions were prepared by removing 1 ml from the serial dilutions, 

and adding each to a separate 1 litre of ¼ strength Ringers solution. This 

resulted in a 100 ml of sample with an approximate bacterial count for E. coli 

and E. aerogenes which would lie within the range of detection of Colilert 18™ 

i.e. between 0 and 2419 cfu. Each study required the preparation of fresh serial 

dilutions however it was important to note that using the turbidity meter could 

result in some variation in bacterial counts between different batches of serial 

dilutions. 

 

 

2.2.3 Preparation of glycerol stocks of bacteria for long term 

storage 

 

Glycerol (0.15 ml; 100%) was added to a 2 ml screw-cap vial. This was 

sterilised by autoclaving at 121°C for 20 minutes. The glycerol was allowed to 

cool prior to adding 0.85 ml of a logarithmic-phase bacterial culture to the vial of 

pre-sterilised glycerol. The vial was vortexed vigorously to ensure even mixing 

of the bacterial culture and the glycerol. This was then frozen and stored in a 

minus 70°C freezer. The glycerol stocks were defrosted prior to use. Repeated 

thawing and re-freezing of glycerol stocks was avoided to prevent a reduction in 

the viability of the bacteria. 
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2.2.4 Modified miles misra (MMM) for bacterial quantification  

 

Serial dilutions of each of the bacterial cultures were used to obtain an actual 

number of bacteria present in each dilution series. An aliquot (20 µl) from each 

one litre dilution was pipetted onto a separate, recorded position on the surface 

of a pre-dried (37°C) agar plate. This was repeated nine times for each dilution. 

The drops were allowed to dry. The plates were then incubated at 37°C for 24 

hours until visible colonies developed in the small circular areas corresponding 

to the drops. If a sufficient number of dilutions had been prepared, a drop from 

one of the dilutions gave rise to a countable number of discrete colonies. 

Colonies were counted, and the mean and standard deviations calculated to 

obtain a direct bacterial count in colony forming units (cfu) per 1 ml. Spots 

containing between 20 – 40 colonies were used to calculate the colony count 

accurately (Singleton and Sainsbury 1996; Miles and Misra 1938). The Miles 

Misra technique has been described by Baker and Breach (1980) as “probably 

the most accurate of the viable count techniques”.  

 

 

2.2.5 Membrane filtration method for bacterial quantification 

 

Using sterile membrane filtration apparatus, a measured volume of water for 

analysis was filtered through a sterile cellulose nitrate membrane of pore size 

0.45 μm. The membrane was then transferred aseptically, onto a pad in a 55 

mm Petri dish which had been soaked in membrane Lauryl Sulphate Broth 

(MLSB) (MERCK pharmaceuticals, West Drayton, UK). This is a selective 
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media containing lactose and a pH indicator that allowed for the detection of 

acid production from the fermentation of lactose. The Petri dish containing the 

membrane and pad was then placed in a 30°C incubator for 4 hours then 

transferred to a 37°C incubator for 14 hours. This procedure was duplicated; 

however the second sample was transferred to a 44°C incubator after the initial 

4 hour incubation at 30°C.  

 

After incubation it is assumed that the organisms under investigation will be 

retained on or near the surface of the membrane and will form colonies of 

characteristic morphology and colour. The other organisms will either be 

inhibited or can be distinguished by their appearance. When coliform colonies 

grow on this medium they produce yellow colonies. Pink colonies were not 

counted as they are classified as non-lactose fermentors and by definition are 

not coliforms, although they are noted as they may interfere with coliform 

growth.  It is assumed that a single bacterium will generate a colony. The yellow 

colonies are counted as colony forming units (cfu) to give a numerical value for 

membrane filtration (Anon 1994). 

 

Following incubation any yellow colonies can only be presumed to be coliforms 

(at 37°C) or faecal coliforms (at 44°C) and are termed presumptive colonies.  

Further tests to confirm the presumptive bacteria as coliforms are required.  
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2.2.6 Tests used to provide confirmation of coliform bacteria 

 

A minimum of 10 yellow colonies from each membrane were selected randomly 

for confirmation (or all colonies if less than ten on the membrane). The following 

tests were carried out for each individual colony used for confirmation:  

 

 

2.2.6.1 Lactose peptone water  

 

Capped test tubes containing 5 ml of Lactose peptone water (LPW) were 

prepared and sterilised in advance. For each colony two LPW test tubes were 

required. A single yellow colony from the membrane was used to inoculate two 

tubes of LPW. This was also used to inoculate tryptone water, a nutrient agar 

plate and a McConkey agar plate.  

 

One LPW test tube was placed in an incubator at 37°C for 24 hours. A colour 

change from yellow to pink/red was observed if coliforms were present due to 

acid production from the fermentation of lactose. One LPW was placed in an 

incubator at 44°C for 24 hours. Again a colour change due to the fermentation 

of lactose was observed from yellow to pink/red if E. coli was present.  

 

 

2.2.6.2 Tryptone water  

 

Tryptone Water was prepared and 5 ml placed into capped test tubes and 

sterilised. The Tryptone water was inoculated with a single colony following 
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inoculation of the LPW. The test tube was placed in an incubator at 44°C for 24 

hours. Following incubation, the test tubes were placed in a fume cupboard, and 

examined for indole production from tryptophan by adding two drops of Kovac’s 

reagent (Fisher Scientific, Loughborough, UK). A positive reaction will produce 

a red ring at the meniscus of the liquid. This confirms the colony as E. coli as 

opposed to other coliform bacteria.  

 

 

2.2.6.3 Oxidase test  

 

A nutrient agar plate was prepared and streaked with the same colony as was 

used to inoculate the LPW and the Tryptone water. The plate was then 

incubated at 37˚C for 24 hours after which time growth should be visible. An 

oxidase stick (Oxoid, Basingstoke, UK) was placed on a single colony on the 

nutrient agar. If the bacterial colony was oxidase positive the oxidase stick 

changed to purple. There should be no colour change reaction for coliforms as 

they are oxidase negative.  

 

 

2.2.6.4 Examination of pure culture 

 

McConkey agar plates were prepared and streaked with the same colony as 

was used to inoculate the LPW, Tryptone water and nutrient agar plate. The 

plate was then incubated at 37˚C for 24 hours to allow for visible growth. 

McConkey agar allows the growth of Gram-negative bacteria and inhibits most 
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Gram-positive bacteria. Gram-negative bacteria that can ferment lactose grow 

as red/pink colonies due to utilisation of the available lactose in the agar. Non-

lactose fermenting bacteria will form white/colourless colonies by utilising 

peptone. For each of the colonies plated onto McConkey agar, the appearance 

of the colonies was noted to determine whether the sample was a pure strain of 

lactose fermenting, Gram-negative bacteria. 

 

 

2.2.6.5 Confirmation of coliform bacteria 

 

A number of tests were carried out to confirm that a subcultured colony was a 

coliform.  Table 2.1 summarises these tests and the interpretation of results. To 

confirm as coliform bacteria each of the tests must meet all the criteria. 

 

Table 2.1 Summary of tests used to confirm colonies as coliform 

bacteria 

Test 
Confirmation of 

coliform 
Confirmation of faecal 

coliform 

Lactose peptone water Acid produced at 37˚C Acid produced at 44˚C 

Tryptone water 
No indole production 

from tryptophan 

Indole production from 

tryptophan 

Oxidase test Oxidase negative Oxidase negative 

Growth in 
McConkey agar 

Gram negative bacteria 

produce red / pink 

colonies 

Gram negative bacteria 

produce red / pink 

colonies 
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The number of colonies in a sample was then calculated using the following 

equation (SCA 2002): 

 

Confirmed 
coliform count 
(cfu / 100 ml) 

= 
No. of confirmed colonies 

X 
Total no. of 
presumptive 

colonies 
No. of presumptive colonies 

set up for confirmation 
 

 

2.2.7 Protocol for use of Colilert 18™ 

 

Colilert 18™ (IDEXX, Buckinghamshire, UK) was used as instructed by the 

manufacturer and as outlined here. A water sample (100 ml) was poured into a 

sterile Colilert 18™ bottle. The Colilert 18 reagent was then added to the 

sample (Figure 2.1) and shaken vigorously to aid the reagent to dissolve.  

 

                                   

Figure 2.1 Addition of Colilert 18™ reagent to 100 ml sample of water in 

a sterile Colilert 18™ bottle  

(Reproduced with permission from IDEXX) 

 

Once the reagent had completely dissolved, the sample was poured into the 

Quanti-tray™.  This was then placed into the rubber tray carrier, wells facing 

down and sealed using the Quanti-tray heat sealer unit.  The Quanti-tray 

was then placed into an incubator, wells facing down, and incubated at 37 ± 
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0.5°C for 18 hours.  Control blanks containing only ¼ strength Ringers solution 

for each analysis were prepared and incubated. After 18 hours the tray was 

removed from the incubator and examined visually for any yellow wells (Figure 

2.2) which indicate the presence of coliform bacteria. 

 

The number of wells were counted and referred to the Most Probable Number 

(MPN) table (IDEXX), to determine the coliform count per sample. If wells were 

very pale or no colour was present in any of the wells, the trays were placed 

back into the incubator and examined again after a further 4 hours.   

 

 

Figure 2.2: Quanti-tray™ containing water and dissolved reagent. Yellow 

wells indicate presence of coliform bacteria  

(Reproduced with permission from IDEXX) 

 

To determine the number of E. coli present, the tray was examined under ultra-

violet light (365 nm) using a UV viewing cabinet containing a 6-Watt fluorescent 

UV lamp (IDEXX). Wells that fluoresced indicated the presence of E. coli. Using 

the same MPN tables the number of E. coli per sample was determined. The 

MPN per 100 ml was calculated taking into account any dilutions made. 
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A Quanti-tray Colilert 18™ comparator (IDEXX) was supplied with the Colilert 

18™ media. If any wells were particularly pale from a sample after a maximum 

of 22 hours incubation, they would be compared with the comparator wells. If 

the sample wells were more yellow than the comparator they were regarded as 

a positive result, however if they were less yellow than the comparator wells 

they were ignored.  The comparator tray was kept in the dark in a refrigerator at 

4-8°C for a maximum of 9 months according to the manufacturers use by date. 

 

 

2.2.8 Preparation of antibiotic resistant strains of E. coli and E. 

aerogenes  

 

An antibiotic resistant strain of E. coli and E. aerogenes was selected to enable 

differentiation from the original strain and ultimately to allow them to be used as 

tracer organisms within water and soil samples containing natural organisms. 

They each had to have resistance to two antibiotics and this resistance had to 

differ for each bacterium so as to be able to distinguish between them. It has 

been estimated that within bacterial populations one cell in every 108 cells is 

spontaneously resistant to any one antibiotic, whereas one cell in 1012 cells may 

be resistant to two combined antibiotics (Linton 1983). It was also essential that 

there was minimal or no natural resistance to these antibiotics by bacteria 

present in the soil. 

 

E. coli and E. aerogenes were cultured in nutrient broth to produce a 

concentrated broth culture of each bacterial strain. E. coli was prepared with  
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resistance to streptomycin and rifampicin.  E. aerogenes was prepared with 

resistance to chloramphenicol and erythromycin. 

 

Prior to adding the antibiotics to the nutrient agar, the antibiotics were sterilised 

in the following ways: 

• streptomycin was prepared with water and filter sterilised 

• rifampicin was prepared in methanol  

• erythromycin and chloramphenicol were prepared in ethanol  

 

Petri dishes were prepared containing various concentrations of the antibiotic 

using gradient plates. For E. coli, nutrient agar solutions were prepared which 

contained streptomycin concentrations ranging from 50 µg/ml to 500 µg/ml. For 

E. aerogenes, nutrient agar solutions were prepared which contained 

chloramphenicol concentrations ranging from 20 µg/ml to 200 µg/ml. These 

were poured into Petri dishes to make a thin layer. The Petri dishes were then 

tilted by slightly raising up one end. The agar was allowed to set before pouring 

in nutrient agar to make up to the normal volume of agar. The plate was placed 

level and the agar left to set. The antibiotic diffuses through the agar allowing a 

gradient to be set up i.e. a higher concentration of antibiotic at one end 

decreasing to a lower concentration. 

 

Using a sterile, bent glass rod, 0.1 ml aliquots of concentrated bacterial broth 

culture were spread onto the agar surface containing antibiotic. The plates were 

inverted and incubated at 37°C for 24 hours.  
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Plates were observed under good lighting conditions. Those Petri dishes giving 

confluent lawns of growth represented concentrations of antibiotic that were 

below the minimum inhibitory concentration for that particular strain. A clear 

background represented complete inhibition of the parent strain. Plates that 

gave distinct colonies arising from a clear background were used to further 

purify the bacteria as a potential antibiotic resistant strain (Hagedorn 1994). 

 

Resistant colonies were removed using a sterile loop and streaked onto another 

antibiotic-supplemented plate of the same medium. In this case E. coli was 

streaked onto nutrient agar plates containing 400 µg/ml of streptomycin and E. 

aerogenes was streaked onto nutrient agar plates containing 100 µg/ml 

chloramphenicol. This simple purification step was sufficient for obtaining a pure 

culture of the antibiotic-resistant strain.  

 

This process was repeated but with nutrient agar supplemented with two 

antibiotics. For E. coli, nutrient agar was prepared which contained a 

streptomycin concentration of 400 µg/ml and rifampicin concentrations ranging 

from 40 µg/ml to 200 µg/ml. For E. aerogenes, nutrient agar was prepared 

which contained a chloramphenicol concentration of 100 µg/ml and 

erythromycin concentrations ranging from 50 µg/ml to 400 µg/ml. These were 

poured into Petri dishes to make a thin layer. The Petri dishes were then tilted 

by slightly raising up one end. The agar was allowed to set before pouring in 

nutrient agar to make up to the normal volume of agar. The plate was placed 

level and the agar left to set.  
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Aliquots (0.1 ml) of concentrated bacterial broth cultures containing bacteria 

already resistant to the initial antibiotics (streptomycin resistant E. coli and 

chloramphenicol resistant E. aerogenes) were spread onto the agar surface 

containing antibiotics. The plates were inverted and incubated at 37°C for 24 

hours.  Plates that gave distinct colonies arising from a clear background were 

used to further purify the bacteria as a potential antibiotic resistant strain. 

 

Resistant colonies were removed using a sterile loop and streaked onto another 

antibiotic-supplemented plate of the same medium. The final concentrations of 

antibiotic used to prepare antibiotic resistant E. coli were 400 µg/ml 

streptomycin and 80 µg/ml rifampicin. The final concentrations of antibiotic used 

to prepare antibiotic resistant E. aerogenes were 100 µg/ml chloramphenicol 

and 200 µg/ml erythromycin. 

 

 

2.2.9 Isolation and characterisation of an antibiotic resistant strain of E. 

coli and E. aerogenes  

 

Confirmation tests were carried out to determine whether selected antibiotic 

resistant coliform bacteria behaved in the same way as non-antibiotic resistant 

coliform bacteria, i.e. original culture. The tests were carried out as described 

previously using the tests for the confirmation of coliform bacteria (method 

2.2.6). Ten colonies were confirmed from the original culture and twenty from 

the antibiotic resistant colonies. Additionally the growth on both the nutrient agar 
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and McConkey agar plates with and without antibiotics were examined to 

compare growth rate and visual similarity.  

 

The Colilert 18™ method was carried out on the same colonies to ensure they 

could be detected by this technique. A colony was added to 100 ml of sterile ¼ 

strength Ringers solution and analysed as described in method 2.2.7.  

 

 

2.3 Material and methods: Evaluation of Colilert 18™ for the detection 

of coliform bacteria 

 

To evaluate the detection and quantification of coliforms using Colilert 18™ four 

bacterial strains (E. coli, E. aerogenes, P. aeruginosa, A. hydrophila) were 

quantified using Colilert 18™, membrane filtration method and by the drop plate 

method, using a modified Miles Misra (MMM).  

 

 

2.3.1 Detection and quantification of single bacterial cultures  

 

Serial dilutions of E. coli, E. aerogenes, P. aeruginosa and A. hydrophila were 

prepared using the methods described in sections 2.2.1 and 2.2.2. Dilutions 

tested for E. coli and E. aerogenes ranged from 3 to 8 dilutions. P. aeruginosa 

and A. hydrophila dilutions tested ranged from 3 to 5. From each dilution, 1 ml 

was removed and added to a separate sterile 1 litre of ¼ strength Ringers 
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solution. These one litre bacterial suspensions were then tested using MMM, 

MF and Colilert 18™.  

 

MMM was carried out as described in 2.2.4. The average value for the nine 

replicates of MMM was calculated and given as cfu per 20 μl. For each of the 

bacteria, the MMM result was extrapolated to determine the expected number 

of bacteria in 100 ml of the same solution.  

 

The bacterial suspensions were analysed using MF (2.2.5 and 2.2.6) and 

Colilert (2.2.7). For both methods, two, 100 ml of sample from each bacterial 

suspension was used. Each method was used to detect the total coliform and E. 

coli count per 100 ml of sample.  

 

 

2.3.2 Detection and quantification of mixed bacterial cultures  

 

To determine if mixed bacterial populations affected the detection of coliform 

bacteria the four selected bacterial isolates were tested in a series of 

experiments as shown in Table 2.2.  

 

Fresh dilutions of E. coli, E. aerogenes, P. aeruginosa and A. hydrophila were 

prepared using the method described in section 2.2.2. Serial dilutions tested 

ranged from 4 to 7. From each dilution, 1 ml was removed and added to a 

separate sterile 1 litre of ¼ strength Ringers solution. These bacterial 

suspensions were then analysed using MMM as described in 2.2.4. The 
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average value for the nine replicates of MMM was calculated and extrapolated 

to determine the expected number of bacteria in 100 ml of the same solution.  

 

To quantify bacterial numbers in mixed suspensions, sterile 1 litre solutions of ¼ 

strength Ringers were prepared for each experiment in Table 2.2. E. coli and E. 

aerogenes from dilution 7 (1 ml) and P. aerogenes and A. hydrophila from 

dilution 4 (1 ml) were added to the solution when required. Low dilutions (7) 

were used to determine the ability of each method to accurately detect low 

colony counts of each bacteria whereas high dilutions (4) were used to 

determine if excessive concentrations of bacteria caused interference with the 

detection methods. 

 

Table 2.2:  Combinations of bacteria and dilution factor used for  

  analysis of bacterial solutions by modified Miles Misra,  

  membrane filtration and Colilert 18™  

 

Bacterium Experiment and dilution factor 

 
EC 

EA  

EC 

PA 

EC 

AH 

EA 

PA 

EA 

AH 

PA 

AH 

EC 

EA 

PA 

EC 

EA 

AH 

EC 

PA 

AH 

EA 

PA 

AH 

EC 

EA 

PA 

AH 

E. coli (EC) 7 7 7    7 7 7  7 

E. aerogenes (EA) 7   7 7  7 7  7 7 

P. aeruginosa (PA)  4  4  4 4  4 4 4 

A. hydrophila (AH)   4  4 4  4 4 4 4 
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For analysis using MF (method 2.2.5 and 2.2.6) and Colilert 18™ (method 

2.2.7) two, 100 ml of sample from each bacterial suspension was used to 

determine the total coliform and E. coli count per 100 ml of sample. The 

averages of these values were used for comparison. 

 

 

2.3.3 Comparison of membrane filtration and Colilert 18™ for analysis of 

coliform bacteria in groundwater 

 

Thirty seven samples were collected from 14 private water supplies in 

Aberdeenshire where the domestic water supply was from a groundwater 

source. These supplies are briefly described in Table 2.3 along with the code 

allocated to it. Twenty two samples were taken from kitchen cold water taps, 15 

of which were fed directly from the well or spring source with no additional 

storage prior to use, and 7 which were fed from a storage tank or external 

reservoir. Two samples were taken from a storage tank supplying the kitchen 

cold water tap and a further 13 samples were taken directly from the well or 

spring supplying potable water.  

 

Tap samples were collected in a sterile 500 ml glass bottle. The tap was 

sterilised with hypochlorite solution prior to running the water for one minute 

prior to collecting the sample.  

 

Well samples were collected in a sterile 500 ml glass bottle. The bottle was 

weighted by fastening a heavy chain around it, prior to lowering into the well. 
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Once the bottle was filled with water it was removed and sealed. The storage 

tank samples were collected in the same way as the well samples.  

 

Table 2.3  Details of private water supplies used for potable water 

sample collection   

 

Code 
Property 
Location 

Supply Type Details 

A Tarves Well Direct supply to kitchen tap 

B Ardallie Borehole 
Borehole supplies storage tank 

which feeds kitchen tap 

C Arnage Well Direct supply to kitchen tap 

D Craigdam Well Direct supply to kitchen tap 

E Methlick Spring 
External reservoir which 

supplies kitchen tap 

F Kemnay Well 
External reservoir which 

supplies kitchen tap 

G Kemnay Well Direct supply to kitchen tap 

H Kemnay Well Direct supply to kitchen tap 

I Thainstone Well Direct supply to kitchen tap 

J Kintore Well Direct supply to kitchen tap 

K Dyce Borehole Direct supply to kitchen tap 

L Udny Well Direct supply to kitchen tap 

M Kinellar Well Direct supply to kitchen tap 

N Kinellar Well Direct supply to kitchen tap 
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All samples were placed in a cool box and taken back to the laboratory for 

analysis. The analysis was carried out within 4 hours of sample collection.  

Samples were analysed by both membrane filtration (method 2.2.5 and 2.2.6) 

and Colilert 18™ (method 2.2.7). Analysis was carried out using a 10 and 100 

ml volume of each sample, making the 10 ml sample up to 100 ml with ¼ 

strength Ringers solution.  

 

 

 2.4 Results and Discussion  

 

 

2.4.1 Detection and quantification of single bacterial cultures 

 

All bacteria were grown and could be quantified using the modified Miles Misra. 

Results are shown in Table 2.4. This would be expected as this is a non-specific 

method for bacterial quantification. In contrast, the selective methods, 

membrane filtration and Colilert 18™ only detected and quantified E. coli and E. 

aerogenes which are specific methods for coliform detection.  

 

Both methods successfully distinguished between E. coli and E. aerogenes, 

with the Colilert 18™ observation under UV light being significantly more rapid 

compared to the need for confirmatory tests when membrane filtration is used. 

Both methods gave similar detection limits down to the 8th dilution. 
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Table 2.4  Detection and quantification of single bacterial cultures using  

  modified Miles Misra, membrane filtration and Colilert 18™ 

Bacterium Dilution 
Modified Miles 

Misra 
Membrane 
Filtration 

Colilert 18™ 
 

    TC2 FC3 TC2 E. coli 

  cfu / 
20μl1 

cfu/  
100 ml (cfu / 100 ml) ( MPN4/ 100 ml) 

E. coli 3 73 365000 C5 C5 >24196 >24196 

E. coli 4 8 40000 C5 C5 >24196 >24196 

E. coli 5 0.89 4450 C5 C5 >24196 >24196 

E. coli 6 0.11 550 
>200, 

>200 

>200, 

>200 
488, 461 488, 461 

E. coli 7 0 557 25, 28 25, 28 46.5, 44.3 46.5, 44.3 

E. coli 8 0 57 1, 0 1, 0 4.1, 4.0 4.1, 4.0 

E.  aerogenes 3 59 295000 C5 0 >24196 0 

E.  aerogenes 4 6.11 30550 C5 0 >24196 0 

E.  aerogenes 5 0.67 3350 C5 0 >24196 0 

E.  aerogenes 6 0 3357 
150, 

161 
0 

272.3, 

307.6 
0 

E. aerogenes 7 0 337 19, 22 0 28.2, 32.4 0 

E.  aerogenes 8 0 37 1, 0 0 2.0, 1.0 0 

P. aeruginosa 3 48 240000 0 0 0 0 

P. aeruginosa 4 6 30000 0 0 0 0 

P. aeruginosa 5 0.44 2200 0 0 0 0 

A. hydrophila 3 45 225000 0 0 0 0 

A. hydrophila 4 8 43500 0 0 0 0 

A. hydrophila 5 0.78 3900 0 0 0 0 
 

1 mean of 9 samples    2 TC (total coliforms)    3 FC (faecal coliforms)   
4 MPN (most probable number)   5 C (confluent – unable to read due to excessive growth) 
6   > 2419 (exceeds the readable MPN count)   7 approximate extrapolated values 

MF limits of detection (cfu / 100 ml): upper = 200, lower = 0 

Colilert 18™limits of detection (cfu / 100 ml): upper = 2419, lower = 0 
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The linearity of all three methods was assessed using a linear regression plot 

for E. coli (figure 2.3) and E. aerogenes (figure 2.4). Quantification of both 

organisms gave R2 values of between 0.98 and 1.0 indicating a good correlation 

across the dilution range. 

 

 

 

Figure 2.3:  Linear regression of results for the detection of E. coli by 

modified Miles Misra (MM), membrane filtration (MF) and 

Colilert 18™ methods   

(     MM (R2 = 0.9998);        MF (R2 = 0.9805);  

      Colilert 18™ (R2 = 1)) 
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Figure 2.4:  Linear regression of results for the detection of E. aerogenes 

using modified Miles Misra (MM), membrane filtration (MF) 

and Colilert 18™ methods  

(     MM  (R2 = 0.9999);       MF (R2 = 0.9861);   

      Colilert 18™ (R2=9933)) 

             

In this study Colilert 18™ detected a greater number of bacteria than membrane 

filtration. The values obtained can be compared to the quantification of bacteria 

by modified Miles Misra. For E. coli, the predicted numbers for the 7th dilution 

would be around 55 cfu/100 ml which compares favourably with the E. coli 

counts using Colilert 18™ (46 and 44 MPN/100 ml) than by comparison with 

detection by membrane filtration which was approximately fifty percent less (25 

and 28 cfu/100 ml). The trend is repeated for E. aerogenes with a predicted 
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number for the 7th dilution of approximately 33 cfu; Colilert 18™ detecting 28 

and 32 MPN/100 ml and membrane filtration lower at 19 and 22 cfu /100ml. 

These findings cause some concern as the membrane filtration method is one 

of the standard methods used to monitor water for faecal contamination 

however the results here suggest it may be underestimating their occurrence.  

 

Other recent studies comparing Colilert 18™ with membrane filtration have 

observed similar results (Bonadonna, Cataldo and Semproni 2007; Hӧrman and 

Hänninen 2006; Pitkänen et al. 2007). Bonadonna, Cataldo and Semproni 

(2007) compared Colilert 18™ with the membrane filtration reference method 

ISO 9308-1.  It was found that Colilert 18™ detected higher E. coli counts but 

was in fact more sensitive than the reference method. The study also called into 

question the use of indole production as a reliable method for E. coli 

confirmation.  Hӧrman and Hänninen (2006) suggest that higher numbers of E. 

coli are detected with Colilert 18™ due to its ability to recover injured and 

stressed coliforms. 

 

Two bacteria were used to assess the potential for false positives, namely       

P. aeruginosa and A. hydrophila. Both of these were easily quantified by the 

modified Miles Misra but neither gave any response by membrane filtration or 

Colilert 18™ confirming the suitability of these methods for water quality 

analysis. This is particularly useful in providing assurance that Colilert 18™ is 

an appropriate simple and rapid replacement for the more laborious membrane 

filtration, a conclusion also reached by Bonadonna, Cataldo and Semproni 

(2007), Hӧrman and Hänninen (2006) and Buckalew et al. (2006). 
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2.4.2 Detection and quantification of mixed bacterial cultures 

 

Each of the bacteria at the various dilution factors were analysed by modified 

Miles Misra. The values calculated from each dilution are shown in Table 2.5. 

These values were then used to make a comparison with the actual number of 

bacteria detected by each method for the mixed bacterial samples.   

 

Table 2.5  Quantification of bacterial samples using modified Miles 

Misra  

Organism cfu / 100 ml 

 Dilution 4 Dilution  5 Dilution 6 Dilution 7 

E. coli 105000 9450 1100 95 – 110* 

P. aeruginosa 225000 25000 2200 220 – 250* 

A. hydrophila 140000 13350             1650 134 – 165*       

E. aerogenes 90000 15000 1500* 90 – 150* 

*estimated values 

 

Following this quantification, the bacterial samples were combined then 

analysed by MF and Colilert 18™. Figure 2.5 shows the comparison between 

MF and Colilert 18™, using the modified Miles Misra results as the reference 

method. 
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Figure 2.5: Comparison of membrane filtration and Colilert 18™ for the 

detection and quantification of E. coli (EC     ), E. aerogenes 

(EA    ), P. aeruginosa (PA), and A. hydrophila (AH), in spiked 

water samples. A modified Miles Misra is used for reference. 

  (EC and EA – dilution 7, PA and AH – dilution 4)   

Note:  P. aeruginosa and A. hydrophila were enumerated using MMM and were found to contain 

approximately 225,000 and 140,000 cfu / 100 ml respectively at dilution 4, however were not 

detected using MF or Colilert 18™. 

 

Membrane filtration and Colilert 18™ both detected E. coli and E. aerogenes in 

each sample in which they were present. Neither method detected                   

P. aeruginosa or A. hydrophila in any of the samples even though there were 
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large numbers present. This was also shown in 2.4.1 where large numbers of 

single culture samples were examined. These findings contradict Cowburn et al. 

(1994) and Landre, Gavriel and Lamb (1998) who found that false positive 

results can occur attributed to non-coliform organisms when present at high cell 

densities. Landre, Gavriel and Lamb (1998) found that A. hydrophila gave false 

positive results with Colilert when cell counts were greater than 1 x 105 cfu ml-1 

and fresh regent used although when aged reagent was used it was found that 

cell counts as low as 1 x 101 cfu ml-1 gave false positive results. However the 

method used for detection of ortho-nitrophenol production was to measure 

absorbance at 420 nm. This causes some confusion as ortho-nitrophenol 

production using Colilert as stated in the study by Landre, Gavriel and Lamb 

(1998) is a “ready detectable yellow” which can be seen visually. This raises 

some question as to what was detected in the study. 

 

Colilert 18™ consistently detected higher numbers of coliform bacteria, both E. 

aerogenes and E. coli, than membrane filtration. The values obtained for Colilert 

18™ are closer to those of the reference values found with modified Miles 

Misra, as also observed with the single cultures. As mentioned previously this 

may be due to the greater ability of Colilert 18™ to recover injured or stressed 

coliforms in comparison to MF. It has been noted that it is possible to detect 

enzyme activity from coliform bacteria even when the bacteria are no longer 

culturable (Davies, Apte and Peterson 1995).  

 

The membrane filtration method requires the colonies to be easily counted 

using the naked eye. While Colilert 18™ contains media which limits the growth 
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of all bacteria except coliforms and E. coli, MF media allows the growth of non-

coliform bacteria. This increases overcrowding on the membrane which may 

hinder the growth of coliforms and is likely to lead to an underestimation of 

numbers of the targeted bacteria. It is recommended that approximately 100 

colonies should be the maximum grown on a single membrane to prevent a 

decrease in the accuracy of colony counts (SCA 2002).  

 

The presence of P. aeruginosa and A. hydrophila, although not shown to cause 

false positive counts of bacteria, do appear to influence the bacterial counts of 

E. coli and E. aerogenes detected in samples. An increase in bacteria 

particularly non-coliform bacteria is likely to increase competition for nutrients 

within samples.  

 

 

2.4.3 Comparison of membrane filtration and Colilert 18™ for analysis of 

coliform bacteria in groundwater 

 

Water samples were taken from 14 sites (A – N). Each of the water samples 

were tested using the membrane filtration and Colilert 18™ methods to detect 

coliforms and E. coli. A 10 ml and a 100 ml sample of each were analysed.  The 

results for this study are shown in Table 2.6. The results for Colilert 18™ have 

been rounded up to the nearest whole number. 
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Table 2.6 Comparison of membrane filtration and Colilert 18™ for 

 the analysis of groundwater 

    Membrane Filtration Colilert 18™ 

    Original Sample Volume (ml) 

Site Sample 10 100 10 100 10 100 10 100 

Total Coliforms 

(cfu / 100 ml) 

E. coli                   

(cfu / 100 ml) 

Total Coliforms 

(cfu / 100 ml) 

E. coli                

(cfu / 100 ml) 

A 

T1 90 22 50 7 100 34 31 14 

T2 50 32 30 40 63 94 20 34 

T3 0 4 0 0 121 80.9 0 0 

T4 70 22 40 8 1585 >2420 20 12 

T5 20 44 0 2 86 51 0 2 

W1 260 C 300 75 7270 >2420 2460 326 

W2 660 C 800 C 4106 >2420 2014 1987 

B 

T1 0 0 0 0 0 0 0 0 

T2 10 1 0 0 0 3 0 0 

T3 0 0 0 0 0 0 0 0 

T4 0 0 0 0 0 0 0 0 

T5 0 22 0 0 0 3 0 0 

S1 0 0 0 0 0 1 0 0 

S2 0 0 0 0 0 0 0 0 

C 
T1 10 0 0 0 0 1 0 0 

W1 30 5 0 0 20 35 0 0 

D 
T1 110 18 0 0 10 91 0 0 

W1 30 30 200 5 594 462 72 29 

E 
T1 30 7 0 0 20 11 0 0 

SP1 0 0 0 0 0 0 0 0  
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Continued 

Table 2.6  Comparison of membrane filtration and Colilert 18 for the 

analysis of groundwater 

    Membrane Filtration Colilert 18™ 

    Original Sample Volume (ml) 

Site Sample 10 100 10 100 10 100 10 100 

Total Coliforms 

(cfu / 100 ml) 

E. coli                   

(cfu / 100 ml) 

Total Coliforms 

(cfu / 100 ml) 

E. coli                

(cfu / 100 ml) 

F 
T1 70 30 0 0 31 25 0 0 

W1 80 44 0 0 52 62 0 0 

G 
T1 10 11 20 4 20 11 10 5 

W1 150 50 80 74 464 687 31 14 

H 
T1 600 C 0 0 9804 >2420 0 0 

W1 900 C 0 0 2613 >2420 0 0 

I 
T1 10 2 0 0 10 10 0 0 

W1 90 28 0 2 296 173 0 1 

J 
T1 50 40 100 83 2359 1987 135 82 

W1 600 C 300 100 2595 >2420 160 96 

K T1 20 5 0 0 0 1 0 0 

L 
T1 40 20 0 0 52 30 0 0 

W1 460 C 0 0 1019 525 0 0 

M 
T1 0 0 0 0 0 0 0 0 

W1 0 2 0 0 0 5 0 0 

N 
T1 40 20 0 3 63 17 0 5 

W1 150 C 20 32 594 326 31 23 

T = kitchen tap; W = well; S = storage tank; SP = spring; C = confluent sample  

 

There are discrepancies observed between the 10 and 100 ml samples for both 

systems. One would expect these to be around the same order of magnitude 
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difference however they are often not. This may be due to a problem of sample 

homogeneity however Gale, Pitchers and Gray (2002) stated that 100 ml ‘spot’ 

samples reliably indicate the quantity of coliform bacteria in a water supply. It is 

likely that in the 100 ml sample there will be a greater number of heterotrophic 

bacteria than compared with the 10ml sample which has been made up to 100 

ml with sterilised ¼ strength Ringers solution. The presence of non-coliform 

bacteria in the groundwater samples is likely to influence growth and survival of 

the coliform bacteria as there will be increased competition for nutrients and 

potentially predation by the natural heterotrophic bacteria or protozoa present in 

the groundwater. 

 

The results show a large amount of variability between sites and more 

interestingly, between well and tap samples from the same site. Of the 37 

samples taken only 6 had no coliforms or E. coli present when analysed by both 

methods at the two concentrations. Approximately 35% of the total samples 

contain E. coli. However, only 19% of the tap water samples contain E. coli. It is 

possible that the well had recently been contaminated and that due to the lag 

time this contamination had yet to reach the kitchen tap. However this seems 

unlikely as the majority of contaminated water samples had higher bacterial 

counts from the source compared to the tap and it is unlikely they had all been 

recently contaminated. Natural settling of sediments and bacteria in the well 

supply may account for the bacterial reduction. However, injury or death of the 

coliform bacteria due to predation or environmental stresses could also provide 

some explanation for the differences observed between the supply and the tap. 
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The variability between MF and Colilert 18™ for analysis of coliform bacteria 

and E. coli present in groundwater may be explained by the different detection 

capabilities of each method. MF relies on the ability of coliforms to produce acid 

from lactose and faecal coliforms to produce indole from tryptophan. However 

Colilert 18 ™ detects coliform bacteria and E. coli by their possession of the 

enzymes β-D-galactosidase and β-D-glucoronidase, respectively. Enzyme 

based methods have allowed the detection and quantification of a much 

broader range of environmental coliforms in comparison to the more historic 

standard methods (NHMRC 2003).  

 

To further compare the two methods, the samples (10 and 100 ml) were 

grouped into the quantity of coliforms detected in 100 ml of samples. Figure 2.6 

shows a comparison between the two methods and their ability to detect 

coliforms and E. coli in non-chlorinated groundwater samples. 

 

 

Figure 2.6 Comparison of membrane filtration and Colilert 18™ for the 
detection of coliforms and E. coli in groundwater  
     MF (TC);  Colilert 18™ (TC);    

MF (FC);        Colilert 18™ (E. coli) 
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Colilert 18™ and MF are comparable at low quantities of bacteria but MF 

underestimates coliform numbers at high densities due to the limitations of 

growth on the membrane. Due to the design of the Colilert 18™ method, it has 

the ability to quantify large numbers of coliforms with a high degree of accuracy 

while continuing to successfully detect small numbers of coliform bacteria.  This 

is supported by studies carried out by Buckalew et al. (2006), Katamay (1990), 

Edberg, Allen and Smith (1991) and Berger (1991). 

 

A number of studies have found Colilert 18™ to be more accurate and sensitive 

than the ISO 9308-1 standard membrane filtration method for coliform detection 

maintaining that the ISO reference procedure fails to detect a significant 

proportion of coliforms and E. coli in drinking water (Bonadonna, Cataldo and 

Semproni (2007), Niemela, Lee and Fricker (2003), Eckner (1998), Fricker, 

Illingworth and Fricker (1997), Cowburn et al. (1994)). The ability of Colilert 

18™ to assist the recovery of injured and stressed coliforms and E. coli in the 

samples is likely to be responsible for this (Hӧrman and Hänninen 2006). 

 

Although in many of the groundwater samples, E. coli numbers are small, it 

does cause concern that E. coli is detected in drinking water at all. However, the 

aim of this study was to compare the ability of MF and Colilert 18™ to detect 

coliforms when using real samples. The presence of coliforms and E. coli in 

private water supplies will be investigated in Chapter 3, so will not be discussed 

in depth here. However, the fact that both methods have the ability to detect a 

single bacterium in a sample is probably the most important fact regarding the 
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monitoring of water quality and the reliability of both the MF and Colilert 18™ 

methods.   

 

 

2.4.4 Isolation and characterisation of antibiotic resistant strains of E. 

coli and E. aerogenes 

 

Antibiotic resistant strains of E. coli (resistant to Streptomycin 400 µg per ml / 

Rifampicin 80 µg per ml of nutrient agar) and E. aerogenes (resistant to 

Chloramphenicol 100 µg  per ml / Erythromycin 200 µg per ml of nutrient agar) 

were compared to the original strains of E. coli and E. aerogenes (2.2.1) to 

determine if their behaviour was  the same.  The comparisons made of E. 

aerogenes and E. coli bacteria to their antibiotic resistant equivalents are given 

in Tables 2.7 and 2.8 respectively.   

 

At these concentrations there was noted to be no growth of the non coliform 

bacteria used in the trial, therefore these concentrations were selective to the 

individual bacteria. There was also found to be no growth after inoculating it 

with a fresh soil sample solution prepared in ¼ strength Ringers solution. 

Further studies of the survival and transport of E. coli and E. aerogenes in soil 

and water was planned. It was concluded that antibiotic resistant strains could 

be easily detected in soil samples and be distinguished from any background 

counts of bacteria. 

 

 

 



58 
 

Table 2.7 Comparison of behaviour of E. aerogenes and antibiotic 
resistant E. aerogenes 

 E. aerogenes Antibiotic resistant  
E. aerogenes 

LPW 37°C 10 confirmed 10 confirmed 

LPW 44°C 0 confirmed 0 confirmed 

Tryptone 10 negative for E. coli 10 negative for E. coli 

NA oxidase 20 negative 20 negative 

McConkey Large red colonies small pink colonies 

NA growth rate good growth overnight growth overnight 

Visual 
appearance creamy coloured round colonies creamy coloured small round 

colonies 

Colilert 18™ 10 confirmed as coliforms but 
not as E. coli 

10 confirmed as coliforms 
but not as E. coli 

 

Table 2.8 Comparison of behaviour of E. coli and antibiotic resistant E. 

coli  

 E. coli Antibiotic resistant E. coli 

LPW 37°C 10 confirmed 10 confirmed 

LPW 44°C 10 confirmed 10 confirmed 

Tryptone 20 confirmed 20 confirmed 

NA oxidase 20 negative 20 negative 

McConkey Large red colonies small red colonies 

NA growth rate good growth overnight growth overnight 

Visual 
appearance creamy coloured round colonies creamy coloured round colonies 

Colilert 18™ 20 confirmed as coliforms and 
E. coli 

20 confirmed as coliforms and  
E. coli 
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However it was found during experiments to determine survival of these 

bacteria that they behaved quite differently from the original isolates. They were 

much more resistant to low temperatures and grew exceptionally well even 

though the colonies were much smaller. Growth of the antibiotic resistant 

bacteria was often increased and the survival time was extended. It was 

decided to discontinue use of the antibiotic strains as their behaviour would be 

difficult to relate back to real samples and events. 

 

 

2.5 Conclusion 

 

Colilert 18™ proved to be a suitable method for water testing. It has the ability 

to detect coliforms and E. coli when bacterial counts are very low and can also 

quantify large numbers of coliforms and E. coli when present in a sample. In this 

study there was no evidence to suggest that Colilert 18™ detects false positives 

due to interference from A. hydrophila or P. aeruginosa.  

 

The utilisation of Colilert 18™ for enumeration of coliform bacteria is further 

supported by the approval and inclusion of Colilert 18™ into the United 

Kingdom reference methods in The Microbiology of Drinking Water (SCA 2002). 

In the United States of America Colilert 18™ was given approval and included 

in the Standard methods for examination of water and wastewater (APHA, 

AWWA and AEF 2005). Colilert 18™ has also been introduced as a reference 

method in other countries including Germany, Italy and Denmark.  

 



60 
 

Colilert 18™ requires less time for preparation and analysis than the membrane 

filtration method with the advantage of faster results. Overall, the use of Colilert 

18™ appears to be a good alternative to the membrane filtration method when 

used to quantify coliform bacteria in groundwater. 
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Chapter 3 Investigation of drinking water quality from private 

 water supplies in Aberdeenshire, Scotland 

 

 

3.1 Introduction 

 

In the United Kingdom the majority of potable water is provided from a public 

mains supply, by the water utilities in England and Wales and Scottish Water in 

Scotland. However, throughout the UK there are also approximately 140,000 

private water supplies providing potable water to many rural homes and 

communities, with 38,000 of these located in Scotland (DWI 1993). A private 

water supply is any water supply not provided by a water utility or Scottish 

Water.  

 

Private water supplies can originate from a variety of sources. The water is 

often groundwater and is commonly abstracted from deep or shallow wells, 

boreholes or spring sources, but can also be from a loch or lake, stream or 

river.  

 

In Scotland private water supplies are principally governed by the Private Water 

Supplies (Scotland) Regulations 2006 which came into force in July 2006. This 

transposes the European Drinking Water Directive (98/83/EC) which sets out 

specific quality standards which apply to all public and private water supplies 

intended for drinking, cooking, food preparation and other domestic purposes.  
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The 2006 Regulations place responsibilities on Local Authorities to regulate and 

enforce Private water supplies. Local authorities are required to maintain a 

register of every private water supply to premises in its area and to categorise 

each private water supply as either Type A or Type B, and to complete risk 

assessments of each supply.  

 

Type A private water supply 

This refers to a private water supply for human consumption purposes which 

meets one or more of these criteria: 

• on average, provides 10 or more cubic metres of water per day  

• serves 50 or more persons 

• is supplied or used as part of a commercial or public activity. 

(Commercial or public activity includes food producers, hotels, holiday let 

accommodation, bed and breakfast establishments, village halls etc.) 

 

Type A supplies are further classified by the maximum average daily volume of 

water provided during any period of maximum supply for human consumption 

purposes. This is shown in Table 3.1 along with the sampling frequency for 

coliform bacteria and E. coli which is dependent on the level of supply.  
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Table 3.1 Classification and sampling regime of Type A private water 

supplies (from the Private Water Supplies (Scotland) 

Regulations 2006) 

Category of 
Type A 

supplies 

Maximum average daily volume 
of water supplied for human 

consumption purposes in 
m3/day 

Sampling 
frequency for 

coliforms and E. 

coli (per annum) 

 Level 1 ≤ 100 1 

Level 2 > 100 – ≤ 1,000 4 

 Level 3 > 1,000 X1 
1The sampling frequency (X) shall be determined as X = 4 + (3 for each 1,000 m3/d and part 

thereof of the total volume). 

 

 
Type B private water supply 

Type B private water supplies are domestic supplies providing less than 10 m3 

of water per day, or supply less than 50 people. Risk assessments are not 

required to be carried out however Local Authorities have discretionary powers 

to complete a risk assessment and to sample and monitor water quality on 

these supplies if concerns are raised. They must also provide owners / users 

with advice and assistance if required. The water supplies are still subject to 

nationally set quality parameters.  

 

Prior to June 2006 private water supplies in Scotland were regulated under the 

Private Water Supplies (Scotland) Regulations 1992.  Private water supplies 

were grouped into two categories. Category 1 supplies were purely used for 

domestic purposes. Category 2 supplies provided water to be used in 

commercial food production or to premises with changing populations for 
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example, hotels or camp sites. Each of these categories was further sub divided 

into classes depending on the number of people or the volume of water 

supplied as shown in Table 3.2. 

 

Table 3.2 Classification of private water supplies (from the Private  

  Water Supplies (Scotland) Regulations 1992) 

Category/Class Number of Persons 

Supplied 

Consumption 

(m3d-1) 

Sampling Frequency for 

coliforms (per annum) 

One/A > 5000 > 1000 24 

One/B 501 –5000 101 – 1000 12 

One/C 101 – 500 21 – 100 2 

One/D 25 – 100 5 – 20 1 

One/E <25 <5 0.21 

One/F 1 dwelling n/a n/a 

Two/1 n/a >1000 24 

Two/2 n/a 101 – 1000 12 

Two/3 n/a 21 – 100 6 

Two/4 n/a 2 – 20 2 

Two/5 n/a <2 1 
1 From 1992 – January 1995 samples were required to be taken annually, from January 1995 

the sampling period changed to once every five years (i.e. 0.2 samples per annum) 

n/a – not applicable 
 

 

As is presently the case, the local authorities had a duty to monitor and regulate 

private water supplies under the Water (Scotland) Act 1980.They were also 

responsible for classifying supplies relevant to their use and the number of 

people served by each supply.  

 

Under the new legislation, in most cases less water samples will be analysed 

for the presence of coliform bacteria. However, Type A supplies will now be 

better regulated in that risk assessments of these supplies together with a 
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minimum of annual sampling will be carried out. Although Type B supplies are 

still regulated under provisions of the Water (Scotland) Act 1980 (as amended), 

a high proportion of the rural population was and still is consuming water of 

unknown quality.  

 

Private water supplies within the UK have been linked to a number of outbreaks 

of infection, primarily with Campylobacter being the causative organism but 

there have also been cases linked to Cryptosporidium, Giardia and E. coli 

(Furtado et al. 1998; Galbraith, Barrett and Stanwell-Smith 1987). Between 

1937 and 1986, Galbraith, Barrett and Stanwell-Smith (1987) detailed 13 

outbreaks of illness related to private water supplies which resulted in over 1904 

individual cases. Over half of these cases were between 1977 and 1986. 

Shepherd and Wyn-Jones (1997) identified 31.7% of waterborne disease 

outbreaks to have an association with private water supplies with a further 

37.2% of disease outbreaks being suspected to have an association with 

private water supplies.  

 

Agricultural practices such as storage of manure, spraying of slurry and 

livestock in the area surrounding a water supply have the potential to 

contaminate water supplies. Septic tanks in the vicinity of supplies are also a 

possible source of contamination (Goss, Barry and Rudolph 1998; Rudolph, 

Barry and Goss 1998). There are also factors which may have an impact on the 

level of contamination of a water supply such as temperature and rainfall 

(Howard et al. 2003; Petrie et al. 1994; Rodgers et al. 2003) and the type of 

water supply, its depth and the level of repair and maintenance it receives.  
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The incidence and severity of contamination of private water supplies in 

Aberdeenshire was investigated and causes of contamination were considered 

for individual sites. This study was undertaken prior to the updated regulation 

for private water supplies so supplies were classified according to The Private 

Water Supplies (Scotland) Regulations 1992. 

 

 

3.2 Material and methods 

 

3.2.1 Aberdeenshire council water quality data from private water 

supplies in Central Division, Aberdeenshire 

 

Of the Scottish local authorities, Aberdeenshire has the highest percent of 

population relying on private water supplies for their drinking water.  This 

accounts for around 11,000 properties and over 25, 000 people (Reid et al. 

2003; Reid et al. 1999).  

 

Aberdeenshire Council is made up of three distinct divisions which are referred 

to as North, Central and South Divisions.  Prior to 1996 these areas were 

referred to as the District Councils of Banff and Buchan, Gordon, and 

Kincardine and Deeside respectively. Aberdeenshire Council has a duty under 

the Water (Scotland) Act 1980 to check the quality of private water supplies in 

their area. They are also responsible for classifying supplies relevant to its use 

and the number of people served by each supply. Samples were taken as part 

of routine monitoring with regards to the regulations for the type of supply. 
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Some samples would have been requested from homeowners if for example 

there was concern over the water quality due to illness or often for selling 

homes. However there was no statutory requirement on the local authority to 

monitor water quality from category 1F supplies.   

 

The primary focus for this study was the data for the Central division of 

Aberdeenshire council. It contained the most complete record of supplies and 

properties in comparison to the other divisions. Central division contains over 

half of the approximate 11,000 properties relying on private water supplies in 

Aberdeenshire (Table 3.3). Records held by Aberdeenshire Council, Central 

division, of monitoring and water quality data were attained. Data were available 

from 1992 to 1998. All data were entered into a Microsoft Access database and 

collated to determine the extent of the sampling and analysis carried out.  

 

Table 3.3 Details of private water supplies in Central Division, 
Aberdeenshire 

  Properties Supplies 

 
Category one 

 Class A 0 0 
Class B 0 0 
Class C 87 1 
Class D 278 28 
Class E 1280 447 
Class F 3793 3793 

  
  
 

Category two 
 Class 1 0 0 

Class 2 31 1 
Class 3 127 8 
Class 4 183 30 
Class 5 

 
41 
 

21 
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The data were sorted and multiple entries of the same property were removed 

by only taking the first entry on the register within the statutory sampling period. 

Multiple entries can occur when a sample has failed and a repeat sample taken 

to monitor the effectiveness of remedial action. Although no testing of Category 

one F supplies were required by statute, multiple entries of data for these 

supplies were treated using the same approach as Category one E supplies.  

 

Microbiological analyses of drinking water prior to 1994 were obtained in 

accordance with the methods described in DoE/DH/PHLS (Anon 1983). 

Subsequent samples (i.e. post 1994) were obtained in agreement with the 

methods described by the Report on Public Health and Medical Subjects No 71 

(Anon 1994).  

 

 

3.2.2 Random data set of Category 1F private water supplies in Central 

Division, Aberdeenshire 

 

In Central Aberdeenshire 300 Category 1F supplies were randomly selected 

from the Central Division water quality database to participate in a study on 

microbiological quality of the water supply. Homeowners were given information 

on the study and asked if they would participate. This resulted in 82 supplies 

taking part in the monitoring programme. The study also included a 

questionnaire regarding the private water supply such as type and depth of 

supply, water storage facilities, water treatment and the surrounding land use. 

An example of this questionnaire is provided in Appendix 1. 
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The monitoring programme consisted of 3 samples from each supply, taken 

over the period of one year. As well as gaining more information on water 

quality, this sampling programme hoped to reflect changes in quality due to 

seasonal variation and rainfall. Following investigation of these supplies it was 

noted that thirty of them provided water for more than one property, therefore 

were not category 1F supplies. However, they were still included in the survey. 

Due to a change of circumstance for a number of residents, such as 

commencing employment or moving home, access could not be gained to a 

number of properties resulting in only 64 of the 82 supplies being sampled on all 

three occasions. Microbiological analyses of water taken from the random data 

sets were carried out using membrane filtration as described by the Report on 

Public Health and Medical Subjects No 71 (Anon 1994). 

 

 

3.2.3 Short term intensive sampling of nine 1F private water supplies  

 

Of the 82 supplies monitored in the Random Data Set, 9 category 1F supplies 

were selected to undergo further monitoring. The supplies were chosen due to 

their high incidence of microbiological contamination.  They were also logistically 

suitable, had easy access to both the water supply and the kitchen tap, and the 

homeowner was willing to continue with the study. The supplies were studied 

over a 6 week period and were sampled on a minimum of 3 occasions. At this 

time samples were taken from both the water supply and the kitchen tap.   
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Coliform counts for the short term intensive study were carried out using the 

Colilert 18™ method as described in section 2.2.7. This method was selected 

following the trial which indicated its suitability as an alternative to the more 

time-consuming membrane filtration. 

 

 

3.2.4 Longitudinal study of two private water supplies 

 

Over a two year period from January 1998 to November 1999, two supplies in 

rural Aberdeenshire were monitored regularly to determine microbiological water 

quality changes with an aim to determine rainfall and seasonal impacts and the 

effect surrounding land use has on their water quality.  The supplies were both 

Category 1F, one of the supplies being a shallow well, the other a deep borehole.  

 

Initially the water samples were analysed using membrane filtration in 

accordance with the Report on Public Health and Medical Subjects No 71 (Anon 

1994). Microbiological analysis of water samples from August 1999 were carried 

out using Colilert 18™. 
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3.3 Results and discussion 

 

3.3.1 Aberdeenshire council water quality data from private water 

supplies in Central Division, Aberdeenshire 

 

Central Division of Aberdeenshire council has the legal responsibility to monitor 

over 4000 private water supplies which provide water to over 5800 homes. Over 

the 7 year sampling period central division were legally bound to collect and 

analyse almost 3000 samples.  It is recognised that there is a huge demand on 

central division of Aberdeenshire council to monitor this number of supplies, 

many of which are in remote areas. Central division’s remit would also include 

follow up samples for supplies that have failed and requests for sampling of 

Category 1F supplies by homeowners. Table 3.4 summarises the sampling of 

private water supplies between 1992 and 1998 in Central division of 

Aberdeenshire. 

 

Table 3.4 Sampling compliance and supply fails of private water 
supplies in Central division, Aberdeenshire  

Category 
/ Class 

Expected 
number 

of 
samples 

Actual 
number 

of 
samples 

Compliance  
(%) 

Supplies 
never 

sampled 
(%) 

Total 
coliform 
fails (%) 

Faecal 
coliform 
fails (%)  

One A n/a - - - - - 
One B n/a - - - - - 
One C 14 8 57 0 12.5 12.5 
One D 196 57 29 14 37 28 
One E 1788 360 20 35 42 31 
One F - 476 n/a n/a 37 26 
Two 1 n/a - - - - - 
Two 2 84 20 24 0 25 25 
Two 3 336 94 28 25 36 27 
Two 4 420 116 28 20 33 22 
Two 5 147 13 9 76 46 31 



72 
 

Of the 1144 samples taken from kitchen taps, total coliforms were found in 38%, 

and faecal coliforms found in 27% of samples. Overall there was only a 22% 

compliance of required sampling and analysis of private water supplies in 

central division, with compliance being as low as 9% for the category Two, class 

5 supplies. This is of particular concern as it had the highest failure rate for total 

coliforms, and one of the highest for faecal coliforms within the supply groups. It 

is also interesting to note that 34.3 % of supplies covered by the legislation 

have never been sampled during the 7 years of the study, again with the 

majority of these being in Category Two, class 5. It is possible then, that the 

number of supplies failing due to the presence of coliform bacteria including    

E. coli could in fact be much higher than indicated.  

 

Samples taken from kitchen taps for microbiological analysis were recorded by 

the month each sample was taken (Figure 3.1). Samples failing on the presence 

of total coliform and faecal coliform bacteria were shown as a percent of the 

overall samples taken.  
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Figure 3.1 Seasonal trend for samples from Aberdeenshire Central  

  Division collected from 1992 to 1998 and grouped according  

  to the month of sampling; TC fails (    ) FC fails (   ) 

 

Water quality was most likely to fail the statutory limits for coliforms, both total 

and faecal, during late summer and autumn, with the highest percentage of fails 

being found in September. Findings are similar to those documented by Rutter 

et al. (2000) who compiled statutory water test results from nine Public Health 

Laboratories in England. Although Rutter et al. (2000) found the highest 

percentage of fails for E. coli to be during November, there was also a small 

increase in February along with lowest number of fails being recorded during 

March and April. Perhaps the slight increase in fails in February for central 

Aberdeenshire and in the study by Rutter et al. (2000) can be explained by an 

increase in surface runoff as snow melts.  

 



74 
 

3.3.2 Random data set of Category 1F private water supplies in Central 

Division, Aberdeenshire 

 

Microbiological analysis was carried out on 220 samples of which 71% tested 

positive for total coliforms and 29% contained faecal coliforms. In 88% of the 

cases a supply failed on at least one occasion for total coliforms and 52% of 

supplies failed at least once for faecal coliforms. Only 11% of supplies that had 

analysis carried out on three occasions had no coliforms present. The 

microbiological analysis was grouped into months to determine seasonal trends 

(Figure 3.2).  

 

 

 

  

Figure 3.2 Random samples from Central Division, Aberdeenshire, 

showing fails per month as a percentage of the total samples 

taken,    TC fails (    ),  FC fails (     ) 
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Unlike the Aberdeenshire council seasonal trend, the majority of FC fails for the 

random samples are during the summer months and into early autumn 

decreasing during the winter months and with no faecal coliforms detected 

during February. The results found were in agreement with Conboy and Goss 

(1999), who carried out sampling in Ontario, Canada. Although sampling was 

only carried out in spring and late summer they also found that faecal coliform 

results were higher during late summer. 

  

The types of supplies were investigated regarding the number of samples failing 

and the presence of faecal coliforms indicating faecal contamination (Table 3.5). 

 

Table 3.5 Association of supply type with samples failing on the 

presence of coliforms   

 Spring Well Borehole 
Number of  
Supplies 

41 39 2 

Total number of 
samples taken 

110 104 6 

Samples with total 
coliforms (%) 

72 74 17 

Samples with faecal 
coliforms (%) 

34 27 0 

 

This study may not give a true representation of quality of borehole supplies 

due to the small number of samples, however it does show a good comparison 

of the spring and well supplies with springs more likely to have faecal 

contamination. This is consistent with a study by Rutter et al. (2000) who found 

that boreholes were the least likely to be contaminated, with springs then wells 

being the most susceptible to contamination. Fewtrell, Kay and Godfree (1998) 

carried out a similar study of 91 private supplies and also found that boreholes 
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were the least likely to be contaminated, with 64% of spring supplies 

contaminated and 100% of well supplies. It should be noted however that only 

three well supplies were examined compared to 28 springs and 56 boreholes. 

 

There are a number of studies which investigate the impact rainfall has on the 

contamination of private water supplies. Petrie et al. (1994) showed that there 

was a rapid increase in the contamination of spring supplies following rainfall 

with the lag time being between 1 to 3 days, the effect of rainfall diminishing 

with time. During dry spells there was no faecal contamination.  Howard et al. 

(2003) also showed a strong correlation of spring water contamination by 

coliform bacteria (TC and FC) to rainfall in Kampala, Uganda. 

 

In this present study of 82 private water supplies in central Aberdeenshire, 

coliform counts in water samples were compared to rainfall events from October 

1997 to October 1998 (Figure 3.3). 

 

Rainfall was recorded on more than 60% of the 385 days over which the study 

was carried out. From figure 3.3 (b) it can be seen that there is an increase in 

the total coliforms and more likely to be faecal coliforms detected following a 

period of high rainfall. It is likely that due to the frequency of rain in 

Aberdeenshire there is often contamination of private water supplies which 

gives low levels of coliforms in many samples. 
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(a) 
 

 

(b) 

Figure 3.3 Association of rainfall (a), with the presence of coliform 
bacteria (b), in samples from 82 private water supplies in 
central Aberdeenshire (Rainfall (─), TC (─), FC (─)) 

 

One of the most severe drinking water contamination events occurred in 

Walkerton, Ontario, Canada, where 2300 people were affected with 
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gastroenteritis, resulting in 27 people developing haemolytic uraemic syndrome 

(HUS), a potentially fatal kidney ailment, and the death of 7 people.  E. coli 

O157 and Campylobacter jejuni were held responsible. The subsequent inquiry 

highlighted that the most likely contamination was from manure entering a 

shallow well following a period of heavy spring rainfall. Heavy rainfall or heavy-

snow melt was also directly implicated in other waterborne infection outbreaks 

in Canada and the USA (Hrudey et al. 2003). 

 

The properties from which samples were taken were also investigated with 

reference to the storage of water prior to reaching the kitchen tap. Storage type, 

if any, can vary and is generally either an external reservoir for the water or a 

header tank within the property. Properties without storage have either a 

pumping system for the water on demand or are gravity fed directly from the 

water source. In this study results for storage revealed a similar proportion of 

contamination for all properties suggesting that storage has little influence on 

the degree of contamination. However although samples were examined 

quantitatively there was no comparison made of the level of contamination 

found at the water source and the kitchen tap. 

 

 

3.3.3 Short term intensive sampling of nine 1F private water supplies 

 

Samples were taken from the well and from the kitchen tap of 9 Category 1F 

supplies (Table 3.6). Of the well samples 97% contained coliform bacteria (TC) 

while 65% contained faecal coliforms (FC). The kitchen tap samples were lower 



79 
 

with 82% containing TC and 38% containing FC. It must be recognised that the 

supplies taking part in the short term intensive study were chosen due to the 

likelihood that they would fail therefore the failure rates for coliform bacteria 

although high are not unexpected. What is more surprising is the actual number 

of coliform bacteria including faecal coliforms that were present in samples. 

 

Table 3.6 Summary of samples taken from 1F supplies investigating   

well and kitchen tap water samples  

 Kitchen samples Well samples 

Private 
Water 
Supply  

No of 
samples TC fail FC fail No of 

samples TC fail FC fail 

1 3 1 0 3 3 2 
2 4 4 2 4 3 2 
3 4 4 2 4 4 3 
4 4 3 0 4 4 1 
5 4 4 4 4 4 4 
6 4 2 0 4 4 2 
7 4 4 1 4 4 2 
8 3 2 0 3 3 2 
9 4 4 4 4 4 4 

 

The well and kitchen tap samples were compared and the association with 

rainfall was investigated. It was found that in many cases there is a tenfold 

decrease in coliform counts at the kitchen tap compared to the well as indicated 

in Figure 3.4.  
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(a) 
 
 

 
(b) 
 
Figure 3.4 Association of rainfall with coliform bacteria detected in 

kitchen tap samples (a) and well samples (b) taken from nine 
private water supplies in central Aberdeenshire. Rainfall for 
one week prior to sampling is shown. 

   (    ) TC, (    ) FC, (    ) rainfall 
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There will be some lag time before the sample from the well reaches the kitchen 

tap. This is especially true for supplies that have an external storage tank and/ 

or a header tank. There are a number of studies that indicate the reduction of 

coliform bacteria following storage. Pope et al. (2003) found that a reduction in 

E. coli was more likely as storage time increased. Temperature was also seen 

to influence E. coli counts with temperatures above 10˚C having a greater 

impact in reduction than temperatures below 10˚C.  

 

The primary concern for these 9 supplies is the source of the contamination and 

how it enters the private water supply. Many of the wells are contaminated even 

when there is little or no rainfall. To try to explain the frequency and extent of 

contamination of the private water supplies, the appearance and the individual 

features of each supply as recorded in Table 3.7 was examined.  
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Table 3.7 Well data of private water supplies 
 
Supply Type Date 

built 
Type of 

construction 
Height 
of lip 
(m) 

Depth of 
supply 

(m) 

Depth 
of water 

(m) 

External 
reservoir 

Header 
tank 

Land use in 
immediate 

vicinity 

Source 
Fenced 

Filter Distance to 
streams in 
vicinity (m) 

1 Well 1968 concrete rings 0.44 1.87 1.00 N Y woodland / 
bog N N 5 

2 Spring 1970's concrete rings 0.18 1.68 0.80 Y Y pasture land N N 2 

3 Well 1975 concrete rings 0.14 3.74 1.22 N Y pasture land 
(cows) Y Y 

mesh 30 

4 Well 1978 concrete rings 0.30 3.60 1.40 N Y crops / pasture 
land N Y 

gauze n/a 

5 Well Not 
known 

stone (glazed 
clay) 0.12 0.95 0.82 N Y moor / heath / 

woodland N Y 
mesh 1 

6 Well 1970's stone (granite) 0.09 7.15 2.55 N Y woodland / 
grass N N n/a 

7 Well 1970's concrete rings 0.62 5.33 2.55 N 
N  

(gravity 
fed) 

crops Y N n/a 

8 Well 1970's stone 0.47 5.50 2.2 N Y garden / 
woodland N Y 

mesh 30 

9 Well 1970's concrete rings 0.31 2.77 1.85 N Y pasture land N Y 
mesh 

n/a (flooding 
in immediate 

vicinity 
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PWS 1 

This well is 40 years old, receives no maintenance and has no filter in place 

The well is shallow at 1.87 m deep, with water of 1 m depth. There is a reasonable 

depth of lip to the well, probably preventing surface water flow from directly 

entering the well. It is not fenced off or stock proof and although not surrounded by 

grazing animals, wildlife is likely to be in the vicinity of the well. The low levels of 

contamination may be due to preferential flow of surface water, entering the well 

through cracks. 

 

Figure 3.5 Private water supply 1 

 

PWS 2 

This spring supply is very shallow at 1.68 m, with a river nearby at a distance of     

2 m. In general the spring has low or no levels of pollution except following a heavy 

rainfall. It is interesting to note that on one occasion the tap sample is more 
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contaminated than the spring. It is possible that the external reservoir is more 

prone to contamination which is then taken to the tap supply without ever entering 

the spring. (No photo available of this supply) 

 

PWS 3 

This well consistently had high levels of contamination and often with faecal 

coliforms present. With reference to figure 3.6, the well is on the right covered with 

grass and moss. The chamber on the left is the pump. The well although of a 

reasonable depth at 3.74 m, has a very small lip. Cattle frequently graze in this 

field so it is likely the faecal material is washed into the well between the top of the 

lip and the lid.  

 

 

Figure 3.6 Private water supply 3 
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PWS 4 

This supply had low levels of coliform bacteria present but only one episode of low 

levels of faecal coliforms which occurred after heavy rainfall. The source is 

relatively deep at 3.6 m with the lip of the well slightly above ground preventing 

surface water flow directly into well 

 

 

Figure 3.7 Private water supply 4 

 

PWS 5 

High levels of faecal contamination were found in this well and at the kitchen tap. It 

is extremely shallow at only 0.95 m deep, with water filling approximately 0.8 m of 

this. There is a stream at 1m distance from the well. It is most likely this well is 

severely contaminated by surface water and stream water. A mesh filter is in place 
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but it is likely that cleaning and maintenance of the filter is not carried out. (No 

photo available of this supply). 

 

PWS 6 

There were no faecal coliforms detected in any tap samples from this supply 

however faecal coliforms were detected in two of the well samples, both following 

heavy rainfall. For a well supply the source is very deep (7.15 m), with water only 

present to a depth of 4.6 m.  

 

 

Figure 3.8 Private water supply 6 

 

Although the source is found within the garden area of the house, and not 

surrounded by grazing animals, there is still potential for contamination of the 
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supply. Contamination following heavy rainfall is possible as the lip of the well only 

sits at 0.09 m above the ground.  

 
 
PWS 7 

This well supply had high coliform numbers at the source and at the kitchen tap but 

faecal contamination only following heavy rainfall. The kitchen tap is gravity fed 

from the source having no header tank and no filter present. 

 

 

Figure 3.9 Private water supply 7 

 

Although the source has a fence surrounding it, it offers very little protection from 

wildlife. Therefore the potential for faecal contamination to enter the water supply 

from faecal deposits on the soil or near the well is possible.   
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PWS 8  

The wooden lid on the top of this water source is in need of repair and offers 

virtually no protection to the water supply. Although there is some protection from 

rainfall entering the well due to the peaked roof, there is no protection from small 

animals and birds.  

 

 

 

 

 

 

 

 

 

Figure 3.10 Private water supply 8 

 

Faecal contamination was only detected at the well. This supply does have a mesh 

filter in place which may be the reason that no faecal coliforms were found in the 

kitchen tap samples. 
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PWS 9  

This supply was always heavily contaminated with coliform bacteria including 

faecal coliforms. The depth to water is less than 1 metre, although the depth of the 

well is 2.77 m. There was evidence of flooding at the source site and the lid is of a 

split design which makes the well more prone to contamination. The site is used for 

grazing animals so faecal deposits are likely.  This supply has a mesh filter in situ 

which appears to offer no protection from bacterial contamination.  

 

 

Figure 3.11 Private water supply 9 

 

Evidence suggests that contamination of many of these private water supplies is 

due to lack of protection from grazing animals and wildlife, and poorly designed 

and maintained wells.  The supplies are all around forty years old with a number of 

them likely to be receiving contaminated surface water especially following periods 
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of heavy rainfall. A number of the supplies have a physical filter in place however it 

is clear to see that unless regular maintenance of the filter is carried out, the filter 

offers very little protection to the potable water supply from the kitchen tap.  The 

lack of maintenance and protection found with these supplies is not unusual. A 

study carried out in upstate New York by Schwartz et al. (1998) observed similar 

findings, with poor maintenance and contamination of the water supply being 

associated with a lack of education with regards to water quality. 

 

 

3.3.4 Longitudinal study of two private water supplies  

 

Over an approximate two year period, two private water supplies were investigated 

with regards to the presence of coliform bacteria and faecal coliforms detected in 

the kitchen tap sample (potable water). Laterally the study examined the presence 

of coliforms at the source. 

 

 

3.3.4.1 Longitudinal study of a borehole private water supply 

 

 The first supply is a borehole, approximately 33 m deep, which supplies water 

direct to the kitchen tap; there is also a storage tank in the attic which supplies the 

bathroom taps. The source is surrounded by grassland and sheep are evident near 
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the source and at times on the source lid itself. This water supply does not have 

any form of treatment or filter nor does it receive regular maintenance. Sampling 

commenced in June 1998 and finished in November 1999. 

 

Figure 3.12 Borehole supply used for longitudinal study 

 

The borehole supply was sampled at the kitchen tap on 32 occasions. Twenty four 

of these samples were positive for coliforms while 11 were positive for faecal 

coliforms. October had the highest percentage fails for faecal coliforms.  Results 

were plotted against total rainfall for the 5 days prior to sampling to examine any 

links between fails and rainfall. These results are shown in Figure 3.13. 
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(a) 
 

 
(b)  
Figure 3.13 Borehole supply: the relationship between rainfall over ten days 

prior to sampling and number of coliform bacteria 

(a) Less than 20 cfu/100 ml  (b) Greater than 20 cfu/100 ml  

 TC (     ),  FC (     ) 
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The presence of high levels of coliform bacteria and in particular E. coli, in the tap 

samples indicate that contamination may be directly linked to the level of rainfall 

over a 10 day period prior to sampling. High coliform counts (> 20 cfu/100 ml) were 

only found when rainfall over the 10 day period exceeded 38 mm.  When rainfall 

was less than this faecal coliforms were often not detected or were present at very 

low levels. However two samples taken following rainfall exceeding 55 mm during 

the preceding 10 day period had no faecal coliforms present. One of these 

samples was taken in March, the other in July. There is no available information 

detailing the land use surrounding the borehole during these times. It is possible 

that there were no animals grazing in the vicinity or weather conditions may have 

been detrimental to coliform survival. 

 

There is always the possibility that the groundwater abstracted from the borehole is 

contaminated at the source. Further investigation would be required to determine 

where the source of the groundwater originates and if there is potential for 

contamination. However Glanville, Baker and Newman (1997) believe that 

contamination of deep wells by coliform bacteria is likely to be caused by faulty 

casings allowing preferential flow of water to reach the supply without undergoing 

any natural filtration by soil. It is possible that this would also be the case for this 

borehole and indeed any borehole supply.  
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3.3.4.2 Longitudinal study of a well private water supply 

 

The second supply is a well similar to many of those in the short intensive study. It 

is 3.76 m deep with over 2.6 m depth of water. It is made of concrete rings and has 

a 0.12 m lip. The source is fenced and stock proof however the ground surrounding 

the well is soft and a stream is evident at approximately 3 m distance. There is 

woodland surrounding the well. After 10 m there is pastureland and crops. The well 

supplies a header tank prior to reaching the kitchen tap. The water from this supply 

does not receive any form of treatment, it does not have a filter and it does not 

receive regular maintenance. Sampling commenced in June 1997 and finished in 

September 1999.  

 

 

Figure 3.14 Well supply used for longitudinal study 



 
 
 
 

95 
 

The well supply was sampled at the kitchen tap on 38 occasions. All of the 

samples were positive for coliforms while 32 were positive for faecal coliforms. 

Results were plotted against total rainfall for the 3 days prior to sampling to 

examine any links between fails and rainfall (Figure 3.15). 

 

 
(a) 
 

 
 (b) 

Figure 3.15 Well supply: the relationship between rainfall over three days 
prior to sampling and number of coliform bacteria (a) 0 – 200 
cfu/100 ml  (b) Greater than 200 cfu/100 ml 
 TC (     ), FC (     ) 
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Coliform bacteria were always detected in the well supply and faecal coliforms 

were frequently detected. The number of coliform bacteria detected was often 

exceptionally high. There appears to be some correlation to rainfall during the 3 

days prior to sampling although even when there has been no rainfall for 3 days, 

coliform numbers can still be high. On a number of occasions coliforms were 

detected at counts exceeding 200 cfu per 100 ml and on one occasion coliform and 

E. coli counts were detected as high as 1000 and 800 cfu per 100 ml of sample 

respectively.  There is potential for contamination from the nearby stream which 

seems likely taking into consideration the softness of the ground surrounding the 

well. This may help to account for the persistent contamination and the high counts 

of faecal coliforms in the water samples. 

 

The results obtained from sampling of the well and borehole supplies showed very 

different levels of contamination at each supply. Faecal coliform contamination 

from the borehole was generally detected at levels far below 200 cfu, however the 

well supply was regularly found to have faecal coliform counts in excess of 200 cfu 

The sampling data obtained is supported by the findings of Goss, Barry and 

Rudolph (1998) who showed that deeper wells are less susceptible to 

contamination and have lower levels of contamination than shallow wells.  
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3.4 Conclusion 

 

The evidence obtained to date confirms that a high proportion of private water 

supplies do not meet statutory requirements for water quality. It appears that 

smaller supplies, often those not closely regulated under legislation are most likely 

to have questionable water quality.  

 
 
There are a number of guidance papers giving advice on how to best protect a 

water supply from contamination however it is ultimately the responsibility of the 

homeowner or tenant to maintain the water supply. The importance of protecting 

private water supplies from contamination by surface water runoff is indicated. The 

water supply should be constructed with non-porous material and the lip must be 

situated well above ground level.  The lid should be watertight and have a good 

seal. It is very important to protect the water supply from livestock and wildlife. It 

would appear that further promotion of good water supply management is required 

to ensure appropriate water quality is obtained and maintained (DWI 1993). 

 

There are of course ways to treat water which is contaminated with 

microorganisms, such as UV treatment, chlorination and boiling of water, but 

primarily a properly maintained and protected water supply has the potential to 

provide good quality potable drinking water. 
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The Private Water Supplies (Scotland) Regulations 2006 should increase the 

monitoring and protection offered to many water supplies, particularly Type A, 

therefore safeguarding the health of many people who rely on these water supplies 

for potable water. The requirement that local authorities carry out risk assessments 

and water quality analysis on Type A private water supplies in line with legislation 

will give a better understanding of each supply and give an indication of treatment 

and maintenance required to reduce and remove contamination. 

 

Local authorities have a duty to provide advice and assistance to homeowners with 

a Type B supply to enable them to undertake a risk assessment of the potential 

threat to human health arising from their water supply. The local authority also has 

the right to carry out their own risk assessment if there are concerns with regards 

to the water quality from the supply. However as there are probably over 4000 

Type B supplies in Aberdeenshire, the likelihood of the relevant local authorities 

carrying out risk assessments on many of these properties is questionable. The 

responsibility to maintain private water supplies ultimately lies with the homeowner 

however it would seem that in many cases better education is required before 

many of these homeowners come to understand the potential risks involved with 

an inadequately protected and poorly maintained private water supply.
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Chapter 4 Survival of coliform bacteria in water and soil 

 

 

4.1 Introduction 

 

The microbiological quality of groundwater is affected by the presence of 

pathogenic bacteria, protozoa and viruses. Coliform bacteria particularly faecal 

coliforms, give an indication of the potential for pathogens to be present. In the 

preceding chapter it was shown that coliform bacteria are often present in water 

from private water supplies. Many of these coliform bacteria are ubiquitous to soil 

and the environment however E. coli is directly linked to faecal contamination as it 

lives in the intestines of warm blooded animals.  E. coli is deposited on land 

through direct deposition of faecal deposits by grazing or wild animals, or spread 

on land in the form of slurry or manure. Faecal bacteria and pathogens then either 

stay within the soil matrix or have the potential to find their way into water sources. 

In both cases there are implications for human health if drinking water supplies 

become contaminated or food is grown on contaminated land.  

 

There have been a number of studies which demonstrate the survival of coliforms, 

particularly E. coli in soil and groundwater. Ogden et al. (2002) found that E. coli 

O157 survived in soil for approximately 105 days during a time of heavy rainfall. 

Avery, Moore and Hutchison (2004) found that the E. coli from livestock faeces 
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could survive on grassland for more than 5 months while Gerba, Wallis and 

Melnick (1975) showed that in laboratory studies E. coli survived up to 4.5 months 

in groundwater maintained in darkness.  

 

The survival of coliform bacteria in soil is influenced by a number of factors. These 

include the nature and application method of faecal waste, the nature of the soil, 

climatic effects and the nature and type of introduced microorganisms.  

 

The survival of faecal coliforms differs between direct faecal deposits from grazing 

animals and wildlife to faecal material which has undergone some form of storage 

or treatment prior to deposition on the land. This can be in the form of compost 

heaps which can reach temperatures in excess of 55°C, or slurry storage tanks 

which are anaerobic and remain at air temperature. Composting of faecal material 

dramatically reduces numbers of faecal bacteria prior to spreading on the land 

whereas deposition in the form of slurry does not. Nicholson, Groves and 

Chambers (2005) studied the survival of E. coli O157 in dairy slurry tanks, where 

temperatures were generally less than 20°C and in a solid manure compost heap 

where temperature reached 60°C. It was found that E. coli O157 survived for 

approximately 1 week in the compost but survived for up to 90 days in the slurry.  

 

UV light is well documented as detrimental to bacterial survival (Garvey et al. 1998; 

Sinton et al. 2002) but more protection of bacteria from UV light is afforded by solid 



 
 
 
 

101 
 

faecal deposits than by spraying of slurry.  Conversely there is more likelihood of 

faecal bacteria entering a water supply if they are already in liquid form. The 

frequency of application of faecal waste and the organism density in the waste 

material also affects the survival of faecal bacteria (Crane et al. 1983; Gerba and 

Bitton 1984). 

 

Bacteria contained within deposited animal wastes are usually retained in the 

upper layers of soil.  The nature of the soil impacts the survival of bacteria. Of 

particular importance are texture, particle size distribution, moisture-holding 

capacity, cation-exchange capacity, pH and organic matter content (Gerba and 

Bitton 1984). Finer soils especially clay minerals and humic substances increase 

water retention by the soil which increases survival time of coliform bacteria (Gerba 

and Bitton 1984).  

 

There are a number of climatic effects which influence bacterial survival in soil. 

Temperature, rainfall and UV light are of primary importance (Crane et al. 1983). 

Survival is prolonged at low temperatures, below 4°C they have been shown to 

survive for months or even years. At higher temperatures inactivation or die off is 

fairly rapid (Gerba and Bitton 1984). Rainfall mobilizes previously retained bacteria 

and greatly promotes their transport to groundwater. Several studies have shown 

that the greatest degree of well contamination occurs after periods of heavy 
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rainfall. Higher moisture content in soil gives a greater survival time for bacteria 

(Crane et al. 1983).  

 

Microbial resistance to environmental factors varies between different species as 

well as different strains of bacteria. Many microorganisms cannot survive in the 

presence of antibiotics and toxic substances (Crane et al. 1983; Gerba and Bitton 

1984). It has been shown that there is increased survival time in sterile soil due to 

the lack of antagonism from soil microflora. Soil moisture, temperature, pH and the 

availability of organic matter can also indirectly influence the survival of enteric 

bacteria by regulating the growth of antagonistic organisms (van Veen, van 

Overbeek and van Elsas 1997; Crane et al. 1983). 

 

Within aquatic environments, enteric bacteria are often associated with sediments.  

Extended survival patterns have been noted for bacteria that have attached to 

sediment particles and settled to the bottom of streams and lakes.  This is primarily 

attributed to the availability of soluble organics and nutrients and increased 

protection from predator protozoa within the sediments (Jamieson et al. 2004; 

Burton, Gunnison and Lanza 1987).  

 

The more that is understood with regards to the survival of coliform bacteria in 

water and soil, the more we will recognise why coliform bacteria are more likely to 

be found in certain private water supplies and not others. Bacterial numbers in 
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water supplies do not remain constant, numbers increase because of further input 

into the water supply, or potentially the bacteria multiply, or numbers decrease due 

to death and predation. This study aims to determine the factors which influence 

the survival and growth of the coliform bacteria E. coli and E. aerogenes, in water 

and soil, with particular reference to the north-east of Scotland.  

 

 

4.2 Material and methods  

 

 

4.2.1 Bacterial cultures and serial dilutions 

 

Bacterial cultures of E. coli and E. aerogenes were prepared as described in 

section 2.2.1. A turbid solution of each of the cultures was prepared by removing 

bacterial culture from the nutrient agar plates and mixing it with 10 ml of ¼ strength 

Ringers solution in a sterile universal container. Serial dilutions of the two bacteria 

were prepared using the method described in 2.2.2. 

 

 

4.2.2 Collection and preparation of soil samples 

 

A number of different soils were used to study the survival of coliform bacteria. 
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Soils A, B, C and D had been collected in association with other studies and had 

been stored for a number of years. All soils had previously had stones removed, 

and were sieved and dried. Soil E was a fresh sample collected for this study. Soils 

were sealed and labelled in soil sample bags.  

 

4.2.2.1 Soil A 

A freely draining Dystric cambisol with sandy loam texture belonging to the 

Countesswells Association and Series. This soil was collected as part of a field 

experiment started in 1965 and was located at Craigiebuckler, Aberdeen. 

 

Cambisols are mineral soils which are only moderately developed due to their age. 

They are not confined to any particular region. Generally cambisols make good 

agricultural land and are intensively used. The term ‘dystric’ refers to the base 

saturation of the soil. When used with cambisol it indicates that it has, in at least 

some part between 20 and 100 cm from the soil surface, a base saturation (in 1 M 

NH4OAc at pH 7) of less than 50 percent (ISRIC 2010).  

 

4.2.2.2 Soils B and C  

A freely draining Dystric cambisol with sandy loam texture belonging to the 

 Countesswells Association and Series (Glentworth and Muir 1963). Soil was 

collected as part of a field experiment at Craibstone, Aberdeen. Soil pH had 

been manipulated in plots since 1950 through either the periodic addition of 
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Al2(SO4)3 to lower the pH or through the periodic addition of CaCO3 to increase the 

pH.  

 

4.2.2.3 Soil D 

A Dystric cambisol with sandy clay loam texture belonging to The Stonehaven 

Association and Series. The parent material is referred to as Old Red Sandstone 

(ORS). Samples were taken from a field south of Stonehaven (National Grid  

Ref. 793762). 

 

4.2.2.4 Soil E 

A Dystric cambisol with sandy loam texture belonging to the Countesswells 

Association and Series. This soil was located at Craigiebuckler, Aberdeen in 2004. 

A field sample was collected as part of this study to determine the effect of organic 

content on the survival of coliform bacteria (section 4.3.9) and further field samples 

were collected for a study of bacterial transport within undisturbed soil cores. Table 

4.1 provides a summary of each soil. 

 

The field sample (Soil E) was collected using a corer of diameter 6 cm and length 

40 cm which was cleaned with ethanol and allowed to air dry preceding each core. 

The field had a grass covering of approximately 25 cm length which was trimmed 

to approximately two centimetres prior to taking the core sample. The sample was 

separated into two layers, the top layer of depth 0 to 10 cm, and the bottom layer of 
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depth 10 to 30 cm. Stones were removed and the soil mixed well. The soil pH was 

determined along with moisture content. Each layer was placed in a plastic sample 

bag, sealed, labelled and placed in a cool box until ready for analysis.  

 

Table 4.1 Description and analysis of soil samples  

Soil 
Description 
and texture 

Particle size (%) 

pH %C %N 
Organic 

matter (%) 
0.02  
– 2 
µm 

2 – 
60 
µm 

60 – 
2000 
µm 

A 
Sandy loam 

topsoil 
3.49 70.32 26.19 5.38 5.04 0.31 

Not 

measured 

B 
Sandy loam 

topsoil with low 

pH 
Not measured 4.50 5.1 0.33 

Not 

measured 

C 
Sandy loam 

topsoil with high 

pH 
Not measured 7.00 5.1 0.33 

Not 

measured 

D 
Sandy clay loam 

topsoil   
24.61 74.41 5.51 5.10 0.33 

Not 

measured 

E 

 Sandy loam  

0 – 10 cm depth 
3.45 71.55 25.01 4.66 5.67 0.42 8.47 

Sandy loam 

10 – 30 cm 

depth 
3.61 70.56 25.83 4.69 3.37 0.24 6.98 

Sand 
Fine grained, 

washed 
Not measured 6.10 Not measured 

1 Values taken from Glentworth and Muir 1964. 
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4.2.3 Measurement of soil moisture content  

 

A clean evaporation dish was weighed. Soil sample (10 g) was weighed into dish 

and placed in an oven overnight at 105°C. The dish with dried soil was weighed 

and the dried soil weight calculated. The moisture content was calculated as a 

percentage of the soil weight using the following equation: 

 

Soil moisture 
content (%) 

= weight of wet soil - weight of dried soil x 100 
weight of wet soil  

 

 

4.2.4 Measurement of soil pH  

 

Soil pH was determined by placing 10 g of air dried soil in a pH cup and adding 20 

ml of 0.01 M CaCl2  to the soil. The sample was stirred and left for 30 minutes 

following which the sample was stirred again and the pH read using a pH meter.  

  

4.2.5 Determination of organic matter content 

 

The moisture content of a 10g sample of soil was determined (4.2.3). The soil 

sample was then transferred to a cold muffle furnace which was ignited and the 

temperature set at 400˚C. The sample remained in the muffle furnace overnight 

then was transferred to a desiccator prior to being reweighed. Any organic matter 
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was removed due to the high temperature. The percentage of organic matter 

content of the oven dried soil could then be calculated using the following equation: 

 

Organic matter 
content of oven 
dried soil (%)  

= 
oven dry soil weight – ignited soil weight 

x 100 
    oven dry soil weight 

  

 

 

4.2.6 Particle Size Analysis 

 

Laser diffraction was used to determine the particle size distribution of soil samples 

within the range 0.02 to 2000 µm. Air dried soil was sieved to remove particles 

greater than 0.2 mm. A 5 g sample of sieved soil was then dispersed prior to 

analysis by laser diffraction.  The dispersal procedure depended upon the samples 

being analysed. It can involve the addition of a dispersant agent, physical 

disaggregation, ultrasonication or a combination of these. Once dispersed the 

samples were introduced into the sample dispersion tank which pumps the liquid 

suspension of soil sample through the optical cell. A laser was then passed 

through this cell and was diffracted by the suspended particles. A series of 

detectors register the degree of diffraction. The angle of diffraction is directly 

proportional to the angle of incidence encountered by the laser therefore the 



 
 
 
 

109 
 

smaller the particle the higher the angle of incidence and the greater the diffraction. 

A mathematical model determined the required particle size distribution to account 

for the observed diffraction of the laser.  

 

 

4.2.7 Determination of total N and C in soil sample using an elemental 

analyser 

 

The soil sample for analysis was ground as fine as possible to ensure complete 

uniformity, using a ball mill. The sample was dried overnight at approximately 50°C 

in an oven. Once dried the sample was stored in a desiccator until ready for 

weighing, 15 mg of sample weighed out for analysis. The sample was analysed by 

the Thermo Finnigan Elemental Analyser (FlashEA 1112 Series). 

 

With this method a sample contained in a tin capsule was dropped into a 

combustion reactor maintained at 900°C. The container melts and the tin promotes 

a ‘flash reaction’ in a helium atmosphere temporarily enriched with pure oxygen. 

This momentarily raises the temperature in the reactor to ~2000°C combusting the 

sample. The combustion products are carried by a constant flow of helium through 

an oxidation catalyst, copper oxide and platinised Alumina. CO2, N2, NOx and H2O 

then flow into a reduction reactor containing copper wires held at 680°C, where 

excess oxygen is removed and any nitrogen oxides are converted into nitrogen 
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gas. Water is then absorbed by magnesium perchlorate. A chromatographic 

column held at 40°C then separates the CO2 and N2 into defined peaks, and the 

relative amounts determined using a thermal conductivity detector. The detection 

limit of this method for a 15 mg sample ranges from a minimum of 0.03% N and 

0.02% C, to a theoretical maximum of 100% dry weight for N or C. 

 

 

4.3 Material and methods: Survival of E. aerogenes and E. coli in water 

and soil 

 

 

4.3.1 Evaluation of Colilert 18™ for the detection and quantification of  

E. aerogenes and E. coli in soil 

 

Colilert 18™ was evaluated to determine its suitability for the detection and 

quantification of coliform bacteria in soil. The ability of Colilert 18™ to detect 

coliform bacteria at high and low concentrations was investigated. 

 

Bacterial cultures of E. coli and E. aerogenes were prepared as described in 

section 2.2.1. Serial dilutions of the two bacteria were prepared using the method 

described in 2.2.2 
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Soil A (as described in 4.2.2) was prepared and 2 g quantities placed in sterilised 

test tubes with lids. Sterile ¼ strength Ringer’s solution (2 ml) was added to each 

sample. The samples were left for 1 hour to allow for wetting of soil. As a 

comparison, test tubes were prepared without soil, having only 2 ml of sterile ¼ 

strength Ringer’s solution in each. To each test tube 1 ml of each of the chosen 

serial dilution of both E. aerogenes and E. coli were added. The samples were 

vortexed for 1 minute before a selected volume was removed for analysis by 

Colilert 18™ using the method described in section 2.2.7. A number of different 

sample dilutions and volumes for analysis were tested to determine the suitability 

of Colilert 18™ for use with soil samples. These are shown below. 

 

(i) Serial dilution 5 was used for both E. coli and E. aerogenes. Five samples 

were prepared in ¼ strength Ringers solution and 14 samples prepared as 

soil suspensions. For Colilert 18™ analysis, 0.5 ml was taken from each 

sample and made up to 100 ml with ¼ strength Ringers solution. 

 

(ii) Serial dilution 6 was used for both E. coli and E. aerogenes. Five samples 

were prepared in ¼ strength Ringers solution and 16 samples prepared as 

soil suspensions. For Colilert 18™ analysis, 0.1 and 1 ml was taken from 

each sample and made up to 100 ml with ¼ strength Ringers solution. 
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4.3.2 Effect of temperature on the survival of coliform bacteria in water 

 

To investigate the effect of temperature on the survival of the selected bacteria (E. 

coli and E. aerogenes), aqueous suspensions of each organism were prepared, 

and maintained at a range of temperatures and sampled over time. 

 

Nine, 1 litre solutions of sterile ¼ strength Ringers solution were prepared. One ml 

of serial dilution 5 of E. coli and E. aerogenes (4.2.1) was added to each 1 litre 

solution of ¼ strength Ringers solution. Each 1 litre solution was inverted a number 

of times to ensure thorough mixing of the contents. To determine the initial total 

coliform and E. coli counts, 10 ml was sampled from each 1 litre solution and made 

up to 100 ml with ¼ strength Ringers solution for analysis by Colilert 18™ as 

described in section 2.2.7. When the bacterial count for samples at 37˚C was 

expected to be above the maximum count detected by the Colilert 18™ method, 1 

ml samples were taken for analysis. The bacterial count per 100 ml of sample was 

then calculated accordingly. 

 

Three of the bacterial solutions were placed in each of the pre-set incubators at 

37°C, 10°C and 4°C. All of the samples were kept in the dark. The bacterial 

solutions were resampled at 6, 24 and 48 hrs, then at 7, 14, 21 and 28 days using 

Colilert 18™ to determine the total number of coliforms, and the number of E. coli 
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present in each solution. The mean of the three samples at each temperature was 

calculated. 

 

 

4.3.3 Effect of pH on the survival of coliform bacteria in water 

 

The effect of pH on the survival of selected bacteria (E. coli and E. aerogenes) was 

investigated. Aqueous suspensions of each organism were prepared and 

maintained at a range of pH and sampled over time. 

 

Seven, 1 litre solutions of sterile ¼ strength Ringers solution were prepared. The 

pH of all the solutions was measured. The pH of three solutions was lowered using 

hydrochloric acid to pH’s ranging from 4.09 to 4.56. The pH of three solutions was 

increased using sodium hydroxide to pH’s ranging from 9.07 to 9.39.  

 

One ml of each of the serial dilution 5 of E. coli and E. aerogenes (4.2.1) was 

added to each 1 litre solution of ¼ strength Ringers solution. Each 1 litre solution 

was inverted a number of times to ensure thorough mixing of the contents. To 

determine the initial total coliform and E. coli counts, 10 ml was sampled from each 

1 litre solution and made up to 100 ml with ¼ strength Ringers solution for analysis 

by Colilert 18™ as described in section 2.2.7. 
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All the 1 litre samples were placed in a dark temperature controlled room at 10°C. 

The solutions were resampled at 6, 24 and 48 hrs, then at 7 and 14 days using 

Colilert 18™ to determine the total number of coliform bacteria and E. coli present 

in each sample.  

 

 

4.3.4 Effect of temperature on the survival of coliform bacteria in soil  

 

To investigate the effect of temperature on the survival of E. coli and E. aerogenes 

in soil, aqueous suspensions of the selected coliform bacteria were prepared then 

added to moist soil. The soil solutions were maintained at a range of temperatures 

and sampled over time.  

 

Bacterial cultures of E. coli and E. aerogenes were prepared as described in 

section 2.2.1, and serial dilutions of the two bacteria were prepared using the 

method described in 2.2.2 

 

Soil A (2 g) was placed in each of 21 sterile test tubes. Sterile ¼ strength Ringer’s 

solution (2 ml) was added to each soil sample. The samples were left for 1 hour to 

allow for wetting of soil. After 1 hour, 1 ml of each of E. aerogenes and E. coli (both 

serial dilution 5) was added to each test tube. The samples were vortexed for 1 

minute to ensure even mixing. An initial sample of 0.1 ml from each test tube was 
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taken immediately after vortexing, and made up to 100 ml with ¼ strength Ringers 

solution for analysis by Colilert 18™ as described in section 2.2.7. 

 

 Three of each soil solutions were placed in incubators at 20°C, 10°C and 4°C and 

14 were placed in the freezer at - 20°C. All of the samples were kept in the dark. 

These solutions were sampled at 24, 48 and 72 hrs then at 7, 14 and 21 days. 

Prior to sampling all solutions were vortexed for 1 minute then 0.1 ml was removed 

and sampled immediately.  For the frozen samples at - 20°C, 2 samples were 

removed for each analysis. Once the sample had defrosted it was vortexed and 

analysed immediately and the remaining sample discarded. The results for all 

analyses were then calculated as cfu / 100 ml of suspension to make them 

consistent and comparable.  

 

 

4.3.5 Effect of freeze / thaw conditions on the survival of coliform bacteria in 

soil 

 

To determine the effect of freeze / thaw conditions on the survival of coliform 

bacteria in soil, aqueous suspensions of E. aerogenes and E. coli were prepared 

and added to moist soil and the samples subjected to repeated freezing and 

thawing and sampled over time. 
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Bacterial cultures of E. coli and E. aerogenes were prepared as described in 

section 2.2.1, and serial dilutions of the two bacteria were prepared using the 

method described in 2.2.2 

 

 Three 2 g samples of soil A were weighed out and placed in sterile test tubes. 

Sterile ¼ strength Ringer’s solution (2 ml) was added to each sample. The samples 

were left for 1 hour to allow for wetting of soil. After 1 hour, 1 ml of each of E. 

aerogenes and E. coli (both serial dilution 5) was added to each test tube. The 

samples were vortexed for 1 minute to ensure even mixing. An initial sample of  

0.1 ml was taken from each test tube immediately after vortexing, and made up to 

100 ml with ¼ strength Ringers solution for analysis by Colilert 18™ as described 

in section 2.2.7. 

 

Samples were placed in a –20°C freezer. After 24 hours samples were removed 

and left to thaw. Samples were then vortexed and resampled immediately. The 

samples were returned to the freezer and this procedure repeated at 48 and 72 hrs 

and again after 7 days.  

 

 

4.3.6 Effect of pH on survival of coliform bacteria in soil 

 

The effect of pH on the survival of coliform bacteria in soil was investigated. 
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Aqueous suspensions of E. coli and E. aerogenes were prepared and added to 

moist soil at a range of pH and sampled over time.  

 

 Three soil samples of differing pH were obtained as described in 4.2.2. Soils B 

and C had pH’s of 4.50 and 7.00 respectively. Soil A (pH 5.38) was used as a 

comparison. Three samples of each soil were weighed out (2g) and placed in 

sterile test tubes. Sterile ¼ strength Ringer’s solution (2 ml) was added to each 

sample. The samples were left for 1 hour to allow for wetting of soil. One ml of 

each of E. aerogenes and E. coli (both serial dilution 5) was added to each test 

tube. The samples were vortexed to ensure even mixing. A 0.1 ml sample was 

taken immediately from each test tube and made up to 100 ml with ¼ strength 

Ringers solution for analysis by Colilert 18™ as described in section 2.2.7. 

 

All samples were placed in the dark at 10°C. Each soil solution was resampled at 

24, 48 and 72 hrs and then at 7 days. Prior to sampling all solutions were vortexed 

for 1 minute prior to removing 0.1 ml for analysis. The results for all analyses were 

then calculated as cfu / 100 ml of suspension to make them consistent and 

comparable.  
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4.3.7 Effect of colloids on the survival of coliform bacteria in soil 

 

To determine the role colloids play on the survival of E. coli and E. aerogenes in 

soil, aqueous suspensions of each organism were prepared and added to moist 

soil. Bacterial cultures of E. coli and E. aerogenes were prepared as described in 

section 2.2.1, and serial dilutions of the two bacteria were prepared using the 

method described in 2.2.2 

 

Soil A was weighed out and 2 g placed in each of three test tubes. This was 

repeated 3 times. Sterile ¼ strength Ringers solution (2 ml) was added to each 

sample. These samples were left for 1 hour to allow for wetting of soil. After 1 hour, 

1 ml of each of E. aerogenes and E. coli (both serial dilution 5) was added to each 

test tube. The samples were vortexed for 1 minute to ensure even mixing. An initial 

sample of 0.1 ml was taken from each test tube immediately after vortexing, and 

made up to 100 ml with ¼ strength Ringers solution for analysis by Colilert 18™ as 

described in section 2.2.7. 

 

Samples were placed in the dark at 10°C. After 24 hours samples were resampled. 

The soil solution had settled leaving clear liquid at the top of the sample. A 0.1 ml 

sample of this liquid was removed for analysis, prior to vortexing the sample. After 

vortexing another 0.1 ml of solution was removed immediately and analysed. This 
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procedure was repeated at 24, 48 and 72 hours and at 7 days. The results for all 

analyses were calculated as cfu / 100 ml of suspension. 

 

  

4.3.8 Effect of soil texture on the survival of coliform bacteria in soil 

 
 
To determine the effect of soil texture on the survival of E. coli and E. aerogenes in 

soil, aqueous suspensions of each organism were prepared and added to clay soil 

and sand combinations. Bacterial cultures of E. coli and E. aerogenes were 

prepared as described in section 2.2.1, and serial dilutions of the two bacteria were 

prepared using the method described in 2.2.2. 

 

Five combinations of soil D and sand were prepared to provide a variety of soil 

textures (Table 4.2). Three 2 g samples of each soil/sand combination were 

weighed out and placed in sterile test tubes.  

 

Table 4.2   Soil and sand combinations used to determine effect of soil 

texture on survival of bacteria 

Sample % Soil D (by weight) % Sand (by weight) 
1 100 0 
2 75 25 
3 50 50 
4 25 75 
5 0 100 
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Sterile ¼ strength Ringer’s solution (2 ml) was added to each sample. The samples 

were left for 1 hour to allow for wetting of soil. After 1 hour, 1 ml of each of E. 

aerogenes and E. coli (both serial dilution 5) was added to each test tube. The 

samples were vortexed for 1 minute to ensure even mixing. An initial sample of 0.1 

ml was taken from each test tube immediately after vortexing, and made up to 100 

ml with ¼ strength Ringers solution for analysis by Colilert 18™ as described in 

section 2.2.7. 

 

Samples were placed in the dark at 10°C and resampled at 24, 48 and 72 hours 

and at 7 days. Samples were vortexed for 1 minute immediately prior to sampling. 

The results for all analyses were calculated per 100 ml of solution. 

 

 

4.3.9 Effect of organic matter on the survival of coliform bacteria in soil 

 

As depth of soil increases within the soil profile, the proportion of organic matter 

decreases. To determine the role organic matter has on the survival of coliform 

bacteria in soil, aqueous suspensions of E. coli and E. aerogenes were prepared 

as described in section 2.2.1 and added to moist soil. Serial dilutions of the two 

bacteria were prepared using the method described in 2.2.2. 

 



 
 
 
 

121 
 

A 30 cm soil core (soil E) was separated into two layers; top layer (0 – 10 cm; high 

organic) and bottom layer (10 – 30 cm; lower organic).  Stones were removed and 

the soil mixed well. Three 2g samples of each were prepared and placed in sterile 

test tubes. Sterile ¼ strength Ringers solution (2 ml) was added to each test tube 

and left for 1 hour to allow for wetting of soil. After 1 hour, 1 ml of each of E. 

aerogenes and E. coli (both serial dilution 5) was added to each test tube. The 

samples were vortexed for 1 minute to ensure even mixing. An initial sample of 0.1 

ml was taken immediately after vortexing, from each test tube and made up to 100 

ml with ¼ strength Ringers solution for analysis by Colilert 18™ as described in 

section 2.2.7. 

 

Samples were placed in the dark at 10°C and were resampled at 24, 48 and 72 

hours and at 7 and 21 days. All samples were vortexed immediately prior to 

sampling.  
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4.4 Results and discussion 

 

 

4.4.1 Evaluation of Colilert 18™ for the detection and quantification of  

E. aerogenes and E. coli in soil  

 

Colilert 18™ was evaluated for use in detection of coliform bacteria in soil. Colilert 

18™ was previously evaluated and found suitable for the detection of coliform 

bacteria in ¼ strength Ringers solution and groundwater samples (Chapter 2). 

Colilert 18™ has also been approved for use in the analysis of sewage sludge 

(SCA 2003) which although different to soil has similar issues when detecting 

microorganisms. 

 

In this study, samples were taken from ¼ strength Ringers solution and from the 

soil suspension both of which had been inoculated with serial dilution 5 of freshly 

prepared bacterial culture of E. aerogenes and E. coli. From each sample 0.5 ml 

was removed for analysis. This study was repeated using serial dilution 6 of 

bacterial culture, and sampling 1 ml and 0.1 ml from both the soil suspension and 

from the ¼ strength Ringers solution. In all cases the number of colony forming 

units per 100 ml of sample was calculated. Results were compared following data 

analysis which is shown in Tables 4.3 and 4.4.  
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Table 4.3 Descriptive statistics following analysis of ¼ strength Ringers 

solution for coliform bacteria using Colilert 18™ (cfu / 100 ml)  

 

 
 

1/4 strength Ringers solution 

SD 5 (0.5 ml) SD 6 (0.1 ml) SD 6 (1 ml) 

TC EC TC EC TC EC 

No. of samples 5 5 5 5 5 5 

Mean 121312 95068 14880 3240 10382 2008 

Standard Deviation 6063 8172 3222 885 1095 568 

Range 1480 2024 9000 2100 2900 1350 

Minimum 11496 8320 10900 2000 8820 1080 

Maximum 12976 10344 19900 4100 11720 2430 

Confidence Level (95.0%) 7528 10147 4001 1099 1360 706 

(TC = total coliforms; EC = E. coli)  

 

Table 4.4 Descriptive statistics following analysis of soil suspension for 

coliform bacteria using Colilert 18™ (cfu / 100 ml) 

 

 
 

Soil solution 

SD 5 (0.5 ml) SD 6 (0.1 ml) SD 6 (1 ml) 

TC EC TC EC TC EC 

No. of samples 14 14 16 16 16 16 

Mean 111821 89064 10344 2113 9216 1803 

Standard Deviation 16845 12724 3487 1676 2397 504 

Range 5014 4054 13400 5200 8190 1820 

Minimum 8720 6896 6300 0 6310 1100 

Maximum 13734 10950 19700 5200 14500 2920 

Confidence Level (95.0%) 9726 7347 1858 893 1277 268 

(TC = total coliforms; EC = E. coli)  
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A lower number of coliforms and E. coli were consistently recorded from soil 

samples compared to ¼ strength Ringers solution. This ranged from 6% less with 

E. coli from serial dilution 5, 0.5 ml sample to 35% less with serial dilution 6, 0.1 ml 

sample. However when the analysis was carried out there was no allowance made 

for the different suspensions. The water suspension had a total of 4 ml of liquid 

while the soil suspension had 4 ml liquid and 2g of soil, therefore the bacteria was 

distributed within a greater volume in the soil suspension. Removing the same 

quantity of suspension from each sample will give rise to some degree of error 

when determining the bacterial count. 

 

There is a much greater variation in the range of results from the soil suspension 

than the ¼ strength Ringers suspension. The variation of results would normally 

reduce as the sample numbers increase. However in this case the sample variation 

may be due to a lack of homogeneity within the soil samples compared to the ¼ 

strength Ringers solutions. Vortexing of the soil samples prior to analysis should 

increase homogeneity however as soon as the vortexing ceases there will be some 

settling of the sample.  

 

There were a number of difficulties when using Colilert 18™ to detect coliform 

bacteria within soil suspensions. Soil quantities must be low enough so as not to 

produce a high discolouration in the sample for analysis as this may make reading 
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of the Colilert 18™ difficult. However when too little soil was used when setting up 

the experiments, the soil - bacteria interaction was not investigated.  

 

It was decided to continue using Colilert 18™ to detect coliform bacteria within soil 

solutions. However it was decided to use serial dilution 5 and take 0.1ml of sample 

for analysis. This would give a higher number of organisms inoculated into the 

sample but a reduction in the amount of soil suspension removed for analysis 

therefore preventing a discoloration in the sample.ial 

 

 

4.4.2 Effect of temperature on the survival of coliform bacteria in water 

 

It was found that the survival of E. coli and E. aerogenes in water was influenced 

by temperature. Figure 4.1 shows the survival behaviour of E. coli and E. 

aerogenes at varying temperatures over a four week period.  
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Figure 4.1: Survival of coliform bacteria at varying temperatures in water 

over a 28 day period.  Error bars equivalent to one standard 

deviation, (n = 3), (TC at 37°C (   ), TC at 10°C (   ), TC at 4°C (   ), 

E. coli at 37°C (   ),  E. coli at 10°C (    ),  E. coli at 4°C(    ) 

 

In general, the number of coliform bacteria initially decreases over a six hour 

period following addition of E. coli and E. aerogenes to the ¼ strength Ringers 

solution and incubation at chosen temperatures. However in the case where the 

sample is incubated at 37°C there is a rapid increase over the first six hours in both 

E. coli and E. aerogenes. This is perhaps not surprising since they are enteric 

bacteria and as such naturally survive and grow at this temperature. It was 

however observed that at 37°C E. coli survived for a shorter period of time than 
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those at 10°C. At 28 days and a temperature of 37°C there are no surviving E. coli 

and numbers of E. aerogenes are decreasing. 

 

 Survival was lowest at 4°C, E. aerogenes surviving from 2 to 7 days however E. 

coli survived for less than 48 hours. The optimum temperature for survival was 

noted at 10°C from the 3 temperatures studied with coliforms continuing to survive 

and maintain their numbers to at least 28 days. McFeters and Stuart (1972) studied 

the effect of temperature in natural waters and found that E. coli survival was 

inversely proportional to temperature changes between 5 and 15°C. At 5°C a 50% 

reduction in E. coli counts was found after 4.5 days, however at 15°C this took less 

than 1.5 days. Pope et al. (2003) studied the impact of storage over 48 hours on 

natural waters. It was found that reduction of E. coli in samples was greater at 

temperatures of 20°C and 35°C than at 4°C and 10°C.  

 

Medema, Bahar and Schets (1997) found that the die off rate of E. coli was greater 

at 5°C than at 15°C in autoclaved river water. At 15°C E. coli numbers increased 

over a two week period then remained constant to at least 77 days. The presence 

of indigenous microorganisms in the natural water may be the reason for the 

discrepancy between the two studies. At higher temperatures the quantity of 

indigenous bacteria are likely to increase thereby having a negative impact on the 

survival of coliform bacteria. Whereas in sterile water there will be no competition 

or predation by intrinsic bacteria.  
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The minimum temperature for growth of E. coli was indicated as 7.5 to 7.8°C by 

Shaw, Marr and Ingraham (1971).  This substantiates results found in this study 

and supports the short survival time and absence of growth recorded at 4°C for E. 

coli and E. aerogenes.  

 

The fact that coliform bacteria can survive and possibly grow at temperatures of 

10°C indicates that they also have the ability to survive in groundwater as the 

typical groundwater temperatures in the UK are 10°C with very little variation 

throughout the year.  Although it is recognised that coliform bacteria have a finite 

lifespan in water, their ability to survive for even short periods of time could impact 

on human health due to contamination of water supplies. 

 

 

4.4.3 Effect of pH on the survival of coliform bacteria in water 

 

The effect of pH on coliform survival in water was investigated using two extremes 

of pH at 10°C. The mean of the samples taken at low pH (pH 4.09 – 4.56) and at 

high pH (pH 9.07 – 9.39) were plotted against time. Figure 4.2 shows the survival 

of coliform bacteria and E. coli in water at these pH values over a 14 day period. 
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Figure 4.2: Comparison of the survival of coliform bacteria in water at high 

pH (9.07 – 9.39) and low pH (4.09 – 4.56) over a 14 day period.   

Error bars equivalent to one standard deviation (n = 3)   

 TC at high pH (    ), TC at low pH (     ),  

E. coli at high pH (   ),  E. coli at low pH (      ) 

 

In comparison to the temperature study on coliform survival where the ¼ strength 

Ringers solution had a pH of 7.58, it is clear to see that a high pH has a detrimental 

effect on the survival of both E. aerogenes and E. coli in water. Both bacterial 

counts remain relatively stable at low pH over the 14 day period. McFeters and 

Stuart (1972) found that E. coli survival in natural waters at 10°C was most 

favourable at pH between 5.5 and 7.5 and numbers reduce dramatically at pH 

higher and lower than this. Sjogren and Gibson (1981) found that E. coli survival 
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increased in natural waters at pH 5.5 compared to pH 7.5. It was suggested that 

this was linked to increased mobilisation of energy resources by enzyme activity, 

specifically ribonuclease at the lower pH. The study also notes that pH 5 is the 

optimal pH for adenosine triphosphate synthesis by the proton motive force 

therefore increasing the potential for survival.  

 

 

4.4.4 Effect of temperature on survival of coliform bacteria in soil 

 

The survival of coliform bacteria in soil was studied at four temperatures over a 28 

day period. In water samples at 4°C, coliform bacteria were no longer present after 

7 days. However in soil samples at the temperatures studied, coliform bacteria 

including E. coli were still present at day 28 (Figure 4.3). 

 

The soil had previously been sampled using Colilert 18™ and was found to have 

no background level of Coliform bacteria, however it was important to note 

however that unlike the water samples used previously, the soil was not sterile.  
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Figure 4.3  Survival of coliform bacteria in soil at varying temperatures 

recorded over a 28 day period. Error bars equivalent to one 

standard deviation (n = 3)  

(TC: 20°C (    ), TC: 10°C (   ), TC: 4°C (    ), TC: -20°C (   ) 

E. coli : 20°C  (    ), E. coli : 10°C (    ), E. coli : 4°C (    ),  

E. coli : -20°C (     ) 

 

At all temperatures studied, the coliform bacterium in soil survives longer than in 

water at the same temperatures. After 28 days at all 4 temperatures both E. coli 

and E. aerogenes were still present in samples. This suggests a protective effect 

afforded by the soil. Vargas and Hattori (1986) have shown that bacteria are better 

protected from protozoan grazing, when they were positioned within soil 
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micropores. Bacteria distributed within a water column are not protected in the 

same way as bacteria retained within soil pores which may indicate why these 

bacteria in water survived for a shorter period of time. Bacteria at - 20°C survive 

better than those at 4°C, possibly because they are likely to be in a suspended 

state.  

 

Temperature influences the moisture content of the soil; as temperature increases 

soil moisture is likely to decrease. The moisture content of soil is widely recognised 

as being influential in bacterial survival, consequently if soil moisture content is low 

bacterial survival tends to be reduced (Entry et al. 2000). This is supported by 

Garcia-Orenes et al. (2007) who found that coliforms survived in moist soil at 

temperatures exceeding 20°C for 80 to 100 days; however the length of survival 

decreased to less than 45 days when the soil was not irrigated. Cools et al. (2001) 

noted that E. coli survived longer at 5°C than at 25°C.  

 

In summary, temperature and moisture content of the soil play an important role in 

the growth and survival of coliform bacteria in soil. These factors also influence the 

presence of intrinsic soil bacteria which will in turn impact on coliform survival. 

 

 

 



 
 
 
 

133 
 

4.4.5 Effect of freeze / thaw conditions on the survival of coliform bacteria in 

soil 

 

Coliform bacteria including E. coli in soil was studied in section 4.4.4 to determine 

the effect of temperature on their survival. This study showed that coliform bacteria 

were found to still be present and viable at 28 days when subjected to a constant   

- 20°C. The aim of this study was to determine the impact of repeated freezing and 

thawing on the survival of E. coli and E. aerogenes compared to soil maintained at 

a constant - 20°C. It can be seen in Figure 4.4 that survival time is reduced quite 

dramatically by repeated freezing and thawing, particularly in the case of E. coli. 

 

 

Figure 4.4 Effect of repeated freeze / thaw conditions on the survival of 

coliform bacteria in soil. Error bars equivalent to one standard 

 deviation (n = 3),   TC (    ),    E. coli (    )     
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The effects of freezing are well documented with regards to the impact on microbial 

survival. A number of factors are influential to the degree of damage suffered by 

bacteria in soil when subjected to freezing conditions. These include the rate and 

temperature of freezing, the length of frozen storage, thaw conditions, moisture 

content of the soil and soil composition.  

 

In the case of slow freezing of aqueous suspension, solute concentration increases 

in the unfrozen section which causes diffusion of water from bacterial cells. The 

concentration of cellular liquids changes the pH and ionic strength within the cell 

which causes inactivation of enzymes, denatures proteins and impedes the 

function of DNA, RNA and cellular organelles.  As water freezes externally, ice 

crystals are produced which cause mechanical injury to the cell membrane.  

 

When freezing rates are increased the survival of microorganisms increases. This 

is due to a reduction of the osmotic effects. However if freezing rates are too high, 

crystal formation occurs intracellularly as well as extracellularly, causing greater 

injury to cells resulting in a decrease in survival rate. Gram negative bacteria 

particularly mesophiles, appear to be more susceptible to cold shock than gram 

positive bacteria. 

 

Bacterial cells which survive freezing are subjected to further osmotic effects 

during thawing. Many injured cells die gradually during frozen storage however 
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some may have reversible injuries which cells are able to repair if nutrients, energy 

sources, and specific ions are available and metabolism can commence.  

 

This study found that repeated freeze / thaw episodes were much more destructive 

than a single freezing event over a long period of time. This is supported by 

Kibbey, Hagedorn and McCoy (1978) who studied the effect of freezing on 

Streptococcus faecalis and found that repeated freeze-thaw episodes caused 

greater cellular damage than one extended period of freezing.  In the UK, soil can 

be subjected to repeated freezing and thawing during the winter months. This 

would appear to be advantageous to the reduction and removal of enteric bacteria 

from the environment and therefore reducing the likelihood of contamination of 

groundwater and private water supplies.  

 

 

4.4.6 Effect of pH on survival of coliform bacteria in soil 

 

As with the study on coliform survival in water at varying pH, soil pH also affects 

coliform survival. This effect however is much less dramatic than in the water 

samples. Figure 4.5 shows the comparison between soils of different pH values. 
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Figure 4.5 Effect of soil pH on survival of coliform bacteria in soil 

 Error bars equivalent to one standard deviation, (n = 3)  

(TC pH 7.00 (   ), TC pH 4.50 (   ), TC at pH 5.38 (   ), 

E. coli pH7.00 (    ), E. coli pH 4.50 (    ), E. coli pH 5.38 (   ) 

 

Coliform bacteria in soil at pH 4.50 appear to decrease slightly faster than coliforms 

in water at pH 4.09 – 4.56 as shown in section 4.4.3, while bacteria in soil of pH 

7.00 are increasing in numbers.  This is similar to a study by Estrada et al. (2004) 

who found that soil with pH less than 6 or greater than 8 was likely to have an 

adverse effect on most bacteria, in contrast a positive effect on growth and survival 

of enteric bacteria was found in neutral soils. Gerba, Wallis and Melnick (1975) 

also noted shorter survival in acidic soils of pH 3 to 5.  
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This is unexpected as bacteria in soil are normally expected to have greater 

protection from adverse conditions due to the presence of pore spaces within the 

soil, whereas bacteria in water do not have this protection.  

 

It is possible that this difference in the survival of coliforms in low pH soil compared 

to water of a similar pH is due to the presence of clay minerals in the soil. It is 

known that at low pH values (< pH 5), clay minerals may dissolve and release high 

levels of silica (and alumina) to the water which in high concentrations can be 

detrimental to bacterial survival. 

 

 

4.4.7 Effect of colloids on the survival of coliform bacteria in soil 

 

The aim of this study was to determine whether E. coli and E. aerogenes were 

more likely to be found suspended within the water layer or retained within the 

settled soil particles. The samples removed from the settled soil sample were 

removed from the liquid column above the settled soil. The other samples were 

removed following vortexing of the samples to ensure thorough mixing.  

 

It can be seen from Figure 4.6 that more bacteria are detected following mixing of 

the soil solution than from the water column above the settled suspension. This 

indicates that the bacteria are retained within the settled soil with possible 
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attachment to colloidal material. It can also be noted that coliforms found within the 

settled soil have increased growth and survival in comparison to coliforms found 

within the water suspension. 

 

 

 

 Figure 4.6 Effect of colloids on the survival of coliform bacteria in soil  

Error bars equivalent to one standard deviation, (n = 3)  

  TC soil A (vortexed) (   ), TC settled soil A (    ), 

E. coli soil A (vortexed) (    ), E. coli settled soil A (   ) 

 

A number of studies have shown increased numbers and greater survival of 

coliform bacteria in sediments than in the overlying water column and have linked 

this with bacterial association with the sediments (Gerba and McLeod 1976; Karim 
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et al. 2004; An, Kampbell and Breidenbach 2002; Burton, Gunnison and Lanza 

1987). This effect was found to be particularly increased with clay sediments 

(Burton, Gunnison and Lanza 1987). Craig, Fallowfield and Cromar (2004) studied 

bacterial survival and found that at all temperatures survival was greater in 

sediment than water. It was also recognised that higher quantities of silt, clay and 

organic carbon improved bacterial survival. This agrees with Karim et al. (2004) 

who inferred that increased faecal coliform survival in artificial wetlands may be 

due to the increased organic matter content of sediments. 

 

 

4.4.8 Effect of soil texture on the survival of coliform bacteria in soil 

 

Soil texture has been documented as having an effect on the survival of bacteria in 

soil. The effect of increasing sand content with decreasing clay content on the 

survival of coliform bacteria was studied and results shown in Figure4.7.  

 

It is generally thought that fine textured soils such as clays are more favourable to 

coliform survival than coarse textured sandy soils due to the presence of small 

pore spaces where bacteria can be protected from predation and adverse soil 

conditions. Under the same conditions clay soils would have greater moisture 

content than sand which is also conducive to coliform survival.  
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Figure 4.7 Effect of soil texture on the survival of bacteria in soil 

 Error bars equivalent to one standard deviation, (n = 3)  

  100 % soil: TC (     ), E. coli (    ), 

66 % soil / 33 % sand: TC (    ), E. coli (    ),  

33 % soil / 66 % sand: TC (    ), E. coli (    ) 

100 % sand: TC (   ), E. coli (    ) 

 

The findings of this study do indicate that the presence of clay particles enhances 

survival and growth of coliforms, whereas in the presence of only sand, the 

numbers of coliform bacteria start to decline. Burton, Gunnison and Lanza (1987) 

found greater survival in sediments with higher clay content as did Fenlon et al. 

(2000) who studied the survival of E. coli O157 in various soils and concluded that 
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E. coli O157 could survive considerably longer in clay and loam soils compared to 

sandy soils. However, Cools et al. (2001), studied E. coli survival in soils of 

different texture (sandy soil, loamy soil, loamy sand) and found the sandy soil to be 

the best for E. coli survival. The water holding capacity of the 3 soils studied was 

similar however the organic matter content was much higher in the sandy soil. 

Organic matter is known to be important for water retention, the formation and 

stabilisation of aggregates and the formation of microhabitats which could explain 

the increased survival in the sandy soil.   

 

The importance of soil moisture was indicated in a study by García-Orenes et al. 

(2007). All irrigated soils were found to have a greater coliform survival than all soil 

types without irrigation. Of the irrigated soils, the soil with the highest clay content 

had the highest coliform survival 

 

 

4.4.9 Effect of organic matter on the survival of coliform bacteria in soil 

 

In this investigation two soil depths were studied to determine the effect of organic 

matter on the survival of E. coli and E. aerogenes. Soil E was collected as 

described in section 4.2.2.4. Soil description and soil analysis is shown in Table 

4.1. The top 10 cm of the soil profile has an organic matter content of 8.47%, while 

the soil from a depth of 10 – 30 cm has 6.98% organic matter. Comparison of the 
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two soil layers which have different quantities of organic matter is shown in Figure 

4.8.  

 

Figure 4.8: Comparison of the survival of coliform bacteria in soil taken 

from different depths with different organic matter contents 

Error bars equivalent to one standard deviation (n = 3)  

Soil from 0 – 10 cm depth: TC (    ), E. coli (    ), 

Soil from 10 – 30 cm depth: TC (     ), E. coli (   ) 

 

Total coliforms have a slightly increased survival time with soil from the top 10 cm 

of the soil profile when compared to soil from a depth of 10 to 30 cm. However in 

this study the difference in survival for E. coli in the two soils is insignificant.  
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A number of studies have shown that increased organic matter can increase 

coliform survival in soil and possibly also allow regrowth of bacteria (Dazzo, Smith 

and Hubbel 1973; Tate 1978). However Temple, Camper and McFeters (1980) 

also recognised that the extended survival and growth in organic soils may be due 

not only to the presence of organics but to the high moisture holding capacity of 

these soils. 

 

The soil used in this study was fresh with no coliform bacteria detected prior to the 

study. It is interesting to compare the behaviour of the coliform bacteria in this 

study to the previous studies carried out at the same temperature. In the other 

studies there is generally growth of coliform bacteria however in this study there is 

a fairly rapid decrease in coliforms numbers. An explanation for this decrease can 

probably be explained by the presence of indigenous soil microorganisms which 

will reduce coliform numbers either through predation or competition. Although the 

soil used in the other studies was unsterile, due to long term storage, the presence 

of indigenous soil microorganisms would have been very low or absent. 

 

 

4.5 Conclusions 

 

The primary aim of this study was to recognise factors affecting the survival of 

coliform bacteria in water and soil. In laboratory based studies using sterile water 
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and aged soil it was very easy to recognise distinct factors which have an effect on 

coliform survival. However this proved to be more challenging when using a fresh 

soil sample. 

 

There are many factors which have an impact upon the survival of coliform bacteria 

in both water and soil. In this study the effect of temperature and pH were 

investigated with regards to coliform survival in the water environment. A summary 

of these findings are shown in Table 4.5. 

 

Table 4.5 Summary of effect of environmental conditions on growth and 
survival of E. aerogenes and E. coli in water over a specified 
period of time  

 

Environmental Conditions E. aerogenes E. coli 

Temperature 

(28 days) 

37˚C   

10˚C no observed effect no observed effect 

4˚C   

pH 

(14 days) 

4.09 – 4.56 no observed effect no observed effect 

9.07 – 9.39   

 

 

Factors influencing coliform survival within the soil environment are summarised in 

Table 4.6. 
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Table 4.6 Summary of effect of environmental conditions on growth and 
survival of E. aerogenes and E. coli in soil over a specified 
period of time  

 

Environmental Conditions E. aerogenes E. coli 

Temperature 
(28 days) 

20˚C   

10˚C   

4˚C   

0˚C   

Repeated 
freeze/thaw 

(7 days) 
 

  

pH (7 days) 

7.00   

5.38  No observed effect 

4.50   

Colloids  
(7 days) 

Presence   

Absence   

Clay content  
(7 days) 

High   

Low No observed effect No observed effect 

Organic 
matter1  

(21 days) 

presence   

absence   

Soil  
aged   

fresh   

1 Fresh soil used 
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It is important to take into account the fact that the majority of these investigations 

were carried out using sterile water and aged soil which is likely to have a much 

lower indigenous soil bacterial community, if any, than a fresh sample. The 

presence and effect of natural soil bacteria was evident in the study using fresh soil 

samples where the survival of coliform bacteria was reduced significantly. The 

extent of this observation was surprising as increased levels of organic matter have 

been shown to enhance coliform survival. However the response is attributed to 

the presence of indigenous soil bacteria.  

 

The importance of recognising differing effects found in laboratory based 

experiments compared to those found in the natural soil and water environments 

need to be understood. This study looked at individual factors affecting longevity of 

coliform bacteria whilst in the natural environment many factors can and do interact 

to influence their survival.  One of the factors having the greatest influence on 

coliform survival was soil texture, with the presence of clay particles promoting not 

only survival but growth. Within the UK, groundwater is generally maintained at 

10°C, which permits the survival of coliform bacteria. However within the natural 

soil environment in the UK, coliform bacteria have the potential to not only survive 

but to increase in numbers. The main limiting factor recognised during this study is 

the competing effects shown by presence of indigenous bacteria. 
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Chapter 5 Movement of bacteria through soil 

 

 

5.1  Introduction  

 

Movement of bacteria through soil increases the potential for water supplies to 

become contaminated which may then pose a risk to human health. The study and 

subsequent understanding of bacterial transport through soil is therefore of great 

importance.  

 

Within the soil profile the surface soil and the vadose zone (area lying between the 

ground surface and the saturated zone) are usually unsaturated whereas the 

groundwater zone is usually saturated. Underlying this there will be an 

impermeable layer or bedrock. The soil and vadose zones offer protection for 

groundwater by shielding it from contamination by microorganisms or chemicals. 

The distance between the surface soil and the groundwater is often significant for 

determining the likelihood of groundwater contamination; the greater the distance 

the more opportunity for natural filtration through the soil to occur. However 

variations in each site such as soil type and treatment must also be taken into 

account as they may affect the potential filtering effects of the soil (Conboy and 

Goss 2000).  
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Soil is classified according to the size of its individual particles. This classification is 

made on the relative amounts of each of the sand, silt, and clay particles within a 

soil. With reference to the British Soil Texture Classification system (BSTC) sand is 

larger in diameter than silt and clay particles and its particles are visible to the 

naked eye. The diameter of particles ranges from very fine (0.06 mm) to very 

coarse (2 mm) in diameter. Sandy soils tend to be limited in nutrients because 

nutrients leach out from the large pore spaces between sand grains. Silt contains 

silicate minerals like sand but the diameter of silt particles are smaller (0.06 – 

0.002 mm). Pore spaces between silt particles are smaller than sand therefore silt 

has the ability to hold water between particles and can retain nutrients for plant 

use. Clay contains silicates, mica, quartz, carbonate and metal oxides. Clay 

particles are 0.002mm in diameter or smaller so the pore spaces between clay 

particles are very small. Thus water and air movement through clay particles is 

significantly decreased. When clay becomes wet it swells, cohesion occurs and it 

feels sticky. As wet clay dries, it shrinks and cracks. Clay also becomes dense, 

hard and brittle making it difficult for plant roots to grow through (Ashman and Puri 

2002). 

 

The key processes involved in physical transport of microorganisms through soil 

have been summarised by Gerba, Yates and Yates (1991) as advection, 

dispersion, adsorption and filtration. The extent each of these processes has on  

the transport of microorganisms often depends on factors such as soil type, soil 
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porosity, the microorganism in question and weather conditions. 

 

Advection is the primary process by which bacteria are transported through the soil 

profile. In unsaturated permeable soil, water movement is primarily vertical 

because of the force of gravity. Particles are carried in the soil solution at a rate 

equal to the average velocity of the water flow. The flow rate and degree of 

saturation of the soil can play a significant role in determining transport potential. In 

general, higher water content and greater flow velocities results in increased 

transport (Wong and Griffin 1976; Worrall and Roughley 1991). Irrigation and 

rainfall have been shown to increase movement through soil. Trevors et al. (1990) 

showed that bacterial movement in soil columns was negligible when there was an 

absence of downward water flow. However, following percolation bacteria could be 

detected throughout the columns and in leachate.  

 

Bacteria can also be transported in overland flow which can occur if the intensity of 

rainfall is exceptionally high and no further soil saturation is possible. Overland flow 

can transport bacteria significant distances often with their ultimate destination 

being surface waters.  Surface or subsurface runoff is likely to occur if the soil is 

saturated or is heavy clay. In fine textured clay soils, macropores such as 

shrinkage cracks, fissures, root holes and earthworm channels encourage the 

occurrence of preferential flow. These flow pathways can cause rapid movement of 

solutes through soil. Water flow occurring through large pores and channels results 
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in bypassing of the natural filtering effect of the soil (McCoy and Hagedorn 1979). 

Unc and Goss (2003) found that macropores associated with clay soils was one of 

the most important factors for increased flow and therefore the transport of bacteria 

through soil. Smith et al. (1985) compared intact and corresponding disturbed soil. 

It was found that at least 93% of the inoculated E. coli cells were retained in 

disturbed soil. In contrast only 21 to 73% were retained in intact cores. Similarly 

van Elsas, Trevors and Overbeek (1991) showed greater transport in undisturbed 

soils than in repacked soils probably due to macropores in the undisturbed soil.  

 

Dispersion is the spreading of the organisms as they pass through the sub-surface 

medium. This is a function of the variation in actual compared with average, pore 

water velocity and the effect of Brownian movement. As matrix potential falls, water 

will drain from pores and water content together with pore size will determine the 

ability of microorganisms to move through soil either by active movement or 

Brownian motion (Wong and Griffin 1976; Worrall and Roughley 1991).  

 

Soil porosity depends on the ratio of the volume of void spaces to the total soil 

volume. Generally the porosity of clay soils which have small particle size is larger 

than that of sandy soils which have large particle size but because of the 

arrangement of particles, not all of the void space is available for water flow 

(Dighton et al. 1997). There is greater potential for microbial movement in coarse 

than fine soil because of the larger pore spaces (Bitton, Lahav and Henis 1974).  
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Microbes naturally adhere to surfaces such as soil particles. This is referred to as 

adsorption. It is thought that the majority of enteric bacteria in soil and aquatic 

systems are associated with sediments and that these associations influence their 

survival and transport. There are factors that control microbial adsorption to and 

detachment from solid surfaces. Microbial adsorption is the influence of cell surface 

properties however there is wide variation in these properties among genera and 

even species. The key cell surface factors influencing adsorption are charge and 

hydrophobicity. There are two types of bacterial adsorption, these being weak 

adsorption which is due to van der waals forces exceeding repulsive forces, and 

strong adsorption due to cellular appendages such as fimbriae and pili, or 

extracellular polymers excreted from the cell (Palmateer et al. 1993; Marshall 1980; 

Marshall 1986).  

 

Different soil types have varying adsorptive properties associated with their 

colloidal matter. Therefore soil type is a major factor influencing microbial transport 

in soils (Bitton, Lahav and Henis 1974; Smith et al. 1985, Paterson et al. 1993). 

The large surface area per given volume of clays make them ideal adsorption sites 

for bacteria in soils. Thus adsorption plays a more important role in the removal of 

microorganisms in soils that contain clays. Ling et al. (2002) found in adsorption 

trials that four times more E. coli was adsorbed in clay loam than silt loam. 

However, bacteria sorbed to soil can become resuspended and travel significant 

distances under saturated conditions (Rahe et al. 1978). 
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Filtration limits the movement of bacteria through soil by removing organisms from 

the pore water by size exclusion. Filtration becomes an important mechanism 

when the limiting dimension of the microbe is greater than 5% of the mean 

diameter of the soil particles. This is particularly relevant in a soil containing a 

significant portion of silt or clay particles where filtration will be a major mechanism 

of bacterial cell removal.  When suspended particles, including bacteria, 

accumulate on the soil surface, these particles become the filter as water passes 

through the soil. Such a filter is capable of removing even finer particles by bridging 

or sedimentation before they reach and clog the original soil surface (Gerba and 

Bitton 1984). Sedimentation is frequently ignored when discussing microbial 

transport through the subsurface as advective processes are generally thought to 

overwhelm any significant effect of sedimentation. However sedimentation may 

occur when the density of the microbe is greater than that of the liquid medium and 

flow velocities are low (Gerba and Bitton 1984).  

 

Other factors that may be influential in the movement of microorganisms within soil 

are the ionic strength of the soil solution, pH of the soil solution, the physiological 

state and activity of the microorganisms and the presence of macro organisms 

(Gerba and Bitton 1984). 

 

Soil solution ionic strength influences bacterial transport. Transport is promoted 

when ionic strength decreases and when flow rate increases. Rainfall events can 
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influence the ionic strength in a porous medium as it increases the water flow rate. 

The added water will also generally lower the ionic strength of the soil solution. 

With particular relevance to clay soils, in the presence of high concentrations of 

monovalent cations such as Na+, clays tend to be dispersed. Dispersed clays 

create puddled soils, which are sticky when wet and hard when dry. As a dispersed 

soil dries, compaction may occur, which reduces pore spaces, inhibiting soil 

aeration and reducing the capacity for water flow. This adversely affects the 

transport potential of microbes. The reverse occurs in the presence of divalent 

cations such as Ca2+ and Mg2+, with smaller radii of hydration, which leads to 

flocculated soils, which have increased pore space and thus favour transport 

(Maier, Pepper and Gerba 2009). 

 

The pH of the matrix solution within a porous medium does not seem to have a 

large effect on bacterial transport. Bacteria have very chemically diverse surfaces, 

and thus a change in pH would not be expected to alter the net surface charge to 

any great extent. The isoelectric point (pI) is the pH at which the molecule has a 

net charge of zero. For bacteria, the isoelectric point (pI) usually ranges from 2.5 to 

3.5, so the majority of cells are negatively charged at neutral pH. At pH values 

more acidic than the isoelectric point, a microbe becomes positively charged. This 

will reduce its transport potential because of increased sorption. This will not 

happen often with bacterial cells in environmental matrices, given their low pI 

values (Davet 2004).  
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The physiological state and activity levels of bacteria may affect their survival 

which will subsequently affect their potential transport in the soil. The size and 

shape of bacteria play a role in bacterial removal by filtration. Bacteria may also 

have a variety of appendages such as flagella, pili or fimbriae. Pili and fimbriae are 

involved in attachment whereas flagella are concerned with bacterial motility. 

However the influence of bacterial motility on overall transport is generally minimal 

because extensive continuous water films would be needed to support microbial 

movement. Although continuous films exist, they are present only in soils with high 

soil moisture contents. In flowing systems, the primary mechanism of transport is 

advection. Advective transport will be many orders of magnitude greater than 

transport due to motility (Maier, Pepper and Gerba 2009). 

  

There is also evidence that bacteria can travel through soil due to earthworm 

activity (Opperman, McBain and Wood 1987). Joergensen et al. (1998) showed 

that faecal coliforms were transported by earthworms to depths of 40 to 80 cm. 

Rusek (1985) found that earthworms could reach depths of approximately two 

metres. Thorpe et al. (1996) also showed that movement of bacteria in unsaturated 

soil is aided by earthworms.   

 

The focus of this research was to determine the effect of soil texture and rainfall on 

the transport of bacteria through soil. This was initially carried out using repacked 
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soil columns of varying soil textures. This study was then extended to investigate 

intact soil cores and the effect of rainfall. 

 

 

5.2  Materials and methods 

 

 

5.2.1  Bacterial cultures and serial dilutions  

 

Bacterial cultures of E. coli and E. aerogenes were prepared as described in 

section 2.2.1. A turbid solution of each of the cultures and subsequent serial 

dilutions were prepared as required using the method described in section 2.2.2. 

 

 

5.2.2 Measurement of E. coli and E. aerogenes within bacterial 

suspensions using Colilert 18™ 

 

The coliform count in the bacterial stock suspension added to soil columns was 

analysed using Colilert 18™ to give an approximate number of coliform bacteria 

applied to the soil columns. A sample of 0.1 ml was removed from bacterial 

suspensions of dilution 5 and 6. This sample was made up to 100 ml using ¼ 

strength Ringers solution and analysed using the method described in 2.2.7.  
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5.2.3 Measurement of E. coli and E. aerogenes within soil samples using 

Colilert 18™ 

 

Soil (10 g) was weighed out from each section and 20 ml of sterile ¼ strength 

Ringers solution added. Each sample was shaken for 20 minutes. Soil solution (1 

ml) was removed and made up to 100 ml with ¼ strength Ringers solution and 

analysed using Colilert 18™as described in Section 2.2.7. For each layer of soil, 

samples were taken in triplicate for analysis. The colony forming units (cfu) per 

section was calculated thus allowing an approximate cfu per column to be 

determined.  

 

 

5.2.4  Collection and preparation of soil for repacked columns 

 

Soil used for the preparation of repacked soil columns had been collected 

previously in association with other studies and had been stored for a number of 

years. This was referred to as Soil A as described in Section 4.2.2.  

 

The repacked columns were prepared using plastic pipe of 4 cm diameter which 

was cut into 12 lengths each measuring 40 cm long. One end was sealed with 

mesh (pore size 500 µm) and 20 g sand added to the bottom of each column to aid 

drainage and prevent loss of soil particles. 
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Columns were filled with a combination of soil A and dried washed sand.  The 4 

variations of soil and sand mixtures are detailed in Table 5.1.  Soil and sand 

mixtures were prepared by weighing out the required quantity of each into plastic 

bags, sealing and mixing thoroughly. The mixture was spooned into the column to 

ensure even packing and mixing. Each column was tapped 4 times to encourage 

some degree of settling. Three replicate columns of each combination were 

prepared. 

 

Table 5.1 Soil and sand content of repacked soil columns 

 Weight of Soil (g) Weight of Sand (g) 

Column 1 381 0 

Column 2 254 127 

Column 3 127 254 

Column 4 0 381 

 

The columns were saturated with water by placing them inside 2 litre measuring 

cylinders. Deionised water was added to the cylinder being careful not to wet the 

top layer of the soil column. Water was continually added over time as the soil 

soaked up the liquid until it was observed that the top of the soil was completely 

saturated with water. The columns were left for a further 30 minutes to ensure 

saturation. The soil columns were then removed and the bottom of the columns 
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sealed prior to reweighing the column. The volume of water taken up by the soil 

column was measured and recorded.   

 

The columns were attached to a clamp stand and the water allowed to drain from 

the columns. When no further draining was observed, the ends of the columns 

were sealed with plastic film, covered with aluminium foil and stored in the cold 

room until required.    

 

 

5.2.5  Collection of undisturbed soil cores 

 

Soil cores were removed from grass covered land at the Macaulay Institute, 

Craigiebuckler, Aberdeen. The land had not received any treatment for a number 

of years and was not used for grazing animals. This soil in the cores is the same as 

that described as Soil E in Section 4.2.2. 

 

The soil cores were taken using rigid, cylindrical PVC pipes which were 40 cm long 

with an internal diameter of 15 cm. The leading edge of the pipe was tapered to 

allow it to enter the soil easily. Using mallets, each core was gently driven into the 

ground to a depth of 32 cm, ensuring that the cores entered the soil vertically. The 
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area surrounding each core was dug away to enable the core to be removed with 

minimal disturbance. The grass covering on each core was trimmed to a height of 

2.5 cm. From the bottom of the core, 1.5 cm depth of soil was removed and 

replaced with sand. The base of each core was supported by nylon mesh (500 µm 

pore size) and fitted to a funnel. The soil cores were sealed with foil and kept in the 

cold room for 2 weeks prior to use.  

 

 

5.2.6  Destruction of soil columns for soil analysis 

 

Prior to using the undisturbed soil columns, one column was destroyed to obtain 

soil for analysis and to determine the background concentration of coliform 

bacteria. For this purpose a composite sample from the entire column was used. 

Similarly the repacked and the undisturbed soil columns were destroyed following 

completion of the studies to determine the presence and quantity of coliform 

bacteria within the column layers. 

 

Each column to be destroyed was cut open lengthways using an electric rotary saw 

(Figure 5.1). The soil layers were separated into sections (100 and 66% soil 

mixtures separated into 4 sections and the 33% and 0% soil mixtures separated 

into 3 sections). The undisturbed soil cores were separated into four layers, each 

approximately 8 cm depth. Each section was placed in individual plastic bags and 
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mixed thoroughly. Soil was removed as required for soil analysis. Measurement of 

soil moisture was determined using the method described in section 4.2.3. 

 

 

Figure 5.1 Destruction of undisturbed soil cores 

 

 

5.2.7  Investigation of dye transport through repacked soil columns 

 

The study of dye transport through soil columns was carried out to obtain 

information on the potential flow rate and movement of coliform bacteria through 

the columns. Three repacked soil columns of each soil / sand mixture were 

prepared as described in section 5.2.4. 
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The columns were saturated then attached to clamp stands and drained until they 

were at field capacity. (Field capacity is the amount of soil moisture retained in the 

soil after excess water has drained away for example following heavy rainfall). 

Filter paper was placed on each column on top of the soil. Blue food dye (1.5 ml) 

was added directly onto each filter paper and the start time noted. Water was 

applied to the surface of the soil columns (surface area = 12.56 cm2) at a rate of 

3.4 ml per minute via a pump and allowed to drip approximately 2 – 3 cm above 

the filter paper (Figure 5.2).  

 

 

Figure 5.2 Soil columns for dye transport study 
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The rate of simulated rainfall onto the soil columns was calculated using the 

following equation: 

 
Rate of simulated 
rainfall (mm / hr) = 

Flow rate of water (ml / min) 
x 60 

surface area of soil (cm2) 
 
 

The rate of simulated rainfall was calculated as 16.2 mm / hr. The drainage water 

was observed for signs of the dye. It was noted when the drainage water started to 

change colour, the degree of colour, and when it was observed that all dye colour 

had visibly disappeared.  

 

 

5.2.8  The effect of soil texture on transport of E. coli and  

E. aerogenes through repacked soil columns 

 

Repacked soil columns of each soil / sand mixture were prepared in triplicate. Each 

column was saturated, noting the volume of water required in each case. The 

columns were attached to clamp stands and drained until they were field moist. All 

cores needed to be at field capacity prior to the start of the experiment to enable 

them to be compared. Each column was attached to a clean funnel and a clean 

collection vessel placed underneath. One ml of serial dilution 5 of both E. coli and               

E. aerogenes was pipetted directly onto the soil surface. Filter paper of 4 cm 
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diameter was placed on top of each column directly onto the soil mixture. A 

peristaltic pump was set up to feed water continuously to each column at a flow 

rate of 3.4 ml per minute giving a flow rate of 16.2 mm/hr as in 5.2.7.   

 

The water was dripped onto the filter paper, which allowed for its uniform dispersal 

over the soil mixture. Drainage water was collected at pre determined intervals. For 

the 100% soil columns and the 67% soil columns, samples were taken every 15 

minutes initially. The 33% and 0% soil columns had samples taken every 10 

minutes. As time progressed the time between sample collections was increased. 

At each designated collection time a clean (although not sterile) container was 

placed under the funnel to collect 10 ml of solution. This was then analysed for 

coliform bacteria using Colilert 18™ as described in method 2.2.7. The number of 

coliforms in each sample volume was determined. The drainage water from each 

column was measured to ensure the flows through each column were the same. 

 

On completion of the study, the soil column was destroyed as described in section 

5.2.6. From each soil layer 10 g was removed and mixed with 20 ml of ¼ strength 

Ringers solution. One ml of sample was removed and analysed using Colilert 18™ 

as described in section 5.2.6.  The approximate number of coliforms within each 

soil column could then be calculated. 
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5.2.9  Investigation of transport of E. coli and E. aerogenes through  

  undisturbed soil cores 

 

Undisturbed soil cores each with a funnel attached to the bottom were placed into 

a wooden frame to support the cores and to keep them vertical (Figure 5.3).  Using 

a template to ensure even distribution, 1 ml of serial dilution 4 of both E. coli and   

E. aerogenes was pipetted onto the grass as near to the soil surface as possible. 

Filter paper of diameter 15 cm was placed on top of the grass.  

 

 

Figure 5.3 Study of coliform transport through undisturbed soil cores 
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A peristaltic pump was set at a rate comparable to that used for the repacked soil 

columns to give a simulated rainfall rate of 16.2 mm / hr. In this case the surface 

area of the column was 176.63 cm2 which is 14 times greater than the repacked 

soil columns. Therefore the flow rate was set at 47.6 ml per minute to each soil 

column. The pump fed four tubes to each soil column at a height of 5 cm above the 

grass allowing water to be dripped onto the filter paper and allowing for its uniform 

dispersal over the soil column.  Drainage water was collected at pre-determined 

intervals, initially this was every 15 minutes. At each designated collection time a 

clean collection container was placed under the funnel to collect 10 ml of solution 

which was analysed for coliform bacteria using Colilert 18™ as described in 

method 2.2.7. The drainage water from each column was measured to ensure an 

equivalent flow travelled through each column. 

 

On completion of the study, the soil column was destroyed as described in section 

5.2.6. From each soil layer 10 g was removed and mixed with 20 ml of ¼ strength 

Ringers solution. Analysis of 1 ml of sample was carried out as described in 

section 5.2.3 using Colilert 18™. The approximate number of coliforms retained 

within each soil column could then be calculated. 
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5.3 Results and discussion 

 

 

5.3.1 Concentration of E. coli and E. aerogenes in bacterial suspensions 

used in the study of soil columns 

 

The quantity of coliform bacteria in serial dilutions 5 and 6 of the bacterial 

suspensions used in the study of repacked soil columns and undisturbed soil cores 

was determined. These results are shown in Tables 5.2 and 5.3. Colilert 18™ was 

used for analysis prior to adding a known quantity of the bacterial suspensions to 

soil columns.  

 
 

Table 5.2  Quantification of coliform bacteria in serial dilutions 5 and 6 

used for the study of repacked soil columns.  

Organism 
Dilution 6 

(cfu / 0.1 ml) 
Dilution 5 

(cfu / 0.1 ml) 
Dilution 51 
(cfu / 1 ml) 

E. coli 106.0 913.9 9139 

E. aerogenes 364.9 >2419.2 36490 
1Estimated values 
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Table 5.3 Quantification of coliform bacteria in serial dilutions 4, 5 and 6 

used for the study of undisturbed soil cores 

Organism 
Dilution 6 

(cfu/ 0.1 ml) 
Dilution 5 

(cfu/0.1 ml) 
Dilution 51 
(cfu/1 ml) 

Dilution 41 
(cfu/1 ml) 

E. coli 136.7 1299.65 12996.5 129965 

E. aerogenes 271.7 >2419.2 27170.0 271700 
1Estimated values 

 

 

5.3.2 Background concentration of coliform bacteria in soil columns 

 

The background level of coliform bacteria in soil A, used for the repacked columns, 

and in the undisturbed soil column was determined. Three soil samples were taken 

from each. Results are shown in Table 5.4. 

 

Table 5.4 Background concentrations of coliform bacteria in soil 

Column Type Sample 
Total coliforms in 
soil column (cfu) 

E. coli in soil column 
(cfu) 

 
Undisturbed 

1 324800 0 

2 873600 0 

3 708960 0 

 
Repacked 

(Soil A) 

1 0 0 

2 0 0 

3 0 0 
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Each sample taken from the undisturbed soil core contained coliform bacteria. 

Coliform bacteria are indigenous to the soil environment therefore it was expected 

that they would be present.  No coliforms were detected in Soil A probably due to 

the length of time it had been stored. There was no E. coli detected in any sample. 

 

 

5.3.3 Dye transport through repacked soil columns 

 

The time taken for dye to travel through repacked soil columns of varying soil and 

sand quantities was investigated. Observations made are shown in Table 5.5. The 

information gained from the study was used to plan an investigation into coliform 

bacteria transport in soil columns. 

 

Colour was first noted in all 4 columns between 20 and 32 minutes following 

commencement of water flow. In most of the columns the initial colour was yellow / 

green then turning to a bright blue colour. However in the sand columns the blue 

colour was constant throughout. It must be noted that observing for colour change 

is very subjective. Dye may have been travelling out of the column before and after 

these times particularly in columns containing soil, but in such small quantities so 

as not to be seen by the naked eye. 
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The pump flow rate was equivalent to 16 mm/hr. Storm flow rate is normally 8 – 10 

mm / hr, therefore this rate is 1.5 – 2 times greater than storm flow. To be able to 

compare transport through each column, the time taken for the dye to pass through 

1 cm of soil / sand mixture at a water flow rate of 3.5 ml per minute was calculated. 

It was shown that the dye passed through sand almost 4 times faster than through 

the soil used in this experiment. 

 

Table 5.5 Observations on dye transport through repacked soil columns 

 

Soil : 
sand 
ratio 

Depth  
of soil  
(cm) 

Time for dye 
to be visible 

(min) 

Time for dye to 
travel through 
column (min) 

Average time for 
dye to travel one 

cm (min) 

1:0 37.5 32 422 11.25 

2:1 32.5 31 297 9.14 

1:2 27.5 27 211 7.67 

0:1 22.5 20 64 2.84 

 

Although the same weight of soil was used in each column it is clear to see the 

importance of particle size when investigating transport through the columns. The 

same weight of soil compared to sand gives almost double the volume in the 

column. The dye moves through the sand column very quickly, almost in a 



 
 
 
 

170 
 

constant plug, however as the soil volume increases the dye time in the column is 

extended.  

 

The aim of this experiment was to get some guidance on expected flow rate 

through the soil columns. This can then be used in the preparation of the study 

using bacteria to give an expectation of their transport and movement through the 

column whilst taking into consideration some of the factors involved in their 

transport. 

 

 

5.3.4 Effect of soil texture on movement of E. coli and E. aerogenes  

through repacked soil columns 

 

The bulk density, porosity and volume of water required to saturate each column is 

given in Table 5.6, as well as the moisture contents of the repacked soil columns 

which were determined following completion of the transport study.  
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 Table 5.6 Soil properties of repacked soil columns 

Column 
Type 

Bulk 
density  
(g/cm3) 

Porosity 
(%) 

Volume of 
water to 
saturate 

(ml) 

Soil sample 
depth (cm) 

Moisture 
content1 

(%) 

100% soil 
0.85 

69 208 0 – 19 32 
19 – 36 35 

66% soil 
33% sand 

0.98 
64 157 

0 – 16 25 

16 – 32 29 

33% soil 
66% sand 

1.15 
57 130 

0 – 9 14 
9 – 18 21 

18 – 27 24 

100% sand 1.41 48 90 

0 – 7.5 10 

7.5 – 15 13 

15 – 22.5 15 
1 on completion of experiment  

 

The movement of coliform bacteria E. coli and E. aerogenes through repacked soil 

columns of varying soil and sand quantities was investigated. The number of 

coliform bacteria including E. coli transported through the four column types are 

shown in Figure 5.4 (a, b, c and d).  
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Figure 5.4(a) E. aerogenes and E. coli eluted from repacked soil 

columns containing 100% soil.  
Error bars equivalent to one standard deviation, n = 3 

   Total coliforms (   )   E. coli (     ) 

 

Figure 5.5(b) E. aerogenes and E. coli eluted from repacked soil 
columns containing 66% soil and 33% sand.   
Error bars equivalent to one standard deviation, n = 3 
Total coliforms (    )   E. coli (     ) 
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Figure 5.4(c)  E. aerogenes and E. coli eluted from repacked soil  

columns containing 33% soil and 66% sand.  
Error bars equivalent to one standard deviation, n = 3 
Total coliforms (     )   E. coli (    ) 
 

 

Figure 5.4(d) E. aerogenes and E. coli eluted from repacked soil 
columns containing 100% sand. Error bars equivalent to 
one standard deviation, n = 3 
Total coliforms  (    )   E. coli  (     ) 
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The highest bacterial counts in drainage water were initially detected from the 

100% sand column and counts remained high for the first 30 minutes before rapidly 

decreasing. Similarly with the columns containing soil, initial bacterial counts were 

high, noticeably reducing after 45 minutes. There was however faster drainage 

recorded with the sand column, with increasing soil in columns causing the water 

to travel through the column at a slower rate initially.  The column with 100% soil 

had slightly lower bacterial counts in the initial drainage water than the other 

columns containing soil. 

 

An estimate of the number of bacteria transported through the soil column during 

the study period could be calculated based on samples taken at intervals ranging 

from 10 minutes to hourly. The colony count per 3.5 ml could be extrapolated from 

the spot samples. Colony counts out with the sample times were estimated by 

taking the average value from the preceding spot sample and the following spot 

sample to give a cfu/3.5 ml for every minute of the study. These estimated values 

are shown in Table 5.7. 

 

The number of bacteria remaining in the soil column on completion of the study 

could be estimated from soil samples taken following the destruction of the soil 

columns. These estimated values are also shown in Table 5.7. 
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Table 5.7 Extrapolated values of coliform bacteria transported through 

and remaining within the repacked soil columns  

  Drainage water Soil column Total 

% soil 
TC 

(cfu) 
E. coli 
(cfu) 

TC 
(cfu) 

E. coli 
(cfu) 

TC 
(cfu) 

E. coli 
(cfu) 

100 12868 1916 14850 610 27718 2526 
66 16374 2682 10760 300 27134 2982 
33 17951 3451 6680 100 24631 3551 
0 24319 6797 2260 0 26579 6797 

 

These extrapolated values allow the four column types to be compared. It is 

apparent that the greater the soil content the more likely the coliform bacteria are 

to remain within the soil column. It was also recognised during the soil investigation 

that the majority of coliform bacteria retained in the soil were found within the top 

layer of the soil column. In the case of the 100% and 66% soil columns the majority 

of the retained coliform bacteria were found in the top 25% (10 cm) of the soil. This 

accounted for 84 – 92% of the retained coliforms. In the 33% and 0% soil columns 

the majority of retained coliform bacteria were found in the top third of the soil. This 

accounted for 95% of the retained bacteria in these soil columns. A study by 

Gerba, Wallis and Melnick (1975) found that greater than 90% of bacteria applied 

to soil remain within the first centimetre. Even with the fast flow rate used in this 

study, the majority of bacteria retained within the soil were found in the upper part 

of the column which seems to suggest that they are either trapped or attached to 

particles within the soil. A greater number of coliforms are retained within the 100 

% soil column than the 100 % sand column. The porosity of the soil is greater than 
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that of sand but generally the pore sizes within the soil are smaller so more likely to 

trap colloids and particulate matter.   

 

The greatest moisture content within the repacked columns was seen in the lower 

layers of the column. The presence of organic matter increases the moisture 

holding capacity of soil however in this case the organic matter content of Soil A, 

although not determined was likely to be negligible due to the extended storage 

time of the soil. As the sand content increases within the repacked columns, the 

moisture content decreases due to good drainage and poor binding properties of 

sand. 

 

 The recovery of total coliforms is similar overall between the four column types. 

However there is a much greater recovery of E. coli from the drainage water from 

the sand columns than those containing soil. The presence of E. coli in the effluent 

decreases as the soil content increases. On destruction of the columns higher E. 

coli counts were detected within columns containing greater soil content, counts 

decreased as sand content increased. However counts detected within the 

columns were much lower than expected, with no E. coli detected in the sand 

column on destruction. This may be explained by the fast elution of coliforms from 

the sand column. McCaulou, Bales and  McCarthy et al. (1994) found that retention 

of bacteria in sand columns is significantly increased at low water contents and that 
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it takes approximately 1 hour for bacteria (gram negative rods) to attach within the 

soil.   

 

Although the highest E. coli numbers were found within the 100% soil columns, 

these were also the columns which showed the largest reduction overall of E. coli. 

It is possible that while this column allowed more attachment and retention of E. 

coli due to the nature of the soil, it also allowed increased moisture to be retained. 

Time spent in the cold room with the soil moist, could have encouraged the growth 

of microorganisms in the soil which have been detrimental to E. coli survival.  

 

 

5.3.5 Evaluation of transport of E. coli and E. aerogenes through 

undisturbed soil cores 

 

The movement of the coliform bacteria, E. coli and E. aerogenes, through 

undisturbed soil cores was investigated. The number of total coliforms and  

E. coli transported through three replicate soil cores following the addition of water 

to simulate heavy rainfall is shown in Figure 5.5.  
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Figure 5.5 E. aerogenes and E. coli eluted from undisturbed soil cores 

following simulated rainfall   (Soil core 1: TC (    ) E. coli (     ),  

Soil core 2: TC (    ) E. coli (    ), Soil core 3: TC (    ) E. coli (   )) 

 

Soil core 3 has a much greater concentration of coliform bacteria in the drainage 

water than the other two soil cores. Initially the E. coli counts within soil 3 are 

elevated in comparison to the other columns however they decrease to similar 

numbers after 15 minutes. It is possible that there is a pocket of faecal 

contamination within or on the surface of this core containing E. coli and other 

coliform bacteria. 
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An estimate of the number of bacteria transported through the soil column during 

the study period could be calculated based on samples taken at intervals ranging 

from 15 minutes to hourly. The colony count per 47.8 ml could be extrapolated 

from the spot samples. Colony counts between samples were estimated by taking 

the average value from the preceding spot sample and the following spot sample to 

give a cfu/47.8 ml for every minute of the study. These estimated values are shown 

in Table 5.8. 

 

The number of bacteria remaining in the soil column on completion of the study 

could be estimated from soil samples taken following the destruction of the soil 

columns. These estimated values are also shown in Table 5.8. 

 

Table 5.8 Extrapolated values of coliform bacteria transported through 

and remaining within the undisturbed soil cores  

 
Drainage water Soil column Total Total 

Column 
TC 

(cfu) 
E. coli 
(cfu) 

TC 
(cfu) 

E. coli 
(cfu) 

TC 
(cfu) 

E. coli 
(cfu) 

1 164435 41815 208968 26378 373403 68193 

2 220079 35737 237398 20809 457477 56546 

3 1262959 78311 3215555 17585 4478514 95896 
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The quantity of coliform bacteria detected in the drainage water is an 

approximation as are the bacterial counts revealed within the soil columns. 

However this estimate does allow the three columns to be compared. 

With reference to the number of coliform bacteria found in the soil columns, soil 

core 3 has a tenfold increase compared to the other cores. This validates the 

suggestion that there has been previous faecal contamination on or within this 

core, although there was no visible sign of contamination present. The source 

could have been a domestic dog or cat although wildlife such as deer and rabbits 

are also seen in this area.  

 

The mean moisture content (n=3), within the upper layer of the undisturbed column 

was 33 % which was considerably higher than the lower layer which was found to 

be 23 %. The variation in moisture content can be explained by the higher organic 

matter content in the upper 8 cm of the undisturbed soil core which would allow for 

more water to be retained by the soil. As with the repacked soil columns the 

greatest concentration of coliform bacteria remaining in the soil were found in the 

top 25% (8 cm) of the soil core. The rate of water addition to replicate rainfall was 

greater than storm flow in the UK. It is likely to cause a much greater flushing effect 

than that likely in the natural environment. However it is interesting to find that even 

at this increased rate many bacteria remain trapped or adsorbed within the soil. 

This may be due to dissolved cations in the water which are known to promote 

adsorption of bacteria to solid surfaces. 
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In the two columns showing no evidence of background E. coli contamination, 

there were no coliform bacteria detected in the lower section (20 – 40 cm depth) of 

the destroyed soil column.  The repacked soil columns in the previous study had 

coliform bacteria throughout the column although often in low quantities. This 

contradicts findings of van Elsas, Trevors and van Overbeek (1991) who found that 

introduced bacteria were transported to lower soil layers to a significantly higher 

degree in undisturbed soil cores than in repacked cores, with macropores in the 

undisturbed cores given as the most likely reason for this behaviour. Pang et al. 

(2003) used repacked columns to study bacterial removal in soil and concluded 

that the removal of bacteria in the study was primarily by filtration (87-88%) and die 

off (12 -13%).  

 

There is also evidence to suggest that the initial rainfall has the most impact on 

bacterial transport as the quantity of coliform bacteria in the effluent reduces over 

time. This is in agreement with Trevors et al. (1990) and Stoddard, Coyne and 

Grove (1998) who found that even with recurring rainfall events, the initial event is 

the one that causes most displacement and movement through the soil column. It 

is thought that the majority of the introduced cells have adhered to soil particles or 

entered relatively protected soil pores following the first percolation. 
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There are a number of other factors which have been shown to influence the 

movement of coliform bacteria and other microorganisms within soil but which this 

study has not discussed. In soils without percolating water, Thorpe et al. (1996) 

found that earthworm activity could produce large pores in soil which assisted the 

downward movement of bacteria through the soil. The presence of plant roots in 

the absence of groundwater flow aided the movement of introduced Pseudomonas 

fluorescens (Trevors et al. 1990). It must also be recognised that agricultural 

activities such as ploughing can alter the soil structure and remove macropores, 

which in turn reduces the effects of preferential flow (Dighton et al. 1997). 

 

 

5.4 Conclusions 

 

In the studies of coliform transport through repacked soil columns and undisturbed 

soil cores there is clear evidence that water flow is of great important to the 

movement of  bacteria from the soil surface throughout the soil column. In this 

study the application of water to the soil columns was rapid, however coliform 

bacteria still have the ability to remain within the soil matrix. It can then be 

assumed that if the flow of rainfall is less but still present, there is a greater 

potential for bacteria to become attached or trapped within the soil structure. The 

study using the four repacked columns with varying quantities of sand and soil 
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indicates that soil texture is influential in the retention of the bacteria. In columns 

where there is only sand the coliform bacteria are flushed through the column 

rapidly whereas in the column containing only soil this effect is greatly reduced with 

more coliforms being retained within the soil column. This highlights the importance 

of soil composition in the transport of microbes into groundwater supplies with 

areas where soils have high sand content being of greatest risk of groundwater 

contamination from surface applied faecal matter.  

 

   

There is a need for careful consideration of results from laboratory based studies 

using repacked soil columns. It is evident that results can be very different from 

that occurring in the natural environment. Results from the repacked columns 

studied here only take into account the physical qualities of the soil and not the 

influence of intrinsic soil microorganisms due to the age of the soil. However, the 

study using undisturbed soil cores showed a major reduction of coliform bacteria 

most likely due to the presence of indigenous microorganisms. When bacteria are 

added to soil, the protozoan population will normally increase and the number of 

bacteria will reduce. This may be due to competition for nutrients or due to 

protozoa grazing on bacteria.  
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Chapter 6 Conclusions 

 
 
6.1 Introduction 

 

It is recognised that water is a precious resource which is essential to life itself. The 

entire human population has a responsibility to protect it. However human 

interaction and control of water resources in many cases has been detrimental to 

water availability and quality. Good quality freshwater resources are being 

diminished due to over abstraction of groundwater. Disease outbreaks linked to 

water supplies are well documented and outbreaks of potentially life threatening 

illness are increasingly common. A number of these outbreaks have been linked to 

the presence of pathogenic bacteria in private water supplies.  

 

The aim of this research as stated in the objectives in section 1.9 was to 

investigate factors which influence the survival and transport of coliform bacteria in 

potable water and soil and to relate this to the microbiological quality of private 

water supplies in Aberdeenshire, Scotland. The study relied on methodology which 

could be repeated frequently, so it was essential that the method was quick, easy 

to carry out and would reliably detect and quantify coliform bacteria in potable 

water. The rapid testing method, Colilert 18™ was investigated and therefore had 

to be evaluated and comparison made to membrane filtration which is one of the 

recognised standard methods used today. 
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6.2 Key findings of study 

 

The main findings of this thesis can be divided into sections which address the 

aims outlined in section 1.9. 

 

 

6.2.1 Evaluation of Colilert 18™ for the detection of coliform bacteria in 

potable water and soil samples.  

 

Colilert 18™ was successfully applied to this study. It was proven to be a suitable 

method for water testing and gave comparable results to the membrane filtration 

method. Colilert 18™ had the ability to detect coliforms and E. coli when bacterial 

counts were as low as 1 cfu and could also quantify large numbers of coliforms and 

E. coli to a greater degree of accuracy than membrane filtration. It has been 

suggested in a number of studies that Colilert 18™ gives false positives, however 

in this study with A. hydrophila and P. aeruginosa present, no false positives were 

detected. Colilert 18™ required less time for preparation and analysis than the 

membrane filtration method with the advantage of faster results. With Colilert 18™ 

results were available after 18 hours whereas membrane filtration can take over 42 

hours to confirm the presence of E. coli. Overall, the use of Colilert 18™ was a 

good alternative to the membrane filtration method when used to quantify coliform 

bacteria in groundwater. 
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When using Colilert 18™ to detect coliform bacteria in soil, there was one 

significant issue. When too much soil was present in the soil solution taken for 

analysis there was difficulty reading Colilert 18™ due to samples being highly 

coloured. As Colilert 18™ gave positive confirmation of coliform bacteria by 

transformation of solution from clear to yellow, the soil quantity had to be low 

enough not to cause discolouration of the solution making accurate sample reading 

impossible. However enough soil must be used for analysis to ensure that the soil- 

bacterial interaction is investigated. Overall Colilert 18™ was found to be effective 

at detecting coliform bacteria within soil solutions.  

 

 

6.2.2 Investigation of microbiological quality of private water supplies in 

Aberdeenshire, Scotland. 

 

The historical evidence obtained from Aberdeenshire council confirmed that a high 

proportion of private water supplies did not meet statutory requirements for 

microbiological water quality. Often those supplies not regulated under legislation 

were most likely to have coliform bacteria present. Further research on a number 

of private water supplies in Central Aberdeenshire supported this data. The study 

indicated that over 50% of the 82 supplies studied, had E. coli present on at least 

one of three sampling events over a 1 year period.   
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It was concluded that contamination of private water supplies is primarily 

influenced by rainfall, temperature and land use. There was often an increase in 

both total and faecal coliforms detected in private water supplies following a period 

of heavy rainfall. Water sources surrounded by grazing animals were also likely to 

have an increased risk of contamination. 

 

Ultimately, the contamination of private water supplies is linked to the type and 

depth of the supply, poor maintenance and supplies which are inadequately 

constructed and sealed. Boreholes are the least likely to be contaminated, with 

spring sources being the most susceptible to contamination. Protection of water 

supplies from contamination by surface water runoff is essential as is protecting the 

water supply from livestock and wildlife. 

 

 

6.2.3 The analysis of water and soil samples using Colilert 18™ to study 

factors affecting coliform survival 

 

Survival and movement of pathogenic bacteria is necessary for contamination of 

water supplies to occur. This study principally looked at individual factors affecting 

survival in both the water and soil environments. 
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Temperature was found to impact coliform growth and survival with the ideal 

temperature for survival found during this study to be 10°C. This corresponds with 

typical groundwater temperatures throughout the year in the UK. Little or no growth 

occurred at 4°C with eventual death of the bacteria over a number of days, 

however, while no growth occurred at freezing temperatures, coliform bacteria still 

remained viable for longer than coliforms at 4°C. However repeated freezing and 

thawing is known to damage the cell structure resulting in death. Coliform bacteria 

in soil survived as well as, and in many cases better than in water at the same 

temperatures.  

 

Moisture content of the soil is often related to temperature. As temperature 

increases moisture content is likely to decrease which often has a detrimental 

effect on bacterial survival. The presence of organic matter in soil may increase 

coliform survival although this has also been linked to the increased water holding 

capacity of organic matter. Survival of coliform bacteria was reduced in intact soil 

columns which can be explained by the presence of indigenous microorganisms, 

either through predation or competition.  

 

Other factors having a major influence on coliform survival were soil texture and 

the presence of colloids. Survival was enhanced as the clay particle content of soil 

increased and a greater percentage of coliform bacteria were detected attached to 
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colloid material than within the water column indicating that survival is likely to be 

greater within sediments.  

 

It is however important to recognise that in the natural environment factors 

influencing coliform survival cannot be considered individually, as many factors 

interact to influence survival. This was recognised when comparing results from 

repacked soil columns and intact soil cores. It is also important to note that many of 

the factors important to coliform survival also play an intrinsic part in the transport 

of the bacteria. 

 

 

6.2.4 The study of soil texture and rainfall and their influence on coliform 

transport in repacked and intact soil columns  

 

Soil texture is influential in the retention and movement of coliforms with retention 

of coliform bacteria increasing as sand content decreases. In this study water flow 

was an important factor which increased bacterial transport through the soil 

columns. Furthermore, following deposition of bacteria on the soil surface, the 

initial rainfall event caused the greatest displacement of bacteria through the 

column. Preferential flow was also likely to play a significant role in bacterial 

transport but this study did not allow this to be observed individually. 
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Water quality of private water supplies is influenced by seasonality and rainfall. 

These influence temperature and soil moisture content which are essential for 

bacterial survival. Without survival there is no concern with regards to bacterial 

transport. With reference to private water supplies in Aberdeenshire, there was 

some discrepancy between seasonal effects observed for the Central Division 

database and the study of the 82 1F and 1E supplies. The study of the 82 supplies 

found that faecal coliforms increased during summer and early autumn while they 

decreased during the winter months with none detected in February. This 

disagrees with the Central Division database which showed that faecal coliforms 

were detected in February, and that faecal coliforms although detected during the 

summer months, continued to increase in autumn and remained high during the 

early winter months, finally decreasing in January. These discrepancies are almost 

certainly due to the variation in climatic effects found in Scotland. Links to 

seasonality although present are more closely connected to temperature and 

rainfall which is why differences will be found year to year.  Contamination of 

potable water is more likely to occur following rainfall. 
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6.3 Future Work 

 

• The development of rapid methods for water analysis which have the ability 

to detect pathogenic bacteria including E. coli O157. 

 

• Continued development to decrease analysis time of current rapid methods 

for detection of coliform bacteria. 

 

• The study of viral contamination of potable water and its impact on human 

health. 

  

• Increase public awareness of potable water quality related to private water 

supplies, endeavouring to improve maintenance and treatment of supplies. 

 

• Further studies of private water supplies with in situ monitoring following 

rainfall and detailed accounts of surrounding soil and land use.  
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APPENDIX 1  SURVEY OF PRIVATE WATER SUPPLIES 
 

WATER SOURCE DETAILS 
 

Name of house-holder: 

................................................................................................. 

Address: 

....................................................................................................................... 

.................................................................................................................................... 

Tel no: .................................................  Grid Ref: 

............................................ 

Date of visit: ........................................ 

Photograph reference number: ...................................................... 

 

 

1. Water source – General 
 
Six figure grid reference for water source: ............................................... 

 

Type of water source: Well  Borehole  Spring   

    River / stream  Unknown 

 

Does this water source supply: External reservoir / tank: Yes  No 

 

If the water supply does have an external tank, comment on its construction 

(concrete, steel etc.) and its condition (cracks, leaks, uncovered hatches etc.) 

:...................................................................................................................................

....................................................................................................................................

...... 
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How is the water supplied to the house? 

Pump in well / borehole  Pump remote  Gravity 

Other (give details)   Unknown 

 

Type of pipe work connecting the source to the house: 

Lead  Alkathene  Other (specify)  Unknown 

 

Is there a header tank in the house supplying the kitchen cold water tap? 

Yes   No 

Does the system supply animal troughs? Yes  No 

 

Does the system prevent back siphoning from animal troughs?   

Yes    No   Unknown 

 

 

Description of location: 
Land use / land cover in immediate area (tick all land types that are appropriate): 

 

Land use Immediate vicinity 10 m radius 100 m radius 

Crops / vegetables    

Pasture land    

Moor / Heath    

Woodland    

Set-aside    

Other (give details) 
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Source protection: 
Is the source area fenced off?  Yes   No 

Is the source area stock proof?  Yes   No 

Distance of fence from source (shortest) ................................................... 

 

Does the water system have: 
UV filter ......................................................................................... 

physical filter (specify) .................................................................. 

chlorination facility ........................................................................ 

other ............................................................................................. 

 

Give details of maintenance regime: 

............................................................................ 

....................................................................................................................................

... 

 
Location of waste water systems: 
Does the house have a septic tank? Yes  No 

Location of septic tank, grid reference: 

......................................................................... 

Location of mains sewage pipes: 

.................................................................................. 
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Additional sources of contamination in the vicinity of the supply (tick where 
appropriate and give details of distance from source): 

• Agricultural steadings: ................................................................................... 

• Silage clamps: ............................................................................................... 

• Manure storage: ............................................................................................ 

• Slurry tank: ................................................................................................... 

• Slurry lagoon, lined or unlined: ..................................................................... 

• Sheep dips: ................................................................................................... 

• Fuel tanks: ..................................................................................................... 

• Streams / rivers / ditches: ............................................................................... 

• Sewage discharge into influent rivers: ............................................................ 

• Subterranean field drains: .............................................................................. 

• Mining activity: ............................................................................................... 

• Land fill / coup: .............................................................................................. 

• Highway drainage: ......................................................................................... 

• Evidence of flooding (standing water, sedges etc.): ...................................... 

....................................................................................................................... 

• Is water used for irrigation: ........................................................................... 

• Others (give details): ..................................................................................... 

 

 

Has sewage sludge been applied to the land in the vicinity of the source? 

Yes (give details): 

No   Unknown 

 

Has abattoir waste been applied to the land in the vicinity of the source? 

Yes (give details): 

No   Unknown 
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2. Well Supply – Details 
 
Date of construction: ................................................. 

Depth to water surface: ............................................. 

Depth of well: ............................................................ 

Height of lip: ............................................................. 

Internal diameter of well: .......................................... 

 

Well construction: Concrete rings  Stone  Other (give details) 

 

Is the well lined? Yes (give details)   No 

 

Nature of well cover (comment on condition) 

............................................................... 

....................................................................................................................................

.. 

Is the well cover padlocked? Yes   No 

Does the well have an apron? Yes   No 

 

Maintenance regime: 

Is the well cleaned?   Yes   No 

Is the pipework / tanks cleaned? Yes   No 

How is the system cleaned? 

How often is the system cleaned? 
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3. Borehole Supply – Details 
 
Date of construction: ................................................. 

Depth of borehole: .................................................... 

Diameter of borehole: ............................................... 

Description of head works: ...................................................................................... 

................................................................................................................................. 

Maintenance regime: 

Is the borehole cleaned?   Yes   No 

Is the pipework / tanks cleaned?  Yes   No 

How is the system cleaned? 

How often is the system cleaned? 

 

 

 

4. Spring Supply – Details 
 
Is the spring source protected?  Yes   No   

 

Maintenance regime: 

Is the spring intake cleaned?  Yes   No 

Is the pipework / tanks cleaned?  Yes   No 

How is the system cleaned? 

How often is the system cleaned? 
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5. Stream / River Supply – Details 
 
Location of abstraction point? Bank  River bed  Other (specify)

   

 

Maintenance regime: 

Is the river collection point cleaned? Yes   No 

Is the pipework / tanks cleaned?  Yes   No 

How is the system cleaned? 

How often is the system cleaned? 

 

 

6. Sketch Map of Area 
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