

OpenAIR@RGU

The Open Access Institutional Repository

at Robert Gordon University

http://openair.rgu.ac.uk

Citation Details

Citation for the version of the work held in ‘OpenAIR@RGU’:

LEE, D. A. J., 2010. Hybrid algorithms for distributed constraint
satisfaction. Available from OpenAIR@RGU. [online]. Available
from: http://openair.rgu.ac.uk

Copyright

Items in ‘OpenAIR@RGU’, Robert Gordon University Open Access Institutional Repository,
are protected by copyright and intellectual property law. If you believe that any material
held in ‘OpenAIR@RGU’ infringes copyright, please contact openair-help@rgu.ac.uk with
details. The item will be removed from the repository while the claim is investigated.

http://openair.rgu.ac.uk/�
mailto:openair�help@rgu.ac.uk�

Hybrid Algorithms for Distributed
Constraint Satisfaction

David Alexander James Lee

A thesis submitted in partial fulfilment
of the requirements of

The Robert Gordon University
for the degree of Doctor of Philosophy

April 2010

Supervised by Dr. Ines Arana, Dr. Hatem Ahriz and Dr. Kit-Ying Hui

Abstract

A Distributed Constraint Satisfaction Problem (DisCSP) is a CSP which is divided
into several inter-related complex local problems, each assigned to a different agent. Thus,
each agent has knowledge of the variables and corresponding domains of its local prob-
lem together with the constraints relating its own variables (intra-agent constraints) and
the constraints linking its local problem to other local problems (inter-agent constraints).
DisCSPs have a variety of practical applications including, for example, meeting schedul-
ing and sensor networks. Existing approaches to Distributed Constraint Satisfaction can
be mainly classified into two families of algorithms: systematic search and local search.
Systematic search algorithms are complete but may take exponential time. Local search
algorithms often converge quicker to a solution for large problems but are incomplete.
Problem solving could be improved through using hybrid algorithms combining the com-
pleteness of systematic search with the speed of local search.

This thesis explores hybrid (systematic + local search) algorithms which cooperate to
solve DisCSPs. Three new hybrid approaches which combine both systematic and local
search for Distributed Constraint Satisfaction are presented: (i) DisHyb; (ii) Multi-Hyb
and; (iii) Multi-HDCS. These approaches use distributed local search to gather information
about difficult variables and best values in the problem. Distributed systematic search is
run with a variable and value ordering determined by the knowledge learnt through local
search.

Two implementations of each of the three approaches are presented: (i) using penalties
as the distributed local search strategy and; (ii) using breakout as the distributed local
search strategy. The three approaches are evaluated on several problem classes. The
empirical evaluation shows these distributed hybrid approaches to significantly outperform
both systematic and local search DisCSP algorithms.

DisHyb, Multi-Hyb and Multi-HDCS are shown to substantially speed-up distributed
problem solving with distributed systematic search taking less time to run by using the
information learnt by distributed local search. As a consequence, larger problems can now
be solved in a more practical timeframe.

Acknowledgments

I am extremely grateful to my supervisors Dr. Ines Arana, Dr. Hatem Ahriz and Dr. Kit-

Ying Hui for the many insights, discussions and support offered during my PhD research.

Through these discussions, I not only learned a lot but was able to formulate my sketchy

ideas into the completed works presented in this thesis. I am also very grateful for the

time and advice given by my examiners, Prof. Miguel-Angel Salido and Prof. Susan Craw.

I have throughly enjoyed my time at the School of Computing. I would particularly

like to thank Colin, Susan, Iain and Tommy for always finding computers to run my

experiments on. I would also like to thank Ann, Gosia, Kathy, Diane and Marie for all

their administrative assistance.

The research facilities at the School have been excellent. I must thank all of my col-

league in CTC for creating the right environment for productive research namely Aman-

dine, Ben, Bayo, Guofu, Ibrahim, Jean-Claude, Leszek, Malcolm, Miki, Nana, Nuka,

Olivier, Peng, Peter, Ratiba, Richard, Sandy, Stella, Stewart, Thierry, Ulises, Yanghui

and Yunhyong.

My biggest thanks must go to my parents who have always encouraged me to pursue

my dreams. Without their constant support and encouragement, I would never have been

able to complete this thesis. I would also like to thanks all of my friends who have offered

a kind word to keep me going when things were tough.

ii

Declarations

I hereby confirm that this thesis is my own work. I have cited all other work in the

bibliography.

Parts of this work have appeared in the following publications:

Chapter 6

David Lee, Ines Arana, Hatem Ahriz and Kit-Ying Hui, 2008. A Hybrid Approach

to Distributed Constraint Satisfaction. In: Danail Dochev, Paolo Traverso and Marco

Pistore, ed. Artificial Intelligence: Methodology, Systems and Applications. 13th Inter-

national Conference, AIMSA 2008 Varna, Bulgaria, September 4-6, 2008 Proceedings.

pages 375-379. 4th-6th September 2008. Varna, Bulgaria.

Chapter 7

David Lee, Ines Arana, Hatem Ahriz and Kit-Ying Hui, 2009. Multi-Hyb: A Hybrid

Algorithm for Solving DisCSPs with Complex Local Problems. In: Proceedings of 2009

IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT 2009)

pages 379-382. 15th-18th September 2009. Milan, Italy.

David Lee, Ines Arana, Hatem Ahriz and Kit-Ying Hui, 2009. A Hybrid Approach to

Solving Coarse-grained DisCSPs. In: Proceedings of the Eighth International Conference

on Autonomous Agents and Multi Agent Systems (AAMAS 09) pages 1235-1236. 10th-

15th May 2009. Budapest, Hungary.

iii

Contents

1 Introduction 1

1.1 Research Objectives . 2

1.2 Key Contributions . 3

1.3 Scope of Study . 4

1.4 Thesis outline . 4

2 Problem Formulisation 6

2.1 Introduction . 6

2.2 Distributed Constraint Satisfaction . 6

2.3 Problem Areas . 7

2.3.1 Randomly Generated Problems . 8

2.3.2 Graph Colouring Problems . 9

2.3.3 Meeting Scheduling Problems . 9

2.3.4 Sensor Network Problems . 10

2.4 Summary . 10

3 Constraint Satisfaction 12

3.1 Introduction . 12

3.2 Definitions . 13

3.3 Constraint Propagation . 13

3.4 Systematic Search Algorithms . 14

3.5 Local Search Algorithms . 17

3.6 Variable and Value Ordering Heuristics . 19

iv

CONTENTS v

3.7 Problem Decomposition . 19

3.8 Hybrid Algorithms . 20

3.8.1 Local Search Before/After Systematic Search 21

3.8.2 Systematic Search using Local Search 22

3.8.3 Local Search with Systematic Search during search 22

3.9 Limitations of Study . 25

3.10 Summary . 25

4 Distributed Constraint Satisfaction 27

4.1 Introduction . 27

4.2 Distributed Constraint Satisfaction with One Variable per Agent 28

4.2.1 Distributed Constraint Propagation 29

4.2.2 Distributed Backtracking . 29

4.2.3 Distributed Local Search . 33

4.2.4 Distributed Variable and Value Ordering 35

4.2.5 Distributed Hybrid Algorithms . 35

4.3 Distributed Constraint Satisfaction with Complex Local Problems 36

4.3.1 Distributed Backtracking for Complex Local Problems 37

4.3.2 Distributed Local Search for Complex Local Problems 37

4.3.3 Distributed Hybrid Algorithms for Complex Local Problems 38

4.4 Comparing Distributed Backtracking and Distributed Local Search 38

4.5 Summary . 46

5 Using Knowledge from Local Search to guide Systematic Search 47

5.1 Introduction . 47

5.2 DisHyb: Distributed Knowledge-Based Hybrid Approach 49

5.3 DisHyb Implementations . 51

5.3.1 Penalty-based Distributed Hybrid algorithm (PenDHyb) 51

5.3.2 Weight-Based Distributed Hybrid Algorithm (DBHyb) 57

5.4 Experimental Evaluation . 61

CONTENTS vi

5.5 Discussion . 67

5.5.1 Analysing the Effectiveness of Using Information Learnt from Local

Search in Systematic Search . 67

5.5.2 Longer Executions of Local Search 69

5.6 Contributions . 75

5.7 Summary . 75

6 Multi-Hyb - Hybrid Framework for Solving DisCSPs with Complex Lo-

cal Problems 77

6.1 Background and Motivation . 77

6.2 Description of approach . 79

6.2.1 Completeness and Termination . 81

6.3 Implementations . 82

6.3.1 Multi-Hyb-Pen . 82

6.3.2 Multi-Hyb-DB . 89

6.4 Experimental Evaluation . 91

6.4.1 Solvable Problems . 92

6.4.2 Unsolvable Problems . 99

6.5 Evaluating Multi-Hyb’s Components . 106

6.6 Contributions . 108

6.7 Summary . 109

7 Multi-HDCS - Solving DisCSPs With Complex Local Problems Coop-

eratively 111

7.1 Introduction . 111

7.2 Description of approach . 112

7.2.1 Completeness . 114

7.2.2 Termination . 115

7.3 Implementations . 116

7.3.1 Multi-HDCS-Pen . 116

CONTENTS vii

7.3.2 Multi-HDCS-DB . 121

7.3.3 Determining the Optimal Synchronisation Interval 124

7.4 Experimental Evaluation . 126

7.4.1 Solvable Problems . 127

7.4.2 Unsolvable Problems . 132

7.5 Comparing Multi-HDCS and Multi-Hyb . 141

7.6 Contributions . 142

7.7 Summary . 142

8 Conclusions and Future Work 144

8.1 Contributions . 144

8.2 Future Work . 146

8.2.1 Alternative Implementations of DisHyb 146

8.2.2 Different Centralised Systematic Searches in Multi-Hyb/Multi-HDCS147

8.2.3 Running Distributed Local Search after Centralised Systematic Searches

in Multi-Hyb . 147

8.2.4 Bi-directional Feedback in Multi-HDCS 148

8.2.5 Using Multi-Hyb and Multi-HDCS for Optimisation 148

8.2.6 Heterogeneous and Dynamic DisCSPs 148

8.3 Summary . 149

A Distributed Penalty-Based Backjumping Algorithm (DisPBJ) 167

A.1 Introduction . 167

A.2 Algorithm Description . 167

A.2.1 Determining the best version of DisPBJ 170

A.3 Experimental Evaluation . 171

A.4 Discussion . 172

A.5 Summary . 173

B Evaluating the Cost of Forward Checking in the SEBJ algorithm 174

B.1 Randomly Generated Problems . 175

CONTENTS viii

B.1.1 Solvable Problems . 175

B.1.2 Unsolvable Problems . 176

B.2 Graph Colouring Problems . 176

B.2.1 Solvable Problems . 176

B.2.2 Unsolvable Problems . 178

B.3 Meeting Scheduling Problems . 180

B.3.1 Solvable Problems . 180

B.3.2 Unsolvable Problems . 183

B.4 Sensor Network Problems . 186

B.4.1 Solvable Problems . 186

B.4.2 Unsolvable Problems . 187

B.5 Summary . 187

List of Figures

3.1 A simple Constraint Satisfaction Problem 14

3.2 The Naive Backtracking search tree for our simple CSP 15

3.3 The Backjumping search tree for our simple CSP 16

4.1 A simple Distributed Constraint Satisfaction Problem 31

4.2 Messages for < n = 50, d = 10, p1 = 0.15, p2 ∈ 0.1, 0.2, ..., 0.9 > 39

4.3 Messages for < n = 60, d = 10, p1 = 0.15, p2 ∈ 0.1, 0.2, ..., 0.9 > 39

4.4 Constraint checks for < n = 50, d = 10, p1 = 0.15, p2 ∈ 0.1, 0.2, ..., 0.9 > . . . 40

4.5 Constraint checks for < n = 60, d = 10, p1 = 0.15, p2 ∈ 0.1, 0.2, ..., 0.9 > . . . 40

4.6 Messages for < n = 175, c = 3, d ∈ 4.3, 4.4, ..., 5.6 > 42

4.7 Messages for < n = 200, c = 3, d ∈ 4.3, 4.4, ..., 5.6 > 42

4.8 Constraint Checks for < n = 175, c = 3, d ∈ 4.3, 4.4, ..., 5.6 > 43

4.9 Constraint Checks for < n = 200, c = 3, d ∈ 4.3, 4.4, ..., 5.6 > 43

4.10 Messages for < m = 50,md = 3, d ∈ 0.1, 0.11, ..., 0.25 > 44

4.11 Messages for < m = 60,md = 3, d ∈ 0.1, 0.11, ..., 0.25 > 45

4.12 Constraint Checks for < m = 50,md = 3, d ∈ 0.1, 0.11, ..., 0.25 > 45

4.13 Constraint Checks for < m = 60,md = 3, d ∈ 0.1, 0.11, ..., 0.25 > 45

5.1 The DisHyb approach. 48

5.2 The flow of execution in the DisHyb approach. 51

6.1 The Multi-Hyb approach. 78

6.2 A scheduling DisCSP with complex local problems. 79

ix

LIST OF FIGURES x

7.1 The Multi-HDCS approach. 112

List of Tables

3.1 Contrasting the properties of backtracking algorithms with local search al-

gorithms . 20

3.2 Hybrid algorithms running similar amounts of backtracking and local search

or running one after the other. 21

3.3 Hybrid algorithms with systematic origins using local search. 23

3.4 Hybrid algorithms running overall local search with some systematic search

properties. 24

5.1 Chapter Overview. 48

5.2 Comparison of variable and value ordering heuristics (n = 50, d = 10,

p1 = 0.15, p2 = 0.4). 55

5.3 Sample of data used to determine optimal cycle cutoffs. 55

5.4 Parameter values for α, β and γ in Equation (5.1). 56

5.5 Comparison of variable and value ordering heuristics (n = 50, d = 10,

p1 = 0.15, p2 = 0.4). 60

5.6 Parameter values for α, β and γ in Equation (5.1). 61

5.7 Comparison of SynCBJ with lexicographic (L) and max-degree (M) variable

orderings (n = 10, d = 10, p1 = 0.7, p2 = 0.1...0.9). 61

5.8 Comparison of DisBOBT variants on randomly generated problems, graph

colouring problems and meeting scheduling problems. 63

5.9 Performance of SynCBJ, DisBOCBJWD, PenDHyb and DBHyb on ran-

domly generated problems. 64

xi

LIST OF TABLES xii

5.10 SynCBJ, DisBOCBJWD, PenDHyb and DBHyb on graph colouring prob-

lems for degree = 5. 65

5.11 Performance of SynCBJ, DisBOCBJWD, PenDHyb and DBHyb on meeting

scheduling problems. 66

5.12 Backjumping properties of SynCBJ, DisBOCBJWD, PenDHyb and DBHyb. 68

5.13 Sample data for longer executions of local search for randomly generated

problems with 30 variables and DBHyb. 71

5.14 The optimal cutoff for particular number of variables for PenDHyb and

DBHyb on randomly generated problems. 71

5.15 The optimal cutoff for particular number of nodes for PenDHyb and DBHyb

on graph colouring problems. 73

5.16 The optimal cutoff for particular number of meetings for PenDHyb and

DBHyb on meeting scheduling problems. 74

6.1 Chapter Overview. 78

6.2 Overview of Multi-Hyb components. 81

6.3 Performance of different heuristics for Multi-Hyb-Pen. 88

6.4 Performance of different heuristics for Multi-Hyb-DB. 91

6.5 Results for solvable random problems. 94

6.6 Results for solvable graph colouring problems. 95

6.7 Results for solvable meeting scheduling problems. 97

6.8 Results for solvable Grid-based Sensor Network problems. 98

6.9 Median results for unsolvable random problems with one or more agents

having no solution to their local problem. 100

6.10 Median results for unsolvable random problems with all agents having so-

lutions to their local problem but no global solution. 101

6.11 Median results for unsolvable graph colouring problems with one or more

agents having no solution to their local problem. 102

6.12 Median results for unsolvable graph colouring problems with all agents hav-

ing at least one solution to their local problem but no global solution. . . . 103

LIST OF TABLES xiii

6.13 Median results for unsolvable meeting scheduling problems with one or more

agents having no solution to their local problem. 104

6.14 Median results for unsolvable meeting scheduling problems with all agents

having at least one solution to their local problem but no global solution. . 105

6.15 Median results on unsolvable Grid-based Sensor Network problems. 107

6.16 Median Phase Results. 108

7.1 Chapter Overview. 112

7.2 Overview of Multi-HDCS components. 114

7.3 Comparison of different orderings for InterPODS in the Multi-HDCS-Pen

algorithm. 120

7.4 Comparison of different orderings for InterPODS in the Multi-HDCS-DB

algorithm. 123

7.5 Comparison of synchronisation intervals for the Multi-HDCS-Pen algorithm. 124

7.6 Comparison of synchronisation intervals for the Multi-HDCS-DB algorithm. 125

7.7 Median results for solvable randomly generated problems. 128

7.8 Median results for solvable graph colouring problems. 130

7.9 Median results for solvable meeting scheduling problems. 131

7.10 Median results for solvable Grid-based Sensor Network problems. 133

7.11 Median results for unsolvable random problems with one or more agents

having no solution to their local problem. 134

7.12 Median results for unsolvable random problems with all agents having so-

lutions to their local problem but no global solution. 135

7.13 Median results for unsolvable graph colouring problems with one or more

agents having no solution to their local problem. 136

7.14 Median results for unsolvable graph colouring problems with all agents hav-

ing at least one solution to their local problem but no global solution. . . . 137

7.15 Median results for meeting scheduling problems where one or more agents

had no solution to their complex local problem. 138

LIST OF TABLES xiv

7.16 Median results for meeting scheduling problems where all agents had solu-

tions to their complex local problem but there was no global solution. . . . 139

7.17 Median results on unsolvable Grid-based Sensor Network problems. 140

8.1 Overview of Thesis Contributions. 146

A.1 Determining the optimal cut-off value for DisPBJ for 3n constraints and

constraint tightness of 0.5. 169

A.2 Determining the effectiveness of Sticking Values with different variants of

DisPBJ for < n=40,d=10,p1=0.15,p2=0.5> on distributed random problems.170

A.3 DisPeL and DisPBJ Algorithms by Number of Messages and Constraint

Checks. 171

A.4 DisBJ and DisPBJ Algorithms by Number of Messages and Constraint

Checks for Solvable Problems. 172

A.5 DisPeL and DisPBJ Algorithms by Number of Messages and Constraint

Checks for Unsolvable Problems. 172

A.6 DisBJ, DisPBJ and SyncCBJ Algorithms by Number of Messages and Con-

straint Checks. 173

B.1 Measuring the effectiveness of Forward Checking on SEBJ for solvable ran-

dom problems. 175

B.2 Measuring the effectiveness of Forward Checking on SEBJ for unsolvable

random problems where one or more agents has no local solution. 177

B.3 Measuring the effectiveness of Forward Checking on SEBJ for unsolvable

random problems where all agents have local solutions but there are no

global solutions. 178

B.4 Measuring the effectiveness of Forward Checking on SEBJ for solvable graph

colouring problems. 179

B.5 Measuring the effectiveness of Forward Checking on SEBJ for unsolvable

graph colouring problems where one or more agents has no local solution. . 180

LIST OF TABLES xv

B.6 Measuring the effectiveness of Forward Checking on SEBJ for unsolvable

graph colouring problems where all agents have local solutions but there is

no global solution. 181

B.7 Measuring the effectiveness of Forward Checking on SEBJ for solvable meet-

ing scheduling problems. 182

B.8 Measuring the effectiveness of Forward Checking on SEBJ for unsolvable

meeting scheduling problems where one or more agents had no solutions to

their local problem. 184

B.9 Measuring the effectiveness of Forward Checking on SEBJ for unsolvable

meeting scheduling problems where all agents had solutions to their local

problem but there was no global solution. 185

B.10 Measuring the effectiveness of Forward Checking on SEBJ for solvable sen-

sor network problems. 186

B.11 Measuring the effectiveness of Forward Checking on SEBJ for unsolvable

sensor network problems. 188

List of Abbreviations

ABT Asynchronous Backtracking

AWCS Asynchronous Weak Commitment Search

CPA Current Partial Assignment

CSP, CSPs Constraint Satisfaction Problem(s)

DBHyb Weight-Based Distributed Hybrid Algorithm

DisBO Distributed Breakout

DisBO-wd Distributed Breakout with Weight Decay for Agents with Multiple
Local Variables

DisBOBT Distributed Breakout combined with Backtracking

DisBOBTWD Distributed Breakout with Weight Decay combined with
Backtracking

DisBOCBJ Distributed Breakout combined with
Conflict-Directed Backjumping

DisBOCBJWD Distributed Breakout with Weight Decay combined with
Conflict-Directed Backjumping

DisCSP, DisCSPs Distributed Constraint Satisfaction Problem(s)

DisHyb Distributed Knowledge-Based Hybrid Approach

DisPeL Distributed Penalty Driven Search

DisPeL-1C Distributed Penalty Driven Search imposing penalties after a single
cycle of no improvements.

InterDisPeL Distributed Penalty Driven Search with Multiple Local Variables
for considering only inter-agent constraints with dynamic domains.

InterPODS Distributed Systematic Search with Multiple Local Variables for
considering only inter-agent constraints with dynamic domains.

Multi-ABT Asynchronous Backtracking for Agents with Multiple Local Variables

xvi

Multi-AWCS Asynchronous Weak Commitment Search for Agents with Multiple
Local Variables

Multi-DisPeL Distributed Penalty Driven Search with Multiple Local Variables

Multi-Hyb Hybrid Framework for Agents with Multiple Local Variables

Multi-Hyb-DB Weight-Based Hybrid Algorithm for Agents with Multiple Local
Variables

Multi-Hyb-Pen Penalty-Based Hybrid Algorithm for Agents with Multiple Local
Variables

Multi-HDCS Hybrid Distributed Concurrent Search Framework for Agents with
Multiple Local Variables

Multi-HDCS-DB Weight-Based Hybrid Distributed Concurrent Search Framework
for Agents with Multiple Local Variables

Multi-HDCS-Pen Penalty-Based Hybrid Distributed Concurrent Search Framework
for Agents with Multiple Local Variables

NCCCs Non-concurrent Constraint Checks

PenDHyb Penalty-Based Distributed Hybrid Algorithm

SBT Synchronous Backtracking

SEBJ Synchronous Exhaustive Backjumping for Non-interchange
Solutions to Complex Local Problems

SingleDB-wd Distributed Breakout with Weight Decay

Stoch-DisPeL Stochastic Distributed Penalty Driven Search

SynCBJ Synchronous Conflict-Directed Backjumping

SynCBJ-CLP Synchronous Conflict-Directed Backjumping for DisCSPs with
Complex Local Problems

xvii

Chapter 1

Introduction

Constraint Satisfaction, an artificial intelligence technique, solves problems containing

variables, a set of potential values for each of these variables (domains) and con-

straints restricting simultaneous value combinations between connected variables. The

notion of Constraint Satisfaction permeates everyday living. For example, the clothes

that you wear on a particular day are dependant on the clothes that you have in your

wardrobe and the matching combinations of clothes (e.g. a tie cannot be worn with train-

ers). The variables would be the garments needed (e.g. trousers, shirt, socks), the domain

would be the clothes available (e.g. suit trousers, t-shirt, tie, black socks, trainers) and the

constraints would be valid or invalid combinations of garments (e.g suit trousers cannot

be worn with trainers).

A computing agent is a process which is authorised to act on behalf of others. For

example, an agent may be a stockbroker who is authorised to deal in a number of shares

for a customer. Constraint Satisfaction Problems (CSPs) may often be distributed

between several agents possibly to maintain privacy between participants (agents) in the

problem or because of the cost of gathering all information centrally. As a result, no agent

has enough information to solve the problem by itself. Distributed Constraint Satis-

faction (DisCSPs) extends CSPs for distributed problems among several agents (for ex-

ample, geographically dispersed computers via the Internet). Each agent in aDistributed

Constraint Satisfaction problem represents a constraint satisfaction problem con-

1

1.1. Research Objectives 2

sisting of variables, domains and constraints. For example, a simple timetabling CSP

may contain modules, lecturers and students (variables), times and rooms (domain)

and restriction on lecturer and student availability (constraints) can be represented as

a DisCSP when it involves multiple schools. Each school would be represented by an

agent in DisCSPs. For example, a Business Computing course in the Computing school

will contain modules run by the Computing school but also may contain modules run by

the Business school. In this case, the Computing school would timetable its modules but

would have to take into account the Business school module timetables to ensure that

modules taken by students of the Business Computing course did not clash. The main

challenges in Distributed Constraint Satisfaction are to utilise the information avail-

able to each agent efficiently in order to find solutions while incurring low computations

and communication costs.

1.1 Research Objectives

Existing methods for solving CSPs can in general be classified as backtracking and local

search algorithms. Backtracking algorithms take a systematic approach to search and

consequently are guaranteed to find a solution if one exists, although they may take expo-

nential time to do so. In addition, they are guaranteed to discover that a problem has no

solution when a problem is unsolvable. Local search algorithms may converge quicker

to a solution, but are not guaranteed to find a solution if one exists and cannot determine

that a problem has no solution. Some authors have developed algorithms which combine

these approaches into a hybrid approach to overcome the individual weaknesses of each

approach. The vast majority of these approaches have been developed for centralised

problems with very few approaches being developed for distributed settings.

In this study, we seek to investigate, propose and evaluate hybrid algorithms for Dis-

tributed Constraint Satisfaction. Our primary aim is to speed-up distributed problem

solving through using local search as a learning tool which can be used to guide back-

tracking. In particular, we are interested in naturally distributed problems which

consist of large complex local problems which are sparsely connected. Our research objec-

1.2. Key Contributions 3

tives are therefore as follows:

1. Investigate techniques for making local search complete.

2. Making systematic search faster through the use of local search information.

3. Take advantage of agent idle time in order to carry out additional computation and

thereby minimise overall problem cost.

1.2 Key Contributions

This work contributes a number of new techniques for solving Distributed Constraint Sat-

isfaction. Our primary contribution is a knowledge-based hybrid framework for DisCSPs.

In this framework, distributed local search is used to gather information about difficult

variables prior to or at the same time as distributed systematic search. Distributed sys-

tematic search can then use this information as a heuristic to potentially find a solution

quicker. Specifically, we contribute three new hybrid approaches:

1. DisHyb is a fine-grained hybrid approach, suitable for DisCSPs with one variable

per agent, running distributed local search to learn about the difficult variables in

the problem and potentially the best values to assign to them. If local search is

unable to find a solution, distributed systematic search is run which is guided by the

knowledge learnt from local search.

2. Multi-Hyb is a hybrid approach for DisCSPs with complex local problems (several

variables per agent). For each agent, Multi-Hyb runs a centralised systematic search

to find all local appropriate solutions (partial solutions) for its complex local problem

concurrently for each agent. Whilst this search is ongoing, a distributed local search

attempts to combine these partial solutions for each agent into a global solution.

In addition, distributed local search learns knowledge about difficult complex local

problems and good value combinations. If distributed local search cannot find a

global solution once all local solutions for each agent have been found, distributed

systematic search is run. This systematic search uses the partial solutions generated

1.3. Scope of Study 4

by centralised systematic searches and the knowledge learnt from distributed local

search.

3. Multi-HDCS is a second hybrid approach for DisCSPs with complex local problems.

Multi-HDCS uses centralised systematic search per agent to find all local appropri-

ate solutions (partial solutions) for it’s complex local problem (as Multi-Hyb does).

However, Multi-HDCS runs a distributed local search and a distributed systematic

search concurrently. These distributed searches run whilst the centralised system-

atic searches are finding solutions to their local problem. The distributed searches

attempt to combine these partial solutions into a global solution. The distributed lo-

cal search regularly synchronises information about difficult complex local problems

and values to guide the distributed systematic search.

1.3 Scope of Study

This study principally focuses on Distributed Constraint Satisfaction where the objective

is to find only the first solution which satisfies all constraints simultaneously. There may

however be multiple solutions to a Distributed Constraint Satisfaction problem. The hy-

brid algorithms presented in this thesis could keep running to find more solutions. Our

algorithms are also not specifically designed for Dynamic Distributed Constraint Satisfac-

tion where the problem specification may change during the problem solving process. In

the event that the problem specification changes, our algorithms must be re-run to find a

solution to the updated problem specification.

1.4 Thesis outline

This thesis is presented as follows. Chapter 2 presents a formalisation for four particular

problem types for Distributed Constraint Satisfaction which we will consider throughout

this thesis. Chapter 3 presents a survey of the state-of-the-art algorithms for Constraint

Satisfaction Problems in centralised environments. Chapter 4 extends this survey for Dis-

tributed Constraint Satisfaction. Chapter 5 presents DisHyb, our knowledge-based hybrid

1.4. Thesis outline 5

approach for single variable per agent algorithms. Chapter 6 presents Multi-Hyb, a two-

phase hybrid approach for solving DisCSPs with complex local problems whilst chapter

7 presents a second approach entitled Multi-HDCS. In chapters 5, 6 and 7, extensive em-

pirical evaluations are presented for each of our contributions. A thesis summary and

interesting avenues of future work are proposed in Chapter 8. A glossary of terms is

provided at the end of the thesis.

Chapter 2

Problem Formulisation

2.1 Introduction

In this chapter, we formally define Distributed Constraint Satisfaction Problems

(DisCSPs). This definition is aided by a brief description of Constraint Satisfaction

Problems (CSPs). In particular, we present four different types of DisCSPs: (i) ran-

domly generated; (ii) graph colouring; (iii) meeting scheduling and; (iv) sensor

networks. The reader is referred to chapter 3 for a description of search algorithms for

CSPs and chapter 4 for a description of search algorithms for DisCSPs.

2.2 Distributed Constraint Satisfaction

A Constraint Satisfaction Problem (CSP) [21] is a tuple (V ,D, C) where: V = {v1, v2, ..., vN}

is a set of N variables in the problem, D = {Dom(v1), Dom(v2), ..., Dom(vN)} is a set

of N domains - one domain per variable and C = {c1, c2, ..., cP } is a set of P con-

straints between variables in the problem. A Distributed Constraint Satisfaction prob-

lem (DisCSP)[91, 94, 97] is a tuple (A, V , D, C) where: A = {a1, a2, ..., aM} is a

set of M agents, for each agent ai, a set Vi = {vi1, vi2, ..., vin} of variables it repre-

sents such that ∀i 6= j Vi ∩ Vj =Ø;V =
⋃
Vi is the set of all variables in the DisCSP,

D = {Dom(v1), Dom(v2), ..., Dom(vN)} is the set of N domains - one for each variable

and C = {c1, c2, ..., cP } is a set of P constraints between variables. The set of constraints

6

2.3. Problem Areas 7

(C) can be separated into two independent subsets: Cintra is the set of intra-agent

constraints between variables belonging to the same agent whilst Cinter is the set of

inter-agent constraints between variables belonging to different agents. In order to

simplify the problem, a common assumption in the field is that each agent represents a

single variable [97]. In this case, all constraints belong to the set of inter-agent constraints

(Cinter). However, many DisCSPs would be more naturally expressed and formulated

through having more than one variable per agent. Single variable per agent algorithms

can be used for multiple variable per agent problems by either: (i) solving the local prob-

lems within each agent first and creating a complex variable for that agent which has

the number of solutions to its local problem as its domain (compilation); (ii) making each

variable in the local problem into a virtual agent [13]. In chapter 5, we will use this

assumption of a single variable per agent. We will relax this assumption to deal with

DisCSPs with Complex Local Problems where agents have more than one variables

in chapters 6 and 7.

Yokoo et al. [97] also assumed that all constraints in the problem are binary (between

two variables) and that each agent knows about all of the constraints involving its vari-

able(s). We also make these assumptions. All CSPs involving non-binary constraints can

be transformed into a CSP with only binary constraints [4] and whilst there is a substan-

tial cost associated with this transformation [9], it is not normally counted by researchers.

With relation to messages, we assume that agents can communicate with a particular

agent if they know their address (i.e. share a constraint with one of its variables) and that

messages between pairs of agents arrive in the order that they were sent in finite time [94].

2.3 Problem Areas

Four different types of DisCSPs are now described: Randomly Generated Problems,

Graph Colouring Problems, Meeting Scheduling Problems and Sensor Network

Problems. For each problem, we present two formulisations: (i) for a single variable per

agent DisCSP; (ii) for a DisCSP with Complex Local Problems. The first formulisation

will be used in chapter 5 whilst the other formulisation will be used in chapters 6 and 7.

2.3. Problem Areas 8

2.3.1 Randomly Generated Problems

A randomly generated DisCSP is an example of a homogeneous unstructured problem.

These problems have a number of variables with a fixed domain. Variables belonging to

constraints are chosen at random. Specifically, we generated both solvable and unsolvable

randomly generated DisCSPs using the Model-B method [66]. These problems had one

variable per agent so all constraints are between variables belonging to different agents

(inter-agent constraints). Specifically, a tuple < n, d, p1, p2 > was used to generate where n

is the number of variables, d is the domain size of all variables, p1 is the constraint density

and p2 is the constraint tightness. The variables involved in constraints were chosen at

random as was the restriction of certain value combinations of the variables involved in

the constraint. We used binary constraints with the constraint density controlling how

many constraints were generated and the constraint tightness determining the proportion

of value combinations forbidden by each constraint. For example, a constraint density of

0.2 would generate 20% of the possible constraints in the problem (i.e. (n∗ (n−1)/2)∗0.2

where n is the number of variables) and a constraint tightness of 0.4 would prevent 40%

of the possible value combinations of variables involved in a constraint from satisfying

the constraint. The Model-B method was modified to include preferential assignment of

constraints to variables so that they resemble real-life problems [90] in a similar way as [8]

for non-binary DisCSPs.

For DisCSPs with Complex Local Problems, we partitioned the variables to

agents so that constraints involving variables would become either intra-agent or inter-

agent constraints depending on whether both variables were within the same agent (making

it an intra-agent constraint). We made this partition so that there was an imbalance

between the number of constraints within an agent (intra-agent constraints) and those

between agents (inter-agent constraints) such that the former had 70% to 90% of the total

number of constraints to create naturally distributed problems.

2.3. Problem Areas 9

2.3.2 Graph Colouring Problems

Graph colouring is a popular problem for DisCSPs to solve [8] since many problems can

be transformed into a graph colouring problem. Specifically, we want to colour the nodes

in a graph so that no two connected nodes share the same colour. We generated both

solvable and unsolvable graph colouring problems using the method described in [29] for

one variable per agent. Specifically, we have a tuple < n, c, d > where n is the number

of nodes in the graph, c is the number of colours available and d is the connectivity of the

graph (determining the number of edges and therefore the number of constraints in the

graph). For DisCSPs with Complex Local Problems, we generated problems using

the partitioning method described in [46] ensuring that the generated graphs had a higher

proportion of intra-agent to inter-agent constraints.

2.3.3 Meeting Scheduling Problems

This study also considers structured problems in the form of meeting scheduling prob-

lems. In meeting scheduling problems, a number of meetings must be scheduled involving

a number of participants. Some of these meetings must be scheduled before others. Par-

ticipants may belong to different departments and so they must have sufficient travelling

time between meeting. We developed a generator based on Brito’s meeting scheduling

generator [11]. Each department (agent) holds a number of meetings (variables). A set of

times make up the domain of each meeting. The attendee list for a meeting can contain

employees within the department and employees outwith the department. Each depart-

ment has at least one location where meetings can be held and employees from another

department can attend meetings in that department provided they can arrive on time. A

distance chart between locations is randomly generated so that the distance between two

locations is assigned a value between 0 and the maximum possible distance indicating the

travelling time required. There are three types of constraints: (i) difference constraints

between all meetings held in the same department; (ii) travelling time constraints be-

tween inter-departmental meetings with one or more common participants (for example,

if a participant had a meeting at 9am and the travelling time to the next meeting was

2.4. Summary 10

2 hours, the next meeting involving that participant could not take place until 12noon);

(iii) precedence constraints between meetings.

When generatingDisCSPs with Complex Local Problems, the ratio of intra-agent

to inter-agent constraints varied between 70:30 and 90:10.

2.3.4 Sensor Network Problems

Sensor networks is an example of a pratical application of multi-agent technology [100].

We used the Grid-based SensorDCSP generator described in [100]. Specifically, we wish

to assign 3 sensors to track each target. There is a limited pool of sensors which can view

particular targets (defined as visibility) and only some of these sensors can be positioned

to ensure a triangle is formed around the target (defined as compatibility). For example,

there are two targets t1 and t2 with six sensors s1, s2, s3, s4, s5, s6 in a sensor problem. The

visibility may be that s1, s4, s5, s6 are capable of tracking t1 whilst sensors s2, s3, s4, s5 are

capable of tracking t2. The compatibility would then refer to the positioning of these

sensors in relation to the targets. Therefore, each agent (representing a target) has 3

variables (representing the sensors that are tracking the specific target). The variable

value is the sensor that is selected to perform the task of tracking that target in the

particular position of the triangle (for example, s4 may be chosen to be the 2nd sensor

tracking t1 so that variable 2 of agent 1 would have a value of 4). These problems were

specifically chosen because they have a high ratio of inter-agent to intra-agent constraints

in contrast with the problems previously described in this chapter. Indeed the ratio of

inter-agent to intra-agent constraints is 85:15.

2.4 Summary

In this chapter, four particular types of problems which can be represented as Distributed

Constraint Satisfaction problems have been presented: randomly generated DisCSPs,

graph colouring, meeting scheduling and sensor networks. With the exception of sen-

sor networks, we have shown that the problems can be represented with a single variable

per agent or with multiple variables per agent. In the next chapter, we must first of all

2.4. Summary 11

consider algorithms for solving Constraint Satisfaction Problems before we can consider

algorithms for solving Distributed Constraint Satisfaction Problems in chapter 4.

Chapter 3

Constraint Satisfaction

3.1 Introduction

There are many problems in everyday life which involve constraints. For example, the

clothes we choose to wear each day are determined by the clothes that we have in our

wardrobe. Depending on the amount of available options (in this case, the size of the

wardrobe), it may not be easy to find a solution as to which clothes to wear assuming

that we want to match clothes so that we do not wear conflicting colours. This particular

issue of finding a solution to a problem has been a major focus of research in the Artificial

Intelligence community. Consequently, an area of research has emerged into Constraint

Satisfaction Problems (CSPs). Dechter [21] defines a CSP as a triple (X, D, C)

where X = {x1, ..., xn} is a set of variables, D = {D1, ..., Dn} is a set of domains, one

per variable, and C is a set of constraints which restrict the values that variables can

take simultaneously. A formal definition for CSPs was given in section 2.2. A solution

to a CSP is defined as an assignment of a value from its domain to each variable so

that all constraints are satisfied [7]. A value can be assigned to each variable so that

each variable’s constraints are satisfied by attempting different combinations of values for

variables through a search algorithm. In this chapter, we introduce methods for the

resolution of CSPs, namely the constraint propagation technique and two classes of

search algorithms: (i) systematic search algorithms; (ii) local search algorithms.

12

3.2. Definitions 13

3.2 Definitions

Prior to introducing the algorithms for solving CSPs, a number of formal concepts must

be introduced.

A variable xi is said to be a neighbour of a variable xj if variable xi shares a constraint

with xj .

Variable xi’s neighbourhood is the set of all variables N = {n1, ..., nm} which share

a constraint with xi.

An improvement to a variable is the assigning of another value to that variable which

lowers the number of constraint violations it is involved in.

A neighbourhood is said to be in local optima if there are no improvements which

can be made to any of the variables in the neighbourhood.

Two variables are connected if they share a constraint.

3.3 Constraint Propagation

Constraint Propagation is a technique which removes values from each variable’s domain

that cannot satisfy the variable’s constraints. Constraint propagation increases in com-

plexity from node consistency (removes values based on constraints involving only that

variable), arc consistency (removes values based on constraints involving pairs of connected

variables) to path consistency (ensuring values satisfy all binary constraints in a path be-

tween two variables). The k-consistency of a CSP is defined as a CSP where each (k-1)

tuple can be extended to a k compatible tuple which satisfies constraints. Consequently,

node consistency corresponds to 1-consistency with arc consistency to 2-consistency. How-

ever, constraint propagation may not remove all inconsistent values [7] so the potential

search space may remain large [8]. Frequently, propagation is used as a pre-processing

technique for a search algorithm (see below).

3.4. Systematic Search Algorithms 14

3.4 Systematic Search Algorithms

This family of algorithms takes a systematic approach to looking for solutions in the

entire search space. For example, consider the simple problem illustrated in figure 3.1.

Assume that you would like to timetable 3 modules in your department. The modules

(WEB, OOP , DATABASES) have to be assigned a time so that no two modules are

timetabled at the same time. In addition, there must be a two hour break between

the WEB and DATABASES modules so that the absolute difference between WEB

and DATABASES is greater than or equal to 2 (i.e. |WEB − DATABASES| >= 2).

The WEB module has four times available (11am, 1pm, 2pm, 3pm) whilst the other

modules have two possible times but the times are different for each module (10am and

12pm for OOP and 10am and 11am for DATABASES respectively). Formally, this

problem can be modelled as a CSP as X = {WEB,OOP,DATABASES}, DWEB =

{11am, 1pm, 2pm, 3pm}, DOOP = {10am, 12pm}, DDATABASES = {10am, 11am}, C1 =

[WEB 6= OOP], C2 = [DATABASES 6= OOP], C3 = [|WEB −DATABASES| >= 2].

Figure 3.1: A simple Constraint Satisfaction Problem

The simplest algorithm in this backtracking family is the Naive Backtracking algo-

rithm [87].

Initially, all variables are unassigned. For our sample problem, it is assumed that the

variables are ordered e.g. WEB, OOP and DATABASES and that values are chosen in

3.4. Systematic Search Algorithms 15

Figure 3.2: The Naive Backtracking search tree for our simple CSP

the order that they appear in the domain. The search tree produced by Naive Backtracking

when solving this problem is shown in figure 3.2 where black circles indicate the solution

and grey circles indicate value combinations that do not lead to a solution. The algorithm

then selects a variable (e.g. the WEB variable) and assigns a value to that variable which

satisfies all constraints. Then the next variable (e.g. the OOP variable) is selected and

assigned a value consistent with the constraints, and with the value already assigned to

previous variables (e.g. the WEB variable). This process is repeated until all variables are

assigned, i.e. a solution to the problem is found. However, if a variable cannot be assigned

a value without violating constraints, the algorithm backtracks to the previous variable,

choosing another value for this variable which does not violate constraints. For example,

in the sample problem, the DATABASES variable has no consistent value whilst the

WEB variable has value 11am. This will result in the algorithm initially backtracking to

the OOP variable and exhausting all possible values for that variable before backtracking

to the WEB variable and changing its value.

The Naive Backtracking algorithm attempts all variable value combinations in the

worst case [21]. Consequently, a number of improvements to this algorithm have been

proposed. Backjumping [33] maintains a backjumping variable which is a neighbour

(i.e. shares a constraint with) of the current processing variable and is the lowest variable

higher in the search ordering than the current processing variable. When the current

processing variable has no consistent values, the algorithm tries to find a new value for

3.4. Systematic Search Algorithms 16

this backjumping variable rather than the previous variable in the search ordering.

Figure 3.3: The Backjumping search tree for our simple CSP

For example, the sample problem (in figure 3.1) would produce the search tree shown

in figure 3.3 where black circles indicate the solution and grey circles indicate value com-

binations that do not lead to a solution. Specifically, the search would start with WEB

being assigned 11am as its first domain value. This is consistent with all constraints since

there are no constraints to check. OOP would be assigned 10am since this satisfies the con-

straint of OOP 6= WEB. We now instantiate the DATABASES variable but there are

no consistent values since 10am and 11am violate the constraint between DATABASES

and WEB 1. In Naive Backtracking, we would backtrack to the OOP variable as it is

the previous variable in the search. In Backjumping, we would backjump to the WEB

variable as this is the variable which is causing DATABASES to be unable to choose

a value i.e. changing the value of OOP cannot improve the situation. If the backjump

variable also has no consistent values, then naive backtracking is used to backtrack to the

previous variable.

Conflict-Directed Backjumping [74] is an improvement over backjumping in which

a conflict set of possible backjumping variables is maintained. This enables repeated

backjumping with the deepest variable in the conflict set being chosen when a backjump

1Incidentally, 10am violates the constraint between OOP and DATABASES whilst 11am satisfies this
constraint.

3.5. Local Search Algorithms 17

is required and that variable then being removed from the conflict set. This conflict set

takes the form of nogoods where variable assignments which are found not to lead towards

a solution are recorded.

Dynamic Backtracking [34] is a further improvement to Conflict-Directed Back-

jumping which allows variable re-ordering and maintains the search information after

backjumping which has not been invalidated by the backjump. Other improvements to

backtracking include backmarking [33] and forward checking [3].

Forward checking, which can be combined with any systematic search algorithm,

checks if unassigned neighbours of the current processing variable have any consistent val-

ues with the proposed assignment of the current processing variable. If not, the proposed

assignment for the current processing variable is abandoned and another assignment is

chosen. For example, in the sample problem, forward checking would discover when as-

signing 11am to WEB that there is no consistent value for DATABASES when WEB

takes 11am as its value and so would cause WEB to choose 1pm before moving to assign

OOP as the next variable in the search. This prevents the exploration of parts of the

search tree that are doomed to failure because of a particular variable value combination

(as WEB being set to 11am was causing the problem).

Systematic search algorithms are complete in that they are guaranteed to find a

solution or determine that the problem is unsolvable. However, they may take exponential

time to do this.

3.5 Local Search Algorithms

A second family of search algorithms are called local search algorithms. These algorithms

begin with an initial value chosen (possibly at random) for every variable. Dechter [21]

presents the simplest stochastic local search algorithm, generating a new random

initialisation for all variables for a maximum number of tries. Most local search algorithms

uses an iterative repair technique on the variables whose values lead to violated constraints.

This heuristic-based repair technique guides the search towards a possible solution. For

example in the simple problem in figure 3.1 above, the first complete assignment to be

3.5. Local Search Algorithms 18

generated may be SOL = {WEB = 11am,OOP = 10am,DATABASES = 10am} which

produces two constraint violations (i.e. WEB 6= OOP and |WEB −DATABASES| >=

2). The local search may then discover that by changing the value of OOP to 12pm (i.e.

SOL = {WEB = 11am,OOP = 12pm,DATABASES = 10am}) only one constraint is

now violated (|WEB −DATABASES| >= 2).

Stochastic local search algorithms may get stuck on a local optima. Consequently, the

algorithm always finds a particular complete assignment more desirable than trying any

other combination of values even if this complete assignment is not a real solution (i.e.

some constraints remain violated) [21]. Since most local search algorithms do not allow

multiple variables which are neighbours to change value at the same time, the algorithm

will not see any possible changes that reduce the number of constraint violations. For

example, the local search algorithm may not be able to find any improvements by changing

a single value in our example above to reduce the constraint violations to 0 (i.e. satisfy

the constraint |WEB − DATABASES| >= 2). However, it may be that by moving to

another complete assignment with the same number of constraint violations or temporarily

increasing the constraint violations, will ultimately lead to a solution. Consequently, local

search approaches have been improved through a number of new techniques.

Hill-climbing [59] uses heuristics to choose which variables are allowed to change

their values and thereby “climb the hill” to the problem solution. The search is restarted

with different values if the search gets stuck in a local optimum.

Tabu search [36] is an alternative approach where certain combinations of values are

temporarily banned forcing the algorithm to search a different area of the problem search

space.

Simulated annealing [51] allows moves which increase the number of constraint

violations for variables with a higher initial probability that descends over time.

Guided local search [89] uses penalties on values for variables which violate con-

straints to guide the search to more promising areas of the search space.

Variable neighbourhood search [42] focuses the search on a particular search space

area for each run.

3.6. Variable and Value Ordering Heuristics 19

In the breakout algorithm [62], a weight of 1 is assigned to each constraint. This

weight is increased if the constraint is violated. The summation of these weights is added to

the constraint violations when evaluating how ’bad’ a solution is. If a neighbourhood is in

local optima, the weights are increased so that the neighbourhood has a higher weight than

others and so can escape from local optima. This increase in weights is called ’breakout’.

Whilst recent work on satisfiability problems (a subset of constraint satisfaction problems)

has shown that local search may determine why a problem is insolvable [38], local search

remains incomplete 2.

3.6 Variable and Value Ordering Heuristics

Choosing the next variable or value in backtracking search [5] or the neighbourhood to

explore for some local search approaches [43] is crucial to obtain good performance. Vari-

able ordering heuristics include maximum degree (most heavily constrained variables

preferred) and maximum cardinality (first variable randomly selected then choose the

variable connected to most assigned variables) [58]. Search rearrangement [58] (often re-

ferred to as min-domain) chooses to assign the variable which has the fewest number of

remaining consistent values with already instantiated variables. Value ordering heuristics

control the order in which the values are chosen after variable ordering. Min-conflicts

[59] is a value ordering heuristic choosing the value which minimises violations with neigh-

bouring variables.

3.7 Problem Decomposition

There have been a number of approaches which attempt to decompose the problem into

easier subproblems which can be joined together to form a solution to the original problem.

Anand et al. [1] use a lazy evaluation algorithm to divide the CSP into subproblems

since they argue it is very difficult to cleanly split a CSP. Earlier, Freuder and Hubbe

[31] attempted to extract unsolvable subproblems to therefore prove global unsolvability.

2The algorithms may not find a solution to a solvable problem and cannot determine an unsolvable
problem.

3.8. Hybrid Algorithms 20

These approaches usually make use of either backtracking or local search algorithms to

solve the subproblems.

3.8 Hybrid Algorithms

Recently, research has focused on the combination of systematic and local search algo-

rithms in order to overcome the perceived individual weakness of each [48]. Table 3.1

summarises the properties of backtracking algorithms (see section 3.4) and local search

algorithms (see section 3.5).

Backtracking Algorithms Local Search Algorithms

Theoretical
Completeness Complete Incomplete

Search Strategy Systematic sequential assignmentIterative repair of initial assignment

Scalability Small problems Larger problems

Convergence Very Slow Quicker (for larger problems)

Table 3.1: Contrasting the properties of backtracking algorithms with local search algo-
rithms

As illustrated in Table 3.1, backtracking and local search algorithms have complemen-

tary advantages. Whilst theoretically complete, backtracking algorithms often converge so

slowly that they cannot practically be used with large problems. Local search algorithms

replace backtracking’s sequential assignment with iterative repair of values resulting in

incompleteness. However, local search often converges quicker to solutions for large prob-

lems.

Many authors have presented hybrid approaches combining backtracking and local

search. Jussien [48] classified these into three categories: (i) local search then system-

atic search, or vice versa; (ii) systematic search using local search at some point;

(iii) local search using systematic search for neighbour selection or search pruning.

We describe these categories below, making minor modifications to these categories so all

hybrid approaches are classified.

3.8. Hybrid Algorithms 21

3.8.1 Local Search Before/After Systematic Search

This category contains algorithms either running the two search approaches consecutively

or running similar amounts of backtracking and local search. Table 3.2 briefly describes

each of these approaches.

Reference Description

Caseau and Laburthe [14] Interleaving constructive (backtracking) and local search
produces optimised solutions over running constructive then
local search.

Eisenberg [22] Presents the BOBT algorithm which runs local search al-
gorithm for a number of breakout steps. When this number
is exceeded, systematic search is run using the weights from
the breakout (local search) algorithm [62].

Schaerf [80] Produces a framework for combining backtrack and local
search using backtracking until no consistent value and then
local search to determine the best values to resolve situation.

Zhang and Zhang [99] A specified number of variables is initialised in the partial
assignment. A higher number indicates more local search
whereas a small number indicates more backtracking.

Table 3.2: Hybrid algorithms running similar amounts of backtracking and local search or
running one after the other.

Caseau and Laburthe argue that interleaving should be done through backtracking

and then local search rather than vice versa whilst Zhang and Zhang provide an approach

that enables the amount of local search and backtracking to be controlled for different

problem types. Eisenberg’s approach is similar to Zhang and Zhang except Eisenberg

uses the breakout algorithm [62] (see section 3.5 for details of the breakout algorithm).

The duration of the breakout algorithm is determined by the number of times the weights

are increased (i.e. the number of breakout steps performed). In Zhang and Zhang, the

number of variables initialised determines the boundary of local search. Schaerf’s approach

of backtracking then local search is contrasted with Zhang and Zhang who run local search

on the initial partial assignment extending it through backtracking [78]. Jussien’s Decision-

Repair algorithm [48] generalises Schaerf’s approach [73, 71] which Jussien classifies in

the “Local Search with Systematic Search during Search” category. Consequently, we

could categorise Schaerf’s approach in this third category of Jussien’s classification, but

as the approach runs local search when backtracking reaches a dead-end, the amount of

3.8. Hybrid Algorithms 22

local search run will depend on how many dead-ends backtracking occurs. As such, this

approach could be categorised in either this first category or the third category. Since the

amount of local search and backtracking depends on the problem, we choose to leave it

in this category. Whilst Schaerf’s and Zhang and Zhang’s approaches are well cited in

literature, the exclusive use of propositional satisfiability (SAT) problems by Zhang and

Zhang with boolean values, disputes the overall applicability of their approach.

3.8.2 Systematic Search using Local Search

Jussien’s second category contains backtracking (systematic search) algorithms incorpo-

rating local search to converge quicker to a solution whilst often losing completeness. We

extend this category to all hybrid approaches having clear systematic origins. Table 3.3

describes these approaches.

Whilst Prestwich integrates multiple local search properties to backtracking sacrificing

completeness, Ginsberg and McAllester, Gomes et al., Richards and Richards and Yokoo

are all able to implement local search techniques whilst maintaining completeness. The

key to maintaining completeness in these approaches is keeping a systematic record of

the values considered. Other approaches such as Kamarainen and Sakkout, Mazure et

al., Nareyek et al., Sakkout and Wallace and Yoshikawa et al. use local search as the

decision-maker to choose the next variable or value. This needs to be used with caution

as if it is used too frequently, the costs of running local search outweighs the benefits.

Hogg and Williams’ approach of cooperative search is particularly interesting given the

increased processing power which is now available that permits search algorithms to run

in parallel.

3.8.3 Local Search with Systematic Search during search

Jussien’s final category includes local search algorithms using systematic search properties

for search space pruning or choosing the candidate neighbour (the variable that is allowed

to change its value). Table 3.4 summarises these approaches.

Cotta’s work is based on constraint optimisation problems where an objective function

3.8. Hybrid Algorithms 23

Reference Description

Caseau et al. [15] Explores parameters for hybrid variants of systematic
search algorithms for vehicle routing problems.

Ginsberg and McAllester [35] Presents Partial-order dynamic backtracking al-
gorithm offering more flexibility than dynamic back-
tracking in choosing search path but maintaining com-
pleteness.

Gomes et al. [37] Presents a general framework for including randomi-
sation in complete search to speed-up run time.

Hogg and Williams [47] Introduces notion of hints between algorithms to form
a cooperative search technique.

Kamarainen and Sakkout [49] Describes local probing algorithm using local
search to solve easy constraints initially and then sys-
tematic search for all remaining constraints. Local
search is essentially used to instantiate variables be-
longing to easy constraints.

Mazure et al. [55] Presents DP+TSAT algorithm for SAT problems.
During a backtracking search, guided local search de-
termines the next variable to instantiate.

Nareyek et al. [63] Uses systematic search (termed refinement search)
with local search acting as a guiding heuristic for each
search decision. As a consequence of running local
search so frequently, the technique is outperformed by
simpler heuristics.

Prestwich [71, 73, 72] Introduces an Incomplete Dynamic Backtracking
algorithm using local search, forward checking and
dynamic variable ordering. Also Constrained Local
Search algorithm determining how far to backtrack
heuristically.

Richards and Richards [75] Learn-SAT algorithm maintaining completeness
using systematic restarts rather than backtracking.

Sakkout and Wallace [79] Presents the Unimodular probing algorithm
where good values are selected to guide the back-
tracking search and minimise search effort (reminis-
cent of choosing neighbouring values to change in local
search).

Yokoo [92] Presents the weak-commitment search algorithm
where tentative values in partial assignment re-
vised using min-conflicts heuristic until dead-end then
restart with new assignment. Nogoods storing old par-
tial assignments maintain completeness.

Yoshikawa et al. [98] Presents SchoolMagic combining arc consistency
(systematic constraint propagation) with minimum
conflicts heuristic for a high school scheduling prob-
lem.

Table 3.3: Hybrid algorithms with systematic origins using local search.

3.8. Hybrid Algorithms 24

Reference Description

Barnier and Brisset [6] Combines power of genetic algorithms (local search)
with systematic CSP techniques using a hybrid pa-
rameter similar to Zhang and Zhang [99].

Cotta et al. [16] Presents HEAGRASP algorithm using local search
to generate solutions for an optimisation problem then
a systematic search technique to combine these solu-
tions into an optimal solution.

Crawford [17, 18] GSAT local search algorithm calculates weights for or-
dering of systematic search algorithm for SAT prob-
lems. ISAMP algorithm restarts when discovering
a contradiction with a random variable.

David [19] Uses arc consistency and iterative improvement step
to produce sub-optimal solutions where time available
did not allow for a full exhaustive search.

De Backer et al. [20] Framework for local search containing some backtrack-
ing properties for vehicle routing problems.

Fang and Ruml [27] Presents complete local search (CLS) algorithm
framework for making local search complete for SAT
problems using constraint learning and an objective
function. Exponential space complexity.

Jussien and Lhomme [48] Decision-repair abstract algorithm with local
search over a partial assignment of variables. Instance
of Schaerf’s [80] framework.

Lever [52] Presents Full LS/CP Hybrid where local search is
used to determine a good bound for a branch-and-
bound systematic search.

Mitra and rae Kim [60] Presents MC-FC algorithm uses min-conflicts local
search to solve the first part of the problem and for-
ward checking to solve the remaining part.

Nowicki and Smutnicki [65] Exchange of assignments extended to complete solu-
tion using constructive search techniques for job shop
scheduling problems.

Pesant and Gendreau [67] Combines local search and backtracking techniques
for optimisation problems (finding the best solution
rather than any solution).

Shaw [82] Presents Large Neighbourhood Search which ap-
plies local search to tree-based systematic search for
vehicle routing problems only.

Verfaillie and Schiex [88] Presents local changes algorithm extending consis-
tent partial assignment through local changes for dy-
namic CSPs (CSPs which have constraints added or
retracted during problem resolution).

Table 3.4: Hybrid algorithms running overall local search with some systematic search
properties.

3.9. Limitations of Study 25

determines criteria that forms the best (optimal) solution out of many solutions to the

problem. Cotta’s work indicates that local search comes close to the optimal solution

but requires a systematic search to reach the optimal state. This applies to satisfaction

problems when systematic search finds the solution based on local search’s best values.

Crawford’s use of local search weights for backtracking is similar to Eisenberg’s BOBT

[22] but here it is only used as a tie-breaker for ordering whereas it is the primary method of

ordering in BOBT. Crawford and Baker [18] conducted an experimental evaluation for SAT

problems of local search (GSAT), backtracking (TABLEAU) and hybrid (ISAMP).

ISAMP outperformed GSAT and TABLEAU, but was helped by a large number of not

uniformally distributed solutions. Jussien and Lhomme’s work offers completeness, but

remains an abstract framework with little experimental evaluation. Fang and Ruml’s

work on Complete Local Search offers the first completeness guarantee for local search,

with experimental evaluation, but only on propositional satisfiability (SAT) problems with

boolean values as the domain. Additionally, their nogood store has exponential space

complexity.

3.9 Limitations of Study

This study does not consider constraint optimization problems or dynamic constraint

satisfaction. Unsolvable problems are only considered within the context of detecting that

the problem is unsolvable.

3.10 Summary

In this chapter, we have introduced Constraint Satisfaction Problems (CSPs). We have

shown that there are two main families of algorithms to solve CSPs: backtracking and

local search algorithms. Many authors have combined elements of backtracking and local

search algorithms into hybrid algorithms. Jussien classified these approaches into three

categories which we have adapted to include all approaches: (i) local search before/after

systematic search; (ii) systematic search using local search during search; (iii) local search

3.10. Summary 26

with systematic search during search. In addition, we have explained other techniques

which can be combined with these algorithms such as constraint propagation and prob-

lem decomposition. In the next chapter, we consider algorithms for solving Distributed

Constraint Satisfaction Problems.

Chapter 4

Distributed Constraint

Satisfaction

4.1 Introduction

Many problems such as scheduling and resource allocation problems are difficult to model

using the Constraint Satisfaction techniques defined in previous chapter since they assume

the whole problem is available to a single solver. Constraint Satisfaction Problems are now

referred to as centralised Constraint Satisfaction Problems. For example, Faltings

[25] highlights that arranging a two person meeting may impact on the participants’ other

meetings which would have to be included in the centralised CSP. A similar scenario for

industry occurs between collaborating companies in different stages of the supply chain

[25].

Yokoo et al. [91, 94, 97] proposed solving these multi-agent problems through a new

approach called Distributed Constraint Satisfaction problems (DisCSPs). A for-

mal defintion of DisCSPs was presented in chapter 2. Briefly, a DisCSP is a tuple (A,

V , D, C) where: A = {a1, a2, ..., aM} is a set of M agents, for each agent ai, a set

Vi = {vi1, vi2, ..., vin} of variables it represents such that ∀i 6= jVi ∩ Vj = ∅;V =
⋃
Vi is

the set of all variables in the DisCSP, D = {Dom(v1), Dom(v2), ..., Dom(vN)} is the set

of D domains - one for each variable and C = {c1, c2, ..., cP } is a set of P constraints

27

4.2. Distributed Constraint Satisfaction with One Variable per Agent 28

between variables. The set of constraints C is split into two subsets - Cinter contains

the inter-agent constraints between variables belonging to different agents and Cintra

contains the intra-agent constraints between variables belonging to the same agent.

Each agent controls only the variables which it represents and knows only the domains

of those variables and the constraints they are involved in. Agents communicate through

sending messages. These messages contain the proposed values for the sender’s variables

and are only sent to agents who have variables that share constraints with some of the

sender’s variables 1. We discuss algorithms for solving DisCSPs which can be split into two

categories. Some algorithms assume that each agent represents a single variable and these

are discussed in section 4.2. Other algorithms for DisCSPs with complex local prob-

lems where agents represent several variables have been developed. These algorithms are

described in section 4.3.

4.2 Distributed Constraint Satisfaction with One Variable

per Agent

A large part of the research into DisCSPs has concentrated on the assumption that each

agent represents a single variable. This section discusses these approaches.

Agents could send their information to a central agent [97] and then that agent uses

centralised problem techiques (see chapter 3) to solve the problem and returns the solution

to each agent. Mailler and Lesser [54] solve the hardest problem parts using centralised

techniques whilst using distributed techniques for the remaining agents. However, infor-

mation may be stored in different formats or privacy concerns exist which prevent these

approaches [97]. Consequently, only distributed algorithms are now considered. These

are evaluated in relation to two common metrics: (i) the number of messages passed

between agents indicative of communication costs; (ii) the number of non-concurrent

constraint checks performed [56] indicative of time taken. A good distributed algorithm

will minimise these metrics.

1Yokoo et al. [94] assume finite message delay with messages between two agents arriving in sent order.
We also make this assumption.

4.2. Distributed Constraint Satisfaction with One Variable per Agent 29

4.2.1 Distributed Constraint Propagation

Wemay attempt to solve a DisCSP using constraint propagation through Hamadi’s DisAC-

9 [39] or Ringwelski’s DDAC4 [76] arc consistency algorithms. These approaches have the

same drawbacks as those explained in section 3.3.

4.2.2 Distributed Backtracking

Distributed Backtracking algorithms can be divided into synchronous algorithms and

asynchronous algorithms. In synchronous algorithms, agents perform actions in a pre-

defined order whilst agents act concurrently with other agents in asynchronous algorithms.

Whilst one may assume that the concurrent behaviour of asynchronous algorithms means

that asynchronous algorithms will always be beneficial over synchronous algorithms, Brito

and Meseguer [12] have shown this not always to be the case. Many backtracking algo-

rithms use nogoods which record values for variables which have been attempted and do

not lead a solution.

Synchronous Backtracking (SBT) [94] is the simplest distributed algorithm and is

based on the Naive Backtracking algorithm [87]. Ordered agents sequentially instantiate

their variable and send a message with a consistent partial assignment (CPA) con-

taining all values assigned so far to the next agent. Agents send a backtracking message

to the previous agent if no consistent value exists. A solution is found when every agent

has a consistent instantiated variable.

Synchronous Backtracking has been improved by Zivan and Meisels [102] to SynCBJ

which is a distributed version of conflict-directed backjumping [74] combined with dynamic

backtracking [34]. SynCBJ [102] is a synchronous systematic search algorithm where each

agent keeps track of the reasons why values have been eliminated from their variable’s

domain. When a backtrack step is required, the agent is able to determine the variable re-

sponsible for the conflict and backjumps to the agent holding that variable. This increases

the performance of the algorithm very substantially when compared to SBT [102] whilst

it has also been shown to outperform asynchronous algorithms on some problems [12].

We have implemented a distributed version of backjumping (see Appendix A.4) and found

4.2. Distributed Constraint Satisfaction with One Variable per Agent 30

that SynCBJ significantly outperforms this backjumping algorithm. A revised version

of SynCBJ entitled Multi-CBJ [81] speeds up the search by running multiple SynCBJ

search processes with different orderings on different processors.

Yokoo et al. developed Asynchronous Backtracking (ABT) [94, 97] to allow agents

to search in parallel for a solution. Each agent has a priority (or place) in the ordering.

This is often lexicographic by agent id, but other heuristics such as maximum degree or

minimum domain can be used. Statically ordered agents (later approaches use dynamic

ordering) send values to lower priority agents which evaluate shared constraints. Asyn-

chronously, each agent assigns a consistent value to its variable, sending OK messages

to agents sharing constraints (connected agents) to determine if violated constraints ex-

ist. Each agent’s view of the problem is updated with the new value of that agent and

constraints are checked. If constraints are violated, and the agent cannot change to a con-

sistent value, the agent sends a nogood message to the lowest priority agent with a higher

priority than itself. This agent checks the nogood for validity (message delay and parallel

execution may affect this) prior to changing its value. If an agent receives a nogood with

an unconnected agent, a link is added between the two agents. This process is repeated

until all agents have consistent assignments or all values of the highest priority agent lead

to failure.

A simple Distributed Constraint Satisfaction problem is shown in figure 4.1 with

three agents WEB, OOP and DATABASES each representing a single variable with

the same name as its agent. We assume for the sample execution of ABT that agent

WEB has the highest priority, followed by OOP with DATABASES having the lowest

priority. WEB and OOP send OK messages to DATABASES with their chosen val-

ues (e.g. 11am and 10am respectively). At this point, DATABASES knows that the

value of WEB is 11am and OOP is 10am. These values are stored in the agent view

of DATABASES. DATABASES cannot assign a value consistent with this agent view

and so sends a nogood {(WEB,11am)(OOP ,10am)} to the lowest priority agent higher

than itself (i.e. OOP). Since this nogood, contains a variable (WEB) which OOP has

no constraints with, a link is added between WEB and OOP . The value of WEB as

4.2. Distributed Constraint Satisfaction with One Variable per Agent 31

11am is now stored in the OOP agent’s view. OOP would now send an OK message

to DATABASES with its other value of 12noon but DATABASES generates an ad-

ditional nogood {(WEB,11am)(OOP ,12noon)} to OOP . OOP now has no consistent

values and so sends a nogood to WEB {(WEB,11am)}. WEB now changes its value to

1pm and sends an OK message to DATABASES and OOP . DATABASES can now

assign a consistent value to its variable (10am) and a solution is found to the problem

{(WEB,1pm)(OOP ,12noon)(DATABASES,10am)}.

Figure 4.1: A simple Distributed Constraint Satisfaction Problem

ABT has been extended by various authors. Yokoo proposed Asynchronous Weak-

Commitment Search (AWCS) [93, 97], a new algorithm with dynamic ordering where

backtracking agents become the highest priority agent within their neighbourhood. For

example in the simple problem, DATABASES would be promoted to the highest priority

agent when it composes a nogood to backtrack to OOP . This algorithm requires expo-

nential space complexity to store all nogoods generated for completeness 2. Some authors

classify AWCS as a local search algorithm.

Bessière et al. [10] removed the need for new links between unconnected agents in

2This algorithm is a descendant of Weak-Commitment Search (see section 3.8), but is no longer a hybrid
approach in this distributed version.

4.2. Distributed Constraint Satisfaction with One Variable per Agent 32

ABT. Fernandez et al. [28] proposed to negate the message delay effect through a random

restart procedure.

Meisels and Zivan explored integrating forward-checking constraint propagation with

sequential variable assignment [57], parallel exploration through the ConcDB algorithm

[103] and message delay effects on ABT and AWCS [101].

Silaghi’s extensions include aggregations where constraints are sent between agents

rather than variable values [83], combining ABT and AWCS to reduce AWCS’s space

complexity [85] and asynchronous consistency [84].

Brito and Meseguer [12] create ABT-Hyb, introducing synchronised steps for part of

ABT to reduce the number of messages between agents.

Nguyen et al. [64] developedDynamic Distributed Backjumping with synchronous

forward assignment of variables phase and asynchronous backjumping phase when assign-

ments fail.

Sycara et al. developed a heuristic-based search for scheduling problems which is also

called Asynchronous Backtracking search [86].

Concurrently with Yokoo’s ABT and AWCS, Hamadi has developed IDIBT/CBJ-

DkC [40] using parallel exploration of search trees, constraint propagation and conflict-

directed backjumping.

Harvey et al. [44] developed Support-Based Distributed Search using argumen-

tation techniques and message ordering rather than variable ordering. The approach is

complete through nogood construction.

Distributed Backtracking with Sessions [61] is a recent approach which aims to

minimise message processing time as opposed to the number of messages actually sent.

The algorithm uses the notion of sessions to only process those messages which contain

the same session number. Sessions are closed whenever an agent is able to assign a value

to its variable. Backtracks are only processed if the session number between the agents is

identical. This reduces processing effort of obsolete messages.

The distributed backtracking approaches have identical disadvantages as centralised

backtracking techniques (see section 3.4). Specifically, they incur a high number of non-

4.2. Distributed Constraint Satisfaction with One Variable per Agent 33

concurrent constraint checks. In addition, for distributed problems, they incur a high cost

of sending messages.

4.2.3 Distributed Local Search

A number of local search approaches exist for distributed problems. In local search, an

ordering is defined for all agents. The first agent processes all relevant messages for this

agent and sends appropriate messages to neighbours before passing processing to the next

agent in the ordering. The next agent then processes all relevant messages for this agent

and sends appropriate messages to neighbours and passes on processing to the next agent

in the ordering. This continues until all agents have had the opportunity to process. Once

all agents have had the opportunity to process, processing returns to the first agent. All

agents having the opportunity to process constitutes a cycle. Since local search algorithms

are incomplete, they may execute indefinitely. Consequently, if an algorithm has not found

a solution in a bounded number of cycles, the algorithm is terminated with no solution

found (although a solution may exist).

Hirayama and Yokoo [45] developed the Distributed Breakout Algorithm (DBA)

which is based on the breakout algorithm [62]. This algorithm sets an initial random

assignment for variables with a weight of one for each constraint. In each cycle, agents

then calculate value proposals to lower the number of constraint violations for their own

variables. Where conflicts (i.e. neighbouring agents) occur, the agent with the maximum

improvement value gets to change its value. If there is no conflict, then the agents may

change their value to obtain the calculated improvement. If local optima occurs i.e. there

are no improvements in one cycle, the weight of the constraints which remain violated is

increased - a ’breakout’ is performed. These weights are added to the number of constraint

violations when calculating improvements. Consequently, after a ’breakout’ values which

do not violate heavily weighted constraints will appear more promising and the algorithm

may be able to choose these as improvements and escape the local optimum. The problem

is solved when all constraints are satisfied.

TheDistributed Stochastic Algorithm (DSA) originates from Fabiunke’s work [24]

4.2. Distributed Constraint Satisfaction with One Variable per Agent 34

suggesting a probability of a variable keeping its existing value or taking a new value which

minimises constraint violations. DSA [100] is probability based where initial values are

improved to reduce constraint violations according to probabilities in each cycle. Several

versions exist, but the most common, DSA-B, implements all improvements. In addition,

DSA-B implements those changes which do not increase the number of violations according

to a specified probability. These changes that do not increase the violations, but also do

not decrease them, allow variables to move to other values that may in combination with

other variables’ values, reduce the number of constraint violations and escape local optima.

Arshad and Silaghi [2] note that DSA has no method of escaping from local minima, but

outperforms DBA on scan scheduling problems [100]. Arshad and Silaghi have extended

DSA with a controlled descent approach to the probability of choosing changes which do

not increase violations entitled Distributed Simulated Annealing.

The Distributed Penalty Driven Search Algorithm (DisPeL) [8] is a determin-

istic penalty-driven local search algorithm. DisPeL is an iterative improvement algorithm

where agents take turns to improve a random initialisation in a fixed order. DisPeL uses

two penalty mechanisms to force the search away from local optima, proving more effective

and more informed than DSA and DBA. During each cycle, agents choose a value accord-

ing to penalties imposed on variable values and the number of constraint violations, with

values having a small penalty and a small number of constraint violations preferred. In

order to resolve deadlocks (quasi-local-optima where an agent’s view remains unchanged

for 2 iterations), DisPeL applies penalties to variable values which are used in a 2-phased

strategy as follows: (i) First the current values at quasi-local-optima are penalised with

a temporary penalty of 3 in order to encourage agents to assign other values with the

temporary penalty discarded in the next cycle and; (ii) If the temporary penalties fail to

resolve a deadlock incremental penalties of 1 per penalty are imposed on the culprit

values. Penalties therefore indicate values that, though looking promising, fail to lead to

a solution. The higher the penalties accumulated by a value, the less desirable it becomes.

The incremental penalties are discarded when the penalised agents become consistent or

the search space becomes distorted (penalties have too big effect on problem). DisPeL is a

4.2. Distributed Constraint Satisfaction with One Variable per Agent 35

deterministic algorithm relying on a good random initialisation to find a solution quickly.

Stoch-DisPeL [8], is a stochastic variation of DisPeL where agents decide randomly

to either impose a temporary penalty (with probability p) or to increase the incremen-

tal penalty (with probability 1-p). Larger penalties may now be built-up where a re-

peated incremental penalty is topped up with a temporary penalty. Stoch-DisPeL is non-

deterministic and outperforms DisPeL on bad initialisations and performs comparatively

on good initialisations.

All of these local search algorithms are generally incomplete, although DBA is complete

for cyclic graph problems [100].

4.2.4 Distributed Variable and Value Ordering

Hamadi et al. [41] proposes the Distributed Agent Ordering framework for static

variable ordering with the max degree heuristic. Brito and Meseguer [12] have investigated

ordering heuristics for synchronous and asynchronous search whilst Zivan and Meisels [104]

have devised the ABT DO reordering algorithm for ABT, recently updated to support

nogood and minimum domain ordering [105]. Petcu and Faltings [68] describe a value

ordering heuristic version for DBA.

4.2.5 Distributed Hybrid Algorithms

While there are many hybrid approaches for centralised CSPs, there are very few for

distributed CSPs.

DisBOBT [22] runs DBA [95] as its main problem-solver and, if within a number of

breakout steps it fails to solve the problem, DBA’s weight information is used to order the

agents for Yokoo’s Synchronous Backtracking search [97]. The algorithm’s purpose was to

identify unsolvable problems and is not a fully optimised hybrid algorithm.

LSDPOP [70] is inspired by the centralised hybrid approach in [52] and runs the

systematic algorithm DPOP [69], until the maximum inference limit is exceeded when

local search guided by DPOP is run. LSDPOP is an optimisation algorithm and, therefore,

focuses on finding the best solution to a problem with many solutions as opposed to finding

4.3. Distributed Constraint Satisfaction with Complex Local Problems 36

any solution to the problem.

Ringwelski and Hamadi [77] provide a framework for combining multiple distributed

algorithms based on Gomes et al’s framework for centralised algorithms [37], although no

applicability for combining backtracking and local search algorithms is given.

4.3 Distributed Constraint Satisfaction with Complex Local

Problems

In section 4.2, algorithms are presented for the resolution of fine-grained DisCSPs i.e.

DisCSPs where each agent is responsible for only one variable. In this section, we consider

algorithms for the resolution of DisCSPs with complex local problems i.e. DisCSPs where

each agent is responsible for more than one variable. Algorithms for the resolution of

fine-grained DisCSPs can be used to solve DisCSPs with complex local problems through

creating a virtual agent for each variable in a complex local problem. Thus, an agent is

only responsible for one variable, instead of for a set of variables and, therefore, cannot

make full use of all the knowledge contained in the complex local problem. This can

result in both additional constraint checks and increased message costs. Alternatively,

these approaches could have, for each complex local problem, a complex variable whose

variable is the aggregation of all solutions to the local problems. Recently, there has been

research into a compilation formulation for existing distributed algorithms primarily for

distributed optimization [13]. This compilation formulation focuses on generating the set

of intra-agent solutions first and then solving the global inter-agent problem for DisCSPs

with complex local problems. ABT-cf [23] is a revised approach based on ABT which

generates solutions to the local problem (intra-agent constraints) and then attempts to

find solutions to the global problem (inter-agent constraints).

In this section, algorithms particularly designed for DisCSPs with complex local prob-

lems are considered.

4.3. Distributed Constraint Satisfaction with Complex Local Problems 37

4.3.1 Distributed Backtracking for Complex Local Problems

The Asynchronous Weak-Commitment Search Algorithm for Complex Local

Problems (Multi-AWCS) [96] uses a local AWCS solver to ensure the satisfaction of

intra-agent constraints, whilst a global AWCS solver ensures the satisfaction of inter-

agent constraints. The global solver checks whether an assignment that the agent found

for its own local variables is compatible with other agent’s assignments.

The Asynchronous Backtracking for Complex Local Problems (Multi-ABT)

[46] is a comparable extension for ABT. This also runs a local ABT solver and a separate

global ABT solver. Maestre and Bessiere [53] produced an alternative version of this

algorithm with nogood learning and value selection techniques.

Whilst all distributed backtracking algorithms for DisCSPs with Complex Local Prob-

lems are complete, they may take exponential time and, for Multi-AWCS, may require an

exponential number of nogoods to be stored.

4.3.2 Distributed Local Search for Complex Local Problems

The Distributed Breakout Algorithm has been extended for Complex Local Problems

through theMulti-DB algorithm [45]. This algorithm was initially extended by Eisenberg

[22] (DisBO) whilst Basharu added a weight decay mechanism to the weights attached to

constraints in DisBO-wd [8]. In DisBO-wd, each constraint is assigned an initial weight

of 1. At the end of each iteration, the weight is updated so that it is increased if the

constraint is violated and it is decayed if the constraint is satisfied. DisBO-wd has been

shown to improve DisBO [22] and our experiments have confirmed this result.

Multi-DisPeL [8] extends the DisPeL framework for DisCSPs with Complex Local

Problems through a modified steepest descent local search within the agent’s local problem

and the Stoch-DisPeL framework on the inter-agent constraints. Multi-DisPeL was found

to often outperform Multi-AWCS [96] and DisBO-wd [8].

4.4. Comparing Distributed Backtracking and Distributed Local Search 38

4.3.3 Distributed Hybrid Algorithms for Complex Local Problems

Whilst DisBOBT [22] is described with agents having more than one variable, only one

variable per agent is processed at a time and consequently the algorithm is not specifi-

cally designed to handle the extra information available within complex local problems.

DCDCOP [50] is a very recent approach to solving distributed constraint optimization

problems. This algorithm computes local optimal solutions through branch and bound

whilst determining the global optimal solution through the combined optimality of the

agents including their inter-agent constraint. It is shown to outperform ADOPT, a lead-

ing distributed constraint optimisation algorithm 3.

4.4 Comparing Distributed Backtracking and Distributed

Local Search

We evaluated one of the best synchronous distributed systematic search algorithms

(SynCBJ) against one of the best synchronous distributed local search algorithms (Stoch-

DisPeL). We were interested to see where their particular strengths and weaknesses lie

within three problem classes: randomly generated problems, graph colouring problems

and meeting scheduling problems. We also wanted to consider whether a combination of

systematic or local search may be more beneficial when both algorithms do not perform

well. In [102] SynCBJ was shown to outperform synchronous backtracking and asyn-

chronous search on particular types of problems [12]. Stoch-DisPeL has been shown to

outperform other distributed local search algorithms in [8]. Our implementations were

verified for SynCBJ with the distributed randomly generated problems described in [102]

(n = 10, d = 10, p1 = 0.7 and p2 ∈ {0.1, ..., 0.9}) and for Stoch-DisPeL with the dis-

tributed randomly generated problems in [8]. The results were at least as good as those

reported by the authors.

3A personal communication with this author has shown this version of ADOPT to be the original
version of ADOPT and not the current leading variant of ADOPT. As a result, some of the conclusions of
the paper may differ on the current leading variant of ADOPT.

4.4. Comparing Distributed Backtracking and Distributed Local Search 39

Randomly Generated Problems

We compared the performance of systematic search (SynCBJ [102]) against local search

(Stoch-DisPeL [8]) on solvable random DisCSPs with 30 to 60 variables (n), 30 to 60

agents, 10 variable values (d), 0.15 constraint density (p1) and constraint tightness (p2)

between 0.1 and 0.9 in steps of 0.1. The median number of messages over 100 runs for 50

variables are shown in figure 4.2 and for 60 variables in figure 4.3. For constraint checks,

results for 50 variables are shown in figure 4.4 and for 60 variables in figure 4.5. Note

that at a constraint tightness of 0.4, Stoch-DisPeL was only able to solve 97% of problems

and the effort wasted for the 3% of problems that were not solved is not included in the

results.

Figure 4.2: Messages for < n = 50, d = 10, p1 = 0.15, p2 ∈ 0.1, 0.2, ..., 0.9 >

Figure 4.3: Messages for < n = 60, d = 10, p1 = 0.15, p2 ∈ 0.1, 0.2, ..., 0.9 >

The phase transition point (marking the boundary where very difficult problems

exist) occurs close to a constraint tightness of 0.4. For 30 and 40 variables (not shown

4.4. Comparing Distributed Backtracking and Distributed Local Search 40

Figure 4.4: Constraint checks for < n = 50, d = 10, p1 = 0.15, p2 ∈ 0.1, 0.2, ..., 0.9 >

Figure 4.5: Constraint checks for < n = 60, d = 10, p1 = 0.15, p2 ∈ 0.1, 0.2, ..., 0.9 >

4.4. Comparing Distributed Backtracking and Distributed Local Search 41

here), SynCBJ was substantially better. For 50 variables, SynCBJ is almost always better

for both messages and constraint checks (with the exception of messages at the phase

transition point) than Stoch-DisPeL because these are easier problems. The difference is a

minimum of 650 messages and 5000 constraint checks but often higher. For larger problems

with 60 variables, at the phase transition point, SynCBJ uses a very large number of

messages and constraint checks. Whilst Stoch-DisPeL uses fewer messages and constraint

checks, it is not able to solve all problems since it is an incomplete algorithm. For all other

constraint tightness values, both algorithms perform similarly although SynCBJ is always

able to solve problems with fewer messages and constraint checks than Stoch-DisPeL.

We also conducted experiments with SynCBJ and Stoch-DisPeL for 70 or more vari-

ables. For these problems, SynCBJ was unable to solve all problems within a practical

time limit of 24 hours.

Consequently, we conjecture that for random DisCSPs at the phase transition point

and particularly for problems with larger number of variables, hybrid algorithms combin-

ing local search and backtracking could be beneficial in terms of obtaining completeness

with fewer messages and constraint checks than systematic search. Outside of the phase

transition point, SynCBJ would appear to perform well.

Graph Colouring Problems

We conducted an experiment to compare the performance of systematic search (SynCBJ)

and local search (Stoch-DisPeL) on solvable graph colouring DisCSPs with 125 to

200 nodes (n), 125 to 200 agents, 3 colours (c) and degree (d) between 4.3 and 5.6. For

125 and 150 nodes, SynCBJ was the better performing algorithm. The median results

over 100 runs are shown for messages with 175 variables in figure 4.6, for messages with

200 variables in figure 4.7, for constraint checks with 175 variables in figure 4.8 and for

constraint checks with 200 variables in figure 4.9.

With graph colouring DisCSPs, the phase transition point is less defined than for

randomly generated DisCSPs. The peak point occurs at a degree of 4.9 but it is only

slightly higher than degrees of 4.8 and 5.0. For graph colouring DisCSPs, Stoch-DisPeL is

4.4. Comparing Distributed Backtracking and Distributed Local Search 42

Figure 4.6: Messages for < n = 175, c = 3, d ∈ 4.3, 4.4, ..., 5.6 >

Figure 4.7: Messages for < n = 200, c = 3, d ∈ 4.3, 4.4, ..., 5.6 >

4.4. Comparing Distributed Backtracking and Distributed Local Search 43

Figure 4.8: Constraint Checks for < n = 175, c = 3, d ∈ 4.3, 4.4, ..., 5.6 >

Figure 4.9: Constraint Checks for < n = 200, c = 3, d ∈ 4.3, 4.4, ..., 5.6 >

4.4. Comparing Distributed Backtracking and Distributed Local Search 44

competitive for degrees between 5.1 and 5.5. However, the cost of solving the problem is

high for both algorithms particularly from a degree of 4.7 onwards. It would appear that

for graph colouring problems, local search cannot easily offset systematic search when

the later performs badly. Consequently, we included graph colouring problems in our

evaluation to determine if hybrid algorithms combining systematic search and local search

can improve performance.

Meeting Scheduling Problems

We conducted an experiment comparing systematic search and local search on solvable

meeting scheduling problems with 30 to 60 meetings (m), 30 to 60 agents, maximum

possible distance (md) of 3 and constraint density (d) between 0.1 and 0.25. For 30 and

40 variables, SynCBJ was the better performing algorithm. The median results over 100

runs for messages are shown in figure 4.10 for 50 variables and figure 4.11 for 60 variables

and for constraint checks for 50 variables in figure 4.12 and for 60 variables in figure 4.13.

Figure 4.10: Messages for < m = 50,md = 3, d ∈ 0.1, 0.11, ..., 0.25 >

Stoch-DisPeL outperforms SynCBJ for meeting scheduling DisCSPs for both messages

and constraint checks. However, with the exception of a density of 0.18, Stoch-DisPeL

did not solve all problems with a density between 0.1 and 0.19. Therefore, whilst Stoch-

DisPeL can improve performance, the algorithm is not suitable when a solution is required

and not just an approximation. Consequently, there is a need for hybrid algorithms to

guarantee completeness for meeting scheduling DisCSPs whilst also improving performance

over systematic search.

4.4. Comparing Distributed Backtracking and Distributed Local Search 45

Figure 4.11: Messages for < m = 60,md = 3, d ∈ 0.1, 0.11, ..., 0.25 >

Figure 4.12: Constraint Checks for < m = 50,md = 3, d ∈ 0.1, 0.11, ..., 0.25 >

Figure 4.13: Constraint Checks for < m = 60,md = 3, d ∈ 0.1, 0.11, ..., 0.25 >

4.5. Summary 46

This short experimental study did not consider unsolvable problems. For these prob-

lems, hybrid algorithms would be an important contribution since systematic search algo-

rithms still offer poor performance at the phase transition point and local search algorithms

cannot detect unsolvability.

4.5 Summary

In this chapter, we have introduced Distributed Constraint Satisfaction problems (DisC-

SPs). We have shown two formalisations of Distributed Constraint Satisfaction: (i) DisC-

SPs with only one variable per agent; (ii) DisCSPs with complex local problems (multiple

variables per agent). We have described backtracking and local search algorithms for

solving both formalisations and discussed the lack of hybrid approaches particularly for

DisCSPs with complex local problems. An experimental study has shown that systematic

search has weaknesses around the phase transition points for these problems and partic-

ularly for larger numbers of variables and that local search does not offer completeness

for all problems in these cases. Therefore, in the following chapters, we present hybrid

algorithms combining systematic and local search to guarantee completeness in a practical

timeframe for these problems.

Chapter 5

Using Knowledge from Local

Search to guide Systematic Search

5.1 Introduction

In the previous chapter, we saw that there are problems associated with backtracking

and local search algorithms. In this chapter, a new approach to Distributed Constraint

Satisfaction entitled DisHyb is proposed which combines local search with systematic

search in order to speed-up the latter. In DisBOBT (see section 4.2.5), it was shown that

local search could improve the ordering of backtracking search for those problems which

local search could not solve itself. In the DisHyb approach, we seek to collect information

during a frequently short execution of local search. This information is used as a heuristic

to guide systematic search.

A diagram of the approach is shown in figure 5.1. The approach has two phases. In the

first phase, a distributed local search algorithm is run. This algorithm gathers knowledge

about difficult variables and values. In the second phase of the algorithm, a distributed

systematic search algorithm is run with the agents reordered. The agents are reordered

according to the knowledge about difficult variables and values which distributed local

search gathered. The distributed local search in phase 1 can be seen as a pre-processing

ordering heuristic for the distributed systematic search. However, distributed local search

47

5.1. Introduction 48

remains potentially capable of solving the problem in the phase 1 and so phase 2 may not

be required.

The novel aspect of this approach is the use of information from distributed local

search to distributed systematic search. Consequently, whilst existing distributed local

and systematic search algorithms are reused, a novel interface is used to connect them.

In this approach, a trade-off exists between the cost of local search and the benefit of

the knowledge gained. In order to gain optimal performance, distributed local search must

be run for a long enough period to learn very good knowledge, but not too long in order

to incur too high costs. An analysis of this trade-off is presented later in this chapter.

Figure 5.1: The DisHyb approach.

We present two implementations of our approach, PenDHyb and DBHyb which differ

in the local search strategy used. An overview of the approach and algorithms presented

in this chapter is shown in table 5.1.

Approach Algorithm Local Search Strategy

DisHyb PenDHyb Penalties on values

DisHyb DBHyb Constraint weights (‘Breakout’)

Table 5.1: Chapter Overview.

We present empirical evaluation of our algorithms on randomly generated, graph

5.2. DisHyb: Distributed Knowledge-Based Hybrid Approach 49

colouring and meeting scheduling DisCSPs.

5.2 DisHyb: Distributed Knowledge-Based Hybrid Approach

Local search approaches rely heavily on strategies for escaping local optima, e.g. weights

on constraints [45] or penalties on values [8]. Despite the effectiveness and efficiency

of some of these approaches, local search is generally incomplete. However, local search

approaches are used because, for large problems, they can be faster than the systematic

approaches [30].

In local search, when a local optimum is reached, algorithms tend to modify the search

landscape to encourage exploration of other areas of the search space. This usually is

designed to affect the values taken by variables that participate in constraints which are

currently violated. Rather than just using this information to escape the local optima, it

is also possible to discover knowledge from this local search operation. It is possible to

discover the following knowledge from local search:

• Difficult variables: Those variables which are frequently found to be involved in

local optima can be seen as more difficult to assign than variables which are rarely

involved in local optima. Consequently, variables could be ordered according to their

difficulty for the systematic search algorithm.

• Best variable values: the best solution found (i.e. the value for each variable that

contributed to the lowest total constraint violations for all agents) in the local search

algorithm, can be the first value considered for variables in a systematic search.

We present the synchronous DisHyb framework in Algorithm 1 using the knowledge

described above from local search to drive systematic search. The flow of execution in

DisHyb is shown in figure 5.2.

Firstly, local search is executed. The local search runs as normal but DisHyb notes each

time that a variable is involved in local optima (as detected by the local search algorithm).

In addition, the final agent in the search checks if a new best solution (i.e. minimising

total constraint violations for all agents) has been found. If a new best solution exists, a

5.2. DisHyb: Distributed Knowledge-Based Hybrid Approach 50

Algorithm 1 DisHyb
1: initialise agents with variables
2: for each variable vi do
3: set difficulty di to 0
4: set its best value bvi to its initial instantiation
5: end for
6: repeat
7: for each agent ai responsible for variable vi do
8: if message received stating current value participates in best solution found then
9: set bvi to current value

10: end if
11: local search agent main loop(termination cond)
12: if vi in local optima then
13: increase di.
14: end if
15: end for
16: until termination cond
17: if solution found by local search then
18: return solution
19: else
20: ao← list of agents sorted by max-degree and their variables’ difficulty (di).
21: for each variable vi do
22: Prioritise best values (bvi)
23: end for
24: systematic search(ao)
25: if solution found by systematic search then
26: return solution
27: else
28: return “unsolvable problem”
29: end if
30: end if

message is sent to the first agent to save its value as the best value so far. This message is

cascaded down to all agents during the next processing cycle. This minimises the addition

of new messages. If the local search does not find a solution within a bounded number of

cycles (the termination condition), then a systematic search is run with the agents ordered

according to the difficulty of the variables represented by that agent. If this systematic

search is complete, then the DisHyb approach is complete.

In Jussien’s classification of hybrid algorithms [48] (see chapter 3), our knowledge-based

hybrid approach would be classified in the performing local search before/after systematic

search category.

5.3. DisHyb Implementations 51

Figure 5.2: The flow of execution in the DisHyb approach.

5.3 DisHyb Implementations

We present two instances based on our approach which differ in the strategy used by

the local search algorithm. The Penalty-Based Distributed Hybrid Algorithm (PenDHyb)

uses local search with penalties on values [8] (a short execution of Stoch-DisPeL [8]) with

a systematic search algorithm (SynCBJ [102]). The Weight-Based Distributed Hybrid

Algorithm (DBHyb) uses local search with breakout [45] (a short execution of SingleDB-

wd) with a systematic search algorithm (SynCBJ [102]). An alternative implementation,

DisPBJ, combining local search with penalties on values [8] (a short execution of Stoch-

DisPeL [8]) with distributed backjumping is discussed in Appendix A.

5.3.1 Penalty-based Distributed Hybrid algorithm (PenDHyb)

In this section, we present the Penalty-based Distributed Hybrid algorithm (PenDHyb), an

instance of DisHyb which uses penalties on values as the local search strategy. PenDHyb

combines Stoch-DisPeL as the local search algorithm and SynCBJ as the systematic search

algorithm.

The information we learn from Stoch-DisPeL can be summarised as follows:

5.3. DisHyb Implementations 52

• Difficult variables: Penalties on values are used to learn which variables are

difficult to assign during problem solving. A variable which has many heavily pe-

nalised values is seen as more troublesome than a variable whose values have few or

no penalties. Variables are ordered in decreasing number of penalties and this order

is used to drive SynCBJ.

• Best variable values: the best solution found (the one with the least constraint

violations) in DisPeL, is used for selecting the first value for each variable in SynCBJ.

Algorithm Description

The reader is referred to section 4.2.3 for a description of the Stoch-DisPeL algorithm. In

the remainder of this chapter, Stoch-DisPeL is referred to as DisPeL. In order to learn

penalty information for use in SynCBJ, DisPeL was modified by adding:

• A penalty counter pci for each variable vi. pci is incremented by the value of the

penalty whenever a penalty is imposed on any of vi’s values. Unlike penalties on val-

ues, penalty counters are never reset and, therefore, highlight repeated penalisation

of variables, i.e. troublesome variables.

• A best value store bvi for each variable vi which keeps the value participating in the

best solution found by DisPeL so far. In order to determine whether the current

value is the best so far, each agent adds its current score (constraint violations +

penalties) to the score passed to it by its predecessor and sends this score to the next

agent. The last agent determines if the current solution is the best so far and if so it

informs the first agent who will inform others in the next cycle. During this cycle, the

message that gives control to the next agent of processing also includes a parameter

to save current value as best value so far before choosing a new value. Therefore, the

best solution found can be determined without incurring any additional messages.

The PenDHyb algorithm is shown in Algorithm 2. After agent initialisation, DisPeL

runs (as described for Stoch-DisPeL in [8]) but only for a very small number of cycles (see

section 5.3.1). If the problem is solved, the solution is returned. Otherwise, variables are

5.3. DisHyb Implementations 53

Algorithm 2 PenDHyb
1: initialise
2: for each variable vi do
3: set its penalty count pci to 0
4: set its best value bvi to its initial instantiation
5: end for
6: repeat
7: for each agent ai responsible for variable vi do
8: if message received stating current value participates in best solution found then
9: set bvi to current value

10: end if
11: DisPeL agent main loop(termination cond)
12: if penalty imposed then
13: increment pci.
14: end if
15: end for
16: until termination cond
17: if solution found by DisPeL then
18: return solution
19: else
20: ao← list of agents sorted by max-degree and their variables’ penalty count (pci).
21: for variable vi do
22: Prioritise best values (bvi)
23: end for
24: SynCBJ(ao)
25: if solution found by SynCBJ then
26: return solution
27: else
28: return ”unsolvable problem”
29: end if
30: end if

arranged, in descending order, according to their maximum degree (number of constraints)

with ties broken by penalty count before SynCBJ is run. In addition to the variable

ordering information, SynCBJ makes use of value ordering information as follows: for

each variable vi, the first value to be tried is the best value bvi found by DisPeL, i.e. the

one participating in the best instantiation found.

Properties

PenDHyb is complete since either DisPeL reports a solution within the small number

of cycles (typically DisPeL solves 5% of problems) or SynCBJ runs. Since SynCBJ is

complete, completeness of PenDHyb is guaranteed. PenDHyb is sound since both DisPeL

and SynCBJ are sound [8, 102].

5.3. DisHyb Implementations 54

Variable and Value Ordering in PenDHyb

A number of methods for exploiting the knowledge gained from running DisPeL were

evaluated in order to provide variable and value ordering for SynCBJ. Solvable random

binary distributed constraint satisfaction problems were used in the experiments with

n = 50, d = 10, p1 = 0.15 and p2 = 0.4. These problems correspond to the phase

transition region where, the number of messages and non-concurrent constraint checks

incurred by systematic search become much higher and consequently local search becomes

more desirable (see section 4.4). Therefore, hybrid algorithms are likely to be important

on these problems in guaranteeing completeness where systematic search is not as effective.

Combinations of the following options were investigated:

• Variable ordering:

– Penalties: this heuristic orders variables according to max-degree with ties

broken by penalty counts. Seeks to measure whether penalties are a positive

addition to the basic max-degree heuristic.

– Last penalties: in the original DisPeL search, incremental penalties are dis-

carded periodically (reset) when the search space becomes distorted (see section

4.2.3). This heuristic uses the penalty counts between the last reset and the

end of DisPeL execution as opposed to the cumulative penalty counts proposed

above. It seeks to measure whether it is beneficial to allow time for the penalties

to stabilise before learning from them.

• Value ordering:

– Sticking values: the first variable value to be tried by SynCBJ is DisPeL’s

best value for that variable, i.e. the one participating in the best solution found.

All other values are considered in their original order. This is inspired by [32]

who used the last value assigned to a variable. The idea is that DisPeL often

gets close to a solution and therefore the work already done by DisPeL can be

reused in SynCBJ. It must be noted that SynCBJ does ultimately consider all

values and so use of this heuristic does not impact on completeness.

5.3. DisHyb Implementations 55

– Selected sticking values: uses the sticking value only if that value led to

no constraint violations in DisPeL. Otherwise, it uses the first value in the

domain. The idea is that this will maximise the benefit of sticking values by

giving SynCBJ the correct values whilst not forcing it to use incorrect values

(i.e. those with constraint violations).

Table 5.2 presents the median results for messages and constraint checks over 100 runs.

Number of Messages Number of Constraint Checks
SynCBJ 262,178 1,344,941
Penalties 111,638 559,004

Sticking values 75,694 345,654
Penalties + selected sticking 77,482 332,050

Last penalties 131,602 624,803
PenDHyb 50,929 321,237

Table 5.2: Comparison of variable and value ordering heuristics (n = 50, d = 10, p1 = 0.15,
p2 = 0.4).

The best performing method, is the one used in PenDHyb, where variables are sorted

using max-degree and penalties (penalties heuristic) and values are prioritised using stick-

ing values. Ordering variables according to penalties which are periodically reset produces

the worst results since the algorithm cannot effectively determine the variable difficulty.

It is worth noting that sticking values (selectively or not) leads to increased performance.

This may be because DisPeL provides values which are normally part of a solution.

Determining Optimal Number of Cycles for DisPeL

Randomly Generated Problems Graph Colouring Problems (degree = 5)
Problem spec. Optimal values Problem spec. Optimal values

num dom num msgs ccs both num num num msgs ccs both
vars size con nodes cols con
30 10 90 3 3 3 125 3 313 11 4 4
40 10 120 12 4 14 150 3 375 9 5 9
50 10 150 65 45 65 175 3 438 53 5 53
60 10 180 99 66 96 200 3 500 108 108 108

Table 5.3: Sample of data used to determine optimal cycle cutoffs.

The only parameter which needed to be determined in PenDHyb was the number of

cycles DisPeL should run for optimal performance. Its value was obtained as follows:

(i) Experiments were run on three problem classes - solvable random binary DisCSPs,

solvable graph colouring problems and solvable meeting scheduling problems - with varying

5.3. DisHyb Implementations 56

characteristics (see below for details) and cutoff points for randomly generated problems

and meeting scheduling problems between 0.1n and 2n cycles in increments of 0.1n or

between 0.03n and 0.60n in increments of 0.03n for graph colouring problems (where

n is the number of variables in the problem 1). The cutoff recommended was always

substantially lower than 2n for randomly generated problems and meeting scheduling

problems and 0.60n for graph colouring problems and so 2n and 0.60n were chosen as

upper limits; (ii) For each type of problem, the three most optimal cycle cutoffs were

selected, i.e. the ones where the number of messages, the number of constraint checks or

a combination of both is minimal (see Table 5.3 for sample data). For the combination of

messages and constraint checks, the data was normalised and the optimal normalised value

was chosen to remove scale bias; (iii) Multiple linear regression was used for predicting the

linear relationship between the problem features (e.g. number of variables, domain size,

number of constraints) and the optimal cycle cutoff obtaining the following:

cutoff = α+ (β ∗ domainSize) + (γ ∗ constraints) (5.1)

Values for α, β and γ are given in Table 5.4 where the column heading indicates which

metric (messages, non-concurrent constraint checks or both) is to be minimised. Note

that we did not consider unsolvable problems when determining the optimal number of

cycles since DisPeL will never be able to detect unsolvability. Consequently, the optimal

number of cycles for an unsolvable problem is very low since we need to move quickly to

the backtracking phase in order to detect unsolvability.

Randomly Generated Problems Graph Colouring Problems
optimisemessages constr. checks both messages constr. checks both

α -134.810 -77.948 -146.334 -27.684 -31.305 -22.880
β 5.580 0.000 6.560 0.000 0.000 0.000
γ 0.888 0.798 0.872 0.113 0.127 0.101

Meeting Scheduling Problems
optimisemessages constr. checks both

α -10.615 -10.229 -10.718
β 2.391 2.297 2.406
γ 0.026 0.025 0.026

Table 5.4: Parameter values for α, β and γ in Equation (5.1).

1Since the number of variables affects the size of the problem, it is intuitive to increase the number of
cycles permitted as the problem size increases. Consequently, the number of cycles was always proportional
to the number of variables.

5.3. DisHyb Implementations 57

The experiments for tuning the number of cycles allocated to DisPeL, detailed above

were run on the following problems: (i) Randomly generated problems with number

of variables n ∈ {30, 40, 50, 60, 70}, domain size d ∈ {8, 9, 10, 11, 12}, constraint den-

sity p1 ∈ {0.1, 0.15, 0.2} and constraint tightness p2 ∈ {0.6(30), 0.5(40), 0.45(50), 0.4(60)};

(ii) Graph colouring problems with number of nodes n ∈ {100, 125, 150, 175, 200}, d = 3

and degree ∈ {4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3}; (iii) Meeting scheduling problems with

number of variables n ∈ {30, 40, 50, 60}, domain size d ∈ {5, 6}, constraint density cd ∈

{0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.22, 0.24} and maximum distance d ∈ {2, 3}. These are

problems in the difficult regions where SynCBJ is particularly expensive to run.

5.3.2 Weight-Based Distributed Hybrid Algorithm (DBHyb)

In this section, we present an alternative instance of DisHyb, the Distributed Breakout

Hybrid algorithm (DBHyb), which combines DisBO-wd as the local search algorithm with

SynCBJ as the systematic search algorithm.

We refer to DisBO-wd [8] as SingleDB-wd in the remainder of this chapter since each

DisBO-wd search will only have a single variable per agent.

In SingleDB-wd, when a local optima is reached, weights on violated constraints are

increased. Variables involved in heavily weighted constraints can be seen as more difficult

to assign. In summary, we can obtain the following information from SingleDB-wd:

• Difficult variables: the weights on constraints can be used to learn which variables

are difficult to assign. A variable involved in constraints which are heavily weighted

is seen as more difficult to assign than a variable involved in few or none heavily

weighted constraints. Variables are ordered in descending order of difficulty and this

order is used to drive SynCBJ.

• Best variable values: the best solution found (the one with the least constraint

violations) in SingleDB-wd, is used for value ordering in SynCBJ.

5.3. DisHyb Implementations 58

Algorithm Description

In order to learn weight information SingleDB-wd was modified by adding the best value

bvi store to retain the value participating in the best overall solution found by SingleDB-

wd so far. This is determined by each agent adding its current constraint violations to

the number of violations passed to it by its predecessor and sends this number to the

next agent. The last agent determines if the current solution is the best found so far and

so informs agents in the next cycle to retain their current value as the best value before

searching for a new value. Consequently, no additional messages are incurred.

DBHyb is shown in Algorithm 3. Specifically, it differs from PenDHyb, in that con-

straint weights are used instead of penalties. A standard SingleDB-wd search runs only

for a very small number of cycles (see section 5.3.2). If a solution is found, this is returned.

Otherwise, each variable determines its highest constraint weight out of the constraints in-

volving that variable. Variables are then arranged, in descending order, according to their

degree and constraint weight before SynCBJ is run. In addition to this variable ordering,

value ordering through the best value is performed in the same way as PenDHyb.

Properties

DBHyb is complete since either SingleDB-wd reports a solution within the small number

of cycles (typically SingleDB-wd solves 3% of problems) or SynCBJ runs. Since SynCBJ is

complete, completeness of DBHyb is guaranteed. DBHyb is sound since both SingleDB-wd

and SynCBJ are sound [8, 102].

Variable and Value Ordering in DBHyb

A number of methods for exploiting the knowledge gained from running SingleDB-wd were

evaluated in order to provide variable and value ordering for SynCBJ. Solvable random

binary distributed constraint satisfaction problems were used in the experiments with

n = 50, d = 10, p1 = 0.15 and p2 = 0.4. These problems are at the boundary where local

search performs better than systematic search. Combinations of the following options were

used:

5.3. DisHyb Implementations 59

Algorithm 3 DBHyb
1: initialise
2: for each constraint ci do
3: set its constraint weight cwi to 1
4: end for
5: for each variable vi do
6: set its best value bvi to its initial instantiation
7: end for
8: repeat
9: for each agent ai responsible for variable vi do

10: if message received stating current value participates in best solution so far then
11: set bvi to current value
12: end if
13: SingleDBwd agent main loop(termination cond)
14: for each constraint ci do
15: if constraint ci is violated then
16: increase cwi

17: else
18: decay cwi

19: end if
20: end for
21: end for
22: until termination cond
23: if solution found by SingleDBwd then
24: return solution
25: else
26: for each agent ai responsible for variable vi do
27: cwvi ← highest weight of a constraint belonging to vi.
28: end for
29: ao← list of agents sorted by max-degree and their variables’ weight (cwvi).
30: for variable vi do do
31: Prioritise best values (bvi)
32: end for
33: SynCBJ(ao)
34: if solution found by SynCBJ then
35: return solution
36: else
37: return ”unsolvable problem”
38: end if
39: end if

• Variable ordering:

– Weights: uses a combination of max-degree and constraint weights.

– Last weights: as above but it uses the values of SingleDB-wd’s constraint

weights at the last cycle.

• Value ordering:

5.3. DisHyb Implementations 60

– Sticking values: the first variable value to be tried by SynCBJ is SingleDB-

wd’s best value for that variable, i.e. the one participating in the best solution

found. This is inspired by [32] who used the last value assigned to a variable.

– Selected sticking values: uses the sticking value for that variable (i.e. the

best value assigned by SingleDB-wd for that variable) only if that value led to

no constraint violations in SingleDB-wd. Otherwise, it uses the first value in

the domain as the sticking value.

Table 5.5 presents the median results over 100 runs.

Number of Messages Number of Constraint Checks
SynCBJ 262,178 1,344,941
Weights 41,725 289,065

Sticking values 35,199 239,827
Weights + selected sticking 28,907 212,382

Last weights 47,713 298,876
DBHyb 22,259 173,825

Table 5.5: Comparison of variable and value ordering heuristics (n = 50, d = 10, p1 = 0.15,
p2 = 0.4).

All variants of DBHyb outperformed the base line SynCBJ. Last weights is the least

efficient approach. Best weights improves on this since it gives SynCBJ more information

about difficult variables since these will be the variables which have a high constraint

weight even with a low number of overall constraint violations. As with PenDHyb, sticking

values proves to be an effective addition. Whilst selected sticking performs quite well in

this case, the version of DBHyb outlined above (i.e. best weights + sticking values for

all variables) is the best performing version and the one used throughout the rest of this

chapter.

Determining Optimal Number of Cycles for SingleDB-wd

The only parameter which needed to be determined in DBHyb was the number of cycles

SingleDB-wd should run for optimal performance. This was determined in the same way

as for PenDHyb (see section 5.3.1). The values for α, β and γ in the cutoff formula are

given in Table 5.6 where the column heading indicates which metric is to be minimised.

5.4. Experimental Evaluation 61

Randomly Generated Problems Graph Colouring Problems
optimisemessages constr. checks both messages constr. checks both

α -62.129 -67.388 -62.295 -50.288 -31.410 -38.943
β 3.260 1.660 2.920 0.000 0.000 0.000
γ 0.429 0.494 0.421 0.216 0.136 0.166

Meeting Scheduling Problems
optimisemessages constr. checks both

α -116.461 -117.758 -98.875
β 19.781 21.281 17.438
γ 0.254 0.131 0.182

Table 5.6: Parameter values for α, β and γ in Equation (5.1).

5.4 Experimental Evaluation

We evaluated PenDHyb and DBHyb on distributed randomly generated problems,

distributed graph colouring problems and distributed meeting scheduling prob-

lems against SynCBJ [102] and DisBOBT [22]. Our SynCBJ implementation was verified

with the distributed randomly generated problems described in [102] (n = 10, d = 10,

p1 = 0.7 and p2 ∈ {0.1, ..., 0.9}) whilst our DisBOBT implementation was verified with

the implementation described in [22]. For both algorithms, the results obtained were at

least as good as those reported by their authors.

We made modifications to SynCBJ and DisBOBT to ensure fair comparisons with our

hyrbid approaches.

SynCBJ was modified to use max-degree variable ordering instead of lexicographic

ordering obtaining substantially better results (see Table 5.7). Consequently, SynCBJ

with max-degree variable ordering was used to compare its performance to PenDHyb’s.

Number of Messages Number of Constraint Checks
n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
L 10 11 31 290 16111138 241 146 86 51 91 294 2,11311,702 7,881 1,498 888 590
M 10 10 15 57 358 183 103 46 30 46 74 149 520 2,952 1,484 783 381 281

Table 5.7: Comparison of SynCBJ with lexicographic (L) and max-degree (M) variable
orderings (n = 10, d = 10, p1 = 0.7, p2 = 0.1...0.9).

DisBOBT [22] was originally presented as a hybrid algorithm combining DisBO [22]

and SBT [96]. However since its development, DisBO-wd has been shown to outperform

DisBO [8] for DisCSPs with Complex Local Problems and SynCBJ to outperform SBT

[102] for DisCSPs with one variable per agent. Consequently, we conducted an experi-

ment with four variants of DisBOBT: (i) DisBO and SBT (DisBOBT); (ii) SingleDB-wd

5.4. Experimental Evaluation 62

and SBT (DisBOBTWD); (iii) DisBO and SynCBJ (DisBOCBJ); (iv) SingleDB-wd and

SynCBJ (DisBOCBJWD). We conducted experiments on: (i) randomly generated prob-

lems with 40 variables, 8 domain values, constraint density of 0.2 and constraint tightness

of 0.6; (ii) graph colouring problems with 50 nodes and a degree of 2.4; (iii) meeting

scheduling problems with 5 timeslots, 20 meetings, constraint density of 0.19 and max

distance of 2. We considered a range of breakout steps (where local search is stopped and

systematic search begins) between 100 and 1000 in steps of 100 for randomly generated

problems and between 5 and 50 in steps of 5 for graph colouring problems and meeting

scheduling problems. DisBO and SingleDB-wd are able to solve almost all problems if

given a number of breakout steps greater than 50 and consequently we used a lower break-

out steps threshold to measure the impact of the ordering schema on systematic search.

The median results for 100 problems for each problem type are shown in table 5.8.

For randomly generated problems, DisBOCBJWD (i.e. SingleDB-wd and SynCBJ)

substantially outperforms the other variants on both messages and constraint checks par-

ticularly as the number of breakout steps increases and SingleDB-wd is given more time

to perfect its ordering scheme for systematic search. Results for graph colouring prob-

lems were similar where DisBOCBJWD was once again the optimal algorithm. With

a very small amount of breakout steps, it was able to easily guide systematic search to

a good ordering with very few messages and constraint checks. For meeting scheduling

problems, similar trends were present where DisBOCBJWD outperformed the other Dis-

BOBT variants. It should be noted here that SingleDB-wd imposes breakout steps more

quickly than DisBO. Consequently, the DisBOBT variants using SingleDB-wd have their

optimum performance at higher number of breakout steps than DisBO. Since DisBOCB-

JWD outperformed the other variants on the three problem types tested, we will evaluate

DisHyb against DisBOCBJWD.

We evaluated PenDHyb, DBHyb, SynCBJ and DisBOCBJWD measuring: (i) the num-

ber of messages sent; (ii) the number of non-concurrent constraint checks performed. Note

that the number of messages required for termination detection is not counted for any of

the algorithms as reported by other researchers [96]. Although CPU time is not an es-

5.4. Experimental Evaluation 63

Randomly Generated Problems
n 100 200 300 400 500 600 700 800 900 1000

Number of Messages
DisBOBT 3,658 3,720 3,626 4,020 3,865 4,088 4,006 4,047 3,556 3,698

DisBOBTWD 49,330 22,913 31,652 27,244 12,313 7,330 6,903 4,227 2,864 3,303
DisBOCBJ 3,642 3,823 3,305 3,788 3,402 4,086 4,408 4,563 4,052 3,695

DisBOCBJWD 4,581 3,576 4,556 3,422 2,422 2,229 1,946 2,393 1,556 1,801
Number of Constraint Checks

DisBOBT 46,446 49,725 45,257 52,054 51,679 50,464 53,516 51,316 46,690 50,359
DisBOBTWD 331,071145,305200,307173,113 86,776 61,381 59,641 44,017 39,717 44,477
DisBOCBJ 47,208 47,283 41,600 48,635 42,544 51,902 53,438 60,191 52,627 50,601

DisBOCBJWD21,91720,60628,26725,60923,16924,95524,90230,01429,89233449
Graph Colouring Problems

n 5 10 15 20 25 30 35 40 45 50
Number of Messages

DisBOBT 287,423157,282 80,316 77,167 30,684 9,793 9,266 7,779 9,714 8,762
DisBOBTWD 23,788 43,281 24,760 19,542 35,060 52,829 34,695 70,600 19,744 24,826
DisBOCBJ 1,529 2,341 2,910 3,893 4,032 5,197 5,987 6,256 6,798 7,882

DisBOCBJWD 328 377 334 372 368 392 365 406 387 364
Number of Constraint Checks

DisBOBT 864,762434,988223,887219,381 85,383 18,614 18,926 14,155 17,514 16,913
DisBOBTWD 72,225 125,019 78,153 56,495 100,142149,603 95,667 185,177 63,714 72,514
DisBOCBJ 3,742 5,243 6,144 8,102 8,048 9,878 11,586 12,010 12,540 14,923

DisBOCBJWD 1,394 1,467 1,373 1,462 1,472 1,541 1,434 1,617 1,533 1,422
Meeting Scheduling Problems

n 5 10 15 20 25 30 35 40 45 50
Number of Messages

DisBOBT 1,021 1,003 1,083 1,157 936 1,053 1,139 1,145 950 1,112
DisBOBTWD 1,586 414 994 921 1,531 1,138 778 595 445 246
DisBOCBJ 644 796 946 1,188 1,097 1,095 958 772 968 1,124

DisBOCBJWD 120 96 112 111 112 138 140 154 173 190
Number of Constraint Checks

DisBOBT 4,005 3,276 3,135 3,436 2,793 3,200 3,452 3,242 2,546 3,401
DisBOBTWD 7,114 1,850 5,073 4,820 8,412 4,972 4,118 2,842 2,570 1,729
DisBOCBJ 2,261 2,669 2,899 3,496 3,170 3,043 2,871 2,285 2,805 3,066

DisBOCBJWD 796 704 786 740 795 928 1,133 1,181 1,341 1,459

Table 5.8: Comparison of DisBOBT variants on randomly generated problems, graph
colouring problems and meeting scheduling problems.

5.4. Experimental Evaluation 64

tablished measure for DisCSPs [56], we also measured it and the results obtained were

consistent with the other measures used.

In both experiments, the cutoff number of cycles for minimizing both the number of

messages and the number of constraints (see Equation (5.1) and Table 5.4 for PenDHyb and

Table 5.6 for DBHyb) was used. For DisBOCBJWD, 900 breakout steps were permitted

before termination for randomly generated problems and 50 for graph colouring problems

and meeting scheduling problems. These parameters meant that SingleDB-wd ran for a

similar length of time as the local search within our hybrid framework and was able to

solve a similar amount of problems.

For small problems (n < 30 for random and meeting scheduling problems and n < 100

for graph colouring problems), SynCBJ easily solves them and, the use of PenDHyb or

DBHyb leads to decreased performance for these problems. This is unsurprising given that

systematic search is generally faster than local search for small problems [30].

Randomly Generated Problems

PenDHyb and DBHyb were evaluated against SynCBJ and DisBOCBJWD on a wide

variety of randomly generated problems (n ∈ {30, 40, 50, 60}, d ∈ {8, 9, 10, 11, 12}, p1 ∈

{0.1, 0.15, 0.2, 0.25, 0.3} and p2 ∈ {0.1, 0.15, ..., 0.95}). The results presented here are at

the phase transition point which represents hard problems for SynCBJ (see section 4.4).

The results, shown in Table 5.9 for problems with (n ∈ {30, 40, 50, 60}, d = 10, p1 = 0.15

and p2 = 0.6(30), 0.5(40), 0.45(50), 0.4(60)), are median values over 100 problems.

N. messages solvable problems unsolvable problems
n 30 40 50 60 30 40 50 60

SynCBJ 2,301 22,590 262,178 1,897,645 5,154 58,395 557,360 3,069,301
DisBOCBJWD 6,264 37,882 2,451,565 * 13,244 166,239 3,915,508 *

PenDHyb 2,471 17,439 50,929 277,437 5,507 55,311 451,507 2,705,595
DBHyb 2,271 21,020 22,259 981,882 5,564 51,018 464,754 2,537,364

N. cnstr. checks solvable problems unsolvable problems
n 30 40 50 60 30 40 50 60

SynCBJ 11,489 119,209 1,344,941 10,421,510 25,468 294,393 2,924,331 17,153,384
DisBOCBJWD 63,146 222,689 12,490,214 * 94,108 868,154 20,434,334 *

PenDHyb 13,365 108,311 321,237 1,877,084 27,162 309,176 2,357,739 14,605,275
DBHyb 12,816 115,277 173,825 5,490,257 28,352 252,638 2,329,112 14,017,517

Table 5.9: Performance of SynCBJ, DisBOCBJWD, PenDHyb and DBHyb on randomly
generated problems.

5.4. Experimental Evaluation 65

For solvable problems, PenDHyb is significantly more efficient than SynCBJ with per-

formance difference increasing with the number of variables. DBHyb outperforms SynCBJ

for both messages and constraint checks but is outperformed by PenDHyb for 40 and 60

variables. In one case (50 variables), DBHyb outperforms PenDHyb for both number of

messages and constraint checks. DisBOCBJWD is uncompetitive and we were unable

to record a result for 60 variables as the algorithm took over 24hrs without solving any

problems 2. For unsolvable problems, SynCBJ is marginally better on problems with 30

variables but PenDHyb is substantially better on problems with 40 or more variables.

DBHyb outperforms SynCBJ and also outperforms PenDHyb for medium-sized to larger

problems with the exception of problems with 50 variables where PenDHyb is more effi-

cient. DisBOCBJWD remains uncompetitive as with solvable problems.

Graph Colouring Problems

The performance of PenDHyb and DBHyb was also evaluated against SynCBJ and Dis-

BOCBJWD on distributed graph colouring problems (nodes ∈ {125, 150, 175, 200}, d = 3

and degree k ∈ {4.6, ..., 5.3}). These problems are of similar size to the ones used for

the experiments on randomly generated problems above. Median values over 100 solvable

problems and 100 unsolvable problems are shown in Table 5.10 for problems with a degree

of 5.

N. messages solvable problems unsolvable problems
n 125 150 175 200 125 150 175 200

SynCBJ 18,781 75,778 191,988 722,256 127,054 660,334 1,957,622 6,793,331
DisBOCBJWD 326,626 2,131,103 * * 5,014,184 * * *

PenDHyb 18,577 60,005 161,213 463,601 113,590 557,434 1,849,564 5,357,801
DBHyb 19,040 53,866 130,512 396,185 116,731 641,682 1,733,777 5,218,837

N. cnstr. checks solvable problems unsolvable problems
SynCBJ 46,234 178,942 477,713 1,750,199 309,383 1,587,410 4,518,670 15,694,031

DisBOCBJWD 787,372 4,946,810 * * 11,587,907 * * *
PenDHyb 52,534 162,748 416,520 463,601 281,142 1,327,274 4,498,886 12,527,968
DBHyb 56,064 150,880 348,521 967,257 294,890 1,545,884 4,041,727 12,047,485

Table 5.10: SynCBJ, DisBOCBJWD, PenDHyb and DBHyb on graph colouring problems
for degree = 5.

The results show that both PenDHyb and DBHyb are significantly more efficient for

both solvable and unsolvable problems compared with SynCBJ and DisBOCBJWD. DB-

2All algorithms except DisBOCBJWD were able to solve 100 problems within 24hrs whilst DisBOCB-

JWD was not able to solve any.

5.4. Experimental Evaluation 66

Hyb is the best performing hybrid approach for solvable problems with 150 nodes or greater

and unsolvable problems with 175 nodes or greater. Experiments for other degrees gave

similar results, i.e. PenDHyb and DBHyb performed better, especially for graphs with a

large number of nodes. Once again, DisBOCBJWD had such long execution times that

we were unable to record results for all but the smallest problems. Those problems which

took too long to solve are indicated by an asterix. Consequently, we propose that DBHyb

is optimal for graph colouring problems. It would appear that SingleDB-wd is able to

provide a better ordering than DisPeL for graph colouring problems which enables the

systematic search to find a solution to the problem quicker.

Meeting Scheduling Problems

PenDHyb and DBHyb were also evaluated against SynCBJ and DisBOCBJWD on meeting

scheduling problems. The results presented here are at the phase transition point which

represents hard problems for SynCBJ (see section 4.4). The results, shown in Table 5.11

for problems with (number of meetings ∈ {30, 40, 50, 60}, timeslots = 6, max distance

between locations = 3 and constraint density = 0.24(30), 0.22(40), 0.16(50), 0.14(60)), are

median values over 100 problems.

N. messages solvable problems unsolvable problems
n 30 40 50 60 30 40 50 60

SynCBJ 2,281 16,982 33,250 119,988 8,744 12,729 42,843 81,263
DisBOCBJWD 8,063 156,863 578,836 569,110 23,728 143,295 * *

PenDHyb 1,577 4,904 11,507 19,366 7,336 13,669 32,259 57,745
DBHyb 1,061 2,631 5,025 7,622 6,708 9,792 246,98 38,141

N. cnstr. checks solvable problems unsolvable problems
n 30 40 50 60 30 40 50 60

SynCBJ 12,109 123,058 270,843 928,067 57,567 84,394 255,964 427,270
DisBOCBJWD 54,216 1,275,0904,298,1853,887,218165,567932,049 * *

PenDHyb 12,048 39,404 84,400 136,789 46,956 95,558 198,880 305,291
DBHyb 18,513 52,188 116,462 102,652 51,272 96,839 169,796267,276

Table 5.11: Performance of SynCBJ, DisBOCBJWD, PenDHyb and DBHyb on meeting
scheduling problems.

For solvable scheduling problems, DBHyb is the optimal algorithm in terms of numbers

of messages and also for large problems (60 variables) for constraint checks. PenDHyb is

the optimal algorithm in terms of constraint checks for problems with 30 to 50 variables.

SynCBJ andDisBOCBJWD become increasingly uncompetitive as the number of variables

5.5. Discussion 67

increases. For unsolvable scheduling problems, DBHyb remains the optimal algorithm

in terms of number of messages (for 30 to 60 variables) and number of non-concurrent

constraint checks (for 50 variables or greater). It would appear that DBHyb and PenDHyb

are able to learn the challenging areas of the problem effectively and therefore direct the

systematic search algorithm to a search faster than systematic search alone is able to

do. There is only one case where neither DBHyb nor PenDHyb is the optimal algorithm

i.e. 40 variables for unsolvable problems. However, in this case, DBHyb is the optimal

algorithm for number of messages and offers a substantial performance improvement on

messages over SynCBJ, which was the optimal algorithm for number of constraint checks.

In general, it would appear that a weight-based hybrid approach (DBHyb) is optimal for

meeting scheduling problems. Again, it would appear that SingleDB-wd is able to provide

a better ordering than DisPeL for the systematic search.

5.5 Discussion

5.5.1 Analysing the Effectiveness of Using Information Learnt from Local

Search in Systematic Search

An experiment was conducted on randomly generated problems to explore why our ap-

proach was significantly better than DisBOCBJWD and SynCBJ. The experiment in-

cluded problems with 30, 40, 50 and 60 variables, both solvable and unsolvable randomly

generated problems and measured the number of backjumps performed during search and,

for PenDHyb and DBHyb, the percentage of cases where max-degree was insufficient to

sort agents (i.e. tie-breaking using penalty counts was used) and the number of agents

which changed position in the ordering (i.e. they are in a different position in the order-

ing from a max-degree ordering). The problem characteristics were the same as in the

experiments conducted in section 5.4 i.e. (n ∈ {30, 40, 50, 60}, d = 10, p1 = 0.15 and

p2 = 0.6(30), 0.5(40), 0.45(50), 0.4(60)). Those problems which DisBOCBJWD took too

long to solve are indicated by an asterix. The median results over 100 runs are shown in

Table 5.12.

The results show that, for all problems with 40 or more variables, PenDHyb backjumps

5.5. Discussion 68

Solvable Problems Unsolvable Problems
n. vars n. backjumps % ties n. changes n. backjumps % ties n. changes

SynCBJ 30 812 - - 1,896 - -
DisBOCBJWD 30 572 - - 3,510 - -

PenDHyb 30 765 30.21 29 1,703 30.67 29
DBHyb 30 655 27.75 29 1,932 27.66 29
SynCBJ 40 7,636 - - 19,108 - -

DisBOCBJWD 40 12,006 - - 59,486 - -
PenDHyb 40 4,134 30.93 39 17,963 29.68 39
DBHyb 40 6,930 30.84 39 16,521 29.97 39
SynCBJ 50 85,061 - - 183,963 - -

DisBOCBJWD 50 925,424 - - 1,491,140 - -
PenDHyb 50 38,011 28.45 49 138,817 28.48 49

DBHyb 50 56,267 29.21 49 141,731 29.54 49
SynCBJ 60 625,158 - - 930,641 - -

DisBOCBJWD 60 * - - * - -
PenDHyb 60 61,856 26.99 59 847,950 27.45 59
DBHyb 60 313,166 28.6 59 847,811 28.91 59

Table 5.12: Backjumping properties of SynCBJ, DisBOCBJWD, PenDHyb and DBHyb.

on significantly fewer occasions than all other algorithms for solvable problems. DBHyb

backjumps on significantly fewer occasions than all other algorithms for unsolvable prob-

lems for 40 and 60 variables whilst PenDHyb backjumps less for 30 and 50 variables. Both

PenDHyb and DBHyb perform less backjumps than DisBOCBJWD and SynCBJ for all

problems with 40 or more variables. It would appear that the penalties on values strategy

is more efficient for solvable problems whilst the breakout strategy is more efficient for

unsolvable problems. DisBOCBJWD is only optimal for the number of backjumps for

solvable problems with 30 variables. However, so much effort is required to determine an

ordering which minimises backjumps that it actually performs the worst out of all algo-

rithms when measured by number of messages and non-concurrent constraint checks. It

is interesting to note that for both PenDHyb and DBHyb the difference with SynCBJ is

profound for unsolvable problems given that DisPeL and SingleDB-wd themselves cannot

detect unsolvability. However, it appears that DisPeL and SingleDB-wd can learn useful

information thereby allowing systematic search to determine quicker that the problem has

no solution. In PenDHyb and DBHyb, penalties or constraint weights respectively are

used to break max-degree ties in 25-30% of variable selections which allows the ordering

to be altered substantially. Indeed, almost all agents change position.

5.5. Discussion 69

5.5.2 Longer Executions of Local Search

We also evaluated longer executions of DisPeL and SingleDB-wd as part of the PenDHyb

and DBHyb algorithms respectively so that local search solved the vast majority of prob-

lems with systematic search only solving the very few problems which local search could

not solve. These longer executions are not suitable for unsolvable problems since local

search algorithms cannot detect unsolvability. We determined the optimal cutoff point

for longer executions by running a series of experiments on both distributed randomly-

generated problems, graph colouring problems and meeting scheduling problems.

Randomly Generated Problems: We conducted experiments to determine the

optimal cutoff point for solvable randomly-generated problems for 30 to 60 variables in

steps of 10, 10 domain values, number of constraints equal to 3 times the number of

variables and constraint tightness of 0.5. We used these parameters since local search had

performed well on these parameters [8].

We ran experiments with cutoff points between 2n and 30n in steps of 2n where n is

the number of variables. Previously, we had tuned the formula of PenDHyb and DBHyb

on cutoff points less than 2n (since the cutoff recommended was always substantially less

than 2n) and therefore this seemed an appropriate boundary between local search as a

heuristic and local search as more of a problem solver. At the other end of the scale, we

chose 30n since the performance of increased local search had tailed by this point and

therefore additional cycles did not appear to offer substantial benefits.

For each cutoff point, we ran 50 runs on 100 solvable problems. We measured the num-

ber of messages which our hybrid approach used at each cutoff point (for example, 43,200

messages at 2n cycles for 60 variables) and determined the number of problems solved us-

ing that number of messages. This gave a measurement which indicates the effectiveness

of continuing to run the local search phase over the effectiveness of reordering

the variables and starting backjumping search. Further points were measured for

number of messages by adding the number of messages used at 2n to the current amount

(i.e. for 2n cycles and 60 variables the sequence would be {43, 200, 86, 400, 129, 600, ...}

until all potential cutoffs (between 2n and 30n cycles) had solved 100% of problems. We

5.5. Discussion 70

took the median of these 50 runs and then took a ranking of each of the cycle cutoffs

at each measuring point. We repeated the analysis for number of constraint checks to

ensure that our conclusions were robust. For example, if only two problems were solved

with 10,000 messages and they used 5,600 and 3,200 messages respectively, the cumulative

message cost would be 8,800 messages and the percentage of problems solved would be

2%. The cumulative total message cost measures the total cumulative cost which increases

between different cutoff brackets. If we next measured the number of messages at 20,000

and another problem was solved with 14,000 messages then the cumulative for 20,000

messages would be 14,000 messages but the cumulative total would be 22,800 messages.

Consider the sample data for 30 variables in table 5.13 which compares by number

of messages for the DBHyb algorithm. Specifically, we measure in the first column, the

maximum number of messages which SingleDB-wd would use if it ran for the full bounded

number of cycles i.e. if SingleDB-wd ran for 2n cycles, it would send 10,800 messages and

if SingleDB-wd ran for 4n cycles, it would send 21,600 messages. At each of these cutoff

points (i.e. 10,800 and 21,600 and so on), we measured the percentage of problems solved

by SingleDB-wd. In the case of 10,800 messages and 2n as the bounded number of cycles,

this would be the total percentage of problems solved by SingleDB-wd (64%) as all other

problems would then be solved by the systematic search guided by the information learnt

from SingleDB-wd. In the case of 21,600 messages and 4n as the bounded number of

cycles, this would measure the percentage of problems solved by SingleDB-wd with under

10,800 messages (58%). Note that where the number of messages is less than or equal to

the number of messages used at a bounded cycle (e.g. 10,800 for 2n and 10,800 and 21,600

for 4n), we are comparing different executions of SingleDB-wd across the columns of the

table and therefore the percentage of problems solved varies according to the random

instantiation. Each percentage is a median of the percentage of problems solved during 50

runs. The cumulative message column (e.g. 691,200 for 2n for 10,800 messages) measures

the cumulative number of messages that have been used to solve the problems within that

cutoff range (i.e. between 0 and 10,800 messages) whilst the cumulative total message

column gives a running total of the number of messages used over all cutoff brackets. We

5.5. Discussion 71

can therefore say that the 2n version solved 64% of problems in the SingleDB-wd phase

and that this increases to 84% once systematic search has had a suitable run (i.e. it has

10,800 messages on its own + the 10,800 messages which SingleDB-wd used). In this

particular example, we can say that 4n incurs less messages initially for those problems

that it solves but that 2n solves the most problems overall and therefore is the better

approach.

Messages 2n 2n Cum 2n Cum T 4n 4n Cum 4n Cum T
10,800 64% 691,200 691,200 58% 626,400 626,400
21,600 84% 432,000 1,123,200 83% 540,000 1,166,400
32,400 90% 194,400 1,317,600 90% 226,800 1,393,200
43,200 93% 129,600 1,447,200 93% 129,600 1,522,800
54,000 95% 108,000 1,555,200 95.5% 135,000 1,657,800
64,800 97% 129,600 1,684,800 97% 97,200 1,755,000
75,600 97.5% 37,800 1,722,600 98% 75,600 1830600
86,400 98% 43,200 1,765,800 98% 0 1,830,600
97,200 98% 0 1,765,800 99% 97,200 1,927,800
108,000 99% 108,000 1,873,800 99% 0 1,927,800
118,800 99% 0 1,873,800 99% 0 1,927,800
129,600 99% 0 1,873,800 99% 0 1,927,800
140,400 99% 0 1,873,800 99% 0 1,927,800
151,200 99% 0 1,873,800 99% 0 1,927,800
162,000 99% 0 1,873,800 99.5% 81,000 2,008,800
172,800 99% 0 1,873,800 99.5% 0 2,008,800
183,600 99% 0 1,873,800 100% 91,800 2,100,600
194,400 100% 194,400 2,068,200 100% 0 2,100,600

Table 5.13: Sample data for longer executions of local search for randomly generated
problems with 30 variables and DBHyb.

We summarise our findings for randomly generated problems for both PenDHyb and

DBHyb in table 5.14 3. A cutoff of < 2n indicates that the formula described in section

5.3.1 for PenDHyb and section 5.3.2 for DBHyb should be used.

PenDHyb DBHyb
Num VariablesMessagesConstraint ChecksMessagesConstraint Checks

30 < 2n < 2n 2n < 2n
40 2n < 2n 4n 2n
50 22n 4n 24n 6n
60 22n 12n 18n 16n

Table 5.14: The optimal cutoff for particular number of variables for PenDHyb and DBHyb
on randomly generated problems.

For randomly generated problems, we found that higher cutoffs were beneficial when

the number of variables was larger. This is consistent with our findings that systematic

search substantially increases as the number of variables increases and so longer runs of

3Full data for these experiments can be found at http://www.comp.rgu.ac.uk/staff/dl/cutoffs.html

5.5. Discussion 72

local search will become more desirable.

Graph Colouring Problems: We also conducted experiments to determine an

optimal cutoff for solvable graph colouring problems with 125 to 200 variables in steps of

25 and a degree between 4.3 and 5.3 in steps of 0.1. These parameters were chosen since

local search has performed well on those parameters solving most but not all problems [8].

We ran experiments with cutoffs of 0.5n, 0.75n and 1n. Previously, PenDHyb and

DBHyb had been tested on cutoffs lower than 0.6n and since the cutoff recommended

was never higher than 0.5n - 0.5n indicates where the cutoff formula should be used.

There were no cases where 1n was optimal and so this was the highest cutoff used. We

performed identical experiments for each cycle cutoff point as per those described for

randomly generated problems. We summarise our findings for graph colouring problems

for both PenDHyb and DBHyb in table 5.15 4 . A cutoff of < 0.5n indicates that the

formula described in section 5.3.1 for PenDHyb and section 5.3.2 for DBHyb should be

used.

For graph colouring problems, we found that higher cutoffs were required for problems

which had a large number of variables and a high degree. We found this to be consistent

with our findings for graph colouring problems in that these were where SynCBJ often did

badly and so longer runs of local search are preferable.

Meeting Scheduling Problems: We also conducted experiments to determine an

optimal cutoff for solvable meeting scheduling problems with 30 to 60 variables in steps of

10, constraint density between 0.1 and 0.24 in steps of 0.02, number of timeslots between 5

and 6 and maximum distance between 2 and 3. These parameters were identical to those

used for determining the optimal cutoff formula values in section 5.3.1 for PenDHyb and

section 5.3.2 for DBHyb.

We ran experiments with cutoffs between 2n and 10n in steps of 2n. Previously, PenD-

Hyb and DBHyb had been tested on cutoffs lower than 2n (since the cutoff recommended

was always substantially lower than 2n) therefore 2n indicates where the cutoff formula

should be used. There were no cases where 10n was optimal and so this was the highest

4Full data for these experiments can be found at http://www.comp.rgu.ac.uk/staff/dl/cutoffs.html

5.5. Discussion 73

PenDHyb DBHyb
Num NodesDegreeMessagesConstraint ChecksMessagesConstraint Checks

125 4.3 < 0.5n < 0.5n < 0.5n < 0.5n
125 4.4 < 0.5n < 0.5n < 0.5n < 0.5n
125 4.5 < 0.5n < 0.5n < 0.5n < 0.5n
125 4.6 < 0.5n < 0.5n < 0.5n < 0.5n
125 4.7 < 0.5n < 0.5n 0.5n < 0.5n
125 4.8 < 0.5n < 0.5n < 0.5n < 0.5n
125 4.9 < 0.5n < 0.5n 0.5n < 0.5n
125 5.0 < 0.5n < 0.5n 0.5n < 0.5n
125 5.1 < 0.5n < 0.5n 0.5n < 0.5n
125 5.2 < 0.5n < 0.5n 0.5n < 0.5n
125 5.3 < 0.5n < 0.5n 0.5n < 0.5n
150 4.3 < 0.5n < 0.5n < 0.5n < 0.5n
150 4.4 < 0.5n < 0.5n < 0.5n < 0.5n
150 4.5 < 0.5n < 0.5n 0.5n < 0.5n
150 4.6 0.5n < 0.5n 0.5n 0.5n
150 4.7 0.5n 0.5n 0.5n 0.5n
150 4.8 0.5n 0.5n 0.5n 0.5n
150 4.9 0.5n 0.5n 0.5n 0.5n
150 5.0 0.5n 0.5n 0.5n 0.5n
150 5.1 0.5n 0.5n 0.5n 0.5n
150 5.2 0.5n < 0.5n 0.5n < 0.5n
150 5.3 0.5n < 0.5n 0.5n < 0.5n
175 4.3 < 0.5n < 0.5n < 0.5n < 0.5n
175 4.4 < 0.5n < 0.5n 0.5n 0.5n
175 4.5 0.5n < 0.5n 0.5n 0.5n
175 4.6 0.5n 0.5n 0.5n 0.5n
175 4.7 0.5n 0.5n 0.5n 0.5n
175 4.8 0.5n 0.5n 0.75n 0.5n
175 4.9 0.75n 0.75n 0.75n 0.5n
175 5.0 0.75n 0.5n 0.75n 0.5n
175 5.1 0.75n 0.75n 0.75n 0.5n
175 5.2 0.5n 0.5n 0.75n 0.5n
175 5.3 0.75n 0.5n 0.75n 0.5n
200 4.3 < 0.5n < 0.5n < 0.5n < 0.5n
200 4.4 < 0.5n < 0.5n 0.5n < 0.5n
200 4.5 0.5n < 0.5n 0.5n 0.5n
200 4.6 0.5n 0.5n 0.5n 0.5n
200 4.7 0.5n 0.5n 0.75n 0.5n
200 4.8 0.75n 0.75n 0.75n 0.75n
200 4.9 0.75n 0.75n 0.75n 0.75n
200 5.0 0.75n 0.75n 0.75n 0.75n
200 5.1 0.75n 0.75n 0.75n 0.75n
200 5.2 0.75n 0.75n 0.75n 0.75n
200 5.3 0.75n 0.75n 0.75n 0.75n

Table 5.15: The optimal cutoff for particular number of nodes for PenDHyb and DBHyb
on graph colouring problems.

5.5. Discussion 74

cutoff used. We performed identical experiments for each cycle cutoff point as per those

described for randomly generated problems and graph colouring problems. We summarise

our findings for meeting scheduling problems for both PenDHyb and DBHyb in table 5.16

where the number of timeslots was 6 and the maximum distance was 3 5. A cutoff of < 2n

indicates that the formula described in section 5.3.1 for PenDHyb and section 5.3.2 for

DBHyb should be used.

PenDHyb DBHyb
Num VarsCon DensityMessagesConstraint ChecksMessagesConstraint Checks

30 0.1 2n 2n 2n 2n
30 0.12 2n 2n 2n 2n
30 0.14 8n 2n 2n 2n
30 0.16 2n < 2n 2n 2n
30 0.18 2n 2n 2n 2n
30 0.2 2n 2n 2n 2n
30 0.22 2n 2n 2n 2n
30 0.24 2n 2n 2n 2n
40 0.1 2n 2n 2n 2n
40 0.12 2n 2n 2n 2n
40 0.14 2n 2n 2n 2n
40 0.16 2n 2n 2n 2n
40 0.18 4n 4n 2n 2n
40 0.2 4n 2n 2n 2n
40 0.22 4n 2n 4n 2n
40 0.24 4n 2n 6n 4n
50 0.1 6n 2n 2n 2n
50 0.12 4n 2n 4n 4n
50 0.14 6n 4n 4n 2n
50 0.16 6n 6n 6n 6n
50 0.18 6n 6n 6n 6n
50 0.2 6n 6n 4n 4n
50 0.22 2n 2n 8n 6n
50 0.24 6n 6n 4n 2n
60 0.1 2n 2n 8n 4n
60 0.12 6n 6n 8n 8n
60 0.14 < 2n < 2n < 2n < 2n
60 0.16 < 2n < 2n < 2n < 2n
60 0.18 4n < 2n 8n < 2n
60 0.2 2n 2n 4n 4n
60 0.22 2n 2n 2n < 2n
60 0.24 4n 2n 2n 2n

Table 5.16: The optimal cutoff for particular number of meetings for PenDHyb and DBHyb
on meeting scheduling problems.

For meeting scheduling problems, we found that the cutoff varied according to the

number of variables and constraint density. A high cutoff was found to be beneficial for

those problems with larger number of variables and lower constraint densities.

5Full data for these experiments can be found at http://www.comp.rgu.ac.uk/staff/dl/cutoffs.html

5.6. Contributions 75

5.6 Contributions

The following contributions have been made:

1. A knowledge-based hybrid approach to Distributed Constraint Satisfaction (DisHyb)

for fine-grained DisCSPs which uses information learned from the local search phase

to guide the systematic search phase.

2. Two implementations of the DisHyb approach: PenDHyb using the penalty-on-values

local search strategy and DBHyb using the breakout local search strategy.

3. An alternative hybrid algorithm entitled DisPBJ which also uses penalties on val-

ues and combines a distributed local search (DisPeL) with a distributed systematic

search (Distributed Backjumping). A description of DisPBJ is in Appendix A.

4. A formula has been derived which determines the optimal cutoff for three problem

areas (randomly generated, graph colouring and meeting scheduling DisCSPs). The

same methodology can be employed for other problem areas. Consideration has also

been given for longer runs of local search for larger solvable problems.

5. New variants of the DisBOBT algorithm [22] including DisBOCBJWD which com-

bines SingleDB-wd and SynCBJ. We have shown that this algorithm outperforms

the original DisBOBT algorithm in three problem classes.

5.7 Summary

In this chapter, a hybrid approach to Distributed Constraint Satisfaction (DisHyb) has

been presented. This approach uses knowledge from a local search algorithm to learn

about the problem and utilises this knowledge to guide a systematic search algorithm.

We have presented two instances of our approach which differ in the strategy used by the

local search algorithm: (i) PenDHyb - uses penalties on values as the local search strategy

(DisPeL) with a systematic search algorithm (SynCBJ); (ii) DBHyb - uses breakout as

the local search strategy (SingleDB-wd) with a systematic search algorithm (SynCBJ). In

all cases, the performance of our hybrid approach was significantly better than that of

5.7. Summary 76

the systematic search algorithm on its own for large, difficult problems. DBHyb was the

best algorithm, in general, for graph colouring problems and meeting scheduling problems

whilst both algorithms performed well on randomly generated problems. In addition, we

have shown that DisBOCBJWD is an improved hybrid approach over DisBOBT and that

our hybrid approach outperforms both algorithms. In the next chapter, we extend our

DisHyb approach for DisCSPs with complex local problems where each agent has more

than one variable per agent.

Chapter 6

Multi-Hyb - Hybrid Framework

for Solving DisCSPs with

Complex Local Problems

6.1 Background and Motivation

In the previous chapter, we introduced a hybrid approach for DisCSPs with one variable

per agent. However, some DisCSPs are coarse-grained consisting of a set of inter-

related sub-problems (complex local problems). In this chapter, a new hybrid approach is

presented which learns solutions to complex local problems at the same time as learning

difficult variable and best value information for the global problem. The information

learnt is used to provide potential solution values and variable ordering information for

a distributed systematic search. New algorithms to determine solutions to complex local

problems and to solve the global problem.

An overview of the approach is shown in figure 6.1.

The Multi-Hyb approach is an adaption of the DisHyb approach (presented in fig-

ure 5.1) for DisCSPs with complex local problems. As with DisHyb, Multi-Hyb has two

phases. In the first phase, centralised systematic searches are added to the distributed local

search from DisHyb to find all solutions to complex local problems of external relevance.

77

6.1. Background and Motivation 78

Figure 6.1: The Multi-Hyb approach.

The distributed local search now gathers knowledge about difficult variables and values in

the global problem. In the second phase (as with DisHyb), distributed systematic search

is run to solve the global problem using agents which have been reordered according to

the difficult variables and values learnt by distributed local search. Therefore, the main

differences between DisHyb and Multi-Hyb are: (i) the addition of centralised systematic

searches to cope with the complex local problems; (ii) distributed local search and dis-

tributed systematic search now concentrate on the global problem. Multi-Hyb attempts

to reduce the overall communication costs between agents. This is done at the potential

cost of having to store a large number of solutions for complex local problems.

We present two implementations of our approach: Multi-Hyb-Pen uses penalties on

values as the local search strategy and Multi-Hyb-DB uses constraint weights as the local

search strategy.

An overview of the approach and algorithms presented in this chapter is shown in table

6.1.

Approach Algorithm Local Search Strategy

Multi-Hyb Multi-Hyb-Pen Penalties on values

Multi-Hyb Multi-Hyb-DBConstraint weights (‘Breakout’)

Table 6.1: Chapter Overview.

6.2. Description of approach 79

Figure 6.2: A scheduling DisCSP with complex local problems.

6.2 Description of approach

Complex local problems are linked together by a set of constraints which relate vari-

ables in two or more local problems. In section 4.3, two sets of constraints in a DisCSP with

complex local problems were introduced: Cintra containing the intra-agent constraints

and Cinter containing the inter-agent constraints. Specifically, we are interested in

naturally distributed subproblems i.e. those for which an imbalance exists between

inter-agent and intra-agent constraints, with a higher number of the latter. For example,

a University department will be responsible for scheduling most of its classes (its complex

local problem) but will have to negotiate with other departments for classes where teaching

is shared between departments (inter-agent constraints between complex local problems).

It will also need to find classrooms for the classes, which may also be wanted at the same

time by other departments.

Multi-Hyb (see Algorithm 4) is a novel two-phase complete distributed hybrid approach

for solving DisCSPs with complex local problems which are naturally distributed, i.e. with

a high intra-agent to inter-agent constraint ratio. In order to explain each phase and the

interaction between the two phases, a very simple university timetabling DisCSP with

complex local problems is used (see Figure 6.2).

6.2. Description of approach 80

A University has three schools: Computing, Business and Art. Each school has a

number of courses. Schools teach a number of modules. Courses in a school can consist

of modules taught by that school or modules taught by other schools (external modules).

For example, the Computing school has two courses: C1 and C2. C1 takes the modules

Databases, OOP and Management (from the Business school). C2 takes the modules

Databases and Web. The Business school has one course (B1) which takes the modules

Law, Management and Finance. The Art school has three courses: A1, A2 and A3. A1

takes the modules Databases (from the Computing School) and Sculpting. A2 takes the

modules Sculpting and Drawing. A3 takes the modules Drawing and Diagram. Two

modules which share a common course cannot be timetabled at the same time. For

simplicity, it is assumed that classes can only be scheduled at 9am, 10am, 11am and

12noon on Mondays. Room, resources or lecturer availability are not considered for this

simple example. When preparing their individual timetable, schools must consider their

internal modules (represented by their intra-agent constraints) as well as ensuring that

their times do not clash with external modules (represented by inter-agent constraints).

Algorithm 4 Multi-Hyb
1: Initialise all agents with their subproblem and let phase1 ← true
2: while (phase1) CONCURRENTLY do
3: for each agent ai do
4: Run centralised systematic search and dynamically pass local problem solutions to dis-

tributed local search
5: if an agent’s centralised systematic search fails to find a solution then
6: return “Problem is unsolvable.”
7: end if
8: end for
9: Run distributed local search on inter-agent constraints.

10: if local search finds solution S then
11: Return S.
12: end if
13: if all centralised systematic searches have found all solutions of external relevance then
14: phase1 ← false
15: end if
16: end while
17: Run distributed systematic search algorithm using solutions found by centralised systematic

searches and knowledge learnt by distributed local search.

In Phase 1, each agent finds all ‘relevant’ (non-interchangeable) solutions to its com-

plex local problem using a centralised systematic search. The notion of interchangeable

6.2. Description of approach 81

local assignments was introduced by Burke [13]. For example, in the simple scheduling

problem described (see figure 6.2), the variable Web is not involved in any inter-agent con-

straints. Consequently, only the variables OOP and Databases have external relevance

i.e. inter-agent constraints. Consequently, the solutions (OOP = 9AM , Databases =

10AM , Web = 9AM) and (OOP = 9AM , Databases = 10AM , Web = 11AM) are

identical from an external perspective (agents Business and Art) when solving inter-agent

constraints i.e. they are interchangeable and, therefore, only one of them is required.

While agents are concurrently searching for solutions to their complex local problem and

after each agent has found at least one solution, a distributed local search attempts to

find a solution to the global problem. Phase 1 finishes when: (i) an agent determines that

there is no solution to its complex local problem and, therefore, the overall problem is

unsolvable; (ii) all agents have found all ‘relevant’ local solutions or; (iii) local search finds

a solution to the global problem. If a solution is not found, and no unsolvability has been

detected by a centralised systematic search, Multi-Hyb starts Phase 2. Phase 2 uses the

knowledge learnt from Phase 1 to drive a distributed systematic search algorithm.

An overview of the properties of the different components of Multi-Hyb is given in

table 6.2.

Phase Component Variables Domains Constraints
Considered

Knowledge Exchanged

1 Centralised
Systematic
Searches

All vari-
ables in an
agent

Static Intra-agent
constraints

Solutions to complex local problems
passed to distributed local search and
distributed systematic search.

1 Distributed
Local
Search

One com-
plex vari-
able per
agent

Dynamic Inter-agent
constraints

Solutions to complex local problems
from centralised systematic searches.
Knowledge about difficult variables
and best values passed to distributed
systematic search.

2 Distributed
Systematic
Search

One com-
plex vari-
able per
agent

Static Inter-agent
constraints

Solutions to complex local problems
from centralised systematic searches.
Knowledge about difficult variables
and best values from distributed local
search.

Table 6.2: Overview of Multi-Hyb components.

6.2.1 Completeness and Termination

In phase 1, any centralised systematic search algorithm can be used to find all non-

interchangeable solutions. This type of algorithm is complete with respect to external

6.3. Implementations 82

variables. If the distributed local search is unable to find a solution, a distributed sys-

tematic search algorithm will be run in phase 2. This algorithm is complete so it will

either return a solution or state that the problem is unsolvable. Therefore, the Multi-Hyb

framework is complete.

Each instance of the centralised systematic search terminates when either: (i) it has

found all non-interchangeable solutions to its local problems; (ii) it finds that it has no

solution to its local problem and has informed all other agents; (iii) one of the agents

sends a message stating that the problem is unsolvable; (iv) distributed local search sends

a message stating that it has found a solution.

Distributed local search stops when either: (i) it has found a solution; (ii) all instances

of centralised systematic searches have terminated.

Distributed systematic search terminates when either: (i) it has found a solution;

(ii) detected that the problem is unsolvable.

Since centralised systematic search, distributed local search and distributed systematic

search terminate, Multi-Hyb also terminates.

6.3 Implementations

We present two implementations of our Multi-Hyb approach which differ in the strategy

used by the distributed local search. Multi-Hyb-Pen uses penalties on values whilst Multi-

Hyb-DB uses the breakout strategy.

6.3.1 Multi-Hyb-Pen

Multi-Hyb-Pen uses SEBJ (see below) as the centralised systematic solver, DisPeL-1C

(see below) as the distributed local search algorithm and SynCBJ-CLP (see below) as the

distributed systematic search algorithm.

SEBJ

We developed SEBJ (see Algorithm 5) which is a systematic search algorithm that finds all

non-interchangeable solutions to a complex local problem, i.e. the set of all solutions

6.3. Implementations 83

which differ on at least one value for an external variable (a variable linked by a constraint

to another complex local problem). The algorithm uses SynCBJ [102] for finding the first

solution and SBT [96] after the first solution has been found until a backtrack to the first

agent is reached. At this point, the algorithm switches again to SynCBJ. This switching

to backtracking is required since SynCBJ may miss solutions. Particularly, SynCBJ will

generate a nogood after the last value is attempted for the last externally relevant variable.

If this backjump is generated when a solution was found with one of the values of the

externally relevant variable, then the backjump will only be decided according to values

which caused constraint violations. Consequently, a backjump may be recommended to a

point earlier in the search than guarantees all solutions to be found and so solutions are

missed. The use of backtracking avoids this problem.

For example, SEBJ running on the Computing agent (see figure 6.2) would only con-

sider solutions where the values of variables OOP and Databases differ since they are

the only variables of external relevance for that agent. Thus solutions (OOP = 9AM ,

Databases = 10AM , Web = 9AM) and (OOP = 9AM , Databases = 10AM , Web =

11AM) are identical when solving inter-agent constraints i.e. they are interchange-

able and, therefore, only one of them is required.

SEBJ orders variables of external relevance before other variables. For example, in

the Computing agent, a possible ordering would be OOP , Databases and Web since both

OOP and Databases are externally relevant. When SEBJ finds the first solution to the

problem using backjumping, it records the solution and then tries to find other solutions by

restarting the search from the next value in the last externally relevant variable’s domain.

For example, if the first solution was (OOP = 9AM , Databases = 10AM , Web = 9AM)

for the Computing agent, the algorithm would restart from the partial solution (OOP =

9AM , Databases = 11AM) in the search for a new solution. It would not consider

(OOP = 9AM , Databases = 10AM , Web = 11AM) since the change (i.e. Web =

11AM) is not of external relevance, so solution (OOP = 9AM , Databases = 10AM ,

Web = 9AM) can be used. The generation of only non-interchangeable solutions to

complex local problems can significantly reduce computational cost. Although the idea of

6.3. Implementations 84

Algorithm 5 SEBJ
1: initialise - order external variables before internal variables
2: Set solutionFound← false and solutionCount← 0
3: for each variable vi do
4: for each value di in variable vi’s domain do
5: if all higher priority constraints are satisfied then
6: if solutionFound = true OR solutionFound = false AND all higher priority nogoods

are not consistent with all variable values then
7: assign value di to variable vi
8: return to variable for loop.
9: end if

10: else if solutionFound = false then
11: for each higher priority constraint which is violated do
12: Add the variable/value pair to a nogood for value di to variable vi
13: end for
14: end if
15: end for
16: if variable vi has no assigned value then
17: if first variable is vi and solutionCount = 0 then
18: return ”unsolvable problem”’
19: else if first variable is vi then
20: return ”all solutions found”
21: else if solutionFound = false then
22: Create variable vi’s conflict set with all variables involved in nogoods for values of

variable vi
23: Backjump to lowest priority variable in the conflict set.
24: else if solutionFound = true then
25: Backtrack to previous variable in for loop.
26: if lowest priority variable is first variable then
27: set solutionFound← false.
28: end if
29: end if
30: end if
31: end for
32: Add solution to solution store.
33: Set solutionFound← true and increment solutionCount
34: Restart for loop with variable vi as last variable which has external links with value di as the

next value in its domain.

interchangeability has been proposed before using a branch and bound algorithm which

rejects interchangeable solutions [13], SEBJ is different in that it does not even consider

the exploration of the search space where there may only be interchangeable solutions.

SEBJ is sound and complete with regard to identifying all solutions of external

relevance. Since the underlying algorithm is SynCBJ which is complete, the first solution

is always guaranteed to be found. After this first solution is found, all values for externally

relevant variables are considered through backtracking until backtracking reaches the first

agent again. This use of backtracking guarantees that solutions are not missed because of

6.3. Implementations 85

nogoods imposed by SynCBJ. Once we reach the first agent, we are running a SynCBJ on

a different part of the tree and are therefore guaranteed completeness on that part of the

tree. Therefore, all variable value combinations belonging to externally relevant variables

will be discovered.

In further experiments (see Appendix B), the use of forward checking (FC) for external

variables in SEBJ was analysed. Forward checking has often proved to be beneficial in

reducing NCCCs [3] and therefore it may have been useful in reducing the potentially large

NCCCs required for finding all solutions of external relevance. The results showed that

FC can generally improve performance but on other occasions, FC can lead to additional

NCCCs. This is particularly the case when DisPeL-1C solves the problem in phase 1

before SEBJ finds all external solutions. This would appear to contradict previous studies

on forward checking where it could always reduce NCCCs. However, the interaction

between SEBJ with forward checking and the concurrent DisPeL-1C must be considered.

Specifically, forward checking requires a large number of NCCCs near the top of the

backtracking tree in order to prune branches of the tree earlier than is otherwise possible

with backtracking search. This will ultimately lead to a reduction of the NCCCs once the

whole tree has been explored. However, if a global solution to the problem is found quickly

by DisPeL-1C, then the whole tree will not be explored. Consequently, the additional

NCCCs to prune the tree by forward checking are wasted (because the whole tree is not

explored) and forward checking results in additional NCCCs rather than less.

DisPeL-1C

We have developed DisPeL-1C which is a penalty-based distributed local search algorithm

which is used to check the consistency of inter-agent constraints. DisPeL-1C substan-

tially differs from Stoch-DisPeL as follows; (i) DisPeL-1C continuously imposes penalties

when values are inconsistent without waiting until a quasi-local-minimum is detected; (ii)

DisPeL-1C ’s variables are complex, each representing all externally relevant variables

for a complex local problem; (iii) In DisPeL-1C variable values are dynamically added to

their domain (as SEBJ finds them) - for example (OOP = 9AM , Databases = 10AM)

6.3. Implementations 86

would be added when the Computing agent’s SEBJ discovers this solution to its local prob-

lem - note that the value of variable Web is obtained but not used for constraint checking

[see point (v) below] since it has no inter-agent constraints; consequently, DisPeL-1C

could solve a problem without knowing all of the local non-interchangeable solutions to

the local problems that SEBJ instances will generate. This is somewhat similar to the

open domain concept for open constraint satisfaction problems [26]; (iv) DisPeL-1C keeps

track of the best solution (with fewest constraint violations) found so far; (v) DisPeL-1C

only considers the inter-agent constraints and not the intra-agent constraints since the

latter have already been checked by SEBJ ; In our sample problem, this means that con-

straints such as Databases 6= Web are ignored but constraints such as OOP 6= Manag are

now considered. DisPeL-1C may discover that the first solution for the Computing agent

(OOP = 9AM , Databases = 10AM) extends with the second solution for the Business

agent (Manag = 10AM) combined with the Art agent’s first solution (Sculpting = 9AM)

to form a global solution to the problem. If this is the case, Multi-Hyb-Pen terminates.

Otherwise, DisPeL-1C terminates whenever SEBJ terminates.

Multi-Hyb-Pen combines a weight of 70% for the sum of DisPeL-1C ’s incremental

penalties on variable values (which is periodically reset) with a weight of 30% of the

cumulative penalty count of all penalties imposed by DisPeL-1C on a variable (see below).

This penalty information is used by SynCBJ-CLP (see below) to indicate the difficult areas

of the problem.

SynCBJ-CLP

The SynCBJ algorithm [102] for complex local problems (SynCBJ-CLP) (see Algorithm

6) finds solutions to the inter-agent constraint problem. It uses one complex variable

per agent, with each variable representing all the externally relevant variables of a com-

plex local problem. The algorithm explores partial solutions generated by SEBJ such as

(OOP = 9AM , Databases = 10AM) and (Manag = 10AM) to see if they extend to a

global solution. Hence, SynCBJ-CLP only considers the inter-agent constraints (for

example OOP 6= Manag) and ignores the intra-agent constraints, since these have already

6.3. Implementations 87

been checked by SEBJ. SynCBJ-CLP uses the following knowledge learnt by distributed

local search: (i) difficult areas of the problem and; (ii) best ’solution’ found so far. Those

variables which are thought to represent difficult areas of the problem are ordered before

“easier” variables. The variable values involved in the best ’solution’ found by local search

are tried first (value ordering). This knowledge sharing between a local and a systematic

search algorithm is inspired by the DisHyb framework (see chapter 5).

Algorithm 6 procedure SynCBJ-CLP (rankedDifficultV ariables, bestV alues)

1: ao← list of agents sorted by max degree and rankedDifficultV ariables
2: Prioritise best values (bestV aluesi)
3: SynCBJ(ao)
4: if solution found by SynCBJ then
5: return solution
6: else
7: return ”unsolvable problem”
8: end if

SynCBJ-CLP is efficient through: (i) its use of complex variables, aggregating

all variables of the agent’s complex local problem thereby having one complex variable

per agent; (ii) only inter-agent constraints are given consideration (the same con-

straints considered by DisPeL-1C). Since SynCBJ is complete and variations introduced

in SynCBJ-CLP only change the ordering of agents and first variable value, SynCBJ-CLP

is completed and consequently when combined with the completeness of SEBJ, Multi-Hyb-

Pen is complete.

Variations of Multi-Hyb-Pen

A series of experiments were conducted in order to measure the effectiveness of various

agent orderings for SynCBJ-CLP using several heuristics based on the knowledge learnt

by DisPeL-1C. For each heuristic, max degree is used with ties broken according to the

specific heuristic rules. All orderings use the best ’solution’ found by DisPeL as the first

value in distributed systematic search. The following variations were considered:

1. ResetPen - Once all SEBJ searches have found all solutions, the DisPeL-1C search

is stopped and starts a new DisPeL-1C search for a small number of cycles be-

fore switching to SynCBJ-CLP. The variable and value ordering in SynCBJ-CLP is

6.3. Implementations 88

determined from the second DisPeL-1C search.

2. CumPen - The cumulative penalty count from DisPeL-1C is used for agent ordering.

3. DisPeLPen - This version uses DisPeL-1C ’s current penalties for reordering vari-

ables rather than the cumulative penalty count.

4. RelCumPen (SL)/(SE) - RelCumPen (SL) gives higher relevance to penalties im-

posed later in the DisPeL-1C search. Specifically, the number of cycles which

DisPeL-1C ran for is divided into three equal parts. The penalties imposed at the

end of each of these parts is stored. For example, if DisPeL-1C ran for 60 cycles, the

penalty count would be measured at 20, 40 and 60 cycles. The penalty count is reset

at 20 and 40 cycles after it is measured. The cumulative penalty is then composed

from 20% of the first penalty count, 30% of the second penalty count and 50% of the

final penalty count. RelCumPen (SE) is the converse approach. Specifically, 50% of

the first penalty count, 30% of the second penalty count and 20% of the final penalty

count.

5. BothPens (50)/(CP)/(DP) - These versions modify the weightings of DisPeL-1C ’s

own penalties (DP) vs. the cumulative penalty count (CP) as follows: 50:50 (Both-

Pens (50)), 30:70 (BothPens(CP)) and 70:30 (BothPens(DP)).

Results for the experiments on randomly generated DisCSPs with 80 variables, 8 do-

main values, 5 agents, 85% intra-agent constraints and 15% inter-agent constraints, 0.2

constraint density and 0.35 constraint tightness are shown in Table 6.3. The heuris-

tics above were compared against a simple max-degree ordering for SynCBJ-CLP. The

median and average values over 100 problems for number of messages and number of

non-concurrent constraint checks (NCCCs) were measured.

Whilst starting a fresh version of DisPeL-1C for ordering (ResetPen) has some merit

in reducing the number of non-concurrent constraint checks versus a simple max-degree

ordering, it is considerably more costly than any of the other heuristics. This is caused by

the longer period of DisPeL-1C ’s execution. Indeed, in terms of messages, this approach is

more costly than a simple max-degree ordering. All other variations improve on the simple

6.3. Implementations 89

Median Average
Heuristic Msgs NCCCs Msgs NCCCs
MaxDegree 255 118,996 376 166,647
ResetPen 285 115,832 407 139,982
CumPen 139 109,488 172 128,561
DisPeLPen 196 114,568 212 138,688

RelCumPen (SL) 158 111,247 217 131,894
RelCumPen (SE) 164 113,136 202 129,986
BothPens (50) 185 111,372 234 136,229

BothPens (DP) 139 105,988 175 126,288
BothPens (CP) 167 106,749 178 118,375

Table 6.3: Performance of different heuristics for Multi-Hyb-Pen.

max-degree ordering. The cumulative penalty (CumPen) performed better than DisPeL-

1C ’s own penalties (DisPeLPen), and consequently experiments were set up in order to

determine whether this ordering could be improved by either weighting later penalties

higher than earlier ones (RelCumPen(SL)) or the converse approach (RelCumPen(SE)).

Imposing higher weights on penalties imposed later in DisPeL-1C ’s search had a positive

effect on the median but a negative effect on the average, with the converse approach

having the opposite effect, although there is little difference in performance between both

heuristics. A combination of the cumulative penalty and DisPeL-1C ’s penalties was also

explored. A combination of 70% of DisPeL-1C ’s penalty and 30% of the cumulative

penalty offered the best performance.

From the results, the two most efficient variations appear to be CumPen and BothPens

(DP) in terms of best numbers of messages and constraint checks. Consequently, the data

was normalised to determine whether the lower constraint checks made more difference

than a small increase in average messages or vice versa. The BothPens (DP) variant was

then the most efficient variation. Therefore, this is the heuristic used in Multi-Hyb-Pen

for the experimental evaluation.

6.3.2 Multi-Hyb-DB

Multi-Hyb-DB is an implementation of Multi-Hyb which uses SEBJ (see section 6.3.1) as

the centralised systematic solver, DisBO-wd (see below) as the distributed local search

algorithm and SynCBJ-CLP (see section 6.3.1) as the distributed systematic search algo-

rithm.

6.3. Implementations 90

DisBO-wd

The Distributed Breakout Algorithm originally proposed in [45] was improved through

the use of a weight decay mechanism in DisBO-wd [8]. In Multi-Hyb-DB, we make a

number of modifications to DisBO-wd; (i) DisBO-wd’s variables are complex so that one

variable represents all externally relevant variables for a particular agent’s complex

local problem; (ii) Domain values are dynamically added as SEBJ finds them (in an

identical way to DisPeL-1C); (iii) DisBO-wd maintains a record of the best solution

found (with the fewest constraint violations); (iv) DisBO-wd only considers the inter-

agent constraints so that constraint weights are only modified for those constraints

between agents. If DisBO-wd discovers a solution to the global problem, Multi-Hyb-

DB terminates. Otherwise, DisBO-wd terminates whenever all instances of SEBJ have

terminated. Multi-Hyb-DB uses the highest constraint weight belonging to each complex

variable (agent) from DisBO-wd to order the agents according to the difficult areas of the

problem and passes this information to SynCBJ-CLP.

Variations of Multi-Hyb-DB

Experiments were also conducted in Multi-Hyb-DB to determine the best agent order-

ing heuristic for SynCBJ-CLP based on the knowledge learnt by DisBO-wd. For each

heuristic, max degree is used with ties broken according to the specific heuristic rules.

All orderings use the best ’solution’ found by DisBO-wd as the first value in distributed

systematic search. The following variations were considered:

1. Reset Weights - Once all SEBJ searches have found all solutions, this search stops

the DisBO-wd search and starts a new DisBO-wd search for a small number of cycles

before switching to SynCBJ-CLP. The variable and value ordering in SynCBJ-CLP

is determined from the second DisBO-wd search.

2. Best Weights - This version uses the constraint weights at the time when the best

solution (i.e. the set of values which minimised the number of constraint violations

(excluding constraint weights)) occurred during the DisBO-wd run.

6.4. Experimental Evaluation 91

3. Last Weights - This version uses the constraint weight values upon termination of

DisBO-wd.

Results for the experiments on randomly generated DisCSPs with 80 variables, 8 do-

main values, 5 agents, 80% intra-agent constraints and 20% inter-agent constraints, 0.2

constraint density and 0.35 constraint tightness are shown in Table 6.4. The heuris-

tics above were compared against a simple max-degree ordering for SynCBJ-CLP. The

median and average values over 100 problems for number of messages and number of

non-concurrent constraint checks (NCCCs) were measured.

Median Average
Heuristic Msgs NCCCs Msgs NCCCs
MaxDegree 185 271,107 369 483,614

Reset Weights 254 271,710 441 516,024
Best Weights 158 268,336 350 472,720
Last Weights 187 262,508 353 472,823

Table 6.4: Performance of different heuristics for Multi-Hyb-DB.

The reset weights heuristic is not competitive as it is outperformed by a simple max

degree ordering. Whilst the last weights heuristic minimises the median number of NCCCs,

the best weights heuristic outperforms the last weights heuristic in median number of

messages as well as average number of messages and average number of NCCCs. We

normalised the values for median messages and median NCCCs for both the best weights

and last weights heuristic and found that the best weights’ performance improvement

in terms of messages was more significant than last weights’ improvement in NCCCs.

Consequently, the best weight heuristic is used in Multi-Hyb-DB in this chapter.

6.4 Experimental Evaluation

We evaluated the two implementations of our Multi-Hyb framework. Multi-Hyb-Pen uses

DisPeL-1C as the local search solver and reoders complex variables in SynCBJ-CLP by

max degree then penalties whereas Multi-Hyb-DB uses DisBO-wd as the local search

solver and reorders complex variables in SynCBJ-CLP through max degree then constraint

weights. We compared both implementations of Multi-Hyb with both systematic and local

search algorithms designed for DisCSPs with complex local problems. For systematic

6.4. Experimental Evaluation 92

search, Multi-Hyb-Pen and Multi-Hyb-DB were compared against Multi-ABT and Multi-

AWCS. For local search, Multi-Hyb-Pen and Multi-Hyb-DB were compared against Multi-

DisPeL and DisBO-wd. Note that Burke’s work [13] concentrated on efficient algorithms

for handling the complex local problems and as such does not present an overall algorithm

for comparison. ABT-cf [23] forces the local solver to find all solutions to the complex local

problem before the distributed search begins which then tries different combinations of

these local solutions to find a global solution to the problem. As a result, their work is only

evaluated on small and easy problems and so a comparison with their work is not possible

1. We also did not consider DCDCOP [50] for evaluation as there is insufficient pseudo

code currently available (since the algorithm was only presented in September 2009) to

implement the algorithm. It also has not been evaluated against DisCSP algorithms as it

has been designed as a Distributed Constraint Optimisation algorithm.

Experiments were run on distributed randomly generated problems, distributed

graph colouring problems, distributed meeting scheduling problems and dis-

tributed sensor network problems. Our implementation of Multi-ABT was verified

against the distributed graph colouring experiments in [46], our Multi-AWCS implemen-

tation was verified against the distributed graph colouring experiments from [96] and our

Multi-DisPeL and DisBO-wd implementations were obtained from their authors. The

results obtained were at least as good as those reported by the authors. We measured:

(i) the number of Non-Concurrent Constraint Checks (NCCCs) performed and; (ii) the

number of messages sent. Note that the number of messages required for termination

detection is not counted for any of the algorithms as reported by other researchers [96].

Although CPU time is not an established measure for DisCSPs [56], we also measured it

and the results obtained were consistent with the other measures used.

Extensive empirical evaluations were carried out while varying the number of vari-

ables (60-200), the domain sizes (5-10), the constraint tightness (0.35-0.5), the constraint

densities (0.15-0.2) and the number of agents (5-25). Since the Multi-Hyb approach was

1Through a personal communication with the authors of ABT-cf, we obtained an implementation of
ABT-cf. This version had not been tested by the authors above 5 variables per agent and our tests with
the supplied implementation have shown that ABT-cf runs out of memory with more variables per agent.

6.4. Experimental Evaluation 93

developed for naturally distributed DisCSPs with complex local problems (with a higher

proportion of intra-agent constraints than inter-agent constraints), the problems consid-

ered (except for distributed sensor network problems) contained between 70% and 90%

intra-agent constraints with the remainder being inter-agent constraints. For each prob-

lem type (proportion of intra-agent and inter-agent constraints), 100 different problems

were solved and average and median results calculated.

6.4.1 Solvable Problems

For solvable problems, the number of problems solved was also measured for Multi-DisPeL

and DisBO-wd because they are incomplete algorithms. However, these generally solved

the vast majority of problems. For Multi-DisPeL and DisBO-wd, a cut-off of 100n cycles

(where n is the number of variables) and 200n cycles respectively (since 2 DisBO-wd cycles

of improve and ok? equal one Multi-DisPeL cycle) were used. In the few cases where not

all problems were solved (indicated by * in the results), the effort wasted (number of

NCCCs and number of messages) was not included in the results.

Randomly Generated Problems

Median results for distributed randomly generated problems appear in Table 6.5. The

number of variables ranged between 60 and 175. The number of agents was 5, the domain

size was 8, constraint density was 0.2 and the constraint tightness was 0.35. The percentage

of intra-agent constraints varied between 70% and 90% with the remainder being inter-

agent constraints. The results of the best performing algorithm are shown in bold.

For large randomly generated problems (between 80 and 125 variables), Multi-Hyb-DB

gives the best results. For very large problems (150 variables and above), Multi-Hyb-

Pen gives the best results. There are a few occasions where Multi-DisPeL uses slightly

less messages but the difference is very small when compared with the large difference in

the number of NCCCs. For smaller problems, Multi-AWCS is best for NCCCs but uses

substantially more messages. There is only one occasion (60 variables, 70:30 intra-agent

to inter-agent constraints) where neither Multi-Hyb-Pen or Multi-Hyb-DB gives the best

6.4. Experimental Evaluation 94

Median number of messages
Num % intra:inter Multi Multi Multi Multi Multi DisBO
Vars constraints -Hyb-Pen -Hyb-DB -ABT -AWCS -DisPeL -WD
60 90:10 399 323 842 4,834 536 1,150*
60 80:20 197 158 1,692 5,287 422 1,165
60 70:30 818 833 6,832 4,475 496 985
70 80:20 159 96 731 3,672 208 435
70 70:30 112 175 1,141 3,907 194 420
80 80:20 143 60 440 3,991 104 335
80 70:30 89 60 500 6,076 108 295
90 80:20 94 60 336 4,242 66 275
90 70:30 81 60 298 6,193 80 265
100 80:20 56 60 248 5,922 56 235
100 70:30 78 60 276 7,235 60 225
125 80:20 20 60 197 6,297 40 225
125 70:30 60 60 152 9,218 40 205
150 80:20 20 60 152 6,803 28 215
150 70:30 30 46 128 14,554 32 195
175 80:20 20 45 134 10,707 24 210
175 70:30 20 45 118 15,126 24 190

Median number of NCCCs
Num % intra:inter Multi Multi Multi Multi Multi DisBO
Vars constraints -Hyb-Pen -Hyb-DB -ABT -AWCS -DisPeL -WD
60 90:10 163,585 170,093 314,067 165,118 118,735 469,162*
60 80:20 277,408 268,336 420,384194,432 949,616 440,862
60 70:30 2,761,171 2,626,087 286,821182,936 1,148,704 353,862
70 80:20 151,678 133,577 284,713124,238 745,608 252,678
70 70:30 291,421 288,457 524,487135,090 673,099 244,962
80 80:20 118,874 114,283 207,389 149,599 588,111 283,827
80 70:30 169,884 153,848 356,405 265,274 606,084 262,707
90 80:20 117,668 105,869 278,057 177,570 611,811 308,444
90 70:30 140,181 130,355 224,968 291,656 638,729 299,228
100 80:20 107,836 101,792 214,806 285,431 690,977 339,423
100 70:30 132,031 125,176 265,460 385,969 690,455 324,668
125 80:20 106,435 104,718 185,646 357,508 952,787 509,090
125 70:30 125,553 121,680 360,376 600,688 936,775 485,739
150 80:20 100,020 102,519 235,880 441,287 1362161 728427
150 70:30 120,105 128,039 268,7771,302,570 1,281,866 682,116
175 80:20 98,875 103,143 155,900 885,339 1,926,771 976,712
175 70:30 110,325 124,838 235,1681,453,996 1,831,216 908,710

Table 6.5: Results for solvable random problems.

6.4. Experimental Evaluation 95

results for either messages or NCCCs - this is because 60-variable problems are fairly

small. Multi-Hyb-Pen in particular seems to be able to make best use of the information

that agents have in the Multi-Hyb approach for the higher number of variables per agent

problems (125 variables and above).

Graph Colouring Problems

Median results for distributed graph colouring problems are shown in Table 6.6. 150 and

200 nodes were used with 15 to 25 agents, 3 colours and a degree between 4.9 and 5.1.

The percentage of intra-agent constraints varied between 70% and 90% with the remainder

being inter-agent constraints.

For graph colouring problems, Multi-Hyb-Pen clearly gives the best results in terms

of number of messages. Multi-ABT is often the better performing algorithm for NCCCs

although Multi-Hyb-Pen is often better for large number of agents (i.e. smaller complex

local problems). This is owing to the cost of searching for all local solutions until a global

solution is found. Multi-Hyb-DB is not competitive when compared with Multi-Hyb-Pen

suggesting that penalties provides the better knowledge in this case.

Meeting Scheduling Problems

Median results for solvable meeting scheduling problems (as described in section 2.3.3)

are presented in Table 6.7. Our problems had 50-80 meetings, 5 departments (agents),

a timeframe of 6 or 7 time units and a constraint density of 0.18. The percentage of

intra-agent constraints varied between 70% and 90% with the remainder being inter-agent

constraints. Two departments with common meetings have a random distance between 1

and 3 time units.

For scheduling problems, Multi-Hyb-Pen performed best for the majority of problems

in terms of number of messages. Multi-Hyb-DB and Multi-DisPeL were also optimal for

different problem parameters for number of messages. For NCCCs, Multi-ABT and Multi-

AWCS were the most consistent algorithms. However, Multi-Hyb-Pen did outperform

these algorithms for some problem parameters. Multi-DisPeL and DisBO-wd gave poorer

6.4. Experimental Evaluation 96

Median number of messages
Num Num intra: Multi Multi Multi Multi Multi DisBO
Nodes Agents Deg inter -Hyb-Pen -Hyb-DB -ABT -AWCS -DisPeL -WD

150 15 4.9 90:10 40 155 490 1,281 595 855
150 15 5.1 90:10 35 163 608 1,437 714 840*
150 15 4.9 80:20 21 134 326 1,102 588 765*
150 15 5.1 80:20 23 143 350 1,248 616 900*
150 15 4.9 70:30 31 180 591 1,588 714 780*
150 15 5.1 70:30 31 185 629 1,909 735 900*
150 25 4.9 90:10 35 177 373 1,508 1,176 1,175*
150 25 5.1 90:10 29 179 399 1,534 1,176 1,200*
150 25 4.9 80:20 53 317 2,696 2,079 1,392 1,300*
150 25 5.1 80:20 37 245 1,053 2,423 1,368 1,325*
150 25 4.9 70:30 42 261 1,403 2,879 1,788 1,500*
150 25 5.1 70:30 51 338 3,642 3,362 1,680 1,275*
200 20 4.9 90:10 62 212 698 2,146 1,197 1,420*
200 20 5.1 90:10 73 223 938 2,328 1,216 1,300*
200 20 4.9 80:20 31 188 528 1,732 1,064 1,220*
200 20 5.1 80:20 34 196 544 1,851 1,140 1,340*
200 20 4.9 70:30 59 266 1,050 2,465 1,225 1,200*
200 20 5.1 70:30 77 289 1,278 2,668 1,282 1,440*
200 25 4.9 90:10 51 233 657 2,350 1,716 1,425*
200 25 5.1 90:10 45 232 869 2,092 1,800 1,575*
200 25 4.9 80:20 57 252 911 2,396 1,680 1,450
200 25 5.1 80:20 44 250 1,068 2,446 1,692 1,425*
200 25 4.9 70:30 56 309 2,048 3,148 1,848 1,625*
200 25 5.1 70:30 62 339 2,746 3,259 1,992* 1,825*

Median number of NCCCs
Num Num intra: Multi Multi Multi Multi Multi DisBO
Nodes Agents Deg inter -Hyb-Pen -Hyb-DB -ABT -AWCS -DisPeL -WD

150 15 4.9 90:10 3,579 3,735 1,266 3,172 46,215 66,583
150 15 5.1 90:10 3,689 3,837 1,589 3,435 57,967 63,567*
150 15 4.9 80:20 1,314 1,611 1,165 3,123 49,008 63,739*
150 15 5.1 80:20 1,279 1,653 1,278 3,310 51,564 73,127*
150 15 4.9 70:30 1,882 2,659 1,501 3,535 53,692 57,495*
150 15 5.1 70:30 1,783 2,507 1,535 4,058 59,712 68,942*
150 25 4.9 90:10 675 775 689 1,454 30,961 53,242*
150 25 5.1 90:10 633 757 724 1,417 33,134 53,127*
150 25 4.9 80:20 729 1,223 1,532 1,651 35,018 53,604*
150 25 5.1 80:20 549 800 1,017 1,974 37,113 55,657*
150 25 4.9 70:30 726 1,253 1,802 2,265 43,369 46,600*
150 25 5.1 70:30 534 801 1,218 2,087 43,344 57,361*
200 20 4.9 90:10 4,195 4,561 1,434 3,836 71,275 104,597*
200 20 5.1 90:10 4,403 4,646 1,716 4,185 70,314 105,865*
200 20 4.9 80:20 1,439 1,900 1,286 3,637 65,360 99,080*
200 20 5.1 80:20 1,467 1,925 1,273 3,623 72,354 106,079*
200 20 4.9 70:30 2,369 3,403 1,604 4,180 73,351* 89,740*
200 20 5.1 70:30 2,348 3,484 1,872 4,405 77,346 107,339*
200 25 4.9 90:10 1,843 2,154 1,014 2,723 61,481 87,216*
200 25 5.1 90:10 1,703 2,046 1,214 2,499 68,940 99,001*
200 25 4.9 80:20 972 1,261 1,267 2,669 61,118 89,533
200 25 5.1 80:20 878 1,225 1,424 2,903 66,544 89,009*
200 25 4.9 70:30 1,272 2,089 1,727 2,975 63,778 86,824*
200 25 5.1 70:30 1,372 2,156 2,029 3,121 71,947* 101,275*

Table 6.6: Results for solvable graph colouring problems.

6.4. Experimental Evaluation 97

Median number of messages
Num Num intra: Multi Multi Multi Multi Multi DisBO

Meetings Times inter -Hyb-Pen -Hyb-DB -ABT -AWCS -DisPeL -WD
50 7 90:10 20 54 81 340 68 295*
50 7 80:20 40 60 112 381 60* 405*
50 7 70:30 139 75 204 415 96 335*
50 6 90:10 10 45 64 269 52 155*
50 6 80:20 20 60 96 321 64 165*
50 6 70:30 184 102 161 362 66 215*
60 7 90:10 20 60 86 359 64 245*
60 7 80:20 80 60 136 396 76 275*
60 7 70:30 412 173 341 500 72 295*
60 6 90:10 10 45 78 288 32 145*
60 6 80:20 10 45 106 327 44 175*
60 6 70:30 42 60 149 409 56 225*
70 7 90:10 20 60 103 380 44 235*
70 7 80:20 20 60 128 428 56 255
70 7 70:30 228 90 205 514 64 315
70 6 90:10 20 45 91 274 40 165*
70 6 80:20 20 60 116 352 40 195
70 6 70:30 40 60 132 415 50 245
80 7 90:10 20 60 115 404 48 235
80 7 80:20 20 60 128 473 48 245
80 7 70:30 151 74 185 547 60 305
80 6 90:10 20 45 98 284 32 185
80 6 80:20 20 60 118 379 40 205
80 6 70:30 20 60 124 443 44 245

Median number of NCCCs
Num Num intra: Multi Multi Multi Multi Multi DisBO

Meetings Times inter -Hyb-Pen -Hyb-DB -ABT -AWCS -DisPeL -WD
50 7 90:10 7,162 7,369 6,988 7,309 112,308 110,290*
50 7 80:20 10,852 13,139 9,488 8,214 130,639 138,306*
50 7 70:30 20,684 25,451 13,774 8,605 120,664 126,017*
50 6 90:10 2,933 3,503 3,793 5,534 73,805 57,262*
50 6 80:20 4,803 5,259 4,411 5,974 79,868 84,785*
50 6 70:30 7,451 9,632 5,238 6,382 74,451 71,166*
60 7 90:10 10,777 12,076 10,901 10,613 160,589 158,103*
60 7 80:20 16,251 16,367 11,413 10,821 163,578 183,771*
60 7 70:30 37,138 36,649 15,464 12,513 153,894 158,777*
60 6 90:10 5,095 5,700 5,490 7,894 89,497 91,349*
60 6 80:20 6,163 6,346 5,981 8,249 99,156 107,302*
60 6 70:30 11,334 11,654 6,766 9,628 100,219 201,621*
70 7 90:10 15,377 17,757 13,044 13,739 198,303 203,387*
70 7 80:20 20,174 21,380 12,956 14,696 199,104 240,856
70 7 70:30 38,453 45,164 15,624 16,365 214,783 241,370
70 6 90:10 6,586 7,573 6,906 10,373 131,723 136,478*
70 6 80:20 9,523 9,632 6,880 11,512 129,821 154,904
70 6 70:30 14,375 12,949 7,354 12,123 148,914 163,560
80 7 90:10 17,434 17,651 14,685 18,715 270,668 280,138
80 7 80:20 27,460 26,809 13,708 19,959 263,191 303,366
80 7 70:30 50,844 50,219 17,888 21,276 271,813 312,564
80 6 90:10 8,863 8,461 7,432 14,264 177,645 187,330
80 6 80:20 10,967 11,202 7,687 14,796 185,343 223,587
80 6 70:30 14,073 15,645 8,512 16,331 186,795 224,357

Table 6.7: Results for solvable meeting scheduling problems.

6.4. Experimental Evaluation 98

results.

Sensor Networks

Finally, the algorithms were evaluated on Grid-based SensorDCSP (see section 2.3.4).

These problems are not naturally distributed since they have a large number of inter-

agent constraints combined with relatively simple local problems for each agent. Conse-

quently, the ratio is now 85% inter-agent constraints and 15% intra-agent constraints. The

problems used had between 5 and 8 targets, between 25 and 64 sensors (grids of 5, 6, 7,

8), k-visibility of 2, k-compatibility of 1, probability of visibility of 0.9 and probability of

compatibility of 0.6. Median results are shown in Table 6.8. In some cases, Multi-DisPeL

was optimal in terms of number of messages but did not solve all problems. In these

cases, the next optimal algorithm which solved all problems is shown in bold as well as

Multi-DisPeL.

Performance varied between algorithms for number of messages with Multi-Hyb-DB

and Multi-ABT offering the most consistent performances. For NCCCs, either Multi-

Hyb-Pen and Multi-Hyb-DB are optimal for the majority of the problem combinations

with Multi-AWCS also offering good performance. This is interesting since the Multi-Hyb

approach was not originally designed for these types of problems.

6.4.2 Unsolvable Problems

Multi-Hyb-Pen and Multi-Hyb-DB were only compared against Multi-ABT and Multi-

AWCS on unsolvable problems since Multi-DisPeL and DisBO-wd cannot detect unsolv-

ability. We distinguish between two categories of unsolvable problems: (i) those where

at least one complex local problem is unsolvable and; (ii) those where all complex local

problems are solvable, but no overall solution exists.

Randomly Generated Problems: Median results for unsolvable randomly gener-

ated problems using 5 agents, a domain size of 8 and a constraint tightness of 0.35 are

presented in table 6.9 for problems which have one or more complex local problems that

are unsolvable. It should be noted in this case that the SEBJ part of Multi-Hyb-Pen and

6.4. Experimental Evaluation 99

Median n. Messages
Num Num Multi Multi Multi Multi Multi DisBO

Targets Sensors -Hyb-Pen -Hyb-DB -ABT -AWCS -DisPeL -WD
5 25 69 63 204 299 80* 575*
5 36 50 49 52 185 40* 285*
5 49 25 42 24 94 40* 160*
5 64 14 34 19 101 28* 120*
6 25 1,649 765 1,390 1,166 417 1,938*
6 36 1,383 242 145 333 105* 846
6 49 338 116 60 185 60* 414
6 64 510 310 31 127 50* 306*
7 25 3,814 2,300 8,786 3,492 1,161* 4,907*
7 36 3,868 1,051 1,164 955 225* 1960*
7 49 1,092 210 128 330 126* 609*
7 64 482 196 55 216 93* 658*
8 25 16,471 3,644 108,882 16,155 3,979* 25,608*
8 36 5,522 3,842 5,087 1,693 759* 3,840*
8 49 2,753 1,100 328 693 203* 1296*
8 64 1,175 411 126 473 143* 768*

Median n. NCCCs
Num Num Multi Multi Multi Multi Multi DisBO

Targets Sensors -Hyb-Pen -Hyb-DB -ABT -AWCS -DisPeL -WD
5 25 4,072 6,599 8,859 5,959 40,031* 66,968*
5 36 2,936 5,353 4,329 3,888 25,707* 31,359*
5 49 2,708 3,431 2,755 2,314 18,280* 19,366*
5 64 2,541 2,759 2,294 1,856 14,432* 15,397*
6 25 13,164 49,144 27,603 19,024 194,721* 248,682*
6 36 7,819 2,306 9,159 5,645 47,195* 98,318*
6 49 5,706 2,112 4,544 3,474 29,704* 48,459*
6 64 18,774 2,497 3,230 2,588 24,140* 31,515*
7 25 120,789 133,882 114,529 44,926 453,891* 623,861*
7 36 8,622 23,240 27,975 12,062 112,370* 267,908*
7 49 21,124 2,288 7,149 4,886 53,062* 83,965*
7 64 16,961 2,229 4,420 3,596 37,510* 68,098*
8 25 1,395,619 595,777 970,639 190,699 1,335,327*3,667,100*
8 36 21,999 133,809 75,134 18,978 281,020* 545,384*
8 49 7,420 36,938 11,884 8,217 81,203* 161,266*
8 64 19,316 2,417 7,726 6,110 56,022* 94,678*

Table 6.8: Results for solvable Grid-based Sensor Network problems.

6.4. Experimental Evaluation 100

Multi-Hyb-DB will detect unsolvability in phase 1 so the distributed local search will not

run and therefore these two algorithms will perform identically on these types of problems.

We found that Multi-Hyb-Pen and Multi-Hyb-DB substantially outperformed Multi-ABT

and Multi-AWCS on these problems in both number of messages and number of NCCCs.

There is only one case (90 variables, 80:20 intra:inter-agent constraints) where Multi-ABT

outperforms Multi-Hyb-Pen and Multi-Hyb-DB slightly on messages but Multi-Hyb-Pen

and Multi-Hyb-DB substantially outperform Multi-ABT on NCCCs.

We also conducted experiments with identical parameters for problems that had so-

lutions to all complex local problems but no global solution, the results of which are

shown in Table 6.10. Multi-Hyb-Pen performed best for messages whilst Multi-Hyb-DB

and Multi-ABT were often the better algorithms for NCCCs.

Graph Colouring Problems: Median results for unsolvable 3-colour distributed

graph colouring problems with 150 to 200 nodes, 15 to 25 agents and 4.9 to 5.1 degree

where one or more agents had no solutions to their complex local problem are presented

in table 6.11. In these cases, Multi-Hyb-Pen and Multi-Hyb-DB will perform identically

since SEBJ will detect unsolvability in phase 1 of the Multi-Hyb approach so distributed

local search will not run. We found that Multi-Hyb-Pen and Multi-Hyb-DB substantially

outperformed Multi-ABT and Multi-AWCS on these problems for messages. Multi-ABT

was occasionally better for NCCCs but the large difference in messages meant that Multi-

Hyb-Pen and Multi-Hyb-DB were better overall. Median results in table 6.4.2 are for

problems where all agents had solutions to their complex local problem but there was no

global solution to the problem. Multi-Hyb-Pen performed best for number of messages

whilst Multi-Hyb-Pen and Multi-ABT performed best for NCCCs depending on the prob-

lem parameters. However, for most but not all of the cases where Multi-ABT outperforms

Multi-Hyb-Pen on NCCCs, the difference between the algorithms in terms of messages is

larger. Consequently, in general, Multi-Hyb-Pen is the optimal algorithm.

Meeting Scheduling Problems: Unsolvable meeting scheduling problems with 50-

80 meetings, 5 departments (agents), a timeframe of 6 or 7 time units and a constraint

density of 0.18 were conducted. The percentage of intra-agent constraints varied between

6.4. Experimental Evaluation 101

Median number of messages
Num % constraint % intra:inter Multi Multi Multi Multi
Vars density constraints -Hyb -Hyb -ABT -AWCS

-Pen -DB
60 0.2 90:10 14 14 647 38,169
70 0.2 80:20 12 12 420 46,792
70 0.2 70:30 16 16 682 48,959
80 0.2 80:20 12 12 285 53,343
80 0.2 70:30 12 12 353 56,070
90 0.18 80:20 12 12 10 58,800
90 0.18 70:30 12 12 292 62,809
100 0.16 80:20 10 10 10 64,706
100 0.16 70:30 12 12 371 69,132
125 0.14 80:20 10 10 10 80,695
125 0.14 70:30 10 10 10 86,454
150 0.12 80:20 10 10 10 95,779
150 0.12 70:30 10 10 10 102,960
175 0.1 80:20 10 10 10 111,218
175 0.1 70:30 10 10 10 119,188

Median number of NCCCs
Num % constraint % intra:inter Multi Multi Multi Multi
Vars density constraints -Hyb -Hyb -ABT -AWCS

-Pen -DB
60 0.2 90:10 52,826 52,826 116,72810,082,412
70 0.2 80:20 42,530 42,530 131,09510,388,804
70 0.2 70:30 52,179 52,179 162,75711,137,456
80 0.2 80:20 43,799 43,779 145,12412,703,763
80 0.2 70:30 51,542 51,542 176,54814,467,021
90 0.18 80:20 45,684 45,684 108,80614,363,762
90 0.18 70:30 61,117 61,117 219,67717,521,470
100 0.16 80:20 54,195 54,195 116,34016,992,283
100 0.16 70:30 83,499 83,499 290,93420,802,015
125 0.14 80:20 67,445 67,445 139,84425,087,165
125 0.14 70:30 104,296104,296212,56831,483,422
150 0.12 80:20 117,291117,291179,07034,293,903
150 0.12 70:30 181,334181,334305,89043,698,629
175 0.1 80:20 227,126227,126272,43245,266,830
175 0.1 70:30 365,401365,401459,31756,044,863

Table 6.9: Median results for unsolvable random problems with one or more agents having
no solution to their local problem.

6.4. Experimental Evaluation 102

Median number of messages
Num % constraint % intra:inter Multi Multi Multi Multi
Vars density constraints -Hyb -Hyb -ABT -AWCS

-Pen -DB
60 0.2 80:20 177 194 762 33,930
60 0.2 70:30 249 319 3,950 41,712
70 0.18 70:30 114 166 1,266 48,433
80 0.16 70:30 106 129 1,242 55,324
90 0.14 70:30 158 262 1,968 61,541
100 0.13 70:30 129 157 840 68,524

Median number of NCCCs
Num % constraint % intra:inter Multi Multi Multi Multi
Vars density constraints -Hyb -Hyb -ABT -AWCS

-Pen -DB
60 0.2 80:20 62,205 59,641 127,460 7,620,027
60 0.2 70:30 251,012 252,212 226,011 7,996,729
70 0.18 70:30 136,748136,748 192,851 10,569,556
80 0.16 70:30 174,461174,461 230,568 13,527,324
90 0.14 70:30 374,569 372,796 333,70916,092,489
100 0.13 70:30 362,227 354,277 347,37019,929,678

Table 6.10: Median results for unsolvable random problems with all agents having solutions
to their local problem but no global solution.

Median number of messages
Num Num intra: Multi Multi Multi Multi
Nodes Agents Deg inter -Hyb -Hyb -ABT -AWCS

-Pen -DB
150 15 4.9 80:20 42 42 860 6,307
150 15 5.1 80:20 42 42 947 6,456
150 15 4.9 70:30 50 50 2,911 9,356
150 15 5.1 70:30 48 48 1,899 9,474
150 25 4.9 70:30 72 72 1,576 13,728
150 25 5.1 70:30 68 68 1,630 14,031
200 20 4.9 80:20 57 57 1,277 9,163
200 20 5.1 80:20 58 58 1,497 9,195
200 20 4.9 70:30 66 66 2,296 14,107
200 20 5.1 70:30 64 64 1,956 14,680
200 25 4.9 80:20 68 68 1,398 10,195
200 25 5.1 80:20 66 66 1,234 10,321
200 25 4.9 70:30 79 79 1,816 16,277
200 25 5.1 70:30 76 76 1,883 17,021

Median number of NCCCs
Num Num intra: Multi Multi Multi Multi
Nodes Agents Deg inter -Hyb -Hyb -ABT -AWCS

-Pen -DB
150 15 4.9 80:20 1,525 1,525 1,202 11,590
150 15 5.1 80:20 1,421 1,421 1,286 11,924
150 15 4.9 70:30 2,332 2,332 2,395 15,259
150 15 5.1 70:30 2,114 2,114 1,797 15,255
150 25 4.9 70:30 296 296 767 11,580
150 25 5.1 70:30 294 294 758 11,725
200 20 4.9 80:20 1,415 1,415 1,304 11,910
200 20 5.1 80:20 1,717 1,717 1,321 11,812
200 20 4.9 70:30 2,512 2,512 1,727 15,300
200 20 5.1 70:30 2,253 2,253 1,656 15,854
200 25 4.9 80:20 673 673 900 9,807
200 25 5.1 80:20 644 644 845 9,693
200 25 4.9 70:30 895 895 1,053 12,411
200 25 5.1 70:30 875 875 1,095 12,990

Table 6.11: Median results for unsolvable graph colouring problems with one or more
agents having no solution to their local problem.

6.4. Experimental Evaluation 103

Median number of messages
Num Num intra: Multi Multi Multi Multi
Nodes Agents Deg inter -Hyb -Hyb -ABT -AWCS

-Pen -DB
150 15 4.9 80:20 144 250 1,417 6,620
150 15 5.1 80:20 187 311 1,823 6,627
150 15 4.9 70:30 388 518 4,019 9,816
150 15 5.1 70:30 208 364 3,590 9,942
150 25 4.9 80:20 48 261 1,405 13,174
150 25 5.1 80:20 27 246 1,205 14,173
150 25 4.9 70:30 61 328 3,134 19,866
150 25 5.1 70:30 48 333 2,863 22,954
200 20 4.9 80:20 266 414 1,464 8,480
200 20 5.1 80:20 176 342 1,424 9,015
200 20 4.9 70:30 1,324 1,528 4,818 13,206
200 20 5.1 70:30 744 952 3,402 13,058
200 25 4.9 80:20 186 376 1,429 11,049
200 25 5.1 80:20 116 313 1,166 11,577
200 25 4.9 70:30 354 627 3,097 15,778
200 25 5.1 70:30 204 498 2,495 17,386

Median number of NCCCs
Num Num intra: Multi Multi Multi Multi
Nodes Agents Deg inter -Hyb -Hyb -ABT -AWCS

-Pen -DB
150 15 4.9 80:20 2,184 2,275 2,514 23,646
150 15 5.1 80:20 2,166 2,355 2,981 24,823
150 15 4.9 70:30 7,566 7,566 4,571 30,175
150 15 5.1 70:30 4,250 4,250 4,150 30,428
150 25 4.9 80:20 439 830 1,029 20,399
150 25 5.1 80:20 394 814 883 21,351
150 25 4.9 70:30 558 1,339 1,522 26,605
150 25 5.1 70:30 514 1,155 1,398 30,230
200 20 4.9 80:20 3,263 3,263 2,333 22,227
200 20 5.1 80:20 2,375 2,666 2,132 23,200
200 20 4.9 70:30 10,130 10,130 4,201 28,327
200 20 5.1 70:30 7,502 7,502 3,195 27,356
200 25 4.9 80:20 1,607 1,718 1,503 20,176
200 25 5.1 80:20 1,126 1,399 1,416 20,676
200 25 4.9 70:30 3,528 3,532 2,104 25,026
200 25 5.1 70:30 1,968 2,736 1,895 25,263

Table 6.12: Median results for unsolvable graph colouring problems with all agents having
at least one solution to their local problem but no global solution.

6.4. Experimental Evaluation 104

70% and 80%. Two departments with common meetings have a distance of between 1 and

3 time units. Problems where one or more agents had no solution to their complex local

problem are presented in table 6.13. For these problems, the SEBJ algorithm detected

unsolvability and so both implementations of Multi-Hyb performed identically. These im-

plementations substantially outperformed Multi-ABT and Multi-AWCS on both messages

and NCCCs. Problems where all agents had solutions to their complex local problem but

there was no global solution are presented in table 6.14.

Median number of messages
Num Num intra: Multi Multi Multi Multi

Meetings Times inter -Hyb -Hyb -ABT -AWCS
-Pen -DB

50 7 80:20 13 13 182 1,730
50 7 70:30 14 14 331 2,308
50 6 80:20 12 12 86 1,138
50 6 70:30 14 14 176 1,446
60 7 80:20 12 12 124 1,687
60 7 70:30 14 14 240 2,390
60 6 80:20 11 11 117 1,145
60 6 70:30 12 12 171 1,511
70 7 80:20 10 10 152 1,721
70 7 70:30 12 12 185 2,232
70 6 80:20 12 12 110 1,139
70 6 70:30 12 12 132 1,495
80 7 80:20 10 10 115 1,659
80 7 70:30 10 10 167 2,285
80 6 80:20 10 10 97 5,724
80 6 70:30 12 12 239 1,401

Median number of NCCCs
Num Num intra: Multi Multi Multi Multi

Meetings Times inter -Hyb -Hyb -ABT -AWCS
-Pen -DB

50 7 80:20 3,051 3,051 10,128 26,687
50 7 70:30 3,174 3,174 11,474 32,575
50 6 80:20 2,315 2,315 3,929 15,309
50 6 70:30 1,916 1,916 5,270 18,386
60 7 80:20 3,055 3,055 12,044 31,148
60 7 70:30 3,476 3,476 11,779 41,168
60 6 80:20 2,211 2,211 5,021 17,618
60 6 70:30 1,980 1,980 5,638 21,167
70 7 80:20 3,395 3,395 15,330 34,728
70 7 70:30 4,343 4,343 14,405 41,546
70 6 80:20 2,275 2,275 6,152 20,240
70 6 70:30 2,576 2,576 6,598 24,230
80 7 80:20 4,637 4,637 14,145 38,468
80 7 70:30 3,941 3,941 16,856 49,571
80 6 80:20 2,210 2,210 5,724 20,048
80 6 70:30 2,890 2,890 1,674 1,674

Table 6.13: Median results for unsolvable meeting scheduling problems with one or more
agents having no solution to their local problem.

The results show that Multi-Hyb-Pen and Multi-Hyb-DB were the best performing

algorithms where one or more agents had no solution to their complex local problem.

6.4. Experimental Evaluation 105

Median number of messages
Num Num intra: Multi Multi Multi Multi

Meetings Times inter -Hyb -Hyb -ABT -AWCS
-Pen -DB

50 7 80:20 344 150 197 4,926
50 7 70:30 624 517 507 5,177
50 6 80:20 222 91 107 3,502
50 6 70:30 204 119 151 4,226
60 7 80:20 320 125 132 4,991
60 7 70:30 284 210 306 5,106
60 6 80:20 16 45 62 3,488
60 6 70:30 190 60 85 4,158
70 7 80:20 248 89 62 4,950
70 7 70:30 242 91 115 5,099
70 6 80:20 146 45 61 3,525
70 6 70:30 94 45 62 4,159
80 7 80:20 196 83 61 4,939
80 7 70:30 162 71 112 5,077
80 6 80:20 118 43 58 3,587
80 6 70:30 86 45 58 4,207

Median number of NCCCs
Num Num intra: Multi Multi Multi Multi

Meetings Times inter -Hyb -Hyb -ABT -AWCS
-Pen -DB

50 7 80:20 14,345 18,004 9,965 76,384
50 7 70:30 33,084 38,739 11,309 81,379
50 6 80:20 5,318 7,223 4,055 47,704
50 6 70:30 9,480 10,630 4,930 56,673
60 7 80:20 17,819 19,668 10,808 92,333
60 7 70:30 33,445 37,229 13,464 96,062
60 6 80:20 5,860 6,891 4,219 57,171
60 6 70:30 7,599 9,114 5,152 63,441
70 7 80:20 17,692 20,279 9,919 102,431
70 7 70:30 27,350 29,213 11,554 109,482
70 6 80:20 7,089 8,841 4,736 66,217
70 6 70:30 8,791 9,461 6,222 75,706
80 7 80:20 23,671 26,352 10,977 118,078
80 7 70:30 33,516 36,516 16,282 124,501
80 6 80:20 8,602 9,664 5,703 75,665
80 6 70:30 10,999 12,072 6,216 84,881

Table 6.14: Median results for unsolvable meeting scheduling problems with all agents
having at least one solution to their local problem but no global solution.

6.4. Experimental Evaluation 106

When all agents had solutions to their complex local problem but there was no solution

to the global problem, Multi-Hyb-Pen and Multi-Hyb-DB were able to reduce the number

of messages in most cases by ensuring that all agents had solutions before beginning the

message exchange. However, the cost of having to search for all local solutions in order

to prove global unsolvability, meant that Multi-ABT was optimal for NCCCs with Multi-

Hyb-Pen in 2nd place and Multi-Hyb-DB in 3rd.

Sensor Network Problems: Table 6.15 shows median results for unsolvable sensor

networks problems with 5 to 8 targets, 25-64 sensors (grids of 5, 6, 7 and 8), k-visibility

of 2, k-compatibility of 1, probability of visibility of 0.9 and probability of compatibility

of 0.6. The ratio of intra-agent to inter-agent constraints is 15% to 85%. Consequently,

all agents had solutions to their complex local problem but there was no global solution.

Median number of messages
Num Num Multi Multi Multi Multi

Targets Sensors -Hyb-Pen -Hyb-DB -ABT -AWCS
5 25 1,293 730 2,309 5,524
5 36 875 560 864 4,657
5 49 1,006 531 680 3,346
5 64 554 320 381 3,043
6 25 2,771 1,723 16,002 14,968
6 36 7,819 2,306 3,469 20,989
6 49 176 136 320 2,365
6 64 1156 815 514 925
7 25 7,235 4,047 26,807 25,103
7 36 5,962 2,775 5,429 7,043
7 49 721 574 693 3,731
7 64 2,041 1,501 503 1,155
8 25 20,488 13,809 112,189 105,417
8 36 8,333 5,098 24,051 88,030
8 49 1,011 641 1,068 6,415
8 64 6,539 5,295 932 2,470

Median number of NCCCs
Num Num Multi Multi Multi Multi

Targets Sensors -Hyb-Pen -Hyb-DB -ABT -AWCS
5 25 22,275 29,873 49,663 92,273
5 36 15,229 20,391 24,703 77,773
5 49 22,827 24,551 22,292 64,488
5 64 9,225 9,787 13,227 61,675
6 25 110,032 131,431 198,139 225,797
6 36 821,636 821,633 57,489 288,281
6 49 3,037 3,364 9,802 33,164
6 64 37,684 38,626 12,827 11,363
7 25 331,460 431,012 290,947 347,372
7 36 65,204 55,508 76,948 78,664
7 49 9,608 11,516 16,481 44,210
7 64 30,609 39,313 11,938 11,393
8 25 1,556,926 2,071,355 990,6531,321,611
8 36 153,330 226,993 299,894 935,045
8 49 19,284 20,455 25,350 57,949
8 64 337,895 379,813 17,372 25,679

Table 6.15: Median results on unsolvable Grid-based Sensor Network problems.

6.5. Evaluating Multi-Hyb’s Components 107

Multi-Hyb-DB offers the most consistent performance for number of messages. Multi-

ABT also performs well and occasionally outperforms Multi-Hyb-DB. Each algorithm

(Multi-Hyb-Pen, Multi-Hyb-DB, Multi-ABT and Multi-AWCS) is optimal for different

problem combinations for NCCCs.

6.5 Evaluating Multi-Hyb’s Components

In the four problem classes tested (randomly generated, graph colouring, scheduling and

sensor network problems), Multi-Hyb-Pen and Multi-Hyb-DB often produced significantly

better results than the other algorithms (Multi-ABT, Multi-AWCS, Multi-DisPeL and

DisBO-wd) for both solvable and unsolvable problems.

In order to ascertain the reasons for the success of the Multi-Hyb approach, an anal-

ysis of the performance of each component of Multi-Hyb-Pen and Multi-Hyb-DB was

conducted. Table 6.16 shows the breakdown for solvable randomly generated problems

(60 variables, 8 domain values, 5 agents, 90% intra-agent constraints, 10% inter-agent

constraints, 0.2 constraint density and 0.35 constraint tightness), solvable graph colouring

problems (150 nodes, 3 colours, 15 agents, 85% intra-agent constraints, 15% inter-agent

constraints and degree of 4.9) and for solvable meeting scheduling problems (60 meetings,

7 time units, 90% intra-agent constraints, 10% inter-agent constraints, 5 departments and

0.18 constraint density).

Multi-Hyb-Pen Multi-Hyb-DB
SEBJ DisPeL-1C SynCBJ-CLP Total SEBJ DisBO-wd SynCBJ-CLP Total

Random DisCSPs
Solved - 29% 71% 100% - 29% 71% 100%
Msgs - 322 22 399 - 284 5 323

NCCCs 142,005 14,723 1,269 163,585 166,143 7,158 254 170,093
Graph Colouring

Solved - 0% 100% 100% - 0% 100% 100%
Msgs - 10 52 88 - 176 49 226

NCCCs 4,914 348 1,051 7,011 4,914 2,437 1,007 8,002
Meeting Scheduling

Solved - 81% 19% 100% - 65% 35% 100%
Msgs - 20 5 20 - 60 5 60

NCCCs 10,761 107 32 10,777 12,050 128 32 12,076

Table 6.16: Median Phase Results.

SEBJ does not incur any messages but performs a high proportion of NCCCs due to

the generation of possibly all externally relevant (non-interchangeable) solutions to the

6.6. Contributions 108

local problem. SynCBJ-CLP is able to solve problems with relatively few messages and

NCCCs because of the knowledge learnt from local search’s short execution and SEBJ ’s

partial solutions.

Comparing the two variants (Multi-Hyb-Pen and Multi-Hyb-DB), it is interesting to

note that on random problems, DisBO-wd not only uses less messages and NCCCs than

DisPeL-1C but also provides a better ordering for SynCBJ-CLP. It is only let down by the

fact that those problems solved by DisBO-wd alone take longer than DisPeL-1C which

contributes to a higher number of NCCCs for SEBJ. For graph colouring and meeting

scheduling, DisBO-wd requires more effort which contributes to the higher values for

Multi-Hyb-DB.

6.6 Contributions

The following contributions have been made:

1. The Multi-Hyb approach has been developed. This 2-phase approach finds the exter-

nally relevant solutions for each agent’s complex local problem whilst participating

in a distributed local search to find a global solution. If distributed local search fails

to find a solution, a distributed systematic search uses the knowledge learned from

all searches to find a global solution.

2. SEBJ which finds all externally relevant solutions to an agent’s complex local prob-

lem.

3. DisPeL-1C which continually imposes penalties rather than waiting for 2 cycles of

quasi-local-minima. In addition, DisPeL-1C uses complex variables (one per agent).

4. A revised DisBO-wd to use complex variables within our Multi-Hyb-DB implemen-

tation.

5. Two implementations of the Multi-Hyb approach have been presented: Multi-Hyb-

Pen using the penalty-on-values local search strategy and Multi-Hyb-DB using the

breakout local search strategy.

6.7. Summary 109

6.7 Summary

In this chapter, Multi-Hyb, a concurrent distributed complete approach for solving DisC-

SPs with complex local problems has been presented. Specifically, a centralised systematic

search is run concurrently for each agent to find all externally relevant solutions for each

agent’s local problem whilst each agent also participates in a distributed local search to

find a suitable combination of local problem solutions which does not violate any inter-

agent constraint. If none of the centralised systematic searches detects unsolvability and all

systematic searches have found all non-interchangeable solutions and the distributed local

search does not find a solution to the problem, a distributed systematic search algorithm

is run. This algorithm benefits from: (i) not having to check intra-agent constraints since

it has the local problem solutions obtained by centralised systematic search; (ii) being able

to use possible ‘best values’ found by distributed local search; (iii) using knowledge learnt

about the difficult areas of the problem from distributed local search.

We have presented two implementations of our approach: Multi-Hyb-Pen and Multi-

Hyb-DB.Multi-Hyb-Pen uses SEBJ as the centralised systematic search solver, DisPeL-1C

as the distributed local search algorithm and SynCBJ-CLP as the distributed systematic

search algorithm. Multi-Hyb-DB uses SEBJ as the centralised systematic search solver,

DisBO-wd as the distributed local search algorithm and SynCBJ-CLP as the distributed

systematic search algorithm. Multi-Hyb-Pen and Multi-Hyb-DB have been shown to of-

ten outperform Multi-ABT, Multi-AWCS, Multi-DisPeL and DisBO-wd on distributed

randomly generated, distributed graph colouring, distributed meeting scheduling and dis-

tributed sensor network problems.

However, there is an issue with the Multi-Hyb approach which can cause its perfor-

mance to degrade for particular types of problems. Specifically, there are some problems

where local search is unable to find a solution but a global solution does exist. For these

problems, Multi-Hyb must find all externally relevant solutions to local problems before

it is able to find a solution through the SynCBJ-CLP algorithm. Conversely, if all local

problems have many solutions but there is no global solution to a problem, Multi-Hyb

cannot detect this until all externally relevant solutions are found and the SynCBJ-CLP

6.7. Summary 110

algorithm runs. In both of these scenarios, Multi-Hyb could have wasted a large num-

ber of non-concurrent constraint checks as well as messages. In the next chapter, we

present another novel hybrid approach for DisCSPs with Complex Local Problems which

is specifically aimed at tackling this limitation of Multi-Hyb.

Chapter 7

Multi-HDCS - Solving DisCSPs

With Complex Local Problems

Cooperatively

7.1 Introduction

In this chapter, the Hybrid Decomposition Concurrent Search approach for Complex Local

Problems (Multi-HDCS) is presented. Multi-HDCS revises Multi-Hyb (see 6) by running

the distributed systematic search whilst the agents search for solutions to their local prob-

lem and participating in a distributed local search. Information learnt about difficult

variables by a distributed local search algorithm is now synchronised on a regular basis

by distributed systematic search. Whilst existing distributed local searches can be used,

a new distributed systematic search algorithm is presented to ensure completeness whilst

additional solutions to complex local problems are added. A diagram of the approach is

shown in figure 7.1.

The principle differences with the Multi-Hyb diagram (see figure 6.1) are: (i) the

approach has a single phase and consequently the distributed systematic search now runs

at the same time as the distributed local search and centralised systematic searches; (ii)

information is now synchronised from distributed local search to distributed systematic

111

7.2. Description of approach 112

Figure 7.1: The Multi-HDCS approach.

search regularly rather than between the two phases in Multi-Hyb.

An overview of the approach and algorithms presented in this chapter is shown in table

7.1.

Approach Algorithm Local Search Strategy

Multi-HDCSMulti-HDCS-Pen Penalties on values

Multi-HDCSMulti-HDCS-DBConstraint weights (‘Breakout’)

Table 7.1: Chapter Overview.

7.2 Description of approach

Multi-HDCS is a novel distributed hybrid approach for solving DisCSPs with complex

local problems. Our approach runs a centralised systematic search and two distributed

search algorithms concurrently to solve the problem. In order to explain the approach,

the very simple timetabling problem presented in section 6.2 is used.

InMulti-HDCS (see Algorithm 7), each agent attempts to solve their own local problem

using a centralised systematic search (step 5). This search finds all solutions to an agent’s

complex local problem which are externally relevant, i.e. all non-interchangeable

solutions which satisfy all intra-agent constraints and are distinguishable when looking

only at externally relevant variables (involved in inter-agent constraints). In the simple

timetabling example (see section 6.2 and figure 6.2), a centralised systematic search would

7.2. Description of approach 113

be run for each department. If any department is unable to find a solution to its complex

local problem, the problem is unsolvable. Otherwise, after all agents have found at least

one solution to their local problem, two additional distributed searches (local search

and systematic search) are started concurrently (steps 10 and 11), which attempt to

find a solution which satisfies all inter-agent constraints. The centralised systematic search

(step 5) continues to run and dynamically communicates new value combinations to both

distributed searches. Meanwhile, the distributed local search (step 10) identifies difficult

parts of the problem and passes this information to the distributed systematic search (step

11) at synchronisation points, to be used for dynamic variable ordering. Multi-HDCS

does not exchange values from distributed local search to distributed systematic search

as Multi-Hyb does, because of the dynamic addition of values to distributed systematic

search.

Algorithm 7 Multi-HDCS
1: Initialise each agent with its complex local problem
2: done← false
3: while not(done) concurrently do
4: for each agent ai with local problem lpi concurrently do
5: Run a centralised systematic search to find all externally relevant solutions to lpi
6: end for
7: if A centralised systematic search finds no solutions to its local problem then
8: done← true
9: else if Once all agents have found at least one solution to their local problem then

10: Run a distributed local search combining local problem solutions (found in step 5),
checking inter-agent constraints only. Regularly pass the knowledge learnt during
search to the distributed systematic search below (step 8)

11: Run a distributed systematic search combining local problem solutions (found in
step 5) and using distributed local search’s findings (from step 7) to dynamically order
agents

12: if Distributed local search or distributed systematic search finds a solution or distributed
systematic search detects that the problem is unsolvable then

13: done← true
14: end if
15: end if
16: end while
17: if distributed local search or distributed systematic search has found solution S then
18: return S
19: else
20: Return “Unsolvable problem” as either the centralised systematic search (step 5) or the

distributed systematic search (step 8) has detected unsolvability
21: end if

An overview of the properties of the different components of Multi-HDCS is given in

7.2. Description of approach 114

table 7.2.

Component Variables Variable
Or-
dering

Domains Constraints
Considered

Knowledge Exchanged

Centralised
Systematic
Searches

All vari-
ables in an
agent

Static Static Intra-agent
constraints

Solutions to complex local problems
passed to distributed local search and
distributed systematic search.

Distributed
Local
Search

All ex-
ternally
relevant
variables in
an agent

Static Dynamic Inter-agent
constraints

Solutions to complex local problems
from centralised systematic searches.
Knowledge about difficult variables
and best values passed to distributed
systematic search.

Distributed
Systematic
Search

One com-
plex vari-
able per
agent

Dynamic Dynamic Inter-agent
constraints

Solutions to complex local prob-
lems from centralised systematic
searches. Knowledge about difficult
variables regularly synchronised from
distributed local search.

Table 7.2: Overview of Multi-HDCS components.

7.2.1 Completeness

The centralised systematic searches (step 5) are guaranteed to find all non-interchangeable

solutions to the complex local problems. If one of these problems does not have a solution,

the centralised systematic search for that problem and consequently Multi-HDCS will

detect unsolvability.

If, however, all complex local problems have at least one solution, the distributed

systematic search (step 11) will either find a solution or detect unsolvability. Note that

the distributed systematic search can complete its run whilst the centralised systematic

searches are still running if a solution to the global problem is found.

In the case of unsolvable problems, we must make sure that the distributed systematic

search cannot miss values. Therefore, nogoods contain a justification. These justifications

can then be used to determine which nogoods can be removed when a new value is added

- in a similar way to when a constraint is retracted in dynamic CSPs. When a new value

is added to variable xk , all nogoods containing variable xk as a justification are removed.

Should a new value be added to a variable, whilst it is choosing a value, then that value is

considered when all other values have been considered (i.e. as the last value in the domain).

Should a variable which has been assigned a value gain a new value, this new value will

be attempted when that variable is backjumped or backtracked to (note if the variable is

7.2. Description of approach 115

backjumped over then the new value for this variable is attempted). If a variable which has

yet to be assigned gains a new value, then the new value will be attempted along with the

others when the variable is processed. Additionally, the distributed systematic search’s

first agent cannot be changed dynamically whilst all other agents can change position in

the ordering. Consequently, when the distributed systematic search returns to the first

agent and the first agent has no more values to try, the distributed systematic search

pauses. This is contrary to normal distributed systematic search which would terminate

at this point. Whilst in pause mode, the next step of the distributed systematic search

would either be: (i) once centralised systematic search detects a new solution for an agent

and that agent is in one of the nogoods which caused the algorithm to enter pause mode,

the algorithm tries these new values; (ii) if all centralised systematic searches for agents

composed in the nogood which caused the algorithm to enter pause mode finish without

finding more solutions, the distributed systematic search terminates.

Consequently, the distributed systematic search can only terminate if all values have

been found and so no values are missed and the distributed systematic search is complete.

7.2.2 Termination

Each instance of the centralised systematic search terminates when either: (i) it has found

all non-interchangeable solutions to its local problem; (ii) it detects the unsolvability of

its local problem and has informed all other agents; (iii) receives a message from one

of the agents stating that the problem is unsolvable; (iv) receives a message from either

the distributed local search or the distributed systematic search stating that the problem

has been solved. Since distributed local search and distributed systematic search only

start once all agents have found at least one solution, the distributed local search and the

distributed systematic search would not run if one or more agents had no solution to their

local problem. Consequently, we now only need to consider cases where all agents have

found at least one solution to their local problem. The distributed local search stops when

either: (i) it has found a solution or; (ii) the distributed systematic search has either found

a solution or detected unsolvability. The distributed systematic search terminates when

7.3. Implementations 116

either: (i) it has found a solution; (ii) it has detected that the problem is unsolvable once

the centralised systematic searches have completed their search; (iii) the distributed local

search has found a solution. Since the centralised systematic searches, the distributed local

search and the distributed systematic search terminate, Multi-HDCS also terminates.

7.3 Implementations

We present two implementations of our approach: Multi-HDCS-Pen and Multi-HDCS-DB.

The approaches differ in the strategy used for local search: penalties on values (Multi-

HDCS-Pen) and weights on constraints (Multi-HDCS-DB).

7.3.1 Multi-HDCS-Pen

Multi-HDCS-Pen runs SEBJ (see chapter 6) as the centralised systematic search algo-

rithm, InterDisPeL (see below) as the distributed local search algorithm and InterPODS

(see below) as the distributed systematic search algorithm.

SEBJ finds all solutions to an agent’s complex local problem which are externally

relevant, i.e. all non-interchangeable solutions which satisfy all intra-agent constraints

and are distinguishable when looking only at externally relevant variables (involved in

inter-agent constraints). This SEBJ algorithm was already presented as part of Multi-

Hyb in section 6.3.1 to which the reader is referred for a full description of the algorithm.

InterDisPeL is a penalty-based distributed local search algorithm inspired by Multi-

DisPeL [8]. Unlike Multi-DisPeL, InterDisPeL: (i) considers only inter-agent constraints;

(ii) maintains, for each agent, an overall count of the penalties it has imposed in the

spirit of PenDHyb (see section 5.3.1). Thus, whenever a penalty is imposed on an agent’s

variable, the agent’s penalty count is increased. This allows InterDisPeL to detect the

complex local problems that are difficult to solve (i.e. with high penalties) and inform

InterPODS (see below).

InterPODS (see Algorithms 8 and 9) is a new systematic algorithm for solving inter-

agent constraints which uses complex variables. InterPODS is inspired by the much

simpler PenDHyb algorithm (see section 5.3.1) with substantial differences: (i) each In-

7.3. Implementations 117

terPODS agent knows only those value combinations which are compatible with the local

problem’s intra-agent constraints; (ii) InterPODS only considers inter-agent constraints;

(iii) InterPODS uses complex variables; (iv) the next agent for processing is chosen dy-

namically based on the maximum degree heuristic, the minimum domain heuristic and

each agent’s penalty count obtained from the concurrent InterDisPeL search. For exam-

ple, assuming that maximum degree and minimum domain were the same for the agents

representing computing and business then if agent art has already selected a value for its

complex variable and computing and business have penalties of 0 and 3, InterPODS will

select the business agent for processing. The penalty information is synchronized with

InterDisPeL’s current penalty counts regularly.

Algorithm 8 InterPODS
1: initialise agents with partial solutions from centralised systematic search as its domain
2: set first agent and curr agent to highest agent in ordering schema.
3: ChooseVal(curr agent)
4: while messages exist do
5: if receive backjumping message with backjumping agent then
6: ChooseVal (backjumping agent)
7: else if receive cpa message with next agent then
8: ChooseVal (next agent)
9: else if “solution found” then

10: stop algorithm and return “solution found”
11: else if “no solution found” then
12: stop algorithm and return “no solution found”
13: end if
14: end while

Determining the optimal variable ordering for InterPODS in Multi-HDCS -Pen

Experiments were conducted to measure the effectiveness of various dynamic orderings for

InterPODS in the Multi-HDCS-Pen algorithm. If there remains a tie after considering all

parts of the ordering, then agents are chosen lexicographically. The following orderings

were considered:

1. PenCount - Choose the agent with the variable that has the highest penalty count

as the next agent.

2. PenCount+MaxDeg - Choose the agent with the highest penalty as the next agent.

7.3. Implementations 118

Algorithm 9 procedure ChooseVal(curr agent)

1: for each value di in agent curr agent’s domain do
2: if all higher priority constraints are satisfied then
3: if all higher priority nogoods are not consistent with agent values then
4: assign value di representing the chosen local solution for that agent’s problem to agent

curr agent in cpa
5: set next agent to next agent dynamically chosen from ordering schema.
6: if next agent = last agent then
7: return “solution found”
8: end if
9: send message to next agent with cpa

10: end if
11: else if higher priority constraints are violated then
12: for each higher priority constraint which is violated do
13: record the agent and value pair as part of a nogood value di to agent curr agent
14: end for
15: end if
16: end for
17: if centralised systematic search has found new solutions then
18: synchronize domain with centralised systematic search.
19: remove nogoods containing agents who have new values.
20: return chooseVal(curr agent).
21: end if
22: if local search has updated penalty counts then
23: synchronize information from local search.
24: end if
25: if curr agent is first agent and has no assigned value and centralised systematic search has

terminated then
26: return “unsolvable problem”
27: else if curr agent is first agent and has no assigned value but centralised systematic search

has not terminated then
28: pause algorithm and wait for centralised systematic search to retrieve new solutions or

terminate.
29: else if curr agent has no assigned value then
30: Create a conflict set for agent curr agent containing all agents involved in nogoods for values

belonging to agent curr agent
31: if any agents between the lowest priority agent in the conflict set and this agent have gained

new values then
32: Set that agent to be curr agent.
33: return chooseVal(curr agent)
34: else
35: Send a backjump message to the lowest priority agent in the conflict set.
36: end if
37: end if

If there is a tie, choose the agent with the highest number of neighbours.

3. PenCount+MinDom - Choose the agent with the highest penalty as the next agent.

If there is a tie, choose the agent with the minimum number of domain values.

4. MaxDeg+PenCount - Choose the agent with the highest number of neighbours as

7.3. Implementations 119

the next agent. If there is a tie, choose the agent with the variable that has the

highest penalty count.

5. MinDom+PenCount - Choose the agent with the minimum number of domain values

as the next agent. If there is a tie, choose the agent with the variable that has the

highest penalty count.

6. PenCount+MaxDeg+MinDom - Choose the agent with the variable that has the

highest penalty count as the next agent. If there is a tie, choose the agent with

the highest number of neighbours. If there remains a tie, choose the agent with the

minimum number of domain values.

7. PenCount+MinDom+MaxDeg - Choose the agent with the variable that has the

highest penalty count as the next agent. If there is a tie, choose the agent with the

minimum number of domain values. If there remains a tie, choose the agent with

the highest number of neighbours.

8. MaxDeg+PenCount+MinDom - Choose the agent with the highest number of neigh-

bours as the next agent. If there is a tie, choose the agent with the variable that

has the highest penalty count. If there remains a tie, choose the agent with the

minimum number of domain values.

9. MaxDeg+MinDom+PenCount - Choose the agent with the highest number of neigh-

bours as the next agent. If there is a tie, choose the agent with the minimum number

of domain values. If there remains a tie, choose the agent with the variable that has

the highest penalty count.

10. MinDom+PenCount+MaxDeg - Choose the agent with the minimum number of

domain values as the next agent. If there is a tie, choose the agent with the variable

that has the highest penalty count. If there remains a tie, choose the agent with the

highest number of neighbours.

11. MinDom+MaxDeg+PenCount - Choose the agent with the minimum number of

domain values as the next agent. If there is a tie, choose the agent with the highest

7.3. Implementations 120

number of neighbours. If there remains a tie, choose the agent with the variable that

has the highest penalty count.

We compared the 11 different orderings described above on randomly generated prob-

lems with 60 variables, 8 domain values, 5 agents, 75% intra-agent constraints and 25%

inter-agent constraints, 0.2 constraint density and 0.35 constraint tightness. Table 7.3

shows a breakdown of the performance of each component of the Multi-HDCS-Pen algo-

rithm since differences in the ordering can impact on each of the components.

SEBJ InterDisPeL InterPODS Total SEBJ InterDisPeL InterPODS Total
PenCount PenCount+MaxDeg

Solved - 0% 100% 100% - 0% 100% 100%
Msgs - 1,738 441 3,162 - 2,066 387 3,329

NCCCs 266,672 157,602 214,495 586,856 267,462 196,784 212,261 598,744
PenCount+MinDom MaxDeg+PenCount

Solved - 0% 100% 100% - 0% 100% 100%
Msgs - 2,440 410 3,758 - 1,978 363 3,352

NCCCs 259,580 204,151 251,006 692,831 267,200 195,383 280,419 650,655
MinDom+PenCount PenCount+MaxDeg+MinDom

Solved - 0% 100% 100% - 0% 100% 100%
Msgs - 2,354 473 3,607 - 2,214 526 3,635

NCCCs 271,059 239,281 254,242 663,786 273,970 240,934 264,822 685,820
PenCount+MinDom+MaxDeg MaxDeg+PenCount+MinDom

Solved - 0% 100% 100% - 0% 100% 100%
Msgs - 1,792 359 3,824 - 2,036 424 3,434

NCCCs 251,599 175,955 232,281 705,668 271,059 190,326 213,166 631,394
MaxDeg+MinDom+PenCount MinDom+PenCount+MaxDeg

Solved - 0% 100% 100% - 0% 100% 100%
Msgs - 1,850 366 33,42 - 2,056 354 2,929

NCCCs 271,059 201,906 183,491 578,160 272,615 190,852 279,529 685,820
MinDom+MaxDeg+PenCount

Solved - 0% 100% 100%
Msgs - 1,942 312 3,367

NCCCs 273,970 213,788 253,397 663,140

Table 7.3: Comparison of different orderings for InterPODS in the Multi-HDCS-Pen algo-
rithm.

The best performing heuristic for messages is ‘MinDom+PenCount+MaxDeg’ whilst

the best performing heuristic for NCCCs is ‘MaxDeg+MinDom+PenCount’. A normal-

ization of the results showed that the difference in constraint checks was more significant

and therefore the heuristic recommended for determining the choice of next agent for

InterPODS in the Multi-HDCS-Pen algorithm is ‘MaxDeg+MinDom+PenCount’.

7.3. Implementations 121

7.3.2 Multi-HDCS-DB

Multi-HDCS-DB runs SEBJ (see section 6) as the centralised systematic search algorithm,

InterDisBO-wd (see below) as the distributed local search algorithm and InterPODS as

the distributed systematic search algorithm.

InterDisBO-wd is inspired by the breakout-based algorithm DisBO-wd [8]. Unlike

DisBO-wd, InterDisBO-wd : (i) checks only inter-agent constraints; (ii) considers only

variable-value combinations approved by SEBJ ; (iii) maintains, for each agent, a cumu-

lative constraint-weight counter, i.e. the sum of the weights on all constraints which

involve one of the agent’s variables. These counters enable the indentification of complex

local problems which are difficult to solve (i.e. with high constraint weights) to guide the

InterPODS systematic search.

InterPODS has already been presented above for Multi-HDCS-Pen. The version of

InterPODS used in Multi-HDCS-DB differs only in that the next agent for processing

is now chosen dynamically based on each agent’s constraint weight from the concurrent

InterDisBO-wd search with ties broken by minimum domain and maximum degree heuris-

tics. The constraint weight information is synchronized with InterDisBO-wd ’s current

constraint weights regularly.

Determining the optimal variable ordering for InterPODS in Multi-HDCS -DB

Experiments were also conducted to measure the effectiveness of various dynamic order-

ings for InterPODS in the Multi-HDCS-DB algorithm. We assume agents are chosen

lexicographically if there remains a tie after considering all parts of the ordering. The

following orderings were considered:

1. ConWeight - Choose the agent with the highest constraint weight as the next agent.

2. ConWeight+MaxDeg - Choose the agent with the highest constraint weight as the

next agent. If there is a tie, choose the agent with the highest number of neighbours.

3. ConWeight+MinDom - Choose the agent with the highest constraint weight as the

next agent. If there is a tie, choose the agent with the minimum number of domain

7.3. Implementations 122

values.

4. MaxDeg+ConWeight - Choose the agent with the highest number of neighbours as

the next agent. If there is a tie, choose the agent with the highest constraint weight.

5. MinDom+ConWeight - Choose the agent with the minimum number of domain

values as the next agent. If there is a tie, choose the agent with the variable that

has the highest constraint weight.

6. ConWeight+MaxDeg+MinDom - Choose the agent with the highest constraint

weight as the next agent. If there is a tie, choose the agent with the highest number

of neighbours. If there remains a tie, choose the agent with the minimum number

of domain values.

7. ConWeight+MinDom+MaxDeg - Choose the agent with the highest constraint

weight as the next agent. If there is a tie, choose the agent with the minimum

number of domain values. If there remains a tie, choose the agent with the highest

number of neighbours.

8. MaxDeg+ConWeight+MinDom - Choose the agent with the highest number of

neighbours as the next agent. If there is a tie, choose the agent with the highest

constraint weight. If there remains a tie, choose the agent with the minimum number

of domain values.

9. MaxDeg+MinDom+ConWeight - Choose the agent with the highest number of

neighbours as the next agent. If there is a tie, choose the agent with the minimum

number of domain values. If there remains a tie, choose the agent with the highest

constraint weight.

10. MinDom+ConWeight+MaxDeg - Choose the agent with the minimum number of

domain values as the next agent. If there is a tie, choose the agent with the highest

constraint weight. If there remains a tie, choose the agent with the highest number

of neighbours.

7.3. Implementations 123

11. MinDom+MaxDeg+ConWeight - Choose the agent with the minimum number of

domain values as the next agent. If there is a tie, choose the agent with the highest

number of neighbours. If there remains a tie, choose the agent with the highest

constraint weight.

These orderings were compared on randomly generated problems with 60 variables,

8 domain values, 5 agents, 75% intra-agent constraints and 25% inter-agent constraints,

0.2 constraint density and 0.35 constraint tightness. Table 7.4 show a breakdown of the

performance of each component of the Multi-HDCS-DB algorithm since differences in the

ordering can impact on each of the components.

SEBJ InterDisBO-wd InterPODS Total SEBJ InterDisBO-wd InterPODS Total
ConWeight ConWeight+MaxDeg

Solved - 3% 97% 100% - 0% 100% 100%
Msgs - 256 461 934 - 301 352 825

NCCCs 247,659 87,069 327,053 442,620 244,794 91,079 159,456 455,162
ConWeight+MinDom MaxDeg+ConWeight

Solved - 0% 100% 100% - 1% 99% 100%
Msgs - 271 65 407 - 295 338 829

NCCCs 254,449 89,948 87,292 332,431 241,733 92,172 177,845 454,175
MinDom+ConWeight ConWeight+MaxDeg+MinDom

Solved - 2% 98% 100% - 0% 100% 100%
Msgs - 306 59 428 - 265 282 838

NCCCs 267,462 99,167 82,713 354,079 248,666 84,515 170,357 393,921
ConWeight+MinDom+MaxDeg MaxDeg+ConWeight+MinDom

Solved - 2% 98% 100% - 0% 100% 100%
Msgs - 177 72 345 - 254 261 752

NCCCs 236,915 58,568 81,599 299,226 251,859 82,716 146,823 371,538
MaxDeg+MinDom+ConWeight MinDom+ConWeight+MaxDeg

Solved - 1% 99% 100% - 2% 98% 100%
Msgs - 244 350 811 - 264 63 446

NCCCs 231,302 80,754 164,482 382,864 256,759 85,713 82,448 344,894
MinDom+MaxDeg+ConWeight

Solved - 2% 98% 100%
Msgs - 322 50 488

NCCCs 289,564 110,573 75,620 361,578

Table 7.4: Comparison of different orderings for InterPODS in the Multi-HDCS-DB algo-
rithm.

For Multi-HDCS-DB, the ‘ConWeight+MinDom+MaxDeg’ ordering performs signif-

icantly better than all other orderings and is therefore the recommended ordering for

Multi-HDCS-DB.

7.3. Implementations 124

7.3.3 Determining the Optimal Synchronisation Interval

We also conducted experiments to determine the optimal synchronisation interval. For

Multi-HDCS-Pen, we tried intervals of ∈ 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70.

We chose 70 as the upper limit since InterDisPeL never ran longer than 70 cycles. For

Multi-HDCS-DB, we used the same intervals but doubled them so as to reflect the 2

cycles of InterDisBO-wd which equal 1 cycle of InterDisPeL. Therefore, the intervals

were ∈ 2, 4, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140. 140 was the upper limit

of InterDisBO-wd ’s runs and therefore this was chosen as the upper limit. Median re-

sults on randomly-generated problems with 60 variables, 8 domain values, 5 agents, 75%

intra-agent constraints and 25% inter-agent constraints, 0.2 constraint density and 0.35

constraint tightness are shown in table 7.5 for Multi-HDCS-Pen and table 7.6 for Multi-

HDCS-DB.

SEBJ InterDisPeL InterPODS Total SEBJ InterDisPeL InterPODS Total
1 Cycle 2 Cycles

Solved - 0% 100% 100% - 0% 100% 100%
Msgs - 4,680 324 6,513 - 2214 526 3,635

NCCCs 291,892 360,668 262,949 844,147 273,970 240,934 264,822 685,820
5 Cycles 10 Cycles

Solved - 0% 100% 100% - 0% 100% 100%
Msgs - 2,460 333 3,586 - 2,654 477 3,953

NCCCs 271,059 261,448 218,012 692,536 273,970 275,379 285,727 705,286
15 Cycles 20 Cycles

Solved - 0% 100% 100% - 0% 100% 100%
Msgs - 2,594 390 4,765 - 2,492 413 4,240

NCCCs 280,052 346,553 285,090 761,118 256,946 294,755 194,816 761,888
25 Cycles 30 Cycles

Solved - 0% 100% 100% - 0% 100% 100%
Msgs - 3,066 459 4,548 - 2,832 470 4230

NCCCs 271,059 355,424 259,247 737,233 289,564 323,978 268,296 829,660
35 Cycles 40 Cycles

Solved - 0% 100% 100% - 0% 100% 100%
Msgs - 2,780 401 3,766 - 2,350 430 4,172

NCCCs 281,608 332,933 263,459 965,591 267,462 293,981 240,015 723,144
45 Cycles 50 Cycles

Solved - 0% 100% 100% - 0% 100% 100%
Msgs - 2,800 343 4,519 - 2,546 572 4,467

NCCCs 269,441 402,770 225,569 719,630 252,319 286,036 305,741 859,690
55 Cycles 60 Cycles

Solved - 0% 100% 100% - 0% 100% 100%
Msgs - 2,352 350 3,845 - 2,504 453 4,546

NCCCs 256,759 281,803 254,741 861,027 252,988 294,246 238,827 882,954
65 Cycles 70 Cycles

Solved - 0% 100% 100% - 0% 100% 100%
Msgs - 2,752 368 4,687 - 2,550 368 4,171

NCCCs 273,970 336,760 292,014 856,126 271,059 308,131 227,352 907,079

Table 7.5: Comparison of synchronisation intervals for the Multi-HDCS-Pen algorithm.

7.3. Implementations 125

SEBJ InterDisBO-wd InterPODS Total SEBJ InterDisBO-wd InterPODS Total
2 Cycles 4 Cycles

Solved - 3% 97% 100% - 1% 99% 100%
Msgs - 855 119 1,390 - 307 61 445

NCCCs 289,564 209,341 183,983 494,221 271,059 100,440 81,660 356,640
10 Cycles 20 Cycles

Solved - 2% 98% 100% - 1% 99% 100%
Msgs - 274 85 477 - 315 56 439

NCCCs 255,709 87,290 87,935 377,484 273,970 108,141 78,612 405,125
30 Cycles 40 Cycles

Solved - 2% 98% 100% - 1% 99% 100%
Msgs - 328 58 441 - 366 52 474

NCCCs 273,970 101,326 90,473 375,701 289,564 116,197 81,858 371,930
50 Cycles 60 Cycles

Solved - 4% 96% 100% - 2% 98% 100%
Msgs - 288 59 434 - 177 72 345

NCCCs 267,462 87,368 85,398 366,930 236,915 58,568 81,599 299,226
70 Cycles 80 Cycles

Solved - 4% 96% 100% - 2% 98% 100%
Msgs - 288 59 434 - 257 61 389

NCCCs 267,462 87,368 85,398 366,930 259,896 73,587 85,060 330,311
90 Cycles 100 Cycles

Solved - 0% 100% 100% - 3% 97% 100%
Msgs - 315 63 407 - 275 68 382

NCCCs 268817 106633 88443 364377 255709 88830 94429 348226
110 Cycles 120 Cycles

Solved - 3% 97% 100% - 0% 100% 100%
Msgs - 296 62 439 - 358 60 473

NCCCs 239,845 88,376 92,288 319,583 269,745 121,373 86,017 383,369
130 Cycles 140 Cycles

Solved - 1% 99% 100% - 1% 99% 100%
Msgs - 375 56 498 - 314 59 453

NCCCs 289,564 120,276 79,115 376,104 281,608 106,368 81,871 371,930

Table 7.6: Comparison of synchronisation intervals for the Multi-HDCS-DB algorithm.

7.4. Experimental Evaluation 126

It is interesting to note that the synchronisation intervals for Multi-HDCS-Pen and

Multi-HDCS-DB are different. Multi-HDCS-DB benefits from longer synchronisation in-

tervals whilst Multi-HDCS-Pen prefers shorter synchronisation intervals. However, chang-

ing the synchronisation interval does not have a large effect on performance. The optimal

synchronisation interval for Multi-HDCS-DB is 60 to minimise both messages and con-

straint checks. The optimal synchronisation interval for Multi-HDCS-Pen is 5 to minimise

messages and 2 to minimise constraint checks. When the results are normalised, the dif-

ference in constraint checks is larger so the optimal synchronisation interval is 2. We did

consider synchronisation intervals of 3 and 4 but these produced worse results than 2 and

5. We use these synchronisation intervals in the experimental evaluation below.

7.4 Experimental Evaluation

An extensive experimental evaluation of two implementations of Multi-HDCS on both

solvable and unsolvable problems has been carried out. The experimental evaluation com-

pared Multi-HDCS-Pen and Multi-HDCS-DB against Multi-ABT, Multi-AWCS, Multi-

Hyb-Pen and Multi-Hyb-DB. In addition, Multi-DisPeL and DisBO-wd were compared for

solvable problems only. The reader is referred to section 6.4 for the verification of our

implementations of these algorithms.

Multi-HDCS-Pen and Multi-HDCS-DB were evaluated on distributed randomly

generated problems, distributed 3-colour graph colouring problems and dis-

tributed meeting scheduling problems measuring: (i) the number of messages sent

between agents; (ii) the number of non-concurrent constraint checks (NCCCs) performed.

Note that the number of messages/NCCCs required for termination detection are not in-

cluded in the results for any of the algorithms as reported by other researchers [96]. Whilst

CPU time is not an established measure for comparing DisCSP algorithms [56], the CPU

time results matched the trends of other measures. The experiments focused on naturally

distributed problems i.e. problems which have a high ratio of intra-agent to inter-agent

constraint: between 90:10 and 70:30. The number of variables used ranged from 25 to

200. 100 different instances for each problem type (proportion of intra-agent to inter-agent

7.4. Experimental Evaluation 127

constraints) were solved, with average and median results calculated.

An evaluation of Multi-HDCS-Pen andMulti-HDCS-DB on distributed sensor network

problems is also presented. These problems are not naturally distributed since they have

a relatively simple local problem within each agent and many inter-agent constraints.

However, they are included in the comparison to determine the limitations of the Multi-

HDCS approach.

7.4.1 Solvable Problems

An identical cutoff from the Multi-Hyb experiments in section 6.4 of 100n iterations for

Multi-DisPeL and 200n iterations for DisBO-wd was used. Cases where Multi-DisPeL or

DisBO-wd did not solve all problems are indicated in the results by “*”.

Randomly Generated Problems

Table 7.7 presents the median for solvable randomly generated problems using 5 agents,

a domain size of 8, a constraint density of 0.2 and constraint tightness of 0.35 for Multi-

HDCS-Pen and Multi-HDCS-DB compared with systematic, hybrid search and local

search algorithms.

When comparing the two implementations of the Multi-HDCS approach, Multi-HDCS-

DB outperforms Multi-HDCS-Pen in general with the later occasionally performing better

for NCCCs but never for messages. For number of messages with medium-sized problems

(60 to 125 variables), Multi-HDCS-DB performed best with Multi-Hyb-DB in 2nd place

and Multi-Hyb-Pen in 3rd. For problems with 125 or more variables, Multi-Hyb-Pen

and Multi-DisPeL outperform Multi-HDCS-DB although the difference is very small. For

NCCCs, Multi-HDCS-DB gives best results, followed by Multi-HDCS-Pen and Multi-Hyb-

Pen. Consequently, whilst Multi-Hyb-DB and Multi-DisPeL do outperform Multi-HDCS-

DB for large problems on messages, Multi-HDCS-DB gives the best results for NCCCs.

7.4. Experimental Evaluation 128

Median number of messages
Num % intra:inter Multi Multi Multi Multi Multi Multi Multi DisBO
Vars constraints -HDCS -HDCS -Hyb -Hyb -ABT -AWCS -DisPeL -WD

-Pen -DB -Pen -DB
60 90:10 234 60 399 323 842 4,834 536 1,150*
60 80:20 344 85 197 158 1,692 5,287 422 1,165
60 70:30 278 156 818 833 6,832 4,475 496 985
70 80:20 130 45 159 96 731 3,672 208 435
70 70:30 264 60 112 175 1,141 3,907 194 420
80 80:20 70 42 143 60 440 3,991 104 335
80 70:30 117 38 89 60 500 6,076 108 295
90 80:20 70 35 94 60 336 4,242 66 275
90 70:30 125 35 81 60 298 6,193 80 265
100 80:20 70 35 56 60 248 5,922 56 235
100 70:30 70 35 78 60 276 7,235 60 225
125 80:20 70 35 20 60 197 6,297 40 225
125 70:30 70 35 60 60 152 9,218 40 205
150 80:20 70 35 20 60 152 6,803 28 215
150 70:30 70 35 30 46 128 14,554 32 195
175 80:20 70 35 20 45 134 10,707 24 210
175 70:30 70 35 20 45 118 15,126 24 190

Median number of NCCCs
Num % intra:inter Multi Multi Multi Multi Multi Multi Multi DisBO
Vars constraints -HDCS -HDCS -Hyb -Hyb -ABT -AWCS -DisPeL -WD

-Pen -DB -Pen -DB
60 90:10 59,560 60,088 163,585 170,093 314,067 165,118 1,187,335 469,162*
60 80:20 75,413 71,387 277,408 268,336 420,384 277,408 949,616 440,862
60 70:30 1,012,213 537,988 2,761,1712,626,087286,821 182,936 1,148,704 353,862
70 80:20 50,698 49,960 151,678 133,577 284,713 124,238 745,608 252,678
70 70:30 88,373 85,467 291,421 288,457 524,487 135,090 673,099 244,962
80 80:20 48,123 49,126 118,874 114,283 207,389 149,599 588,111 283,827
80 70:30 56,643 56,339 169,884 153,848 356,405 265,274 606,084 262,707
90 80:20 46,855 45,307 117,668 105,869 278,057 177,570 611,811 308,444
90 70:30 52,380 51,510 140,181 130,355 224,968 291,656 638,729 299,228
100 80:20 44,687 44,571 107,836 101,792 214,806 285,431 690,977 339,423
100 70:30 50,638 52,368 132,031 125,176 265,460 385,969 690,455 324,668
125 80:20 46,992 46,706 106,435 104,718 185,646 357,508 952,787 509,090
125 70:30 51,280 50,360 125,553 121,680 360,376 600,688 936,775 485,739
150 80:20 45,587 45,250 100,020 102,519 235,880 441,287 1,362,161 728,427
150 70:30 54,756 52,613 120,105 128,039 268,7771,302,570 1,281,866 682,116
175 80:20 45,774 45,613 98,875 103,143 155,900 885,339 1,926,771 976,712
175 70:30 51,805 50,468 110,325 124,838 235,1681,453,996 1,831,216 908,710

Table 7.7: Median results for solvable randomly generated problems.

7.4. Experimental Evaluation 129

Graph Colouring Problems

Median results comparing Multi-HDCS-Pen and Multi-HDCS-DB against systematic, hy-

brid and local search algorithms for 3-colour distributed graph colouring problems with

150 to 200 nodes, 15 to 25 agents and 4.9 to 5.1 degree are presented in table 7.8.

Multi-Hyb-Pen gives best results for the number of messages with Multi-HDCS-DB in

2nd place and Multi-Hyb-DB in 3rd place. Multi-HDCS-DB offers consistent performance

for NCCCs being optimal in the majority of cases but not all. For the other cases, Multi-

Hyb-Pen, Multi-HDCS-Pen and Multi-ABT are optimal for different problem settings.

Specifically, Multi-HDCS-Pen and Multi-HDCS-DB appear to improve the NCCCs for

Multi-Hyb-Pen andMulti-Hyb-DB for problems in a number of cases owing to the increased

concurrency but with a substantial increase in the number of messages. In particular,

Multi-HDCS-DB would appear, in general, to be the better implementation of the Multi-

HDCS approach for graph colouring problems.

Meeting Scheduling Problems

The meeting scheduling problems formulisation is described in section 2.3.3. Table 7.9

compares median results for Multi-HDCS-Pen and Multi-HDCS-DB with other leading

algorithms for solvable meeting scheduling problems with 50-80 meetings, 5 departments

(agents), timeframe of 6 or 7 units and constraint density of 0.18. The percentage of intra-

agent constraints varied between 70% to 90%. Two departments with common meetings

had a distance of between 1 and 3 time units.

Multi-Hyb-Pen performs best for number of messages with Multi-HDCS-DB in 2nd

place. Occasionally, Multi-HDCS-DB outperforms Multi-Hyb-Pen. For NCCCs, Multi-

ABT performs best in the majority of cases with Multi-Hyb-Pen and Multi-AWCS also

performing best in some cases. For the Multi-HDCS approach, the computational effort of

running two distributed algorithms in parallel is too high for this type of problem versus

the simpler approach of Multi-Hyb-Pen, Multi-Hyb-DB, Multi-ABT and Multi-AWCS.

7.4. Experimental Evaluation 130

Median number of messages
Num Num intra: Multi Multi Multi Multi Multi Multi Multi DisBO
Nodes Agents Deg inter -HDCS -HDCS -Hyb -Hyb -ABT -AWCS -DisPeL -WD

-Pen -DB -Pen -DB
150 15 4.9 90:10 486 120 40 155 490 1,281 595 855
150 15 5.1 90:10 481 120 35 163 608 1,437 714 840*
150 15 4.9 80:20 481 120 21 134 326 1,102 588 765*
150 15 5.1 80:20 481 128 23 143 350 1,248 616 900*
150 15 4.9 70:30 495 146 31 180 591 1,588 714 780*
150 15 5.1 70:30 467 122 31 185 629 1,909 735 900*
150 25 4.9 90:10 1,205 200 35 177 373 1,508 1,176 1,175*
150 25 5.1 90:10 1,182 200 29 179 399 1,534 1,176 1,200*
150 25 4.9 80:20 1,286 188 53 317 2,696 2,079 1,392 1,300*
150 25 5.1 80:20 996 200 37 245 1,053 2,423 1,368 1,325*
150 25 4.9 70:30 1,014 200 42 261 1,403 2,879 1,788 1,500*
150 25 5.1 70:30 1,102 204 51 338 3,642 3,362 1,680 1,275*
200 20 4.9 90:10 842 160 62 212 698 2,146 1,197 1,420*
200 20 5.1 90:10 832 160 73 223 938 2,328 1,216 1,300*
200 20 4.9 80:20 844 180 31 188 528 1,732 1,064 1,220*
200 20 5.1 80:20 803 141 34 196 544 1,851 1,140 1,340*
200 20 4.9 70:30 842 160 59 266 1,050 2,465 1,225* 1,200*
200 20 5.1 70:30 656 162 77 289 1,278 2,668 1,282 1,440*
200 25 4.9 90:10 1,253 200 51 233 657 2,350 1,716 1,425*
200 25 5.1 90:10 1,253 200 45 232 869 2,092 1,800 1,575*
200 25 4.9 80:20 1,253 200 57 252 911 2,396 1,680 1,450
200 25 5.1 80:20 1,040 204 44 250 1,068 2,446 1,692 1,425*
200 25 4.9 70:30 977 200 56 309 2,048 3,148 1,848 1,625*
200 25 5.1 70:30 1,277 172 62 339 2,746 3,259 1,992* 1,825*

Median number of NCCCs
Num Num intra: Multi Multi Multi Multi Multi Multi Multi DisBO
Nodes Agents Deg inter -HDCS -HDCS -Hyb -Hyb -ABT -AWCS -DisPeL -WD

-Pen -DB -Pen -DB
150 15 4.9 90:10 1,387 1,185 3,579 3,735 1,266 3,172 46,215 66,583
150 15 5.1 90:10 1,449 1,255 3,689 3,837 1,589 3,435 57,967 63,567*
150 15 4.9 80:20 1,098 1,081 1,314 1,611 1,165 3,123 49,008 63,739*
150 15 5.1 80:20 1,105 1,107 1,279 1,653 1,278 3,310 51,564 73,127*
150 15 4.9 70:30 1,511 1,521 1,882 2,659 1,501 3,535 53,692 57,495*
150 15 5.1 70:30 1,479 1,500 1,783 2,507 1,535 4,058 59,712 68,942*
150 25 4.9 90:10 570 423 675 775 689 1,454 30,961 53,242*
150 25 5.1 90:10 541 459 633 757 724 1,417 33,134 53,127*
150 25 4.9 80:20 1,643 842 729 1,223 1,532 1,651 35,018 53,604*
150 25 5.1 80:20 632 800 549 800 1,017 1,974 37,113 55,657*
150 25 4.9 70:30 1,015 1,404 726 1,253 1,802 2,265 43,369 46,600*
150 25 5.1 70:30 572 854 534 801 1,218 2,087 43,344 57,361*
200 20 4.9 90:10 1,605 1,461 41,95 4,561 1,434 3,836 71,275 104,597*
200 20 5.1 90:10 1,530 1,438 4,403 4,646 1,716 4,185 70,314 105,865*
200 20 4.9 80:20 1,391 1,272 1,439 1,900 1,286 3,637 65,360 99,080*
200 20 5.1 80:20 1,319 1,167 1,467 1,925 1,273 3,623 72,354 106,079*
200 20 4.9 70:30 2,084 1,820 2,369 3,403 1,604 4,180 73,351* 89,740*
200 20 5.1 70:30 1,670 1,770 2,348 3,484 1,872 4,405 77,346 107,339*
200 25 4.9 90:10 997 751 1,843 2,154 1,014 2,723 61,481 87,216*
200 25 5.1 90:10 998 769 1,703 2,046 1,214 2,499 68,940 99,001*
200 25 4.9 80:20 1,106 780 972 1,261 1,267 2,669 61,118 89,533
200 25 5.1 80:20 877 939 878 1,225 1,424 2,903 66,544 89,009*
200 25 4.9 70:30 1,033 1,253 1,272 2,089 1,727 2,975 63,778 86,824*
200 25 5.1 70:30 1,619 879 1,372 2,156 2,029 3,121 71,947* 101,275*

Table 7.8: Median results for solvable graph colouring problems.

7.4. Experimental Evaluation 131

Median number of messages
Num Num intra: Multi Multi Multi Multi Multi Multi Multi DisBO

Meetings Times inter -HDCS -HDCS -Hyb -Hyb -ABT -AWCS -DisPeL -WD
-Pen -DB -Pen -DB

50 7 90:10 65 50 20 54 81 340 68 295*
50 7 80:20 71 45 139 75 204 415 96 335*
50 7 70:30 221 73 460 328 453 464 90 405*
50 6 90:10 65 50 10 45 64 269 52 155*
50 6 80:20 73 35 20 60 96 321 64 165*
50 6 70:30 70 42 184 102 161 362 66 215*
60 7 90:10 65 50 20 60 86 359 64 245*
60 7 80:20 70 45 80 60 136 396 76 275*
60 7 70:30 140 49 412 173 341 500 72 295*
60 6 90:10 65 50 10 45 78 288 32 145*
60 6 80:20 65 35 10 45 106 327 44 175*
60 6 70:30 173 35 42 60 149 409 56 225*
70 7 90:10 68 50 20 60 103 380 44 235*
70 7 80:20 70 42 20 60 128 428 56 255
70 7 70:30 74 38 228 90 205 514 64 315
70 6 90:10 65 40 20 45 91 274 40 165*
70 6 80:20 65 35 20 60 116 352 40 195
70 6 70:30 70 35 40 60 132 415 50 245
80 7 90:10 70 50 20 60 115 404 48 235
80 7 80:20 70 37 20 60 128 473 48 245
80 7 70:30 130 36 151 74 185 547 60 305
80 6 90:10 65 40 20 45 98 284 32 185
80 6 80:20 68 35 20 60 118 379 40 205
80 6 70:30 70 35 20 60 124 443 44 245

Median number of NCCCs
Num Num intra: Multi Multi Multi Multi Multi Multi Multi DisBO

Meetings Times inter -HDCS -HDCS -Hyb -Hyb -ABT -AWCS -DisPeL -WD
-Pen -DB -Pen -DB

50 7 90:10 8,623 7,571 7,162 7,369 6,988 7,309 112,308 110,290*
50 7 80:20 13,147 13,460 10,852 13,139 9,488 8,214 130,639 138,306*
50 7 70:30 19,763 19,847 20,684 25,451 13,774 8,605 120,664 126,017*
50 6 90:10 3,956 3,592 2,933 3,503 3,793 5,534 73,805 57,262*
50 6 80:20 5,881 5,146 4,803 5,259 4,411 5,974 79,868 84,785*
50 6 70:30 7,757 7,738 7,451 9,632 5,238 6,382 74,751 71,166*
60 7 90:10 15,114 12,833 10,777 12,076 10,901 10,613 160,589 158,103*
60 7 80:20 18,113 18,050 16,251 16,367 11,413 10,821 163,578 183,771*
60 7 70:30 33,811 33,999 37,138 36,649 15,464 12,513 153,894 158,777*
60 6 90:10 6,634 5,948 5,095 5,700 5,490 7,894 89,497 91,349*
60 6 80:20 6,353 6,428 6,163 6,346 5,981 8,249 99,156 107,302*
60 6 70:30 16,639 12,236 11,334 11,654 6,766 9,628 100,219 201,621*
70 7 90:10 18,496 18,255 15,377 17,757 13,044 13,739 198,303 203,387*
70 7 80:20 23,920 24,287 20,174 21,380 12,956 14,696 199,104 240,856
70 7 70:30 34,708 35,181 38,453 45,164 15,624 16,365 214,783 241,370
70 6 90:10 8,194 7,585 6,586 7,573 6,906 10,373 131,723 136,478*
70 6 80:20 9,627 9,827 9,523 9,632 6,880 11,512 129,821 154,904
70 6 70:30 14,191 14,768 14,375 12,949 7,354 12,123 148,914 163,560
80 7 90:10 20,834 20,432 17,434 17,651 14,685 18,715 270,668 280,138
80 7 80:20 30,384 30,172 27,460 26,809 13,708 19,959 263,191 303,366
80 7 70:30 47,197 49,563 50,844 50,219 17,888 21,276 271,813 312,564
80 6 90:10 8,587 8,407 8,863 8,461 7,432 14,264 177,645 187,330
80 6 80:20 13,515 11,258 10,967 11,202 7,687 14,796 185,343 223,587
80 6 70:30 15,926 16,750 14,073 15,645 8,512 16,331 186,795 224,357

Table 7.9: Median results for solvable meeting scheduling problems.

7.4. Experimental Evaluation 132

Sensor Network Problems

Finally, Multi-HDCS-Pen and Multi-HDCS-DB were evaluated against systematic, hybrid

and local search algorithms on Grid-based SensorDCSP [100]. These problems are not

naturally distributed since they have a large number of inter-agent constraints combined

with relatively simple local problems for each agent. Consequently, the ratio is now 85%

inter-agent constraints and 15% intra-agent constraints. They provide an interesting case

to determine whether the Multi-HDCS approach also functions for problems which are

not naturally distributed. The problems used had 5 targets, between 25 and 64 sensors

(grids of 5, 6, 7, 8), k-visibility of 2, k-compatibility of 1, probability of visibility of 0.9

and probability of compatibility of 0.6. Median results for Multi-HDCS-Pen and Multi-

HDCS-DB are shown in Table 7.10.

Whilst Multi-Hyb-DB and Multi-ABT are also optimal for some problems (and Multi-

DisPeL but it does not solve all problems), Multi-HDCS-DB offers the most consistent

performance for number of messages. For NCCCs, all algorithms except Multi-DisPeL and

DisBO-wd are optimal for different problem combinations, but Multi-HDCS-Pen offers the

most consistent performance.

7.4.2 Unsolvable Problems

Our experiments with unsolvable problems distinguish between two categories of unsolv-

able problems: (i) those where at least one complex local problem is unsolvable and;

(ii) those where all complex local problems are solvable, but no overall solution exists.

Randomly Generated Problems: Median results for unsolvable randomly gener-

ated problems using 5 agents, a domain size of 8 and a constraint tightness of 0.35 are

presented in table 7.11 for problems which have one or more complex local problems

that are unsolvable. In these cases, SEBJ detects unsolvability and therefore Multi-Hyb-

Pen, Multi-Hyb-DB, Multi-HDCS-Pen and Multi-HDCS-DB all perform identically. We

found that the Multi-Hyb and Multi-HDCS implementations outperformed Multi-ABT

and Multi-AWCS on both messages and NCCCs.

We also conducted experiments for problems that had solutions to all complex local

7.4. Experimental Evaluation 133

Median n. Messages
Num Num Multi Multi Multi Multi Multi Multi Multi DisBO

Targets Sensors HDCS-Pen -HDCS-DB -Hyb-Pen -Hyb-DB -ABT -AWCS -DisPeL -WD
5 25 145 50 69 63 204 299 80* 575*
5 36 145 40 50 49 52 185 40* 285*
5 49 85 40 25 42 24 94 40* 160*
5 64 85 40 14 34 19 101 28* 120*
6 25 595 121 1,649 765 1,390 1,166 417* 1938*
6 36 210 54 1,383 242 145 333 105* 846*
6 49 210 54 338 116 60 185 60* 414*
6 64 120 54 510 310 31 127 50* 306*
7 25 15,737 1,568 3,814 2,300 8,786 3,492 1,161* 4,907*
7 36 502 100 3,868 1,051 1,164 955 225* 1,960*
7 49 161 63 1,092 210 128 330 126* 609*
7 64 161 63 482 196 55 216 93* 658*
8 25 90,892 15,253 16,471 3,644 108,882 16,155 3,979* 25,608*
8 36 1,083 318 5,522 3,847 5,087 1,693 759* 3,840*
8 49 379 76 2,753 1,100 328 693 203* 1,296*
8 64 208 74 1,175 411 126 473 143* 768*

Median n. NCCCs
Num Num Multi Multi Multi Multi Multi Multi Multi DisBO

Targets Sensors HDCS-Pen -HDCS-DB -Hyb-Pen -Hyb-DB -ABT -AWCS -DisPeL -WD
5 25 2,727 4,716 4,072 6,599 8,859 5,959 40,031* 66,968*
5 36 2,337 2,512 2,936 5,353 4,329 3,888 25,707* 31,359*
5 49 2,254 2,374 2,708 3,431 2,755 2,314 18,280* 19,366*
5 64 2,371 2,373 2,541 2,759 2,294 1,856 14,432* 15,397*
6 25 13,266 17,087 13,164 49,144 27,603 19,024 194,721* 248,682*
6 36 2,782 5,436 7,819 2,306 9,159 5,645 47,195* 98,318*
6 49 2,406 2,651 5,706 2,112 4,544 3,474 29,704* 48,459*
6 64 2,512 2,594 18,774 2,497 3,230 2,588 24,140* 31,515*
7 25 263,885 253,031 120,789 133,882 114,529 44,926 453,891* 623,861*
7 36 7,596 12,321 8,622 23,240 27,975 12,062 112,370* 267,908*
7 49 2,570 4,662 21,124 2,288 7,149 4,886 53,062* 83,965*
7 64 3,045 6,737 7,420 36,938 11,884 8,217 81,203* 161,266*
8 25 2,477,556 2,678,899 1,395,619 595,777 970,639 190,699 1,335,327*3,667,100*
8 36 36,801 39,546 21,999 133,809 75,134 18,978 281,020* 545,384*
8 49 3,045 6,737 7,420 36,938 11,884 8,217 81,203* 161,266*
8 64 2,854 3,713 19,316 2,417 7,726 6,110 56,022* 94,678*

Table 7.10: Median results for solvable Grid-based Sensor Network problems.

7.4. Experimental Evaluation 134

problems but no global solution with identical parameters. The results of these experi-

ments are shown in Table 7.12. Multi-HDCS-DB significantly outperforms all other algo-

rithms both for number of messages and for NCCCs. It would appear that InterDisBO-wd

is able to give a very good ordering to InterPODS very early in the search that enables

InterPODS to quickly determine that there is no global solution once all relevant SEBJ

searches have finished.

Median number of messages
Num % constraint % intra:inter Multi Multi Multi Multi Multi Multi
Vars density constraints -HDCS -HDCS -Hyb -Hyb -ABT -AWCS

-Pen -DB -Pen -DB
60 0.2 90:10 14 14 14 14 647 38,169
70 0.2 80:20 12 12 12 12 420 46,792
70 0.2 70:30 16 16 16 16 682 48,959
80 0.2 80:20 12 12 12 12 285 53,343
80 0.2 70:30 12 12 12 12 353 56,070
90 0.18 80:20 12 12 12 12 10 58,800
90 0.18 70:30 12 12 12 12 292 62,809
100 0.16 80:20 10 10 10 10 10 64,706
100 0.16 70:30 12 12 12 12 371 69,132
125 0.2 80:20 10 10 10 10 10 80,695
125 0.2 70:30 10 10 10 10 10 86,454
150 0.2 80:20 10 10 10 10 10 95,779
150 0.2 70:30 10 10 10 10 10 102,960
175 0.2 80:20 10 10 10 10 10 111,218
175 0.2 70:30 10 10 10 10 10 119,188

Median number of NCCCs
Num % constraint % intra:inter Multi Multi Multi Multi Multi Multi
Vars density constraints -HDCS -HDCS -Hyb -Hyb -ABT -AWCS

-Pen -DB -Pen -DB
60 0.2 90:10 52,826 52,826 52,826 52,826 116,72810,082,412
70 0.2 80:20 42,530 42,530 42,530 42,530 131,09510,388,804
70 0.2 70:30 52,179 52,179 52,179 52,179 162,75711,137,456
80 0.2 80:20 43,799 43,799 43,799 43,799 145,12412,703,763
80 0.2 70:30 51,542 51,542 51,542 51,542 176,54814,467,021
90 0.18 80:20 45,684 45,684 45,684 45,684 108,80614,363,762
90 0.18 70:30 61,117 61,117 61,117 61,117 219,67717,521,470
100 0.16 80:20 54,195 54,195 54,195 54,195 116,34016,992,283
100 0.16 70:30 83,499 83,499 83,499 83,499 290,93420,802,015
125 0.2 80:20 67,445 67,445 67,445 67,445 139,84425,087,165
125 0.2 70:30 104,296 104,296104,296104,296212,56831,483,422
150 0.2 80:20 117,291 117,291117,291117,291179,07034,293,903
150 0.2 70:30 181,334 181,334181,334181,334305,89043,698,629
175 0.2 80:20 227,126 227,126227,126227,126272,43245,266,830
175 0.2 70:30 365,401 365,401365,401365,401459,31756,044,863

Table 7.11: Median results for unsolvable random problems with one or more agents having
no solution to their local problem.

Graph Colouring Problems: Median results for unsolvable 3-colour distributed

graph colouring problems with 150 to 200 nodes, 15 to 25 agents and 4.9 to 5.1 degree

where one or more agents had no solutions to their complex local problem are presented

in table 7.13. Multi-Hyb-Pen, Multi-Hyb-DB, Multi-HDCS-Pen and Multi-HDCS-DB will

7.4. Experimental Evaluation 135

Median number of messages
Num % constraint % intra:inter Multi Multi Multi Multi Multi Multi
Vars density constraints -HDCS -HDCS -Hyb -Hyb -ABT -AWCS

-Pen -DB -Pen -DB
60 0.2 80:20 703 69 177 194 762 33,930
60 0.2 70:30 480 69 249 319 3,950 41,712
70 0.18 70:30 418 54 114 166 1,266 48,433
80 0.16 70:30 823 49 106 129 1,242 55,324
90 0.14 70:30 500 56 158 262 1,968 61,541
100 0.13 70:30 674 49 129 157 840 68,524

Median number of NCCCs
Num % constraint % intra:inter Multi Multi Multi Multi Multi Multi
Vars density constraints -HDCS -HDCS -Hyb -Hyb -ABT -AWCS

-Pen -DB -Pen -DB
60 0.2 80:20 53,186 52,648 62,205 59,641 127,460 7,620,027
60 0.2 70:30 113,114 83,564 251,012252,212226,011 7,996,729
70 0.18 70:30 102,594 91,343 136,748136,748192,85110,569,556
80 0.16 70:30 135,582 124,409174,461174,461230,56813,527,324
90 0.14 70:30 254,904 238,437374,569372,796333,70916,092,489
100 0.13 70:30 330,553 298,966362,227354,277347,37019,929,678

Table 7.12: Median results for unsolvable random problems with all agents having solutions
to their local problem but no global solution.

all perform identically in this situation since SEBJ detects unsolvability. We found that

these algorithms outperformed Multi-ABT and Multi-AWCS substantially on messages.

For NCCCs, Multi-ABT was occasionally better but the smaller difference in NCCCs

meant that the Multi-Hyb and Multi-HDCS implementations were better overall. Median

results in table 7.14 are for problems where all agents had solutions to their complex local

problem but there was no global solution to the problem.

Multi-HDCS-Pen and Multi-HDCS-DB suffer from excessive running of local search

which continues beyond the point of centralised systematic search finishing until dis-

tributed systematic search finishes. This causes a substantial increase in both messages

and NCCCs. Multi-Hyb-Pen was the most consistent algorithm for graph colouring prob-

lems where there was no global solution. There are however 3 problem settings where

Multi-HDCS-DB performs well in terms of messages and may therefore be a suitable

algorithm for these problems.

Meeting Scheduling Problems: Unsolvable meeting scheduling problems with 50-

80 meetings, 5 departments (agents), a timeframe of 6 or 7 time units and a constraint

density of 0.18 were conducted. The percentage of intra-agent constraints varied between

70% and 90%. Two departments with common meetings have a distance of between 1

and 3 time units. Problems where one or more agents had no solution to their complex

7.4. Experimental Evaluation 136

Median number of messages
Num Num intra: Multi Multi Multi Multi Multi Multi
Nodes Agents Deg inter -HDCS -HDCS -Hyb -Hyb -ABT -AWCS

-Pen -DB -Pen -DB
150 15 4.9 80:20 42 42 42 42 860 6,307
150 15 5.1 80:20 42 42 42 42 947 6,456
150 15 4.9 70:30 50 50 50 50 2,911 9,356
150 15 5.1 70:30 48 48 48 48 1,899 9,474
150 25 4.9 70:30 72 72 72 72 1,576 13,728
150 25 5.1 70:30 68 68 68 68 1,630 14,031
200 20 4.9 80:20 57 57 57 57 1,277 9,163
200 20 5.1 80:20 58 58 58 58 1,497 9,195
200 20 4.9 70:30 66 66 66 66 2,296 14,107
200 20 5.1 70:30 64 64 64 64 1,956 14,680
200 25 4.9 80:20 68 68 68 68 1,398 10,195
200 25 5.1 80:20 66 66 66 66 1,234 10,321
200 25 4.9 70:30 79 79 79 79 1,816 16,277
200 25 5.1 70:30 76 76 76 76 1,883 17,021

Median number of NCCCs
Num Num intra: Multi Multi Multi Multi Multi Multi
Nodes Agents Deg inter -HDCS -HDCS -Hyb -Hyb -ABT -AWCS

-Pen -DB -Pen -DB
150 15 4.9 80:20 1,525 1,525 1,525 1,525 1,202 11,590
150 15 5.1 80:20 1,421 1,421 1,421 1,421 1,286 11,924
150 15 4.9 70:30 2,332 2,332 2,332 2,332 2,395 15,259
150 15 5.1 70:30 2,114 2,114 2,114 2,114 1,797 15,255
150 25 4.9 70:30 296 296 296 296 767 11,580
150 25 5.1 70:30 294 294 294 294 758 11,725
200 20 4.9 80:20 1,415 1,415 1,415 1,415 1,304 11,910
200 20 5.1 80:20 1,717 1,717 1,717 1,717 1,321 11,812
200 20 4.9 70:30 2,512 2,512 2,512 2,512 1,727 15,300
200 20 5.1 70:30 2,253 2,253 2,253 2,253 1,656 15,854
200 25 4.9 80:20 673 673 673 673 900 9,807
200 25 5.1 80:20 644 644 644 644 845 9,693
200 25 4.9 70:30 895 895 895 895 1,053 12,411
200 25 5.1 70:30 875 875 875 875 1,095 12,990

Table 7.13: Median results for unsolvable graph colouring problems with one or more
agents having no solution to their local problem.

7.4. Experimental Evaluation 137

Median number of messages
Num Num intra: Multi Multi Multi Multi Multi Multi
Nodes Agents Deg inter -HDCS -HDCS -Hyb -Hyb -ABT -AWCS

-Pen -DB -Pen -DB
150 15 4.9 80:20 2,300 484 144 250 1,417 6,620
150 15 5.1 80:20 1,927 676 187 311 1,823 6,627
150 15 4.9 70:30 2,346 387 388 518 4,019 9,816
150 15 5.1 70:30 2,718 367 208 364 3,590 9,942
150 25 4.9 80:20 4,131 446 48 261 1,405 13,174
150 25 5.1 80:20 3,879 361 27 246 1,205 14,173
150 25 4.9 70:30 3,046 309 61 328 3,134 19,866
150 25 5.1 70:30 4,806 331 48 333 2,863 22,954
200 20 4.9 80:20 3,677 452 266 414 1,464 8,480
200 20 5.1 80:20 3,895 431 176 342 1,424 9,015
200 20 4.9 70:30 3,650 429 1,324 1,528 4,818 13,206
200 20 5.1 70:30 4,280 317 744 952 3,402 13,058
200 25 4.9 80:20 4,740 292 186 376 1,429 11,049
200 25 5.1 80:20 4,913 279 116 313 1,166 11,577
200 25 4.9 70:30 5,899 361 354 627 3,097 15,778
200 25 5.1 70:30 4,752 333 204 498 2,495 17,386

Median number of NCCCs
Num Num intra: Multi Multi Multi Multi Multi Multi
Nodes Agents Deg inter -HDCS -HDCS -Hyb -Hyb -ABT -AWCS

-Pen -DB -Pen -DB
150 15 4.9 80:20 3,316 4,431 2,184 2,275 2,514 23,646
150 15 5.1 80:20 2,719 6,644 2,166 2,355 2,981 24,823
150 15 4.9 70:30 5,524 5,332 7,566 7,566 4,571 30,175
150 15 5.1 70:30 5,838 5,457 4,250 4,250 4,150 30,428
150 25 4.9 80:20 3,017 3,613 439 830 1,029 20,399
150 25 5.1 80:20 2,694 3,236 394 814 883 21,351
150 25 4.9 70:30 3,738 3,596 558 1,339 1,522 26,605
150 25 5.1 70:30 5,266 4,112 514 1,155 1,398 30,230
200 20 4.9 80:20 4,175 4,036 3,263 3,263 2,333 22,227
200 20 5.1 80:20 3,605 4,100 2,375 2,666 2,132 23,200
200 20 4.9 70:30 8,473 6,320 10,130 10,130 4,201 28,327
200 20 5.1 70:30 8,037 4,669 7,502 7,502 3,195 27,356
200 25 4.9 80:20 3,847 2,017 1,607 1,718 1,503 20,176
200 25 5.1 80:20 3,649 1,967 1,126 1,399 1,416 20,676
200 25 4.9 70:30 7,140 4,000 3,528 3,532 2,104 25,026
200 25 5.1 70:30 6,233 4,224 1,968 2,736 1,895 25,263

Table 7.14: Median results for unsolvable graph colouring problems with all agents having
at least one solution to their local problem but no global solution.

7.4. Experimental Evaluation 138

local problem are presented in table 7.15. Since SEBJ detects unsolvability, both imple-

mentations of Multi-Hyb and Multi-HDCS will perform identically. The Multi-Hyb and

Multi-HDCS implementations substantially outperform Multi-ABT and Multi-AWCS for

messages and NCCCs. Problems where all agents had solutions to their complex local

problem but there was no global solution are presented in table 7.16.

Median number of messages
Num Num intra: Multi Multi Multi Multi Multi Multi

Meetings Times inter -HDCS -HDCS -Hyb -Hyb -ABT -AWCS
-Pen -DB -Pen -DB

50 7 80:20 13 13 13 13 182 1,730
50 7 70:30 14 14 14 14 331 2,308
50 6 80:20 12 12 12 12 86 1,138
50 6 70:30 14 14 14 14 176 1,446
60 7 80:20 12 12 12 12 124 1,687
60 7 70:30 14 14 14 14 240 2,390
60 6 80:20 11 11 11 11 117 1,145
60 6 70:30 12 12 12 12 171 1,511
70 7 80:20 10 10 10 10 152 1,721
70 7 70:30 12 12 12 12 185 2,232
70 6 80:20 12 12 12 12 110 1,139
70 6 70:30 12 12 12 12 132 1,495
80 7 80:20 10 10 10 10 115 1,659
80 7 70:30 10 10 10 10 167 2,285
80 6 80:20 10 10 10 10 97 1,032
80 6 70:30 12 12 12 12 239 1,401

Median number of NCCCs
Num Num intra: Multi Multi Multi Multi Multi Multi

Meetings Times inter -HDCS -HDCS -Hyb -Hyb -ABT -AWCS
-Pen -DB -Pen -DB

50 7 80:20 3,051 3,051 3,051 3,051 10,128 26,687
50 7 70:30 3,174 3,174 3,174 3,174 11,474 32,575
50 6 80:20 2,315 2,315 2,315 2,315 3,929 15,309
50 6 70:30 1,916 1,916 1,916 1,916 5,270 18,386
60 7 80:20 3,055 3,055 3,055 3,055 12,044 31,148
60 7 70:30 3,476 3,476 3,476 3,476 11,779 41,168
60 6 80:20 2,211 2,211 2,211 2,211 5,021 17,618
60 6 70:30 1,980 1,980 1,980 1,980 5,638 21,167
70 7 80:20 3,395 3,395 3,395 3,395 15,330 34,728
70 7 70:30 4,343 4,343 4,343 4,343 14,405 41,546
70 6 80:20 2,275 2,275 2,275 2,275 6,152 20,240
70 6 70:30 2,576 2,576 2,576 2,576 6,598 24,230
80 7 80:20 4,637 4,637 4,637 4,637 14,145 38,468
80 7 70:30 3,941 3,941 3,941 3,941 16,856 49,571
80 6 80:20 2,210 2,210 2,210 2,210 5,724 20,048
80 6 70:30 2,890 2,890 2,890 2,890 10,522 24,303

Table 7.15: Median results for meeting scheduling problems where one or more agents had
no solution to their complex local problem.

For problems where all agents had solutions but there was no global solution, Multi-

Hyb-DB was optimal for most cases for number of messages whilst Multi-ABT was optimal

for the remainder and for all problem settings with NCCCs. Particularly, it would appear

that the Multi-HDCS approach is costly to detect global unsolvability because of the large

7.4. Experimental Evaluation 139

Median number of messages
Num Num intra: Multi Multi Multi Multi Multi Multi

Meetings Times inter -HDCS -HDCS -Hyb -Hyb -ABT -AWCS
-Pen -DB -Pen -DB

50 7 80:20 1,029 2,613 344 150 197 4,926
50 7 70:30 686 730 624 517 507 5,177
50 6 80:20 661 2,764 222 91 107 3,502
50 6 70:30 575 959 204 119 151 4,226
60 7 80:20 765 989 320 125 132 4,991
60 7 70:30 547 332 284 210 306 5,106
60 6 80:20 522 1154 16 45 62 3,488
60 6 70:30 450 487 190 60 85 4,158
70 7 80:20 554 492 248 89 62 4,950
70 7 70:30 517 180 242 91 115 5,099
70 6 80:20 446 537 146 45 61 3,525
70 6 70:30 326 211 94 45 62 4,159
80 7 80:20 577 239 196 83 61 4,939
80 7 70:30 430 97 162 71 112 5,077
80 6 80:20 358 273 118 43 58 3,587
80 6 70:30 318 123 86 45 58 4,207

Median number of NCCCs
Num Num intra: Multi Multi Multi Multi Multi Multi

Meetings Times inter -HDCS -HDCS -Hyb -Hyb -ABT -AWCS
-Pen -DB -Pen -DB

50 7 80:20 24,749 14,709 14,345 18,004 9,965 76,384
50 7 70:30 36,899 24,253 33,084 38,739 11,309 81,379
50 6 80:20 12,884 6,185 5,318 7,223 4,055 47,704
50 6 70:30 19,681 7,615 9,480 10,630 4,930 56,673
60 7 80:20 23,816 18,745 17,819 19,668 10,808 92,333
60 7 70:30 36,205 25,679 33,445 37,229 13,464 96,062
60 6 80:20 13,498 6,194 5,860 6,891 4,219 57,171
60 6 70:30 17,772 7,441 7,599 9,114 5,152 63,441
70 7 80:20 24,275 18,907 17,692 20,279 9,919 102,431
70 7 70:30 33,241 25,162 27,350 29,213 11,554 109,482
70 6 80:20 14,621 7,032 7,089 8,841 4,736 66,217
70 6 70:30 18,238 8,801 8,791 9,461 6,222 75,706
80 7 80:20 31,380 24,388 23,671 26,352 10,977 118,078
80 7 70:30 38,205 31,133 33,516 36,516 16,282 124,501
80 6 80:20 15,678 8,667 8,602 9,664 5,703 75,665
80 6 70:30 20,603 10,898 10,999 12,072 6,216 84,881

Table 7.16: Median results for meeting scheduling problems where all agents had solutions
to their complex local problem but there was no global solution.

7.4. Experimental Evaluation 140

costs associated with local search running to provide information to systematic search

which are not offset by detecting unsolvability quicker.

Sensor Network Problems: Table 7.17 shows median results for unsolvable sensor

networks problems with 5 targets, 25-64 sensors (grids of 5, 6, 7 and 8), k-visibility of 2,

k-compatibility of 1, probability of visibility of 0.9 and probability of compatibility of 0.6.

The ratio of intra-agent to inter-agent constraints is 15% to 85%. Consequently, all agents

had solutions to their complex local problem but there was no global solution.

Median number of messages
Num Num Multi Multi Multi Multi Multi Multi

Targets Sensors HDCS-Pen -HDCS-DB -Hyb-Pen -Hyb-DB -ABT -AWCS
5 25 1,733 262 1,293 730 2,309 5,524
5 36 2,505 331 875 560 864 4,657
5 49 2,349 300 1,006 531 680 3,346
5 64 2,052 265 554 320 381 3,043
6 25 13,910 5,641 2,771 1,723 16,002 14,968
6 36 3,550 5,882 14,643 7,069 3,469 20,989
6 49 1,345 3,518 176 136 320 2,365
6 64 2,930 6,056 1,156 815 514 925
7 25 32,035 5,767 7,235 4,047 26,807 25,103
7 36 2,386 3,486 5,962 2,775 5,429 7,043
7 49 484 3,098 721 574 693 3,731
7 64 1,495 7,045 2,041 1,501 503 1,155
8 25 52,480 12,580 20,488 13,809 112,189 105,417
8 36 5,177 4,786 8,333 5,098 24,051 88,030
8 49 1,361 3,131 1,011 641 1,068 6,415
8 64 3,966 7,041 6,539 5,295 932 2,470

Median number of NCCCs
Num Num Multi Multi Multi Multi Multi Multi

Targets Sensors HDCS-Pen -HDCS-DB -Hyb-Pen -Hyb-DB -ABT -AWCS
5 25 13,536 21,870 22,275 29,873 49,663 92,273
5 36 11,340 12,587 15,229 20,391 24,703 77,773
5 49 10,917 8,393 22,827 24,551 22,292 64,488
5 64 10,170 4,887 9,225 9,787 13,227 61,675
6 25 205,965 421,110 110,032 131,431 198,139 225,797
6 36 17,568 194,603 821,636 821,633 57,489 288,281
6 49 8,123 2,712 3,037 3,364 9,802 33,164
6 64 17,136 126,000 37,684 38,626 12,827 11,363
7 25 381,672 624,456 331,460 431,012 290,947 347,372
7 36 14,283 50,121 65,204 55,508 76,948 78,664
7 49 2,813 2,787 9,608 11,516 16,481 44,210
7 64 15,219 189,248 30,609 39,313 11,938 11,393
8 25 1,782,819 1,814,238 1,556,956 2,071,355 990,6531,321,611
8 36 62,316 232,983 153,330 226,993 299,894 935,045
8 49 7,794 2,921 19,284 20,455 25,350 57,949
8 64 13,968 50,949 337,895 379,813 18,345 25,679

Table 7.17: Median results on unsolvable Grid-based Sensor Network problems.

Multi-HDCS-DB performs well on problems with 5 targets for both number of messages

and NCCCs. In addition, it also performs well on some problem combinations with a higher

number of targets. Multi-ABT, Multi-AWCS, Multi-HDCS-Pen and Multi-Hyb-DB all

7.5. Comparing Multi-HDCS and Multi-Hyb 141

perform well on different problem combinations for number of messages and NCCCs.

7.5 Comparing Multi-HDCS and Multi-Hyb

Both Multi-HDCS and Multi-Hyb (see section 6) use one centralised systematic search per

agent, one distributed local search and one distributed systematic search. However, their

overall approaches are substantially different as follows: (i) In Multi-HDCS all three types

of searches run concurrently whereas in Multi-Hyb a two-phase strategy is used; (ii) In

Multi-HDCS, the knowledge discovered during the distributed local search is regularly

passed to the distributed systematic search; (iii) Multi-Hyb uses a fixed-order distributed

systematic search whereas Multi-HDCS dynamically orders its agents in its distributed

systematic search; (iv) Multi-Hyb adds solutions dynamically only to distributed local

search whilst solutions are added dynamically to distributed local search and distributed

systematic search in Multi-HDCS ; (v) the distributed local search and distributed sys-

tematic search use complex variables in Multi-Hyb (i.e. one variable per agent containing

all possible solutions for that agent) whilst only the distributed systematic search uses

complex variables in Multi-HDCS. Multi-HDCS uses distributed local search for coarse-

grained DisCSP algorithms so that the distributed local search has agents consisting of

the number of variables which are externally relevant (i.e. have inter-agent constraints)

for that agent. This was found to reduce the number of constraint checks over distributed

local search with complex variables as there were less constraint checks performed when

choosing a new value as the potential domain for the variable was much reduced. This

wasn’t the case for distributed systematic search and so this still uses complex variables.

In terms of our problem areas, we have shown that Multi-HDCS is primarily effective

at reducing NCCCs for randomly generated and sensor network problems. In addition, it

can frequently also reduce the number of messages. Our graph colouring problems and

scheduling problems tend to have symmetrical solutions (i.e. solutions spread equally over

a large search space) in which case Multi-Hyb is the more effective algorithm. Multi-Hyb

can find these solutions quickly without the additional overhead of concurrent searches

which Multi-HDCS has.

7.6. Contributions 142

7.6 Contributions

The following contributions have been made:

1. The Multi-HDCS approach which finds the externally relevant solutions for each

agent’s complex local problem whilst participating in a distributed local search and

a distributed systematic search to find a global solution. The distributed local search

periodically shares knowledge with the distributed systematic search.

2. Two implementations of the Multi-HDCS approach: Multi-HDCS-Pen using the

penalty-on-values local search strategy andMulti-HDCS-DB using the breakout local

search strategy.

3. InterDisPeL which revises the Multi-DisPeL approach specifically for considering

inter-agent constraints and uses only solutions dynamically supplied by centralised

systematic searches.

4. InterDisBO-wd which revises the DisBO-wd approach for inter-agent constraints and

only considering solutions supplied dynamically by centralised systematic searches.

5. InterPODS, a dynamically ordered systematic search algorithm using complex vari-

ables which dynamically receives solutions from centralised systematic searches and

knowledge from distributed local search.

7.7 Summary

Multi-HDCS is a new hybrid approach for solving DisCSPs with complex local problems

where the problem solving is carried out by concurrent cooperative searches: (i) a set

of centralised systematic searches (one per agent) finds all non-interchangeable solutions

to each agent’s local problem; (ii) a distributed local search attempts to solve the inter-

agent constraints using variable-value combinations approved by the centralised systematic

searches. It also identifies local problems which are difficult to solve and passes this infor-

mation to a distributed systematic search (see below); (iii) a distributed systematic search

attempts to find a solution satisfying the inter-agent constraints using only variable-value

7.7. Summary 143

combinations approved by centralised systematic searches whilst dynamically prioritising

agents acording to the level of difficulty of their local problems assigned by the distributed

local search.

We have presented two implementations of our approach: Multi-HDCS-Pen and Multi-

HDCS-DB. These approaches differ mainly in the algorithm used for distributed local

search: Multi-HDCS-Pen uses a penalty-based algorithm (InterDisPeL) whereas Multi-

HDCS-DB uses a breakout-based (i.e. weights on constraints) algorithm (Inter-DisBO-

wd). Both algorithms use SEBJ to solve the agent’s local problem and InterPODS as the

distributed systematic search algorithm.

Substantial empirical results on several problem classes demonstrate that the Multi-

HDCS approach (particularly in the Multi-HDCS-DB implementation) is generally com-

petitive when compared to leading DisCSPs with complex local problems algorithms on

both solvable problems and unsolvable problems.

Chapter 8

Conclusions and Future Work

This thesis has researched and developed hybrid algorithms for Distributed Constraint

Satisfaction and their applicability on a number of problem classes. A number of new

contributions to the Distributed Constraint Satisfaction community in the field of hybrid

algorithms have been made through this thesis. This chapter outlines the contributions

of this thesis and possible avenues for future work.

8.1 Contributions

A number of contributions have been made in this thesis (table 8.1 summarises the con-

tributions):

1. In chapter 5, the DisHyb approach was presented. This novel hybrid approach for

DisCSPs with one variable per agent runs a distributed local search algorithm for a

bounded number of cycles. This local search algorithm learns important knowledge

about difficult variables and the best values for those variables. If the distributed

local search algorithm fails to solve the problem, a distributed systematic search runs

guided by the knowledge learnt by distributed local search. Two implementations

of this approach have been presented in this thesis: PenDHyb and DBHyb. We have

derived a formula to predict the best number of cycles for distributed local search

and also shown that much longer executions of local search may be beneficial for

harder solvable problems. We have shown that PenDHyb and DBHyb outperform

144

8.1. Contributions 145

systematic search on three problem classes (randomly generated problems, graph

colouring problems and meeting scheduling problems).

2. In chapter 6, the Multi-Hyb approach was presented. This is a novel two-phase

hybrid approach for DisCSPs with complex local problems. In the first phase, a

centralised systematic search algorithm runs concurrently for each agent to find

solutions for that agent’s complex local problem. Concurrently, a distributed local

search algorithm runs which only considers constraints between agents and attempts

to combine solutions to an agent’s complex local problem (i.e. partial solutions to

the global problem) in order to find a global solution to the problem. This local

search also learns about difficult variable and value combinations. If all solutions

to an agent’s complex local problem are found before distributed local search finds

a solution, a distributed systematic search runs which finds a solution or detects

unsolvability. Two implementations of this approach have been presented in this

thesis: Multi-Hyb-Pen and Multi-Hyb-DB. We have shown that Multi-Hyb-Pen and

Multi-Hyb-DB often outperform leading algorithms for DisCSPs with complex local

problems (Multi-ABT, Multi-AWCS, Multi-DisPeL, DisBO-wd) on randomly gener-

ated problems, graph colouring problems, meeting scheduling problems (for number

of messages) and sensor network problems.

3. In chapter 7, the Multi-HDCS approach was presented. This is a novel hybrid

approach for DisCSPs with complex local problems. This algorithm also runs con-

currently a centralised systematic search for each agent to detect all solutions to an

agent’s complex local problem. In addition, two concurrent searches are run: (i) a

distributed local search algorithm which learns about difficult variables and values

in addition to attempting to finding a global solution to the problem; (ii) a dis-

tributed systematic search which is guided by the distributed local search through

synchronisation of information and finds a global solution to the problem or detects

unsolvability. Two implementations of this approach have been presented in this

thesis: Multi-HDCS-Pen and Multi-HDCS-DB. We have shown that Multi-HDCS

is an important revision to Multi-Hyb which outperforms Multi-Hyb on randomly

8.2. Future Work 146

generated and sensor network problems.

Approach Number
of Phases

Algorithms Variables Domains Constraints
Considered

Knowledge Ex-
changed

DisHyb 2 PenDHyb
and DB-
Hyb

Single vari-
able per
agent

Static Inter-agent
constraints (no
intra-agent
constraints in
fine-grained
DisCSPs)

Distributed local
search exchanges dif-
ficult variables and
best values informa-
tion with distributed
systematic search.

Multi-Hyb 2 Multi-Hyb-
Pen and
Multi-Hyb-
DB

Centralised
systematic
searches
uses all
variables in
an agent,
distributed
local search
and dis-
tributed
systematic
search use
complex
variables

Static for
centralised
systematic
searches
and dis-
tributed
systematic
search. Dy-
namic for
distributed
local search

Intra-agent
constraints
considered by
centralised
systematic
searches.
Inter-agent
constraints
considered by
distributed
local search
and distributed
systematic
search

Centralised systematic
searches pass solutions
to complex local prob-
lems to distributed
local search and dis-
tributed systematic
search. Distributed
local search passes
knowledge of difficult
variables and best
values from distributed
local search to dis-
tributed systematic
search.

Multi-
HDCS

1 Multi-
HDCS-Pen
and Multi-
HDCS-DB

Centralised
systematic
searches
uses all
variables in
an agent,
distributed
local search
uses all
externally
relevant
variables in
an agent
and dis-
tributed
systematic
search use
complex
variables

Static for
centralised
systematic
searches.
Dynamic
for dis-
tributed
local search
and dis-
tributed
systematic
search

Intra-agent
constraints
considered by
centralised
systematic
searches.
Inter-agent
constraints
considered by
distributed
local search
and distributed
systematic
search

Centralised systematic
searches pass solutions
to complex local prob-
lems to distributed
local search and dis-
tributed systematic
search. Distributed
local search passes
knowledge of difficult
variables regularly to
distributed systematic
search.

Table 8.1: Overview of Thesis Contributions.

8.2 Future Work

There are a number of possible avenues for future work which could extend the work

presented in this thesis.

8.2.1 Alternative Implementations of DisHyb

Other implementations of the DisHyb framework in chapter 5 could be considered. Specif-

ically, the Distributed Stochastic Algorithm (DSA) [100] uses a probabilistic strategy to

8.2. Future Work 147

escape local minima which allows variables to change values if they reduce the number of

constraint violations or with a certain probability if they do not increase the number of

constraint violations. It would be worth exploring if the difficulty of the variable could be

determined by the amount of times a variable changes its value.

Alternatively, asynchronous systematic search algorithms (e.g. ABT [97]) could be

used as the distributed systematic search algorithm. There are very few asynchronous

local search algorithms so this part of the framework may have to remain synchronous.

Note that an algorithm such as AWCS would not be appropriate in the framework as it

would reorder the agents according to its own schema thereby removing the benefit of

learning knowledge from local search.

8.2.2 Different Centralised Systematic Searches in Multi-Hyb/Multi-HDCS

Since the concurrent centralised systematic searches only require to find all non-interchangeable

solutions for an agent’s complex local problem, there is nothing to preclude the use of

different search strategies for different agents. Therefore, an agent could detect certain

properties about its own local problem (e.g. highly connected variables, low constraint

density) to choose the best search algorithm and heuristic for that particular type of

problem whilst maintaining the overall Multi-Hyb or Multi-HDCS framework.

8.2.3 Running Distributed Local Search after Centralised Systematic Searches

in Multi-Hyb

In Multi-Hyb, the distributed local search could be left running for a number of cycles

after all concurrent centralised systematic searches finish before starting the distributed

systematic search. Initial experiments in this area were outlined in the Multi-Hyb variants

section in chapter 6 which concluded that the effort was not worthwhile but for very

large and difficult problems, it may be appropriate as has been evidenced for the longer

executions of distributed local search in DisHyb (see section 5.5.2).

8.2. Future Work 148

8.2.4 Bi-directional Feedback in Multi-HDCS

In our Multi-HDCS framework, distributed local search synchronises information about

difficult variables to the distributed systematic search on a regular basis. It may be

beneficial to extend this so that the distributed systematic search can give feedback to the

distributed local search algorithm on the current parts of the search space it is exploring so

that distributed local search can provide more targeted information. There will be a need

to allow distributed local search to explore other areas of the search space periodically

to ensure that the algorithms can escape from a part of the search space which does not

contain solutions.

8.2.5 Using Multi-Hyb and Multi-HDCS for Optimisation

It is possible to adaptMulti-Hyb andMulti-HDCS for Distributed Constraint Optimisation

problems. These problems contain a cost function which allows the most desirable solution

to be found from a number of possible solutions. There would be a need to modify the

algorithms in Multi-Hyb and Multi-HDCS to take account of this cost function.

8.2.6 Heterogeneous and Dynamic DisCSPs

The vast majority of experiments concerning DisCSPs with complex local problems assume

that the number of variables in each agent is identical. However, many realistic scenarios

have different number of variables for different agents. Consequently, there is a need

to explore how our approaches and other approaches for DisCSPs with complex local

problems deal with this scenario.

In addition, problems may change during execution of the solution. At the moment,

our approaches would have to be re-run in order to cope with these changes. It would

be interesting to explore if changes could be made to improve our approaches and remove

this requirement to re-run.

8.3. Summary 149

8.3 Summary

This thesis has examined hybrid algorithms combining backtracking and local search prop-

erties for distributed constraint satisfaction. The primary aim of this thesis (as stated in

section 1.1) has been to speed-up distributed problem solving through using local search

as a learning tool which can be used to guide backtracking, particularly for naturally

distributed problems. Our research objectives were therefore as follows:

1. Investigate techniques for making local search complete.

2. Making systematic search faster through the use of local search information.

3. Take advantage of agent idle time in order to carry out additional computation and

thereby minimise overall problem cost.

We have presented new three hybrid approaches which meet these objectives: DisHyb,

Multi-Hyb and Multi-HDCS.

DisHyb is a successful hybrid algorithm for fine-grained DisCSPs which uses knowledge

learnt during the local search phase to guide the backtracking phase of the algorithm.

Therefore, it makes a local search algorithm complete and makes systematic search faster

through the use of local search information.

Multi-Hyb extends this approach for DisCSPs with complex local problems through

using knowledge learnt from centralised systematic search and distributed local search to

guide a distributed systematic search algorithm. This approach also makes distributed

local search complete through the combination with distributed systematic search and

makes systematic search faster through the use of local search information. Agent idle

time is used to participate in a distributed local search.

Multi-HDCS further extends Multi-Hyb by introducing concurrent distributed local

search and distributed systematic search algorithms with the distributed local search pe-

riodically sharing knowledge with the distributed systematic search. This approach meets

all three objectives and particularly improves the use of agent idle time through partici-

pation in both a distributed systematic search and distributed local search.

8.3. Summary 150

Each of our approaches has been implemented with the breakout local search strategy

and the penalty-based local search strategy. These algorithms have been shown to outper-

form the leading systematic and local search DisCSP algorithms on a number of problem

classes (randomly generated, graph colouring, meeting scheduling and sensor networks).

In summary, three hybrid approaches for DisCSPs have been presented, one for fine-

grained DisCSPs and two for DisCSPs with complex local problems. Two implementations

of each of the approaches have been described and an extensive empirical evaluation on

several problem classes has demonstrated the effectiveness of our approaches for these

types of problems.

Bibliography

[1] S. Anand, W. N. Chin, and S. C. Khoo. A Lazy Divide & Conquer Approach to

Constraint Solving. In Proceedings of the 14th IEEE International Conference on

Tools with Artificial Intelligence (ICTAI ’02), pages 91–98, 2002.

[2] Muhammad Arshad and Marius C. Silaghi. Distributed Simulated Annealing. In

Distributed Constraint Problem Solving and Reasoning in Multi-Agent Systems, vol-

ume 112 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2004.

[3] Fahiem Bacchus and Adam Grove. On The Forward Checking Algorithm. In Ugo

Montanari and Francesca Rossi, editors, Proceedings of the First International Con-

ference on Constraint Programming, pages 292–309. Springer-Verlag, 1995.

[4] Fahiem Bacchus and Peter van Beek. On the Conversion between Non-Binary and

Binary Constraint Satisfaction Problems. In Proceedings of the 15th National Con-

ference on Artificial Intelligence (AAAI 98), pages 311–318, 1998.

[5] Fahiem Bacchus and Paul van Run. Dynamic Variable Ordering In CSPs. In Ugo

Montanari and Francesca Rossi, editors, Proceedings of the First International Con-

ference on Constraint Programming, pages 258–275. Springer-Verlag, 1995.

[6] Nicolas Barnier and Pascal Brisset. Combine & Conquer: Genetic Algorithm and

CP for Optimization. In Poster at the Fourth Conference on Principles and Practice

of Constraint Programming, page 436, 1998.

[7] R. Bartak. Constraint Programming - What is Behind? In J. Figwer, editor,

151

BIBLIOGRAPHY 152

Proceedings of the Workshop on Constraint Programming in Decision and Control,

pages 7–15, Gliwice, June 1999.

[8] Muhammed Basharu. Modifying Landscapes with Penalties in Iterative Improvement

for Solving Distributed Constraint Satisfaction Problems. PhD thesis, School of

Computing, The Robert Gordon University, Aberdeen, April 2006.

[9] Christian Bessiere. Non-binary Constraints. In Proceedings of Principles and Prac-

tice of Constraint Programming, CP 99, Invited Lecture, pages 24–27, 1999.

[10] Christian Bessière, Arnold Maestre, Ismel Brito, and Pedro Meseguer. Asynchronous

Backtracking without Adding Links: A New Member in the ABT Family. Artificial

Intelligence, 161(1–2):7–24, 2005.

[11] Ismel Brito. Distributed Constraint Satisfaction. PhD thesis, Institut d’Investigacio

en Intel.ligencia Artificial Consejo Superior de Investigaciones Cientificas, 2007.

[12] Ismel Brito and Pedro Meseguer. Synchronous, Asynchronous and Hybrid Algo-

rithms for DisCSPs. In P. Modi, editor, Proceedings of the 5th International Work-

shop on Distributed Constraint Reasoning (DCR-04), pages 80–94, Toronto, Canada,

September 2004.

[13] David Burke. Exploiting Problem Structure in Distributed Constraint Optimization

with Complex Local Problems. PhD thesis, National University of Ireland, Cork,

2008.

[14] Y. Caseau and F. Laburthe. Heuristics for Large Constrained Vehicle Routing Prob-

lems. Journal of Heuristics, 5:281–303, 1999.

[15] Yves Caseau, Glenn Silverstein, and Francois Laburthe. Learning Hybrid Algorithms

for Vehicle Routing Problems. Theory and Practice of Logic Programming, 1(6):779–

806, November 2001.

[16] Carlos Cotta, Ivan Dotu, Antonio J. Fernandez, and Pascal van Hentenryck. Local

BIBLIOGRAPHY 153

Search-based Hybrid Algorithms for Finding Golomb Rulers. Constraints, 12(3):263–

291, 2007.

[17] J. Crawford. Solving Satisfiability Problems Using a Combination of Systematic

and Local Search. Second DIMACS Challenge: Cliques, Coloring, and Satisfiability,

October 1993.

[18] James M. Crawford and Andrew B. Baker. Experimental Results on the Application

of Satisfiability Algorithms to Scheduling Problems. In Proceedings of the Twelfth

National Conference on Artificial Intelligence (AAAI-94), volume 2, pages 1092–

1097, Seattle, Washington, USA, July/August 1994. AAAI Press/MIT Press.

[19] Philippe David. A Constraint-Based Approach for Examination Timetabling Using

Local Repair Techniques. Lecture Notes in Computer Science, 1408:169–186, August

1998.

[20] Bruno DeBacker, Vincent Furnon, Philip Kilby, Patrick Prosser, and Paul Shaw. Lo-

cal Search in Constraint Programming: Application to the Vehicle Routing Problem.

In Proceedings of Workshop on Industrial Constraint-Directed Scheduling (1997),

Constraint Programming 97, 1997. Constraint Programming 97,.

[21] Rina Dechter. Constraint Processing. Morgan Kaufmann, San Francisco, 2003.

[22] Carlos Eisenberg. Distributed Constraint Satisfaction for Coordinating and Inte-

grating a Large-Scale Heterogeneous Enterprise. PhD thesis, Ecole Polytechnique

Federale De Lausanne, 2003.

[23] R. Ezzahir, C. Bessiere, E. H. Bouyakhf, and M. Belaissaoui. Asynchronous Back-

tracking with Compilation Formulation for handling complex local problems. ICGST

International Journal on Artificial Intelligence and Machine Learning, 8:45–53,

2008.

[24] Marko Fabiunke. Parallel Distributed Constraint Satisfaction. In Proceedings of

the International Conference on Parallel and Distributed Processing Techniques and

Applications (PDPTA 99), pages 1585–1591, Las Vegas, June 1999.

BIBLIOGRAPHY 154

[25] Boi Faltings. Handbook of Constraint Programming, chapter 20, pages 699–729.

Elsevier, 2006.

[26] Boi Faltings and Santiago Macho-Gonzalez. Open Constraint Programming. Artifi-

cial Intelligence, 161:181–208, 2005.

[27] Hai Fang and Wheeler Ruml. Complete Local Search for Propositional Satisfiability.

In Proceedings of the 19th National Conference on Artificial Intelligence (AAAI’04),

pages 161–166, July 2004.

[28] Cesar Fernandez, Ramon Bejar, Bhaskar Krishnamachari, and Carla Gomes. Com-

munication and Computation in Distributed CSP Algorithms. In CP ’02: Proceed-

ings of the 8th International Conference on Principles and Practice of Constraint

Programming, pages 664–679, Itacha, NY, USA, July 2002. Springer-Verlag.

[29] Stephen Fitzpatrick and Lambert Meertens. An Experimental Assessment of a

Stochastic, Anytime, Decentralized, Soft Colourer for Sparse Graphs. In Kathleen

Steinhofel, editor, 1st Syposium on Stochastic Algorithms, volume 2264 of Lecture

Notes in Computer Science, pages 49–64, Berlin, December 2001. Springer-Verlag.

[30] Eugene C. Freuder, Rina Dechter, Bart Ginsberg, Bart Selman, and Edward P. K.

Tsang. Systematic Versus Stochastic Constraint Satisfaction. In Proceedings of

the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI 95),

volume 2, pages 2027–2032, San Mateo, CA, 1995. Morgan Kaufmann.

[31] Eugene C. Freuder and Paul D. Hubbe. Extracting Constraint Satisfaction Sub-

problems. In Proceedings from the 14th International Joint Conference on Artificial

Intelligence, pages 548–555, 1995.

[32] Daniel Frost and Rina Dechter. In Search of the Best Constraint Satisfaction Search.

In National Conference on Artificial Intelligence (AAAI ’94), pages 301–306, 1994.

[33] John Gary Gaschnig. Performance Measurement and Analysis of Certain Search

Algorithms. Technical Report CMU-CS-79-124, Carnegie-Mellon University, Pitts-

burgh, PA, 1979.

BIBLIOGRAPHY 155

[34] Matthew L. Ginsberg. Dynamic Backtracking. Journal of Artificial Intelligence

Research, 1:25–46, 1993.

[35] Matthew L. Ginsberg and David A. McAllester. GSAT and Dynamic Backtracking.

In Jon Doyle, Erik Sandewall, and Pietro Torasso, editors, Proceedings of the Fourth

International Conference on Principles of Knowledge Representation and Reasoning

(KR-94), pages 226–237, Bonn, Germany, May 24-27 1994. Morgan Kaufmann.

[36] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers, Boston,

1997.

[37] Carla P. Gomes, Bart Selman, and Henry Kautz. Boosting Combinatorial Search

Through Randomization. In Proceedings of the Fifteenth National Conference on

Artificial Intelligence (AAAI’98), pages 431–437, Madison, Wisconsin, July 1998.

AAAI Press.

[38] Eric Gregoire, Bertrand Mazure, and Cedric Piette. Local-search Extraction of

MUSes. Constraints, 12(3):325–344, 2007.

[39] Youssef Hamadi. Optimal Distributed Arc-Consistency. In Proceedings of the Fifth

International Conference on Principles and Practice of Constraint Programming,

pages 219–233, 1999.

[40] Youssef Hamadi. Conflicting Agents in Distributed Search. International Journal

on Artificial Intelligence Tools, 14(3-4):459–476, 2005.

[41] Youssef Hamadi, Christian Bessière, and Joel Quinqueton. Backtracking in Dis-

tributed Constraint Networks. In H. Prade, editor, 13th European Conference on

Artificial Intelligence (ECAI ’98), pages 219–223, Chichester, August 1998. John

Wiley and Sons.

[42] Pierre Hansen and Nenad Mladenovic. Variable Neighborhood Search. In P. Pardalos

and M. Resende, editors, Handbook of Applied Optimization, pages 221–234. Oxford

University Press, New York, 2002.

BIBLIOGRAPHY 156

[43] Jin-Kao Hao and Raphael Dorne. Empirical Studies of Heuristic Local Search for

Constraint Solving. In Proceedings of Principles and Practice of Constraint Program-

ming (CP-96), number 1118 in Lecture Notes in Computer Science, pages 194–208,

Cambridge, MA, USA, 1996.

[44] Peter Harvey, Chee Fon Chang, and Aditya Ghose. Support-based Distributed

Search: A new approach for multiagent constraint processing. In Proceedings of

the Fifth International Joint Conference on Autonomous Agents and Multiagent

Systems, pages 377–383, Hakodate, Japan, 2006. ACM Press.

[45] Katsutoshi Hirayama and Makoto Yokoo. The Distributed Breakout Algorithms.

Artificial Intelligence, 161(1–2):89–115, January 2005.

[46] Katsutoshi Hirayama, Makoto Yokoo, and Katia Sycara. An Easy-Hard-Easy Cost

Profile in Distributed Constraint Satisfaction. Transactions of Information Process-

ing Society of Japan, 45(9):2217–2225, September 2004.

[47] Tad Hogg and Colin P. Williams. Solving the Really Hard Problems with Coop-

erative Search. In Proceedings of the Eleventh National Conference on Artificial

Intelligence (AAAI’93), pages 231–236, Washington, DC, July 1993. AAAI Press.

[48] N. Jussien and O. Lhomme. Local search with constraint propagation and conflict-

based heuristics. Artificial Intelligence, 139(1):21–45, 2002.

[49] Olli Kamarainen and Hani El Sakkout. Local Probing Applied to Scheduling. In

Pascal Van Hentenryck, editor, Principles and Practice of Constraint Programming

- Proceedings of the 8th International Conference on Constraint Programming, pages

155–171, Ithaca, NY, USA, 2002.

[50] Sankalp Khanna, Abdul Sattar, David Hansen, and Bela Stantic. An Efficient Al-

gorithm for Solving Dynamic Complex Local DCOP Problems. In In Proceedings of

2009 IEEE/WIC/ACM International Conference on Intelligent Agent Technology,

pages 339–346, 2009.

BIBLIOGRAPHY 157

[51] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Anneal-

ing. Science, 220(4598):671–680, 13 May 1983.

[52] J Lever. A Local Search/Constraint Propagation Hybrid for a Network Routing

Problem. International Journal on Artificial Intelligence Tools, 14(1-2):43–60, 2005.

[53] Arnold Maestre and Christian Bessiere. Improving Asynchronous Backtracking for

Dealing with Complex Local Problems. In Proceedings of ECAI-04, pages 206–210,

Valencia, Spain, 2004.

[54] Roger Mailler and Victor Lesser. Using Cooperative Mediation to Solve Distributed

Constraint Satisfaction Problems. In Proceedings of Third International Joint Con-

ference on Autonomous Agents and MultiAgent Systems (AAMAS 2004), volume 1,

pages 446–453, New York, 2004. IEEE Computer Society.

[55] Bertrand Mazure, Lakhdar Sais, and Eric Gregoire. Boosting Complete Techniques

Thanks to Local Search Methods. Annals of Mathematics and Artificial Intelligence,

22(3–4):319–331, 1998.

[56] A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan. Comparing Performance of

Distributed Constraints Processing Algorithms. In Proceedings of the AAMAS-2002

Workshop on Distributed Constraint Reasoning, pages 86–93, Bologna, July 2002.

[57] A. Meisels and R. Zivan. Asynchronous Forward-Checking for DisCSPs. Constraints,

12(1):131–150, 2007.

[58] I. Miguel and Q. Shen. Solution Techniques for Constraint Satisfaction Problems:

Advanced Approaches. Artificial Intelligence Review, 15(4):269–293, June 2001.

[59] Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird. Minimizing

Conflicts: A Heuristic Repair Method for Constraint-Satisfaction and Scheduling

Problems. Artificial Intelligence, 58(1–3):161–205, 1992.

[60] D. Mitra and H. rae Kim. A New Approach for Heterogeneous Hybridization of

Constraint Satisfaction Search Algorithms. In Proceedings of the Seventeenth In-

BIBLIOGRAPHY 158

ternational Florida Artificial Intelligence Research Society Conference. AAAI Press,

2004.

[61] Pierre Monier, Sylvain Piechowiak, and Rene Mandiau. A complete algorithm for

DisCSP: Distributed Backtracking with Sessions (DBS). In Proceedings of Second

International Workshop on Optimisation in Multi-Agent Systems, 2009.

[62] Paul Morris. The Breakout Method for Escaping from Local Minima. In Proceedings

of the Eleventh National Conference on Artificial Intelligence, pages 40–45, 1993.

[63] Alexander Nareyek, Stephen F. Smith, and Christian M. Ohler. Integration of a Re-

finement Solver and a Local-Search Solver. Technical Report TR-RI-04-33, Robotics

Institute, Carnegie Mellon University, Pittsburgh, PA, USA, August 2004.

[64] Viet Nguyen, Djamila Sam-Haroud, and Boi Faltings. Dynamic Distributed Back-

Jumping. In Proceedings of the 5th Workshop on Distributed Constraints Reasoning

(DCR-04), pages 51–65, Toronto, Canada, September 2004.

[65] Eugeniusz Nowicki and Czeslaw Smutnicki. A Fast Taboo Search Algorithm for the

Job Shop Problem. Management Science, 42(6):797–813, June 1996.

[66] Edgar M. Palmer. Graphical Evolution: An Introduction to the Theory of Random

Graphs. John Wiley and Sons, Inc., 1985.

[67] Gilles Pesant and Michel Gendreau. A Constraint Programming Framework for

Local Search Methods. Journal of Heuristics, 5(3):255–279, 1999.

[68] Adrian Petcu and Boi Faltings. A Value Ordering Heuristic for Local Search in

Distributed Resource Allocation. In B. Faltings, A. Petcu, F. Rossi, and F. Fages,

editors, LNAI 3419 - CSCLP04, pages 86–97. Springer Verlag, Lausanne, Switzer-

land, February 2004.

[69] Adrian Petcu and Boi Faltings. A Scalable Method for Multiagent Constraint Op-

timization. In Proceedings of the 19th International Joint Conference on Artificial

Intelligence (IJCAI-05), Edinburgh, Scotland, August 2005.

BIBLIOGRAPHY 159

[70] Adrian Petcu and Boi Faltings. A Hybrid of Inference and Local Search for Dis-

tributed Combinatorial Optimization. In Proceedings of 2007 IEEE/WIC/ACM In-

ternational Conference on Intelligent Agent Technology, pages 342–348. IEEE Com-

puter Society, 2007.

[71] S. Prestwich. Combining the Scalability of Local Search with the Pruning Techniques

of Systematic Search. Annals of Operations Research., 115(1-4):51–72, September

2002.

[72] Steve Prestwich. A Hybrid Search Architecture Applied to Hard Random 3-SAT

and Low-Autocorrelation Binary Sequences. In The Sixth International Conference

on Principles and Practice of Constraint Programming (CP-2000), pages 337–352.

Springer-Verlag, 2000.

[73] Steve Prestwich. Local Search and Backtracking vs Non-Systematic Backtracking.

In AAAI 2001 Fall Symposium on Using Uncertainty within Computation, pages

109–115. AAAI Press, 2001.

[74] Patrick Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem. Com-

putational Intelligence, 9(3):268–299, 1993.

[75] E. Thomas Richards and Barry Richards. Non-systematic Search and Learning: An

Empirical Study. Lecture Notes in Computer Science, 1520:370–384, October 1998.

[76] Georg Ringwelski. An Arc-Consistency Algorithm for Dynamic and Distributed

Constraint Satisfaction Problems. Artificial Intelligence Review, 24(3-4):431–454,

November 2005.

[77] Georg Ringwelski and Youssef Hamadi. Boosting Distributed Constraint Satisfac-

tion. In Peter van Beek, editor, Proceedings of the 11th International Conference

Principles and Practice of Constraint Programming û CP 2005, volume 3709 of Lec-

ture Notes in Computer Science, pages 549–562. Springer, September 2005.

[78] Nico Roos, Yongping Ran, and Jaap van den Herik. Combining Local Search and

BIBLIOGRAPHY 160

Constraint Propagation to Find a Minimal Change Solution for a Dynamic CSP. In

Artificial Intelligence: Methodology, Systems, Applications, pages 272–282, 2000.

[79] Hani El Sakkout and Mark Wallace. Probe Backtrack Search for Minimal Pertur-

bation in Dynamic Scheduling. Constraints, 5(4):359–388, 2000.

[80] Andrea Schaerf. Combining Local Search and Look-Ahead for Scheduling and

Constraint Satisfaction Problems. In Proceedings of the Fifteenth International

Joint Conference on Artificial Intelligence (IJCAI’97), pages 1254–1259. Morgan-

Kaufmann, 1997.

[81] Uri Shapen and Amnon Meisels. Cooperative Dynamic Multi-CBJ Search for DisC-

SPs. In Proceedings of the 9th International Workshop on Distributed Constraint

Reasoning, 2007.

[82] Paul Shaw. Using Constraint Programming and Local Search Methods to Solve

Vehicle Routing Problems. Springer-Verlag Lecture Notes in Computer Science,

1520:417–431, 1998.

[83] Marius-Calin Silaghi, Djamila Sam-Haroud, and Boi Faltings. Asynchronous Search

with Aggregations. In Proceedings of AAAI/IAAI 2000, pages 917–922, Austin, TX,

2000.

[84] Marius-Calin Silaghi, Djamila Sam-Haroud, and Boi Faltings. Consistency Mainte-

nance for ABT. In Proceedings 7th National Conference on Principles and Practice

of Constraint Programming, CP’01, pages 271–285, Paphos, Cyprus, 2001.

[85] Marius-Calin Silaghi, Djamila Sam-Haroud, and Boi Faltings. Hybridizing ABT and

AWC into a polynomial space, complete protocol with reordering. Technical Report

EPFL-TR-01/364, Swiss Federal Institute of Technology Lausanne, Swiss Federal

Institute of Technology Lausanne, May 2001.

[86] K. Sycara, S. Roth, N. Sadeh, and M. Fox. Distributed Constrained Heuristic Search.

IEEE Transactions on Systems, Man and Cybernetics, 21(6):1446–1461, 1991.

BIBLIOGRAPHY 161

[87] Peter van Beek. Handbook of Constraint Programming, chapter 4, pages 85–134.

Elsevier, 2006.

[88] Gerard Verfaillie and Thomas Schiex. Solution Reuse in Dynamic Constraint Sat-

isfaction Problems. In National Conference on Artificial Intelligence (AAAI ’94),

pages 307–312, 1994.

[89] Chris Voudouris and Edward Tsang. Guided Local Search. Technical Report CSM-

247, Department of Computer Science, University of Essex, Colchester, C04 3SQ,

UK, August 1995.

[90] Toby Walsh. Search on High Degree Graphs. In Bernhard Nebel, editor, Proceedings

of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI

2001), pages 266–271. Morgan Kaufmann, August 2001 2001.

[91] M. Yokoo. Distributed Constraint Satisfaction: Foundation of Cooperation in Multi-

agent Systems. Springer, 2000.

[92] Makoto Yokoo. Weak-Commitment Search for Solving Constraint Satisfaction Prob-

lems. In Proceedings of the 12th National Conference on Artificial Intelligence

(AAAI-94);Vol. 1, pages 313–318, Seattle, WA, USA, July 31 - August 4 1994.

AAAI Press, 1994.

[93] Makoto Yokoo. Asynchronous Weak-Commitment Search for Solving Distributed

Constraint Satisfaction Problems. In Ugo Montanari and Francesca Rossi, editors,

Proceedings of the First International Conference on Principles and Practice of Con-

straint Programming (CP-95), volume 976 of Lecture Notes in Computer Science,

pages 88–102. Springer, 1995.

[94] Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro Kuwabara. The Dis-

tributed Constraint Satisfaction Problem: Formalization and Algorithms. Knowl-

edge and Data Engineering, 10(5):673–685, 1998.

[95] Makoto Yokoo and Katsutoshi Hirayama. Distributed Breakout Algorithm for Solv-

ing Distributed Constraint Satisfaction Problems. In M. Tokoro, editor, Second In-

BIBLIOGRAPHY 162

ternational Conference on Multiagent Systems (ICMAS-96), pages 401–408, ’Kyoto,

Japan, December 1996.

[96] Makoto Yokoo and Katsutoshi Hirayama. Distributed Constraint Satisfaction Algo-

rithm for Complex Local Problems. In ICMAS, pages 372–379, 1998.

[97] Makoto Yokoo and Katsutoshi Hirayama. Algorithms for Distributed Constraint

Satisfaction: A Review. Autonomous Agents and Multi-Agent Systems, 3(2):185–

207, 2000.

[98] Masazumi Yoshikawa, Kazuya Kaneko, Toru Yamanouchi, and Masanobu Watan-

abe. A Constraint-Based High School Scheduling System. IEEE Expert: Intelligent

Systems and Their Applications, 11(1):63–72, February 1996.

[99] Jian Zhang and Hantao Zhang. Combining Local Search and Backtracking Tech-

niques for Constraint Satisfaction. In Proceedings of the 13th AAAI/8th IAAI, Vol.

1, pages 369–374, August 1996.

[100] Weixiong Zhang, Guandong Wang, Zhao Xing, and Lars Wittenburg. Distributed

stochastic search and distributed breakout: properties, comparison and applica-

tions to constraint optimization problems in sensor networks. Artificial Intelligence,

161(1–2):55–87, January 2005.

[101] R. Zivan and A. Meisels. Message delay and DisCSP search algorithms. In Proc.

5th workshop on Distributed Constraints Reasoning, DCR-04, Toronto, 2004.

[102] Roie Zivan and Amnon Meisels. Synchronous vs Asynchronous search on DisCSPs.

In Proceedings of the First European Workshop on Multi-Agent Systems (EUMA),

Oxford, December 2003.

[103] Roie Zivan and Amnon Meisels. Concurrent Dynamic Backtracking for Distributed

CSPs. In CP, pages 782–787, 2004.

[104] Roie Zivan and Amnon Meisels. Dynamic Ordering for Asynchronous Backtracking

on DisCSPs. Constraints, 11(2-3):179–197, 2006.

BIBLIOGRAPHY 163

[105] Roie Zivan, Moshe Zazone, and Amnon Meisels. Min-Domain Ordering for Asyn-

chronous Backtracking. In Christian Bessiere, editor, Proceedings of the 13th In-

ternational Conference on Principles and Practice of Constraint Programming (CP

2007), volume Lecture Notes in Computer Science, pages 758–772. Springer-Verlag,

2007.

Published Papers

• David Lee, Ines Arana, Hatem Ahriz and Kit-Ying Hui, 2008. A Hybrid Approach

to Distributed Constraint Satisfaction. In: Danail Dochev, Paolo Traverso and

Marco Pistore, ed. Artificial Intelligence: Methodology, Systems and Applications.

13th International Conference, AIMSA 2008 Varna, Bulgaria, September 4-6, 2008

Proceedings. pages 375-379. 4th-6th September 2008. Varna, Bulgaria.

• David Lee, Ines Arana, Hatem Ahriz and Kit-Ying Hui, 2009. A Hybrid Approach

to Solving Coarse-grained DisCSPs. In: Proceedings of the Eighth International

Conference on Autonomous Agents and Multi Agent Systems (AAMAS 09) pages

1235-1236. 10th-15th May 2009. Budapest, Hungary.

• David Lee, Ines Arana, Hatem Ahriz and Kit-Ying Hui, 2009. Multi-Hyb: A Hybrid

Algorithm for Solving DisCSPs with Complex Local Problems. In: Proceedings of

2009 IEEE/WIC/ACM International Conference on Intelligent Agent Technology

(IAT 2009) pages 379-382. 15th-18th September 2009. Milan, Italy.

164

Glossary of Terms

Constraint Satisfaction Prob-
lem

A Constraint Satisfaction Problem con-
sists of variables, domains and constraints.
A formal definition is given in section 3.1.

Complex Variables A single complex variable represents all
variables in a complex local problem. The
domain is all possible solutions for that
complex local problem.

Constraint An expression between one or more vari-
ables which restricts the values that those
variables can take simultaneously.

Domain A set of values that a variable can take.

Distributed Constraint Satis-
faction

A Distributed Constraint Satisfaction
problem consists of variables, domains,
constraints and agents which represent the
variables in the problem. A formal defini-
tion is given in section 2.2.

DisCSP with Complex Local
Problems

A Distributed Constraint Satisfaction
problem where each agent represents a
CSP containing more than one variable.

Externally Relevant Variables Those variables in a complex local prob-
lem which have inter-agent constraints.

Fine-grained DisCSP A Distributed Constraint Satisfaction
problem where each agent has only one
variable per agent.

Intra-agent constraint A constraint between two or more vari-
ables where all variables belong to the
same agent.

Inter-agent constraint A constraint between two or more vari-
ables where at least two of the variables
belong to different agents.

165

Interchangeable solutions Two solutions to a complex local problem
are said to be interchangeable if all val-
ues for the externally relevant variables
are identical.

Local Optima A neighbourhood is said to be in local op-
tima if there are no changes to a single
variable which can reduce the number of
constraint violations.

Neighbour Any variable which shares a constraint
with another variable is said to be neigh-
bours with that variable.

Neighbourhood All of the variables sharing a constraint
with a particular variable is said to form
that variable’s neighbourhood.

166

Appendix A

Distributed Penalty-Based

Backjumping Algorithm (DisPBJ)

A.1 Introduction

In this section, the Distributed Penalty-Based Backjumping Algorithm (DisPBJ) is pre-

sented, combining local search and backjumping to permit practical completeness for big-

ger problems. DisPeL is run for a number of cycles and distributed backjumping is run if

DisPeL is unsuccessful in solving the problem using DisPeL’s penalty information to guide

variable ordering and value selection.

Our contribution is therefore two-fold: a distributed hybrid algorithm extending com-

pleteness to local search, and an ordering heuristic which is able to find solutions quicker

than backjumping. In Jussien’s classification of hybrid algorithms [48], DisPBJ would be

classified in the performing local search before/after systematic search category.

A.2 Algorithm Description

The DisPBJ algorithm, shown in Algorithm 10, runs DisPeL for a bounded number of

cycles. If DisPeL has not solved the problem, DisPeL’s penalty information guides variable

ordering and value selection. DisPeL was modified so that it counts the overall number of

penalties assigned to each agent (as discussed in section 5.3.1 for PenDHyb).

167

Algorithm 10 Our approach, the DisPBJ Algorithm

1: initialise
2: repeat
3: dispel agent main loop(termination condition)
4: until termination condition met
5: if DisPeL did not find a solution then
6: sort agents using the maximum degree heuristic using the agent’s penalty count to

break ties.
7: set each variable’s current value to the last value assigned by DisPeL
8: repeat
9: distributed backjumping(new agent order)

10: until solution found or no solution detected
11: end if

After initialisation of the agents, a standard DisPeL search is performed. A penalty

counter for each variable was added to each agent maintaining penalties accrued by each

variable 1. A penalty counter is incremented whenever DisPeL imposes a penalty on that

variable’s value. This counter is not reset when DisPeL resets its penalties. A penalty

counter highlights repeated penalisation of a variable for an agent throughout the whole

search, thereby indicating that the variable is difficult to solve. DisPeL’s standard penalty

mechanism only accrues this information between penalty resets.

We conducted experiments on solvable randomly generated DisCSPs to deter-

mine an optimal bound of cycles for DisPeL with 30-60 variables (n) in steps of 10, 10

domain values, 3n constraints and constraint tightness of 0.5. Cut-offs were used between

0.5n and 7n in steps of 0.5. The results of these experiments are shown in table A.1.

The optimal cut-off varies according to the number of variables with the cut-off increasing

as the number of variables increase. For unsolvable problems, a small bound is always

required as DisPeL cannot detect unsolvability.

If DisPeL does not solve the problem within the bounded number of cycles, a dis-

tributed version of backjumping [74] either solves the problem or determines that the

problem is unsolvable. Our backjumping algorithm (DisBJ) uses descending Distributed

Agent Ordering [41] with max degree and the penalty count of each variable breaking ties.

A ”Sticking Values” heuristic (originally proposed in [32]) initialises the first value for each

1Note that DisPeL does not keep track of overall penalties as these are reset periodically.

168

Cut-off 30 40 50 60
Number of Messages

DisBJ 11,682 68,002 559,820 4,712,013
0.5n 9,278 33,528 384,596 1,493,332
1n 11,019 39,870 237,779 1,207,309
1.5n 13,043 36,100 183,141 1,040,986
2n 13,925 43,922 176,301 1,159,978
2.5n 15,584 33,254 142,291 630,009
3n 18,773 47,376 130,339 813,628
3.5n 21,628 41,883 111,685 251,633
4n 22,379 47,257 76,390 325,449
4.5n 24,450 44,842 116,840 262,365
5n 26,838 50,919 76,856 176,174
5.5n 29,897 53,480 121,434 119,261
6n 32,453 58,259 111,257 130,605
6.5n 29,250 58,560 97,719 143,515
7n 38,640 62,280 105,332 151,519

Number of Constraint Checks
DisBJ 176,730 885,760 7,736,641 65,097,333
0.5n 114,594 402,984 5,369,603 21,281,579
1n 128,245 494,449 3,143,463 16,415,687
1.5n 148,583 437,667 2,416,938 14,443,569
2n 155,990 526,635 2,200,473 15,525,753
2.5n 171,424 371,354 1,792,222 8,283,567
3n 202,257 543,657 16,03,866 11,295,968
3.5n 229,911 455,163 1,346,886 3,071,316
4n 237,374 517,911 830,421 3,976,873
4.5n 257,455 477,003 1,301,327 3,324,933
5n 282,011 541,341 810,018 2,038,639
5.5n 314,317 564,166 1,331,3411,254,159
6n 341,082 611,999 1,235,571 1,373,138
6.5n 307,709 615,892 1,027,384 1,512,688
7n 408,590 654,930 1,107,212 1,592,441

Table A.1: Determining the optimal cut-off value for DisPBJ for 3n constraints and con-
straint tightness of 0.5.

169

agent with DisPeL’s last value used for that variable.

The DisPBJ algorithm is complete since either DisPeL will report a solution or cause

backjumping to run which will determine whether the problem is solvable. Termination

occurs if DisPeL finds a solution in the allocated number of cycles or at backjumping

termination points guaranteeing that the algorithm will conclude in finite time. The

algorithm is sound since solutions are generated by DisPeL or backjumping which have

previously been proven to be sound [8, 74].

A.2.1 Determining the best version of DisPBJ

We ran a number of different versions of DisPBJ to determine the effectiveness of the

sticking values heuristic. DisPBJ (Sticking Values/No Penalties) uses our sticking values

heuristic but uses lexicographical ordering to break ties rather than penalties. DisPBJ (No

Sticking Values/Penalties) omits sticking values but uses penalties to break ties. Table A.2

presents the median results for 100 solvable randomly generated DisCSPs with 40 variables

(n), 10 domain values (d), constraint density (p1) of 0.15 and constraint tightness (p2) of

0.5. Median results are presented since averages unfairly penalise backjumping on harder

problems.

Algorithm Messages Constraint Checks
DisBJ 68,002 885,760

DisPBJ (Sticking Values/No Penalties) 76,320 802,334
DisPBJ (No Sticking Values/Penalties) 89,160 937,886

DisPBJ 50,040 526,323

Table A.2: Determining the effectiveness of Sticking Values with different variants of
DisPBJ for < n=40,d=10,p1=0.15,p2=0.5> on distributed random problems.

The penalty and value information from DisPeL appears beneficial in allowing back-

jumping to process the most difficult variables at the start of the search with less con-

strained variables near the end of the search. This combination of penalty and value

information, whilst individually worse, yields considerably fewer messages and constraint

checks than DisBJ.

170

A.3 Experimental Evaluation

Our hybrid algorithm, DisPBJ, is first evaluated against local search, DisPeL. Further-

more, we evaluate DisPBJ against distributed backjumping (DisBJ) to determine the

effectiveness of our approach and the benefits that our approach has on both algorithms.

We evaluated DisPBJ against DisPeL on solvable randomly generated problems with

40, 50 and 60 variables, 10 domain values, a constraint density of 0.15 and on constraint

tightness of 0.5 and averaged the results over 100 runs. We show the average results since

DisPeL solves the vast majority of problems and therefore the median results for DisPeL

and DisPBJ are identical. DisPeL has been shown to perform well on these problems but

does not solve all problems [8]. Table A.3 lists the number of messages and constraint

checks.

Number of Variables 40 50 60
Percentage of Problems Solved

DisPeL 97 92 94
DisPBJ 100 100 100

Number of Messages
DisPeL 104,830 203,070 238,651
DisPBJ 106,088 246,933 621,977

Number of Constraint Checks
DisPeL 1,102,416 2,135,261 2,509,272
DisPBJ 1,119,100 2,727,034 8,012,461

Table A.3: DisPeL and DisPBJ Algorithms by Number of Messages and Constraint
Checks.

In these experiments, DisPeL solved a very high percentage of problems, but a few

problems remained unsolved, whilst DisPBJ obtains practical completeness in solving all

problems. Naturally, DisPBJ incurs more messages and constraint checks than DisPeL

since it incurs DisPeL’s messages and constraint checks until the bounded number of cycles

is reached and then the messages and constraint checks associated with backjumping.

However, since DisPBJ gives practical completeness, this increase in evaluation metrics

appears cost effective.

We evaluated DisPBJ against our DisBJ algorithm (a distributed version of Prosser’s

centralised backjumping algorithm [74] with max degree ordering) to determine whether

DisPeL’s ordering technique on backjumping was beneficial. Our comparison is for ran-

domly generated problems with 30, 40, 50 and 60 variables, 10 domain values, constraint

171

density of 0.15 and constraint tightness of 0.5. We ran the algorithms on 100 solvable prob-

lems and removed those problems which DisPeL solved. Most problems with less than 40

variables are easily solved by DisPeL, leaving too few to be solved through backjumping to

be able to conduct an analysis. In Table A.4, we present the median results for 40, 50 and

60 variables on solvable problems. We do not count the messages and constraint checks

incurred during the DisPeL phase of the DisPBJ algorithm. In Table A.5, we present

median results for 40, 50 and 60 variables on unsolvable problems where the DisPeL phase

in DisPBJ cannot detect that the problem is unsolvable so the backjumping phase must

always run.

Number of Variables 40 50 60
Number of Messages

DisBJ 68,002 599,884 4,712,013
DisPBJ 50,040 315,317 2,557,046

Number of Constraint Checks
DisBJ 885,760 8,450,089 65,097,333

DisPBJ 526,323 4,251,953 35,990,609

Table A.4: DisBJ and DisPBJ Algorithms by Number of Messages and Constraint Checks
for Solvable Problems.

Number of Variables 40 50 60
Number of Messages

DisBJ 103,502 1,496,214 7,717,549
DisPBJ 98,415 1,185,036 5,889,355

Number of Constraint Checks
DisBJ 1,438,582 20,682,093 109,817,618

DisPBJ 1,278,583 15,592,142 80,024,587

Table A.5: DisPeL and DisPBJ Algorithms by Number of Messages and Constraint Checks
for Unsolvable Problems.

DisPBJ uses about half the number of messages and constraint checks than DisBJ

at 60 variables. The difference is less profound for smaller problems and for unsolvable

problems but DisPeL remains an effective ordering heuristic for distributed backjumping.

A.4 Discussion

We compared our synchronous hybrid algorithm, DisPBJ, with synchronous DisBJ and

synchronous SynCBJ [102] on solvable randomly-generated problems with 30, 40, 50 and

60 variables (n), 10 domain values, 3n constraints and constraint tightness of 0.5. SynCBJ

is considered to be a more efficient algorithm than standard backtracking and backjumping

172

algorithms. Table A.6 presents median results.

Number of Variables 30 40 50 60
Number of Messages

DisBJ 11,682 68,002 559,820 4,712,013
DisPBJ 32,130 63,840 128,550 1,803,134

SynCBJ 7,166 29,334 114,625 434,935
Number of Constraint Checks

DisBJ 176,730 885,760 7,736,641 65,097,333
DisPBJ 337,992 671,205 1,351,619 1,567,039

SynCBJ 40,123 149,163 547,700 1,828,217

Table A.6: DisBJ, DisPBJ and SyncCBJ Algorithms by Number of Messages and Con-
straint Checks.

Whilst DisPBJ always significantly outperforms DisBJ, conflict-directed backjumping

(SynCBJ) outperforms DisPBJ. DisPBJ remains an important contribution since small

problems can be efficiently solved with DisPBJ without incurring the additional nogood

storage requirements of SynCBJ.

As a direct consequence of this preliminary study, the PenDHyb algorithm was de-

veloped and is presented in section 5.3.1. The specific differences between PenDHyb and

DisPBJ are: (i) PenDHyb uses SynCBJ to find a solution or detect that a problem is

unsolvable when DisPeL fails whilst DisPBJ uses DisBJ ; (ii) PenDHyb uses DisPeL’s

best variable values which minimized constraint violations as the initial variable values for

SynCBJ whilst DisPBJ uses DisPeL’s last variable values as the initial variable values for

DisBJ.

A.5 Summary

In this appendix, the DisPBJ algorithm, a hybrid algorithm which combines penalty-

based local search with backjumping systematic search has been presented. DisPBJ uses

information from DisPeL’s penalties and values to guide DisBJ (a distributed backjumping

algorithm) if DisPeL is unable to solve the problem within a bounded number of cycles.

173

Appendix B

Evaluating the Cost of Forward

Checking in the SEBJ algorithm

Forward checking [3] can be an effective method for reducing the computational effort

required within backtracking algorithms. When assigning a value to a variable, forward

checking makes sure that no future variables will have no possible values in the domain

if the assignment of the current variable’s value goes ahead. If a variable has no possible

values, then another value is chosen for the current variable. The idea is to minimise the

amount of backjumps which will be required. The SEBJ algorithm which is an integral

part of Multi-Hyb-Pen (see chapter 6), Multi-Hyb-DB (see chapter 6), Multi-HDCS-Pen

(see chapter 7) and Multi-HDCS-DB (see chapter 7) may benefit from the addition of for-

ward checking. Consequently, we modified the SEBJ algorithm to do forward checking dur-

ing assignment of external variables. We do not do forward checking on internal variables

since we would perform additional computation and potentially redundant forward check-

ing as we only need one interchangeable solution for the internal variables. We evaluated

Multi-Hyb-Pen, Multi-Hyb-DB, Multi-HDCS-Pen and Multi-HDCS-DB with and without

forward checking on distributed randomly generated problems, distributed graph

colouring problems, distributed meeting scheduling problems and distributed

sensor network problems.

174

B.1 Randomly Generated Problems

B.1.1 Solvable Problems

The number of agents was 5, the domain size was 8, constraint density was 0.2 and

constraint tightness was 0.35. The percentage of intra-agent constraints varied between

70% and 90% with the remainder being inter-agent constraints. Median results for solvable

randomly generated problems are shown in Table B.1.

Median messages
Num intra: Multi Multi Multi Multi Multi Multi Multi Multi

-Hyb -Hyb -Hyb -Hyb -HDCS -HDCS -HDCS -HDCS
Vars inter -Pen -Pen -DB -DB -Pen -Pen -DB -DB

+FC +FC +FC +FC
60 90:10 399 2334 323 2873 234 3,762 60 954
60 80:20 197 843 158 1657 344 4,462 85 857
60 70:30 818 802 833 1767 278 2,721 156 337
70 80:20 159 574 96 305 130 246 45 55
70 70:30 112 300 175 481 264 1,428 60 104
80 80:20 143 311 60 60 70 74 42 45
80 70:30 89 180 60 100 117 138 38 45
90 80:20 94 207 60 60 70 70 35 37
90 70:30 81 167 60 60 125 130 35 37
100 80:20 56 45 60 60 70 70 35 35
100 70:30 78 166 60 60 70 72 35 35
125 80:20 20 20 60 60 70 70 35 35
125 70:30 60 213 60 60 70 70 35 35
150 80:20 20 20 60 60 70 70 35 35
150 70:30 30 305 46 60 70 70 35 35
175 80:20 20 20 45 60 70 70 35 35
175 70:30 20 53 45 60 70 65 35 35

Median NCCCs
Num intra: Multi Multi Multi Multi Multi Multi Multi Multi

-Hyb -Hyb -Hyb -Hyb -HDCS -HDCS -HDCS -HDCS
Vars inter -Pen -Pen -DB -DB -Pen -Pen -DB -DB

+FC +FC +FC +FC
60 90:10 163,585 332,351 170,093 228,539 59,650 175,441 60,088 200,623
60 80:20 277,408 424,969 268,336 332,784 75,413 320,041 71,387 254,169
60 70:30 2,761,1713,195,619 2,626,0872,982,260 1,012,2133,056,384 537,988 878,401
70 80:20 151,678 155,732 133,577 105,299 50,698 72,540 49,960 75,537
70 70:30 291,421 287,706 288,457 252,790 88,373 169,830 85,467 155,008
80 80:20 118,874 86,706 114,283 60,197 48,123 51,687 49,126 53,156
80 70:30 169,884 117,823 153,848 88,854 56,643 70,924 56,339 73,938
90 80:20 117,668 59,951 105,869 48,391 46,855 47,209 45,307 46,956
90 70:30 140,181 86,475 130,355 62,901 52,380 57,722 51,510 56,034
100 80:20 107,836 48,532 101,792 46,228 44,687 45,383 44,571 45,120
100 70:30 132,031 79,724 125,176 57,312 50,638 55,368 52,368 55,741
125 80:20 106,435 46,117 104,718 46,815 46,992 46,024 46,706 46,794
125 70:30 125,553 81,054 121,680 54,071 51,280 53,099 50,360 53,202
150 80:20 100,020 49,255 102,519 49,523 45,587 49,868 45,250 49,377
150 70:30 120105 102,107 128,039 56,539 54,756 56,204 52,613 55,343
175 80:20 98,875 53,850 103,143 54,054 45,774 53,992 45,613 53,491
175 70:30 110,325 71,081 124,838 60,359 51,805 58,286 50,468 58,778

Table B.1: Measuring the effectiveness of Forward Checking on SEBJ for solvable random
problems.

175

For Multi-Hyb-Pen and Multi-Hyb-DB, forward checking is beneficial for the vast ma-

jority of larger problems (80 variables and above) whereas forward checking incurs more

constraint checks rather than less for Multi-HDCS-Pen and Multi-HDCS-DB.

B.1.2 Unsolvable Problems

The number of agents was 5, the domain size was 8 and constraint tightness was 0.35.

The percentage of intra-agent constraints varied between 70% and 90% with the remainder

being inter-agent constraints. We consider median results for problems where at least one

agent has no local solution in table B.2. In these problems, SEBJ detects unsolvability

and so the number of messages is identical regardless of forward checking since these are

only termination detection messages. For NCCCs, forward checking always produce more

NCCCs than without. Median results for problems where all agents have local solutions

but there is no global solution are presented in table B.3. In these problems, we found

that forward checking reduced the number of messages sent but increased the number of

NCCCs. The reduction in messages is caused as forward checking takes longer to find the

first solution and therefore less messages require to be sent by local search whilst SEBJ

is running.

B.2 Graph Colouring Problems

B.2.1 Solvable Problems

For distributed graph colouring problems, 150 and 200 nodes were used with 15 to 25

agents, 3 colours and a degree of between 4.9 and 5.1. The percentage of intra-agent

constraints varied between 70% and 90% with the remainder being inter-agent constraints.

Median results for solvable graph colouring problems are shown in Table B.4.

Forward checking can often reduce the number of messages within the context of our

hybrid algorithms. Since forward checking requires additional computation at the top of

the tree to enable pruning, there is often a shorter timeframe between finding the first

solution and finding all solutions. Therefore, distributed local search runs for a shorter

period of time and therefore incurs less messages. Whilst for some problem combinations

176

Median messages
Num Constraint intra: Multi Multi Multi Multi Multi Multi Multi Multi

-Hyb -Hyb -Hyb -Hyb -HDCS -HDCS -HDCS -HDCS
Vars Density inter -Pen -Pen -DB -DB -Pen -Pen -DB -DB

+FC +FC +FC +FC
60 0.2 90:10 14 14 14 14 14 14 14 14
70 0.2 80:20 12 12 12 12 12 12 12 12
70 0.2 70:30 16 16 16 16 16 16 16 16
80 0.2 80:20 12 12 12 12 12 12 12 12
80 0.2 70:30 12 12 12 12 12 12 12 12
90 0.18 80:20 12 12 12 12 12 12 12 12
90 0.18 70:30 12 12 12 12 12 12 12 12
100 0.16 80:20 10 10 10 10 10 10 10 10
100 0.16 70:30 12 12 12 12 12 12 12 12
125 0.14 80:20 10 10 10 10 10 10 10 10
125 0.14 70:30 10 10 10 10 10 10 10 10
150 0.12 80:20 10 10 10 10 10 10 10 10
150 0.12 70:30 10 10 10 10 10 10 10 10
175 0.1 80:20 10 10 10 10 10 10 10 10
175 0.1 70:30 10 10 10 10 10 10 10 10

Median NCCCs
Num Constraint intra: Multi Multi Multi Multi Multi Multi Multi Multi

-Hyb -Hyb -Hyb -Hyb -HDCS -HDCS -HDCS -HDCS
Vars Density inter -Pen -Pen -DB -DB -Pen -Pen -DB -DB

+FC +FC +FC +FC
60 0.2 90:10 52,826 174,240 52,826 174,240 52,826 174,240 52,826 174,240
70 0.2 80:20 42,530 81,719 42,530 81,719 42,530 81,719 42,530 81,719
70 0.2 70:30 52,179 89,715 52,179 89,715 52,179 89,715 52,179 89,715
80 0.2 80:20 43,799 66,769 43,799 66,769 43,799 66,769 43,799 66,769
80 0.2 70:30 51,542 71,058 51,542 71,058 51,542 71,058 51,542 71,058
90 0.18 80:20 45,684 57,134 45,684 57,134 45,684 57,134 45,684 57,134
90 0.18 70:30 61,117 89,118 61,117 89,118 61,117 89,118 61,117 89,118
100 0.16 80:20 54,195 68,184 54,195 68,184 54,195 68,184 54,195 68,184
100 0.16 70:30 83,499 134,548 83,499 134,548 83,499 134,548 83,499 134,548
125 0.14 80:20 67,445 77,563 67,445 77,563 67,445 77,563 67,445 77,563
125 0.14 70:30 104,296129,868 104,296129,868 104,296 129,868 104,296 129,868
150 0.12 80:20 117,291134,940 117,291134,940 117,291 134,940 117,291 134,940
150 0.12 70:30 181,334236,331 181,334236,331 181,334 236,331 181,334 236,331
175 0.1 80:20 227,126253,182 227,126253,182 227,126 253,182 227,126 253,182
175 0.1 70:30 365,401415,737 365,401415,737 365,401 415,737 365,401 415,737

Table B.2: Measuring the effectiveness of Forward Checking on SEBJ for unsolvable ran-
dom problems where one or more agents has no local solution.

177

Median messages
Num Constraint intra: Multi Multi Multi Multi Multi Multi Multi Multi

-Hyb -Hyb -Hyb -Hyb -HDCS -HDCS -HDCS -HDCS
Vars Density inter -Pen -Pen -DB -DB -Pen -Pen -DB -DB

+FC +FC +FC +FC
60 0.2 80:20 177 16 194 56 703 324 69 45
60 0.2 70:30 249 207 319 247 480 70 69 50
70 0.18 70:30 114 52 166 92 418 70 54 40
80 0.16 70:30 106 44 129 84 823 165 49 40
90 0.14 70:30 158 87 262 127 500 100 56 48
100 0.13 70:30 129 713 157 753 674 379 49 260

Median NCCCs
Num Constraint intra: Multi Multi Multi Multi Multi Multi Multi Multi

-Hyb -Hyb -Hyb -Hyb -HDCS -HDCS -HDCS -HDCS
Vars Density inter -Pen -Pen -DB -DB -Pen -Pen -DB -DB

+FC +FC +FC +FC
60 0.2 80:20 62,205 172,452 59,641 172,452 53,186 166,554 53,186 166,554
60 0.2 70:30 251,012 512,896 252,212 512,896 113,114 247,778 83,564 238,365
70 0.18 70:30 136,748 409,832 136,748 409,382 102,594 344,360 91,343 344,360
80 0.16 70:30 174,461 480,168 174,461 480,168 135,582 362,447 124,409 362,447
90 0.14 70:30 374,569 1,050,722 372,796 1,050,722 254,904 875,936 238,437 842,274
100 0.13 70:30 362,227 19,168,433354,277 19,168,433330,553 8,637,679298,96611,387,490

Table B.3: Measuring the effectiveness of Forward Checking on SEBJ for unsolvable ran-
dom problems where all agents have local solutions but there are no global solutions.

for some algorithms (particularly Multi-Hyb-DB and Multi-HDCS-DB) forward checking

does reduce NCCCs, in general forward checking substantially increases the number of

NCCCs as the benefits of pruning are not outweighed by the additional computation

required.

B.2.2 Unsolvable Problems

For distributed graph colouring problems, 150 and 200 nodes were used with 15 to 25

agents, 3 colours and a degree of between 4.9 and 5.1. The percentage of intra-agent

constraints varied between 70% and 80% with the remainder being inter-agent constraints.

Median results for unsolvable graph colouring problems where one or more agents have no

local solutions are shown in Table B.5. For these problems, SEBJ detects unsolvability and

so the number of messages is only for termination detection and so is identical regardless

of forward checking. Forward checking does however increase the number of NCCCs

performed. Median results for unsolvable graph colouring problems where all agents have

local solutions but there is no global solution are shown in Table B.6. Whilst for Multi-

HDCS-Pen and Multi-HDCS-DB, forward checking did occasionally reduce NCCCs, it

substantially increased the number of NCCCs for the other algorithms with only a very

178

Median mssgs
Num Num intra: Multi Multi Multi Multi Multi Multi Multi Multi
Nodes Agents Deg inter -Hyb -Hyb -Hyb -Hyb -HDCS -HDCS -HDCS -HDCS

-Pen -Pen -DB -DB -Pen -Pen -DB -DB
+FC +FC +FC +FC

150 15 4.9 90:10 40 225 155 175 486 702 120 135
150 15 5.1 90:10 35 202 163 206 481 692 120 134
150 15 4.9 80:20 21 21 134 134 481 473 120 120
150 15 5.1 80:20 23 23 143 143 481 481 128 120
150 15 4.9 70:30 31 31 180 179 495 495 146 122
150 15 5.1 70:30 31 31 185 185 467 495 122 123
150 25 4.9 90:10 35 428 177 180 1,205 1,829 200 250
150 25 5.1 90:10 29 205 179 181 1,182 1,170 200 250
150 25 4.9 80:20 53 37 317 245 1286 920 188 200
150 25 5.1 80:20 37 42 245 261 996 917 200 200
150 25 4.9 70:30 42 53 261 317 1014 1275 200 172
150 25 5.1 70:30 51 51 338 338 1102 1286 204 169
200 20 4.9 90:10 62 144 212 222 842 861 160 205
200 20 5.1 90:10 73 181 223 225 832 861 160 208
200 20 4.9 80:20 31 31 188 188 844 803 180 160
200 20 5.1 80:20 34 34 196 196 803 642 141 160
200 20 4.9 70:30 59 59 266 266 842 663 160 160
200 20 5.1 70:30 77 77 289 289 656 841 162 142
200 25 4.9 90:10 51 88 233 233 1,253 1,254 200 250
200 25 5.1 90:10 45 191 232 235 1,253 1,297 200 202
200 25 4.9 80:20 57 57 252 252 1253 1223 200 185
200 25 5.1 80:20 44 44 250 250 1040 970 204 200
200 25 4.9 70:30 56 56 309 309 977 1296 200 178
200 25 5.1 70:30 62 62 339 339 1277 1281 172 171

Median NCCCs
Num Num intra: Multi Multi Multi Multi Multi Multi Multi Multi
Nodes Agents Deg inter -Hyb -Hyb -Hyb -Hyb -HDCS -HDCS -HDCS -HDCS

-Pen -Pen -DB -DB -Pen -Pen -DB -DB
+FC +FC +FC +FC

150 15 4.9 90:10 3,579 5,039 3,735 3,369 1,387 2,640 1,185 2,351
150 15 5.1 90:10 3,689 5,139 3,837 3,492 1,449 2,469 1,255 2,426
150 15 4.9 80:20 1,314 2,225 1,611 2,599 1,098 2,016 1,081 1,981
150 15 5.1 80:20 1,279 2,323 1,653 2,663 1,105 1,977 1,107 1,977
150 15 4.9 70:30 1,882 3,566 2,659 4,127 1,511 2,938 1,521 2,938
150 15 5.1 70:30 1,783 3,425 2,507 4,127 1,479 2,923 1,500 2,923
150 25 4.9 90:10 675 1,962 775 622 570 705 423 503
150 25 5.1 90:10 633 1,384 757 622 541 545 459 501
150 25 4.9 80:20 729 744 1,223 1,012 1,643 611 842 777
150 25 5.1 80:20 549 737 800 997 632 647 800 870
150 25 4.9 70:30 726 1,003 1,253 1,498 1,015 1,599 1,404 685
150 25 5.1 70:30 534 1,002 801 1,490 572 1,441 854 687
200 20 4.9 90:10 4,195 4,209 4,561 4,081 1,605 2,961 1,461 2,887
200 20 5.1 90:10 4,403 4,778 4,646 3,993 1,530 2,976 1,438 2,956
200 20 4.9 80:20 1,439 2,478 1,900 2,890 1,391 2,195 1,272 2,195
200 20 5.1 80:20 1,467 2,650 1,925 3,063 1,319 2,299 1,167 2,299
200 20 4.9 70:30 2,369 4,445 3,403 5,138 1,604 3,312 2,084 3,351
200 20 5.1 70:30 2,348 4,412 3,484 5,032 1,872 3,411 1,670 3,411
200 25 4.9 90:10 1,843 2,015 2,154 1,838 997 1,224 751 1,281
200 25 5.1 90:10 1,703 2,264 2,046 1,718 998 1,262 769 1238
200 25 4.9 80:20 972 1,523 1,261 1,748 1,106 1,229 1,106 1,163
200 25 5.1 80:20 878 1,393 1,225 1,707 877 1,143 939 1,171
200 25 4.9 70:30 1,272 2,112 2,089 2,738 1,033 1,790 1,253 1,554
200 25 5.1 70:30 1,372 2,215 2,156 2,841 1,619 1,908 879 1,533

Table B.4: Measuring the effectiveness of Forward Checking on SEBJ for solvable graph
colouring problems.

179

small decrease in messages.

Median mssgs
Num Num intra: Multi Multi Multi Multi Multi Multi Multi Multi
Nodes Agents Deg inter -Hyb -Hyb -Hyb -Hyb -HDCS -HDCS -HDCS -HDCS

-Pen -Pen -DB -DB -Pen -Pen -DB -DB
+FC +FC +FC +FC

150 15 4.9 80:20 42 42 42 42 42 42 42 42
150 15 5.1 80:20 42 42 42 42 42 42 42 42
150 15 4.9 70:30 50 50 50 50 50 50 50 50
150 15 5.1 70:30 48 48 48 48 48 48 48 48
150 25 4.9 70:30 72 72 72 72 72 72 72 72
150 25 5.1 70:30 68 68 68 68 68 68 68 68
200 20 4.9 80:20 57 57 57 57 57 57 57 57
200 20 5.1 80:20 58 58 58 58 58 58 58 58
200 20 4.9 70:30 66 66 66 66 66 66 66 66
200 20 5.1 70:30 64 64 64 64 64 64 64 64
200 25 4.9 80:20 68 68 68 68 68 68 68 68
200 25 5.1 80:20 66 66 66 66 66 66 66 66
200 25 4.9 70:30 79 79 79 79 79 79 79 79
200 25 5.1 70:30 76 76 76 76 76 76 76 76

Median NCCCs
Num Num intra: Multi Multi Multi Multi Multi Multi Multi Multi
Nodes Agents Deg inter -Hyb -Hyb -Hyb -Hyb -HDCS -HDCS -HDCS -HDCS

-Pen -Pen -DB -DB -Pen -Pen -DB -DB
+FC +FC +FC +FC

150 15 4.9 80:20 1,525 3,765 1,525 3,765 1,525 3,765 1,525 3,765
150 15 5.1 80:20 1,421 3,670 1,421 3,670 1,421 3,670 1,421 3,670
150 15 4.9 70:30 2,332 6,562 2,332 6,562 2,332 6,562 2,332 6,562
150 15 5.1 70:30 2,114 5,543 2,114 5,543 2,114 5,543 2,114 5,543
150 25 4.9 70:30 296 670 296 670 296 670 296 670
150 25 5.1 70:30 294 653 294 653 294 653 294 653
200 20 4.9 80:20 1,415 4,140 1,415 4,140 1,415 4,140 1,415 4,140
200 20 5.1 80:20 1,717 3,808 1,717 3,808 1,717 3,808 1,717 3,808
200 20 4.9 70:30 2,512 6,988 2,512 6,988 2,512 6,988 2,512 6,988
200 20 5.1 70:30 2,253 6,735 2,253 6,735 2,253 6,735 2,253 6,735
200 25 4.9 80:20 673 1,657 673 1,657 673 1,657 673 1,657
200 25 5.1 80:20 644 1,537 644 1,537 644 1,537 644 1,537
200 25 4.9 70:30 895 2,246 895 2,246 895 2,246 895 2,246
200 25 5.1 70:30 875 2,179 875 2,179 875 2,179 875 2,179

Table B.5: Measuring the effectiveness of Forward Checking on SEBJ for unsolvable graph
colouring problems where one or more agents has no local solution.

B.3 Meeting Scheduling Problems

B.3.1 Solvable Problems

Median results for solvable meeting scheduling problems appear in Table B.7. The prob-

lems had 50-80 meetings, 5 departments, a timeframe of 6 or 7 time units and a constraint

density of 0.18. Two departments with common meetings have a random distance between

1 and 3 time units. The percentage of intra-agent constraints varied between 70% and

90% with the remainder being inter-agent constraints.

180

Median mssgs
Num Num intra: Multi Multi Multi Multi Multi Multi Multi Multi
Nodes Agents Deg inter -Hyb -Hyb -Hyb -Hyb -HDCS -HDCS -HDCS -HDCS

-Pen -Pen -DB -DB -Pen -Pen -DB -DB
+FC +FC +FC +FC

150 15 4.9 80:20 144 144 250 262 2,300 2,877 484 685
150 15 5.1 80:20 187 186 311 339 1,927 2,539 676 519
150 15 4.9 70:30 388 388 518 518 2,346 2,504 387 561
150 15 5.1 70:30 208 208 364 363 2,718 2,526 367 357
150 25 4.9 80:20 48 48 261 255 4,131 4,682 446 488
150 25 5.1 80:20 27 27 246 249 3,879 3,884 361 390
150 25 4.9 70:30 61 60 328 327 3,046 3,769 309 356
150 25 5.1 70:30 48 47 333 333 4806 5554 331 636
200 20 4.9 80:20 266 265 414 413 3,677 3,539 452 488
200 20 5.1 80:20 176 176 342 341 3,895 3,703 431 463
200 20 4.9 70:30 1,324 1,324 1,528 1,528 3,650 3,447 429 440
200 20 5.1 70:30 744 574 952 796 4280 2,443 317 333
200 25 4.9 80:20 186 185 376 377 4,740 3,909 292 304
200 25 5.1 80:20 116 116 313 331 4,913 4,664 279 282
200 25 4.9 70:30 354 353 627 602 5,899 4,066 361 404
200 25 5.1 70:30 204 204 498 498 4,752 3,823 333 360

Median NCCCs
Num Num intra: Multi Multi Multi Multi Multi Multi Multi Multi
Nodes Agents Deg inter -Hyb -Hyb -Hyb -Hyb -HDCS -HDCS -HDCS -HDCS

-Pen -Pen -DB -DB -Pen -Pen -DB -DB
+FC +FC +FC +FC

150 15 4.9 80:20 2,184 3,216 2,275 3,321 3,316 4,245 4,431 6,026
150 15 5.1 80:20 2,166 3,522 2,355 3,654 2,719 3,884 6,644 5,000
150 15 4.9 70:30 7,566 8,851 7,566 8,559 5,524 8,965 5,332 8,559
150 15 5.1 70:30 4,250 5,855 4,250 5,855 5,838 6,422 5,457 5,840
150 25 4.9 80:20 439 704 830 1,040 3,017 3,258 3,613 4,075
150 25 5.1 80:20 394 614 814 1,007 2,694 2,801 3,236 3,477
150 25 4.9 70:30 558 919 1,339 1,645 3,738 4,293 3,596 4,371
150 25 5.1 70:30 514 837 1,155 1,479 5,266 7,005 4,112 9,474
200 20 4.9 80:20 3,263 4,633 3,263 4,633 4,175 3,716 4,036 4,173
200 20 5.1 80:20 2,375 3,795 2,666 4,176 3,605 3,901 4,100 4,406
200 20 4.9 70:30 10,130 11,390 10,130 11,390 8,473 7,489 6,320 6,586
200 20 5.1 70:30 7,502 11,330 7,502 11,330 8,037 4,666 4,669 5,182
200 25 4.9 80:20 1,607 1,999 1,718 2,158 3,847 3,207 2,017 2,220
200 25 5.1 80:20 1,126 1,652 1,399 1,847 3,649 3,118 1,967 2,077
200 25 4.9 70:30 3,528 4,423 3,532 4,512 7,140 4,261 4,000 4,872
200 25 5.1 70:30 1,968 3,382 2,736 3,945 6,233 4,321 4,224 4,935

Table B.6: Measuring the effectiveness of Forward Checking on SEBJ for unsolvable graph
colouring problems where all agents have local solutions but there is no global solution.

181

Median mssgs
Num Num intra: Multi Multi Multi Multi Multi Multi Multi Multi

Meetings Times inter -Hyb -Hyb -Hyb -Hyb -HDCS -HDCS -HDCS -HDCS
-Pen -Pen -DB -DB -Pen -Pen -DB -DB

+FC +FC +FC +FC
50 7 90:10 20 20 54 60 81 70 50 55
50 7 80:20 139 190 75 100 71 130 45 55
50 7 70:30 460 961 328 471 221 278 73 193
50 6 90:10 10 14 45 54 65 65 50 50
50 6 80:20 20 20 60 60 73 70 35 45
50 6 70:30 184 325 102 140 70 104 42 55
60 7 90:10 20 20 60 60 81 70 50 55
60 7 80:20 80 50 60 60 70 70 45 55
60 7 70:30 412 592 173 311 140 234 49 66
60 6 90:10 10 20 45 60 66 65 50 45
60 6 80:20 10 20 45 60 65 70 35 45
60 6 70:30 42 100 60 60 173 72 35 55
70 7 90:10 20 20 60 60 68 70 50 55
70 7 80:20 20 20 60 60 70 70 42 55
70 7 70:30 228 325 90 100 74 130 38 55
70 6 90:10 20 20 45 60 66 70 40 45
70 6 80:20 20 20 60 60 65 70 35 45
70 6 70:30 40 60 60 60 70 73 35 45
80 7 90:10 20 20 60 60 70 70 50 55
80 7 80:20 20 20 60 60 70 75 37 55
80 7 70:30 151 184 74 61 130 130 36 46
80 6 90:10 20 20 45 60 65 70 40 45
80 6 80:20 20 20 60 60 68 70 35 45
80 6 70:30 20 20 60 60 70 70 35 45

Median NCCCs
Num Num intra: Multi Multi Multi Multi Multi Multi Multi Multi

Meetings Times inter -Hyb -Hyb -Hyb -Hyb -HDCS -HDCS -HDCS -HDCS
-Pen -Pen -DB -DB -Pen -Pen -DB -DB

+FC +FC +FC +FC
50 7 90:10 7,162 10,133 8,623 11,233 7,571 11,476 7,571 11,331
50 7 80:20 10,852 16,898 13,139 20,324 13,147 19,869 13,460 20,788
50 7 70:30 20,684 39,886 25,451 44,404 19,763 32,431 19,847 33,323
50 6 90:10 2,933 4,945 3,956 5,152 3,503 5,181 3,592 5,181
50 6 80:20 4,803 7,538 5,259 7,723 5,881 8,042 5,146 8,217
50 6 70:30 7,451 7,738 9,632 15,436 7,757 12,900 7,738 12,621
60 7 90:10 10,777 16,256 12,076 15,739 15,114 18,853 12,833 18,661
60 7 80:20 16,251 23,404 16,367 25,760 18,113 26,628 18,050 26,497
60 7 70:30 37,138 63,124 36,649 71,647 33,811 55,387 33,999 55,856
60 6 90:10 5,095 8,360 5,700 8,472 6,634 9,138 5,948 9,066
60 6 80:20 6,163 9,597 6,346 9,385 6,353 10,289 6,428 10,080
60 6 70:30 11,334 16,568 11,654 17,454 16,639 17,338 12,236 17,529
70 7 90:10 15,377 19,859 17,757 18,776 18,496 23,921 18,255 23,511
70 7 80:20 20,174 26,525 21,380 26,525 23,920 33,704 24,287 33,205
70 7 70:30 38,453 64,757 45,164 61,639 34,708 57,505 35,181 57,330
70 6 90:10 6,586 9,901 7,573 9,200 8,194 10,506 7,585 10,845
70 6 80:20 9,523 14,276 9,632 12,454 9,627 15,882 9,827 15,404
70 6 70:30 14,375 18,818 12,949 19,872 14,191 20,317 14,768 19,850
80 7 90:10 17,434 20,459 17,651 23,665 20,834 24,962 20,432 24,246
80 7 80:20 27,460 38,254 26,809 38,553 30,384 43,599 30,172 43,390
80 7 70:30 50,844 77,650 50,219 83,087 47,197 74,693 49,563 76,379
80 6 90:10 8,863 9,808 8,461 10,661 8,587 11,019 8,407 10,842
80 6 80:20 10,967 14,219 11,202 13,549 13,515 16,051 11,258 17,364
80 6 70:30 14,073 19,554 15,645 19,013 15,926 22,457 16,750 22,268

Table B.7: Measuring the effectiveness of Forward Checking on SEBJ for solvable meeting
scheduling problems.

182

Whilst occasionally forward checking can slightly reduce messages, the large increase

in NCCCs means that forward checking is not beneficial for any of the algorithms for

meeting scheduling problems.

B.3.2 Unsolvable Problems

The problems had 50-80 meetings, 5 departments, a timeframe of 6 or 7 time units and

a constraint density of 0.18. Two departments with common meetings have a random

distance between 1 and 3 time units. The percentage of intra-agent constraints varied

between 70% and 80% with the remainder being inter-agent constraints. Median results

for unsolvable meeting scheduling problems where one or more agents had no solution to

their local problem appear in Table B.8. Forward checking is beneficial for all problems

except those with 7 time units and 50 meetings. It would appear that forward checking can,

in general, take advantage of the structured nature of the problem to detect unsolvability

with fewer NCCCs. Median results for unsolvable meeting scheduling problems where all

agents had solution to their local problem but there was no global solution appear in Table

B.9.

Multi-HDCS-DB is the only algorithm to benefit from forward checking in terms of

number of messages. This would appear to arise from the quick ordering provided by

InterDisBO-wd and the more focused approach of SEBJ with forward checking. However,

the cost of forward checking results in an increase in the NCCCs. For all other algorithms,

forward checking is not beneficial in terms of number of messages. For NCCCs, it is only

for problems with 80 variables where Multi-Hyb-Pen, Multi-Hyb-DB and Multi-HDCS-DB

can occasionally perform better with forward checking. This would appear to be because

the intra-agent problems now have more variables per agent and therefore the benefit of

the pruning outweighs the additional constraint checks required.

183

Median mssgs
Num Num intra: Multi Multi Multi Multi Multi Multi Multi Multi

Meetings Times inter -Hyb -Hyb -Hyb -Hyb -HDCS -HDCS -HDCS -HDCS
-Pen -Pen -DB -DB -Pen -Pen -DB -DB

+FC +FC +FC +FC
50 7 80:20 13 13 13 13 13 13 13 13
50 7 70:30 14 14 14 14 14 14 14 14
50 6 80:20 12 12 12 12 12 12 12 12
50 6 70:30 14 14 14 14 14 14 14 14
60 7 80:20 12 12 12 12 12 12 12 12
60 7 70:30 14 14 14 14 14 14 14 14
60 6 80:20 11 11 11 11 11 11 11 11
60 6 70:30 12 12 12 12 12 12 12 12
70 7 80:20 10 10 10 10 10 10 10 10
70 7 70:30 12 12 12 12 12 12 12 12
70 6 80:20 12 12 12 12 12 12 12 12
70 6 70:30 12 12 12 12 12 12 12 12
80 7 80:20 10 10 10 10 10 10 10 10
80 7 70:30 10 10 10 10 10 10 10 10
80 6 80:20 10 10 10 10 10 10 10 10
80 6 70:30 12 12 12 12 12 12 12 12

Median NCCCs
Num Num intra: Multi Multi Multi Multi Multi Multi Multi Multi

Meetings Times inter -Hyb -Hyb -Hyb -Hyb -HDCS -HDCS -HDCS -HDCS
-Pen -Pen -DB -DB -Pen -Pen -DB -DB

+FC +FC +FC +FC
50 7 80:20 3,051 3,981 3,051 3,981 3,051 3,981 3,051 3,981
50 7 70:30 3,174 3,526 3,174 3,526 3,174 3,526 3,174 3,526
50 6 80:20 2,315 1,461 2,315 1,461 2,315 1,461 2,315 1,461
50 6 70:30 1,916 1,472 1,916 1,472 1,916 1,472 1,916 1,472
60 7 80:20 3,055 2,790 3,055 2,790 3,055 2,790 3,055 2,790
60 7 70:30 3,476 2,894 3,476 2,894 3,476 2,894 3,476 2,894
60 6 80:20 2,211 1,502 2,211 1,502 2,211 1,502 2,211 1,502
60 6 70:30 1,980 1,422 1,980 1,422 1,980 1,422 1,980 1,422
70 7 80:20 3,395 2,944 3,395 2,944 3,395 2,944 3,395 2,944
70 7 70:30 4,343 2,946 4,343 2,946 4,343 2,946 4,343 2,946
70 6 80:20 2,275 1,373 2,275 1,373 2,275 1,373 2,275 1,373
70 6 70:30 2,576 1,602 2,576 1,602 2,576 1,602 2,576 1,602
80 7 80:20 4,637 2,288 4,637 2,288 4,637 2,288 4,637 2,288
80 7 70:30 3,941 2,462 3,941 2,462 3,941 2,462 3,941 2,462
80 6 80:20 2,210 1,529 2,210 1,529 2,210 1,529 2,210 1,529
80 6 70:30 2,890 1,674 2,890 1,674 2,890 1,674 2,890 1,674

Table B.8: Measuring the effectiveness of Forward Checking on SEBJ for unsolvable meet-
ing scheduling problems where one or more agents had no solutions to their local problem.

184

Median mssgs
Num Num intra: Multi Multi Multi Multi Multi Multi Multi Multi

Meetings Times inter -Hyb -Hyb -Hyb -Hyb -HDCS -HDCS -HDCS -HDCS
-Pen -Pen -DB -DB -Pen -Pen -DB -DB

+FC +FC +FC +FC
50 7 80:20 344 720 150 351 1,029 1,191 2,613 275
50 7 70:30 624 1,270 517 1,330 686 1,613 730 171
50 6 80:20 222 652 91 165 661 622 2,764 104
50 6 70:30 204 922 119 463 575 683 959 83
60 7 80:20 320 1,294 125 515 765 837 989 116
60 7 70:30 284 1,448 210 983 547 1,027 332 77
60 6 80:20 16 306 45 83 522 655 1,154 74
60 6 70:30 190 476 60 136 450 638 487 53
70 7 80:20 248 536 89 139 554 714 492 63
70 7 70:30 242 588 91 238 517 936 180 48
70 6 80:20 146 192 45 63 446 603 537 53
70 6 70:30 94 256 45 256 326 565 211 45
80 7 80:20 196 502 83 502 577 691 239 62
80 7 70:30 162 426 71 211 430 659 97 43
80 6 80:20 118 126 43 44 358 540 273 42
80 6 70:30 86 164 45 60 318 466 123 31

Median NCCCs
Num Num intra: Multi Multi Multi Multi Multi Multi Multi Multi

Meetings Times inter -Hyb -Hyb -Hyb -Hyb -HDCS -HDCS -HDCS -HDCS
-Pen -Pen -DB -DB -Pen -Pen -DB -DB

+FC +FC +FC +FC
50 7 80:20 14,345 25,983 18,004 29,440 24,749 29,330 14,709 25,035
50 7 70:30 33,084 64,581 38,739 66,933 36,899 69,112 24,253 46,122
50 6 80:20 5,318 8,212 7,223 12,576 12,884 13,240 6,185 8,488
50 6 70:30 9,480 15,242 10,630 18,093 19,681 23,902 7,615 11,970
60 7 80:20 17,819 29,143 19,668 37,562 23,816 30,813 18,745 28,338
60 7 70:30 33,445 49,026 37,229 54,549 36,205 60,048 25,679 38,605
60 6 80:20 5,860 7,387 6,891 10,418 13,498 16,343 6,194 7,654
60 6 70:30 7,599 9,900 9,114 12,265 17,772 26,276 7,441 9,660
70 7 80:20 17,692 20,660 20,279 24,259 24,275 27,437 18,907 20,643
70 7 70:30 27,350 31,753 29,213 37,165 33,241 56,323 25,162 30,350
70 6 80:20 7,089 9,176 8,841 10,907 14,621 20,855 7,032 9,152
70 6 70:30 8,791 10,335 9,461 13,252 18,238 30,472 8,801 10,187
80 7 80:20 23,671 23,561 26,352 25,211 31,380 35,278 24,388 23,455
80 7 70:30 33,516 34,936 36,516 36,108 38,205 52,061 31,133 33,253
80 6 80:20 8,602 9,222 9,664 10,843 15,678 23,582 8,667 9,522
80 6 70:30 10,999 11,473 12,072 11,473 20,603 32,660 10,898 11,139

Table B.9: Measuring the effectiveness of Forward Checking on SEBJ for unsolvable meet-
ing scheduling problems where all agents had solutions to their local problem but there
was no global solution.

185

B.4 Sensor Network Problems

B.4.1 Solvable Problems

Table B.10 shows median results for solvable sensor networks with 5 to 8 targets, 25-

64 sensors (grids of 5, 6, 7 and 8), k-visibility of 2, k-compatibility of 1, probability of

visibility of 0.9 and probability of compatibility of 0.6. The ratio of intra-agent constraints

to inter-agent constraints is 15% to 85%.

Median n. Messages
Num Num Multi Multi Multi Multi Multi Multi Multi Multi

Targets Sensors -Hyb -Hyb -Hyb -Hyb -HDCS -HDCS -HDCS -HDCS
-Pen -Pen -DB -DB -Pen -Pen -DB -DB

+FC +FC +FC +FC
5 25 69 396 63 118 145 271 50 51
5 36 50 336 49 85 145 102 40 46
5 49 25 105 42 60 85 88 40 50
5 64 14 31 34 42 85 68 40 47
6 25 1,649 475 765 376 595 1,070 121 120
6 36 1,383 336 242 224 210 398 54 60
6 49 338 103 116 86 210 210 54 54
6 64 510 179 310 247 120 126 54 57
7 25 3,814 1,674 2,300 619 15,737 26,943 1,568 1,650
7 36 3,868 341 1,051 206 502 1,453 100 95
7 49 1,092 139 210 114 161 539 63 64
7 64 482 325 196 791 120 126 54 57
8 25 16,471 12,171 3,644 5,946 15,253 90,248 12,171 14,918
8 36 5,522 5,749 3,847 5,507 1,083 1,319 318 307
8 49 2,753 192 1,100 176 379 720 76 77
8 64 1,175 712 411 986 208 209 74 78

Median n. NCCCs
Num Num Multi Multi Multi Multi Multi Multi Multi Multi

Targets Sensors -Hyb -Hyb -Hyb -Hyb -HDCS -HDCS -HDCS -HDCS
-Pen -Pen -DB -DB -Pen -Pen -DB -DB

+FC +FC +FC +FC
5 25 4,072 4,862 6,599 8,952 2,727 3,399 4,716 4,248
5 36 2,936 3,885 5,353 2,625 2,337 2,308 2,512 3,433
5 49 2,708 3,601 3,431 2,755 2,254 2,229 2,374 3,129
5 64 2,541 2,714 2,759 2,562 2,371 2,320 2,373 3,256
6 25 13,164 11,785 49,144 19,578 13,266 13,266 17,087 13,270
6 36 7,819 5,138 2,306 13,028 2,782 3,527 5,436 4,473
6 49 5,706 3,902 2,112 5,820 2,406 3,321 2,651 3,362
6 64 18,774 4,144 2,497 2,362 2,512 3,455 2,594 3,463
7 25 120,789 103,725 133,882 57,935 263,885 253,030 253,031 253,309
7 36 7,819 5,138 2,306 13,028 2,782 3,527 5,436 4,473
7 49 21,124 4,327 2,288 8,329 2,570 3,516 4,662 3,725
7 64 16,961 5,488 2,229 19,532 2,689 3,587 2,812 3,619
8 25 1,395,6191,162,405 595,777803,731 2,477,5562,477,556 2,678,8992,477,556
8 36 21,999 16,584 133,809168,663 36,801 36,801 39,546 44,856
8 49 7,420 6,026 36,938 13,040 3,045 3,816 6,737 4,279
8 64 19,316 5,155 2,417 20,647 2,854 3,660 3,713 3,859

Table B.10: Measuring the effectiveness of Forward Checking on SEBJ for solvable sensor
network problems.

Forward checking improves the performance of Multi-Hyb-Pen in terms of both number

186

of messages and NCCCs for 6 targets or more. For Multi-Hyb-DB, Multi-HDCS-Pen and

Multi-HDCS-DB, it depends very much on the problem parameters as forward checking

can often be useful whilst on other problems, it incurs additional costs.

B.4.2 Unsolvable Problems

Table B.11 shows median results for unsolvable sensor networks with 5 to 8 targets, 25-

64 sensors (grids of 5, 6, 7 and 8), k-visibility of 2, k-compatibility of 1, probability of

visibility of 0.9 and probability of compatibility of 0.6. The ratio of intra-agent constraints

to inter-agent constraints is 15% to 85%.

In general, forward checking was an improvement on a small number of targets with

a small number of sensors or a high number of targets with a high number of sensors for

most algorithms. In particular, forward checking was an improvement on Multi-HDCS-DB

for almost all problems for both number of messages and NCCCs.

B.5 Summary

In this appendix, we have shown that forward checking can be beneficial for some problems.

However, we often found that the use of maximum degree heuristic to order the agents

according to connectivity decreased the effectiveness of the forward checking technique

since the maximum degree heuristic already minimised backjumping requirements. We

therefore leave forward checking as an option which can be used with our algorithms but

is not used in the experimental evaluations.

187

Median n. Messages
Num Num Multi Multi Multi Multi Multi Multi Multi Multi

Targets Sensors -Hyb -Hyb -Hyb -Hyb -HDCS -HDCS -HDCS -HDCS
-Pen -Pen -DB -DB -Pen -Pen -DB -DB

+FC +FC +FC +FC
5 25 1,293 1,098 730 391 1,733 2,727 262 247
5 36 875 633 560 358 2,505 2,836 331 235
5 49 1,006 798 531 445 2,349 2,534 300 232
5 64 554 608 320 585 2,052 704 265 305
6 25 2,771 4,328 1,723 1,759 13,910 26,394 5,641 1,768
6 36 14,643 11,596 7,069 6,405 3,550 2,579 5,882 597
6 49 176 2,801 136 238 1,345 1,037 3,518 116
6 64 1,156 3,190 815 3,304 2,930 744 6,056 584
7 25 7,235 7,956 4,047 3,485 32,035 64,571 5,767 3,157
7 36 5,962 7,516 2,775 1,951 2,386 2,800 3,486 370
7 49 721 5,991 574 659 484 719 3,098 126
7 64 2,041 3,032 1,501 3,443 1,495 3,520 7,045 370
8 25 20,488 90,436 13,809 14,077 52,480 90,545 12,580 12,874
8 36 8,333 10,522 5,098 6,147 5,177 10,377 4,786 919
8 49 1,011 11,754 641 4,563 1,361 1,755 3,131 175
8 64 6,539 13,570 5,295 7,879 3,966 3,204 7,041 313

Median n. NCCCs
Num Num Multi Multi Multi Multi Multi Multi Multi Multi

Targets Sensors -Hyb -Hyb -Hyb -Hyb -HDCS -HDCS -HDCS -HDCS
-Pen -Pen -DB -DB -Pen -Pen -DB -DB

+FC +FC +FC +FC
5 25 22,275 39,270 29,873 18,072 13,536 22,952 21,870 21,708
5 36 15,229 16,909 20,391 19,819 11,340 11,929 12,587 9,603
5 49 22,827 20,301 24,551 19,867 10,917 11,847 8,393 8,815
5 64 9,225 8,304 9,787 12,309 10,170 6,696 4,887 7,078
6 25 110,032 247,259 131,431 166,185 205,965 248,766 421,110 205,965
6 36 821,636 535,863 821,633 523,617 17,568 13,266 194,603 44,734
6 49 3,037 31,587 3,364 8,310 8,123 4,329 2,712 4,645
6 64 37,684 19,860 38,626 50,084 17,136 7,689 126,000 18,144
7 25 331,460 616,476 431,012 419,851 381,672 389,200 624,456 356,026
7 36 65,204 262,381 55,508 44,049 14,283 14,139 50,121 31,932
7 49 9,608 133,907 11,516 12,343 2,813 6,543 2,787 7,146
7 64 30,609 35,499 39,313 38,876 15,219 19,523 189,248 18,693
8 25 1,556,9268,916,910 2,071,3551,934,516 1,782,8191,782,819 1,814,2381,898,028
8 36 153,330 438,717 226,993 172,452 62,316 69,330 232,983 65,934
8 49 19,284 365,161 20,455 29,468 7,794 8,559 2,921 8,892
8 64 337,895 167,629 379,813 157,864 13,968 15,462 50,949 19,170

Table B.11: Measuring the effectiveness of Forward Checking on SEBJ for unsolvable
sensor network problems.

188

	Lee coversheet
	finalthesis

