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Abstract 

Neointimal formation is a complex process that occurs due to the over compensatory healing 

response produced by the vessel following injury. Three key events, SMC proliferation, SMC 

migration and the inflammatory response, occur in unison to drive the formation of a neointima. 

Cannabinoids/endocannabinoids have been shown to elicit antiproliferative, anti-migratory and 

anti-inflammatory effects, highlighting modulation of the endocannabinoid system as possible 

therapeutic strategy. 

The aims of this study were to; (i) develop an organ culture model of neointimal formation, and 

investigate the presence of the endocannabinoid system, (ii) investigate the functional response 

of anandamide (AEA) in the murine carotid artery, (iii) investigate the effects of  cannabinoids 

on SMC proliferation, and (iv) to establish the effects of cannabinoids on SMC migration. 

The organ culture model developed in this study demonstrated the presence of both CB 

receptors on  SMCs, LCMS/MS analysis of tissue samples showed that endocannabinoid 

concentration was significantly (2-arachidonoylglycerol / 2-AG) increased in injured artery 

sections. Isolated vessel studies demonstrated that AEA produces a small (~20%) relaxation of 

the murine carotid artery which was not dependant on the production of active metabolites, but 

involved activation of the CB1 receptor. Studies investigating the effects of cannabinoids on cell 

proliferation revealed that paradoxically both a CB2 agonist and a CB2 antagonist reduced 

markers of cell proliferation without any effect on cell viability; high concentrations of AEA 

(10µM) reduced SMC proliferation, however this was associated with an apparent 

cytotoxic/cytostatic effect. The preliminary data from cell migration studies suggests that a CB2 

agonist may function to reduce stimulated cell migration and that 2-AG can increase migration 

of unstimulated SMCs. 

In conclusion, although further research is required, the data within this thesis provides evidence 

that the endocannabinoid system (in particular the CB2 receptor) may have the potential to be 

manipulated for therapeutic gains in terms of restenosis.  
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1.1 Introduction 

1.1.1 Blood vessel morphology 

Blood vessels are composed of three well defined layers that encompass the vessel lumen, 

referred to as the intima, the media and the adventitia. These three layers are demarcated by 

layers of elastin; between the intima and media is the internal elastic lamina, and separating the 

media and adventitia, the external elastic lamina. The outermost layer is the adventitia, this 

functions as a protective layer and is composed of collagen, fibroblasts, smooth muscle cells 

and a loose matrix of elastin.  

 The media consists primarily of smooth muscle cells, these take on a layering formation with 

the quantity of layers depending on arterial size.  Smooth muscle cells are held together by 

extracellular matrix (ECM), composed of elastic fibres, collagen and a small portion of 

proteoglycans (Stocker et al., 2004). The intima, the innermost layer, is primarily composed of 

endothelial cells with the occasional smooth muscle cell. 

The endothelium is the single cell layer that lines the internal surface of all blood vessels; its 

primary function is to act as a protective barrier between the vascular wall and blood, and to 

maintain vascular homeostasis. The endothelium has the ability to secrete a variety of 

vasoactive compounds that not only affect vascular tone but regulate underlying cell growth. 

 

1.1.2 Smooth muscle cells 

The smooth muscle cell is a highly specialised cell whose primary function is to maintain 

vascular tone. Under normal physiological conditions smooth muscle cells proliferate at a low 

rate, and are comprised of the contractile proteins actin and myosin; three isoforms of actin exist 

α, β, and γ, in adults the α form predominates. In addition to contractile proteins smooth muscle 

cells also contain intermediate filaments vimentin and desmin (Reviewed in Shwartz et al., 

1986). Smooth muscle cells have the unique feature of not being permanently differentiated. In 

normal conditions smooth muscle cells display a contractile phenotype however following 

injury they are able to switch to a synthetic phenotype. The synthetic phenotype is characterised 

by reduced contractile protein expression, and an increase in organelles associated with 

proliferation, for example ribosomes and rough endoplasmic reticulum (Reviewed in Schwartz 

et al., 1986). Smooth muscle cells are activated by interaction with a variety of growth factors 

and cytokines, many of which can be released from the cells themselves or from circulatory 

cells. Some of the key growth factors include, platelet derived growth factor (PDGF), fibroblast 



   

growth factor (FGF), TGFβ, IGF-1, endothelin and thrombin (reviewed in Schwartz et al., 

1995). 

 

1.1.3 PDGF 

PDGF (the stimulatory agent used throughout this study) was originally isolated from platelets, 

however it is now accepted that the majority of cells in the blood vessel can secrete this mitogen 

(Reviewed in Raines 2004). PDGF exists as five different subtypes; PDGF-AA, PDGF-AB and 

PDGF-BB and the more recently discovered PDGF-CC and PDGF-DD (Li et al., 2000; 

Bergsten et al., 2001). These isoforms differ in the receptors they activate (Pekny et al.,1994). 

PDGF receptors exist as inactive monomers (PDGF α or PDGF β; Hart et al., 1988) until 

activated by ligand binding. To become activated the receptors must first form dimers and 

undergo autophosphorylation (Hughes et al., 1996; reviewed in Henrik Heldin et al., 1999), 

which culminates in the formation of PDGFαα, PDGFββ or PDGFαβ receptor subtypes, which 

are members of the receptor tyrosine kinase family. The affinity of the isoforms of PDGF for 

the receptor units differs; PDGF-AA only binds to PDGFαα, while PDGF-AB prefers to bind to 

PDGFαβ or PDGFαα (although it can bind to PDGFββ with lower affinity). PDGF-BB, on the 

other hand, binds to all variations of receptor dimers (Drozdoff et al., 1991).  Upon activation 

the PDGF receptor activates a vast quantity of signalling molecules, all of which contribute to 

either cell proliferation or cell migration (summarised in Figure1.1).  

In normal healthy vessels expression of PDGF is minimal, however in atherosclerotic and 

injured arteries the expression is increased, for example a 10-12 fold increase in PDGF-A 

mRNA was observed in the rat carotid artery following balloon denudation (Majesky et al., 

1990; reviewed in Raines 2004). 

 

1.1.4 Smooth muscle cell proliferation 

Like all other cells, smooth muscle cells proliferate by completion of the cell cycle. The cell 

cycle is a regulated series of events that enables the cell to replicate.  Smooth muscle cells 

normally exist in the G0 phase, however their activation promotes them to enter the G1 phase, 

where cells prepare for DNA synthesis, and then enter the S phase where DNA synthesis occurs. 

Once synthesis is complete the cells progress to the G2 phase in preparation for mitosis, which 

subsequently occurs during the M phase. Regulation of this cycle is performed at two restriction 

points, firstly between the G1 and S, and secondly between G2 to M (Sriram et al., 2001). The 

cell cycle restriction points are regulated by cyclins and their corresponding cyclin dependant 



   

kinase (CDK), which encourage movement through the cycle. Cyclin dependant kinase 

inhibitors (CDKI) have a negative effect on movement through the cycle. Transcription factors 

are able to modulate the cell cycle by influencing cyclin CDK/CDKI expression, for example 

antiproliferative signals activate P53 which results in the transcription of P21 which 

subsequently inhibits the cyclin CDK union that promotes entry through G1 (Reviewed in 

Sriram et al., 2001). 

 

1.1.5 The ERK signalling pathway 

Cells interact with the extracellular environment through means of signalling cascades, perhaps 

one of the most important signalling pathways is the Map Kinase (MAPK) pathway. Four 

distinct MAPK pathways have been identified; ERK, JNK, P38 and BMK, although the 

pathway of most importance in regards to this study is the ERK pathway.  The extracellular 

signal regulated kinase (ERK) pathway is fundamental in cellular function. Its complex 

regulation controls cellular processes such as proliferation, differentiation, cell survival, 

migration and even apoptosis. The pathway can be activated by either receptor tyrosine kinase 

(RTK) activation, or by G protein coupled receptors (Reviewed in Force et al., 1998). Upon 

activation of a RTK by a growth factor (for example PDGF) the activated receptor recruits the 

GTP binding protein Ras, which is then converted to its active state and activates Raf, which in 

turn activates the dual specific kinase MEK. MEK then phosphorylates ERK of which there are 

two isoforms, ERK1 and ERK2, which then translocate to the nucleus to activate transcription 

factors including c-myc, ELK1, P53 and c-Jun. In this example where stimulation came from 

PDGF, the transcription factors produced then encourage cells to pass through the cell cycle, 

inducing proliferation. 

As mentioned above, the ERK cascade controls a wide variety of cellular functions, including 

cell proliferation and apoptosis. The mechanism by which activation of the same signalling 

pathway can result in such diverse cellular endpoints, has received much attention. Five 

mechanisms have been proposed to explain how the ERK pathway can distinguish and respond 

specifically to a stimulus.  

 (i) One of the most convincing mechanisms is through the strength and duration of the signal 

(Marshall et al., 1995), an example of which occurs in PC12 cells. When these cells are 

stimulated with EGF a strong but transient activation of ERK occurs, resulting in cell 

proliferation.  When the same cells are stimulated with NGF, a strong but sustained activation of 

ERK occurs, resulting in cell differentiation. From these findings it is speculated that the  
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duration of ERK activation mediates the ability to activate certain transcription factors (Nguyen 

et al., 1992; Traverse et al., 1994).  

 (ii) The interaction of ERK with scaffolding proteins is also thought to regulate the specific 

actions of ERK. It is thought that scaffolding proteins can organise components of a signalling 

pathway bringing the desired molecules together (Kolch et al., 2007). 

(iii) The third mechanism suggested is that the outcome of ERK activation may vary depending 

on the cellular location. For example, if components of the ERK cascade are localised to 

differing target organelles, then the end points of the ERK cascade may vary (Matallanas et al., 

2006). 

(iv) Interference from other signalling pathways may also contribute to the specificity of the 

ERK cascade (Shaul et al., 2007).  

(v) Different isoforms may regulate the differing functions of ERK. As mentioned previously 

there are two isoforms of ERK, ERK1 and ERK2. Although these are normally regarded to 

function together, it may be that the isoforms function differently. Interestingly, the difference 

between the roles of ERK 1 and ERK2 can be observed in knockout mice, ERK1 knockout mice 

grow to a normal size (Pages et al., 1999). However it was discovered that ERK2 is essential 

during development as the mice did not survive (Hatano et al., 2003; Yao et al., 2003). These 

interesting and complex regulatory mechanisms of ERK are reviewed in detail in Shaul et al., 

2007, and Ebisuya et al., 2005. 

 

1.1.6 Smooth muscle cell migration 

Smooth muscle cell migration is a complex process which to occur requires prior activation of 

either a RTK or a G protein coupled receptor (GPCR). Smooth muscle cells normally exist in a 

non migratory state, with migration only occurring during either vascular development, as a 

result of vascular injury, or during atherogenesis. There are many activators of cell migration; 

these include PDGF and other growth factors, cytokines, extracellular matrix components, 

changes in blood flow, and shear stress (Gerthoffer, 2007; Li et al., 2003; Ward et al., 2001). In 

order for smooth muscle cells to migrate they must (i) extend lamellipodia in the direction of the 

stimulus by actin polymerisation, (ii) detach the trailing end of the cell through degradation of 

focal contacts then (iii) generate enough force to propel the cell in the desired direction.  

(i) Actin is the backbone of the lamellipodia, its polymerisation and depolymerisation allows the 

cell to move in the desired direction. The polymerisation process is regulated by a large variety 

   



   

of cellular mediators including the formins (mDia1 and mDia2), the formins are molecules that 

enhance the extension of new filaments and are activated by RhoA and Cdc42 respectively. 

Similarly the proteins WAVE (verprolin-homologous protein) and WASP (Wiskott-Aldrich 

syndrome protein) are essential in the nucleation and branching of new actin filaments and are 

regulated by Rac and Cdc42.  Actin depolymerisation occurs in unison with polymerisation to 

maintain a ready supply of actin, and to stabilise the filament. These processes generate force to 

aid the protrusion of the leading edge of the cell (Gerthoffer 2007; Prass et al., 2006). 

(ii) The formation and degradation of focal contacts maintains the delicate balance of cell 

attachment and detachment required to enable the cell to move. Focal contacts form at the 

leading edge of the cell to provide an anchor and aid movement of the cell in the desired 

direction. One of the key components in focal contacts is focal adhesion kinase (FAK) (Hauck 

et al., 2000), whose importance has been confirmed by the finding that its expression is up 

regulated during intimal hyperplasia (Owens et al., 2001). While new contacts are being 

formed, the redundant focal contacts at the trailing edge of the cell are degraded by 

metalloproteinases and calpains (Gerthoffer 2007; Paulhe et al., 2001; Bendeck et al., 1994). 

(iii) The force that drives the cell in the desired direction comes from the activation of myosin 

light chain kinase (MLCK) in response to increased Ca2+ or activation from Rho A. 

Also essential to the process of cell migration is the remodelling of microtubules. These actively 

assemble and disassemble during cell movement, providing instability in the structure of the 

cell, a prerequisite for cell migration. The importance of microtubule remodelling is evident 

from results of treating cells with paclitaxel, which inhibits PDGF induced cell migration 

through stabilisation of microtubules (Sollott et al., 1995). 

 

1.1.7 Apoptosis 

Apoptosis is a carefully controlled method of cell death, regulating the removal of un-required 

or injured cells (Best et al., 1999). The process of apoptosis begins following activation of death 

receptors; this can be induced by free radicals, cytokines, growth factor withdrawal and many 

more noxious stimuli (Mallat et al., 2000). The next step in the apoptotic cascade is the 

activation of caspase enzymes, which initiate mitochondrial dysfunction and therefore induce 

cell death (Muto et al., 2007). The Bcl-2 family of proteins are also important regulators of cell 

death. The family is composed of two groups of proteins; those that are anti apoptotic (such as 

Bcl-2 and A1) and those that are pro-apoptotic (including Bad and Bid), the balance between 

these proteins determines cell life or cell death (Muto et al., 2008). Certain cellular pathways 



   

can elicit a protective effect on cells. For example the Akt pathway inhibits apoptosis through 

the phosphorylation of Bad, thus preventing any association with pro-apoptotic molecules and 

consequently tipping the balance away from apoptosis (Sen et al., 2003).  

 

1.2 Atherosclerosis 

Atherosclerosis is a chronic inflammatory disease of the blood vessels, characterised by plaque 

formation. Its progression can lead to myocardial infarction and strokes, making atherosclerosis 

one of the major causes of death in the western world. Atherosclerosis progression is highly 

complex involving the cumulative effects of circulatory cells, inflammatory cells, and cells of 

the vessel wall. 

 

1.2.1 Inflammation and atherosclerosis 

Atherosclerosis is believed to originate from the accumulation of low density lipoprotein (LDL) 

in the vessel wall. This tends to occur at locations in the vasculature which are susceptible to 

high levels of sheer stress, such as bifurcations or curvatures of the arteries (Zand et al., 1999). 

Accumulated LDL can become oxidised by circulating free radicals, this induces endothelial 

cell activation and triggers an immune reaction. Activation of endothelial cells initiates the 

expression of the adhesion molecules ICAM and VCAM-1, which are responsible for the 

adhesion of circulating monocytes to the endothelium (Khan et al., 1995; Huo et al., 2000; 

reviewed in Mestas et al., 2008). Under the guidance of macrophage colony- stimulating factor 

(M-CSF), monocytes enter the arterial wall and differentiate into activated macrophages, which 

subsequently engulf the oxidised LDL and become foam cells. 

 Adhesion molecules also facilitate the entry of T lymphocytes into the vascular wall where they 

become activated and differentiate into T helper cells (either Th1 or Th2). Th1 cells secrete 

inflammatory mediators and chemokines which function to enhance atherosclerotic progression. 

However, in established plaques these cells can also contribute to plaque vulnerability through 

unfavourable interactions with the extracellular matrix (Bui et al., 2009; Hansson and Libby 

2006). Mast cells are another inflammatory cell involved in the progression of atherosclerosis. 

Through the release of histamine they increase the permeability of the endothelium, expediting 

further inflammatory cell infiltration, they also add to plaque instability in fully established 

lesions (Sun et al., 2007). 

 



   

 

1.2.2 Smooth muscle cells and atherosclerosis 

SMCs are primarily found in the media of blood vessels, however a small but significant 

number exist in the intima. In certain locations, such as those that experience high levels of 

shear stress, the intima can become thickened due to the presence of additional SMCs (Stary et 

al., 1992). It has been found that locations of intimal thickening correlate to the locations where 

atherosclerosis is observed in later life (Stary et al., 1992;  Stary 2000). It has been suggested 

that even in non diseased/injured conditions, SMCs that locate in the intima differ in phenotype 

from those in the media. SMCs in the intima possess lower quantities of proteins required for 

contractile function and more that are required for the synthesis of extracellular matrix and 

release of cytokines (Owens et al., 2004). In diseased conditions the release of inflammatory 

cytokines and growth factors stimulate the migration of smooth muscle cells from the media to 

the intima, where they proliferate and contribute to the progression of the plaque. 

The lipid content of an atherosclerotic plaque or lesion is not solely due to macrophage derived 

foam cells; SMCs also possess the ability to accumulate lipid (Stary et al., 1994) as they express 

the LDL uptake receptor, via which the uptake of LDL is enhanced following cell exposure to 

IL-1β (Ruan et al., 2006). SMCs also facilitate monocyte accumulation. In a similar fashion to 

endothelial cells, SMC express the adhesion molecules ICAM and VCAM-1, which permit 

monocyte and lymphocyte interactions (Braun et al., 1999). It has been suggested that 

interactions with SMC protect monocytes from apoptosis through increased activity of the Akt 

and MAPK pathways (Cai et al., 2004). SMCs are also involved in the secretion of cytokines, 

which enhance disease progression through potentiating the inflammatory response, stimulating 

further SMC proliferation, migration, and inducing extracellular matrix production (reviewed in 

detail in Raines et al., 2005). 

Smooth muscle cells constitutively synthesise ECM, which in healthy vessels, is primarily 

composed of type I and type III fibrillar collagen. In diseased arteries however, the ratios are 

altered with the ECM consisting of mostly proteoglycans, type I collagen, and fibronectin (Ross 

1999). ECM not only contributes to the structure of the lesion it also functions to add to its 

mass, ECM traps LDL which adds further fuel to the atherosclerotic fire. 

 

1.2.3 Plaque structure and rupture 

Early stage atherosclerotic plaques are characterised by a small necrotic core which is protected 

from the blood supply by a strong fibrous cap, composed of smooth muscle cells and 



   

extracellular matrix; these plaques are referred to as stable. Over time, these stable plaques 

continue to grow until they become weakened due to the release of metalloproteinases (MMPs), 

from the ever-accumulating macrophages. MMPs have many functions including the 

degradation of collagen, thus resulting in thinning of the fibrous cap and rendering the plaque 

unstable. Unstable or vulnerable plaques have the morphology of a large necrotic core, 

containing dead cells, lipid, foam cells and cell debris, surrounded by a thin fibrous cap 

comprised of only a small amount of smooth muscle cells. A unique feature of unstable plaques 

is that they posses their own blood supply. Neovascularisation of plaques also contributes to 

disease progression, as these newly formed vessels have the capability to leak, leading to red 

blood cells and platelets infiltrating the plaque and the deposition of iron (Kolodgie et al., 2003; 

Kaartinen et al., 1996).  

The rupture of a vulnerable plaque is due to a culmination of factors including the size of the 

necrotic core, fibrous cap thickness and the extent of positive vessel remodelling (Ohayon et al., 

2009). Plaques that are most likely to rupture have a dense population of inflammatory cells 

either within or in close proximity to the fibrous cap (Bui et al., 2009). Once the plaque ruptures 

the necrotic core comes into contact with the circulation initiating platelet aggregation and the 

formation of a thrombus, which can result in either myocardial infarction or a stroke. 

There is no cure for atherosclerosis but many things can slow or prevent its progression. 

Lifestyle changes such as improved diet and exercise, and cessation of smoking can reduce the 

risk of disease. Lipid lowering drugs such as statins and anti-hypertensives can also slow and 

reduce disease progression. Despite these preventative measures many cases become critical and 

require surgical intervention (Lewis 2008).  

 

1.3 Restenosis 

 Percutaneous transluminal angioplasty is now the most common clinical approach to the 

treatment of patients with atherosclerotic lesions that are of sufficient size to cause angina. 

Angioplasty involves plaque compression and arterial stretching by the use of either a balloon 

or the placement of a stent. The implantation of stents has now replaced balloons as they are 

distinctly advantageous, for example they prevent the initial vessel recoil and improve the long 

term viability of the blood vessel (Winslow et al., 2005). Despite revascularisation being 

effective in the immediate restoration of blood flow, the long term benefits of surgical 

intervention are plagued by restenosis. Restenosis is characterised as the reduction in luminal 

area due to the formation of a neointima and occurs following 20-80% of insertions of bare 

metal stents (Topol et al., 1998). In a similar fashion to atherosclerosis, restenosis is a complex 



   

disease that occurs due to the combined coordinated effects of cells within the vessel wall, 

circulatory cells, and inflammatory cells. Neointimal formation is suggested to occur in three 

key stages, the initiating phase, the intermediate phase and the chronic phase (Lee et al., 1993). 

 

1.3.1 The initiating phase 

This early stage of disease progression is characterised by the interaction of platelets with the 

vessel wall and the subsequent activation (i.e. change in phenotype) of smooth muscle cells. In a 

rat model of restenosis, platelets were found to aggregate and adhere to the injury site within 

seconds of injury and remain there for up to 7 days (Fingerle et al., 1989). While present at the 

site of injury platelets release mitogenic substances including PDGF (Ross 1981). The 

placement of a stent results in large scale apoptosis of the SMCs in close proximity to the stent, 

and indeed it has been reported that up to 70% of the medial smooth muscle cells undergo 

apoptosis following injury (Perlman et al., 1997). It is thought that apoptosis occurs in response 

to stimulation of MAPK, as MAPK expression is increased following mechanical injury of 

vessels (Pollman et al., 1999). Dying smooth muscle cells release bFGF that initiates SMC 

activation and proliferation and functions to stimulate endothelial cell proliferation, to 

encourage healing of the injury site (Lindner et al., 1991; Lindner et al., 1990). In addition to 

this SMCs can become activated purely as a result of mechanical stress.  Stretching of SMCs 

can induce the activation of receptor tyrosine kinases, enhance receptor expression and induce 

apoptosis (Reviewed in detail Haga et al., 2007). 

Between 48-72 hours post injury the majority of SMC, having fulfilled their purpose, return to 

their quiescent state. Despite this, an important sub-population of cells are resistant to growth 

inhibition and migrate towards the lumen following directional cues from chemoattractants 

released from smooth muscle cells; these migrated cells are the progenitor cells of the restenotic 

lesion (Clowes et al., 1990; Casscells et al., 1992; Majesky et al., 1994).  

 

1.3.2 The intermediate phase 

This phase is characterised by intimal hyperplasia, the active proliferation and further migration 

of SMCs. Migration of smooth muscle cells from the media to the intima is normally inhibited 

by the extracellular matrix, following injury however, the ECM becomes modified to allow the 

passage of cells, which is supported by findings that MMPs (enzymes that digest collagen and 

elastin) are up regulated following injury (Bendeck et al., 1994).  



   

Once SMCs arrive at the intima they can proliferate for months, most likely due to the 

continued stimulation from growth factors including PDGF, TGFβ and IGF (Reviewed in 

Schwartz et al., 1995). There is some debate over the role of PDGF to enhance SMC 

proliferation following injury, as it has been reported that antibodies inhibiting the actions of 

PDGF do not inhibit SMC proliferation during this phase of disease progression (Majesky et al., 

1990; Ferns et al., 1991). Instead it is speculated that in this stage of the disease PDGF is more 

heavily involved in the regulation of SMC migration (Jawien et al., 1992). 

 

1.3.3 The chronic phase 

The chronic phase of restenosis is characterised by the large scale production of extracellular 

matrix. Approximately 2 weeks post injury SMC proliferation becomes reduced, however 

neointimal thickness continues to increase due to the production of ECM. At a time point of 3 

months after injury it was found that 80% of intimal mass was attributed to ECM (Clowes et al., 

1983). ECM not only contributes to the size and structure of the neointima, it propagates further 

SMC proliferation. For example fibronectin has been shown to induce SMC phenotype 

modulation from contractile to synthetic, although this is not the case for all types of ECM as 

laminin and collagen have been shown to have no such effects (Hedin et al., 1988).The 

mechanisms involved in neointimal formation are summarised in  Figure 1.2. 

 

1.3.4 Smooth muscle cell origin 

It has been suggested that the smooth muscle cells that contribute to neointimal lesions are 

derived from circulating hematopoietic stem cells that differentiate into smooth muscle cells. 

This notion was founded from findings that neointimal SMCs have an altered phenotype 

compared to medial SMCs, and that their gene expression was altered. Indeed, a study by Sata 

et al., 2002 found that vascular progenitor cells contribute substantially to vascular lesions. This 

is highly controversial as many other studies contradict these findings, confirming the origin of 

SMCs in vascular lesions to be the local vessel wall (Bentzon et al., 2006; Rodriguez-Menocal 

et al., 2009). Aside from the controversy over the importance of progenitor cells, the importance 

of the adventitia during neointimal formation has also come into question. Various studies have 

suggested that adventitial fibroblasts become activated following vessel injury and subsequently 

migrate to the intima to contribute to the restenotic lesion. These findings are also controversial, 

as in a recent study it was shown that  less than 2% of the mass of restenotic lesions was  
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Figure 1.2. A schematic diagram highlighting the processes involved in neointimal 

formation 

   



   

composed of adventitial fibroblasts (Fleenor et al., 2009), similarly an earlier study 

demonstrated SMCs were the principal cell of the lesion (Christen et al., 2001). 

 

1.3.5 Restenosis and the inflammatory response 

Inflammation plays a pivotal role in the progression and initiation of restenosis. Immediately 

following injury platelets adhere to the injury site and become activated. They release a plethora 

of inflammatory mediators and express adhesion molecules, all of which result in the initiation 

of an inflammatory response. As mentioned earlier, SMCs alter their phenotype following 

injury, resulting in morphological changes, and increased proliferation. In addition to this, 

neointimal SMCs also express a pro- inflammatory phenotype, characterised by increased 

expression of adhesion molecules and cytokines. This inflammatory phenotype is attributed to 

the upregulation of NF-κB (Zeiffer et al., 2004). NF-κB is a family of transcription factors that 

can induce the expression of a variety of adhesion molecules, cytokines, COX-2 and iNOS 

(Reviewed in de Martin et al., 2000). 

Mac-1 is a β2 integrin which is expressed on activated leukocytes and binds to receptors on 

platelets, and fibrinogen. Mac-1 expression has been found to be increased following coronary 

stenting (Inoue et al., 2003), and it is speculated that this integrin receptor plays a central role in 

the recruitment of leukocytes by adhering them to sites on the injured vessel wall (Inoue et al., 

2003). This is supported by findings that antibody blockade of Mac-1 reduced neointimal 

thickening in an experimental model (Rogers et al., 1998). Following balloon induced injury 

polymorphonuclear leukocytes (PMN) are thought to be the first cell recruited to the lesion site 

and it is thought that these cells drive the restenotic response. Interestingly in stent induced 

injury monocytes/macrophage infiltration over days and weeks are thought to be the driving 

force of disease progression (Horvath et al., 2002). Studies have also demonstrated that 

neointimal smooth muscle cells exhibit a higher expression of the adhesion molecule P-selectin, 

aiding monocyte infiltration (Zeiffer et al., 2004). Similarly expression of E selectin and 

VCAM-1 were also found to be increased in a rabbit model of injury (Kennedy et al., 2000). 

Leukocytes add to the progression of restenosis through the release of free radicals, proteolytic 

enzymes, growth factors, chemokines and cytokines. 

 

1.3.6 Cytokines  

Cytokines play an essential role in the progression of neointimal formation since they have the 

ability to influence all the contributing factors that drive the progression of restenosis. The vast 



   

majority of cytokines have the ability to induce immune cell proliferation. In contribution to this 

cytokines can also facilitate the adhesion of immune cells to the endothelium, and increase 

endothelial permeability (Sprague et al., 2009). For example TNFα has been found to stimulate 

the expression of adhesion molecules, and if TNFα is inhibited a reduction in leukocyte 

infiltration is observed (Ahn et al., 2004; Neumann et al., 1996). Cytokines also have the ability 

to activate the inflammatory NFκB pathway (Sprague et al., 2009).  

Chemokines are involved in the recruitment of inflammatory cells, most commonly monocytes 

and T cells. During vascular remodelling MCP-1 and Regulated on Activation, Normally T –

Expressed, and presumably Secreted (RANTES) are up regulated, their function being to attract 

leukocytes to the area of injury (Raines et al., 2005). In neointimal lesions RANTES, is located 

in smooth muscle cells and also on the surface of endothelial cells, (Schober et al., 2008). The 

importance of RANTES in neointimal formation has been confirmed in experimental models, as 

blockade of the RANTES receptors resulted in an inhibition of neointimal formation and 

macrophage infiltration (Krohn et al., 2007). Another chemokine essential in neointimal 

formation is monocyte chemotactic protein (MCP-1) and its receptor CCR2 (Schober et al., 

2008). MCP-1 production is increased within hours of vascular injury, this increase however is 

only short lived supporting a role of MCP-1 in the early phases of neointimal formation 

(Furukawa et al., 1999; Schober et al., 2004). MCP-1 induces the transendothelial migration of 

monocytes thus contributing to macrophage infiltration of the neointimal lesion (Schober et al., 

2008). 

A variety of cytokines have demonstrated an ability to modulate SMC migration and 

proliferation, this is thought to be mediated through activation of MAPK (Goetze et al., 1999). 

SMCs have also been shown to release cytokines which can have a cytoprotective effect on 

neutrophils (Stanford et al., 2001). As mentioned earlier ECM plays a pivotal role in facilitating 

SMC motility, TNFα increases the fibronectin integrin receptor thus promoting cell migration 

(Barillari et al., 2003). 

Cytokines have also been linked with an increase in reactive oxygen species (ROS), which can 

induce signalling events such as cell growth and cell death, depending on their concentration. It 

is speculated that TNFα can induce an increase in the production of ROS, which then in turn 

results in further cytokine release (Griendling et al., 2000). The self propagating nature of 

cytokines is illustrated in Figure 1.3. 
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Figure 1.3.  Illustrating the self propagating nature of cytokines. The majority of the cellular 

functions of cytokines result in further production of cytokines. 

 

 

 

   



   

1.3.7 Protective role of cytokines 

Aside from their many pro-inflammatory disease progressing properties, certain cytokines can 

exhibit anti-inflammatory effects. IL-10 and TGFβ have been shown to have inhibitory actions 

on the activation of NFκB (Mazighi et al., 2004), this is supported from findings that in a rabbit 

model of balloon injury SMC proliferation was reduced by 81% following an infusion of IL-10 

(Feldman et al., 2000). A beneficial role of cytokines has also been demonstrated in the 

endothelium, and it is speculated that certain IL-11 can prevent endothelial cell apoptosis and 

thereby prevent further inflammatory response through the regulation of survivin (an inhibitor 

of apoptosis; Kirkiles-Smith et al., 2004). The effects of cytokines in vascular injury are 

reviewed in detail in Sprague et al., 2009; Raines et al., 2005; Tedgui et al., 2006). 

 

1.3.8 The endothelium and neointimal formation 

As mentioned earlier endothelial disruption is the initiating event in neointimal formation. 

Endothelial cell proliferation is an essential part of the healing process, it is initiated in unison 

with smooth muscle cells through stimulation from bFGF less than 24 hours following injury 

(Lindner et al., 1990). Endothelium regeneration is a timely yet extremely favourable process 

taking up to several weeks before the injured surface is completely restored; once the 

endothelium is restored neointimal growth is attenuated (Asahara et al., 1995). 

 

1.3.9 Nitric oxide 

Aside from being a protective barrier the endothelium is also the source of nitric oxide (NO) 

generation. The release of NO from the endothelium is a sought after process in terms of 

limiting the progression of neointimal formation, as it has many desirable disease limiting 

qualities. NO is produced in the endothelium by the enzyme nitric oxide synthase (NOS) from 

L-arginine. There are two forms of NOS in the vasculature, constitutively expressed eNOS, and 

an inducible form (iNOS) (Ahanchi et al., 2007). iNOS is expressed in conditions of cellular 

stress and can synthesis 100-1000 times more NO than eNOS (Morris et al., 1994; Nathan  et 

al., 1994). 

NO appears to have an inhibitory effect on the initial inflammatory response through its limiting 

effects on platelet aggregation and leukocyte chemotaxis. An experimental model of injury 

demonstrated iNOS knockout mice to show increased leukocyte rolling and adhesion compared 

to the corresponding wild type control (Ahanchi et al., 2007; Hickey et al., 1997). NO also 



   

exhibits highly desirable effects on SMCs through inhibition of both cell proliferation and 

migration. Experimental evidence has shown that NO can induce cell cycle arrest at the G0/G1 

checkpoint and also at the G1/S checkpoint, the latter due to the inhibition of phosphorylation of 

the retinoblastoma protein (Sarkar et al., 1997; Ishida et al., 1997). Similarly NO donors have 

been found to inhibit stimulated SMC migration in vitro (Dubey et al., 1995). As previously 

discussed SMC migration depends on changes in the ECM through the activation of MMPs, NO 

has also been shown to have inhibitory effects on MMPs therefore reducing cell migration 

(Reviewed in Ahanchi et al., 2007; Kibbe et al., 1999). 

In contrast to the inhibitory effects of NO on SMC, NO evokes a stimulatory effect on 

endothelial cells through increased endothelial cell proliferation and inhibition of endothelial 

cell apoptosis (Ahanchi et al., 2007; Ziche et al., 1994). Increasing endothelial cell survival 

would propagate further release of NO thus inducing more beneficial effects. 

 

1.3.10 Drug eluting stents 

Drug eluting stents have been developed to combat the development and progression of 

restenosis, two agents that have proven effectiveness in limiting neointimal formation are 

Rapamycin (Siromilus) and Paclitaxel.  

Rapamycin is an immunosuppressive agent that produces its antiproliferative effect through 

inhibition of the cell cycle regulatory protein mTOR (mammalian target of rapamycin), thus 

preventing cell cycle progression from the G1 to the S phase (Marx et al., 1995; Sabers et al., 

1995; Costa et al., 2005). In addition to its antiproliferative effects rapamycin also prohibits 

SMC migration (Poon et al., 1996). As a result of its many beneficial anti restenotic properties, 

stents coated with rapamycin showed reduced neointimal formation compared to bare metal 

stents in clinical trials (Moses et al., 2003). 

Paclitaxel was originally used in the treatment of cancer however its cellular actions made it an 

ideal anti restenotic drug. Paclitaxel binds to the β tubulin subunit of microtubules and inhibits 

their disassembly; thus prevents cells from completing mitosis (Costa et al., 2005). Drug eluting 

stents coated with Paclitaxel have shown in clinical trials to inhibit neointimal formation 

compared with bare metal stents (Stone et al., 2009). 

Despite the benefits of these two drugs, DES also have their drawbacks. While the 

antiproliferative properties of these agents are beneficial for SMCs, an antiproliferative effect on 

endothelial cells is a negative effect, as it delays the reenndothelialisation process (Joner et al., 

2006). Other adverse effects to the current DES are endothelial dysfunction in vessel areas 



   

surrounding the stent (Hofma et al., 2006), and also the potential link to thrombus formation ( 

Takahashi et al., 2007; Joner et al., 2006), DES are also thought to be less effective in patients 

with diabetes (Lemos et al., 2003). 

Aside from these two main agents other drugs including free radical scavengers, estradiol, and 

the corticosteroid dexamethasone have been investigated as novel drug eluting compounds, 

however results have been disappointing (Reviewed in Costa et al., 2005), supporting the 

continued need for identification of novel therapeutic strategies. 

 

1.4 Cannabinoids 

For over 5000 years extracts from the Canabis sativa plant have been used as medicines, for 

religious ceremonies, and recreationally. The cannabis plant is a unique source of at least 66 

compounds collectively known as cannabinoids, amongst these compounds is 

tetrahydrocannabinol (Δ9-THC), the cannabinoid primarily responsible for the psychotropic 

effects produced following exposure to cannabis (reviewed in Pertwee 2006). The observation 

that the activity of psychotropic cannabinoids was reliant on structure, and that cannabinoids 

with chiral centres demonstrated stereoselectivity, suggested that cannabinoids may act through 

specific receptors (Howlett et al., 2002; Pertwee 2006), a notion that had previously been 

thought unlikely. In the 1980s two important findings confirmed the presence of cannabinoid 

receptors. Firstly that psychotropic cannabinoids inhibited adenylate cyclase through activation 

of Gi/o receptors, and secondly that the radiolabelled synthetic cannabinoid CP55940 showed 

high affinity binding sites in rat brain membranes (Howlett et al., 1984; Howlett et al., 1985a; 

Howlett et al., 1985b). Following this discovery two CB receptors were cloned and identified, 

firstly the CB1, then in 1993 the CB2 receptor (Matsuda et al., 1990; Munro et al., 1993). 

 

1.4.1 The CB1 receptor  

The CB1 receptor has been cloned in mouse, rat, and human tissue, and demonstrates 97-99% 

homology in amino acid sequence between species. It is located on the q14-q15 region of 

chromosome 6 (reviewed in Pertwee 1997) and has the classic structure of 7 transmembrane 

domains, a requisite of a G protein coupled receptor (reviewed in Howlett et al., 2002; Pertwee, 

1997). CB1 receptors were originally found primarily in the brain but recent evidence has 

confirmed their presence in the periphery including the heart and vasculature, lungs, bladder and 

adrenal gland (Rajesh et al., 2008; Sugiura et al., 1998; Reviewed in Pertwee 1997).  



   

 

1.4.2 The CB2 receptor 

The CB2 receptor exhibits 48% homology with the CB1 receptor and is found primarily in the 

periphery, especially in the immune system. CB2 receptors have also been identified in the 

adrenal gland, heart, lungs, pancreas, uterus and prostate (Munro et al 1993) as well as on 

microglial cells and in some brain neurones (Van Sickle et al., 2005). Aside from these two 

receptors there is mounting evidence for the existence of novel cannabinoid receptors, which 

will be discussed later. 

 

1.4.3 Cannabinoid agonists 

Cannabinoid receptor agonists can be classified into one of four categories (reviewed in 

Pertwee, 1997 and Howlett et al., 2002). The classical cannabinoids, are dibenzopyran 

derivatives and included in this group is Δ9-THC. The second group is the non- classical 

cannabinoids, which are synthetic analogues of Δ9-THC and include CP55940, the compound 

that helped confirm the presence of cannabinoid receptors. The third group is made up of 

aminoalkylindoles, which are structurally different from the compounds in the other groups; the 

prototypic member of this group is the compound WIN55-212-2. The final and most important 

group of cannabinoid agonists (for the scope of this study) is the eicosanoid group; compounds 

in this group are arachidonic acid derivatives and include the endogenous cannabinoids 

(reviewed in Pertwee, 1997 and Howlett et al., 2002). 

 

1.5 Endocannabinoids 

Following the identification of the two cannabinoid receptors, the hunt began for endogenous 

ligands. In 1992 the first endocannabinoid was discovered from extracts of porcine brain and 

named anandamide (AEA) (Devane et al., 1992). AEA is a partial cannabinoid receptor agonist 

with slightly greater affinity for the CB1 receptor than the CB2, but shows much less efficacy at 

CB2 compared to CB1 (Pertwee, 1999). Soon after the discovery of AEA another 

endocannabinoid 2-arachidonoyl glycerol (2-AG) was discovered. This was first isolated in the 

canine gut but has subsequently been detected in the brain (Structures can be seen in Figure 1.4,  
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Mechoulam et al., 1995; Sugiura et al., 1995). The affinity of 2-AG for CB receptors is similar 

to AEA, however 2-AG demonstrates higher efficacy at CB2 and possibly also CB1 compared 

to AEA (Hanus et al., 2001; Gonsiorek et al., 2000; Pertwee 2002). Other endocannabinoids 

have since been discovered but have not been subjected to the same amount of scrutiny; these 

include virodhamine (a CB1 receptor antagonist/inverse agonist, Porter et al., 2002) and noladin 

ether (Hanus et al., 2001). All together these compounds and their receptors define the 

endocannabinoid system.  

 

1.5.1 Anandamide biosynthesis 

Anandamide is synthesised from the phospholipid precursor N-arachidonoyl 

phosphatidylethanolamine (NAPE). It was originally thought to be produced by the simple 

phosphodiesterase mediated cleavage of NAPE (Di Marzo et al., 1994) as a specific NAPE- 

Phospholipase D (PLD) was identified which hydrolysed NAPE to yield AEA in a Ca2+ 

dependant manner. This was confirmed when cells over expressing NAPE- PLD showed 

reduced levels of NAPE and increased AEA (Okamoto et al., 2004; Okamoto et al., 2005). 

While this method of AEA synthesis is not disputed, recent evidence has highlighted that the 

biosynthesis of AEA is in fact more complicated than first thought. In NAPE-PLD knockout 

mice it was found that there was no reduction in AEA concentration, and that the knockout mice 

retained the ability to synthesise AEA from NAPE in a Ca2+ independent manner (Leung et al., 

2006). Similarly NAPE-PLD has been proved redundant in the synthesis of AEA in LPS 

stimulated macrophages. Instead, phospholipase C (PLC) produced the lipid 

phosphoanandamide (pAEA) from NAPE, which was then converted to AEA by phosphatases, 

including PTPN22 (Liu et al., 2006). This is supported by previous findings demonstrating the 

presence of phosphoanandamide in brain tissue and macrophages, and that its concentration is 

increased following phosphatase inhibition (Liu et al., 2006). AEA is a member of the N-

acylethanolamines (NAEs) that include palmitoylethanolamide (PEA). During AEA 

biosynthesis, PEA is produced in tandem, its function is to act as a protective molecule, 

inhibiting the degradation of AEA, and therefore increasing AEA concentration. The 

mechanism by which PEA inhibits AEA degradation is unknown, as it does not directly inhibit 

FAAH (Smart et al., 2002). PEA also increases the affinity and the potency of AEA at TRPV1 

receptors (De Petrocellis et al., 2001), and can target PPARs (O’Sullivan 2007). 

A recently discovered phospholipase A2 has been found to convert NAPE to 2-lyso NAPE 

which is then metabolised to AEA by a Ca2+ independent process (Sun et al., 2004). In slight 

contradiction to this it was found that tissue distribution of PLA2 was limited, suggesting 

therefore, that other enzymes may be involved in this pathway. It has been proposed that the 



   

newly discovered αβ- hydrolase 4 (Abhd4) functions to convert either NAPE directly, or 2-

lysoNAPE, to glycerophospho-arachidonyl ethanolamide (GpAEA), which is then converted to 

AEA by a phosphodiesterase (Simon and Cravatt, 2006). In a recent study the three pathways 

described above were investigated, it was found that macrophages could only synthesise AEA 

on demand through the PLC pathway, and that in brain tissue the immediate production of AEA 

(in the first minute) is reliant on the PLC pathway. The Abhd4 pathway was found to play a 

dominant role in the longer term production of AEA (Liu et al., 2008). The pathways discussed 

above are illustrated in Figure 1.5. 

 

1.5.2 2-AG biosynthesis  

2-AG is synthesised from membrane phospholipids containing arachidonic acid, for example 

the inositol phospholipids. Two central pathways for the synthesis of 2-AG have been 

identified; (i) the conversion of inositol phospholipids to diacylglycerol (DAG) by PLCβ, then 

subsequent hydrolysis of DAG by diacylglycerol lipase (DAG lipases) to 2-AG. This pathway 

that was first discovered to explain arachidonic acid breakdown in platelets but has since been 

found to result in the production of 2-AG ( Prescott et al., 1983; Stella et al., 1997 nature).(ii) 

The conversion of phospholipids to lyso- phospholipids by Phospholipase A1, this is then 

converted to 2-AG by  lyso-PLC ( Reviewed in Sugiura et al., 2002). 2-AG synthesis is 

illustrated in Figure 1.5. 

 

1.5.3 Endocannabinoid metabolism 

1.5.3.1 FAAH 

Anandamide is primarily hydrolysed into arachidonic acid and ethanolamine by the enzyme 

fatty acid amide hydrolase (FAAH). This was confirmed following findings from FAAH 

knockout mice which demonstrated brain anandamide concentrations 15 times greater than that 

of the normal wild type mouse (Cravatt et al., 2001). FAAH is a membrane bound protein 

which in humans has been located in a variety of tissues, including the pancreas, brain, kidney 

and skeletal muscle (Giang et al., 1997). Due to the similarity in chemical composition of AEA 

to arachidonic acid, it was speculated that there may be more than one route of metabolism for  
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Figure 1.5. An illustration of the pathways involved in the biosynthesis of AEA (A) and 2-

AG (B). Pathways described in section 1.5.1 & 1.5.2. 

Anandamide 

Phospho-anandamide 

PLC 

2- Lyso NAPE 

  NAPE-PLD 

Phosphatases 

(PTPN22) 

 

Abhd4 

PLA2 

Phospholipid 

Lyso-phospholipid 

Lyso-PLC 

PLA2 

DAG 

PLCβ 

DAG 
lipases 

2-AG 

(B) 



   

 

AEA. It has been found that certain cyclooxygenase (COX) and lipoxygenase (LOX) enzymes 

are capable of metabolising AEA.  

 

1.5.3.2 Cyclooxygenase 

COX-1 is a constitutively expressed enzyme that performs general “housekeeping tasks” 

(Kozak et al., 2002), COX-2 on the other hand is an inducible enzyme that produces 

prostaglandins (PGs) in inflammatory cells (Dubois et al., 1998). It has been shown that COX-2 

has the ability to metabolise AEA in a similar way to arachidonic acid. Cells cultured with AEA 

produced prostaglandin (PG)D2-, PGE2-, and PGF2α-ethanolamide, a family of compounds 

known collectively as prostamides (Yu et al., 1997; Yang et al., 2005). COX-1 is unable to 

metabolise AEA, thought to be due to the differing chemical structure of the enzyme active site 

(Kozak et al., 2003; Yu et al., 1997). 

The discovery of prostamide products from the metabolism of AEA has led to much research to 

try and understand the pharmacology of these compounds. Prostamides have been shown to be 

much less active at their corresponding PG receptor compared to PGs (Ross et al., 2002). For 

example, prostamide E2 is 100-1000 fold less active than PGE2 in binding experiments utilising 

human prostanoid EP receptors (Ross et al., 2002). It has been found that prostamides can 

weakly activate the CB receptors (Berglund et al., 1999) and that only prostamide F2α could 

elicit very weak activation of the TRPV1 receptor (see section 1.6.1 Matias et al., 2004).  

Prostamides produce a potent contractile effect on the cat iris sphincter and it has been 

suggested that this effect is mediated by novel prostamide receptors. A notion that has been 

supported by findings that the compound AGN-204396 antagonises the effects of the 

prostamides on the cat iris sphincter but not the effects of prostaglandins (Matias et al., 2004; 

Woodward et al., 2007). It has also been suggested that prostamides may be produced to 

enhance the concentration of AEA by competing at the active site of FAAH; however this is 

unlikely as prostamides are not substrates of FAAH (Matias et al., 2004). 

Despite the extensive research in to the metabolism and pharmacology of the AEA metabolites 

produced by COX-2, the physiological relevance of COX-2 metabolism comes into question. 

The concentration of AEA in physiological conditions is habitually in the nanomolar region (Di 

Marzo et al., 1999; Bisogno et al., 1999), while the Km of COX-2 is in the micromolar range, 

suggesting that COX metabolism of AEA is unlikely to occur. However, it is well established 

that AEA concentration increases in pathological conditions (Reviewed in Di Marzo, 2008). 



   

This along with the fact that COX-2 only functions in pathological conditions, raises the 

possibility that if, under certain conditions FAAH mediated metabolism was inhibited, then 

AEA might be metabolised by COX-2 in vivo. This theory is supported by the discovery of an 

endogenous FAAH inhibitor 2-octyl-g-bromoacetoacetate, this compound was originally found 

in the cerebrospinal fluid but has since been identified in other tissues (Patricelli et al., 

1998).The metabolism of AEA is summarised in Figure 1.6. 

 

1.5.3.3 Lipoxygenase metabolism 

Lipoxygenases (LOX) are a group of enzymes that catalyse the addition of an oxygen molecule 

to fatty acids and other compounds. The products of LOX mediated metabolism of arachidonate 

are hydroperoxyeicosatetraenoic acids (HpETEs) (Kozak et al., 2002). Due to the known ability 

of LOX to metabolise fatty acids and phospholipids, it was speculated that it may also 

metabolise AEA. Conformation of this came from findings that AEA incubated with LOX, 

resulted in the production of HpETE-EA (Ueda et al., 1995). Indeed, it has been suggested that 

lipoxygenation is the primary route of AEA metabolism in platelets, as these cells have only 

COX-1 and very little amounts of FAAH (Kozak et al., 2002). It is established that AEA 

produces contractions of the guinea pig bronchus through activation of vanilloid receptors 

(Craib et al., 2001); interestingly this effect is inhibited by a combined COX and LOX inhibitor, 

and attenuated by a specific LOX inhibitor. It is suggested that AEA is metabolised to 

hydroperoxyeicosatetraenoyl ethanoloamides and lipoxin A4, both of which function as vanilloid 

receptor agonists (Craib et al., 2001). Interestingly, it has been discovered that the lipoxygenase 

mediated metabolites of arachidonic acid, 12 HPETE, 5-HETE and leukotriene B4, are agonists 

of the TRPV1 receptor (Hwang et al., 2000). It is speculated that AEA could either function as 

an arachidonic acid donor through its metabolism by FAAH, or  through direct metabolism by 

LOX  to produce metabolites that subsequently activate TRPV1 receptors. It may also compete 

with arachidonic acid for metabolism by LOX, and therefore would reduce the arachidonic acid 

derived LOX metabolites. 

 

1.5.3.4 CYP450 

Aside from the two oxygenation pathways previously described there is also evidence that AEA 

can be metabolised by the cytochrome P450 (CYP450) superfamily of enzymes. In the mouse, 

AEA was metabolised into at least 20 different polar lipids by CYP450 (Bornheim et al., 1995). 
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Figure 1.6 The metabolic pathways for both AEA and 2-AG. Thick arrows represents 

dominant pathway. 



   

1.5.4 2-AG metabolism 

2-AG metabolism has not been studied as extensively as AEA metabolism; however the key 

enzyme involved is thought to be the cytosolic enzyme monoacylglycerol lipase (MAGL), after 

findings that over expression of MAGL in rat neurones reduced accumulation of 2-AG (Dinh et 

al., 2002). Other enzymes including FAAH, neuropathy target esterase (NTE) and hormone 

sensitive lipase (HSL) are also thought to metabolise 2-AG. A recent study was directed at 

investigating the importance of these enzymes and identifying the dominant metabolic pathway. 

It was found that 85% of the hydrolysis of 2-AG was mediated by MAGL, the majority of the 

remaining 15% of activity was discovered not be due to either NTE or HSL but to two 

previously uncharacterised enzymes ABHD12 and ABHD6. The same study also demonstrated 

that in the brain these three enzymes exhibited different distribution suggesting that these 

enzymes have access to their own supply of 2-AG (Blankman et al., 2007). It is also suggested 

that ABHD12 and ABHD6 may be responsible for the metabolism of 2-AG in cells lacking 

MAGL such as microglial cells (reviewed in Blankman et al., 2007). 

 Like AEA, 2-AG can also be metabolised by COX-2, however 2-AG is metabolised much more 

efficiently. The major metabolite produced following 2-AG metabolism by COX-2 is PGH2 

glycerol ester (PGH2G) as yet the biological significance of this molecule is elusive (Kozak et 

al., 2000, 2001). The metabolism of 2-AG is summarised in Figure 1.6. 

 

1.5.5 Anandamide accumulation and transport 

In order for endocannabinoids to be metabolised they must first enter the cells, the mechanism/s 

by which AEA accumulates in cells is highly controversial. One finding that researchers in the 

field do agree on is that the process of AEA uptake is saturable (Reviewed in Hillard et al., 

2000); however the cellular component that is being saturated is still open to debate. The four 

proposed mechanisms of AEA accumulation are; (i) facilitated diffusion, (ii) uptake by means 

of a transporter/carrier protein, (iii) cellular sequestration and (iv) AEA uptake via lipid rafts. 

 

1.5.5.1 Facilitated diffusion 

 Experimental evidence  has  shown that in FAAH expressing neuroblastoma cells AEA uptake 

is reduced by 50% in the presence of a FAAH inhibitor (MAFP) (Deutsch et al., 2001). This is 

consistent with findings from HeLa cells, which, when transfected with FAAH demonstrated a 2 

fold increase in AEA uptake (Day et al., 2001). The demonstrable importance of FAAH in AEA 



   

accumulation leads to the speculation that FAAH functions to provide an inward concentration 

gradient, to facilitate diffusion across the membrane (Reviewed in McFarland et al., 2004; 

Hillard et al., 2003). It has been shown in neuroblastoma cell lines that AEA uptake is entirely 

dependent on FAAH, and that no other process is involved; this conclusion was based on the 

fact that many of the AEA transport inhibitors also inhibit FAAH (Glaser et al., 2003). In this 

proposed mechanism of AEA uptake FAAH is the saturable component.  

As an argument against this proposed mechanism, it has been pointed out that the FAAH 

inhibitor used in the studies mentioned above (MAFP) is structurally similar to AEA and may in 

fact be inhibiting AEA accumulation. This is supported by findings that a second FAAH 

inhibitor PMSF, which is not structurally similar to AEA, failed to inhibit AEA uptake (Day et 

al., 2001). Further evidence against this mechanism of uptake has come from FAAH knockout 

mice; these retained saturable accumulation of AEA although it was reduced compared to wild 

type mice (Ligresti et al., 2004). It has also been shown that FAAH knockout mice and their 

wild type counterparts exhibit temperature sensitive, rapid, saturable uptake of AEA that can be 

inhibited by AM404 and AM1172, a compound that does not inhibit FAAH (Fegley et al., 

2004). Therefore, it can be seen that although FAAH plays a role in the uptake of AEA in some 

experimental preparations, it is unlikely that this is the sole mode of AEA uptake into cells. 

While AEA would have the capabilities of simply diffusing across the membrane it is thought 

that this process would be too slow to account for the rapid accumulation of AEA (McFarland et 

al., 2004).  

 

1.5.5.2 Transporter mediated uptake 

Structure activity studies have led to the hypothesis that AEA is transported across the 

membrane by a carrier which is stereoselective (Melck et al., 1999; Piomelli et al., 1999). In 

support of this it has been found that cerebellar granule neurones exhibit trans flux coupling for 

AEA. Trans flux coupling is indicative of bidirectional carriers, it occurs when carrier proteins 

(which have only one binding site) have their binding sites on the trans side of the membrane, 

despite accumulation of substrate on the cis side of the membrane, effectively transporting 

compounds against their concentration gradient (Hillard et al., 2000; Hillard et al., 2003). 

AM404 has been identified as an AEA transport inhibitor although it is also a FAAH inhibitor 

(Beltramo et al., 1997; Jarrahian et al., 2000). AM404 has been found to inhibit AEA efflux 

(Beltramo et al., 1997), thus if AM404 was functioning through inhibition of FAAH then it 

would be expected that the rate of AEA efflux would increase as opposed to decrease, 

supporting an independent role of AM404, possibly at the proposed carrier protein (Beltramo et 

al., 1997; Hillard et al., 2003; McFarland et al., 2004). In support of this it has also been found 



   

that AM404 demonstrates competitive inhibition of AEA uptake (Rakhshan et al., 2000). 

Despite this mounting evidence in support of an AEA transporter research has focused on 

neurones and endothelial cells, whether this proposed transporter exists in the majority of cell 

types remains to be investigated. 

 

1.5.5.3 Cellular sequestration 

In further disagreement with facilitated diffusion as a mechanisms of AEA transport, it has been 

suggested that AEA concentration in cells is much greater than in the extracellular media 

(Hillard et al., 2000; from Hillard 2003). It was found that cerebellar granule neurones 

possessed a concentration of AEA that was a thousand times greater than that of the 

extracellular media (Hillard et al., 2000). Similar findings were also observed in RBL-2H3 cells 

and N8 neuroblastoma cells (Rakhshan et al., 2000; Deutsch et al., 2001). As there is no 

evidence for an active process transporting AEA against its concentration gradient, it is 

suggested that only some of the intracellular AEA is free and in equilibrium with extracellular 

AEA, and that the remainder of the AEA is being “sequestered or bound” (Hillard et al., 2003). 

Two possible explanations have been put forward to explain this, the first being that AEA is 

contained within membranous compartments which would have the potential to become 

saturated (McFarland et al., 2003). The second that AEA is bound to an intracellular protein that 

functions to move AEA between cellular compartments (Stremmel et al., 2001). The binding of 

AEA to binding proteins would keep in line with the saturable nature that has been established 

for AEA uptake.  

 

1.5.5.4 Endocytotic uptake 

The final proposed mechanism of AEA uptake is by means of endocytosis. It has been 

suggested that one of the ways by which cells sequester AEA is by maintaining it in 

membranous compartments. To expand on this, it has been put forward that AEA may be taken 

up into cells by caveolae-related endocytosis (McFarland et al., 2004). Lipid rafts are areas in 

the plasma membrane that are enriched with cholesterol, sphingolipids, and arachidonic acid  

(Brown et al., 2000; Pike et al., 2002), caveolae are similar in composition to lipid rafts and 

found as invaginations in the plasma membrane (Pike et al., 2002). It has been suggested that 

caveolae or lipid rafts may function to transport AEA into cells (McFarland et al., 2004; 2005). 

RBL-2113 cells (mast cells) have been shown to accumulate AEA; treatment of these cells with 

inhibitors of caveolae mediated endocytosis, resulted in a 50% reduction in AEA uptake 



   

(McFarland et al., 2004). To add support to this, it was found that fluorescently labelled AEA 

co-localised with caveolin-1 and flotillin-1 (markers for caveolae and lipid rafts Muthian et al., 

2000). It is suggested that within the lipid rafts/caveolae there are binding proteins or carriers 

for AEA, this would satisfy the required saturable component that has been established for AEA 

uptake (McFarland et al., 2005). This proposed mechanism of uptake would allow the transport 

of AEA to FAAH where it would be metabolised and thereby make the binding proteins 

available. This supports the theory that AEA uptake is mediated by, but not reliant upon FAAH 

(McFarland et al., 2005). 

Therefore, it can be seen that despite extensive research into this area, no definitive mechanism 

of uptake of AEA has yet been established. Valid evidence supports each mechanism described 

above, so it may be that they are all involved in the uptake of AEA or perhaps some  

mechanisms are cell specific (for example uptake mediated by a transporter). Further research is 

also required to explain some pieces of evidence that cannot be explained by mechanisms put 

forward so far, for example the finding that NO increases AEA accumulation in endothelial 

cells and human mast cells (Maccarrone et al., 2000a and b). 

 

1.6 Cannabinoid action at vanilloid, non cannabinoid, and novel receptors 

1.6.1 Vanilloid receptors 

Vanilloid receptors (TRPV1) are members of the transient receptor potential (TRP) channels; 

they are non selective cation channels primarily located on primary afferent fibres (Benham et 

al., 2002; reviewed recently in Starowicz et al., 2007). Vanilloid receptors are activated by 

capsaicin, resiniferatoxin (RTX) and noxious stimuli such as heat and acid. Similarities in 

chemical structure between AEA and capsaicin, and the finding that AEA could activate 

vanilloid receptors led to the proposition that AEA was in fact an endovanilloid (Zygmunt et al., 

1999; 452; Di Marzo et al., 2001). 

AEA activates TRPV1 in a manner that can be inhibited by TRPV1 receptor specific, but not 

CB receptor, antagonists. Pre-treatment with capsaicin (to render vanilloid receptors inacative) 

also abolishes any effect of AEA (Ross. 2003). AEA has a similar affinity for TRPV1 to 

capsaicin however it has a much lower potency, and whether AEA is a full or partial agonist at 

vanilloid receptors varies between tissues (reviewed in Ross 2003). Interestingly AEA has been 

found to exhibit low intrinsic activity at the TRPV1 receptor, which means that AEA will 

attenuate the effects of a full agonist. This has been observed in neurones where the combined 

addition of AEA and capsaicin resulted in a reduction of the effects of capsaicin (Roberts et al., 



   

2002; Ross. 2003). As vanilloid receptors are involved in inflammatory pain, it raises the 

possibility that AEA may function to inhibit this process via these receptors. 

The low intrinsic activity of AEA at vanilloid receptors has called the physiological relevance of 

AEA acting at vanilloid receptors into question. However research has shown that many 

environmental conditions can increase the efficacy of AEA at vanilloid receptors. For example 

increased receptor expression in conditions of disease (Szallasi et al., 2002; Di Marzo et al., 

2002), the production of LOX metabolites that function as TRPV1 agonists (Hwang et al., 2001; 

Craib et al., 2001; Ross. 2003), receptor sensitisation by phosphorylation (Di Marzo et al., 

2002) and the presence of an AEA biosynthesis by-product (PEA) that enhances the affinity and 

potency of AEA at vanilloid receptors (De Petrocellis et al., 2001; Smart et al., 2002; reviewed 

by Ross 2003).  

 

1.6.2 PPARs 

Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors that exist 

in three isoforms α, γ and δ. These receptors dimerise with the retinoid X receptor to bind to 

DNA sequences called PPAR response elements, these then initiate the transcription of target 

genes following activation. PPARs are involved in the regulation of metabolism, energy 

homeostasis and inflammation (Reviewed Moraes et al., 2006; Rizzo et al., 2006; Bensinger et 

al., 2008). PPAR α is found in the heart and liver and is involved in fatty acid catabolism and 

inflammation (Stienstra et al., 2007). PPARγ is involved in  insulin sensitivity and inflammation 

(Sienstra et al., 2007; Fievet et al., 2006) and PPARδ whose function was unknown until quite 

recently, is now thought to function by regulating metabolism (Barish et al., 2006). PPARs are 

also found in the CNS (Moreno et al., 2004). Due to the large binding site present on PPARs 

they have the capability of binding many substances, including fatty acids and eicosanoids (O’ 

Sullivan. 2007).  

Endocannabinoid involvement with PPARs first became evident when it was found that a LOX 

produced metabolite of 2-AG could activate PPARα (Kozak et al., 2002). PEA (as described 

previously) is synthesised alongside AEA, PEA has been found to activate PPARα and 

subsequently produce anti inflammatory and analgesic actions (Lo Verme et al., 2005; Lo 

Verme et al., 2006). Anandamide, virodhamine and noladin ether have also been shown to 

activate PPARα (Sun et al., 2006). Similarly, AEA can also bind to and activate PPARγ, it is 

through this receptor that AEA inhibits production of IL-2 (Bouboula et al., 2005; Rockwell et 

al., 2004). 2-AG has also been shown to activate PPARγ (Bouboula et al., 2005). The effects of 

endocannabinoids on PPARδ have not been investigated to the same extent; however, one study 



   

has shown that if PPARδ receptors are silenced an increase in CB1 receptor expression is 

observed; the reverse of this is seen if CB1 receptors are silenced, when an increase in PPARδ 

expression is observed (Yan et al., 2007). 

 

1.6.3 Novel Receptors 

As discussed above, endocannabinoids/cannabinoids have been shown to be active at the CB1 

and CB2 receptors, vanilloid receptors, and PPARs, however these receptors do not account for 

all cannabinoid mediated effects. There is substantial evidence supporting the existence of at 

least two other receptors (i) the endothelial CBx receptor/AEA receptor/abnormal cannabidiol 

receptor and (ii) the orphan receptor GPR55. 

The first indication that a novel cannabinoid receptor may exist came from studies in the rat 

mesenteric arterial bed. It was found that both AEA and its metabolically stable analogue 

produced a long lasting vasodilatory effect that was not mimicked by other synthetic 

cannabinoids (Wagner et al., 1999). Further research demonstrated that the CB1 receptor 

antagonist SR141716A could inhibit this vasodilatation but only at much higher concentrations 

than would be required to antagonise CB1  (Jarai et al., 1999; Wagner et al., 2001; White et al., 

2001). The antagonistic effect of SR141716A was found to be endothelium dependent, as the 

effect was abolished following endothelial denudation. This led to the hypothesis that a novel 

endothelial cannabinoid receptor exists (Jarai et al., 2002; Wagner et al., 2001). This putative 

receptor is also thought to be present in the rat coronary circulation (Ford et al., 2002). 

Abnormal cannabidiol is a structural analogue of cannabidiol (a non psychotropic 

phytocannabinoid), and has been found to be a specific agonist at this CBx receptor. It 

demonstrates an endothelium dependant, CB1 and CB2 independent relaxation, which is 

antagonised by high concentrations of SR141716A and unaffected by the vanilloid receptor 

antagonist capsazepine ( Jarai et al., 1999; Offertaler et al., 2003). The previous finding that 

AEA relaxation in the mesenteric artery is mediated by vanilloid receptors suggests a possible 

interplay between the CBx receptors and vanilloid receptors in the response to AEA (Jarai et al., 

1999; Begg et al., 2005). This is supported from findings in the rabbit aorta, where AEA 

produced a vasodilatation that was primarily endothelium dependent (antagonised by 

SR141716A) but also demonstrated a residual relaxation that was endothelium independent 

which was antagonised by vanilloid receptor antagonists (Mukhopadhyay et al., 2002). 

 

 



   

1.6.4 GPR55 

GPR55 is an orphan G protein coupled receptor that has been put forward as a novel 

cannabinoid receptor (Reviewed in Baker et al., 2006; and Brown, 2007; Ross 2009). Despite 

this receptor receiving much attention, its role as a cannabinoid receptor remains controversial. 

GPR55 shares only 13.5% and 14.4% homology with CB1 and CB2 receptors respectively, and 

its reported receptor expression is much lower than that of the established CB receptors (Ryberg 

et al., 2007). GPR55 receptor mRNA has been located both in the brain and the periphery and 

has been suggested to be present in certain vascular beds (Baker et al., 2006).   It was initially 

questioned whether the CBx receptor (described previously) and GPR55 were one and the same; 

however research has shown this not to be the case (Johns et al., 2007).  

The ability of endogenous cannabinoids to activate GPR55 is contentious, depending on the 

marker of activation and the cell type (reviewed in Ross 2009). Both AEA and 2-AG show no 

effect on ERK phosphorylation (a chosen marker of GPR55 activation) in GPR55 expressing 

cells (Oka et al., 2007). In some cases AEA has been shown to activate GPR55 at 

concentrations greater than 5μM and 10μM. These are far greater than would be observed either 

physiologically or pathologically and are much higher than would be required to activate CB 

receptors (Lauckner et al., 2008; Ryberg et al., 2007; Ross. 2009). Despite the controversy over 

the ability of endocannabinoids to activate GPR55 a likely candidate for an endogenous ligand 

of this receptor has been identified. Lysophosphatidylinsoitol (LPI) has been shown 

convincingly to activate GPR55 (Oka et al., 2007; Henstridge et al., 2009), while it is not 

thought to bind to cannabinoid receptors. The synthetic analogue of cannabidiol, 0-1602, has 

also been shown to activate GPR55, however in GPR55-/- knockout mice this ligand still elicited 

a functional vasodilatory effect (Johns et al., 2007).  

 

1.7 Cannabinoid receptor signalling 

Cannabinoid signalling, like all other aspects of cannabinoid pharmacology is extremely 

complex. There are four main mechanisms of signalling which cannabinoid receptors are 

believed to regulate, these are: (i) adenylate cyclase (ii) MAP kinase (iii) ion channels and  

intracellular Ca2+ concentration. 

 

 

 



   

1.7.1 Adenylate cyclase 

Early studies into the signalling pathways of the CB1 receptor established that in neuroblastoma 

cells, CB1 signals through the Gi/o family of PTX sensitive G proteins resulting in the inhibition 

of adenylate cyclase and in the reduction of cAMP production (Howlett et al., 1984; Howlett et 

al., 1986). This signalling mechanism was also confirmed in CHO cells (Matsuda et al., 1990). 

CB1 mediated inhibition of adenylate cyclase has also widely been demonstrated in brain slices 

(Bidaut-Russell et al., 1990). In contrast to this, some experimental results have demonstrated 

that CB1 receptor activation can result in an increase in adenylate cyclase activation, and thus an 

increase in cAMP (Glass et al., 1997; Busch et al., 2004). CB2 receptor activation, on the other 

hand is thought to result purely in an inhibition of adenylate cyclase, and therefore in a 

reduction in cAMP (Glass and Felder et al., 1997; Demuth et al., 2006). 

 

1.7.2 Cannabinoid modulation of ion channels and Ca2+ concentration 

Cannabinoids can also signal through the modulation of a variety of ion channels, including the 

inward rectifying K+ channel, and L, N, P and Q voltage gated Ca2+ channels. It is thought that it 

is through modulation of these ion channels that cannabinoid inhibition of neurotransmitter 

release occurs at presynaptic terminals (Reviewed in Howlett et al., 2002; Demuth et al., 2006). 

Due to their activity at Ca2+ channels, cannabinoids are thought to be important regulators of 

intracellular Ca2+ concentration. In human arterial endothelial cells AEA produces an increase in 

Ca2+ by opening intracellular stores. It has been hypothesised that one of the ways in which 

AEA produces vasodilatation is by increasing intracellular Ca2+ concentration, resulting in an 

increase in NO release and subsequent vasodilatation (Fimiani et al., 1999; Demuth et al., 

2006). 

Research has also been undertaken to understand the signalling mechanisms of the endothelial 

AEA/abnormal cannabidiol/CBx receptor. In a similar fashion to the established cannabinoid 

receptors, the CBx receptor is thought to couple to Gi/o receptors and activate P42/44 MAP 

kinase and PKB/Akt (Offertaler et al., 2003). The CBx receptor is also thought to elicit its 

vasodilatory effect through PKG activation of BKCa (Begg et al., 2003). 

The orphan receptor GPR55 signals through different signalling pathways compared to the 

cannabinoid receptors. GPR55 is coupled to Gα13 which upon activation stimulates RhoA, 

cdc42, and rac (Ryberg et al., 2007). Other downstream targets of GPR55 receptor activation 

remain controversial and are reviewed in (Ross 2009). 

 



   

1.7.3 MAPK 

The MAP kinase pathway is possibly one of the most important cellular signalling pathways, 

regulating many cellular activities such as proliferation, migration and cell death (discussed in 

detail in section 1.1.5). CB1 receptors have been shown to activate MAPK (p38) in CHO and 

HUVEC cells (Rueda et al., 2000; Liu et al., 2000). Similarly, in astrocytes and CHO cells CB1 

receptor activation activates p42/p44 MAP kinase (Bouaboula et al., 1995; Galve-Roperh et al., 

2002). CB2 receptors appear to signal through MAPK in a fashion comparable to CB1, showing 

activation of p42/p44 MAP kinase in both CHO and HL-60 cells expressing CB2 (Bouaboula et 

al., 1996; Kobayashi et al., 2001). It is not clear how cannabinoid receptors activate MAP 

kinase however two mechanisms have been suggested. The first is that cannabinoid receptor 

activation results in the activation of PI3K which through tyrosine phosphorylation activates 

Raf; it is also suggested that PI3K activates PKB/Akt which in turn activates MAPK (Gomez 

del Pulgar et al., 2000; Galve-Roperh et al., 2002). The second proposed pathway by which 

cannabinoid receptors can activate MAPK is through the actions of the second messenger 

ceramide. Ceramide is a sphingolipid second messenger important in the regulation of cell fate. 

Changes in ceramide concentration can make the decision between cell survival and cell death. 

It is also suggested that inhibition of PKA induced by CB receptors may lead to MAP kinase 

inhibition. (Sanchez et al., 1998 54;834; Galve-Roperh et al., 2000 ; Demuth et al., 2006). 

 

1.8 Cellular effects of cannabinoids 

Cannabinoids can activate a variety of regulators of cellular function including ERK, c-jun  and 

p38 MAPK, AKT/PKB, PKA and ceramide (Wartmann et al., 1995; Liu et al., 2000; Rueda et 

al., 2000; Gomez del Pulgar et al., 2000; GalveRoperh et al., 2000). This evidence strongly 

suggests that cannabinoids can influence cellular behaviour. Indeed evidence already supports 

cannabinoid involvement in cell proliferation, apoptosis and cytoprotection. To date the vast 

majority of information regarding the influence of cannabinoids on cellular function has come 

from studies with neuronal cells or with cancer cell lines. 

 

1.8.1 Cannabinoids and apoptosis  

Cannabinoids have been shown to induce apoptosis in a wide variety of cancer cell lines 

(Reviewed in Guzman et al., 2002). Moreover, in one in vivo study, rats with malignant gliomas 

that were treated with Δ9-THC survived longer than control rats; in addition 20-35% of the 

animals demonstrated complete eradication of the tumours (Galve-Roperh et al., 2000; Sanchez 



   

et al., 2001). Investigations into the cellular mechanisms by which cannabinoids induce 

apoptosis have confirmed a role for sustained ceramide production and subsequent sustained 

activation of ERK; production of superoxide which resulted in activation of caspases 3; and 

raised intracellular Ca2+, inducing mitochondrial disruption, cytochrome C release, and 

activation of caspases (Galve-Roperh et al. 2000, Mimeault et al., 2003; reviewed in Guzman et 

al., 2002). For example in colorectal cancer cells Δ9-THC induced apoptosis through CB1 

receptor mediated inhibition of the Ras-MAPK pathway and  PI3K-Akt pathways (Greenhough 

et al., 2007). 

 

1.8.2 Cannabinoids and cell proliferation 

The effects of cannabinoids on cell proliferation are extremely complex and contradictory, with 

both antiproliferative and pro-proliferative effects being reported. In a human breast cancer cell 

line, AEA demonstrated an antiproliferative effect which was attributed to CB1 receptor 

mediated blockade of the G1-S transition phase, thought to be the result of decreased 

availability of PKA and sustained activation of the ERK signalling cascade (De Petrocellis et 

al., 1998; Melck et al., 1999). Similarly, anti proliferative effects of cannabinoids have been 

reported in other cell lines including prostate cancer cell lines (Mimeault et al., 2003, Reviewed 

in Bifulco et al., 2006; Guzman et al., 2002; Parolaro et al., 2002). In contrast to this, 

cannabinoids have also been shown to exhibit stimulatory effects on cell proliferation. For 

example Hart et al., 2004, demonstrated a stimulatory effect of AEA, HU-210 and WIN55,212-

2 on MAP kinase activity and Akt, they also  showed a direct stimulatory effect of Δ9-THC 

(nM) on DNA synthesis. This in is complete contradiction to previous findings where Δ9-THC 

was shown to induce cell death, however in those studies Δ9-THC was used at micromolar 

concentrations. Therefore this clearly indicates that cannabinoid concentration influences the 

cellular decision between proliferation and growth arrest. 

 

1.8.3 Cannabinoids and Migration 

The effects of cannabinoids on cell migration have been studied primarily in immune cells. An 

anti-inflammatory role for cannabinoids has been suggested since 1974, when it was discovered 

that Δ9-THC elicited an inhibitory effect on the migration of leukocytes (Schwartzfarb et al., 

1974). Low concentrations of Δ9-THC have also been shown to inhibit the migration of 

macrophages in response to monocyte chemoattractant protein-1 (Steffens et al., 2005). In 

contrast, studies investigating the endogenous cannabinoid 2-AG have shown it to induce the 



   

migration of human monocytic cells (Kishimoto et al., 2003) and microglia,  an effect that was 

abolished by an inhibitor of ERK phosphorylation and an antagonist of the putative abnormal 

cannabidiol receptor (Walter et al., 2003). 2-AG has also been shown to induce directional 

migration of B lymphocytes in a CB2 dependant manner (Jorda et al., 2002) and to regulate CB2 

mediated migration of myeloid leukaemia cells (Jorda et al., 2002). Intriguingly AEA does not 

share the pro-migratory profile of 2-AG. AEA only weakly stimulates migration of microglial 

cells and elicits only 20% of the migratory response produced by 2-AG in a leukaemia cell line 

(Walter et al., 2003; Jorda et al., 2002). The poor ability of AEA to stimulate immune cell 

migration has been attributed to the finding that AEA only weakly activates the CB2 receptor 

(Hillard et al., 1999). Interestingly 2-AG was found to have no effect on human neutrophil 

migration whereas both AEA and virodhamine (another endogenous cannabinoid) have both 

been shown to inhibit migration of these cells (McHugh et al., 2007). 

 

 

1.9 Cannabinoids and inflammation 

The anti-inflammatory effects of Δ9-THC have been recognised since the 1970s (reviewed in 

Berdyshev, 2000), since then the effects of cannabinoids on various individual immune cells 

have been studied intensively. Cannabinoid receptors have been located on a wide variety of 

immune cells, despite the presence of both CB receptors, the CB2 receptor is more highly 

expressed (reviewed in Croxford et al., 2005)  

Macrophages are pivotal in the inflammatory response, they are the first line of defence and are 

responsible for the release of inflammatory mediators such as NO, TNFα, Il-1 and IL-6. It has 

been shown both in vivo and in vitro that administration of cannabinoids can inhibit macrophage 

activation following inflammatory stimuli (reviewed in Berdyshev et al., 2000). An essential 

function of macrophages is to produce NO. It has been demonstrated that one mechanism by 

which cannabinoids can inhibit macrophages is through the inhibition of NO production. In a 

macrophage cell line cannabinoids inhibited LPS stimulated NO production a process which 

involved the CB2 receptor (Ross et al., 2000). The endogenous cannabinoid AEA was also 

shown to inhibit NO in a macrophage cell line, although interestingly it was found that 2-AG 

enhanced NO production, a finding attributed to 2-AG functioning as an arachidonic acid donor 

(Chang et al., 2001). Evidence also supports the idea that cannabinoids have an inhibitory effect 

on TNFα, Il-6 release and can inhibit phagocytosis (Reviewed in Croxford et al., 2005). 

Cannabinoids have also been shown to affect lymphocytes, AEA can inhibit both T and B cell 

proliferation and induce apoptosis (reviewed in Klein et al., 1998), however experiments have 

also shown that  the effect of cannabinoids on lymphocytes is complex and may depend on the 



   

concentration of the cannabinoid agent. For example, in human B cells, nM concentrations of 

CP55940, WIN55212-2, and Δ9-THC increased DNA synthesis (Derocq et al., 1995). T cells 

produce two groups of inflammatory cytokines the Th1 group (IFNγ, TNFα), and the Th2 group 

(IL-4, IL-5). Evidence conflicts as to the effects of cannabinoids on these cytokines, with 

studies showing both stimulatory and inhibitory effects (reviewed in Croxford et al., 2005; 

Klein et al., 2000). 

Similar contradictory effects are observed following cannabinoid treatment of 

polymorphonuclear neutrophils (PMNs). Kraft et al., 2004 reported that CP55940 (µM range) 

elicited a suppressive effect on stimulated PMNs resulting in reduced production of oxygen 

radicals as well as the recruitment of activated PMNs. This report implicated a mechanism of 

action independent of the CB receptors, the same study found a negligible role of AEA and 

meth-AEA on PMN’s. In contrast, a more recent study from the same group documented a 

stimulatory effect of meth-AEA and CP55940 when the concentration of these agents was in the 

nM region (Kraft et al., 2005).  

 

1.10 Cardiovascular effects of cannabinoids 

It is well established that cannabinoids can elicit functional effects on the cardiovascular system. 

Indeed, people who smoke marijuana most commonly develop peripheral vasodilatation and 

tachycardia, effects which culminate in an increase in peripheral blood flow, an increase in 

cardiac output, and changes in blood pressure (Hillard et al., 2000). In anaesthetised animals, 

administration of Δ9-THC produces a short pressor response followed by a long lasting 

hypotensive effect (reviewed in Hillard 2000). When AEA is applied to anaesthetised animals a 

triphasic response is observed: phase I, bradycardia with a short lasting hypotension, phase II, a 

vasopressor response, and phase III, a sustained hypotensive effect (Varga et al., 1995,1996). It 

was originally hypothesised that cannabinoids/endocannabinoids produced their effects on the 

cardiovascular system by acting centrally; however current evidence suggests that whereas 

some effects may be mediated centrally the majority result from actions on the peripheral 

nervous system and directly from the vasculature (Reviewed in Pacher et al., 2005; Hillard et 

al., 2000; Randall et al., 2002). Regarding the three phases of the AEA response, it is thought 

that the initial bradycardia and associated hypotension is vagally mediated, while the sustained 

hypotensive effect (phase III) has been attributed to peripheral CB1 receptor activation which is 

thought to induce presynaptic inhibition of sympathetic outflow (Varga et al., 1995,1996; Lake 

et al., 1997 Randall 2002). In contrast the pressor response (phase II) is not fully understood, 

although it has been shown to be independent of central, peripheral, and CB1 receptors (Varga 

et al., 1996; Lake et al., 1997) but may involve β2 adrenoreceptors and NMDA receptors 



   

(Kwolek et al., 2005). Whether or not AEA produces a triphasic response has been questioned, 

in contrast to studies performed in urethane-anaesthetised rats, rats under pentobarbitone 

anaesthesia lacked the phase II pressor response (Kwolek et al., 2005). To add further confusion 

to the in vivo effects of AEA, when AEA is administered to conscious animals quite different 

responses are observed and include a bradycardic response followed by a sustained pressor 

response that is unaffected by AM251 (Gardiner et al., 2002; Stein et al., 1996). In contrast, 

AEA administered to conscious mice produced an initial depressor response followed by a 

sustained hypotension, effects that were absent in CB1 knockout mice (Ledent et al., 1999). 

Despite the confusion and controversy over the effects of AEA in vivo, substantial evidence 

unarguably demonstrates that AEA  can act directly on the vasculature. Although there is 

consensus on the direct vascular effect of AEA, the underlying mechanism varies between 

species and even between vessels of the same species (Reviewed in Randall et al., 2004, 2002). 

The effects of AEA on the vasculature have been most extensively studied in the rat; using this 

one species as an example will highlight the variability in AEA responses. The rat mesenteric 

artery, coronary artery, aorta and hepatic artery (O’Sullivan et al., 2004; Zygmunt et al., 1999) 

all dilate in response to AEA; however the rat carotid artery does not respond (Holland et al., 

1999). The vasodilatory response also varies in magnitude between vessels, the rat coronary 

artery relaxes around 50% in response to AEA (Pratt et al., 1998; White et al., 2001) whereas 

the aorta undergoes a maximum relaxation of 20% (O’Sullivan et al., 2004). Further variability 

arises in the receptors involved in the AEA response, in the rat mesenteric artery vanilloid 

receptors are implicated, where as in the rat coronary artery and smaller mesenteric arteries a 

novel endothelial cannabinoid receptor is thought to be involved. Other factors which add to the 

complex pharmacology of the AEA response include endothelial dependence/independence, the 

production of active metabolites, and the involvement of ion channels (summarised in Table 

1.1). 

Aside from AEA other endocannabinoids have been shown to be vasoactive; 2-AG has been 

shown to relax mesenteric arterial segments through an endothelium independent mechanism 

(Kagota et al., 2001). Similarly, virodhamine has been shown to relax the small mesenteric 

artery of the rat, it is believed to activate the putative endothelial CBx/anandamide receptor (Ho 

et al., 2004).  

These extensive research findings characterising the effects of AEA on the vasculature raise the 

question as to the physio/pathological purpose of endocannabinoids in the vasculature. One area 

that has received substantial attention is that endocannabinoids may be produced to combat 

shock. In a rat model of haemorrhagic shock it was found that activated macrophages produced 



   

Artery Is AEA a 
vasodilator 

Endothelium 
dependant 

CB1 receptor 
mediated 

Vanilloid 
receptor 
mediated 

Due to 
production of 
metabolites 

Involves 
other 

mechanism 

Reference 

Rat aorta Yes No No No No - O’Sullivan et al., 2005 

Rat Superior 
mesenteric 

Yes No Yes Yes No - O’Sullivan et al., 2004 

Rat mesenteric 
resistance artery 

Yes Yes Yes Yes No Yes O’Sullivan et al., 2004 

Zygmunt et al., 1999 

Rat carotid artery No No No No No - Holland et al., 1999 

Rat coronary artery Yes No No No No Yes White et al., 2001 

Rat hepatic artery Yes No No Yes No - Zygmunt et al., 1999 

Sheep coronary artery Yes Partial No No Yes Yes Grainger et al., 2001 

Rabbit aorta Yes Partial Possible Partial - Yes Mukhopadhyay et al., 2002 

Bovine coronary Yes Yes No No Yes - Pratt et al., 1998 

 

Table 1.1 Summarises a selection of studies that have investigated the effects of AEA on isolated vessels in different species, highlighting the variability 

between species and vessel. 
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AEA. A similar finding was also observed following endotoxic shock where the synthesis of 2-

AG in platelets was increased (Wagner et al., 1997; Varga et al., 1998). These findings have 

been confirmed in human plasma samples, where it was found that plasma concentrations of 

both AEA and 2-AG were increased (Wang et al., 2001). Whereas it is speculated that 

endocannabinoids may have a protective role in conditions of shock, in liver cirrhosis 

endocannabinoids are thought to have a negative effect. It has been shown that the 

vasodilatation observed in liver cirrhosis can be inhibited by a CB1 antagonist, CB1 receptor 

expression on endothelial cells was also found to be increased (Batkai et al., 2001). 

Endogenous cannabinoid concentration is increased during myocardial infarction (Wagner et 

al., 2001). It has been found that CB1 antagonism promoted left ventricular remodelling in rats 

that had suffered experimentally induced myocardial infarction (Wagner et al., 2003). CB1 

antagonism also resulted in worsening of endothelial function (Wagner et al., 2001) suggesting 

that endocannabinoids may play a protective role following myocardial infarction. 

 

1.10.1 Cannabinoids and atherosclerosis 

Cannabinoids have been shown to influence the progression of atherosclerosis. In 2005 Steffens 

et al demonstrated that oral administration of Δ9-THC significantly reduced atherosclerotic 

plaque progression in ApoE-/- mice. Investigations revealed that this effect was due to CB2 

receptor mediated immunomodulatory effects on lymphoid and myeloid cells.  This same study 

also showed the CB2 receptor to be present in human and mouse atheroma, interestingly CB2 

receptors were not present in healthy arteries and the CB1 receptor was not present in either 

diseased or healthy arteries. A CB1 receptor antagonist has also been shown effective in limiting 

atherosclerosis. In LDLR-/- mice rimonabant (SR141716A) exhibited a dose dependant 

inhibitory effect on atherosclerosis, an effect that was ascribed to cholesterol lowering and anti-

inflammatory properties of rimonabant (Dol-Gleizes et al., 2008). Another study confirmed a 

role of endocannabinoids in coronary artery disease, endocannabinoid concentrations were 

found to be increased in blood samples of patients with coronary artery disease, CB1 receptor 

expression was increased in coronary atheroma and similarly anti-inflammatory effects of CB1 

blockade were observed (Sugamura et al., 2008). The STRADIVARIUS clinical trial aimed to 

investigate the effectiveness of rimonabant on progression of coronary disease in patients with 

abdominal obesity and metabolic syndrome. The findings obtained in this trial revealed some 

favourable properties of rimonabant but the overall outcome was a non significant effect on 

percent atheroma volume (Nissen et al., 2008). Therefore it can be seen that manipulation of the 

endocannabinoid system may be beneficial in the treatment of atherosclerosis, however further 



42 

development of agents that are devoid of adverse psychiatric effects would be required before 

these could be used again therapeutically. 

1.11 Hypothesis 

The development of restenosis following balloon angioplasty or insertion of a stent is a result of 

the combined effects of three key processes, increased smooth muscle cell proliferation, 

increased cell migration and the induction of an inflammatory response. It can be clearly seen 

from the literature that cannabinoid agents have the potential to influence all three of these 

fundamental processes. Cannabinoids have already been shown to limit atherosclerosis through 

their immunomodulatory effects (Steffens et al., 2005), and also to inhibit stimulated smooth 

muscle cell proliferation in vitro (Rajesh et al., 2008). What remains to be elucidated is the 

functional role of the endocannabinoid system in this disease. It has been well documented that 

endocannabinoid concentration increases in pathological conditions (Di Marzo 2008), however 

this has not been investigated in restenosis. If an increase in concentration were to occur, then 

understanding the functional effects of the endogenous cannabinoids (i.e. establishing if they 

exhibit negative or positive effects on disease progression) would be imperative to unmasking 

the potential of modulating the cannabinoid system for therapeutic gains, in terms of restenosis. 

 

1.11.1 Objectives 

The aim of this project was to investigate the role of the endogenous cannabinoids, AEA and 2-

AG in the processes involved in a murine in vitro model of neointimal formation. The specific 

objectives were to 

 develop a murine organ culture model of neointimal formation that would permit the 

investigation of endogenous cannabinoid concentration and allow the effects of 

cannabinoid agents on neointimal formation to be determined; 

 establish a primary cell line of murine aortic smooth muscle cells; 

 investigate the effect of AEA on murine vasculature and identify its mechanism of 

action; 

 investigate the effects of cannabinoid agents on two indicators of cell proliferation, 

ERK1/2 phosphorylation and BrdU incorporation; 

 establish the effect cannabinoid agents have on smooth muscle cell migration. 
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2.1 Animals 

All mice were obtained as required from the Medical Research Facility (MRF) at Aberdeen 

University. Mice were either humanely euthanized within the MRF by CO2 asphyxiation or 

cervical dislocation, or transported to Robert Gordon University (RGU) and kept in the holding 

facility until euthanasia by a schedule 1 method. 

 

2.2 Small vessel myography 

C57/B16J mice of either sex were euthanized by CO2 asphyxiation and the aorta and carotid 

arteries dissected out (illustrated in Figure 2.1). The vessels were cleared of adherent tissue and 

placed in a Krebs solution of the following composition (mM):NaCl 118.4, NaHCO3 25, 

Glucose 11, KCL 4.7, KH2PO4 1.2, MgSO4 1.2, and CaCL2 2.5. The arteries were then cut into 

rings of less than 2mm in length and mounted on to an Auto Dual Wire Myograph System 

model 510A (Danish Myograph Technology; Figure 2.2).  

The mounting procedure involved insertion of two intra-luminal wires (40μm) which were then 

secured to the jaw heads by tightening the wire underneath the screws. The jaws in turn were 

connected to a force transducer which had been calibrated (prior to vessel mounting) as detailed 

in the manual. 

The myograph baths (5ml) were filled with Krebs solution, aerated (20% O2/5% CO2 ) and 

maintained at 37ºC. Once successfully mounted the vessels then underwent the classic 

normalisation procedure using the DMT Normalisation module (detailed in Chapter 3.3.1) to 

determine optimum resting tension (Danish Myo Technology 2003). Upon completion of this 

process the vessels were then left to equilibrate for 1hour, after which time they were sensitised 

by repeat (routinely 3-4) additions of 80mM KCl until consistent responses were obtained, the 

baths being washed out with fresh Krebs solution between each addition. The vessels were then 

left for between 30 and 45 minutes before experimentation began and subsequently between 

each experiment to allow time for the vessels to recover. 

 

 

 

 

 



 

 

 

 

 

Carotid Artery 

Thoracic Aorta 

 

Figure 2.1 A schematic diagram illustrating the location of the murine carotid artery and 

thoracic aorta. 
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Steel wire 

Arterial segment 

Myograph Jaws 

Figure 2.2 A schematic diagram of a mounted vessel segment for the Myograph 510A.  The 

example shows an arterial segment mounted between two jaws secured with 40μm steel wire. 

Image adapted from M.J.Mulvany 2004. 

 

2.3 Histological Staining 

2.3.1 Fixing and tissue embedding 

Mouse aortas were dissected and cut into rings as described above. The rings were submersed in 

10% neutral buffered formalin for 2 days then transferred to phosphate buffered saline (PBS) 

until required. To begin the fixation process the aortic samples were placed in cassettes 

(Shandon microsette biopsy cassettes) then processed using an auto processor (Citadel 1000, 

Thermo Shandon, Cheshire, UK) through alcohol solutions, histosolve and paraffin wax as 

follows: 

1.Alcohol (100%)    2 hours  

2.Alcohol (100%)    2 hours  

3.Alcohol/histosolve (50:50)   1 hour  

4.Histosolve (100%)    1 hour  

5.Histosolve (100%)    1 hour 

42 
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6.Paraffin wax     2 hours  

7.Paraffin wax     2 hours 

 

Following this procedure the tissue was embedded in paraffin wax with the aid of a tissue 

embedding system (Histocentre 2, Thermo Shandon, Cheshire, UK). The resulting wax blocks 

were then cut into 5μm sections using a microtome (Finesse 325, Thermo Shandon). The wax 

sections were then floated out in a water bath (Thermo Shandon, Cheshire, UK) at 50ºC and 

mounted on either basic glass slides (for standard histological staining) or polysine slides (for 

immunohistochemical staining). The slides were then placed in a section dryer (Thermo 

Shandon) for 2 hours at 70ºC  after which they were either stored for future use or allowed to 

cool to room temperature for immediate staining. 

 

2.3.2.Haematoxylin and Eosin staining 

Haematoxylin and Eosin are stains used to highlight the morphology of tissue sections; 

haematoxylin stains the nuclei of the cells blue where as the eosin stains the cytoplasm and 

other cellular areas red. To ensure consistency of staining, slides were stained using an 

autostainer (Varistain Thermo Shandon, Cheshire, UK) programmed with the following 

protocol. 

1. Histoclear   5 mins 

2. Histoclear   2 mins 

3. Histoclear   2 mins 

4. Absolute Alcohol  5 mins 

5. Absolute Alcohol  4 mins 

6. 70% Alcohol   3 mins 

7. Distilled Water   1 min 

8. Haematoxylin   1 min 

9. Distilled Water  2 min 

10.0.5% Acid Alcohol  1 min 

11.Distilled Water   2 min 

12.STWS   2 min 

13.Distilled Water  2 min 

14.Eosin   30 secs 

15.Distilled Water  2 mins 

16.Absolute Alcohol  2 mins 
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17.Absolute Alcohol  2 mins 

18 Absolute Alcohol  2 mins 

19.Histoclear   3 mins 

20.Histoclear   3 mins 

21.Histoclear   3 mins 

22.Histoclear   3 mins 

 

Upon completion of the staining process cover slips were applied using a Xylene substitute 

mountant (Thermo Shandon, Cheshire, UK) and left to air dry. Tissue analysis was performed 

using a Leica DMLB light microscope (Leica Microsystems, Bucks, UK). For analysis of tissue 

area, micrographs of the sections were taken using the Leica DC150 camera (Leica 

Microsystems, Bucks, UK) utilising the Leica QWin software. The micrographs were then 

analysed using ImageJ software which allowed calculation of specific areas of the cross section 

of blood vessel. 

2.3.3 Massons Trichrome staining protocol 

Massons trichrome is a stain that enables the differentiation between the cellular matter and 

connective tissue present in a section. Successful use of this stain results in cell nuclei appearing 

a blue/black colour, the cytoplasm staining red, and collagen staining blue. 

1. Histoclear       5 min 

2. Histoclear       2 min 

3. Histoclear       2 min 

4. Absolute Alcohol      5 min 

5. Absolute Alcohol      4 min 

6. 70% Alcohol       3 min 

7. Distilled Water       1 min 

8. Biebrich scarlet acid fuchsin solution      2 min 

9. Distilled water                                                 1 min 

9. Distilled Water         1 min 

10. phosphomolybdic-phosphotungstic acid solution   5 min 

11. Aniline Blue Solution      1 min 

12. Distilled water       1 min 

13. Acetic acid        2 min 

14. Distilled water       1 min 

16.Absolute Alcohol      2 min 

17.Absolute Alcohol      2 min 
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18 Absolute Alcohol      2 min 

19.Histoclear       3 min 

20.Histoclear       3 min 

21.Histoclear       3 min 

22.Histoclear       3 min 

 

2.4 Immunohistochemical Staining 

2.4.1 The Avidin-Biotin complex/ alkaline phosphatase (ABC/AP) procedure 

The ABC/AP method is a procedure that allows the detection of specific antigens through light 

microscopy. The method is based on the high affinity that streptavidin has for a biotinylated 

secondary antibody which is directed against the primary antibody. The streptavidin has alkaline 

phosphotase attached to it which functions as an enzymatic label; this acts on a chromagenic 

substrate (the fast red solution) to produce a red colour which allows clear visualisation of the 

antigen of interest. This process is summarised in Figure 2.3. 
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Figure 2.3. Schematic diagram demonstrating the streptavidin- biotin enzyme complex 

reacting with a biotinylated secondary antibody (adapted from Immunochemical Staining 

Methods Handbook, 3rd edition Dako Corporation) 
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2.4.2 Basic staining protocol 

Sections were processed and cut as previously described in section 2.3.1, they were then 

deparaffinized and re-hydrated through histosolve and alcohol solutions. 

 

1. Histoclear     5 mins 

2. Histoclear     2 mins 

3. Histoclear     2 mins 

4. Absolute Alcohol    5 mins 

5. Absolute Alcohol    4 mins 

6. 70% Alcohol     3 mins 

7. Distilled Water     1 min 

 

1 Litre of PBS was heated in the microwave until boiling (12 minutes) in a pressure cooker 

without the lid. The slides were then placed in the pressure cooker and heated on full power for 

6 minutes to enable antigen unmasking. The pressure cooker was left to cool before being 

opened, and the slides subsequently cooled with tap water and placed in PBS for 5 minutes. Non 

specific binding of the antibody was prevented by blocking the sections with 5% goat serum 

(Biosourse), this was left for 20 minutes blotted then washed in PBS for 5 minutes. The primary 

antibody was then added to the sections at the appropriate dilution (see relevant chapter) and 

incubated in a humidifying chamber at 4ºC overnight. The following day the slides were then 

washed in PBS twice each time for 5 minutes. The secondary antibody, biotinylated goat anti- 

rabbit (Dako) was diluted to 1:200 in PBS; this was then added to the sections and incubated in 

the humidifying chamber at room temperature for 30 minutes. The secondary antibody was then 

blotted and washed in PBS for 3 x 10 minutes. The strepavidin alkaline phosphatase solution 

(Zymed)  was then prepared at a 1:300 dilution using PBS and applied to the sections for 30 

minutes; the slides were then washed in PBS for 3 x 10 minutes. The fast red solution was 

prepared in veronyl acetate buffer and added to the slides for between 2-3 minutes (until a red 

colour could be observed), the slides were then rinsed in PBS left to dry then cover-slips were 

applied using immunomount (Thermo Shandon UK). 
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2.4.3 Primary vascular smooth muscle cell extraction from murine aortic rings 

C57/B16J mice of either sex were euthanized by cervical dislocation, sprayed with ethanol and 

the aorta’s were dissected and cleared of adherent tissue using sterile technique. The vessels 

were placed in a 6 well plate containing 3ml of sterile medium composed of 42% Waymouths, 

42% Hams F-12, 1% penicillin streptomycin, 15% foetal bovine serum (FBS), 0.05% fungizone 

and transferred to the laminar flow hood (Bioair Instruments). The vessels were then cut into 

sections and cleaned gently using a syringe containing media to remove remaining blood from 

the lumen. The segments were then transferred to a sterile 6 well plate containing 3ml of 

medium and placed in a 5% CO2  Galaxy S incubator (Wolf Laboratories). The vessel segments 

were maintained in culture for 14 days with the medium being aspirated and replaced every 

alternate day. The aortic sections were removed from culture and fixed in 10% neutral buffered 

formalin for subsequent histological analysis as previously described in section 2.3.1. During 

the 14 day period vascular smooth muscle cells (VSMC) migrate from the vessel and adhere to 

the plate surface; once the tissue ex-plant was removed the cells were left to grow until they 

reached 90% confluence, again with medium changes every alternate day. 

 

2.4.4 Passage of vascular smooth muscle cells 

Once cells had reached confluence the monolayer was rinsed in warm sterile PBS to remove all 

traces of medium. The cells were then removed from their container by addition of undiluted 

accutase solution (for volume see Table 2.1) which was left to incubate for 10 minutes; gentle 

shaking ensured complete removal of cells. The cell solution was then poured into a sterile 

universal tube and added to 3ml of medium to neutralise enzymatic action. The universal tube 

was then centrifuged for 6 minutes at 13000 rpm to produce a pellet; this was then re-suspended 

in 1ml of medium. Once the pellet was completely resuspended the 1ml cell suspension was 

routinely divided into two 500μl aliquots into flasks to which the appropriate volume of medium 

was added (Table 2.2). 
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Container Volume of 

Accutase 

6 well plate 1ml 

25cm2 flask 3ml 

75cm2 flask 5ml 

 

Table 2.1 indicates the volume of accutase solution required for complete removal of a cell 

monolayer in various containers. 

 

Container Volume of 
media 

6 well plate 3ml 

25cm2 flask 6ml 

75cm2 flask 15ml 

 

Table 2.2 indicates the volume of medium required for each container. 

2.4.5 Sub culture of VSMC in chamber slides 

Cells were passaged as described above; once the pellet was re-suspended a cell count was 

performed to estimate the number of cells present per ml of medium. 20 μl of the cell 

suspension was added to 20 μl of Trypan blue solution (Gibco), after 2 minutes (sufficient time 

to enable the dye to penetrate any non-viable cells) a small volume was pippeted onto the edge 

of the coverslip on the haemocytometer.  Capillary action enabled the solution to completely 

cover the area of the grid. Using a microscope to visualise the grid, the number of viable cells 

were counted in the 25 squares contained within the large central square. The number of cells 

was calculated by the following equation. 

 

Number of cells/ml = Number of cells in large square X Dilution Factor X 10000 

 

The cell suspension was then diluted accordingly so that approximately 10000 cells were seeded 

onto each well of the 8 well chamber slide (Lab Tek II Nunc) to which 300l of media was 

added. 
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To optimise antibody dilutions for the CB1 and CB2 receptors, CB2 transfected Chinese hamster 

ovary (CHO) cells, provided as a gift from Aberdeen University, were used.  Sub culture of 

CHO cells into chamber slides employed the same method as described previously only 

differing in medium composition, 500ml Hams F12 (Gibco) 50ml FBS 3ml of Penicillin 

streptomycin  and 4ml of Geniticin (G418). 

2.4.6 Immunocytochemical Staining 

Once the cells had reached 80~90% confluence the chamber slides were removed from the 

incubator and the medium removed by blotting. The plastic wells were then removed from the 

slides following the manufacturer’s instructions and the key provided. The slides were left to air 

dry for 1-2 hours then fixed in 4% paraformaldehyde for 30 minutes in a fume hood; they were 

then left to air dry on the bench for another 10 minutes. Once the slides were dry the wells were 

delineated using a wax pen then washed in PBS for 5 minutes. The following stages apply the 

same principles as described in section 2.3.1. Unspecific binding was inhibited by blocking with 

5% goat serum for 20 minutes, this was then blotted and the slides washed in PBS for 5 

minutes. The primary antibody (for specific antibody see relevant chapter) was then added at the 

appropriate dilution and incubated in a humidifying chamber at 4ºC overnight. The following 

day the slides were then washed in PBS twice each time for 5 minutes. The secondary antibody 

biotinylated goat anti- rabbit was diluted to 1:200 in PBS; this was then added to the sections 

and incubated in the humidifying chamber at room temperature for 30 minutes. The secondary 

antibody was then blotted and washed in PBS 3 x 10 minutes. The strepavidin alkaline 

phosphotase solution was then prepared at a 1:300 dilution using PBS and applied to the 

sections for 30 minutes; the slides were then washed in PBS for 3 x 10 minutes. The fast red 

solution was prepared in veronyl acetate buffer and added to the slides for between 2-3 minutes 

(until a red colour could be observed); the slides were then rinsed in PBS. The slides were then 

allowed to air dry before being mounted using Immu-mount (Thermo Shandon) and applying a 

cover slip.  

2.5 Cell proliferation studies 

2.5.1  Bradford Assay 

The protein concentration of samples was quantified using the Bradford Assay, the principle of 

which compares solutions of known concentration of protein ( bovine serum albumin BSA) to 

unknown samples (Table 2.3). A 1mg/ml solution of BSA was prepared by dissolving 100 mg 

of albumin bovine in approximately 70ml distilled water; this was then made up to 100ml with 
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distilled water when fully dissolved. The protein solution was then aliquoted and stored at -20ºC 

for future use. 

 

Standard Concentration 

(mg/ml) 

Volume of BSA 1mg/ml (μl) Volume of distilled water 

(μl) 

0 0 30 

0.2 6 24 

0.4 12 18 

0.6 18 12 

0.8 24 6 

1 30 0 

 

Table 2.3 Shows the Dilutions of BSA standards required for use in the Bradford assay. 

The Bradford reagent was made by dissolving 100mg Coomassie brilliant blue G-250  in 50ml 

95% ethanol, with 100ml 85% (weight/ volume) phosphoric acid. This was diluted to 1 litre 

with distilled water when the dye had completely dissolved. The solution was then filtered using 

Whatman No.1 filter paper and stored at room temperature in a dark coloured bottle. 

10μl of each sample was added to a 96 well microtitre plate in duplicate (leaving the first row 

blank); 200μl of Bradford reagent was then added to the blank first row and to each sample and 

standard on the plate producing a colour change from brown to blue. Samples were then read on 

a colorimetric plate reader (Bio-tec) at 595nm. 

2.5.2 Measurement of ERK1/2 phosphorylation in smooth muscle cells by ELISA. 

ELISA kits (DuoSet IC phospho ERK and Total ERK) were purchased from R and D systems. 

The protocols used were adapted from the accompanying protocol leaflet. The protocols 

described here are the final protocols employed for all assays based on results from preliminary 

studies, where cells were incubated for various times and at different stimulant concentrations to 

determine the optimum experimental conditions, outlined in Chapter 5. 

 

The principle of the ERK1/2 ELISA utilises a capture antibody that targets both phosphorylated 

and non phosphorylated MAP kinase, a biotinylated detection antibody then recognises only 

phosphorylated ERK1/2 for the Phospho- ERK1/2 ELISA or all ERK1/2 present for the total 
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ERK1/2 ELISA. The concentration of ERK1/2 was quantified by comparison to standards of 

known ERK1/2 concentration. An example of a standard curve used in this assay and details on 

how data was expressed is detailed in Chapter 5. 

2.5.3 Cell extraction and lysis  

Cells were grown in 75cm2 flasks till they were 80-90% confluent, the cells were then quiesced 

for 24hrs in medium containing 1% penicillin streptomycin  0.3% serum.  Drug or vehicle was 

added to the quiesced cells and incubated for 20 minutes; the cells were then stimulated with 

30ng/ml PDGF-AB and incubated for a further 15 minutes.  The medium was poured off and 

the monolayer rinsed three times in ice cold PBS. To extract the cells from the flask the 

monolayer was scraped into 1ml of PBS, the suspension was centrifuged for 8 minutes at 

10,000rpm and the supernatant discarded. Cell pellets were then lysed directly by adding 100μl 

of lysis buffer #6 (detailed in materials section 2.9.2) gently vortexed then left on ice for 15 

minutes, the lysate was then either used directly in the assay or stored at -80ºC for future use. 

2.5.4 Sample Preparation 

Samples were allowed to defrost thoroughly at room temperature and then centrifuged at 

2000rpm for 5 minutes and the supernatant transferred to a clean tube. To ensure comparable 

results the amount of protein in each sample was quantified using the Bradford assay (described 

in section 2.5.1); the samples were then diluted 6 fold in IC diluent #8 in preparation for the 

assay. 

 

2.5.5 Phosph ERK ELISA protocol 

2.5.5.1 Plate preparation 

The capture antibody was diluted to a working concentration of 4 μg/ml in PBS and 100 μl 

immediately added to each well of a 96 well microplate (Nunc). The plate was then sealed and 

incubated overnight at room temperature. The following day each well was thoroughly aspirated 

3 times with wash buffer using a 20ml syringe. It was essential to ensure complete removal of 

liquid at each step to optimise the experiment; this was done by inverting the plate and blotting 

it against a clean paper towel. Non specific binding of antibody was prevented by addition of 

300µl of block buffer to each well; the plate was then sealed and incubated at room temperature 

for 1-2 hours. 
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The plate was then washed 3 times as described above. 

2.5.5.2 Assay Procedure 

100 µl of sample or standards in IC Diluent#3 (for preparation see materials section 2.9.2) were 

added to the wells; the first row of the plate contained only IC#3 to serve as a blank control (an 

example of plate layout is shown in chapter 5). The plate was then sealed and left to incubate for 

1 hour at room temperature. The plate was then thoroughly aspirated as detailed above. 

 

The detection antibody was diluted to a working concentration of 0.5μg/ml in IC#1 

(supplemented with 2% heat inactivated goat serum and prepared 1-2 hours prior to use), 100μl 

of this antibody was then added to each well. The plate was then sealed and incubated at room 

temperature for 2 hours then washed as detailed above. Prior to use, the streptavidin-HRP was 

diluted to the concentration indicated on the vial using IC Diluent #1. 100μl of this solution was 

then added to each well; the plate was sealed and incubated for 20 minutes at room temperature 

then washed as described above.  100μl of substrate solution was then added to each well and 

incubated for 20 minutes at room temperature avoiding direct sun light, 50μl of stop solution 

was added to each well the plate; gently tapping ensured thorough mixing. The optical density 

of each well was determined immediately using a microplate reader set to 450nm with 

wavelength correction set to 540nm, an example of a standard curve produced and details on 

data expression can be found in chapter 4. 

2.5.6 Total ERK ELISA 

Samples were prepared in the same way as detailed in section 2.6.2.The principle of the assay 

was the same as for the phosphorylated ERK ELISA described above the only difference being 

the biotinylated detection antibody detects both phosphorylated and non phosphorylated ERK. 

Diluents and lysis buffers were the same as used in the phospho ERK ELISA as detailed in 

materials section 2.9. 

2.5.6.1 Plate Preparation 

The capture antibody was diluted to a working concentration of 1 μg/ml in PBS this was then 

used to coat the plate by adding 100 μl to each well, the plate was then sealed and left to 

incubate overnight at room temperature. The remainder of the plate preparation process is as 

described in section 2.5.5.1.  
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2.5.6.2 Assay Protocol 

 100μl of either sample or standard was added to the desired well, the first row contained only 

100 μl of IC#3. The plate was then sealed and left to incubate at room temperature for 2 hours. 

The plate was washed as described above The detection antibody was diluted to a working 

concentration of 0.5μg/ml in IC#1, 100 μl of this solution was then added to each well, the plate 

was then sealed and incubated at room temperature for 2 hours. The plate was then washed as 

described above. Streptavidin –HRP was diluted to the working concentration specified on the 

label using IC#1, 100 μl of this solution was then added to each well and incubated for 20 

minutes avoiding direct light. The plate was then washed as previously described. 100μl of 

substrate solution was added to each well this was then left to incubate for 20 minutes at room 

temperature again avoiding direct light. 50 μl of stop solution was added to each well, the plate 

was gently tapped to ensure complete mixing. The optical density of each well was determined 

immediately by using a microplate reader set to 450nm with wavelength correction set to 

540nm. 

2.5.7  Determination of DNA synthesis using the BrdU assay 

The BrdU assay is an effective non radioactive method to measure cellular proliferation by 

monitoring DNA synthesis. 5-bromo-2-deoxyuridine (BrdU) is a pyrimidine analogue that 

replaces thymidine and becomes incorporated into DNA at the synthesis stage; the incorporated 

BrdU is then measured by immunoassay. BrdU kits which included BrdU labelling solution, 

FixDenat, Anti-BrdU-POD, antibody dilution solution, washing buffer and substrate solution 

were purchased from Roche. The following protocol was developed from that provided in the 

instruction manual that accompanied the kit. Details of the solutions used in this assay can be 

found in the materials section 2.9.5. The protocol described is the final protocol determined 

from preliminary experiments to determine the optimum concentration and incubation time of 

the BrdU (detailed in Chapter 5). 

 

2.5.7.1 Cell preparation 

Cells were grown to 80-90% confluence in 75cm3 flasks then seeded at the appropriate cell 

number (as detailed in Chapter 5) in 100μl of normal medium into a tissue culture grade flat 

bottomed 96 well plate (for method see Section 2.4.3). The cells were returned to the incubator 

for 6 hours to allow them time to adhere and grow. Following this the cells were then quiesced, 

the medium was removed from the plate by tapping and was replaced with 100μl of medium 

containing 0.3% serum 1%, penicillin streptomycin the plate was then returned to the incubator 
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overnight. A blank control was included in each experiment; a background control was 

performed only once. For details of the requirements for each control see Table 2.4 

 

2.5.7.2 Cell stimulation and assay protocol 

The quiesced cells were incubated for 15 minutes with drug then stimulated for 24 hours with 

the appropriate concentration of PDGF. After 24hr the medium was supplemented with 10μl 

BrdU labelling solution (for dilution see materials section 2.9.5) and left for a further 24hrs. At 

the end of this period the medium was then tapped off. Once the plate was dry, 200μl of 

Fixdenat solution was added to each well for 30min to allow the denaturing of the DNA which 

facilitated access of the antibody to the incorporated BrdU. The Fixdenat solution was removed 

by tapping and blotting to ensure complete removal of liquid and 100μl of the anti BrdU –POD 

solution ( materials section 2.9.5) was added to each well for 90minutes. Following this 

incubation, each well was washed 3 times with the wash buffer provided in the kit (for dilution 

see materials section) then 100μl of chromagenic substrate solution was added to each well and 

incubated for 20 minutes avoiding direct sun light. Once the colour had developed the reaction 

was then stopped by adding 25μl of 1M H2SO4 . The absorbances were immediately read 

(within 5 minutes) on a plate reader at 450nm with reference wavelength 690nm. 

 

Well Contents Blank Background control 

Culture Medium 100μl - 

Cells - 100μl 

BrdU 10μl - 

Anti-BrdU-POD 100μl 100μl 

 

Table 2.4 Composition of controls performed in the BrdU assay. 

 

2.6 Measurement of cell viability by MTT assay 

To ensure that the drugs employed in the cell proliferation studies were having a genuine effect 

on proliferation and not inducing cytotoxicity, cell viability was measured by the MTT assay. 

To ensure comparable results with the BrdU assay cells were seeded and quiesced in the exact 

same way as detailed in section 2.5.7.1. Cells were then treated with the appropriate 

concentration of drug (detailed in chapter 5) and left to incubate at 37°C 5% CO2 for either 24 

or 48 hours. To enable % cell viability to be calculated a negative control of cells treated with 
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triton X and a positive control of healthy cells containing medium were required. Details on 

data calculation can be found in Chapter 5. 

 

Following incubation with drug, 50μl of MTT solution was then added to each well (taking care 

not to expose the solution to light), the plates were then wrapped in tinfoil to avoid light 

exposure and incubated for 4 hours at 37°C 5 % CO2. The solution was then removed from the 

wells using a multi channel pipette ensuring complete removal of liquid; at this stage purple 

crystals were visible on the bottom of the wells. 200μl of DMSO was then added to each well to 

dissolve the crystals and produce a purple coloured solution in wells that contained viable cells; 

the wells that contained triton x remained clear. 25μl of glycine buffer was then added to each 

well and the plate was then read at 570nm. 

 

2.7 Cell migration studies 

A 48 well chemotaxis chamber (AP48 Neuroprobe) was used to investigate the effects of 

cannabinoids on cell migration. The chemotaxis chamber is composed of 3 sections, the lower 

wells which contain the chemoattractant, the silicon gasket, and the upper wells (Figure 2.4) 

which contain the cells. The chamber is assembled as illustrated in Figure 2.5 with the upper 

and lower wells being separated by a Polycarbonate track-etch (PCTE) membranes with a pore 

size of 8µm (Neuroprobe). The principal behind the assay is that the cells in the upper wells 

migrate towards the chemoatractant solution in the lower wells across the filter. Cells that 

migrate across the filter and adhere are stained and counted. 

 

2.7.1 Preparation of cells for the chemotaxis chamber  

Cells were grown to 90% confluence in 75cm2 flasks as previously described; they were 

quiesced overnight in medium containing 0.3% serum 1% penicillin streptomycin then removed 

from the flask using accutase solution as detailed in section 2.4.4. The cells were counted as 

previously described and re-suspended in a 1.5ml tube at the appropriate density (as determined 

from optimising experiments detailed in chapter 6) in medium containing 0.3% serum 1% 

penicillin streptomycin. 
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Figure 2.4. The components of the 48 well chemotaxis chamber. 
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Figure 2.5. An example of the assembled chemotaxis chamber. 
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2.7.2 Preparation of the chamber 

The polycarbonate filter was carefully removed from its box; with the shiny side facing 

downwards, a small notch was cut in the top left hand corner. The filter was 

then placed in a Petri dish containing a 0.2% gelatine solution and left for 30minutes at room 

temperature; the filter was then turned over and left for a further 30minutes. Once the filter was 

coated it was held in warmed PBS until time for use. 

 

A chemoattractant solution of 30ng/ml of PDGF-BB was made up in serum free medium and 

warmed to 37ºC.  The solution was gently vortexed before 26.5µl was added to each of the 

lower wells, except for those wells that were to be used as un-stimulated controls, which 

contained only warmed serum free medium. With the lower wells filled, the filter was removed 

from the PBS (with the excess PBS being allowed to drip off) and, with the shiny side facing 

downwards (with the notched corner at the top left of the chamber), the filter was placed on top 

of the lower wells. The silicon gasket was then placed on top of the filter (again with the 

notched corner on the top left), the upper wells placed on top of the gasket, and the chamber 

secured using the screws.  50µl of the cell suspensions (described above 2.7.1) were then added 

to the upper wells, the chamber placed inside a humidifying chamber (to prevent evaporation) 

and then incubated for 3 hours at 37ºC and 5% CO2. 

 

2.7.3 Removal of un-migrated cells and cell fixation 

To remove the filter from the chamber the screws were loosened and then the chamber turned 

upside down. When the bottom wells were removed the filter was stuck to the gasket with the 

migrated cells facing upwards (with the notched corner now on the top right hand corner). 

Using curved forceps the right end of the filter was carefully attached to a large filter clamp 

(Neuroprobe accessory kit), the filter was then lifted by the clamp and a smaller filter clamp was 

attached to the bottom edge. With the migrated cell side still facing upwards the underside (non-

migrated cell side) of the filter was dipped in a dish containing PBS (ensuring that PBS did not 

wash over the cell side of the filter). Holding the filter by the large clamp, with the small clamp 

attached to the other end freely hanging, the non-migrated cell side of the filter was wiped by 

running the filter over a wiper blade (Neuroprobe accessory kit) which was attached to a clamp 

stand. This was repeated 4 times with the un-migrated side of the filter being dipped in PBS 

between each wipe. The wiper blade was also cleaned between each wipe with a PBS soaked 

swab. This process was performed quickly to prevent the drying of un-migrated cells as this 

would prevent complete removal. Once the un migrated cells were removed the filter was then 

completely immersed in 100% methanol for 7 minutes then left to air dry. 
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2.7.4 Staining of filter 

Once the filter was completely dry the filter was stained using a modified H and E protocol 

(detailed below) to enable visualisation of cells to permit quantification. 

1. Distilled Water    1 min 

2. Haematoxylin    5 min 

3. Distilled Water   2 min 

4. 0.5% Acid Alcohol   1 min 

5. Distilled Water    2 min 

6. STWS    2 min 

7. Distilled Water   2 min 

8 .Eosin   15 secs 

9. Distilled Water   2 min 

10. Haematoxylin                     5 min 

11. Distilled water                     1 min 

 

The filter was then cut in half (as the filter was too large to fit whole on a slide) and mounted 

onto a slide using Shandon xylene substitute mountant (Thermo Scientific) and a coverslip was 

added (22x50mm). Cells were counted as detailed and illustrated in chapter 6. 

 

2.8 LC-MS/MS Detection of Anandamide and 2-arachidonylglycerol in aorta samples 

Sections of aorta were prepared as described in Chapter 3 section 3.3.5. then immediately flash 

frozen in liquid nitrogen. The samples were then transported on ice to Aberdeen University 

mass spectroscopy department where the analysis was performed by Mr G Cameron 

(Department of Medicine and Therapeutics, Aberdeen University). 

 

2.8.1 Tissue extraction procedure 

Tissue sections were homogenised in 0.6ml 50/50 methanol/acetonitrile, containing 60pmol of 

d4-anandamide as internal standard. 1.4ml of water was added and the solution vortexed. The 

samples were then centrifuged at 13000rpm for 5 minutes. 

 

The supernatant was applied to a preconditioned Strata-X SPE cartridge; this was washed with 

2ml 70/30 water/methanol followed by 2ml 30/70 water/methanol. This was eluted with 1ml of 
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methanol then evaporated to dryness under nitrogen then reconstituted in 50l 85/15 

methanol/water. 

2.8.2 LC Conditions 

Injection volume: 20µl 

Tray temperature: 4°C 

Column: ACE 5 C8 (150 x 2.2mm) 

Column temperature: 30C 

Mobile phase: 85% methanol :15% water (both containing 0.5% formic acid) 

Flow rate: 200l/min 

 

MS/MS Conditions 

Interface: +ve ion ESI 

Spray voltage: 3500V 

Sheath gas: 40 arbitrary units 

Aux gas: 10 arbitrary units  

Capilliary temp: 375C 

Collision pressure: 1.5mTorr 

Collision energy : 13V 

Skimmer offset : -10V 

 

Selected Reaction Monitoring (SRM) transitions : 

(m/z = mass charge/ratio) 

Anandamide:               m/z 348.20 – m/z 62.20 

2-arachidonylglycerol:  m/z 379.00 – m/z 287.00 

D4-anandamide:  m/z 352.20 – m/z 66.20 

 

2.9 Materials 

All drugs and chemicals were purchased from Sigma Aldrich UK unless otherwise stated; 

paraffin wax and PBS tablets were from Fisher Scientific. 

 

2.9.1 Histology Solutions 

PBS: 1 PBS tablet was dissolved in 100mls of distilled water resulting in a final concentration 

of 137mM NaCl, 10mM Phosphate, 2.7mM KCl. 
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0.5% Acid Alcohol for 1 L 

- 5% HCL (50ml) 

- 2.5ml of HCL (conc) +47.5ml distilled water 

- 0.5% Acid in Alcohol (1L) 

- 50ml of 5%HCL +950ml Ethanol 

 

STWS = Scotts Tap Water Substitute for 1L distilled water 

- MgSO4. 7H20        20g,  

- NaHCO3                3.5g 

 

Biebrich Scarlet-Acid Fuchsin solution: 

- Biebrich Scarlet 1% aqueous  -90ml 

- Acid Fuchsin 1% aqueous  10ml 

- Acetic Acid 1% - 1ml 

 

Phosphomolybdic-Phosphotungstic Acid Solution: 

- 5% Phosphomolybdic acid  in 25ml 

- 5% Phosphotungstic acid  in 25ml 

 

Aniline Blue Solution: 

- Aniline Blue  2.5g 

- Acetic Acid 1% 2ml 

- Distilled water 99ml 

 

Veronyl Acetate Buffer  

-0.97g of sodium Acetate 

-1.47g of sodium diethyl barbituate in 200ml 

-Adjust pH to 9.2 with 0.1M HCL  

-Make up to 250ml with distilled water 

 

-25mg Napthol AS-MX phosphate 

-12mg Levamisal 

- 25mg Fast Red TR salt  
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2.9.2 ELISA SOLUTIONS 

Sample Diluent Concentrate 1, Reagent Diluent Concentrate, Substrate solution and Stop 

solution were purchased from R and D systems. Capture antibodies, detections antibodies, 

standards and Streptavidin-HRP were provided with the kits. 

Wash Buffer : 0.05% Tween 20 in PBS 

Block Buffer: 1% BSA, 0.05% NaN3 in PBS 

 

ERK 1/2  ELISA. 

Proteases and Phosphate inhibitors required for Lysis Buffer #6: 10μg/ml leupeptin, 10 

μg/ml pepstatin,100 μM PMSF, 3 μg/ml aprotinin 

 

Substrate Solution: 1:1 mixture of colour reagent A (H2O2) and colour reagent B 

(Tetramethylbenzidine) 

Stop Solution: 2N H2SO4 

 

2.9.3 Reagent Preparation for Phospho ERK ELISA 

Phospho-ERK capture antibody: This was reconstituted in 200μl of PBS producing a 

concentration of 720μg/ml this was aliquoted and stored at -20ºC. 

 

Phospho- ERK detection antibody: This was reconstituted in 1ml of IC diluent #1 giving a 

concentration of 18μg/ml this was then aliquoted and stored at -20ºC. 
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Diluents and Lysis Buffer: 

Diluent 

Name 

Volume of 

Sample 

Diluent 

concentrate1 

Urea 

Required 

0.5M NaF 

required 

Protease 

and 

Phosphate 

inhibitors 

required 

Adjust 

with 

Distilled 

H2O 

IC Diluent 

#3 

10ml 3.003g 0.5ml no 50ml 

IC Diluent 

#7 

10ml 18.02g 0.5ml no 50ml 

IC Diluent 

#8 

10ml n/a 0.5ml no 50ml 

Lysis Buffer 

#6 

2ml 3.604g 0.1ml yes 10ml 

 

Table 2.5 Indicates the composition of the diluents and lysis buffer required for  

 

Phospho ERK standard: 115ng/ml when reconstituted with 500μl of IC Diluent #7. An initial 

6 fold dilution was made in IC#8 (2.5ml giving a total volume of 3ml),  further 2 fold serial 

dilutions were made using IC#3 immediately before use. A seven point curve using 2 fold serial 

dilutions and a high standard of 12ng/ml was used. 

 

Concentration of Standard Volume of Standard Volume of IC#3 

12ng/ml 3ml 1.7ml 

6ng/ml 500μl of 12ng/ml 500μl 

3ng/ml 500μl of 6ng/ml 500 μl 

1500pg/ml 500μl of 3ng/ml 500 μl 

750pg/ml 500 μl of 1500pg/ml 500 μl 

375pg/ml 500 μl of 750pg/ml 500 μl 

0 0 500 μl 

 

Table 2.6. Indicates the dilutions required for the Phospho ERK 1/2 standards 
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2.9.4 Reagent Preparation for Total ERK ELISA 

Total ERK capture antibody:180μg/ml was reconstituted in 200μl of PBS this was stored in 

aliquots at -20ºC. 

Total ERK2 detection antibody: 18μg/ml of biotinylated rabbit anti-human ERK2 antibody 

was reconstituted in 1ml of IC#1. This was then stored at -20ºC. 

Total ERK standard: 600ng/ml of recombinant human ERK2 was reconstituted in 500μl of IC 

diluent#7 An initial 6 fold dilution was made by adding 2.5ml of IC#8 giving a total volume of 

3ml at a concentration of 100ng/ml. 12ml of IC#3 was then added to give a concentration of 

20ng/ml. 2 fold serial dilutions of the maximum concentration allowed a seven point standard 

curve to be made. 

 

Concentration of Standard Volume of Standard Volume of IC#3 

10ng/ml 500μl of 20ng/ml 500 μl 

5ng/ml 500 μl of 10ng/ml 500 μl 

2.5ng/ml 500 μl of 5ng/ml 500 μl 

1250pg/ml 500 μl of 2.5ng/ml 500 μl 

625pg/ml 500 μl of 1250pg/ml 500 μl 

0 0 500 μl 

 

Table 2.7 Shows the dilutions required for the Total ERK 1/2 standards. 

 

2.9.5 BrdU solutions 

BrdU labelling solution: BrdU labelling solution was diluted 1:100 in sterile culture medium 

giving a final concentration of 100μM BrdU. 

Anti-BrdU-POD stock solution: This was dissolved in 1.1ml of double distilled water for 10 

minutes and mixed thoroughly. 

Anti-BrdU –POD working solution: The stock solution was diluted 1:100 with the antibody 

dilution solution. 

Wash Buffer: This was diluted 1:10 with double distilled water. 
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2.9.6 Solutions required for MTT assay 

MTT solution: 0.05g of MTT powder was dissolved in 10ml of PBS preventing exposure to 

light. 

Glycine Buffer: 3.75g of glycine and 2.93g of NaCl was dissolved in 500ml of distilled water, 

the pH was then adjusted using NaOH to 10.5.  

2.9.7 Solutions required for migration studies 

0.2% gelatine solution: 0.04g gelatine was dissolved in 20ml PBS and heated until completely 

in solution. 

30ng/ml PDGF solution: 3µl of 10µl/ml stock solution was added to 997µl of serum free 

medium to make a 30ng/ml solution. 

Coomassie brilliant blue:  

- 7% Acetic acid 

- 35% Methanol 

- 0.5% Coomassie blue R250 (w/v) 

 

De Stain: 

- 7% Acetic acid 

- 35% Methanol 

 

Giemsa 

- 1% Giemsa (w/v) dissolved in methanol 
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3.1 Introduction 

3.1.1 Neointimal formation 

Percutaneous coronary angioplasty or more recently, the placement of stents, are the most 

common methods of revascularization following coronary artery disease. Recent advances in 

these techniques, such as the development of drug eluting stents, has reduced the occurrence of 

restenosis to less than 10% of surgical interventions (Epstein et al., 2008), however, research 

still continues to identify new treatments that may be more suitable. Restenosis is a condition 

that occurs following vessel injury, and is characterised by a reduction in luminal area due to the 

formation of a neointima. Neointimal formation is a complex process that occurs due to the over 

compensatory healing response produced by the vessel following injury (discussed in detail in 

chapter 1). The response involves a large variety of cells and cell mediators, with the key 

pathological events being smooth muscle cell proliferation and migration, adventitial 

remodelling and matrix production (Ferns et al., 2000).  

 

3.1.2 Experimental models of neointimal formation 

3.1.2.1 In vivo models of neointimal formation 

The most common method used to study the restenosis process is through the use of in vivo 

models. The most established and characterised model is the rat carotid balloon injury model, 

(Guyton et al., 1980; Kantor et al., 1999), this has been a fundamental tool in the understanding 

of PDGF and its function as a smooth muscle cell mitogen (Fingerle et al., 1989). An alternative 

approach to studying restenosis is in rabbits fed a high cholesterol diet, which can induce 

atherosclerotic like lesions. Vessel injury is then induced by passing inflated balloons across 

either the carotid, subclavian (Hadoke et al., 1995) or femoral arteries. The neointima that 

results is highly comprised of lipid, making this model less useful for investigations into 

antiproliferative agents (Faxon et al., 1982). An alternative method of inducing neointimal 

formation in high fat/cholesterol fed rabbits is to crush the central ear arteries, after 21 days 

substantial neointima and smooth muscle cell proliferation occur (Banai et al., 1991). The dog 

has also been investigated as a potential model of restenosis, however dogs have different 

fibrinolytic activity compared to humans and the neointimal response produced following injury 

is minimal. For these reasons the dog is considered a poor model (Schwartz et al., 1994). 
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The cardiovascular system of pigs is similar to that of humans in aspects of morphology and 

physiology. Porcine vessels react to vessel injury by producing a large neointima that is almost 

identical to that produced in humans, in terms of cell density and histological appearance 

(Schwartz et al., 1990, Arturo et al., 2006). For these reasons the porcine model has become an 

invaluable tool in the further understanding and the identification of novel therapeutic strategies 

including research into drug eluting stents (Scheller et al., 2008; Hamada et al., 2009). In vivo 

models have also been developed in the mouse. Carotid artery ligation produces a reproducible 

injury response, however the neointima produced is not in response to endothelial denudation 

and may therefore differ in its mechanism of development. Endothelial denudation is another 

method used in vivo to produce neointimal formation, this method also has its drawbacks as the 

technique is challenging (Reviewed in Hui et al., 2008). Despite the difficulties of performing 

surgical techniques in  mice, a very recent study has documented the development of a murine 

model of in stent restenosis, this technique involves the placement of a stent in the mouse aorta 

(Rodriguez-Menocal et al., 2009). 

3.1.2.2 The use of cell cultures 

As mentioned above intimal smooth muscle cell proliferation is pivotal in the formation of a 

neointimal.  The use of cultured isolated cells from both humans and animals has been crucial in 

helping us to understand this process and investigate novel therapeutic strategies. For example, 

this approach has provided insight into the effects of many growth factors on smooth muscle 

cells, including bFGF, and IL-1 (Lindner et al., 1991; Libby et al., 1988). However, it has been 

reported that smooth muscle cells originating from vascular lesions may behave differently to 

cells obtained from healthy vessels. For example, human smooth muscle cells isolated from 

atheromatous plaques demonstrated a higher sensitivity to the agent photofrin II (an agent used 

in photodynamic therapy of tumours) compared to smooth muscle cells derived from healthy 

vessels (Dartsch et al., 1990). Notwithstanding the fact that smooth muscle cell cultures are an 

essential in vitro screening tool for the study of smooth muscle cell proliferation, they do not 

replace the need for whole vessel studies. Only in the whole vessel can the anatomical 

orientation of cells, the presence of a vessel wall, and production of extracellular matrix, all of 

which which may impact on cell to cell interactions and proliferation be studied together (Holt 

et al., 1992). 

3.1.2.3 Models of organ culture 

Organ culture models of neointimal formation have been developed in a variety of human 

vessels including the mammary, coronary, and renal arteries (Holt et al., 1992, Holt et al., 1994; 

Voisard et al., 1999). These models have led to the discovery and identification of factors 

released by the vessel following injury such as PDGF (Holt et al., 1992, Holt et al., 1994). The 
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use of organ culture is the only in vitro method available to investigate the response to injury 

produced in humans; however the effectiveness of this method is reliant on the availability of 

human tissue. To overcome this problem organ culture models have been developed using blood 

vessels from other animals, the most commonly used being the porcine model. One important 

limitation to these organ culture models is that they employ healthy vessels. Development of a 

murine organ culture model would enable the use of tissues from transgenic mice developed to 

mimic human disease (such as the ApoE K/O mouse) which would provide a more pathological 

environment for experimentation. While in vivo models of murine neointimal formation are 

already established, an organ culture method would remove the need for complicated surgery 

and allow the simultaneous screening of a range of compounds for selection prior to in vivo 

testing. 

3.1.3 The cannabinoid system 

As detailed in Chapter 1, the endocannabinoid system is composed of the endogenous 

cannabinoids (of interest in this study are AEA and 2-AG), the receptors to which they bind, 

and the enzymes involved in their biosynthesis and degradation. It is accepted that 

endocannabinoids are synthesised on demand, then immediately released from cells as there is 

no evidence of vesicle storage (Di Marzo,  2008; Mechoulam et al., 1998).  

3.1.3.1 Endocannabinoids and disease 

The endocannabinoid system has been linked to many diseases due to observed alterations in 

endocannabinoid concentration. Indeed, alterations in AEA and 2-AG concentration have been 

observed in pain, cancer, gastrointestinal and hepatic conditions, obesity, eye disorders (Matias 

et al., 2006; Jhaveri et al., 2007; Storr et al., 2007; Matias et al., 2007; Alpini et al., 2009) and, 

most importantly for the scope of this study, in cardiovascular disease. The involvement of the 

endocannabinoid system in disease states is complex, with both protective and detrimental 

effects occurring following cannabinoid receptor activation. It has also been observed that each 

endocannabinoid may have opposing effects, as AEA and 2-AG levels can differ within the 

same tissue (Di Marzo, 2008). An example of the complex nature of the endocannabinoid 

system can be observed in investigations into pain and inflammation. It has been shown that 

irritant and inflammatory stimuli induce an increase in the concentrations of endocannabinoids 

in the skin and peripheral nerves of rodents (Oka et al., 2006) and it has been postulated that 

these changes aim to reduce pain and inflammation, a theory supported by the fact that 

inhibition of endocannabinoid metabolism counteracts pain (Jhaveri et al., 2006).  In 

contradiction to this, some models of pain show that CB1 receptor antagonists can induce 

analgesic effects (Costa et al., 2005), highlighting the complexities of the involvement of the 

endocannabinoid system. 
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In the cardiovascular system, studies into the effects of endocannabinoids on disease have 

primarily been focused on their role in hypertension and different types of shock, (cardiogenic, 

septic and haemorrhagic) all of which have demonstrated an increase in AEA and 2-AG 

concentration in platelets, monocytes, macrophages or blood (Reviewed in Malinowska et al., 

2008). AEA is thought to be released to combat pathological hypertension, a theory supported 

by the finding that AEA produced from endothelial cells, macrophages and platelets induced a 

long lasting hypotensive effect in spontaneously hypertensive rats, compared to normotensive 

rats (Lake et al., 1997; Batkai et al., 2004). Endocannabinoids have also been shown to have a 

cardioprotective effect by reducing infarct size, a process thought to involve the CB2 receptor 

(Lepicier et al., 2003), and a novel cannabinoid receptor (Underdown et al., 2005). There is 

mounting evidence for a protective role of cannabinoids in the progression of atherosclerosis. 

Δ9-THC reduced atherosclerotic plaque progression (Steffens et al., 2005) and AEA has been 

shown to attenuate TNF-α induced expressions of  ICAM-1 and VCAM-1 and also to reduce the 

adhesion of monocytes to endothelial cells (Batkai et al., 2007). In support of this, 2-AG 

concentration was found to be increased in a mouse model of atherosclerosis (Montecucco et 

al., 2009), and similarly human patients suffering coronary artery disease were found to have 

increased blood endocannabinoid concentrations (Sugamura et al., 2009). However, in 

contradiction, endocannabinoids may also be pro atherosclerotic as it has been shown that 2-AG 

can activate platelets (Maccarrone et al., 2001). 

 

 

3.2 Aim 

The development of an in vitro murine model of neointimal formation would be an exceedingly 

useful experimental model as it would permit the use of transgenic mice to explore the roles of 

either disease or of specific receptors in the development of neointima. The primary aim of this 

study was to develop a murine organ culture model of neointimal formation that could be 

utilised to (i) characterise the injury response produced in the mouse and investigate the 

presence and location of cannabinoid receptors within the vascular wall (ii) determine whether 

the endocannabinoid system becomes activated in this model of vessel injury and (iii) 

investigate the effects of cannabinoid agents on the formation of neointima. 
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3.3 Method 

3.3.1 Tissue preparation and standard culture method 

C57/B16J mice of either sex were euthanized by cervical dislocation, sprayed with ethanol and 

the aorta dissected out and cleared of adherent tissue using sterile technique. The vessels were 

placed in a 6-well plate containing 3ml of sterile medium (composed of 42% Waymouths, 42% 

Hams F-12, 1% penicilin streptomycin, 15% foetal bovine serum (FBS), 0.05% fungizone) and 

transferred to the laminar flow hood. The vessels were then cut into segments of approximately 

3mm and cleaned gently using a syringe containing media to remove remaining blood from the 

lumen. The segments were then transferred to a sterile 6-well plate containing 3ml medium and 

placed in a 5% CO2 Galaxy S incubator (Wolf Laboratories). The vessel segments were 

maintained in culture for 14 days with the medium being aspirated and replaced every alternate 

day. The aortic sections were removed from culture and fixed in 10% neutral buffered formalin 

for subsequent histological analysis as previously described in section 2.3.1.  

 

3.3.2 Methodological development to produce vessel injury 

3.3.2.1. Ligature method 

To induce an injury response in the aorta similar to that observed following angioplasty or 

placement of a stent, a method for injuring the vessels had to be identified. The first method 

employed to induce injury was through the placement of a ligature. Once the aorta was dissected 

and cleaned of adherent tissue, a ligature was placed round the middle of the aortic segment 

(illustrated in Figure 3.1). The vessel was then placed in culture under the conditions described 

above. Following the 14 day culture period the aortas were removed, fixed and embedded in 

wax (as detailed in method section 2.3.1), and serial sectioned at 25μm intervals  from the edge 

of the segment towards the ligature. The wax sections were then stained with H&E as detailed 

in Section 2.3.2. 
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Ligature 
 

0 100 75 50 25 
 

                            

Figure 3.1 An illustration of the aorta with a ligature attached, and the serial sectioning. 

Distance was measured in μm. 

 

3.3.2.2 Vessel injury induced by culturing alone 

Once the aortas was dissected and cleaned of adherent tissue they were cut into segments, rinsed 

free of blood then placed in culture for 14 days as described in method section 2.4.3. Following 

the 14 day culture period the aortas were removed, the tissues were then processed, embedded 

in wax, sectioned (4µm thick) and subsequently stained with H&E as detailed in method section 

2.4.3. 

3.3.2.3 Vessel injury induced by intraluminal injury by a wire 

 The aorta was dissected and cleaned of adherent tissue, it was then cut into segments and rinsed 

free of blood. In an attempt to induce vessel injury the endothelium was disrupted by rubbing 

the luminal surface with a piece of stainless steel wire (40μm in diameter), the tissue sections 

were then placed in culture for 14 days as described in method section 2.4.3. Following the 

culture period the tissues were then processed, embedded in wax, sectioned and subsequently 

stained with H& E as detailed in method section 2.3.2. Vessel injury with the wire proved the 

most suitable method and was used in this study. 
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3.3.2.4 Wire-induced injury 

The aorta was dissected and cleaned of adherent tissue, cut into three ~3mm segments and then 

rinsed free of blood. The vessel segments were then subjected to the following conditions: (i) 

one was immediately fixed in formalin (control) (ii) the second was placed in culture and (iii) 

the third was injured with the wire (by rubbing the internal surface) then placed in culture. The 

vessel segments were processed, embedded in wax, sectioned and subsequently stained with 

H&E as detailed in section 2.3.2.  

 3.3.3 Expression and quantification of vessel injury 

The injury response produced by both culturing vessels and injuring them prior to culture was 

analysed in three ways;  

(1) Visual analysis- identifying four key morphological changes archetypal of vessel injury: (i) 

medial thickening (ii) rupture of the internal elastic lamina (IEL) (iii) neointimal growth and (iv) 

adventitial thickening. 

(2) Measuring the area of (i) any neointima produced (ii) the media (iii) and the adventitia.  

(3) Measurement of medial and adventitial thickness. 

Area measurement was performed using the image J (National institute of health, Bethesda) 

software as illustrated in Figure 3.2 

 

3.3.3.1 Calculation of neointimal area 

Neointimal area = Area within the boundary of the IEL – Luminal area 

(Area of shaded circle – area of white circle as shown in Figure 3.2) 

 

3.3.3.2 Calculation of medial area 

Medial Area = Area within the boundary of the external elastic lamina (EEL) – Area within the 

boundary of the IEL 

(Area of green circle – area of shaded circle as shown in Figure 3.2) 
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3.3.3.3 Calculation of adventitial area 

Adventitial Area = Area of outer edge of blood vessel – Area within the boundary of the EEL 

(Area of beige circle – area of green circle as shown in Figure 3.2) 

3.3.3.4 Medial thickness 

The distance between the EEL and the IEL was measured at 4 locations of a vessel section then 

averaged (illustrated on Figure 3.2).  This was repeated for each vessel section, the values were 

expressed as mean ± SEM. 

3.3.3.5 Adventitial thickness 

The distance between the outer boundary of the vessel and the EEL (as illustrated on Figure 3.2) 

was measured at 4 locations of the vessel 90° apart. This was repeated for all vessel sections, 

then expressed as mean ± SEM. 
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Figure 3.2 An illustration of a transverse aortic section highlighting the different areas of 

the vessel. The white circle represents the area of the lumen (L), the shaded area represents any 

neointima that may be present, the green circle represents the area of the media (M) and the 

beige circle represents the area of the adventitia (A). MT= medial thickness, AT= adventitial 

thickness, IEL = internal elastic lamina, EEL= external elastic lamina, NI = neointima. 

 

3.3.4 Injury characterisation 

To characterise the injury response produced in the murine aorta, both histological and 

immunohistological staining was performed. Once vessel sections were embedded in wax and 

cut into 4µm sections they were then stained with H&E (described in section 2.3.2) or Massons 

Trichrome (detailed in section 2.3.3). Immunohistochemical staining using an antibody directed 

at α smooth muscle actin (α-SMA) was used to identify and locate smooth muscle cells (IHC 

method detailed in section 2.4). 
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 3.3.4.1 CB1 and CB2 antibody staining 

To identify the optimum dilutions at which both cannabinoid receptor antibodies should be 

utilised, CB2 transfected CHO cells were used as both a positive (CB2 receptors) and a negative 

(CB1) control. CHO cells were grown and subcultured onto 8 well chamber slides (as detailed in 

method section 2.4.5) ICC was then performed using the method described in section 2.4.6. 

Once the optimum dilutions of CB receptor antibodies had been identified, 4µm wax sections 

were then stained for both CB1 and CB2 receptors using IHC. To confirm the presence of CB 

receptors on smooth muscle cells, murine smooth muscle cells (MVSMCs) were grown on 

chamber slides (as detailed in section 2.4.5) and stained for both the CB receptors using ICC 

(described in section 2.4.6).  

3.3.5 LCMS-MS analysis of endocannabinoid concentration in normal and injured artery 

segments 

Murine aorta was dissected, cleaned of adherent tissue and rinsed free of blood and the vessel 

cut into 3 segments. Segment 1 functioned as the fresh tissue control and was placed 

immediately in liquid nitrogen and stored at -80ºC until subsequent analysis. Segment 2 was 

placed in culture for 14 days (as described in section 2.4.3), the tissue was then rinsed free of 

media with PBS, flash frozen in liquid nitrogen then stored at -80ºC. Segment 3 was injured 

intraluminally (as described in section 3.3.2.3) prior to placing in culture for 14 days. The tissue 

was then rinsed free of media using PBS, flash frozen in liquid nitrogen, then transferred to         

-80ºC. Frozen samples were then transported to the department of Medicine and Therapeutics at 

Aberdeen University where the LCMS-MS analysis of AEA and 2-AG levels was performed by 

Mr Gary Cameron. All samples were homogenised as detailed in section 2.8.1. Tissue 

homogenates and standards were all supplemented with 60pM d4-Anandamide which 

functioned as the internal standard. d-4-anandamide is anandamide which has had four of the 

hydrogen atoms on the ethanolamine portion of the molecule replaced with deuterium atoms 

(deuterium is a stable isotope of hydrogen with an extra neutron in the nucleus for example H 

mass =1, D mass =2), d4-AEA was synthesised at Aberdeen University. Samples were then 

analysed using the LCMS-MS conditions detailed in method section 2.8.2. 

3.3.5.1 Production of the endocannabinoid standard curve 

A standard of known concentration was analysed by measuring the area of the peak produced by 

the standard (shown in Figure 3.3A), and the area of the peak produced by the internal standard 

(shown in Figure 3.3 B). The area ratio was then calculated as shown below. 

 



Area ratio of standard =       Area of AEA standard peak (Figure 3.3A) 

           Area of internal standard peak (Figure 3.3B)  

This was then plotted against the concentration of the known standards producing a standard 

curve as shown in Figure 3.3C. The standard curve allowed the concentrations of unknown 

samples to be calculated from their area ratios.  

3.3.5.2 Normalisation of endocannabinoid concentration 

To allow accurate comparison of samples, results were normalised in accordance to their 

individual protein concentration (as established by Bradford Assay) to a uniform 1mg/ml as 

shown below. 

 

[Endocannabinoid] at 1mg/ml =                  1                 X    [endocannabinoid]                             

                                                      [Protein of sample] 

 

3.4  Data Analysis 

Outliers were determined by using the Grubs test. Statistical analysis was carried out using a 

one-way analysis of variance (ANOVA) with a Dunnetts post test (GraphPad Prism 4) unless 

otherwise stated, significance was accepted when P<0.05 

 

3.5 Antibodies 

 α-SMA (Abcam): Stored in aliquots at -20ºC, diluted before use to 1:100 in PBS. 

 CB1 (Abcam): Stored in aliquots at -20ºC, diluted to 1:500 in PBS (section 3.5.4.) 

 CB2 (Abcam):  Stored in aliquots at -20ºC, diluted to 1:1000 in PBS (section 3.5.5) 
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(A) (B) (C) 

Figure 3.3 Original LCMS-MS chromtaograms of standards used to produce the standard curve. Example chromatograms showing (A) the peak 

produced by a standard sample, (B) the peak produced by the internal d4-Anandamide standard, and (C) the standard curve produced when all the 

standards were calculated as area ratios and plotted against concentration. 



3.6. Results 

3.6.1 Morphological assessment of in vitro models of neointimal formation in the murine 

aorta 

3.6.1.1 Morphology of control uncultured vessels 

Histological staining with H&E highlights the morphology of an uncultured control transverse 

vessel section (Figure 3.4). It can be seen that the IEL is intact and that the media is organised 

by highly convoluted layers of elastin. The EEL can also be visualised surrounded by a very 

thin layer of adventitia. 

 

3.6.1.2 Morphological changes following  injury induced by vessel ligation  

The first method implemented to induce vessel injury was the placement of a ligature prior to 

vessel culture. At 100µm (Figure 3.5A) from the ligature there was no apparent signs of injury, 

however at 75µm from the ligature visible signs of injury could be observed. It can be seen 

(Figure 3.5B) that at localised areas of the vessel there is substantial medial thickening and 

disruption of the organised convoluted layers of elastin. Adventitial thickening can also be 

observed at the same location. At 50µm from the ligature (Figure 3.5 C), signs of vessel 

disruption become more apparent, it can be seen that at localised areas the media is thicker and 

that adventitial width has increased. Cell outgrowth from the adventitia can also be observed. At 

25µm from the ligature it can be seen that the vessel lumen is nearly occluded. Again medial 

thickening can be observed but most obvious is the substantial adventitial thickening occurring 

at localised areas round the vessel. Upon inspection of the adventitial areas it can be seen that 

the cellular matter is contained within a very definite cellular boundary. At 25 µm from the 

ligature, similar to all other distances measured, there was no cell growth towards the lumen and 

the IEL remained intact. Analysis of the morphological changes produced by the ligature 

induced injury model in vessels originating from 3 different mice (Table 3.1) show that if any 

changes in vessel morphology occurred with this model, they were confined to medial and 

adventitial thickening; neointimal formation was not observed in any of the samples. 
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Figure 3.4 A transverse section of a control non cultured murine aorta. Light micrograph 

(x200) of a transverse section of fresh, uncultured control tissue.  The section is stained with H 

& E demonstrating physiological morphology. IEL=internal elastic lamina, M=media, EEL= 

external elastic lamina, A=adventitia, L=lumen. Black line represents 50µm. 
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Figure 3.5 Sections of murine aorta injured by placement of a ligature. Light micrographs 

(x100) showing transverse sections of murine aorta which had been injured by placement of a 

ligature prior to vessel culture. Micrographs are shown at decreasing distances from the ligature 

(A) 100μm from ligature (B) 75μm from ligature (C) 50μm from ligature and (D) 25μm from 

ligature. Sections are stained with H & E. Black lines represent 50µm. 
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 Medial 

Thickening 

Rupture of IEL Neointimal 

Growth 

Adventitial 

thickening 

Sample 1 N N N N 

Sample 2 Y N N Y 

Sample 3 Y Y N Y 

 

Table 3.1 The morphological changes observed following ligature induced vessel injury 

Aortas originating from three different mice had a ligature placed round them and were cultured 

for 14 days. The vessels were serial sectioned, then at a distance of 25μm from the ligature  four 

markers of vessel injury were examined, (i) media thickening, (ii) rupture of the IEL, (iii) 

neointimal growth and finally (iv) adventitial thickening. n=3. Due to the small sample size and 

the lack of neointimal response these were not quantified. 

 

3.6.1.3 Morphological changes induced by culture 

The second method implemented to induce neointimal formation was by placing the aortic 

sections in culture for 14 days, as this has previously been shown to induce neointimal growth 

in porcine arteries (Work PhD thesis, University of Strathclyde 1999). Histological staining 

with H&E highlighted the morphology of the vessel to be highly disrupted, possessing many 

characteristics of vessel remodelling. An example of these changes is illustrated in Figure 3.6. 

Marked cell infiltration into the luminal space was observed and, in vessels where the IEL was 

ruptured, the layers of elastin in the media appeared disorganised and damaged. Medial 

thickening and adventitial thickening was also frequently observed, with the adventitial 

thickening contained within the confinement of a well defined cellular boundary. The 

morphological changes observed in six different mice are shown in Table 3.2. It can be seen that 

vessels from 4 of the 6 mice displayed medial thickening and rupture of the IEL; however 

neointimal growth was only observed in 3 of the 6 vessels. Adventitial thickening was observed 

in 5 of the 6 vessels investigated. 
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Figure 3.6 A transverse section of a cultured murine aorta. Light micrograph (x200) of a 

transverse section of aorta that had been cultured for 14 days and stained with H&E. M = media, 

NI=Neointima, A=Adventitia, RI=Ruptured internal elastic lamina. Black line represents 50µm. 

 

 Medial 

Thickening 

Rupture of IEL Neointimal 

Growth 

Adventitial 

Thickening 

Sample 1 Y Y Y Y 

Sample 2 Y Y N Y 

Sample 3 Y N N N 

Sample 4 Y N Y Y 

Sample 5 N Y N Y 

Sample 6 N Y Y Y 

 

Table 3.2 The morphological changes observed following vessel culture. Vessels originating 

from six different mice were cultured for 14 days then analysed for four markers of vessel 

injury, media thickening, rupture of the IEL, neointimal growth and finally adventitial 

thickening. 
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3.6.1.4  Morphological changes induced by intraluminal wire injury 

The third method of injuring vessels to induce an injured response was to rub the luminal 

surface of the vessel with stainless steel wire then place them in culture for 14 days. 

Histological staining with H&E highlighted the morphology of the wire injured vessel to be 

highly disrupted, possessing many characteristics of vessel injury (an example is illustrated in 

Figure 3.7) including cell infiltration into the lumen. However, the appearance of the cells 

within the lumen was unlike that reported for neointima observed in established models, in that 

the cells occupied most of the lumen in a network like fashion. The vessels also demonstrated 

substantial medial thickening. In the example shown in Figure 3.7, one area of the vessel had 

folded inwards, in this area the elastin layers were less convoluted and there is significant 

adventitial cell growth. Assessment of the response to wire injury in vessels from four different 

mice demonstrated that medial thickening, rupture of the IEL and neointimal growth occurred in 

all vessels and adventitial thickening was present in all but one vessel (Table 3.3). 

3.6.2 Quantitative comparison of injury produced by culture with and without wire injury  

3.6.2.1 Medial area and thickness 

Both cultured and injured/cultured vessels demonstrated increases in both medial thickness and 

area compared to non-cultured control arteries (Figure 3.8). Vessel sections that had been 

injured prior to culture exhibited the largest increase in area from 0.067±0.004mm2 (uncultured 

control n=4) to 0.124±0.024mm2 (wire injured). Despite both culture alone and prior injury 

resulting in increased medial areas the differences did not reach significance (One way ANOVA 

with Dunnets post test P=0.0858 n=3 and 4 respectively). Medial thickness was also increased 

from 0.04±0.001mm (uncultured control n=4) to 0.11±0.043mm in cultured tissue (n=3) and 

0.076±0.005mm in injured/cultured arteries, n=4 (Figure 3.9). Once again these changes failed 

to reach statistical significance (One-way ANOVA with Dunnets post test). 

3.6.2.2 Adventitial area and thickness 

Adventitial area was increased in both tissue that had been cultured (0.04±0.005mm2 n=3) and 

injured prior to culture (0.09±0.04mm2 n=4) compared to the uncultured control 

(0.03±0.007mm2 n=4; Figure 3.10) although these changes did not reach statistical significance 

(One-way ANOVA with Dunnets post test P=0.1961). Adventitial thickness was also increased 

in tissue that had been cultured (0.063±0.02mm, n=3) and injured prior to culture 

(0.09±0.03mm n=4) compared to the uncultured controls (0.02±0.002mm, n=4; Figure 3.11). 

Despite this apparent increase in adventitial thickness this did not reach statistical significance 

(One-way ANOVA with Dunnets post test P=0.1455). 
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3.6.2.3 Neointimal area 

As expected, no neointima was present in uncultured control vessels. However, tissues that were 

either cultured or subjected to injury prior to culture both produced a measurable neointima 

(Figure 3.12). Wire injured tissue produced a neointima that was marginally larger than that 

produced by cultured tissue (0.052±0.023 and 0.03±0.016 respectively; P>0.05 One-way 

ANOVA with Dunnets post test n=4 and 3 respectively).  
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Figure 3.7 A transverse section of aorta following wire injury. Light micrograph showing a 

section of aorta that had been injured intraluminally by a wire prior to culture; the section has 

been stained with H&E. Magnification x200. Thin black line represents 50µm. 

 

 

 Medial 

Thickening 

Rupture of IEL Neointimal 

Growth 

Adventitial 

Thickening 

Sample 1 Y Y Y N 

Sample 2 Y Y Y Y 

Sample 3 Y Y Y Y 

Sample 4 Y Y Y Y 

 

 Table 3.3 The morphological changes observed following vessel injury. Vessels originating 

from six different mice were injured intraluminally with wire then cultured for 14 days. The 

sections were stained with H&E and analysed for four markers of vessel injury; media 

thickening, rupture of the IEL, neointimal growth and adventitial thickening.  
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Figure 3.8 Medial area of control, cultured and injured aortic tissue. Tissue sections were 

either fixed immediately following dissection (uncultured control), cultured for 14 days or 

injured then cultured for 14 days. Values are mean + SEM; n=4 for uncultured and injured, n=3 

for cultured. 
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Figure 3.9 A comparison of medial thickness of control, cultured and injured aortic tissue. 

Tissue sections were either fixed immediately following dissection (uncultured control), 

cultured for 14 days or injured then cultured for 14 days. Values are mean + SEM; n=4 for 

uncultured and injured, n=3 for cultured. 
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Figure 3.10 A comparison of adventitial area of control, cultured and injured aortic tissue. 

Tissue sections were either fixed immediately following dissection (uncultured control), 

cultured for 14 days or injured then cultured for 14 days. Values are mean + SEM; n=4 for 

uncultured and injured, n=3 for cultured. 
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Figure 3.11 A comparison of adventitial thickness of control, cultured and injured aortic 

tissue. Tissue sections were either fixed immediately following dissection (uncultured control), 

cultured for 14 days or injured then cultured for 14 days. Values are mean + SEM; n=4 for 

uncultured and injured, n=3 for cultured. 
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Figure 3.12 A comparison of neointimal area of cultured and injured aortic tissue. Tissue 

sections were either cultured for 14 days or injured then cultured for 14 days. Values are mean + 

SEM; n=4 for injured, n=3 for cultured. 
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3.6.3 Vessel characterisation 

3.6.3.1 Cellular composition of injury response 

To identify the cells involved in the injury response produced in the murine aorta, sections were 

stained with Masson Trichrome, which stains extracellular matrix blue, cellular material red, 

and nuclei black. Figure 3.13 (A) shows a transverse section of wire injured tissue, the 

thickened media is stained bright red and the adventitia can be clearly visualised by the blue 

colour. The cells that have infiltrated the lumen are stained a mixture of blue/black and red, 

giving no clear indications of their identity. The cell growth in the adventitia is stained a 

mixture of blue and red showing cellular accumulation and the presence of collagen.  

 

In an attempt to precisely identify the location of smooth muscle cells in the injury response 

produced following wire injury, sections were stained by IHC for α-SMA (a marker of smooth 

muscle cells). Figure 3.13 (B) clearly shows (by presence of pink/red colour) that smooth 

muscle cells are most abundant in the media, as evident by the dense red colour. In the area of 

adventitial thickening a small amount of red staining can be observed indicating that smooth 

muscle cells are present but not the most abundant cell type, as the majority of the adventitial 

mass showed no positive staining. The cells present in the lumen exhibit faint red staining in 

some areas but not in others, indicating that smooth muscle cells may contribute to a small 

proportion of the neointimal mass but not the majority. This is confirmed in Figure 3.14 (A) and 

(B) which show that the cellular accumulation which occurs in the lumen and adventitial 

following culture is a mixture of smooth muscle cells and other unidentified cells. 
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(A) 

 

(B) 

 

Figure 3.13 Transverse sections of wire injured aorta. Light micrographs showing wire 

injured aorta sections stained with (A) Masson Trichrome (x200), (red colour indicates muscle, 

blue indicates collagen and black staining shows cell nuclei), the  area shown in black box is 

that shown in picture B (B) Immunohistochemical staining with α-SMA antibody, positive 

staining shown by pink/red colour (x400). 
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    (A) 

 

  (B) 

 

 

Figure 3.14 A transverse section of a mouse aorta that had been cultured. Light 

micrographs showing an example of a cultured vessel that had collapsed (A) 

immunohistological staining with an antibody directed at α-SMA, shows locations of smooth 

muscle cells, positive staining shown by pink-red colour (x100). Area in black box shown in 

picture B. (B) Immunohistological staining with α-SMA antibody shows location of smooth 

muscle cells, positive staining shown by pink-red colour (x200) 
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 3.6.4 Cannabinoid receptor antibody optimisation 

CB2 transfected CHO cells displayed positive staining (pink/red colour) for CB1 receptors at 

antibody dilutions as low as 1:500 (Figure 3.15) for this reason the CB1 antibody was only used 

at dilutions of 1:500 or lower. CB2 transfected CHO cells displayed positive staining (pink/red 

colour) for CB2 receptors at antibody dilutions as low as 1:1000 (Figure 3.16), to avoid 

unspecific binding 1:1000 was identified as the optimum dilution. 

 

3.6.5 Cannabinoid receptor staining of aortic tissue 

Aortic tissue stained by IHC with antibodies directed against the CB1 and CB2 receptors, 

showed positive staining for both receptors (Figure 3.17). It appears from the micrographs that 

the staining is concentrated in the media although there also appears to be positive staining in 

the adventitia. This is confirmed in Figure 3.18 which shows murine vascular smooth muscle 

cells displaying positive staining for both CB1 and CB2 receptors. 
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Figure 3.15 Immunocytochemical staining of CB2 transfected CHO cells with a CB1 

receptor antibody. Light micrographs (x200) of CB2 transfected CHO cells stained with CB1 

antibody  at (A) 1:50 dilution, (B) 1:100 dilution (C) 1:500 dilution (D) IgG 1:50 
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(A)                                                          (B)                                                                  

             

 

(C)                                                           (D)                                                      

          

 

 

 

Figure 3.16 Imunocytochemical staining of CB2 transfected cells with a CB2 antibody. 

Light micrographs (x200) of CB2 transfected CHO cells stained with a CB2 antibody at (A) 

1:500 dilution (B) 1:700 dilution (C) 1:1000 dilution (D) 1:5000 dilution positive staining 

shown by pink/red colour. 
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(A) 

 

(B) 

 

(C) 

 

 

Figure 3.17 Immunohistochemical staining of uncultured aortic tissue for cannabinoid 

receptors. Light micrographs (x200) of murine aortic uncultured tissue stained with (A) CB1 

receptor antibody at 1:500 dilution. (B) CB2 antibody at 1:1000 dilution. Pink/red colour 

indicates positive staining. (C) Negative IgG control 1:500 
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  (A) 

 
(B) 

 

                                          

(C) 

 

Figure 3.18 Immunocytochemical staining of murine aortic smooth muscle cells for both 

the CB1 and CB2 receptors. Light micrographs (x100) of murine vascular smooth muscle cells 

stained with either (A) CB1 antibody (1:700) or (B) CB2 antibody (1:1000) positive staining 

shown by pink/red colour (C) negative IgG control. 
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3.6.6 LCMS-MS analysis of AEA concentration. 

Anandamide concentration was increased in tissue that had been cultured compared to the 

uncultured control tissue (0.22±0.03pM/mg of protein and 0.03±0.004pM/mg of protein, 

respectively n=6). The concentration of AEA was increased further in tissue that had been wire 

injured prior to culture (1.08±0.72pM/mg of protein n=4). Due to the presence of a sample that 

was close to being excluded as an outlier, the increase in AEA concentration between samples 

did not reach significance (One-way ANOVA with Dunnets post test P>0.05). 

 

3.6.7 LCMS-MS analysis of 2-AG concentration 

2-AG concentration was significantly increased in tissue that had been cultured compared to 

control tissue (358.8±52.5pM/mg of protein and 0.2±0.04pM/mg of protein respectively n=6, 

Figure 3.22); there was a further significant increase in 2-AG concentration between samples 

that had been cultured and those that had been injured prior to culture (358.8±52.5pM/mg of 

protein and 697.4±213.5pM/mg of protein, respectively; P<0.05; One way ANOVA with 

Dunnets post test n=4 for injured tissue).  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 3.19 An original LCMS-MS chromatogram showing the AEA peak. The trace 

illustrates the peak produced by AEA following LCMS-MS analysis of a tissue sample. The 

shaded area was measured to calculate the concentration of AEA in the sample. 
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Figure 3.20 AEA concentration in aortic tissue sections. Tissue sections were either frozen 

immediately following dissection (uncultured control), cultured for 14 days or injured then 

cultured for 14 days. Anandamide concentration was then measured using LCMS-MS. n=6 for 

control and cultured, n=4 for injured tissue. 
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Figure 3.21 An original LCMS-MS chromatogram showing the 2-AG peak. The trace 

illustrates the peak produced by 2-AG following LCMS-MS analysis of a tissue sample. The 

shaded area was measured to calculate the concentration of 2-AG in the sample. 
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Figure 3.22 2-AG concentration in aortic tissue sections. Tissue sections were either frozen 

immediately following dissection (uncultured control), cultured for 14 days or injured then 

cultured for 14 days. 2-AG concentration was measured using LCMS-MS. n=6 for control and 

cultured, n=4 for injured tissue. Data shown as mean ±SEM * Indicates P<0.05, * indicates 

P<0.01, *** indicates P<0.001 compared to control (one way ANOVA with a Dunnetts post 

test). 
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3.7 Discussion 

The aim of this study was to (i) develop a murine organ culture model of neointimal formation 

that could allow the investigation of the effects of cannabinoid agents (ii) characterise the injury 

response produced and investigate the presence and location of cannabinoid receptors, and to 

(iii) investigate whether the endocannabinoid system becomes activated in this model of vessel 

injury. It can be seen from the results of this study, that a successful reproducible model of 

vessel injury can be established in the murine aorta, by culturing vessel sections following 

luminal injury with stainless steel wire. The injury response produced by the murine aorta 

manifests as cellular growth in the intima, media thickening and adventitial thickening. This 

study has also confirmed the presence of both CB1 and CB2 receptors on the murine aorta and 

on smooth muscle cells. This study has also demonstrated that endocannabinoid concentration is 

significantly increased (2-AG) in injured tissue. 

Murine aortic organ culture 

Placement of a ligature round the carotid arteries of mice is a common method of inducing 

reproducible neointimal formation in vivo (Moura et al., 2007; Wang et al., 2007).  For this 

reason it was the first method to be investigated for the organ culture model. Tying a ligature 

round the mouse aorta then placing it in culture for 14 days, did not prove to be a suitable injury 

model; the injury response produced was primarily adventitial thickening, with some localised 

medial thickening, and proved to be nonreproducible. In vivo this model is successful due to the 

reduction in vessel diameter and blood flow, and the resulting changes in shear stress (Hui et al., 

2008), these factors are obviously not present in an organ culture model and may therefore 

explain the failure of this method.  

 

Culturing vessels produced a measurable injury response, which included the presence of cells 

in the lumen, medial thickening, and adventitial thickening. This response was more 

reproducible than the ligature model. Endothelial denudation by mechanical injury is also a 

common method of inducing neointimal formation in vivo. To emulate this method, vessels 

were injured with wire prior to culture. This method provided a reproducible injury response 

that included medial thickening, neointimal growth, and adventitial thickening. Comparison of 

the two methods showed that injuring the vessels prior to culture produced the largest increases 

in medial area, adventitial area and thickness, and neointimal area, for that reason it was 

considered the optimum method.  Despite the results being reproducible and exhibiting small 

standard errors the differences in areas and thickness did not reach significance, most likely due 

to the small group size.  
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When the neointima produced in this model is compared to neointima produced in in vivo 

models, it can be seen that there is a notable difference in appearance. In established in vivo 

models, neointimal cells invade the lumen as a compact cellular mass (Moura et al., 2007; 

Wang et al., 2007), whereas the neointima produced in the murine organ culture preparation 

spreads out with a diffuse lattice-like appearance, in some cases completely filling the lumen. 

Interestingly, when the neointima produced in the murine culture model is compared to that 

produced in the porcine organ culture model, similarities in the appearance can be observed, in 

that the neointima appears more sparse in cell density (Yau et al., 2008). It is assumed that the 

cells infiltrating the lumen are smooth muscle cells, although this is not completely confirmed in 

this study. Masson Trichrome staining highlighted cellular material along with extracellular 

matrix in the lumen, faint staining for α-SMA could also be observed. Together these findings 

suggest that smooth muscle cells migrate to the lumen then secrete extracellular matrix to form 

the lattice-like network observed in the lumen. 

The most pronounced marker of injury that occurred in all three models investigated in this 

study was adventitial thickening. The adventitia was originally thought to function as purely a 

structural component, having little importance in the vascular response to injury; however 

recent evidence has challenged this. It has been shown that functional changes in the adventitia 

can contribute to coronary artery bypass vein graft failure and neointimal formation following 

angioplasty, through the activation, differentiation, and migration of adventitial fibroblasts 

(Siow et al., 2007; Zalewski et al., 1997; Li et al., 2000; Shi et al., 1996). Factors which are 

thought to activate the adventitial response include increased growth factor release, increased 

extracellular matrix production, and the accumulation of progenitor cells (Shi et al., 1996; Shi et 

al., 1997; Torsney et al., 2005). Despite this, the importance of adventitial derived fibroblasts in 

neointimal formation is controversial, with different laboratories and varying experimental 

techniques producing conflicting evidence. For example, it has been shown that adventitial 

fibroblasts migrate to the lumen and contribute to the neointimal mass in both rodents and pigs.  

In the latter adventitial fibroblasts have been shown to contribute 86% and 43% of total 

neointimal cells (Fleenor et al., 2009; Shi et al., 1996; Scott et al., 1996). However in pigs this 

finding has been contradicted, as a recent study found that adventitial fibroblasts contributed 

less than 2% to the neointimal cell mass (Fleenor et al., 2009). In the same study it was found 

that adventitial thickness increased 3 days post angioplasty, suggesting that following injury 

adventitial fibroblasts proliferate and produce matrix, as opposed to migrating towards the 

lumen.  The adventitial response produced in the present murine organ culture model is not in 

complete compliance with that described for in in vivo models. In this study, it was observed 

that smooth muscle cells are present in some areas of adventitial thickening, suggesting, that 
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instead of migrating towards the lumen, the smooth muscle cells are in fact migrating into the 

adventitia.  This suggests that an essential homing signal is lacking in the in vitro environment, 

for example inflammatory mediators or circulatory cells. This is in agreement with findings, that 

following mechanical injury, leukocytes are essential for intimal growth (Simon et al., 2000; 

Tanaka et al., 1993; Miller et al., 2001). Circulatory cells such as monocytes are recruited 

following release of cytokines from platelets, and have been shown to be important in the 

process of neointimal formation.  Experiments inhibiting macrophage infiltration resulted in the 

abolition of neointimal formation, a reduction in intimal hyperplasia was also observed when 

cytokine release from platelets was inhibited. These findings highlight the importance of 

circulatory cells in the process of neointimal formation (Reviewed in Hui et al., 2008). 

Cannabinoids and organ culture 

This study has demonstrated that both the CB1 and CB2 receptors are present on murine 

vascular smooth muscle cells, as shown by staining of both aortic tissue sections, and sub 

cultured smooth muscle cells. This is similar to findings in human tissue, where CB1 and CB2 

receptors have been located on smooth muscle cells (Rajesh et al., 2008; Sugiura et al., 1998). 

An important finding from this study was the lack of selectivity exhibited by the CB1 receptor 

antibody at high concentrations. In this study the use of CHO cells transfected with only the 

CB2 receptor were used as a negative control for the CB1 receptor antibody. ICC staining 

showed that these cells showed positive staining for the CB1 receptor at dilutions above 1:500. 

For this reason this antibody was always used in more dilute concentrations than 1:500. As a 

similar negative control was not available for the CB2 receptor, a range of dilutions were 

investigated and the lowest dilution to show positive staining was decided as optimum. The lack 

of selectivity of currently commercially available antibodies for cannabinoid receptors has been 

commented on before, since Rajesh et al., 2008a  reported that they could not find any CB2 

receptor antibodies that did not produce positive staining in CB2 receptor knockout mice. It 

should be noted however, that the antibody used in that study was different to that used in this 

present study, they also used their antibody at a concentration of 1:100 which is relatively high 

and there is no mention of whether or not they investigated a range of dilutions.  

 

Aortic segments that were either cultured, or injured prior to culture, both demonstrated a trend 

of increasing AEA concentration, respectively. However, due to the presence of a sample that 

was very close to being removed as an outlier, there was no significant difference between 

samples (it is noteworthy that if the sample in question was removed, then the difference 

between the samples is statistically significant; one way ANOVA). When the same sample 

groups were analysed for 2-AG, a significant increase was observed between both interventions 
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and the control.  There was also a further significant increase between tissues that had been 

cultured and those that had been injured, which is an important observation as it confirms that 

the endocannabinoid response produced by the vessel is in fact a response to injury and not a 

response to culture. These results are similar to findings that 2-AG levels were elevated in a 

mouse model of atherosclerosis and also that endocannabinoid concentration was increased in 

patients with coronary artery disease (Sugamura et al., 2009; Montecucco et al., 2009). The 

findings of this study are thus very important, as they show that the endocannabinoid system in 

the mouse becomes activated following vessel injury in a similar way to that of human tissue (in 

terms of increased endocannabinoid concentration), supporting the further use of the mouse as 

an experimental tool.  

It is well established that endocannabinoid concentration increases in tissues in pathological 

conditions (reviewed recently in Di Marzo, 2008). Endocannabinoids are generally thought to 

have a protective role in disease states, for example cancer, pain and gastrointestinal disorders.  

However in reality, experimental evidence surrounding the pathological importance of 

endocannabinoids is highly conflicting and complex (reviewed recently in Di Marzo 2008; 

Alpini et al., 2009). Nevertheless, the observation that endocannabinoid concentrations are 

increased following vessel injury suggests that they must play a role in the injury response, 

whether it be a positive healing effect or a negative pro-injury effect. Three possible ways in 

which the endocannabinoid system could influence vascular injury are hypothesised below. 

(1) It is widely accepted that in many vessels AEA elicits a relaxant effect on precontracted 

arteries in vitro, and produces a hypotensive effect in vivo although its mechanism of 

action seems to vary depending on the vessel and species (Reviewed in Hillard, 2000; 

Randall et al., 2004; Hogestatt et al., 2002). One possibility is that following injury 

blood vessels synthesise and secrete endocannabinoids to induce vasodilatation.  

 

(2) As discussed in Chapter 1, it has been established that endocannabinoids can affect 

cellular proliferation, having both anti and pro- proliferative effects (De Petrocellis et 

al., 1998; Alpini et al., 2009; Hart et al., 2004). This, along with the recent finding that 

both a CB2 agonist and a CB1 antagonist can inhibit stimulated smooth muscle cell 

proliferation (Rajesh et al., 2008 a & b), and similar results from this study (Chapter 5), 

raises the postulation that endocannabinoids are released to combat the proliferative 

response produced following vessel injury. 

 

(3) Endocannabinoids have been shown to have an effect on cell migration, although the 

majority of research has focused on their effect on immune cells where it has been 
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shown that the two endocannabinoids AEA, and 2-AG, can have dissimilar effects. 2-

AG has been shown to induce migration in a variety of immune cells (Kishimoto et al., 

2003; Walter et al., 2003; Jorda et al., 2002). On the other hand, AEA does not share 

the pro-migratory profile of 2-AG and only weakly stimulates immune cell migration 

(Walter et al., 2003; Jorda et al., 2002). Endocannabinoids can also effect migration of 

cells out with the immune system (Song and Zhong 2000; Blazquez et al., 2003), for 

example embryonic kidney cells (Song and Zhong 2000) and vascular endothelial cells 

(Mo et al., 2004)  This evidence, along with the recent finding that both a CB2 agonist 

and a CB1 antagonist can inhibit smooth muscle cell migration (Rajesh et al., 2008 

A&B), leads to the notion that since cell migration is a pivotal step in neointimal 

formation, endocannabinoids are released following blood vessel injury to either inhibit 

or induce cell migration. 

 

Despite the results of this study showing increased production of endocannabinoids following 

injury, there is no insight as to the location of the source of production. As the vessel is intact in 

culture there would be endothelial cells present on the intima (although these would be minimal 

in injured vessels), smooth muscle cells in the media and adventitial fibroblasts and sensory 

neurones present in the adventitia. It has been shown that endothelial progenitor cells can 

release both AEA and 2-AG in a basal manner, which is increased following stimulation with 

TNF-α (Opitz et al., 2007). This is in agreement with an earlier study which shows that human 

vascular endothelial cells can synthesise and release 2-AG in response to stimulation by 

thrombin (Sugiura et al., 1998), 2-AG has also been found to be released from the endothelium 

of bovine coronary arteries (Gauthier et al., 2005). Evidence also suggests that 

endocannabinoids can be released from sensory neurones, as this has been shown to be the case 

in the CNS (Di Marzo et al., 1994). Evidence of non-endothelium derived endocannabinoids in 

the vasculature has come from a study by Rademacher et al, (2005), who showed that 

endocannabinoid concentration increased in the rat cerebral artery preparations without an 

endothelium. Therefore, although there is no direct evidence confirming that smooth muscle 

cells can produce endocannabinoids, the prospect seems likely. 

Limitations and further work 

A possible limitation to this study may be the strain of mice used. It has been reported that the 

C57BL/6 strain of mice (the strain used in this study) can be resistant to neointimal hyperplasia 

following endothelial denudation in vivo (Hui et al., 2008).  As the organ culture model used in 

this study was dependant on endothelial denudation induced injury it may explain the unusual 

neointimal response observed.  



 177

 

Had time allowed it would have been interesting to determine whether cannabinoid receptor 

expression increased following injury, which could have been assessed by polymerase chain 

reaction (PCR). It may also have been beneficial to confirm the ability of smooth muscle cells to 

produce AEA and 2-AG, which could have been done by measuring the concentration of 

endocannabinoids in conditioned smooth muscle cell medium. 

 

In conclusion it can be seen that the murine organ culture model produces a neointimal response 

that is both reproducible and quantifiable. Despite the neointima being atypical in appearance, 

other markers of injury such as increased medial and adventitial thickness could be measured. It 

can also be concluded that an endocannabinoid system is present, as shown by the presence of 

both types of cannabinoid receptor, and functional, evidenced by the rise in endogenous 

cannabinoid concentrations following vessel culture and injury, in the murine vasculature.  

Together these original findings lead to the hypothesis that endocannabinoids may play a role in 

the vascular response to injury.  
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Chapter 4 

Functional response of murine 

blood vessels to AEA 
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4.1 Introduction 

4.1.1 In vitro effects of endocannabinoids  

The first finding from in vitro studies demonstrating that AEA was a direct vasorelaxant came 

in 1995 from experiments in the rabbit cerebral artery (Ellis et al., 1995). Since then many 

studies have confirmed that endogenous cannabinoids are vasodilators, however to date there is 

no real consensus regarding the molecular target or the mechanism of action for these 

compounds. The confusion over the receptor(s) important in mediating the direct vascular effect 

of AEA still remains, due to the variation in the responses produced by AEA, both between 

species and also between vessels of the same species. For example, AEA produces relaxation in 

the rat hepatic artery but not in the rat carotid artery or aorta (Zygmunt et al., 1999; Holland et 

al., 1999). Some of the key mechanisms of action that have been investigated are the role of the 

endothelium, AEA metabolism to active products, the CB1 receptor, vanilloid receptors and 

novel receptors.  

 

4.1.2 Anandamide Metabolism 

The main route of metabolism for AEA is by the enzyme fatty acid amine hydrolaze (FAAH) 

which hydrolyses AEA to arachidonic acid and ethanolamine (Cravatt et al., 1996). FAAH 

knock out mice demonstrate a 15 fold increase in endogenous AEA concentration, and FAAH 

has been detected in many tissues, including endothelial cells (Cravatt et al., 2001; Deutsch et 

al., 2001). 

There is also evidence that AEA can be metabolised by cyclooxygenase (COX)-2 but not COX-

1, with the major metabolic products being prostaglandin (PG)E2, D2 and F2  ethanolamides 

(Yu et al., 1997; Kozak et al., 2002). This family of prostaglandin ethanolamides are known 

collectively as prostamides. Pharmacological investigation has revealed that prostamides are 

only weakly active at the CB1 and CB2 receptors and are much less active than their 

corresponding PG at the already established prostanoid receptors (Berglund et al., 1999; Ross et 

al., 2002; Woodward et al., 2001). It is also speculated that the COX enzymes only metabolise 

AEA in conditions where FAAH is inhibited (Fowler, 2007).  

In addition to COX enzymes metabolising AEA directly, there is also the possibility that COX 

enzymes can metabolise the arachidonic acid generated from the hydrolysis of AEA by FAAH; 

this in turn results in the generation of vasoactive prostanoids (Grainger et al., 2001; Wahn et 

al., 2005). Understanding the metabolic route of AEA and other endocannabinoids may be 
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07).  

useful experimentally and therapeutically to either increase endogenous cannabinoid activity or 

the production of beneficial metabolites.  

4.1.3 Receptors involved in mediating cannabinoid responses in the vasculature 

To date two types of cannabinoid receptor have been identified and cloned, the CB1 and CB2. 

AEA acts as a partial agonist at both these receptors, although it has slightly greater affinity for 

CB1 (Devane et al., 1992; Munro et al., 1993; Pertwee et al., 1999). There is substantial 

evidence, however, which suggests there are more than just two types of cannabinoid receptor. 

At least two novel receptors are thought to exist; the abnormal cannabidiol receptor (CBx) 

which is located on the endothelium and is activated by abnormal canabidiol (Begg et al., 

2005), and GPR55, an orphan G protein coupled receptor (Ryberg et al., 2007; Baker et al., 

2006). It has not yet been established if GPR55 is present in the vasculature, although there is 

some evidence to suggest its presence in some vascular beds (Baker et al., 2006). The ability of 

AEA to activate GPR55 is controversial and depends on the method used. In experiments using 

ERK phosphorylation as a marker for receptor activation, AEA was found to have no effect up 

to 10µM (Oka et al., 2009), whereas in experiments using  [35S] GTPγS binding assay both 

AEA and 2-AG were found to be potent GPR55 agonists (Ryberg et al., 20

4.2 Aim 

To date rat vessels have been the main subject of study to characterise the response to 

endocannabinoids, however there has been no such effort to characterise the response in the 

mouse. Little is known about the effects of AEA in the mouse vasculature. The previous chapter 

has highlighted both the presence of cannabinoid receptors in the murine vasculature and also 

that following injury the concentration of endogenous cannabinoids increases. The aim of this 

chapter was to investigate whether AEA could elicit a functional response in the murine 

vasculature and identify specific receptors or metabolic involvement.  

 

4.3 Myography Method 

Small vessel myography was used to investigate the vasoactive properties of the endogenous 

cannabinoid AEA. Selective cannabinoid receptor antagonists and enzyme inhibitors were used 

to investigate the pharmacological properties of the response produced by AEA. 

 

Murine aortas and carotid arteries were freshly dissected and mounted onto a dual wire 

myograph (as detailed in chapter 2.2.2). Initial experiments involved one carotid segment and 



one aortic segment being mounted in the bath to determine the optimum vessel under the same 

conditions. In subsequent experiments the main bath was divided into two (by a separator), with 

a carotid arterial segment in each allowing two pharmacological interventions to be performed 

at the same time.  

4.3.1 Normalisation Procedure 

Once the arteries were mounted onto the myograph (described in section 2.2) the vessels were 

then normalised. The purpose of the normalisation process was to determine the internal 

diameter that a vessel mounted on the myograph would have at a transmural pressure of 

100mmHg (IC100). Once this diameter was calculated the vessel was then set to 90% of this 

internal circumference denoted IC1 (Danish Myo Technology, 2003).  

 

The normalisation process was performed by stretching the vessel section in a stepwise manner 

(demonstrated in Figure 4.1), measuring both the micrometer and force readings until the 

pressure exceeded 100mmHg. These values were then converted by the software into values of 

internal circumference (μm) and wall tension (mN/mm) respectively.  
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Figure 4.1 An example of a normalisation trace in the mouse carotid artery. The stepwise 

increments in force correspond to increasing the vessel diameter by 100μm. The arrow indicates 

where the vessel was set to the optimum internal diameter (IC1). 
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The software then plotted wall tension against the internal circumference values and fit an 

exponential curve (Figure 4.2). The IC100 was then calculated from the point on the curve which 

corresponds to 100mmHg, the IC1 was then calculated as follows. 

Ic1 = 0.9 x Ic100. 

 

Figure 4.2 An example of a normalisation curve showing how the optimum internal 

diameter is determined. 

 

 

Once the IC1 value was calculated the vessel diameter was then manually adjusted to the 

micrometer reading calculated by the program corresponding to IC1, (DMT Auto Dual Wire 

Myograph System Model 510A User Manual version 2). 

Following completion of the normalisation process the vessels were then left to equilibrate for 1 

hour. To ensure vessel viability and to sensitise the tissue KCl was added to the bath to produce 

a concentration of 80mM; this was repeated a further 2 times with the tissue being washed with 

fresh Krebs solution in between each addition (example traces demonstrating this process are 

shown in Figure 4.5). Vessels that did not contract to 80mM KCl were deemed not viable, and 

so not included in experimentation. The vessels were then left for between 30 and 45 minutes 

before experimentation began and subsequently between each experiment to allow time for the 

vessels to recover. For concentration responses enough time was left between each drug 

addition to allow any effect to stabilise. Experimentation lasted for around 5 hours. Details of 

vessel characteristics are shown in table 4.1.  
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Internal diameter = IC1 / π 

 

Vessel Mean Length 

(mm) 

Internal 

Diameter (µm) 

Aorta 1.475±0.08 
 

348.58±37.38 

Carotid 1.46 ±0.05 223.81±17.08 

 

Table 4.1 Example measurements of the vessels used in this study. For the aorta a selection 

of 10 experiments were chosen at random and the vessel length noted and the internal diameter 

calculated as shown above. For the carotid artery 20 experiments were picked at random and the 

vessel length noted and internal diameter calculated. Values shown are mean ±SEM. 

4.4 Experimental Protocols 

4.4.1 Determination of optimum contractile agent 

In order to investigate the relaxant effect of AEA, the vessels had to be precontracted. To 

determine the optimum agent for this purpose the effects of three well established contractile 

agents KCl, 5HT and U46619 (a thromboxane A2 (TXA2) agonist) were investigated. Once the 

aortic tissue was successfully mounted and normalised the tissue segments were sensitised to 

KCl as described in the method section 3.3.1. The tissue was then left to stabilise under resting 

tension for 1 hour. Cumulative concentration responses to KCl (3x10-2M – 1.6x 10-1M), 5-HT 

(10-8M – 3x10-5M) and U46619 (10-9M-3x10-6M) were then obtained. Between each addition 

the contraction was left to reach a plateau to allow for accurate measurement. Results from these 

preliminary experiments determined that U46619 was the optimum contractile agent at a 

concentration of 5x10-7M and was subsequently employed throughout the study to precontract 

the tissue. 

 

4.4.2 Production of relaxant responses 

As relaxations in blood vessels are often induced by the endothelium, it was important to ensure 

endothelial viability in the vessel preparations. In order to confirm the functionality of the 

endothelium the effects of two endothelium dependent vasodilators, carbachol and calcimycin 

were investigated (Angus et al., 1983; Singer et al., 1982). Aortic segments were precontracted 



 184

with U46619 (5x10-7M) and allowed to stabilise. Cumulative concentrations of carbachol (10-

5M- 3x10-2M) were then added to the bath, allowing adequate time between each addition for 

the relaxant effect to stabilise. The tissue was then washed 3-4 times with fresh Krebs solution 

and left to rest for 1 hour. This process was then repeated with calcimycin (10-9M -3x 10-5M). 

Drug solutions were made up daily from stock solutions and diluted in distilled water.  

 

4.4.3 SNP relaxations 

To confirm that the optimum resting tension determined by the normalisation process was not 

so high as to impede vessel relaxations in either the aorta or carotid artery, the NO donor, 

sodium nitroprusside (SNP), was added to the bath to relax the vessel. Following pre-

contraction with U46619 (5x10-7M) cumulative concentration responses were obtained to SNP 

(10-9M-3x10-5M). Solutions of SNP were made up daily from a stock solution and diluted with 

distilled water. 

 

4.4.4 Vessel responses to anandamide 

To investigate the effect of AEA on the murine carotid artery and aorta, an artery segment from 

each vessel was mounted in the bath, the vessels were precontracted with U46619 (5x10-7M) 

and left to reach a plateau. Once the contraction had reached its maximum, cumulative 

concentrations of AEA were added to the bath (10-9M - 3x10-5M). Further experiments using 

enzyme inhibitors or antagonists were performed in the carotid artery. Enzyme inhibitors and 

antagonists were added immediately following U46619 contraction and the tissues left to 

incubate for at least 15 minutes before the first concentration of AEA was added to the bath.  

 

4.4.5 Vessel responses to the CB1 receptor agonist ACEA 

As the CB1 receptor antagonist AM251 attenuated the relaxant response produced by AEA in 

the murine carotid artery, the effects of CB1 activation by ACEA were investigated. To 

investigate the effect of CB1 receptor activation, carotid artery segments were mounted onto the 

myograph normalised and sensitised (as described in section 3.3). The vessel was then 

precontracted using U46619 (5x10-7M). Once the contraction had reached its maximum and 

stabilised cumulative concentrations of ACEA were added to the bath (10-9M - 3x10-5M). 
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4.4.6 Vessel responses to the endogenous cannabinoid virodhamine 

The endogenous cannabinoid virodhamine (Porter et al., 2002) has been identified as a potent 

agonist of the novel cannabinoid receptor GPR55 (Ryberg et al., 2007), and is also speculated to 

act at the novel abnormal canabidiol receptor (Ho et al., 2004). In order to investigate whether 

activation of these receptors could induce a functional response in the carotid artery, vessel 

sections were precontracted with U46619 (5x10-7M) and then cumulative concentrations of 

virodhamine (10-9M - 3x10-5M) were added to the bath.   

4.5 Drugs 

The drugs used in this chapter were made daily from  stock solutions which, unless otherwise 

stated, were kept aliquoted in 1.5ml tubes at -20C; concentrations, solvents and functions of 

agents are all detailed below. Prior to experimentation drug solutions were kept on ice but 

allowed to reach room temperature before addition to the myograph bath. In experiments using 

inhibitors or antagonists a control experiment of AEA+URB597 was always performed to 

ensure vessel viability. 

 

 KCl (Sigma) salt was dissolved in distilled water to a stock solution of 2M this was then 

diluted daily to give the appropriate concentration. 

 5-HT (Sigma) was dissolved in distilled water to a stock solution concentration of 1x10-2M 

this was diluted with distilled water to provide the range of concentrations required for the 

concentration response studies. 

 U46619 (Sigma) was made to a stock solution of 1x10-3M in ethanol, this was then diluted 

to 1x10-4M in distilled water then aliquoted into 1.5ml epindorffs then frozen. Concentration 

responses were obtained in the range of 1x10-9M – 3x10-6M. A bath concentration of 5x10-7 

was used as a contractile agent. 

 Calcimycin (Sigma): An endothelium dependent vasodilator was dissolved in ethanol to a 

stock solution concentration of 1x10-2M, this was subsequently diluted in distilled water. In 

concentration responses a bath concentration range of 1x10-9M – 3x10-5M was investigated. 

 Carbachol (Sigma): An endothelium dependent vasodilator was dissolved in distilled water 

to a concentration of 1M stock solution. This was used at a concentration range of 1x10-4M-

3x10-2M. 

 SNP (Sigma): A NO donor which produced vasodilation was diluted in distilled water to a 

stock concentration of 1x10-2M. The stock solution was diluted in distilled water a bath 

concentration range of 1x10-9M – 3x10-5M was investigated. 
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 AEA in Tocrisolve (Tocris): 10mg of AEA was dissolved in 1ml of Tocrisolve (a water 

soluble emulsion consisting of a 1:4 ratio of soya oil/water that is emulsified with the block co-

polymer Pluronic F68.). This was then diluted in distilled water to a stock solution of 1x10-3M. 

The stock solution was aliquoted into 1ml samples and stored at 4C. Before experiments the 

stock solution was diluted in distilled water to appropriate concentrations, bath concentrations 

of 1x10-9M – 3x10-5M were investigated. 

 URB597 (Caymen Chemical): A FAAH inhibitor. This was diluted in ethanol to a stock 

solution of 2x10-3M. This was diluted in distilled water before use to produce a bath 

concentration of 1x10-7M. 

 SC560 (Tocris): A COX-1 enzyme inhibitor. This was dissolved in ethanol to produce a 

stock solution of 2x10-5M. This was diluted prior to experiments in distilled water to produce a 

bath concentration of 1x10-7M. 

 DUP697 (Tocris): A COX-2 inhibitor. This was dissolved in ethanol to a stock solution of 

2x10-5M, this was diluted prior to experiments in distilled water and used at a bath 

concentration of 1x10-7M. 

 AM251 (Tocris): A CB1 receptor antagonist. 10mg was dissolved in ethanol to produce a 

stock solution 1x10-4M. This was diluted prior to experiments in distilled water to give a bath 

concentration of 1x10-6M. 

 AM630 (Tocris): A CB2 receptor antagonist. 10mg was dissolved in DMSO to produce a 

stock solution of 1x10-2M this was diluted prior to experiments in distilled water to allow a 

bath concentration of 1x10-6M. 

 ACEA (Tocris): A CB1 receptor agonist. 5mg was dissolved in ethanol to produce a stock 

solution of 1x10-2M, prior to experiments this was diluted in distilled water, bath concentration 

of 1x10-9-3x10-5M were investigated. 

 Virodhamine (Tocris): An endogenous cannabinoid. 5mg was diluted in ethanol to produce 

a stock solution of 1x10-2M, this was then diluted in distilled water prior to experiments, 

concentrations of 1x10-9-3x10-5M were investigated. 

4.6 Data analysis and Statistics 

The values recorded for each concentration point were based on an average reading of trace 

values over a 15 second period before the next addition to the bath. Experiments were 

disregarded if total relaxation was less than 5%, as this could purely be attributed to loss of tone 

over time. An example time control trace and the values recorded are shown in Figure 4.3 and 

Table 4.1. Experimental data was also disregarded if the values were out with the range of ± 2 x 

St Dev, or the vessel was non responsive to KCL, or if the contraction to U44619 was less than 

1mN.  



 

All results are shown as the mean values either + or - SEM (for clarity of graphs error bars are 

only shown in one direction); n= the number of mice used. Data shown regarding vessel 

contraction is shown as a mean of the response produced in mN, and data showing vessel 

relaxation is presented as % relaxation of the U46619 induced contraction. A two way repeated 

measures ANOVA with Bonferroni post test was used to analyse the data P<0.05 (*) was taken 

as significant, P<0.01 (**). 

500 sec

1m
N

 

Figure 4.3 An example trace of a time control experiment. Vessels were pre-contracted with 

5x10-7M of U46619 then left for a period of time that was equal to that required to add all the 

concentrations of AEA (approximately 30 minutes) in a concentration response. URB597 (1x10-

6M) was present during the control time. 

 

Time Control % relaxation 

1 5.67 

2 -3.3 

3 11.07 

4 3.85 

Mean 4.32 ± 2.56 

 

Table 4.2 The % relaxation values produced by the time controls. Vessels were pre-

contracted with 5x10-7M U46619. Values are shown as % relaxation. n=4 
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4.7 Results 

4.7.1 Determination of optimum KCl sensitisation concentration  

Increasing concentrations of KCL increased the magnitude of contraction produced by the aortic 

tissue (Figure 4.4 n=6). The contraction began to plateau at approximately 60mM before 

reaching a maximum contraction of 5.08±0.958mN at 160mM. A sub-maximal concentration of 

80mM was chosen as the optimum concentration to sensitise the vessel and used in all 

subsequent experiments. Example traces demonstrating tissue sensitisation at 80mM in both the 

aorta and carotid artery can be visualised in Figure 4.5. 

 

4.7.2 Determination of optimum contractile agent 

Both 5-HT and U46619 produced concentration dependent contractile responses which 

produced a maximum response of 3.06±0.39nM and 13.16±2.7nM, respectively (Figures 4.6 

and 4.7 n=4). As U46619 produced a contraction that was significantly greater in magnitude 

(P<0.05 Student’s t test) compared to 5-HT, it was deemed the optimum contractile agent 

(Figure 4.8). A sub maximal concentration of 5 x 10-7M was employed throughout the study. 

 

4.7.3 Determination of relaxant ability of blood vessel sections and endothelial integrity 

Carbachol produced a biphasic concentration dependent relaxation (Fig 4.9 n=3) which peaked 

at 40% (1x 10-2M), above this concentration the relaxant response decreased with increasing 

drug concentration. Calcimycin produced a concentration dependent relaxation up to a 

concentration of 10-6M, where relaxation reached a peak of 34% (Figure 4.10 n=3). Above this 

concentration the relaxation produced declined to 0% at concentrations greater than 10-5M. The 

nitric oxide donor, SNP, produced a concentration dependent relaxation with a peak relaxation 

of 60% at a concentration of 3x10-5M n=2 (Figure 4.11).  
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Figure 4.4 Concentration response curve to increasing concentrations of KCl. Contraction 

was measured as a mean increase in tension mN + SEM, n = 6. 
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Figure 4.5 KCL sensitisation of vessels. Contractions induced by 80mM KCl in the aorta (A) 

and the carotid artery (B) performed prior to experiments to sensitise the tissue and ensure tissue 

viability. 
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Figure 4.6 Concentration response curve to 5-HT in murine aorta. EC50 calculated from 

non linear curve fit using a variable Hill slope EC50 2.2 x 10-5M. Values shown are mean 

increase in tension +SEM, n=4. 
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Figure 4.7 Concentration response curve to U46619 in murine aorta. EC50 calculated from 

non linear curve fit using a variable Hill slope EC50 1.34 x 10-7M. Values show mean increase 

in tension + SEM, n= 4
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Figure 4.8 A comparison of the Emax values for 5-HT and U46619. Values obtained from 

concentration responses shown previously (Figure 4.6 and 4.8). Values represent mean increase 

in tension +SEM. P<0.05 Students t test. 
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Figure 4.9 Concentration response curve to carbachol. Data shown as mean % relaxation of 

U46619 induced contraction + SEM, n =3. 
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Figure 4.10 Concentration response curve to calcimycin. Data shown as mean % relaxation 

of U46619 induced tone + SEM N=3. 
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Figure 4.11 Concentration response curve of SNP. Relaxation produced by increasing 

concentrations of SNP in the aorta. n=2 each data set shown. Data shown as % relaxation of 

U46619 induced tone. 
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Figure 4.12 Example traces of SNP induced relaxations. A sample trace of the effects of SNP 

on the aorta (A) and mouse carotid artery (B).  
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4.7.4 Assessment of the relaxant response to anandamide and effect of FAAH inhibition in 

both the mouse aorta and carotid artery. 

Increasing concentrations of anandamide produced a concentration dependent relaxation of both 

the thoracic aorta and carotid artery with Emax values of 29.09±7.09% and 13.59±4.67% 

respectively n=5 (Figure 4.13 and Figure 4.14).  In the carotid artery the magnitude of the 

relaxation was increased in the presence of the FAAH inhibitor URB597 (1x10-7M), albeit not 

enough to generate statistical significance, however the Emax value increased to 34.32±14.1% 

n=5. Although statistically (Two way ANOVA with Bonferroni post test) it appeared that 

FAAH had no impact on the relaxant response of anandamide in either vessel, it was decided 

that all subsequent experiments would include URB597 to eliminate any possible intervention 

from FAAH and ensure the highest available concentration of AEA. 

 

To determine the optimum vessel to use, the relaxant responses of AEA in both the aorta and 

the carotid artery in the presence of URB597 were compared (Figure 4.15). The response 

produced in the carotid artery (Emax 34.32 ±14.1% n=5) was marginally larger than that in the 

aorta (Emax 32.9±8.8% n=6), and showed greater sensitivity at lower concentrations, for this 

reason the carotid artery was used in all subsequent experiments (P>0.05, Two way ANOVA 

with Bonferroni post test). Sample traces illustrating the effect of AEA on both the carotid 

artery and the aorta can be seen in Figure 4.16 

 

4.7.5 The effects of COX-1 and COX-2 inhibition on the relaxant response to anandamide   

Anandamide in the presence of URB597 produced a relaxation that reached a maximum of 

20.4%, this was not affected by the presence of a COX1 inhibitor (SC560 1x10-6M) n=7. In 

these experiments it can also be observed that the vehicle control (Tocrisolve at the same 

concentration range as AEA) showed no relaxant effect; statistical analysis could not be 

performed due to the small n number (n=2) of the vehicle control (Figure 4.17). AEA produced 

a relaxation with an Emax of 22.3±5.42% (Figure 4.18); this was unaffected by the presence of a 

COX-2 inhibitor (DUP697 1x10-6M, Emax 22.42±8%) n=6. P>0.05 (Two way ANOVA with 

Bonferroni post test). 
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Figure 4.13 Concentration response curve to AEA alone and in the presence of URB597 in 

the mouse aorta. Results are shown as mean % relaxation of U46619 (5x10-7M) induced tone 

+SEM, n=5 for AEA alone n= 6 for AEA +URB597. 
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Figure 4.14 Concentration response curve to AEA alone or in the presence of  URB597 in 

the mouse carotid artery. Results are shown as mean % relaxation of U46619 (5x10-7M) 

induced tone + SEM, n=5 P>0.05 (Two way ANOVA with Bonferroni post test). 
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Figure 4.15 Comparison of AEA concentration response curves in the carotid artery and 

thoracic aorta in the presence of URB597. URB597 was included at a concentration of           

1x10-7M. Results are shown as mean % relaxation of U46619 (5x10-7M) induced toneSEM. 

n=6 for aorta, n =5 for carotid P>0.05 (Two way ANOVA with Bonferroni post test). 
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Figure 4.16 Responses produced in response to AEA in the aorta and carotid artery. 

Original traces of the response produced by AEA in the aorta (A) and carotid artery (B) vessels 

were pre-contracted with U46619 (5x10-7M) and URB597 (1x10-7M)  was present in both 

responses. 
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Figure 4.17 Concentration response curve to AEA alone and in the presence of a COX-1 

inhibitor. SC560 (1x10-6M), and URB597 (1x10-7M) were included in the bath. Results are 

shown as mean % relaxation of U46619 (5x10-7M) induced tone ± SEM n = 7 for AEA , n = 7 

for SC560  and n = 2 for vehicle (Tocrisolve).  
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Figure 4.18 Concentration response curve to AEA alone and in the presence of the COX-2 

inhibitor DUP697. DUP697 was used at a concentration of (1x10-7M) URB596 (1x10-6M) was 

included in all experiments. Results are shown as mean % relaxation of U46619 (5x10-7M) 

induced tone ±SEM, n= 6 for all. 
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4.7.6 The effects of the CB1 antagonist AM251 on the vasorelaxant response produced by 

AEA 

AEA produced a maximum relaxation of 22.4±3.6%, this was significantly greater (at 

concentrations greater than 1x10-6M) than the vehicle control which produced a maximum 

relaxation of 11.3±3.66%. It can be seen that the relaxation produced by AEA was significantly 

attenuated (at a concentration of 1x10-5M) in the presence of the CB1 receptor antagonist 

AM251 (1x10-6M), reducing the maximum relaxation to 12.10±3.87% (Figure 4.19). There was 

no significant difference between the response produced by AEA in the presence of AM251 and 

the vehicle control (Two way ANOVA with Bonferroni post test n=7). 

4.7.7 The effect of the CB2 antagonist AM630 on the vasorelaxant response produced by 

AEA 

AEA produced a maximum relaxation of 19.56±1.60% (Figure 4.20); this was greater than the 

response produced by the vehicle (10.8±3.4) but did not reach statistical significance due to the 

large standard errors. The presence of the CB2 antagonist had no effect on the response 

produced by AEA (18.8± 4.6%) n=5. 

 

4.7.8 The effect of the CB1 agonist ACEA on the murine carotid artery  

Increasing concentrations of the CB1 agonist ACEA (Figure 4.21) produced a contractile 

response in carotid artery segments (-19.87±1.69%) which was enhanced in the presence of the 

CB1 antagonist AM251 (-24.59±2.52%) n=5. The vehicle control (ethanol) also produced a 

contractile effect (-21.92±2.84%) which was indistinguishable from that produced by ACEA 

n=2.  

 

4.7.9 The effect of the endogenous cannabinoid virodhamine on the murine carotid artery 

Cumulative concentrations of virodhamine produced a small relaxation of 9.9±3.4% (Figure 

4.22). However, the relaxation produced by virodhamine alone n=8, and in combination with 

the CB1 antagonist AM251 (11.70±2.65%) n=6, were indistinguishable from the ethanol vehicle 

control (9.3±2.3) n=4. 
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Figure 4.19 Concentration response for AEA alone and in combination with the CB1 

antagonist AM251. Results are shown as mean % relaxation of U46619 (5x10-7M) induced 

tone ± SEM n=7 for all concentrations.* P <0.05 compared to AEA+ AM251, $$ = P<0.01, $ = 

P<0.05 AEA compared to vehicle. 

 

 

 

 

 

 

 

 202



10-9 10-8 10-7 10-6 10-5 10-4

-5

0

5

10

15

20

AEA

AEA+ AM630

Vehicle

log [AEA] M

%
 R

e
la

x
at

io
n

 

 

Figure 4.20 Concentration response curve to AEA alone and in combination with the CB2 

antagonist AM630. Results are shown as mean % relaxation of U46619 (5x10-7M) induced 

tone ± SEM. n= 5 for all. P > 0.05  
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Figure 4.21 Concentration response curve for ACEA alone and in combination with the 

CB1 antagonist AM251. Results are shown as mean % relaxation of U46619 (5x10-7M) 

induced tone ± SEM n=5, n=2 for vehicle. 
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Figure 4.22 Concentration response for virodhamine alone and in the presence of AM251. 

Results are shown as mean % relaxation of U46619 (5x10-7M) induced tone±SEM n=8 for 

virodhamine, n= 6 for virodhamine +AM251 and n=4 for vehicle (ethanol). 
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4.8 Discussion 

The aim of this study was to investigate whether AEA could elicit a functional response in the 

murine vasculature and to determine which receptors were involved. To maximise the 

concentration of AEA available to the tissue and ensure any effect observed was not due to the 

production of a vasoactive metabolite its metabolic breakdown was also investigated.  AEA 

produced a small relaxation which increased in magnitude in the presence of a FAAH inhibitor. 

This, alongside the results of the experiments using COX inhibitors confirms that the response 

produced by AEA was not due to the production of an active metabolite. The relaxation 

produced by AEA was attenuated by a CB1 receptor antagonist, while a CB2 antagonist had no 

effect. 

Optimum resting tension and determination of contractile agent 

The thromboxaneA2 (TXA2) agonist U46619 produced a contraction that was of much greater 

magnitude than 5-HT and for this reason was chosen as the contractile agent to be used 

throughout this study. From studying the concentration response curve a concentration of 5x10-

7M was identified as optimum and used to precontract the vessels in all subsequent experiments. 

These initial optimising experiments were performed in only the mouse aorta, the carotid artery 

was used for the majority of experiments and therefore optimisation experiments should also 

have been performed in the carotid artery. Nonetheless U46619 (5x10-7M) provided a large 

enough contraction to allow the effect of vasodilators to be investigated. From the literature it 

can be seen that U46619 is commonly used to precontract vessels, some examples include the 

rat mesenteric arterial bed (a concentration of between 10-100nM), the rat aorta and the sheep 

coronary artery (O’Sullivan et al., 2005; Wheal et al., 2007;  Grainger et al., 2001). An 

alternative contractile agent used to contract the rat thoracic aorta and rat mesenteric arterial bed 

is methoxamine (Wheal et al., 2009; Ho et al., 2004). In a study using murine mesenteric 

arteries phenylephrine was used as a contractile agent (Johns et al., 2007). 

Endothelium integrity 

As many agents produce relaxation through direct action on the endothelium, it was important 

to ensure that following set up of the vessels on to the wire they retained an intact and 

functioning endothelium. Two endothelium dependent vasodilators were investigated to 

determine which one would be most suitable to determine endothelium viability. Carbachol, a 

muscarinic agonist, produces vasodilatation by endothelial release of NO. Experiments in this 

study demonstrated a maximum relaxation response of just over 40%. This is much lower than 

expected as administration of carbachol or ACh can induce complete reversal of the contraction 

(Zhou et al., 2005; Van Hove et al., 2009). At concentrations above 10mM carbachol reduced 
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 al., 2005).  

relaxation may be due to a counter contractile effect. It has previously been reported that in the 

murine vasculature ACh can produce two opposing effects, the first being an endothelium 

dependent relaxation which is NO mediated, and the second being an endothelium dependent 

contraction which is reliant upon COX metabolism of arachidonic acid and activation of the 

TXA2 receptor. The contractile effect produced by ACh was of greatest magnitude in the 

carotid artery followed by the aorta (Zhou et al., 2005). It has also been found that ACh can 

induce vasoconstriction through activation of the muscarinic receptors present on smooth 

muscle cells (Zhou et

  

Calcimycin is a calcium ionophore that produces vasodilatation by inducing pore formation in 

the endothelium allowing influx of Ca2+ resulting in the release of NO and subsequent 

relaxation. Previous studies have demonstrated that the effects of calcium ionophore are purely 

endothelium dependent and rely on nitric oxide (Furchgott et al., 1983). Results of this study 

have shown that calcimycin produced a maximum relaxation of approximately 40%, at high 

concentrations the relaxation produced was reduced; a plausible explanation for this could be a 

counter acting contractile response produced by Ca2+ entry into the smooth muscle cells 

resulting in contraction.  

 

Both calcimycin and carbachol produced a maximum relaxation of 40%, this is much lower than 

expected. In a study using the rat mesenteric artery, vessel sections were only included if the 

relaxation produced by 10µM carbachol was 90% or greater (Ho et al., 2004) however, in a 

study using mouse aorta, vessels were deemed viable if a relaxation of more than 50% was 

produced (Sennoun et al., 2009). Experiments using the NO donor, SNP, completely reversed 

vessel contraction confirming that the resting tension (predetermined through the normalisation 

process) was not too high as to inhibit the vessel sections from relaxing. It can therefore be 

suggested that either the aorta, being a large conduit vessel may have had a weak NO generating 

capacity, or that the endothelium had lost some of its integrity. As the carotid artery was used 

for the majority of experiments, concentration responses to both carbachol and calcimycin 

should have been performed in that vessel as well. Functioning endothelium tests were not done 

routinely as responses observed were minimal, if this was due to loss of endothelium integrity it 

could explain the large standard error observed in subsequent experiments. The injury to vessels 

induced during the mounting process could have been minimised by using smaller diameter 

wire. 
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Effects of AEA on vessel tone 

As there is known to be both a wide species and vessel (within the same specie) variability in 

the responses produced by AEA the experiments were performed in both the murine carotid 

artery and thoracic aorta. This study has shown that a relaxation of approximately 20% occurs in 

both vessels. Although there is no evidence of previous studies for comparison these results are 

in contradiction to studies in the rat carotid artery where methanandamide (metabolically stable 

form of AEA) along with HU210 (potent CB1 and CB2 agonist) failed to have any relaxant 

effect (Holland et al., 1999). In the rat aorta however, a similar response of 20-25% relaxation is 

produced in response to Δ9THC (O’Sullivan et al., 2005). A relaxation of around 20% is much 

smaller than AEA responses observed in other animals which in resistance vessels can reach 

approximately 100% (Harris et al., 2002; Zygmunt et al., 1997). 

It is known that AEA is readily metabolised by the enzyme FAAH. For this reason 

concentration responses were also obtained in the presence of the specific FAAH inhibitor, 

URB597. FAAH inhibition had no significant effect on the AEA response in either vessel.  It 

has been suggested that the relaxation produced by AEA is a result of its metabolism into 

arachidonic acid, which then acts as a precursor for the synthesis of vasoactive prostanoids such 

as prostacyclin (Pratt et al., 1998). The results obtained in this present study suggest that this is 

not the case for either vessel in the mouse. This is similar to previous studies in our laboratory 

in the porcine coronary artery (Skene et al., 2006). Nevertheless, to eliminate any mouse to 

mouse variability in the levels of FAAH activity, all subsequent experiments were undertaken in 

the presence of URB597. 

COX Metabolism 

As detailed in chapter 1, due to its chemical composition AEA is susceptible to COX-2 

metabolism. It has been shown that the products produced by enzymatic oxidation of AEA 

could bind and activate CB receptors (Berglund et al., 1999). This study demonstrates that in the 

mouse carotid artery both COX-1 and COX-2 inhibition had no effect on the relaxant response 

produced by AEA, confirming that vasodilatation produced by AEA is not due to oxidative 

metabolism to an active metabolite. This is in contrast to previous studies in rats which have 

shown that COX-2 inhibition diminishes relaxations produced by AEA but only in female rats 

(Peroni et al., 2007), this study did not separate animals according to gender but this may be an 

area for future work. 
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CB1 and CB2 receptor inhibition 

The presence of a CB1 receptor antagonist (AM251) resulted in an attenuation of the relaxant 

response produced by AEA, which reached significance at the highest concentration. This 

suggests that the response produced by AEA is due to activation of the CB1 receptor. There was 

no statistically significant differences between the responses produced by AEA +AM251 and 

the vehicle, this could mean that the residual relaxation produced in the presence of AM251 was 

in fact just the effect of the vehicle and that AM251 had abolished all effects of AEA, however 

due to lack of significance this cannot be confirmed. The CB2 receptor antagonist AM630 had 

no effect on the AEA response indicating a negligible role for the CB2 receptor in the relaxation 

produced by AEA. Despite this study suggesting a role for the CB1 receptor it may not be the 

only receptor involved, as a significant attenuation was only observed at the highest 

concentration. A number of other experimental studies have demonstrated a lack of involvement 

of CB1 and CB2 receptors in the vascular response to AEA, for example in the rat coronary 

artery and the rabbit aorta (Ford, et al., 2002; Mukhopadhyay et al., 2002). The CB1 antagonist 

SR141716A has been shown to be effective in blocking the effects of AEA in the mouse 

mesenteric arterial system, however the concentration required to inhibit this effect was a lot 

higher than required to block CB1 receptors suggesting that the antagonist was acting on another 

receptor type, possibly the putative “endothelial anandamide receptor” (White et al., 1998; 

Offertaler et al., 2003).  

Studies have suggested that this novel receptor can be activated by abnormal cannabidiol, a 

synthetic analogue of the phytocannabinoid canabidiol, which has been shown to produce 

relaxations in the mesentery of both wild type mice and CB receptor knockout mice (Jarai et al., 

1999; Wagner et al., 1999). The antagonist O-1918 is a proposed antagonist of the endothelial 

AEA receptor (Offertaler et al., 2003) and would thus be a useful tool to investigate the 

receptors mediating the AEA response in the mouse carotid. 

 

The effect of the CB1 agonist ACEA and the endocannabinoid virodhamine 

As inhibition of the CB1 receptor reduced the relaxant response produced by AEA it was 

important to investigate the physiological effect of stimulating the CB1 receptor. Addition of 

ACEA (CB1 agonist) produced a contractile response which could not be distinguished from the 

contractile response produced by the vehicle. Similar observations were made upon 

investigation of virodhamine, the effect of this endocannabinoid could not be separated from the 

relaxant effect of the vehicle, paradoxically the vehicle for both drugs was ethanol. Ethanol 

causes an increase in intracellular calcium in both the endothelial cells and smooth muscle cells 
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resulting in both vasodilatation and vasoconstriction, vasoconstriction was observed in porcine 

pulmonary artery vessels that had been denuded (Lawrence et al., 1998). In another study it was 

found that following vasoconstriction ethanol produced a biphasic change in vascular tone, 

causing an initial vasodilatation followed by vasoconstriction (Lopez-Miranda et al., 2004). To 

observe the true effects of these drugs an alternative solvent would have to be used for example 

DMSO. 

 

Study Limitations 

The active effect of Tocrisolve 

As stated in the method section AEA was dissolved in a water-soluble emulsion called 

Tocrisolve, this was used as a vehicle control although unfortunately not routinely from the 

beginning. It can be seen that in some experiments the effect of the vehicle for AEA is easily 

dismissible, however in the experiments using the CB receptor antagonists a vehicle effect of 

nearly 10% can be observed. This vehicle effect is extremely problematic in a preparation where 

the maximum relaxation observed is only approximately 20%, as it makes investigating any 

possible mechanism involved highly challenging. The AEA response can only be statistically 

separated from the vehicle in the experiments involving the CB1 receptor antagonist. The 

variability in vehicle effect could largely explain the large standard errors observed in all 

experiments in this chapter, and explain why no mechanism of action can be clearly identified.  

As mentioned in data analysis section 4.6 responses were excluded if the maximum relaxation 

produced to AEA was less than 5%. It was noted that 18% of functional vessel segments (as 

determined by KCL and U46619 responses) did not respond to AEA, this finding of AEA non 

responders was also observed in the rat coronary artery, where 30% of samples failed to respond 

to AEA. It was suggested that this may be due to differences in receptor expression (White et 

al., 2001); this may also explain the variability in responses observed in this study. 

 

It has been suggested that the conflicting evidence of mechanisms of AEA responses between 

vessels of the same species and between that of different species could be explained by the 

vehicle used to solubilise AEA. When AEA was dissolved in ethanol no relaxation was 

produced in either intact or denuded aortic rings, however when AEA was solubilised in DMSO 

relaxation was observed in intact vessels but not those that had been denuded (Lopez-Miranda et 

al., 2004). 
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mediated. 

The effects of U46619 on the endocannabinoid system 

As mentioned in chapter 1, endocannabinoids are synthesised on demand by an increase in 

intracellular Ca2+ and activation of signalling cascades.  Vasoconstriction is accompanied by 

increases in Ca2+ this gives rise to the hypothesis that vasoconstrictor agents can lead to 

production of endocannabinoids. Rademacher (2005) have shown that tissue concentration of 

both AEA and 2-AG are increased following incubation with U46619 (the contractile agent 

used in this study), in the mouse cerebral artery. They hypothesise that activation of the TXA2 

receptor initiates production of endocannabinoids which activate the CB1 receptor to “dampen 

its vasoconstriction effect”.  

 

It was not possible in this study to investigate the size of response produced by U46619 in the 

presence of a CB1 receptor antagonist as the antagonist was always added once the contraction 

had reached a maximum. However, if U46619 does interfere with the endocannabinoid system 

it may be a contributing factor to the large standard error observed in these experiments. 

 

In conclusion, AEA produced a small relaxation which increased in magnitude in the presence 

of a FAAH inhibitor. This in combination with the findings from experiments using COX 

inhibitors confirmed that the response produced by AEA was not due to the production of an 

active metabolite. The relaxation produced by AEA was attenuated by a CB1 receptor 

antagonist indicating that the relaxant response produced by AEA was CB1 receptor 
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5.1 Introduction 

5.1.1 Smooth muscle cells and neointimal formation 

The process of neointimal formation is complex and involves a plethora of cell types including 

smooth muscle cells, endothelial cells, platelets and inflammatory cells. Of all these cell types 

the smooth muscle cell is arguably the most important. In physiological conditions smooth 

muscle cells exist in a quiescent state, however following injury induced by either balloon 

angioplasty or insertion of a stent, smooth muscle cells become activated and thus rapidly 

proliferate. The release of vasoactive mitogens such as bFGF, PDGF, FGF (Schwartz et al., 

1995) and inflammatory mediators such as IL- 1 and TNF (Ikeda et al., 1990; Selzman et al., 

1999) all stimulate smooth muscle cell proliferation and therefore enhance neointimal 

formation. Due to their reported cardiovascular (discussed extensively in Chapter 1), anti 

inflammatory, and cardio protective effects (Montecucco et al., 2009), drugs that target the 

cannabinoid system have been proposed as potential therapeutic agents for the prevention and 

treatment of a range of cardiovascular disorders. 

 

5.1.2 Cannabinoids and cell proliferation 

As discussed in Chapter 1, smooth muscle cell proliferation and the inflammatory response are 

key events in both restenosis and atherosclerosis. Therefore, an ideal agent for the treatment of 

these conditions would be one that could target both of these key processes. In 2005 Steffens et 

al, found that treatment of apolipoprotein E knockout mice with 9-THC significantly reduced 

atherosclerotic disease progression. A finding that was attributed to the anti inflammatory 

effects produced by CB2 receptor activation. This study did not however, consider the effects of 

cannabinoids on smooth muscle cells during atherosclerosis. In light of mounting evidence to 

suggest that cannabinoid receptor manipulation exerts anti proliferative effects, it is feasible that 

cannabinoid drugs may present a novel treatment for cardiovascular diseases involving smooth 

muscle cell proliferation. 

 

5.1.2.1 Cannabinoid receptors and intracellular growth signalling pathways 

Both the CB1 and CB2 receptors are G protein coupled, belonging to the Gi/o family (Munro et 

al., 1993). The downstream signalling of these receptors is complex involving inhibition of 

adenylate cyclase (Howlett et al., 1985 a & b), modulation of ion channels (only CB1), and most 

relevant to this chapter, activation of MAPK (Bouaboula et al., 1995). The ability of 

cannabinoids to activate a variety of regulators of cellular growth (discussed in detail in Chapter 
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1), for example ERK, c-jun and p38 (Liu et al., 2000; Rueda et al., 2000) and the AKT/PKB 

pathway (discussed in Chapter 1), indicate that cannabinoids may play an important role in 

cellular proliferation and apoptosis (Guzman et al., 2002). To date, most of our understanding 

of the antiproliferative nature of cannabinoids has come from experiments using cancer cells, 

with only a very few recent studies exploring the ability of cannabinoids to modify smooth 

muscle cell growth and proliferation. 

 

5.1.2.2  Anti-tumour effects of cannabinoids  

The antimitogenic effects of AEA were first investigated on human breast cancer cell lines, 

when AEA (at sub-micromolar concentrations) was found to significantly inhibit the cell cycle 

at the G1-S transition phase (De Petrocellis et al., 1998). This effect was found to be CB1 

mediated and was a result of inhibition of adenylate cyclase, resulting in decreased cAMP levels 

and subsequent inhibition of MAPK.  An antiproliferative effect has also been observed in 

prostate cancer cell lines following treatment with AEA. Micromolar concentrations of AEA 

inhibited EGF induced proliferation in a variety of cancer cell lines, again by G1 arrest 

(Mimeault et al., 2003; Bifulco et al., 2006). Incubation of these cells with AEA for 5-6 days 

caused severe apoptosis, mediated by CB1/2 induced ceramide accumulation.  CB1 receptor 

activation has been found to initiate the generation of ceramide by the hydrolysis of 

sphingomyelin (Kolesnick et al., 1998). Ceramide is known to have an important influence on 

cellular metabolism, however CB receptor activation has been shown to induce sustained 

ceramide synthesis “de novo”, leading to induction of apoptosis through the canonical raf-

MEK-ERK signalling pathway (Galve-Roperh et al., 2000). 

  

Although the majority of evidence points to an antiproliferative effect of cannabinoids, it is 

important to note that in some studies cannabinoids have been found to increase cellular 

proliferation. Δ9- THC (an agonist at both the CB receptors), AEA and HU210 (a potent CB1 

and CB2 receptor agonist) all increased proliferation at nanomolar concentrations (Hart et al., 

2004). This suggests that the CB receptors, by signalling through MAPK and the AKT/PKB 

pathways can initiate cellular proliferation, cause growth arrest, or induce apoptosis, depending 

on the concentration (Bifulco et al., 2006). 

 

5.1.2.3 Cannabinoids and smooth muscle cells 

Since smooth muscle cells replicate like other cells through entry into the cell cycle, there is 

reason to believe that cannabinoids may also influence cell growth by manipulation of the 

regulators of the cell cycle. Indeed two very recent studies have shown in human coronary 
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artery smooth muscle cells that the CB1 antagonist, SR141716A, inhibits PDGF induced 

proliferation and migration by inhibition of Ras and ERK1/2 (Rajesh et al., 2008 b). A study by 

the same group also demonstrated that treatment with a CB2 agonist inhibits TNFα induced 

cellular proliferation and migration, a finding which was ascribed to the inhibition of Ras, p38 

MAPK, ERK 1/2, SAPK/JNK and Akt cellular pathways (Rajesh et al., 2008 a). Beyond this, 

however the influence of cannabinoids receptor agonists on smooth muscle cell growth is a 

relatively unexplored area. 

 

5.2 Aim 

In light of the findings in Chapter 3 that confirmed the presence of both the CB1 and CB2 

receptors on murine vascular smooth muscle cells, alongside the observations that 

endocannabinoid concentration increases in tissue subjected to injury, suggests that 

cannabinoids may be able to influence smooth muscle cells. The aim of this study was to 

determine the effects of selective cannabinoid receptor agonists acting at the CB1, CB2 and the 

orphan GPR55 (proposed as a third CB receptor; Baker et al., 2005; Ryberg et al., 2007), as 

well as the endogenous cannabinoids AEA and 2-AG on vascular smooth muscle cell 

proliferation. ERK1/2 phosphorylation and BrdU incorporation were used as tools to detect 

smooth muscle cell proliferation. The effect of the agents on cell viability was also investigated 

using the MTT assay.  

 

5.3 Method 

5.3.1 Optimisation of PDGF concentration and incubation time for ERK1/2 ELISA 

Primary smooth muscle cells were grown to 90% confluence, quiesced overnight then treated 

with 10, 30 or 100ng/ml PDGF for 20 minutes. The cells were then harvested and used in both 

the Phospho and Total ERK 1/2 ELISAs (as described in section 2.5). From these experiments 

(section 5.5.1), 30ng/ml was decided to be the optimum concentration and was therefore used in 

all subsequent ERK experiments. To determine the optimum incubation time to ensure maximal 

ERK phosphorylation, cells were incubated with 30ng/ml PDGF for either 10, 15 or 20 minutes. 

Again, based on the data reported in section 5.5.1, 15 minutes was identified as the optimum 

incubation time and was utilised in all further experiments. 
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5.3.2 Effects of cannabinoid treatment on PDGF induced ERK 1/2  phosphorylation 

To determine the effects of cannabinoids on ERK1/2 phosphorylation the CB1 agonist ACEA, 

the CB2 agonist JWH015 and the GPR55 agonist 0-1602 were investigated at a concentration 

range of 1x10-8 to 1x10-5M. The FAAH inhibitor URB597 was also investigated at a single 

concentration (1x10-7M as used previously in myography studies) to determine the effects of 

raising endogenous cannabinoid levels. Quiesced cells were treated with the desired 

concentration of drug for 20 minutes before subsequent stimulation with 30ng/ml of PDGF for 

15 minutes. Table 5.1 summarises the treatment protocols for each drug intervention. 

 

Following completion of drug incubation and cell stimulation, cells were harvested by scraping 

then lysed by addition of lysis buffer as detailed in section 2.5.3.  Cell lysates were then  

analysed for both phospho ERK1/2 and total ERK1/2 by ELISA (section 2.5.5-2.5.6.). To allow 

comparison of data a Bradford assay was performed on the cell lysates so that results could be 

standardised relative to the quantity of protein in each sample. Figure 5.2 shows an example of a 

standard curve used to calculate concentrations of the unknown samples. 

 

 

Flask Number Cell treatment 

1 Cells without PDGF (un-stimulated control) 

2 Cells +  30ng/ml PDGF (stimulated control) 

3 Cells + 30ng/ml PDGF + vehicle 

4 Cells + 30ng/ml PDGF + Drug (1x10-8)M 

5 Cells + 30ng/ml PDGF + Drug (1x10-7)M 

6 Cells + 30ng/ml PDGF + Drug (1x10-6)M 

7 Cells + 30ng/ml PDGF + Drug (1x10-5)M 

 

Table 5.1 Treatment protocols for drug interventions required for a single experiment.  

Experiments were performed 3 times using cells from different mice and were measured in 

duplicate. 

 

.  



 

Figure 5.1 An example of the plate lay out used in the ELISAs and the typical 

arrangement of samples. Column 1 contained blanks (BL); Columns 2 & 3 contained 

standards (0-12ng/ml); Columns 4 & 5 contained drug treatments (unstim = cells untreated with 

PDGF; stim = cells treated with PDGF; veh = vehicle). 

 

Optical Density 

[ERK1/2] ng/mL

Figure 5.2 An example of a standard curve produced from phospho ERK standards. The 

absorbance of the standards was plotted against Phospho ERK concentration (ng/ml). From this 

curve the concentration of the unknown samples were calculated. 
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5.3.3 Data Expression of ERK1/2 phosphorylation 

To allow accurate comparison of samples, results were normalised in accordance to their 

individual protein concentration (as established by Bradford Assay) to a uniform 2mg/ml as 

shown below, this was performed for both the phospho and total ERK samples. 

 

[Phospho ERK] at 2mg/ml =                  2                 X    [Phospho ERK]                             

                                                 [Protein of sample] 

 

The normalised data was then expressed as % phosphorylation, this was calculated as follows. 

  

   % Phosphorylation =      [Phosphorylated ERK]      X  100 

                                                [Total ERK] 

Data was then expressed as fold change in % phosphorylation compared to un-stimulated 

control. 

 

Fold change =      % phosphorylation of drug treatment 

                             % Phosphorylation of un-stimulated control 

 

5.3.4 Optimisation of PDGF concentration, BrdU incorporation time and cell seeding 

density for BrdU assay. 

Cells were seeded in a 96 well plate at a density of 2000 cells/well and 5000 cells/well, left to 

adhere for approximately 5 hours then quiesced overnight as detailed in section 2.5.7.1. To 

determine the concentration of PDGF-BB that would produce maximal stimulation of cells and 

the optimum BrdU incubation time, cells were stimulated with 10, 30 or 100ng/ml PDGF-BB 

for 24 hours then incubated for either 12 or 24 hours with BrdU reagent.  The experiment was 

then completed as detailed in method section 2.5.7.2. From these experiments a concentration of 

30ng/ml PDGF-BB was identified as the optimum stimulatory concentration, 5000 cells/ well 

was determined the optimum seeding density and a BrdU incubation time of 24 hours was 

chosen and utilised in all subsequent experiments (section 2.4.2). 

 
5.3.5 Rationale for choice of cannabinoid ligands to study BrdU incorporation 

CB2 agonists:  The data generated from the ERK experiments demonstrated that the CB2 

agonist JWH015 (1x10-5M) had the greatest effect on ERK phosphorylation.  For this reason an 

equimolar concentration of the CB2 agonist JWH015 (1x10-5M), was used as a starting point 

along with an additional CB2 agonist JWH133 (1x10-5M), to confirm that any effects seen were 
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due to an action at CB2 receptors. In addition, the CB2 antagonist AM630 (1x10-6M), was 

studied alone and in the presence of each of the CB2 agonists to further confirm the CB2 

receptor as the site of action. However, as the two CB2 receptor agonists did not produce similar 

effects (Figure 5.1.1) a further series of experiments employing a wider concentration range of 

JWH133 was subsequently performed (1x10-8-1x10-5M).  

 

CB1 agonist: As the ERK phosphorylation data produced following cell treatment with CB1 

agonist ACEA was quite variable, the effect of ACEA was then confirmed using the BrdU assay 

at the same concentration range (1x10-8-1x10-5M) rather than using a single concentration.   

 

Endocannabinoids: Since the FAAH inhibitor URB597 did not produce any effects in the ERK 

phosphorylation assay, the direct effects of the endocannabinoids AEA and 2-AG on BrdU 

incorporation were investigated at a concentration range of 1x10-12 to 1x10-5M. 

 

5.3.6 Cannabinoid treatment of cells 

The 96 well plates containing quiesced cells were incubated with the desired concentration of 

drug for 15 minutes, after which time the media was then supplemented with 30ng/ml PDGF-

BB. The cells were then left to incubate for 24 hours at 37º C and 5% CO2. Following a 24 hour 

incubation BrdU reagent was prepared (as detailed in section 2.9.5), added to the cells, and left 

to incubate for a further 24 hours at 37º C and 5% CO2. For all sample groups an un-stimulated 

control, a stimulated control and a vehicle control were included as detailed in Table 5.2.  

 

Un-stimulated Control Cells + 0.3% serum media 

Stimulated control Cells + PDGF 

Vehicle Control Cells+ PDGF + vehicle 

Drug sample Cells +PDGF+ drug 

 

Table 5.2 Controls included for all drug treatment groups in the BrdU assay. 
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5.3.7 Data Expression 

Data was expressed as a fold change in absorbance over the un-stimulated control. 

  

  Fold change in absorbance =        Absorbance of drug treated samples         

                                                       Absorbance of un-stimulated control 

5.3.8 Drug treatments for MTT assay 

To ensure that the reduction in BrdU incorporation (DNA synthesis) observed following drug 

treatment was a result of cellular actions as opposed to drug induced cytotoxicity, cell viability 

following exposure to a variety of drugs (detailed in Table 5.3) was investigated by MTT assay.   

 

Cells were prepared for the assay as described in section 2.6 then incubated with drug for 

24hours (as detailed in Table 5.3). Agents that had produced a significant effect on BrdU 

incorporation were tested following 48 hour incubation. PDGF-BB was included at a 

concentration of 30ng/ml in all treatments aside from the triton X control. Following drug 

incubation the assay was completed as detailed in section 2.6. 

 

 

 

 

 

 

 

 

 

 

 



Cell treatments 

24 hours 

Cell treatment 

48 hours 

Concentration (M) 

Triton X Triton X (see materials) 

Media Media - 

JWH015 JWH015 1x10-5 

JWH133 - 1x10-5 

Ethanol - 1% 

DMSO - 1% 

DMSO + Ethanol DMSO + Ethanol As above 

AM630 AM630 1x10-6M 

AM630 + JWH133 AM630 + JWH133 As above 

AM630 + JWH015 AM630 + JWH015 As above 

AEA AEA 1x10-5 

2-AG - 1x10-5 

 

Table 5.3 Details of the concentrations of drugs investigated in the MTT assay. 

5.3.9 Data Expression 

Cell viability following drug treatment was calculated as % Cell viability as shown below. 

 

 % Viability  =    ( Sample absorbance – Triton X absorbance) 

                           (  Media absorbance –   Triton X absorbance) 

X 100 

 

 

5.4 Data Analysis 

Statistical analysis was carried out using a one-way analysis of variance (ANOVA) with a 

Dunnetts post test (Graph pad Prism 4), unless otherwise stated, significance was accepted when 

P<0.05. Samples from the ERK ELISA were measured in duplicate and experiments were 

repeated 3 times with cells originating from 3 different mice. Samples for the BrdU assay and 

MTT assay were measured in triplicate and experiments were repeated 3 times with cells 

originating from three different mice. 
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5.5 Drugs 

 ACEA (Tocris) A CB1 receptor agonist, this was dissolved in ethanol to a stock solution 

of 1x10-2M, this was diluted in ethanol and serum free media to required concentrations 

maximum ethanol concentration was 1%. 

 JWH015 & JWH133 (Tocris) CB2 receptor agonists, these were dissolved in ethanol to 

a stock solution of 1x10-2M, this was diluted in ethanol and serum free media to 

required concentrations maximum ethanol concentration was 1%. 

 0-1602 (Tocris) A GPR55 agonist, this was dissolved in methyl acetate to a stock 

solution of 1x10-2M, this was diluted in serum free media to the required concentrations  

 Anandamide (Tocris) An endogenous cannabinoid, this was dissolved in ethanol to a 

stock solution of 1x10-2M, this was diluted in ethanol and serum free media to required 

concentrations maximum ethanol concentration was 1%. 

 2-AG (Tocris) An endogenous cannabinoid, this was dissolved in ethanol to a stock 

solution of 1x10-2M, this was diluted in ethanol and serum free media to required 

concentrations maximum ethanol concentration was 1% 

 AM630 (Tocris) A CB2 receptor antagonist, this was dissolved in ethanol to a stock 

solution of 1x10-2M, this was diluted in DMSO and serum free media to required 

concentrations maximum DMSO concentration was 1%. 

 

5.6 Results 

5.6.1 Determination of optimum conditions  

5.6.1.1. Determination of optimum conditions for measuring ERK1/2 phosphorylation 

When cells were incubated with PDGF-AB for 20 minutes at concentrations of 10, 30 and 

100ng/ml, over a 4 fold increase in % phosphorylation was observed at all concentrations 

(Figure 5.3) with no apparent concentration dependency. A maximum fold change was observed 

at 100ng/ml (5.6±1.79) followed by 10ng/ml (5.2±2.45) then 30ng/ml (4.41±1.19) n=3 for all. 

As there was no statistical difference between any of the concentration responses, 30ng/ml was 

chosen as the optimum PDGF concentration, as it was shown to exhibit the least variability. To 

determine the optimum PDGF incubation time, cells were incubated with 30ng/ml PDGF for 

either 10, 15, or 20 minutes (Figure 5.4 ) n=2. A 15-minute incubation time produced the largest 

fold change in % phosphorylation and was therefore chosen as the optimum incubation time and 

was applied in all subsequent experiments.   
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5.6.1.2 Determination of optimum conditions for the BrdU assay 

At concentrations of 10ng/ml to 100ng/ml, PDGF-BB produced an increase in absorbance of 

over 2 fold (compared to un-stimulated control) in cells that had been seeded at a density of 

both 2000 cells/well (Figure 5.5) and 5000 cells/well (Figure 5.6). Although the group size was 

too small (n=2) to perform any statistical analysis, the data indicates a trend of little difference 

in response to incubating the cells for 12 or 24hours with BrdU, at either seeding density. It can 

be seen that at both cell densities the highest fold increase in absorbance was produced at 

100ng/ml PDGF at the 24 hour time point (2.86 fold increase at a density of 2000 cells/well and 

3 fold increase at a density of 5000 cells/well). 30ng/ml PDGF induced an increase in 

absorbance of approximately 2.5 fold at 24 hours at both seeding densities. A seeding density of 

5000 cells/well, 30ng/ml of PDGF and 24hour incubation with BrdU were thus chosen as the 

optimum conditions and were applied in all further BrdU incorporation experiments.  
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Figure 5.3. ERK1/2 phosphorylation in response to increasing PDGF concentrations in 

MVSMC. Cells were incubated with varying concentrations of PDGF-AB for 20 minutes. 

Results are expressed as a fold change in % phosphorylation compared to the % 

phosphorylation measured in cells that had not been treated with PDGF. Samples were 

measured in duplicate, n =3, mean + SEM. 
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Figure 5.4 ERK1/2 phosphorylation in response to increasing PDGF incubation time in 

MVSMC. Cells were incubated with 30ng/ml PDGF-AB over varying incubation times. Results 

are expressed as a fold change in % phosphorylation compared to the % phosphorylation 

measured in cells that had not been treated with PDGF. Samples were measured in duplicate, 

n=2. 

 

 

Incubation time (minutes) Exp 1 
 

Exp2 
 

10 1.27 1.43 
15 1.92 1.73 
20 1.36 1.39 

 

Table 5.4. The individual values of ERK1/2 phosphorylation in response to increasing 

PDGF incubation time.  Results are expressed as a fold change in % phosphorylation 

compared to the % phosphorylation measured in cells that had not been treated with PDGF. 
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Figure 5.5.  Increasing concentrations of PDGF on BrdU incorporation at both 12 and 24 
hour time points at a cell seeding density of 2000 cells/ well. Results are expressed as a fold 
change in % phosphorylation compared to the % phosphorylation measured in cells that had not 
been treated with PDGF. Samples were measured in duplicate, n=2. 
    
 

12 hours 24 hours [PDGF] ng/ml 

EXP 1  EXP 2 EXP 1 EXP 2 

10 1.65 2.86 1.38 1.95 

30 1.86 2.89 2.16 2.58 

50 1.91 3.03 2.14 2.04 

100 1.88 2.61 2.28 2.40 

 

Table 5.5. Individual results of increasing PDGF concentration on BrdU incorporation at 

both 12 and 24 hour time points at a cell seeding density of 2000 cells/ well. Results are 

expressed as a fold change in % phosphorylation compared to the % phosphorylation measured 

in cells that had not been treated with PDGF. 
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Figure 5.6.  Increasing concentrations of PDGF on BrdU incorporation at both 12 and 24 

hour time points at a cell seeding density of 5000 cells/ well. Results are expressed as a fold 

change in % phosphorylation compared to the % phosphorylation measured in cells that had not 

been treated with PDGF. Samples were measured in duplicate, n=2. 

 

 

12 hours 24 hours                     [PDGF] ng/ml 

Exp 1 Exp 2 Exp 1 Exp 2 

10 1.38 1.95 1.51 1.76 

30 2.16 2.58 2.27 2.58 

50 2.14 2.04 2.08 2.45 

100 2.28 2.40 2.98 3.08 

 

Table 5.6 Individual experimental values of increasing concentrations of PDGF on BrdU 

incorporation at both 12 and 24 hour time points at a cell seeding density of 5000 cells/ 

well. Results are expressed as a fold change in % phosphorylation compared to the % 

phosphorylation measured in cells that had not been treated with PDGF. 
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5.6.2 The effect of CB receptor ligands on ERK1/2 phosphorylation 

5.6.2.1 CB1 agonist ACEA 

PDGF-AB stimulation of the cells (control) produced a 2.8 ±1.08 fold increase in % ERK1/2 

phosphorylation. The CB1 agonist ACEA appeared to reduce ERK1/2 phosphorylation at higher 

concentrations (Figure 5.7), although there was no statistically significant effect across the 

concentration range (1x10-8 to 1x10-5M); One way ANOVA with Dunnetts post-hoc test n=3 

unless indicated). However, the vehicle (0.1% ethanol) alone induced a marked inhibitory effect 

(fold change in the presence of vehicle was 1.05±0.41) which clearly masked any effect of 

ACEA itself.  Statistical comparison of the highest concentration of ACEA with the vehicle 

(ethanol) did not reveal a significant difference. Statistical analysis could not be performed in 

comparison to the control as there was only an n=2. 

 

5.6.2.2. CB2 agonist JWH015 

In these experiments PDGF-AB treatment induced a 2.0±0.27 fold increase in ERK 

phosphorylation compared to an un-stimulated control (Figure 5.8), which was unaffected by 

the vehicle (0.1% ethanol). Low concentrations (10-8M & 10-7M) of JWH015 had no effect, but 

higher concentrations (10-6 & 10-5M) showed a reduction in phosphorylation (from 2.0± 0.27 to 

1.47±0.44 and 0.49 ± 0.179, respectively) although this did not reach statistical significance 

(One way ANOVA with Dunnett’s post test n=3). 

 

5.6.2.3 GPR55 agonist 0-1602 

PDGF-AB stimulation of cells (control) produced a 3.6±1.39 fold increase in ERK 1/2 

phosphorylation (Figure 5.9). Treating cells with either the vehicle control, (0.1% methyl 

acetate), or increasing concentrations of 0-1602 (GPR55 agonist) had no effect on PDGF 

induced ERK1/2 phosphorylation (One way ANOVA with Dunnets post test n=3). 

5.6.2.4. Raising endogenous AEA concentration  

Stimulating cells with PDGF-AB produced a 2.43±1.25 fold increase in % phosphorylation 

(Figure 5.10). Treating cells with URB597 (1x10-7M) and the vehicle control (0.1% DMSO) had 

a negligible effect on % phosphorylation (one way ANOVA with Dunnett’s post test n=3).  
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Figure 5.7 The effect of ACEA on PDGF stimulated ERK 1/2 phosphorylation. Cells were 

stimulated with 30ng/ml PDGF-AB for 15 minutes. Results are expressed as a fold change in % 

phosphorylation compared to the % phosphorylation measured in cells that had not been treated 

with PDGF. Samples were measured in duplicate, n=3, mean + SEM where error bars are not 

present samples are n=2. 

 
 

Cell treatment EXP 1 EXP2 
Control 1.73 3.4 

1x10-7M ACEA 2.01 0.53 
 
Table 5.7 Individual experimental values of the control cells and cells treated with 1x10-7M 

ACEA. Results are expressed as a fold change in % phosphorylation compared to the % 

phosphorylation measured in cells that had not been treated with PDGF. 
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Figure 5.8. The effect of JWH015 on PDGF stimulated ERK 1/2 phosphorylation. Cells 

were stimulated with 30ng/ml PDGF-AB for 15 minutes. Results are expressed as a fold change 

in % phosphorylation compared to the % phosphorylation measured in cells that had not been 

treated with PDGF. Samples were measured in duplicate, n=3, mean + SEM. 
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Figure 5.9. The effect of O-1602 on PDGF stimulated ERK 1/2 phosphorylation. Cells were 

stimulated with 30ng/ml PDGF-AB for 15 minutes Results are expressed as a fold change in % 

phosphorylation compared to the % phosphorylation measured in cells that had not been treated 

with PDGF. Samples were measured in duplicate, n=3, mean + SEM. 
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Figure 5.10.  The effect of  URB597 on PDGF induced ERK1/2 phosphorylation.   

 Cells were stimulated with 30ng/ml PDGF-AB for 15 minutes Results are expressed as a fold 

change in % phosphorylation compared to the % phosphorylation measured in cells that had not 

been treated with PDGF. Samples were measured in duplicate, n=3, mean + SEM, where no 

error bar is present n= 2. 

 
 

 

Cell treatment EXP1 EXP2 

Control 1.2 3.7 

 

Table 5.8 Individual experimental values of the control cells. Results are expressed as a fold 

change in % phosphorylation compared to the % phosphorylation in cells that had not been 

treated with PDGF. 
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5.6.3. The effect of CB receptor ligands on BrdU incorporation 

5.6.3.1 The effect of CB2 agonists and antagonist on BrdU incorporation 

To investigate the effects of CB2 agonists more thoroughly on cell proliferation their effect on 

BrdU incorporation was measured. BrdU incorporation is a marker of DNA synthesis and 

therefore a useful tool for investigating activation of the proliferation pathway. Stimulating cells 

with PDGF-BB produced a 1.8±0.28 fold increase in BrdU incorporation (Figure 5.11). Treating 

cells with the CB2 agonist JWH015 (1x10-5M) culminated in a significant reduction in BrdU 

incorporation (0.78±0.15) as did the CB2 antagonist AM630 (1x10-6M) alone (0.83±0.156), and 

in combination with both CB2 agonists (AM630 + JWH133 0.87±0.17; AM630 +JWH015 

0.82±0.167). Cells treated with only JWH133 (1x10-5M) exhibited a small attenuation in BrdU 

incorporation compared to the control; however this failed to reach statistical significance (P 

<0.05 one way ANOVA with Dunnetts post test n=3). When a wider concentration of JWH133 

(1x10-8-1x10-5M) was studied (Figure 5.12) there was similarly a negligible effect on BrdU 

incorporation (P >0.05 one way ANOVA with Dunnetts post test n=3). 

 

5.6.3.2. CB1  agonist ACEA 

Stimulating cells with PDGF-BB produced a 2.30.6.fold increase in BrdU incorporation 

(Figure 5.13) which was unaffected by the vehicle (1% ethanol). The CB1 receptor agonist 

ACEA attenuated BrdU incorporation at 1x10-5M, however this did not reach statistical 

significance; between 1x10-8M -1x10-6M there was no effect on BrdU incorporation. P >0.05 

one way ANOVA with Dunnetts post test n=4.  

 

 

 

 

 

 



Con
tro

l

Veh
ic

le

JW
H13

3 

JW
H01

5 

AM
63

0

AM
63

0 
+ 

JW
H13

3

AM
63

0+
 J

W
H01

5

0.0

0.5

1.0

1.5

2.0

* * * *

F
o
ld

 C
h
an

g
e
 in

 a
b
s
o
rb

a
n
c
e

Figure 5.11. The effect of   the CB2 agonists JWH015 and JWH133, and CB2 antagonist AM630 on PDGF stimulated BrdU incorporation. 
JWH133 and JWH015 were used at a concentration of 1X10-5M, AM630 (1x10-6M) Results are expressed as a fold change in % absorbance compared 
to the absorbance measured in cells that had not been treated with PDGF. Samples were measured in triplicate, n=3, mean + SEM * Indicates P<0.05 
compare to stimulated control (one way ANOVA with a Dunnetts post test). 
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Figure 5.12 The effect of JWH133 on PDGF stimulated BrdU incorporation. Results are 

expressed as a fold change in % absorbance compared to the absorbance measured in cells that 

had not been treated with PDGF. Samples were measured in triplicate, n=3, mean + SEM. 
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 Figure 5.13. The effect of ACEA on PDGF stimulated BrdU incorporation.  Results are 

expressed as a fold change in % absorbance compared to the absorbance measured in cells that 

had not been treated with PDGF. Samples were measured in triplicate, n=4, mean + SEM. 
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5.6.3.3  The effect of AEA on BrdU incorporation 

PDGF-BB stimulation of control cells produced a 1.930.36 fold increase in BrdU 

incorporation which was unaffected by the vehicle (1% ethanol). A concentration range of        

10-12M to 10-6M AEA showed no effect (Figure 5.14) however, 1x10-5M AEA induced a 

significant reduction in BrdU incorporation (Figure 5.15 P<0.05  One-way ANOVA with a 

Dunnetts post test n=3).  

 

5.6.3.4. The effect of 2-AG on BrdU incorporation  

Stimulating cells with PDGF-BB (control cells) produced a 2.510.82 fold increase in BrdU 

incorporation which was unaffected by the vehicle (1% ethanol). At a concentration range of 

1x10-12M to 1x10-7M there was no effect (Figure 5.16) however 1x10-6M 2-AG produced a 

small attenuation in BrdU incorporation, this did not reach significance (n=3). At a 

concentration of 1x10-5M there was also no effect on BrdU incorporation (Figure 5.17). 

 

5.6.3.5. The effect of AEA and 2-AG on BrdU incorporation 

PDGF stimulation of control cells produced a 2.17 0.27 fold increase in BrdU incorporation 

(Figure 5.18) which was unaffected by the vehicle (1%DMSO + 1% ethanol). A combination of 

AEA+2-AG (both 1x10-5M) significantly reduced BrdU incorporation to 0.690.19 fold 

(P<0.01 Students t test n=3). 
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Figure 5.14 The effect of AEA on PDGF stimulated BrdU incorporation. Results are 

expressed as a fold change in % absorbance compared to the absorbance measured in cells that 

had not been treated with PDGF. Samples were measured in triplicate, n=3, mean + SEM 
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Figure 5.15 The effect of AEA (1x10-5M) on PDGF stimulated BrdU incorporation. Results 

are expressed as a fold change in % absorbance compared to the absorbance measured in cells 

that had not been treated with PDGF. Samples were measured in triplicate, n=3, mean + SEM.   

* Indicates P < 0.05 compared to stimulated control (one-way ANOVA with a Dunnetts post 

test). P= 0.06 between AEA and vehicle control. 

 

 

 

 

 

 

 

 

 

 238



 

 

 

 

 

 

Control Vehicle 1.00E-12 1.0E-9 1.0E-8 1.0E-7 1.0E-6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

[2-AG] M

F
o

ld
 c

h
an

g
e 

in
 a

b
so

rb
an

ce

 

Figure 5.16 The effect of treating cells with 2-AG on PDGF stimulated BrdU 

incorporation. Results are expressed as a fold change in % absorbance compared to the 

absorbance measured in cells that had not been treated with PDGF. Samples were measured in 

triplicate, n=3, mean + SEM. 

 

 

 

 

 

 239



Control 2-AG
0.0

0.5

1.0

1.5

2.0

2.5

F
o

ld
 c

h
an

g
e 

in
 a

b
so

rb
an

ce

 

Figure  5.17 The effect of   2-AG (1x10-5M)  on PDGF stimulated BrdU incorporation. 

Results are expressed as a fold change in % absorbance compared to the absorbance measured 

in cells that had not been treated with PDGF. Samples were measured in triplicate, n=3, mean + 

SEM. 
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Figure 5.18 The effect of AEA and 2-AG combined on PDGF stimulated BrdU 

incorporation. Results are expressed as a fold change in % absorbance compared to the 

absorbance measured in cells that had not been treated with PDGF. Samples were measured in 

triplicate, n=3, mean + SEM ** Indicates P < 0.01 (Students t test). 
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5.6.4 The effect of the CB2 agonists/antagonist and their corresponding vehicles on % cell 

viability  

5.6.4.1 The effects of CB2 agonists on % cell viability  

Incubation with JWH015 (1x10-5M) for either 24 or 48 hours elicited no detrimental effects on 

cell viability. Moreover cells that were treated with JWH133 (1x10-5 M) or the vehicle (1% 

ethanol) for 24 hours similarly did not have reduced % cell viability as measured by MTT assay, 

n=3 (Figure 5.19).   

 

5.6.4.2 The effects of a CB2 antagonist on cell viability. 

Interestingly, cells that were treated with AM630 for both 24 and 48 hours exhibited a 

significant increase in % cell viability compared to the DMSO (1%) vehicle control (105.17±3.0 

and 82±6.6 respectively), P<0.05; Students t test n=3 (Figure 5.20).  

 

5.6.4.3 The effects of a CB2  antagonist in combination with a CB2 agonist on cell viability. 

Cells that were treated with the vehicle (1% DMSO + 1% ethanol) for 24 hours exhibited a cell 

viability of 72.87±9.9% (Figure 5.21). In contrast when cells were incubated with AM630 in 

combination with JWH015, there was a significant increase in % cell viability compared to the 

vehicle (P<0.05 one way ANOVA with Dunnetts post test n=3). Similarly, when cells were 

incubated with AM630 in combination with JWH133 cell viability was increased to over 100%, 

however this did not reach statistical significance (P >0.05 one way ANOVA with Dunnetts 

post test n=3).  

 

When the same combinations of drugs were incubated for 48 hours a dissimilar trend was 

observed (Figure 5.21).  The vehicle control (DMSO + ethanol) similarly reduced cell viability 

to 88±13.85%, however the combination of AM630 and JWH133 had a negligible effect on cell 

viability compared with the control.  

 

 

 

 



 

 

 

 

 

Ethanol JWH015 JWH015 JWH133 
0

20

40

60

80

100

120

140

160

24 hours

48 hours

Cell treatment

%
 C

el
l 

vi
ab

il
it

y

 

 

Figure 5.19 The effect on cell viability following treatment with vehicle, JWH015 and 

JWH133 (1x10-5M), measured by MTT assay. Data is shown as a % of cell viability, samples 

measured in triplicate, n=3, mean + SEM. 

 

 

 

 

 

 

 

 242



 

 

 

 

DMSO AM630 AM630
0

25

50

75

100

125

 243

150 24 hours

48 hours*

Cell Treatment

%
 C

e
ll

 v
ia

b
il

it
y

 

Figure 5.20 The effect on cell viability following 24 and 48 hour incubation with the CB2 

antagonist AM630 measured by MTT assay. AM630 1x10-6M, Data is shown as a % of cell 

viability, samples were measured in triplicate n =3, mean + SEM. 
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 Figure 5.21 A comparison between the effect on cell viability following 24 hour or 48 hour 

incubation with the CB2 antagonist AM630 in combination with CB2 agonists, measured 

by the MTT assay.  Vehicle = Ethanol + DMSO, AM630 was used at 1x10-6M , JWH133 and 

JWH015 were used at 1x10-5M.Data is shown as a % of cell viability. Samples were measured 

in triplicate, n=3, mean + SEM. 
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5.6.5 The effect of the endocannabinoids AEA and 2-AG on cell viability 

Treating cells with AEA (1x10-5M) for 24 hours (Figure 5.22) resulted in a reduced % cell 

viability of 41% ±19.6 compared to the vehicle (1% ethanol) control (96.97±16.38 %), however 

this failed to reach statistical significance (Students t test P> 0.05 n=3). Paradoxically, when 

cells were treated with AEA (1x10-5M) for 48 hours % cell viability was normal (109.5±15.9; 

P=0.0556; Students t test compared to 24 hour data n=3). Treating cells with 2-AG (1x10-5M) or 

the vehicle (1% ethanol) had no detrimental effects on % cell viability (111.61±20.54 % and 

96.9±9.46 % respectively; Figure 5.23).  
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Figure 5.22 The effect of AEA (1x10-5M) at both 24 and 48hrs on cell viability, measured 

by MTT assay. Data is shown as % cell viability. n=3, mean + SEM  P =.0.0556 Students t test. 
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Figure 5.23 The effect of 2-AG  (1x10-5M) on cell viability, measured by MTT assay. Data 

is shown as a % of cell viability. n=3, mean + SEM. 
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5.7 Discussion 

The aim of this study was to investigate the effects of selective cannabinoid receptor agonists 

acting at the CB1, CB2 and the orphan GPR55 receptor, as well as the endogenous cannabinoids 

AEA and 2-AG, on vascular smooth muscle cell proliferation. ERK1/2 phosphorylation and 

BrdU incorporation were used as tools to detect smooth muscle cell proliferation. To ensure 

results were not due to cytotoxicity cell viability was investigated. The results of this study 

show that JWH015 and AM630 both induced a reduction in cell proliferation without any 

detrimental effects on cell viability, while high concentrations of AEA (10µM) reduced 

proliferation associated with an apparent transient cytotoxic effect.  

Method optimisation 

To avoid cells being stimulated to their maximum capability by PDGF, 30ng/ml was chosen as 

the optimum concentration. At this concentration the individual values for % phosphorylation 

were most reproducible, as evident by the small standard error. A PDGF incubation time of 15 

minutes was determined to be optimal, as this time point yielded the highest % phosphorylation. 

Despite the sample size in this study being very small the values obtained for each time point 

were very reproducible. In comparison with information found in the literature an incubation 

time of 15 minutes is within the expected range. Bornfeldt et al., 1994 reported that in human 

smooth muscle cells peak MAPK activation was observed 5 minutes following stimulation with 

PDGF. Similarly in rat embryonic thoracic aorta smooth muscle derived A7r5 cells, maximum 

PDGF (10ng/ml) stimulation of ERK phosphorylation occurred between 5 and 10 minutes 

(Sandirasegarane et al., 2000). In this study the sampling time began at 10 minutes. Upon 

reflection shorter incubation times of 2 and 5 minutes should have been investigated to ensure 

the optimum phosphorylation time wasn’t disregarded.  

 

It was observed that the level of ERK phosphorylation produced by PDGF-AB was somewhat 

low and variable compared to previous findings in the literature. In rat embryonic thoracic aorta 

smooth muscle derived A7r5 cells, PDGF stimulation (10ng/ml) produced over a 7 fold increase 

in ERK 2 phosphorylation (Sandirasegarane et al., 2000). Despite the levels of stimulated 

ERK1/2 phosphorylation being low, it was still possible to demonstrate any effect of drug. To 

confirm the findings of the ERK1/2 study, the BrdU assay was employed. As described in 

Chapter 1, there are different isoforms of PDGF, so to maximise stimulation PDGF-BB was 

used in the BrdU experiments. 
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Treatment with 30ng/ml PDGF-BB produced a measurable fold change in absorbance in cells 

that were seeded at both 2000 cells/well and 5000 cells/well, and that had been incubated with 

BrdU for both 12 and 24 hours. Despite the sample size for this experiment being too small to 

calculate standard errors, the values were most reproducible at a seeding density of 5000 

cells/well and at a BrdU incubation time of 24 hours. For this reason these conditions were put 

into practise for all BrdU experiments. The optimum conditions determined here are very 

similar to those found in the literature. In a similar study using human smooth muscle cells, a 

PDGF-BB concentration of 25ng/ml and a seeding density of 5000 cells/well were applied, 

although the cells were incubated with BrdU for only 12 hours (Rajesh et al., 2008). The fold 

change in BrdU incorporation produced in these present experiments is approximately 2-3 fold, 

which is low when compared to another study utilising primary murine smooth muscle cells, 

where 10ng/ml PDGF-BB induced a 10 fold increase in BrdU uptake (Willert et al., 2010). 

Similarly, the stimulated response in human coronary artery smooth muscle cells, where a 7 fold 

increase in BrdU incorporation was observed (Rajesh et al., 2008). Despite the stimulatory 

responses in this study being smaller than those previously reported, it was possible to 

determine a significant inhibitory effect of some of the drug interventions, demonstrating that 

the experimental system was sufficiently sensitive to be able to detect drug induced changes. 

Studies with CB2 agonists   

The CB2 agonist JWH015 (Ki = 13.8nM) appeared to inhibit ERK1/2 phosphorylation at high 

concentrations, although this reduction did not reach statistical significance due to the high level 

of variability of responses at the lower concentrations. Incidentally, if the highest concentration 

of JWH015 (1x10-5M) is compared to the control and analysed using a Students t test, then a 

significant reduction in ERK1/2 phosphorylation is observed (P<0.05). Evidence from the BrdU 

incorporation studies supports this theory since JWH015 significantly inhibited DNA synthesis 

at high concentrations. This is in agreement with previous findings from Rajesh et al., 2008a 

who demonstrated (by Western Blotting) that the CB2 agonists JWH133 and HU308 (4µM) 

reduced ERK 1/2 phosphorylation in human coronary artery smooth muscle cells, an effect that 

was attenuated in the presence of a CB2 antagonist (AM630).  In an attempt to confirm that the 

response observed in this study was due to the activation of CB2 receptors a second, more 

potent, CB2 agonist (JWH133 Ki = 3.4nM) was investigated. Intriguingly, studies using this 

agonist over a wide concentration range did not confirm these findings, with only a small 

attenuation being observed at the highest concentration. This contradicts the findings from 

Rajesh et al., 2008a who demonstrated that JWH133 and a second CB2 agonist HU-308 reduced 

TNFα stimulated cell proliferation using the BrdU assay. The experimental conditions 

employed in that study were very similar to those used in this study, therefore the difference in 

results is most likely due to the species difference. The Rajesh study was performed in an 
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immortalised human smooth muscle cell line, whereas in this study primary murine smooth 

muscle cells were utilised. Moreover, rather than reversing the effects of JWH015, the CB2 

receptor antagonist (AM630) alone, and in combination with the two CB2 agonists resulted in a 

reduction in cell proliferation. This was unexpected, if the reduction in cell proliferation 

produced by JWH015 was a result of CB2 receptor activation, then the presence of an antagonist 

would have been expected to at least result in a partial reversal of the effect. These findings 

strongly suggest that JWH015 is acting through a non CB2 mediated mechanism.  

 

As mentioned above, AM630 both alone and in combination with JWH133 resulted in a 

significant reduction in cell proliferation. If the reduction in proliferation observed following 

treatment with AM630 was purely CB2 mediated, then when given in conjunction with JWH133 

there should be some reversal of the effect due to competition at the binding site. Although 

AM630 is primarily a competitive CB2 receptor antagonist, it also has the capability to function 

as a CB1 receptor agonist, antagonist or inverse agonist (Ross et al., 1999). This study has 

shown a negligible effect of CB1 receptor activation on cell proliferation making a CB1 agonist 

role for AM630 unlikely. Therefore, due to its extremely complex pharmacology, further 

investigation would be required to establish the mechanism of action of AM630 in this 

experimental preparation.  

 

To confirm that the results from the BrdU investigations were genuine effects on DNA 

synthesis, and not the result of drug induced cytotoxicity, the effects of the agonists and 

antagonist on cell viability were investigated. MTT investigation revealed that cell treatment 

with both the CB2 agonists (JWH015 and JWH133) for 24 and 48 hours had no detrimental 

effects on cell viability. This is in contrast to findings in immune cells where JWH015 has been 

shown to induce apoptosis through activation of caspases, a finding that was attenuated in the 

presence of a CB2 receptor antagonist (Lombard et al., 2007). Cells incubated with AM630 for 

24 and 48 hours did not exhibit reduced cell viability. In actuality AM630 significantly 

increased cell viability compared to the DMSO vehicle control (at 24 hours), suggesting that the 

DMSO was having a cytotoxic effect on the cells, and that the AM630 was acting as a 

cytoprotective agent. The MTT assay is reliant upon the enzymatic conversion of MTT to 

purple formazan. CB1 activation is known to cause an immediate increase in ceramide 

concentration. This short term peak in ceramide has been linked to metabolic regulation of the 

cell, resulting in stimulation of glucose utilisation and the production of ketone bodies, 

processes that are regulated through the ERK cascade (Guzman et al., 1999; Velasco et al., 

2005; Sanchez et al., 1998). If ceramide can increase the metabolic capabilities of the cell, then 
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AM630 by acting as a CB1 receptor agonist may increase the metabolism of MTT which could 

explain the significant increase in cell viability observed between cells treated with vehicle and 

AM630. It could be argued that this process is unlikely to be occurring in this experimental 

preparation due to the lack of effect of a CB1 agonist on ERK1/2 phosphorylation. However, the 

experiments in this study were performed following stimulation by PDGF which would mask 

any stimulatory effects a CB1 agonist had on ERK activity. 

 

Cell incubation with AM630 in conjunction with both the CB2 agonists (JWH133 and JWH015) 

had no detrimental effects on cell viability following 24 hour incubation. In fact, AM630 in 

combination with JWH015 induced a significant increase in cell viability compared to the 

vehicle control (AM630 +JWH133 also increased viability but this did not reach significance). 

This trend was not observed following 48 hour incubation. At 48 hours the antagonist-agonist 

combinations resulted in cell viability similar to the relative vehicle control, but significantly 

lower (JWH015+ AM630) compared to the corresponding 24 hour treated cells. 

The 24 hour results suggest that either JWH015 or AM630 is protecting the cells against vehicle 

induced cytotoxicity. However, this effect is abolished following 48 hour incubation with the 

drug combination. It is possible that the initial cytoprotective effect (observed after 24 hours) 

was due to either JWH015 or AM630 activating the CB1 receptor, which has been shown to 

actuate the cytoprotective PKB/Akt pathway (Gomez del Pulgar et al., 2000), and it may be that 

this was simply not enough to protect from vehicle induced toxicity following 48 hour 

treatment.  

These findings strongly suggest that the reduction in cell proliferation observed in this study, 

following incubation with the agonists and antagonist combined may be a result of vehicle 

induced cytotoxicity. However, this does not explain the differing effects of JWH015 and 

JWH133 as despite JWH015 being a selective CB2 agonist it also has the potential to activate 

CB1 receptors (Ki =  383nM). Since the concentration used in this study was very high (10µM) 

perhaps CB1 activity could explain the reduction in cell proliferation. 

Studies with the CB1 agonist ACEA 

Treating cells with ACEA had no significant effect on either ERK 1/2 phosphorylation or 

similarly BrdU incorporation. This is in contradiction to the literature as there is evidence 

illustrating that CB1 agonists can activate ERK 1/2 (Bosier et al., 2008; Bouaboula et al., 1995), 

however these studies were performed in N1E-115 neuroblastoma cells and CHO cells. The lack 

of activity produced by ACEA also rules out the possibility that JWH015 (discussed above) 
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CB1 

onist. 

e and therefore a lack of any functional response may in fact be 

reduced smooth muscle cell proliferation by acting on CB1 receptors. It has recently been 

shown that the CB1 antagonist SR141716A induced an inhibition of PDGF stimulated cell 

proliferation through inhibition of ERK in human smooth muscle cells (Rajesh et al., 2008). 

Therefore, if anything, it might have been expected to see an increase in proliferation following 

cell treatment with ACEA. Perhaps if cells were treated with ACEA without stimulation by 

PDGF this may be observed, conformation of which would be an area for future work. ACEA is 

susceptible to metabolic breakdown in a similar fashion to AEA therefore for a more accurate 

picture these experiments should be confirmed with another metabolically stable selective 

ag

  

Studies with GPR55 agonist O-1602 

Treating cells with 0-1602 had no effect on PDGF- induced ERK1/2 phosphorylation. As far as 

we are aware this is the first study of the effect of GPR55 activation on vascular smooth muscle 

cell proliferation as there is no literature available for direct comparison. However, it has been 

shown in both HEK293 and microglial cells that GPR55 activation can lead to rapid ERK 

phosphorylation (Oka et al., 2007, Pietr et al., 2009). It is important to note that due to the lack 

of specific antibodies for GPR55 we have not been able to provide evidence that GPR55 is 

present in the mouse vasculatur

due to the lack of the receptor. 

Studies using endocannabinoids 

Increasing the concentration of AEA by inhibiting its metabolic breakdown using the selective 

FAAH inhibitor URB597, had a negligible effect on PDGF stimulated ERK1/2 phosphorylation. 

Similarly when cells were treated with anandamide there was only an effect on DNA synthesis 

at a concentration of 10µM. This is much higher than would be observed either physiologically 

or pathophysiologically. Indeed, results in this study (Chapter 3) show the tissue concentrations 

of endocannabinoids to be in the pico molar range. A similar growth inhibitory effect was 

observed in the gastric cancer cell line HGC-27 where 10µM AEA strongly inhibited cell 

proliferation (Miyato et al., 2009). At 10µM, AEA reduced viability of cells treated for 24 hours 

(albeit not significantly); however cells treated with 10µM AEA for 48hours showed no loss of 

viability. This indicates that cell exposure to AEA (10µM) induces an immediate 

cytotoxic/cytostatic effect which over time the cells can recover from (as shown by the 

restoration of cell viability at 48 hours). When put into context, this confirms that the reduction 

in cell proliferation is due to cytotoxicity/ growth arrest.  Although the cells were incubated 
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ith drug for 48 hours they would not be able to recover from the initial toxic/static effect, as 

s a 

reduction in proliferation similar to that observed when cells were treated with AEA, suggesting 

e two cannabinoids do not work in tandem to control cell growth. Furthermore, the lack of a 

Galve-Roperh et al.,2000). AEA has been shown to 

induce apoptosis in immune cells (Reviewed in Rieder et al., 2009) and HGC-27 cells (Miyato 

ssible therefore that AEA is activating the ceramide pathway and is a 

variability and would have been less time consuming, as both phospho ERK and 

total ERK could have been measured in the same experiment.  Western Blotting would also 

ave been an alternative method to the cell lysate ELISA as this is frequently used in the 

literature.  

w

once they had taken up the BrdU they could no longer proliferate. 

 

In contrast to the findings with AEA, treating cells with 2-AG had no effect on cell 

proliferation. Moreover, when cells were treated with both AEA and 2-AG there wa

th

concentration dependent effect of AEA on proliferation strongly implies a cytotoxic effect. 

 

It has been suggested that endocannabinoids can control cell fate by either inducing cell 

proliferation or inducing apoptosis, depending on the environmental cue. As already stated in 

section 5.1.3.2 ceramide is produced following CB1 and CB2 receptor activation (Sanchez et al., 

2001) by two mechanisms. The first mechanism occurs within minutes and involves activation 

of sphingomyelinase which induces production of ceramide; the second requires the “de novo” 

synthesis of ceramide through activation of a serine palmitoyltransferase (Gomez del Pulgar et 

al.,2002 a &b) a process which takes days (

et al., 2009). It may be po

notion that requires further investigation.  

Limitations of the study 

Despite paying careful attention to experimental technique the major limitation plaguing this 

study was the high level of variability present in both the ERK1/2 and BrdU incorporation 

studies, which resulted in some data failing to reach statistical significance. For the ERK1/2 

studies a possible source of the variation could have been the method employed, as this 

involved many stages all of which could introduce error. Each experimental sample was taken 

from a 75cm2 flask, primary murine smooth muscle cells are extremely slow growing and give a 

low yield of cells per flask, making the ERK 1/2 studies extremely time consuming. On 

reflection an alternative method would be to use a cell based ELISA. This would be 

advantageous in terms of involving fewer steps in the protocol thus reducing the opportunities 

to introduce 

h
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ge number affected the cells ability to respond to both the 

imulus and to drug intervention 

hat was masked by activation of PDGF and the resulting 

verlapping signalling pathways. 

ting that in the 

JWH015 was acting through a non CB2 mediated mechanism. 

muscle cell proliferation, albeit this is most likely due 

 a cytotoxic effect of the cannabinoid. 

 

Another explanation for the variability may be that both types of ELISA used in this study were 

not sensitive enough do detect any subtle changes, especially at lower levels of BrdU 

incorporation. The primary cell line may also be a contributor to the large variation between 

experiments. Due to the slow growing nature of the cells they were utilised for experimentation 

between passage 5-7, perhaps passa

st

 

Perhaps another limitation to this study is that the effects of the drugs were not investigated in 

cells untreated with PDGF. The majority of the evidence from the literature suggests a 

stimulatory effect of CB1 agonists on ERK (Wartmann et al.,1995; Bouaboula et al 1995; 

Bouaboula et al 1996, although ERK activation does not necessarily lead to proliferation 

Grewal et al., 1999) and either a inhibitory or pro-proliferative effect of AEA (Mimeault et al., 

2003; Bifulco et al., 2006 Hart et al., 2004). It is therefore possible that the drugs used in this 

study have a pro-proliferative effect t

o

 

A final consideration arising from this study is apparent lack of selectivity of the cannabinoid 

ligands used. JWH133 and JWH015 are both reported to be selective CB2 agonists yet in this 

study they did not act in the same manner, with the overall evidence sugges

present studies 

Conclusions  

In conclusion the results of these studies show that the CB2 agonist JWH015 and the CB2 

antagonist AM630 both inhibited PDGF stimulated cell proliferation, although their effects 

appear to be through mechanisms independent of the CB2 receptor. Studies investigating CB1 

receptor activation and also drug induced cytotoxicity provided evidence to eliminate these 

factors from possible mechanisms. Further investigation would be required to determine the 

precise mechanism of action of these drugs. The endogenous cannabinoid AEA also produced 

an inhibition of PDGF stimulated smooth 

to
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The effect of cannabinoids on 

vascular smooth muscle cell 
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d produce extracellular matrix resulting in the 

rmation of a neointima (Majesky et al., 1994). 

d in Huang et al., 2004; Gerthoffer et al., 2009; Newby 

 

6.1 Introduction 

6.1.1 Smooth muscle cells and neointimal formation 

As described in Chapter 1 restenosis is a disease in which luminal area is reduced following 

vascular injury. The key events which induce this pathology are smooth muscle cell 

proliferation and migration. Smooth muscle cells normally exist in a quiescent non motile state, 

however immediately following vascular injury the smooth muscle cells undergo phenoptypic 

modulation from the contractile to the synthetic phenotype and begin to rapidly divide and 

migrate (Raines et al., 1993). Once the injured cells are replaced, the majority of cells return to 

the original contractile quiescent state. However an important sub population of cells resist 

growth inhibition and migrate towards the lumen (Casscells et al., 1992). Once these migrating 

cells reach the lumen they continue to divide an

fo

 

In order for smooth muscle cells to migrate towards the lumen, they rely upon a chemoattractant 

gradient produced by cells within the vessel wall, the degradation of surrounding matrix 

proteins, and the synthesis of new matrix proteins. The mechanisms by which smooth muscle 

cells generate force and move in response to a chemoattractant are described in detail in Chapter 

1. There are multiple signalling pathways involved in cell migration, some of which overlap 

with the pathways involved in cell proliferation (reviewed in Bornfeldt 1996). Cell migration in 

response to a chemoattractant begins following stimulation of either a G protein coupled 

receptor (GPCR) or receptor tyrosine kinase (RTK). These receptors then activate a multitude of 

signalling molecules (including the G proteinases Rho, Rac and Cdc42), which activate 

membrane phospholipids that subsequently activate lipid kinases. These  induce an increase in 

Ca2+ that ultimately activates Ca2+ dependant kinases.  These signalling molecules function to 

activate proteins which lead to actin polymerisation, the activation of myosin motors and 

therefore induce cell migration (Reviewe

et al., 2000; Gerthoffer et al., 2007). 

6.1.2 Cannabinoids and cell migration 

The effects of cannabinoids on cell migration has been studied primarily in immune cells. An 

anti-inflammatory role for cannabinoids has been suggested since 1974, when it was discovered 

that Δ9-THC elicited an inhibitory effect on the migration of leukocytes (Schwartzfarb et al., 

1974). Low concentrations of Δ9-THC have also been shown to inhibit the migration of 
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mine (another 

dogenous cannabinoid) have both been shown to inhibit migration (McHugh et al., 2008). 

 in cancer progression, cannabinoids are also 

eing investigated as potential anti cancer agents. 

6.1.3 Cannabinoids and smooth muscle cells 

nists and endocannabinoids on smooth muscle cell 

is a relatively un explored area. 

6.2 Aim 

macrophages in response to monocyte chemoattractant protein-1 (Steffens et al., 2005). In 

contrast, studies investigating the endogenous cannabinoid 2-AG have shown it to induce the 

migration of human monocytic cells (Kishimoto et al., 2003) and microglia cells. Interestingly, 

the effect was abolished by an inhibitor of ERK phosphorylation and an antagonist of the novel 

abnormal cannabidiol receptor (Walter et al., 2003). 2-AG has also been shown to induce 

directional migration of B lymphocytes in a CB2 dependant manner (Jorda et al., 2002) and to 

regulate CB2 mediated migration of myeloid leukaemia cells (Jorda et al., 2002). Intriguingly, 

AEA does not share the same pro-migratory profile as 2-AG. AEA only weakly stimulates 

migration of microglia cells and showed only 20% of the migratory response produced by 2-AG 

in a leukaemia cell line (Walter et al., 2003; Jorda et al., 2002). The poor ability of AEA to 

stimulate immune cell migration has been attributed to the finding that AEA only weakly 

activates the CB2 receptor (Hillard et al., 1999). Interestingly, 2-AG was found to have no 

effect on human neutrophil migration, whereas both AEA and virodha

en

 

Studies have also looked at the effects of cannabinoids on cell migration out with the immune 

system. Synthetic cannabinoids as well as AEA have been found to stimulate migration in CB1 

transfected human embryonic kidney cells (Song and Zhong 2000). In a study using vascular 

endothelial cells, abnormal cannabidiol stimulated migration through a PI3K/Akt dependant 

pathway (Mo et al., 2004), whereas the CB2 agonist JWH133 has been shown to reduce 

migration of human umbilical vein endothelial cells (Blazquez et al., 2003). As endothelial cells 

are pivotal to the formation of new blood vessels

b

 

Recent studies have shown that, in human coronary artery smooth muscle cells, the CB1 

antagonist SR141716A inhibits PDGF induced migration by inhibition of Ras and ERK1/2 

(Rajesh et al., 2008 b). Moreover, the same group also found that CB2 agonists inhibits TNF-α 

induced cellular  migration, a finding which was ascribed to the inhibition of Ras, p38 MAPK, 

ERK 1/2, SAPK/JNK and Akt cellular pathways (Rajesh et al., 2008 b). Beyond this however, 

the influence of cannabinoid receptor ago

migration 

In light of the findings in Chapter 3 that confirmed the presence of both the CB1 and CB2 

receptors on murine vascular smooth muscle cells, alongside the observations that 
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ell as the 

dogenous cannabinoids AEA and 2-AG on vascular smooth muscle cell migration. 

igated in one 

ded in each well and (iv) the 

ptimum concentration of PDGF-BB to stimulate migration.  

il ready to be added 

 the chamber. A starting cell number of 30,000 cells/ well was employed. 

 

endocannabinoid concentration increases in tissue subjected to injury suggests that cannabinoids 

may be able to influence smooth muscle cells. The previous chapter has shown the ability of 

cannabinoids to influence cell proliferation. The pathways involved in proliferation overlap with 

those involved in cell migration, therefore the aim of this study was to determine the effects of 

selective cannabinoid receptor agonists acting at the CB1 and CB2 receptors as w

en

 

6.3 Method 

6.3.1 Method optimisation 

The most common approach to investigating cell migration in vitro is to use a modified Boyden 

chamber, the principle of which measures the migration of cells through a porous membrane in 

response to a chemoattractant. Cultured cells are placed on top of a porous membrane/filter 

(8μm), they then migrate through the polycarbonate membrane towards a chemoattractant agent 

located in the lower chamber (PDGF-BB). The migrated cells are then stained and quantified. 

The benefit of using this technique over some other methods of measuring cell migration (for 

example wounding assays) is that multiple cell treatments may be invest

experiment. The chamber used in this study was a 48 well chemotaxis chamber.  

Due to the nature of the assay a variety of conditions had to be optimised before drug 

investigation could commence. These involved the identification of: (i) the incubation time to 

allow optimum cell migration. (ii) a staining technique which would enable clear visualisation 

of the nuclei for cell counting, (iii) the optimum number of cells see

o

 

6.3.2 Determination of optimum incubation time and cell number 

As a starting point the conditions utilised in a recent migratory study using human coronary 

artery smooth muscle cells were used (Rajesh et al., 2008a). Primary murine smooth muscle 

cells were grown to 95% confluence in 75cm2 flasks, the cells were harvested from the flask and 

counted as detailed in method section 2.4.4. In all experiments bar the initial ones, cells were 

quiesced over night in medium containing 0.3% serum prior to experimentation. Cells were 

suspended at the appropriate dilution in medium containing 0.3% serum unt

to
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 In parallel to cell harvesting the polycarbonate filter was coated in a solution of 0.2% gelatine 

(as detailed in section 2.7.2) and the PDGF solutions were prepared (as detailed in section 2.7.2) 

and added to the lower wells. The chemotaxis chamber was assembled, the cell suspension was 

gently vortexed, and 50μl of cell suspension was added to the upper wells. The chemotaxis 

chamber was placed in a humidifying chamber and incubated at 37ºC and 5% CO2 for 8 hours. 

The chamber was removed from the incubator, inverted and the filter removed. The unmigrated 

cells were removed from the filter using a wiper blade (as described in section 2.7.3) and the 

remaining migrated cells were then fixed in 100% methanol for 7 minutes before subsequent 

staining with Coomasie brilliant blue (as detailed in section 6.3.3.1.). Once dry the filter was 

mounted using Shandon xylene substitute mountant. 

To determine the optimum conditions, this process was then repeated reducing the incubation 

time to 6 hours and then subsequently to 2 hours (this proved to be too short and was 

subsequently increased to 3). The cell number was also reduced to 5000 cells/well and 10,000 

cells/well. An incubation time of 3 hours and a cell number of 10,000 cells/well were identified 

as the optimum experimental conditions and were utilised throughout this study. 

6.3.3 Determination of optimum staining technique 

As smooth muscle cells are large with lamellipodial processes, in order to be able to quantify 

the number of cells accurately their nuclei had to be clearly visible. Five staining techniques 

were investigated Coomasie brilliant blue, Giemsa, haematoxylin, H&E and a modified H&E 

technique. 

6.3.3.1 Coomasie brilliant blue stain 

The migration experiment was carried out as detailed above and in section 2.7. Once the 

migrated cells had been fixed the filter was allowed to dry before complete immersion in a petri 

dish containing Coomasie brilliant blue stain for 15 minutes. The filter was transferred and 

immersed in another petri dish containing de-stain and was gently agitated until the excess stain 

had been removed (usually a few minutes). The filter was left to air dry then mounted on a glass 

slide. 
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6.3.3.2 Giemsa stain 

Once the migration experiment had been completed and the cells fixed and left to dry, the filter 

was immersed in a petri dish containing 0.5% Giemsa solution for 15 minutes. The filter was 

briefly dipped in a petri dish containing distilled water to remove the excess stain then left to air 

dry. The filter was then mounted on a glass slide. 

6.3.3.3 Haematoxylin 

Once the migration experiment had been completed and the cells fixed and left to dry, the filter 

was immersed in a petri dish containing haematoxylin for 10 minutes. The filter was briefly 

dipped in a petri dish containing distilled water to remove the excess stain and allowed to air 

dry. The filter was then mounted on a glass slide. 

6.3.3.4 Haematoxylin and Eosin 

Once the migration experiment had been completed and the cells fixed and left to air dry the 

filter was stained using the following technique: 

1. Distilled Water   1 min 

2. Haematoxylin   1 min 

3. Distilled Water  2 min 

4.0.5% Acid Alcohol  1 min 

5. Distilled Water   2 min 

6. STWS   2 min 

7. Distilled Water  2 min 

8. Eosin   30 secs 

9. Distilled Water  2 mins 

 

The filter was then allowed to air dry and mounted on a glass slide. Due to poor nuclear staining 

using this technique, the protocol was altered by increasing the incubation time with 

haematoxylin and adding another haematoxylin step at the end of the staining procedure as 

detailed below. 

 

1. Distilled Water   1 min 

2. Haematoxylin   5 min 

3. Distilled Water  2 min 

4.0.5% Acid Alcohol              1 min 
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5. Distilled Water   2 min 

6. STWS   2 min 

7. Distilled Water  2 min 

8. Eosin   30 secs 

9. Distilled Water               2 min 

10. Haematoxylin                        5 min 

11. Distilled water                   2 min 

 

This staining protocol produced the clearest visualisation of the cell nuclei and was therefore 

used throughout this study. 

 

6.3.4 Determination of the optimum PDGF concentration 

Cells were grown to 95% confluence, quiesced overnight then harvested and diluted 

appropriately to give cell suspensions which would yield 10,000 cells/ well and 5000 cells/well. 

PDGF solutions of increasing concentration (0, 10, 20, 30 or 50ng/ml), were added to the lower 

wells (26.5μl) as illustrated in Figure 6.1. The chamber was assembled and the cell solutions 

added to the upper wells; it was then placed in a humidifying chamber and incubated for 3 hours 

at 37ºC and 5% CO2. The chamber was removed from the incubator, inverted and the filter 

removed. Unmigrated cells were removed by wiping the underside of the filter against a wiper 

blade (as detailed in section 2.7.3) carefully dipping the underside in PBS between each wipe. 

The filter was fixed in 100% methanol for 7 minutes and allowed to dry. It was then stained 

using the modified H&E method described above, allowed to dry then mounted on a glass slide. 

The cells were then counted as detailed in section 6.4. A concentration of 30ng/ml PDGF-BB 

and 10,000 cells/well were identified as optimum and used throughout this study. 
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ide. 

 

   

  

  

  

5,000 cells10,000 cells 

10 ng/ml PDGF 

0 ng/ml PDGF 

20 ng/ml PDGF 

30 ng/ml PDGF 

Figure 6.1 An example of the layout of the chamber. With the notch at the top left hand 

corner (to indicate filter orientation), the unstimulated control at the top with increasing 

concentrations of PDGF downwards. Samples were measured in triplicate. 

 

6.3.5 Cannabinoid treatment of cells prior to migration assay 

To investigate the effects of cannabinoids on smooth muscle cell migration, cells were 

incubated with a variety of cannabinoid agents (detailed in Table 6.1) prior to their addition to 

the chemotaxis chamber. Smooth muscle cells were quiesced, harvested (as detailed in section 

2.4.4), diluted appropriately (at a density to yield 10,000 cells/well) and suspended in a 1.5ml 

tube containing 1ml of serum free media supplemented with cannabinoid drug (for drugs used 

and concentrations see Table 6.1). The 1.5ml tubes were placed in a rack and incubated  for 30 

minutes at 37ºC and 5% CO2. During this time the lower wells were filled with either serum 

free media or a solution containing 30ng/ml PDGF-BB, the chamber was assembled and 50μl of 

the cell solutions were added to the upper wells. The effect of each drug was investigated on 

both unstimulated cells and stimulated cells as illustrated in Figure 6.2. The chamber was then 

placed in the humidifying chamber and incubated for 3 hours at 37ºC and 5% CO2.  Once 

removed from the incubator the chamber was inverted and the filter isolated, the unmigrated 

cells were removed from the underside of the filter using a wiper blade (as detailed in method 

section 2.7.3). The migrated cells were fixed in 100% methanol for 7 minutes and left to air dry, 

the filter was then stained using the modified H &E method (as described above) and mounted 

on a glass sl

 

 

 



6.4 Data Expression and Analysis 

Migrated cells were quantified by counting the cells in 5 non overlapping fields of vision at 

x400 magnification (as illustrated in Figure 6.3). To ensure impartiality counting was both 

blinded (labels were covered up) and randomised (filters were mixed up). Data from 

unstimulated cells was expressed as fold change in cell number compared to the control, as 

shown below. Samples were measured in triplicate and repeated in cells originating from at least 

three different mice. 

 

Fold change in cell number =     Number of unstimulated drug treated cells     

                                                     Number of unstimulated control cells 

 

Data from stimulated cells was expressed as fold change in cell number compared to 

unstimulated cells treated with the same drug. 

 

Fold change in cell number =    Number of drug treated stimulated cells 

                                                   Number of drug treated un- stimulated cells 

 

 

Statistical analysis was carried out using a one-way analysis of variance (ANOVA) with a 

Dunnetts post test (Graph pad Prism 4) unless otherwise stated, significance was accepted when 

P<0.05. 
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Figure 6.2 An illustration of the layout of the chemotaxis chamber for the cannabinoid 

drug study. Each drug was investigated in wells that were not exposed to PDGF (unstimulated) 

and wells that were exposed to 30ng/ml PDGF (Stimulated). C stands for control (where no 

cannabinoid was present), D stands for drug. 

C D D D D D D C C C C C 

D D D D D D D D 

D

D

D 

D 

D 

D D 

D 

D D D

D D D

D 

D D 

D D 

D D D 

D D D 

D D D 

Unstimulated       Stimulated  Stimulated   Unstimulated 

 

Drug Treatment Well concentration M 

Ethanol 0.1% 

1x10-6 JWH133 

1x10-5 JWH133 

1x10-6 ACEA 

1x10-5 ACEA 

DMSO 0.1% 

AM630 1x10-6 

1x10-9 AEA 

1x10-7 AEA 

1x10-9 2-AG 

1x10-7 2-AG 

Table 6.1 Drugs used in this study and the well concentrations at which they were used. 

Drugs and concentrations were chosen on the basis of the data generated in the cell proliferation 

studies described in Chapter 5. 
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Figure 6.3. Illustration of the five non overlapping fields of vision used to count the 

migrated cells. 

 

6.5 Drugs 

 ACEA (Tocris) A CB1 receptor agonist, this was dissolved in ethanol to a stock solution 

of 1x10-2M, this was diluted in ethanol and serum free media to required concentrations 

maximum ethanol concentration was 0.1%. 

  JWH133 (Tocris) CB2 receptor agonist, this was dissolved in ethanol to a stock 

solution of 1x10-2M, this was diluted in ethanol and serum free media to required 

concentrations maximum ethanol concentration was 0.1%. 

 Anandamide (Tocris) An endogenous cannabinoid, this was dissolved in ethanol to a 

stock solution of 1x10-2M, this was diluted in ethanol and serum free media to required 

concentrations maximum ethanol concentration was 0.1%. 

 2-AG (Tocris) An endogenous cannabinoid, this was dissolved in ethanol to a stock 

solution of 1x10-2M, this was diluted in ethanol and serum free media to required 

concentrations maximum ethanol concentration was 0.1% 

 AM630 (Tocris) A CB2 receptor antagonist, this was dissolved in ethanol to a stock 

solution of 1x10-2M, this was diluted in DMSO and serum free media to required 

concentrations maximum DMSO concentration was 0.1%. 
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6.6 Results 

6.6.1. Determination of optimum experimental conditions 

6.6.1.1 Determination of optimum incubation time for measuring cell migration 

Incubation of 30,000 cells/ well for 8 hours produced substantial cell migration (Figure 6.4). 

When compared to the unstimulated control (Figure 6.4 A) a PDGF-BB concentration 

dependent increase in the number of migrated cells was observed up to a concentration of 

30ng/ml. Above this concentration the number of migrated cells appears to be reduced. 

However it is visually apparent that the number of migrated cells was too numerous for 

quantification and that both the incubation time and cell number needed to be reduced. Cell 

counting was performed at x400 magnification. It was impossible to distinguish a single cell or 

individual cell nuclei under these conditions (Figure 6.5). 

Following reduction of the incubation period to 6 hours and the cell number to 10,000 

cells/well, substantial cell migration remained (Figure 6.6). Paradoxically, at this reduced 

incubation time, it can be observed that there are a considerable number of unstimulated cells 

migrating, so much so that there was a negligible difference between the unstimulated cells and 

those treated with PDGF. Due to the dense clustering of the cells and poor nuclear staining it 

was again impossible to distinguish individual cells and therefore quantify the response.  

Reducing the incubation time to 2 hours still permitted cell migration (Figure 6.7). It can be 

seen that there is a marked difference in the number of un-stimulated cells migrating through the 

membrane compared to cells exposed to PDGF. Increasing concentrations of PDGF-BB 

produced a concentration dependent increase in cell migration, with a maximum at 30ng/ml as 

evident by the dense clustering of cells (Figure 6.7D). However, due to poor nuclear staining 

only a few cell nuclei could be visualised. 

 

6.6.1.2 Determination of optimum staining technique 

Staining smooth muscle cells with haematoxylin did permit some visualisation of the nuclei but 

not very clearly (Figure 6.8 A); this was also the case when smooth muscle cells were stained 

with 0.5 % Giemsa. At high magnification (x400) the nuclei were distinguishable however the 

staining proved to be inconsistent (Figure 6.8 B). H&E staining using a protocol routinely used 

for staining tissue was not successful, no definition between the cytoplasm and the nucleus 

could be observed (Figure 6.5C). Due to the lack of distinguishable nuclear staining the 

incubation time with haematoxylin was increased, this method proved to be very successful 
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with clear definition between the red cytoplasm and the purple nucleus (Figure 6.9B). For this 

reason this staining protocol was used throughout this study.   

 

6.6.1.3 Determination of optimum PDGF concentration 

An increase in the concentration of PDGF-BB produced a concentration dependent increase in 

cell migration (Figures 6.10 and 6.11). Fold change in migration increased from 2.89±1.0 

(10ng/ml PDGF) to 6.49±1.7 following exposure to 30ng/ml PDGF-BB (n=3). As 30ng/ml 

PDGF produced the maximum fold change in migration it was identified as the optimum 

stimulatory concentration and used throughout the study. 
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Figure 6.4 The effect of increasing concentrations of PDGF on smooth muscle cell 

migration. Light micrographs (x25) of primary aortic smooth muscle cells (30,000 cells/ well) 

stained with Coomasie brilliant blue following 8 hour incubation. (A) The unstimulated control 

cells were not exposed to PDGF. (B) Cells were exposed to 10ng/ml PDGF. (C) Cells were 

exposed to 30ng/ml PDGF. (D) Cells were exposed to 50ng/ml PDGF. 
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Figure 6.5 Smooth muscle cells stained with Coomasie brillaint blue. Light micrographs 

(x400) of primary aortic smooth muscle cells (30,000 cells/ well) stained with Coomasie 

brilliant blue following 8 hour incubation. (A) Cells exposed to 10ng/ml PDGF. (B) Cells 

exposed to 30ng/ml PDGF.   
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Figure 6.6 The effect of increasing concentrations of PDGF on smooth muscle cell 

migration. Light micrographs (x250) of primary aortic smooth muscle cells (10,000 cells/ well) 

stained with Coomasie brilliant blue following 6 hour incubation. (A) The unstimulated control, 

cells were not exposed to PDGF. (B) Cells were exposed to 10ng/ml PDGF. (C) Cells were 

exposed to 30ng/ml PDGF. (D) Cells were exposed to 50ng/ml PDGF. 
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Figure 6.7 The effect of increasing concentrations of PDGF on smooth muscle cell 

migration. Light micrographs (x250) of primary aortic smooth muscle cells (10,000 cells/ well) 

stained with Coomasie brilliant blue following 2 hour incubation. (A) The unstimulated control, 

cells were not exposed to PDGF. (B) Cells were exposed to 10ng/ml PDGF. (C) Cells were 

exposed to 20ng/ml PDGF. (D) Cells were exposed to 30ng/ml PDGF. 
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Figure 6.8 Smooth muscle cells stained using a variety of techniques. Light micrographs 

(x250) showing smooth muscle cells stained using different staining methods. (A) Smooth 

muscle cells stained with haematoxylin only. (B) Smooth muscle cells stained with giemsa. 
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Figure  6.9 Smooth muscle cells stained using a variety of techniques. Light micrographs 

(x250) showing smooth muscle cells stained using different staining methods. (A) Smooth 

muscle cells stained with haematoxylin and eosin. (B) Smooth muscle cells stained using a 

modified H&E technique. 
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Figure 6.10. The effect of increasing concentrations of PDGF on fold change in cell 

number. Smooth muscle cells (10,000 cells/ well) were exposed to increasing concentrations of 

PDGF for 2 hours; results are expressed as fold change in cell number compared to cells not 

exposed to PDGF. Samples were measured in triplicate, n=3, mean + SEM. 
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Figure 6.11 The effect of increasing concentrations of PDGF on smooth muscle cell 

migration. Light micrographs (x250) of primary aortic smooth muscle cells (10,000 cells/ well) 

stained with H&E following 2 hour incubation. (A) The unstimulated control, cells were not 

exposed to PDGF. (B) Cells were exposed to 10ng/ml PDGF. (C) Cells were exposed to 

20ng/ml PDGF. (D) Cells were exposed to 30ng/ml PDGF. 
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6.6.2 The effect of cannabinoid agonists on cell migration 

6.6.2.1 The effect of a CB1 agonist on both un-stimulated and stimulated cell migration 

Pre-treating cells with 0.1% ethanol (the vehicle for ACEA) induced a 2.4±0.72 fold increase in 

unstimulated cell migration (Figure 6.12). Treating cells with ACEA (1x10-6M) increased cell 

migration to 4.7±1.6 fold; however 1x10-5M ACEA reduced cell migration back to the level of 

the vehicle. Due to the large standard errors there was no significant difference P>0.05 (One 

way ANOVA with Dunnetts post test n=3). 

 

Stimulating cells with 30ng/ml PDGF produced an increase of 3.6±2.2 fold in cell migration 

(Figure 6.13), this was reduced to 1.9±0.7 when cells were pre- treated with ethanol. Pre-

treating cells with both 1x10-6M and 1x10-5M ACEA induced a reduction in cell migration 

(0.8±0.2 and 0.9±0.1 respectively) compared to the stimulated control (Figure 6.13). This did 

not reach significance P>0.05 (One way ANOVA with Dunnetts post test n=3). 

 

6.6.2.2 The effect of a CB2 agonist on both un-stimulated and stimulated cell migration 

Treating cells with 0.1% ethanol (the vehicle for JWH133) induced a 2.4±0.7 fold increase in 

un-stimulated cell migration compared to control cells (Figure 6.14).Treating cells with either 

1x10-6 or 1x10-5M JWH133 had a negligible effect on unstimulated cell migration (1.2±0.6, 

0.8±0.5 fold change respectively n=3). 

 

 Stimulating cells with 30ng/ml PDGF produced a 3.5±2.2 fold increase in cell migration 

compared to the unstimulated control (Figure 6.15). Pre-treating cells with ethanol prior to 

PDGF exposure induced a reduction in cell migration (1.9±0.7), which was reduced further 

following pre treatment with 1x10-6 and 1x10-5M JWH133 (1.3±0.2, 1.9±1.1 respectively) albeit 

there was no significant difference between any of the treatments P>0.05. One way ANOVA 

with Dunnetts post test n=3. 
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Figure 6.12. The effect of ACEA on un-stimulated cell migration. Cells were incubated with 

ACEA without stimulation of PDGF. Results are shown as fold change in cell number 

compared to cells alone. Samples were measured in triplicate n=3 + SEM. 
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Figure 6.13. The effect of ACEA on PDGF stimulated cell migration. Results are shown as 

fold change in cell number compared to un-stimulated cells treated with the same intervention. 

Samples were measured in triplicate n=3 + SEM. 
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Figure 6.14 The effect of JWH133 on un-stimulated cell migration. Cells were incubated 

with JWH133 without stimulation of PDGF. Results are shown as fold change in cell number 

compared to cells alone. Samples were measured in triplicate n=3 mean + SEM. 
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Figure 6.15 The effect of JWH133 on PDGF stimulated cell migration. Results are shown as 

fold change in cell number compared to un-stimulated cells treated with the same intervention. 

Samples were measured in triplicate n=3 mean+SEM. 
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6.6.2.3 The effect of a CB2 antagonist on both un-stimulated and stimulated cell migration 

Pre-treating cells with 0.1% DMSO induced a 3.46±1.52 fold increase in unstimulated cell 

migration (Figure 6.16). Cells treated with AM630 were found to have a 2.28±0.43 fold increase 

in un-stimulated migration n=3. 

Exposing cells to 30ng/ml PDGF induced a 3.573±2.21 fold increase in cell migration compared 

to the unstimulated control (Figure 6.17). Cells treated with DMSO and AM630 (1x10-6M) 

exhibited a reduction in cell migration to 1.13±0.32 and 0.81±0.29 fold respectively. P>0.05, 

(One way ANOVA with Dunnetts post test n=3). 

6.6.2.4 The effect of the endogenous cannabinoid AEA on both un-stimulated and 

stimulated cell migration. 

Cells treated with either 0.1% ethanol or AEA (1x10-9 and 1x10-7M) demonstrated no increase 

in unstimulated cell migration (1.5±0.63: 1.14±0.5 and 2.08±0.15 respectively, Figure 6.18 

n=4). 

Exposing cells to 30ng/ml PDGF induced a 1.37±0.50 fold increase in cell migration, pre-

treatment with ethanol reduced migration to 0.89±0.15 (Figure 6.19). Cell pre-treatment with 

AEA (1x10-9M) had no effect (0.88±0.26) on cell migration compared to the vehicle control 

however; pre-treatment with 1x10-7M AEA reduced the fold change in migration to 0.57±0.15 

P>0.05, (One way ANOVA with Dunnetts post test n=4). 

6.6.2.5 The effect of the endogenous cannabinoid 2-AG on both un-stimulated and 

stimulated cell migration 

Cells treated with 0.1% ethanol showed no increase in un-stimulated cell migration (1.5±0.6, 

Figure 6.20), pre-treatment with 2-AG (both 1x10-9 and 1x10-7M) induced an increase in un-

stimulated cell migration to 4.1±3.4 and 3.9±2.6 respectively, albeit there was no significant 

difference (P>0.05 One way ANOVA with Dunnetts post test n=3).  

 

Cells exposed to 30ng/ml PDGF produced a 1.3±0.5 fold increase in migration (Figure 6.21). 

Pre-treating cells with either ethanol or 2-AG (1x10-9 and 1x10-7M) had no effect on fold change 

in cell migration (0.9±0.2, 0.9±0.3, 1.4±0.5, respectively n=3). 
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Figure 6.16. The effect of AM630 on un-stimulated cell migration. Cells were incubated 

with AM630 (1x10-6M) without stimulation of PDGF. Results are shown as fold change in cell 

number compared to cells alone. Samples were measured in triplicate n=3 mean +SEM. 
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Figure 6.17 The effect of AM630 on PDGF stimulated cell migration. Results are shown as 

fold change in cell number compared to un-stimulated cells treated with the same AM630 

(1x10-6M). Samples were measured in triplicate n=3 mean +SEM. 
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Figure 6.18. The effect of AEA on un-stimulated cell migration. Cells were incubated with 

AEA without stimulation of PDGF. Results are shown as fold change in cell number compared 

to cells alone. Samples were measured in triplicate n=4 mean +SEM. 
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Figure 6.19. The effect of AEA on PDGF stimulated cell migration. Results are shown as 

fold change in cell number compared to un-stimulated cells treated with the same intervention. 

Samples were measured in triplicate n=4 mean +SEM. 
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Figure 6.20. The effect of 2-AG on un-stimulated cell migration. Cells were incubated with 

2-AG without stimulation of PDGF. Results are shown as fold change in cell number compared 

to cells alone. Samples were measured in triplicate n=3 mean +SEM. 
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Figure 6.21 The effect of 2-AG on PDGF stimulated cell migration. Results are shown as 

fold change in cell number compared to un-stimulated cells treated with the same intervention. 

Samples were measured in triplicate n=3 mean +SEM. 
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6.7 Discussion 

The aim of this study was to investigate the effects of both synthetic and endogenous 

cannabinoids on vascular smooth muscle cell migration using a chemotaxis chamber. Although 

this is a preliminary study the results suggest that both ACEA and 2-AG induce cell migration 

in cells not exposed to PDGF. Moreover JWH133 and ACEA demonstrate a trend for reducing 

migration of cells exposed to PDGF. 

 

Method Optimisation 

Since assessment of smooth muscle cell migration was a completely new technique to the 

laboratory all conditions had to be optimised. A starting incubation time of 8 hours was 

implemented as this was used in a similar study using human smooth muscle cells (Rajesh et al., 

2008). However, this incubation time resulted in too many cells migrating through the porous 

membrane. Subsequent experiments where the incubation time was reduced proved highly 

problematic as too large a number of unstimulated cells migrated through the membrane, 

making comparison to those exposed to PDGF impossible. To try and overcome this (i) the cell 

number was reduced, (ii) the type of gelatine the filter was coated with was changed (iii) the 

cells were quiesced (prior to addition to the chamber) (iv) cells were used at a lower passage 

number and (v) the layout of the chamber was altered to avoid any possible overspill of PDGF 

solution into the un-stimulated wells, however all these interventions proved ineffectual. Since 

there is evidence in the literature of incubation times ranging from 1 hour to 8 hours (Rajesh et 

al., 2008; Fayon et al., 2006) a shorter period of two hours was investigated, to determine if this 

would reduce the number of unstimulated cells migrating through the membrane. This approach 

resulted in a visible difference in migration between cells that were not exposed to PDGF and 

those that were stimulated. For that reason 2 hour incubation was used in subsequent 

experiments to determine the optimum PDGF-BB concentration. From these studies it was 

evident that many cells that had not fully migrated through the pore following the 2 hour 

incubation, for this reason the drug intervention experiments employed a 3 hour incubation 

period. 

Due to the shape and nature of smooth muscle cells, it was impossible to count migrated cells 

unless the nucleus was clearly visible. To begin with cells were stained with Coomassie brilliant 

blue. This did not provide enough clarity to enable accurate counting, as there was no definition 

between the nucleus and the cytoplasm. Information from the literature suggested Giemsa stain 

and haematoxylin, however neither of these were successful. Eventually a modified method of 

H&E staining was developed which provided clear nuclear visualisation, this method was used 
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ulated cells. 

throughout the remainder of the study. Despite this method providing adequate clarification 

between the cytoplasm and nucleus, in some cases the filter had to be left in the haematoxylin 

for longer than the extra 10 minutes to ensure clear staining. An alternate stain that is often used 

to stain smooth muscle cells following migration is Diff Quick, on reflection this may have been 

a more suitable alternative. 

To stimulate cell migration so that any inhibitory effect of a drug could be measured, cells were 

stimulated with PDGF-BB. 30ng/ml PDGF-BB was identified as the optimum concentration as 

it produced approximately a 6 fold increase in migration compared to an unstimulated control. 

This is similar to reports in the literature, where human smooth muscle cells stimulated with 

20ng/ml PDGF produced an approximate 7 fold increase in migration, compared to an un-

stimulated control (Rajesh et al., 2008a). Also, in a study utilising primary rat aortic smooth 

muscle cells 10ng/ml PDGF-BB induced a 4 fold increase in cell migration (Freyhaus et al., 

2006). 

The effects of synthetic cannabinoids on smooth muscle cell migration 

The CB1 agonist ACEA produced over a 4 fold increase in migration of unstimulated cells at 

1µM. At the higher concentration (10µM) there was no difference between the drug treated cells 

and the vehicle (ethanol) treated cells. When cells were stimulated with PDGF, ACEA reduced 

cell migration at both concentrations, albeit not significantly due to the vehicle effect. There is 

no report of the effects of ACEA on smooth muscle cells in the literature, however in human 

smooth muscle cells its was found that a CB1 antagonist inhibited PDGF stimulated smooth 

muscle cell migration, through inhibition of Ras and ERK1/2 (Rajesh et al., 2008b). If a CB1 

antagonist reduced stimulated cell migration, then a CB1 agonist might be expected to 

stimulated migration, therefore supporting the results of this study. In Human embryonic kidney 

293 cells transfected with human CB1 gene, it was found that HU-210, WIN55212-2, and AEA 

all induced cell migration through activation of the CB1 receptor (Song et al., 2000), again 

supporting the promigratory role of the CB  receptor suggested from this study. The inability of 

ACEA to enhance migration in cells stimulated with PDGF may be explained by the 

overlapping of cell signalling pathways. PDGF stimulation results in the activation of a plethora 

of signalling pathways including the Ras, PI3K, PLC and Src pathways (all discussed in 

Chapter 1, reviewed in Hughes et al., 1996). Cannabinoid receptor activation is complex 

involving coupling to G /G  proteins, activation of MAPK and the PI3K/Akt pathways 

(Howlett et al., 2002, Bouaboula et al., 1995; Molina-Holgado et al., 2002). MAPK and Ras 

have been shown to be involved in cannabinoid induced migration (Song et al., 2000; Rajesh et 

al., 2008 a &b), the overlap of these pathways may explain the lack of a clear effect produced 

by ACEA in stim

1

1 0
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Compared to the vehicle, the CB2 agonist JWH133 did not induce migratory activity on cells 

that were not exposed to PDGF-BB. In cells that were stimulated with PDGF JWH133 appeared 

to have an inhibitory effect compared to control cells; however a similar reduction in migration 

was observed with the vehicle control (ethanol). These findings are similar to the results of a 

study in human smooth muscle cells, where it was found that the CB2 agonists JWH133 and 

HU-308 (4µM) had no effect on unstimulated cell migration and that they inhibited migration of 

TNF-α stimulated cells. This was reduced in the presence of a CB2 antagonist. The inhibitory 

effect on migration was shown to be due to inhibition of the signalling molecules Ras, P38, 

ERK1/2, SAPK/JNK and Akt (Rajesh et al., 2008). Similarly JWH133 was found to inhibit cell 

migration in human umbilical vein endothelial cells (Blazquez et al., 2003).  

The CB2 antagonist AM630 produced a small increase in unstimulated cell migration, but since 

the vehicle DMSO induced over a 3 fold increase in migration, it is likely that any effect of 

AM630 was due to the vehicle. Moreover, while AM630 reduced cell migration in cells 

stimulated with PDGF this effect was mirrored by the vehicle, again pointing to a vehicle effect. 

In the human smooth muscle cells study mentioned above treatment with AM630 had no effect 

on basal cell migration (Rajesh et al., 2008). 

The effects of endogenous cannabinoids on smooth muscle cell migration 

AEA had no effect on unstimulated cell migration; there was a slight increase compared to the 

vehicle control at 100nM but due to the large standard errors this did not reach significance. In 

cells exposed to PDGF, AEA (1nM and 100nM) reduced migration however a similar effect 

was observed following treatment with the vehicle (ethanol). What also must be noted is that in 

these experiments the number of control cells migrating in response to PDGF was very low (not 

even 2 fold). In the literature there is contradicting evidence as to the role of AEA on cell 

migration depending on the cell type.  In human  CB1  transfected HEK cells AEA induced cell 

migration (Song et al., 2000), whereas in both breast and colon cancer cells AEA inhibited cell 

migration in culture (Joseph et al., 2004; Grimaldi et al., 2006). 

2-AG induced an increase in the migration of unstimulated cells to approximately 4 fold, 

although the data did not achieve statistical significance due to an effect of the vehicle (ethanol). 

In cells that were exposed to PDGF there was no difference between control cells or cells that 

were treated with 2-AG or vehicle. Again it must be noted that the fold change in migrated cells 

for the stimulated experiments was very low, again not reaching a 2 fold increase. Comparing 

the results it can be seen that the unstimulated cells treated with 2-AG produced a larger 

increase in cell migration than those treated with PDGF. 
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The finding that 2-AG stimulates cell migration is in agreement with the literature. In immune 

cells 2-AG has been shown to be a powerful mitogen in a human monocyte cell line, a murine 

microglia cell line, a leukaemia cell line, human eosinophils and natural killer cells (Kishimoto 

et al., 2003; Walter et al., 2003; Jorda et al., 2002; Oka et al., 2004; Kishimoto et al., 2005). An 

effect that has been attributed to 2-AG activating the CB2 receptor. Interestingly, the effect 

produced by 2-AG in microglia cells was also abolished by an antagonist of the abnormal 

canabidiol receptor (0-1918) (Walter et al., 2003). Aside from immune cells 2-AG has also been 

shown to induce the migration of hematopoietic cells, an apposite effect to AEA which in the 

same cell line inhibited cell migration (Patinkin et al., 2008). The finding in this study that 2-

AG induces more migration than AEA has also been observed in leukaemia cells where AEA 

induced only 20% of the migratory response observed by 2-AG (Jorda et al., 2002). 

Limitations of the study 

It can be seen from this study that the ethanol vehicle had a stimulatory response on cell 

migration. Cells treated with ethanol regardless of whether they were exposed to PDGF-BB or 

not, exhibited approximately a 2 fold increase in migration. The concentration of ethanol used 

in these experiments was only 0.1% but for future work this should be reduced if possible. 

Similarly, unstimulated cells that were treated with DMSO also demonstrated an increase in 

migration of over 3 fold, again the concentration of DMSO was low but for future work this 

should be reduced if possible. Finally, another limitation to this study was that due to time 

restrictions the effects of the cannabinoids as chemoatractants or on chemokinesis could not be 

investigated. In this study the effect of cannabinoids were measured by incubating cells with 

drug then measuring their unstimulated migration or their migratory response to stimulation by 

PDGF. As discussed in Chapter 1, stimulated cell migration can either be directional i.e. 

dependant on a concentration gradient (chemotaxis), or be random, with increases in motility 

independent of a concentration gradient (chemokinesis) (Gerthoffer et al., 2007). Further 

experiments could be undertaken to determine whether any of the agents used in this study 

induced (a) directional migration by having the drug in the lower wells or (b) random increases 

in migration by having the drug in the lower chamber, the upper chamber or both. 

 

Due to the length of time taken to minimise unstimulated cell migration, there was little time 

left to perform a thorough analysis of the effects of cannabinoids on cell migration. An example 

of this is that only two concentrations of each drug could be investigated as opposed to a whole 

range. This could mean that an effect of one of the drugs was missed. Another major limitation 

to this study was the large standard errors present due to the variability in results. A possible 

explanation for this could be that the incubation time was too short. Ideally the staining 
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technique should have been optimised before identifying the optimum incubation time. This 

would have been more accurate and may also have saved time. To begin with the conditions 

employed in the assay seemed adequate to measure cell migration as evident by the large 

stimulatory response produced in the PDGF-BB experiments; however, as experiments 

progressed the stimulatory response produced by PDGF-BB decreased and was highly variable. 

 

Conclusions 

The preliminary data shown in this study suggest that ACEA and possibly JWH133 reduce 

stimulated cell migration and that 2-AG can increase migration of unstimulated smooth muscle 

cells. However to increase reliability of results a more thorough investigation into incubation 

time staining cells with either the modified H&E technique or using the Diff Quick stain should 

be performed. 
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Chapter 7 

General Discussion 
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7.1 Main findings 

Δ9-THC has been shown to reduce the progression of atherosclerosis by means of its 

immunoregulatory effects (Steffen et al., 2005), in a separate more recent study a synthetic CB2 

agonist inhibited stimulated human smooth muscle cell proliferation in vitro (Rajesh et al., 

2008). Despite this the effects of cannabinoids, especially the endogenous cannabinoids AEA 

and 2-AG, have not been investigated in terms of restenosis. This study was designed to 

investigate whether the endocannabinoid system is present and functional in a murine model of 

neointimal formation, and to identify whether or not endogenous cannabinoids play a negative 

or positive role in disease progression by investigating their effects on SMC proliferation and 

migration. This study has demonstrated that AEA elicits a dilatory effect on the murine carotid 

artery, through a mechanism independent of active metabolites but mediated through the CB1 

receptor, demonstrating the functional presence of this receptor in murine blood vessels. 

Moreover, the presence of both cannabinoid receptors on murine smooth muscle cells was 

confirmed. In an organ culture model of neointimal formation it was found that 

endocannabinoid concentration was increased, suggesting a further functional role for these 

compounds in vascular injury. Further study revealed that the CB2 receptor agonist JWH015 

reduced cell proliferation through a non-CB2 receptor mediated mechanism, a finding that was 

mimicked with a CB2 antagonist. AEA also reduced stimulated cell proliferation, however this 

was most likely due to cytoxicity. Finally it was found that both CB1 and CB2 agonists tended 

to reduce stimulated SMC migration whereas the endogenous cannabinoid 2-AG stimulated cell 

migration. 

Presence of a functional endocannabinoid system 

As described in section 3.5.6 and 3.5.7 the concentrations of endogenous cannabinoids were 

significantly (2-AG) increased in an in vitro model of vessel injury, compared to healthy 

vessels. Despite this being the first report linking increased endocannabinoid concentration with 

neointimal formation, these findings are in agreement with a vast quantity of studies which 

demonstrate an increase in endogenous cannabinoid concentration in pathological conditions 

(reviewed in Di Marzo et al., 2008). This study did not investigate the location of 

endocannabinoid synthesis; however evidence from the literature can provide a basis for 

speculation.  Endothelial progenitor cells have been shown to release both AEA and 2-AG in a 

basal manner, which is increased following stimulation with TNFα (Opitz et al., 2007). 

Similarly endothelial cells synthesise and release 2-AG in response to stimulation by thrombin 

(Sugiura et al., 1998), the endothelium of bovine coronary arteries has also been shown to 

secrete 2-AG (Gauthier et al., 2005). Evidence also suggests that endocannabinoids can be 

released from sensory neurones, as this has been shown to be the case in the CNS (Di Marzo et 
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al., 1994). Evidence of non-endothelium derived endocannabinoids in the vasculature has come 

from a study by Rademacher et al., 2005, who showed that endocannabinoid concentration 

increased in the rat cerebral artery preparations without an endothelium. As the injured arteries 

in this study were devoid of an endothelium (as a result of the injury process), it is most likely 

that the source of endocannabinoid production is the smooth muscle cells, however 

experimental investigation would be required to confirm or contradict this. 

This study did however confirm the presence of both CB1 and CB2 receptors on murine smooth 

muscle cells (discussed in section 3.5.5). The finding that endocannabinoid concentration 

increases during the vessel response to injury strongly suggests that endocannabinoids play a 

role in either disease progression or limitation. 

Direct vascular effect of AEA 

Anandamide produced a concentration dependant relaxation of the murine carotid artery that 

reached a maximum of approximately 20%. This is dissimilar to previous findings in the rat 

carotid artery which demonstrated no functional response to methanandamide (Holland et al., 

1999). As discussed in both chapter 1 and chapter 4, a wide species variation exists regarding 

the response to cannabinoids in the vasculature. A 20% relaxation is similar however to the 

response produced by Δ9-THC in the rat aorta (O’Sullivan et al., 2005). Inhibition of FAAH 

tended to increase the relaxant response of AEA (although not significantly), thus confirming 

that the vasodilatation produced by AEA was not attributable to the FAAH mediated production 

of arachidonic acid and its vasoactive metabolites, as observed in some species (Pratt et al., 

1998). Similarly, COX produced metabolites were not involved in the vasodilatation produced 

by AEA. A CB1 receptor antagonist significantly attenuated the AEA response suggesting that 

AEA elicits its functional effect through activation of the CB1 receptor. Inhibition of the CB2 

receptor had no effect on the response produced by AEA.  In addition to these findings it was 

also discovered that the vehicle in which AEA was dissolved in (Tocrisolve®) was vasoactive. 

When put in context with the previous findings, it can be speculated that in diseased conditions 

an artery produces AEA to induce a vasodilatory effect through means of the CB1 receptor. 

Effect of cannabinoids on vascular smooth muscle cell proliferation 

The CB2 agonist JWH015 reduced ERK1/2 phosphorylation at high concentrations (albeit this 

did not reach statistical significance). As discussed in detail in Chapter 1, ERK activation does 

not necessarily lead to cell proliferation; to provide a further indication of cell proliferation 

DNA synthesis was measured by BrdU incorporation. In a similar fashion JWH015 significantly 

inhibited DNA synthesis at high concentrations, agreeing with previous findings which 

demonstrated that CB2 agonists can reduce stimulated cell proliferation (Rajesh et al., 2008). In 
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contradiction to this however, when these experiments were repeated with an alternative CB2 

agonist a dissimilar effect was observed. JWH133, a more potent CB2 agonist, had no effect   on 

DNA synthesis over a wide concentration range producing only a small attenuation at the 

highest concentration. Further controversy arose when a CB2 antagonist alone and in the 

presence of CB2 agonists significantly reduced DNA synthesis. If the CB2 antagonist was 

having a genuine CB2 antagonistic effect, then canonical pharmacology would mean that in the 

presence of an agonist there would be some reversal of the inhibition of DNA synthesis, due to 

competition at the binding site. As this was not observed it can be concluded that both JWH015 

and the CB2 receptor antagonist were acting independently of CB2.  

Further investigation revealed that the reduction in DNA synthesis observed when the agonist 

and antagonist were combined could be explained by drug induced cytotoxicity. Toxicity testing 

revealed no adverse effects on cell viability for either agonist, or the antagonist on its own. This 

study also revealed no functional effect of CB1 or GPR55 activation on stimulated cell 

proliferation. 

 

AEA significantly reduced DNA synthesis at a concentration of 10µM; this is much higher than 

would be found either physiologically or pathophysiologically, information from cell viability 

studies indicates that this reduction in DNA synthesis was most likely due to cytotoxicity or 

growth arrest. 2-AG had no effect on stimulated cell DNA synthesis. To put these findings back 

into context of increased endocannabinoid concentration following injury, no certain 

conclusions can be made from this study as to the role endocannabinoids play on stimulated cell 

proliferation. Information from the literature showing an inhibitory effect of CB2 agonists on 

stimulated cell proliferation (Rajesh et al., 2008) might indicate that endogenous cannabinoids 

are released to combat excess cell proliferation through their actions on CB2 receptors. This 

study has also highlighted the need for caution when using CB2 agonists, as they may not be 

entirely selective. 

 

Effect of cannabinoids on vascular smooth muscle cell migration 

The CB1 agonist ACEA had a tendency to increase the migration of unstimulated cells; however 

this did not reach significance due to a vehicle effect. When cells were stimulated with PDGF, 

ACEA appeared to reduce cell migration, again this failed to achieve significance due to a 

vehicle effect. There are no reports of the effects of ACEA on smooth muscle cells in the 

literature to compare these findings. However, in human smooth muscle cells it was found that a 
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igration. 

CB1 antagonist inhibited PDGF stimulated smooth muscle cell migration (Rajesh et al., 2008b). 

If a CB1 antagonist reduced stimulated cell migration then a CB1 agonist might be expected to 

stimulate migration, therefore supporting the results of this study. A similar finding was 

observed in human embryonic kidney 293 cells transfected with human CB1 gene, where it was 

found that HU-210, WIN55212-2, and anandamide all induced cell migration through activation 

of the CB1 receptor.  

 

 JWH133 had no effect on unstimulated cell migration, but demonstrated a tendency to reduce 

migration in cells that were stimulated; however a similar reduction in migration was observed 

with the vehicle control.  These findings are similar to the results of a study in human smooth 

muscle cells, where it was found that the CB2 agonists JWH133 and HU-308 (4µM) had no 

effect on unstimulated cell migration and that they inhibited migration in TNFα stimulated cells, 

which was reduced in the presence of a CB2 antagonist (Rajesh et al., 2008). Similarly JWH133 

was found to inhibit cell migration in human umbilical vein endothelial cells (Blazquez et al., 

2003).  

 

AEA had a negligible effect on unstimulated and stimulated cell migration, however 2-AG 

exhibited a trend for inducing migration in unstimulated cells (this did not reach significance 

due to some activity of the vehicle). The finding that 2-AG stimulates cell migration is in 

agreement with the literature, as 2-AG has shown powerful mitogenic effects in a variety of 

immune cells (Kishimoto et al., 2003; Walter et al., 2003; Jorda et al., 2002; Oka et al., 2004; 

Kishimoto et al., 2005). Due to the lack of any statistically significant effects on cell migration, 

no decisive answer can be provided to the question of whether or not the increase in 

endocannabinoid concentrations seen in injured arteries has any effects on cell migration and 

the subsequent formation of a neointimal, although this in an attractive concept. 

 

Investigation of cannabinoid agents in an organ culture model of neointimal formation 

One of the key aims of this study was to develop an organ culture model of neointimal 

formation that would permit the investigation of cannabinoid agents on the injury response. The 

ultimate goal was to identify a target that would reduce the development of a neointima. The 

agent that was identified to be used in this study was the CB2 agonist JWH133. Despite 

complex results obtained in the DNA synthesis experiments, a CB2 agonist did reduce DNA 

synthesis and demonstrated a trend of reducing stimulated cell m
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 The organ culture model developed in chapter 3 provided an injury response that had many 

characteristics of a neointimal formation, including medial thickening, adventitial thickening, 

cell infiltration into the lumen and production of extracellular matrix. A pilot study using this 

model was employed for a drug study (detailed in Appendix 1), although the outcome was 

disappointing. Firstly neither the control cultured nor injured artery segments developed a 

substantial injury response. Second, due to shrinkage of the vessel sections and problems with 

the embedding process a number of tissue samples were lost. Due to constraints of time it was 

decided not to continue with these experiments. However, the data that was collected is shown 

in Appendix 1. In theory, the use of a murine organ culture model of neointimal formation has 

immense potential, it would allow the screening of a variety of agents at the same time, and 

therefore reduce the number of animals used for experimentation. Also the availability of 

transgenic mice would make for extremely valuable experimental tools. Despite this, the organ 

culture model developed in this chapter proved difficult to reproduce, and therefore may be  

unsuitable as a screening model. As mentioned previously the C57BL/6 strain of mice can be 

resistant to neointimal hyperplasia following endothelial denudation in vivo (Hui et al., 2008), 

therefore perhaps a different strain of mouse may be more successful.  

7.2 Clinical relevance 

Drug eluting stents have proved to be very effective in reducing restenosis rates when compared 

to bare metal stents. Despite the effectiveness of the two most established DES (which elute 

rapamycin and paclitaxel), safety concerns over the possible link with thrombus formation in 

response to incomplete revascularisation, surrounding endothelial dysfunction, and 

complications with diabetic patients mean that further research is required to identify novel 

agents that may eliminate these problems (Babapulle et al., 2004; Inoue et al., 2009; Costa et 

al., 2005). This study has shown that the endocannabinoid system becomes activated in a mouse 

model of vessel injury, a CB2 agonist inhibited smooth muscle cell proliferation, and AEA 

induced a small vasodilatation. When these findings are put into context with previous findings 

in the literature, for example that a CB2 agonist reduces human smooth muscle cell proliferation 

(Rajesh et al., 2008), and that cannabinoids reduce atherosclerosis progression through both 

their immunomodulatory effects (Steffens et al., 2005)  and  through the decreased expression 

of adhesion molecules (Zhao et al., 2010), it can be seen that modulation of the cannabinoid 

system has great potential to prevent/treat both atherosclerosis and restenosis.  

 

A previous clinical trial (STRADIVARIUS) investigated the effectiveness of rimonabant (a 

CB1 antagonist) on progression of coronary disease in patients with abdominal obesity and 

metabolic syndrome. The findings of this trial showed some favourable properties of 
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nsen et al., 2007). 

rimonabant but the overall outcome was a non significant effect on percent atheroma volume 

(Nissen et al., 2008), however there has been no investigation into the effects of a CB2 agonist. 

One fundamental issue that needs to be overcome to permit the use of cannabinoid agents as a 

treatment for vascular disease would be the eradication of psychological effects. This negative 

side effect of cannabinoids was recently observed in the removal of rimonabant from the 

commercial market due to increased suicidality (Christe

7.3 Future work 

Completion of smooth muscle cell proliferation and migration studies. 

As discussed in Chapter 5 the results of the DNA synthesis experiments regarding the CB2 

agonist were conflicting, If these experiments were repeated then a more thorough 

understanding of the effects of the CB2 agonist and its mechanisms of action may be obtained. 

Similarly as mentioned in Chapter 6, the preliminary studies on cell migration require further 

investigation to obtain a more thorough understanding of the functional role of cannabinoids 

(both endogenous and synthetic) on cell migration. Another problem experienced throughout 

this study was the interference from the vehicle, a vehicle effect was observed with both ethanol 

and DMSO (both at 1% for proliferation studies, 0.1% for migration studies) therefore 

experiments should be repeated with a lower concentration of solvent. 

Cannabinoids and endothelial cells 

One of the major limitations to the currently available drug eluting stents is the antiproliferative 

effect the eluting drugs have on endothelial cell proliferation. Previous studies have  shown that 

endothelial cells express the CB1 receptor and that it is functionally coupled to MAP kinase 

(Liu et al., 2000), leading to the speculation that perhaps cannabinoids could stimulate 

endothelial cell proliferation. A more recent study has also shown meth-AEA to induce NO 

production in rabbit aortic endothelial cells through the novel AEA receptor (McCollum et al., 

2007). If cannabinoids could increase endothelial cell proliferation and increase NO production 

these would be extremely desirable qualities to have in an antirestenotic drug. Therefore an area 

for further work would be to characterise the effects of cannabinoid agents on endothelial cell 

proliferation.  

 

 

 

 



 294

Effects of virodhamine 

Virodhamine is an endogenous cannabinoid that has been found to demonstrate antagonistic 

effects at the CB1 receptor but be a full agonist at CB2 receptors (Porter et al., 2002). Results 

from both this study and the literature, have shown an inhibitory effect of CB2 agonists in 

smooth muscle cell proliferation. Similarly Rajesh et al., 2008 demonstrated that a CB1 

antagonist reduced cell proliferation. These functional effects of a CB2 agonist and a CB1 

antagonist bear striking similarity to the agonist/antagonist properties of virodhamine. Due to 

these similarities it could be speculated that virodhamine would inhibit SMC proliferation. 

Virodhamine is also thought to function through the abnormal canabidiol/anandamide receptor 

(Ho et al., 2004), which, as mentioned above, is thought to induce NO release from endothelial 

cells.  Therefore in theory this endocannabinoid might reduce SMC proliferation through CB1 

inhibtion/CB2 activation and may induce the release of NO through the endothelial abnormal 

canabidiol/anandamide receptor, and is a future avenue for investigation. 

 

In vivo model of neointimal formation 

There are many established in vivo models of neointimal formation; the next step in this study 

would be to investigate the effects of cannabinoid agents (primarily CB2 agonists) on 

neointimal formation in an in vivo environment. This would provide a more reproducible and 

physiologically relevant setting compared to the use of an organ culture model, as both the 

circulatory and inflammatory response would be present.  The benefit of utilising a murine 

model means that the effects of cannabinoid agonists on neointimal formation could be 

investigated in wild type, ApoE-/-, and CBR-/-
 transgenic mice (Karshovska et al., 2007; 

Zernecke et al., 2008). If these studies showed positive results, then a possible avenue for 

further investigation would be to develop a stent designed to elute the appropriate agent, which 

could then be tested in a larger animal model, such as the porcine coronary artery. 

 

7.4 Conclusion 

In conclusion this study has shown for the first time that endocannabinoid concentrations 

increase in a mouse model of vessel injury, thus suggesting they play a role in the arterial 

response to injury. This study has also confirmed the presence of both CB1 and CB2 receptors 

on murine smooth muscle cells. The endogenous cannabinoid AEA produced a small but 

measurable relaxation in the mouse carotid artery, a response that was independent of both 

FAAH, and COX mediated metabolites, but requiring activation of the CB1 receptor. Despite 
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conflicting data, this study suggests that CB2 receptor agonists reduce stimulated cell 

proliferation and possibly migration, and that the endogenous cannabinoid 2-AG may stimulate 

cell proliferation. Unfortunately due to the un-reproducibility of the organ culture model the 

effects of cannabinoid agents on the development of neointima could not be investigated. 

Despite the inability to form a clear cut conclusion over the question do endogenous 

cannabinoids enhance or inhibit neointimal formation, the evidence does lean towards an 

inhibitory effect on disease progression. Therefore, this study along with findings in the 

literature highlights that although further research is required, the endocannabinoid system may 

have the potential to be manipulated for therapeutic gains in terms of restenosis.  
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Appendix 

Drug incubation study 
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ion 3.3.3 

8.1 Aim 

The aim of this study was to investigate the effects of cannabinoid agents in an organ culture 

model of neointimal formation. 

 

8.2 Method 

8.2.1 Tissue preparation and drug incubation method 

C57/B16J mice of either sex were euthanized by cervical dislocation, sprayed with ethanol and 

the aortas dissected and cleared of adherent tissue using sterile technique. The vessels were 

placed in a 6-well plate containing 3ml of sterile medium (composed of 42% Waymouths, 42% 

Hams F-12, 1% penicilin streptomycin, 15% foetal bovine serum (FBS), 0.05% fungizone) and 

transferred to the laminar flow hood, the vessels were then cut in half. One half was used to 

investigate drug effects on cultured tissue, the other half was used to investigate the effects of 

cannabinoid agents on injured tissue (vessels were injured as described in section 3.3.2.3).  

 

The segments (injured or non-injured) were then transferred to a sterile 6-well plate containing 

3ml medium, supplemented with cannabinoid agent (see Table 8.1), and placed in an incubator 

at 5%CO2 at 37ºC. The vessel segments were maintained in culture for 14 days with the 

medium being aspirated and replaced every alternate day, fresh drug solutions were added at 

each media change. The aortic sections were removed from culture and fixed in 10% neutral 

buffered formalin for subsequent histological analysis as previously described in section 2.3.1. 

(method summarised in Figure 8.1.) Tissue measurements were performed in the same was as 

described in sect

 

  

Drug Media concentration 

JWH133 1x10-5M 

AM630 1x10-6M 

JWH133 +AM630 As above 

 

Table 8.1 Drugs and their media concentrations used in the drug incubation study. 

 

 

 

 

 



 

Murine aorta 

Wire Injury 

A A+J 

C J 

A+J A 

J C 

 

Figure 8.1 Illustrates the method by which tissue samples either injured or non injured 

were incubated with cannabinoid drugs. C =control (no drug), J=JWH133, A =AM630, A+J 

=AM630 + JWH133. 
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8.3 Results 

Despite earlier work demonstrating that this organ culture model produced a measurable injury 

response, only one wire injured tissue segment displayed any sign of neointimal cell growth. As 

can be seen from the raw data shown in Tables 8.2-8.8, many samples do demonstrate increased 

medial or adventitial area/thickness in response to culture and injury. However, some samples 

demonstrate no difference between the uncultured control and the wire injured samples. 

Unfortunately, due to the shrinkage of vessels and issues with wax embedding, a number of 

samples were lost in the process. Since most of these samples were in the groups where the 

segments were incubated with the cannabinoid agents, it was impossible to determine from 

these pilot studies whether or not they had any effect. 
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2 Medial Area mm
  Cultured 

Sample Un cultured Control JWH133 JWH133 
+AM630 

AM630 

1      
2 0.092 0.32   0.084 
3 0.106     
4  0.073 0.104   
5  0.051    
6     0.099 
7 0.071 0.304    
8 0.053 0.054  0.073  
9 0.07     
10  0.049  0.078  
11    0.098  
12  0.047  0.227  

Tables 8.2 The individual medial areas of samples that had been cultured in combination with 

cannabinoid agents. 

 

 

Medial Area mm2 

  Injured 
Sample Un cultured Control JWH133 JWH133 

+AM630 
AM630 

1   0.055   
2 0.092     
3 0.106     
4      
5  0.08    
6  0.051   0.064 
7 0.071 0.075  0.089  
8 0.053 0.079   0.125 
9 0.07     
10  0.139    
11  0.058    
12  0.082    

Table 8.3 The individual areas of tissue samples that had been injured then cultured in the 

presence of cannabinoid agents. 
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Figure 8.2 The individual areas of samples that had been cultured in the presence of 

cannabinoid agents. 
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Figure 8.3 The individual areas of samples that had been injured prior to culture in the presence 

of cannabinoid agents 
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Adventitial Area mm2 

  Cultured 
Sample Un cultured Control JWH133 JWH133 

+AM630 
AM630 

1      
2 0.051 0.144   0.02 
3 0.004     
4  0.016 0.052   
5  0.029    
6     0.042 
7 0.018 0.115    
8 0.02 0.026  0.05  
9 0.01     
10  0.015  0.061  
11    0.026  
12  0.001  0.163  

 
Table 8.4 The individual adventitial areas of samples that were cultured in the presence of 
cannabinoid agents. 
 
 
 

Adventitial Area mm2 

  Injured 
Sample Un cultured Control JWH133 JWH133 

+AM630 
AM630 

1   0.012   
2 0.051     
3 0.004     
4      
5  0.086    
6  0.01   0.018 
7 0.018 0.05  0.147  
8 0.02 0.033   0.071 
9 0.01     
10  0.059    
11  0.002    
12  0.048    

 

Table 8.5 The individual adventitial areas of tissue samples that had been injured then cultured 

in the presence of cannabinoid agents. 
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Figure 8.4 The individual adventitial areas of samples that were cultured in the presence of 

cannabinoid agents. 
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 Figure 8.5 The individual adventitial areas of samples that were injured prior to culture in the 

presence of cannabinoid agents. 
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Medial Thickness mm2 

  Cultured 
Sample Un cultured Control JWH133 JWH133 

+AM630 
AM630 

1      
2 0.061 0.07925   0.04875 
3 0.04975 0.1115    
4  0.036 0.0675   
5  0.04225    
6     0.07425 
7 0.042 0.1165    
8 0.036 0.04725  0.11475  
9 0.03025     
10  0.03125  0.05225  
11    0.075  
12  0.034  0.13925  

 
Table 8.6 The mean medial thickness value for each sample that had been cultured along with 
cannabinoid agents. 

 
 
 
 
 

Medial Thickness mm2 

  Injured 
Sample Un cultured Control JWH133 JWH133 

+AM630 
AM630 

1   0.03475   
2 0.061     
3 0.04975     
4      
5  0.0535    
6  0.036   0.0355 
7 0.042 0.043  0.0655  
8 0.036 0.0515   0.055 
9 0.03025     
10  0.05175    
11  0.032    
12  0.058    

 

Table 8.7 The mean medial thickness values for each sample that had been injured prior to 

culture, along with cannabinoid agents. 
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Figure 8.6 The mean medial thickness value for each sample that had been cultured along with 

cannabinoid agents. 
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Figure 8.7 The mean medial thickness value for each sample that had been injured prior to 
culture along with cannabinoid agents. 
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Adventitial Thickness mm2 

  Cultured 
Sample Un cultured Control JWH133 JWH133 

+AM630 
AM630 

1      
2 0.03 0.0585   0.02625 
3 0.01275 0.048    
4  0.01875 0.059667   
5  0.02    
6     0.0395 
7 0.017 0.05875    
8 0.01575 0.0185  0.02  
9 0.01975     
10  0.01125  0.04175  
11    0.02275  
12  0.002  0.062  

 
Table 8.8 The mean adventitial thickness values for each sample that had been cultured along 
with cannabinoid agents. 

 
 
 

Adventitial Thickness mm2 

  Injured 
Sample Un cultured Control JWH133 JWH133 

+AM630 
AM630 

1   0.008   
2 0.03     
3 0.01275     
4      
5  0.05275    
6  0.00925   0.01875 
7 0.017 0.03725  0.0275  
8 0.01575 0.018   0.063 
9 0.01975     
10  0.0235    
11  0.032    
12  0.0455    

 
 

Table 8.9. The mean adventitial thickness values for each sample that had been injured prior to 

culture, along with cannabinoid agents. 
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Figure 8.8 The mean adventitial thickness values for each sample that had been cultured along 

with cannabinoid agents. 
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